Sample records for multivariate techniques including

  1. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  2. Application of multivariate statistical techniques in microbial ecology

    PubMed Central

    Paliy, O.; Shankar, V.

    2016-01-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791

  3. Application of multivariable search techniques to the optimization of airfoils in a low speed nonlinear inviscid flow field

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1975-01-01

    Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.

  4. Application of multivariate statistical techniques in microbial ecology.

    PubMed

    Paliy, O; Shankar, V

    2016-03-01

    Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.

  5. Visual cues for data mining

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Rabenhorst, David A.; Gerth, John A.; Kalin, Edward B.

    1996-04-01

    This paper describes a set of visual techniques, based on principles of human perception and cognition, which can help users analyze and develop intuitions about tabular data. Collections of tabular data are widely available, including, for example, multivariate time series data, customer satisfaction data, stock market performance data, multivariate profiles of companies and individuals, and scientific measurements. In our approach, we show how visual cues can help users perform a number of data mining tasks, including identifying correlations and interaction effects, finding clusters and understanding the semantics of cluster membership, identifying anomalies and outliers, and discovering multivariate relationships among variables. These cues are derived from psychological studies on perceptual organization, visual search, perceptual scaling, and color perception. These visual techniques are presented as a complement to the statistical and algorithmic methods more commonly associated with these tasks, and provide an interactive interface for the human analyst.

  6. Item Response Modeling of Multivariate Count Data with Zero Inflation, Maximum Inflation, and Heaping

    ERIC Educational Resources Information Center

    Magnus, Brooke E.; Thissen, David

    2017-01-01

    Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…

  7. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  8. Biostatistics Series Module 10: Brief Overview of Multivariate Methods.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2017-01-01

    Multivariate analysis refers to statistical techniques that simultaneously look at three or more variables in relation to the subjects under investigation with the aim of identifying or clarifying the relationships between them. These techniques have been broadly classified as dependence techniques, which explore the relationship between one or more dependent variables and their independent predictors, and interdependence techniques, that make no such distinction but treat all variables equally in a search for underlying relationships. Multiple linear regression models a situation where a single numerical dependent variable is to be predicted from multiple numerical independent variables. Logistic regression is used when the outcome variable is dichotomous in nature. The log-linear technique models count type of data and can be used to analyze cross-tabulations where more than two variables are included. Analysis of covariance is an extension of analysis of variance (ANOVA), in which an additional independent variable of interest, the covariate, is brought into the analysis. It tries to examine whether a difference persists after "controlling" for the effect of the covariate that can impact the numerical dependent variable of interest. Multivariate analysis of variance (MANOVA) is a multivariate extension of ANOVA used when multiple numerical dependent variables have to be incorporated in the analysis. Interdependence techniques are more commonly applied to psychometrics, social sciences and market research. Exploratory factor analysis and principal component analysis are related techniques that seek to extract from a larger number of metric variables, a smaller number of composite factors or components, which are linearly related to the original variables. Cluster analysis aims to identify, in a large number of cases, relatively homogeneous groups called clusters, without prior information about the groups. The calculation intensive nature of multivariate analysis has so far precluded most researchers from using these techniques routinely. The situation is now changing with wider availability, and increasing sophistication of statistical software and researchers should no longer shy away from exploring the applications of multivariate methods to real-life data sets.

  9. Recent applications of multivariate data analysis methods in the authentication of rice and the most analyzed parameters: A review.

    PubMed

    Maione, Camila; Barbosa, Rommel Melgaço

    2018-01-24

    Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.

  10. Transition from a multiport technique to a single-port technique for lung cancer surgery: is lymph node dissection inferior using the single-port technique?†.

    PubMed

    Liu, Chia-Chuan; Shih, Chih-Shiun; Pennarun, Nicolas; Cheng, Chih-Tao

    2016-01-01

    The feasibility and radicalism of lymph node dissection for lung cancer surgery by a single-port technique has frequently been challenged. We performed a retrospective cohort study to investigate this issue. Two chest surgeons initiated multiple-port thoracoscopic surgery in a 180-bed cancer centre in 2005 and shifted to a single-port technique gradually after 2010. Data, including demographic and clinical information, from 389 patients receiving multiport thoracoscopic lobectomy or segmentectomy and 149 consecutive patients undergoing either single-port lobectomy or segmentectomy for primary non-small-cell lung cancer were retrieved and entered for statistical analysis by multivariable linear regression models and Box-Cox transformed multivariable analysis. The mean number of total dissected lymph nodes in the lobectomy group was 28.5 ± 11.7 for the single-port group versus 25.2 ± 11.3 for the multiport group; the mean number of total dissected lymph nodes in the segmentectomy group was 19.5 ± 10.8 for the single-port group versus 17.9 ± 10.3 for the multiport group. In linear multivariable and after Box-Cox transformed multivariable analyses, the single-port approach was still associated with a higher total number of dissected lymph nodes. The total number of dissected lymph nodes for primary lung cancer surgery by single-port video-assisted thoracoscopic surgery (VATS) was higher than by multiport VATS in univariable, multivariable linear regression and Box-Cox transformed multivariable analyses. This study confirmed that highly effective lymph node dissection could be achieved through single-port VATS in our setting. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Moving beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis

    ERIC Educational Resources Information Center

    Barton, Mitch; Yeatts, Paul E.; Henson, Robin K.; Martin, Scott B.

    2016-01-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent…

  12. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  13. Physical vs. photolithographic patterning of plasma polymers: an investigation by ToF-SSIMS and multivariate analysis

    PubMed Central

    Mishra, Gautam; Easton, Christopher D.; McArthur, Sally L.

    2009-01-01

    Physical and photolithographic techniques are commonly used to create chemical patterns for a range of technologies including cell culture studies, bioarrays and other biomedical applications. In this paper, we describe the fabrication of chemical micropatterns from commonly used plasma polymers. Atomic force microcopy (AFM) imaging, Time-of-Flight Static Secondary Ion Mass Spectrometry (ToF-SSIMS) imaging and multivariate analysis have been employed to visualize the chemical boundaries created by these patterning techniques and assess the spatial and chemical resolution of the patterns. ToF-SSIMS analysis demonstrated that well defined chemical and spatial boundaries were obtained from photolithographic patterning, while the resolution of physical patterning via a transmission electron microscopy (TEM) grid varied depending on the properties of the plasma system including the substrate material. In general, physical masking allowed diffusion of the plasma species below the mask and bleeding of the surface chemistries. Multivariate analysis techniques including Principal Component Analysis (PCA) and Region of Interest (ROI) assessment were used to investigate the ToF-SSIMS images of a range of different plasma polymer patterns. In the most challenging case, where two strongly reacting polymers, allylamine and acrylic acid were deposited, PCA confirmed the fabrication of micropatterns with defined spatial resolution. ROI analysis allowed for the identification of an interface between the two plasma polymers for patterns fabricated using the photolithographic technique which has been previously overlooked. This study clearly demonstrated the versatility of photolithographic patterning for the production of multichemistry plasma polymer arrays and highlighted the need for complimentary characterization and analytical techniques during the fabrication plasma polymer micropatterns. PMID:19950941

  14. A systematic review of the relationship factor between women and health professionals within the multivariant analysis of maternal satisfaction.

    PubMed

    Macpherson, Ignacio; Roqué-Sánchez, María V; Legget Bn, Finola O; Fuertes, Ferran; Segarra, Ignacio

    2016-10-01

    personalised support provided to women by health professionals is one of the prime factors attaining women's satisfaction during pregnancy and childbirth. However the multifactorial nature of 'satisfaction' makes difficult to assess it. Statistical multivariate analysis may be an effective technique to obtain in depth quantitative evidence of the importance of this factor and its interaction with the other factors involved. This technique allows us to estimate the importance of overall satisfaction in its context and suggest actions for healthcare services. systematic review of studies that quantitatively measure the personal relationship between women and healthcare professionals (gynecologists, obstetricians, nurse, midwifes, etc.) regarding maternity care satisfaction. The literature search focused on studies carried out between 1970 and 2014 that used multivariate analyses and included the woman-caregiver relationship as a factor of their analysis. twenty-four studies which applied various multivariate analysis tools to different periods of maternity care (antenatal, perinatal, post partum) were selected. The studies included discrete scale scores and questionnaires from women with low-risk pregnancies. The "personal relationship" factor appeared under various names: care received, personalised treatment, professional support, amongst others. The most common multivariate techniques used to assess the percentage of variance explained and the odds ratio of each factor were principal component analysis and logistic regression. the data, variables and factor analysis suggest that continuous, personalised care provided by the usual midwife and delivered within a family or a specialised setting, generates the highest level of satisfaction. In addition, these factors foster the woman's psychological and physiological recovery, often surpassing clinical action (e.g. medicalization and hospital organization) and/or physiological determinants (e.g. pain, pathologies, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our belief that this multivariate analysis will enable superior differentiation capabilities. In addition, noise and system artifacts challenge the analysis of GC-MS data collected on lower cost equipment, ubiquitous in commercial laboratories. This research has the potential to affect many areas of analytical chemistry including materials analysis, medical testing, and environmental surveillance. It could also provide a method to measure adsorption parameters for chemical interactions on various surfaces by measuring desorption as a function of temperature for mixtures. We have presented results of a novel method for examining offgas products of a common PDMS material. Our method involves utilizing a stepped TD/GC-MS data acquisition scheme that may be almost totally automated, coupled with multivariate analysis schemes. This method of data generation and analysis can be applied to a number of materials aging and thermal degradation studies.« less

  16. Kernel canonical-correlation Granger causality for multiple time series

    NASA Astrophysics Data System (ADS)

    Wu, Guorong; Duan, Xujun; Liao, Wei; Gao, Qing; Chen, Huafu

    2011-04-01

    Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are verified on simulated data.

  17. A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Watts, Stephen R.

    1995-01-01

    This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.

  18. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics.

    PubMed

    Villar, Alberto; Vadillo, Julen; Santos, Jose I; Gorritxategi, Eneko; Mabe, Jon; Arnaiz, Aitor; Fernández, Luis A

    2017-04-15

    Optimization of a multivariate calibration process has been undertaken for a Visible-Near Infrared (400-1100nm) sensor system, applied in the monitoring of the fermentation process of the cider produced in the Basque Country (Spain). The main parameters that were monitored included alcoholic proof, l-lactic acid content, glucose+fructose and acetic acid content. The multivariate calibration was carried out using a combination of different variable selection techniques and the most suitable pre-processing strategies were selected based on the spectra characteristics obtained by the sensor system. The variable selection techniques studied in this work include Martens Uncertainty test, interval Partial Least Square Regression (iPLS) and Genetic Algorithm (GA). This procedure arises from the need to improve the calibration models prediction ability for cider monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Linear regression analysis and its application to multivariate chromatographic calibration for the quantitative analysis of two-component mixtures.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil

    2005-01-01

    Multivariate chromatographic calibration technique was developed for the quantitative analysis of binary mixtures enalapril maleate (EA) and hydrochlorothiazide (HCT) in tablets in the presence of losartan potassium (LST). The mathematical algorithm of multivariate chromatographic calibration technique is based on the use of the linear regression equations constructed using relationship between concentration and peak area at the five-wavelength set. The algorithm of this mathematical calibration model having a simple mathematical content was briefly described. This approach is a powerful mathematical tool for an optimum chromatographic multivariate calibration and elimination of fluctuations coming from instrumental and experimental conditions. This multivariate chromatographic calibration contains reduction of multivariate linear regression functions to univariate data set. The validation of model was carried out by analyzing various synthetic binary mixtures and using the standard addition technique. Developed calibration technique was applied to the analysis of the real pharmaceutical tablets containing EA and HCT. The obtained results were compared with those obtained by classical HPLC method. It was observed that the proposed multivariate chromatographic calibration gives better results than classical HPLC.

  20. Regularization with numerical extrapolation for finite and UV-divergent multi-loop integrals

    NASA Astrophysics Data System (ADS)

    de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Kapenga, J.; Olagbemi, O.

    2018-03-01

    We give numerical integration results for Feynman loop diagrams such as those covered by Laporta (2000) and by Baikov and Chetyrkin (2010), and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using multivariate techniques from the PARINT package for multivariate integration, as well as iterated integration with programs from the QUADPACK package, and a trapezoidal method based on a double exponential transformation. PARINT is layered over MPI (Message Passing Interface), and incorporates advanced parallel/distributed techniques including load balancing among processes that may be distributed over a cluster or a network/grid of nodes. Results are included for 2-loop vertex and box diagrams and for sets of 2-, 3- and 4-loop self-energy diagrams with or without UV terms. Numerical regularization of integrals with singular terms is achieved by linear and non-linear extrapolation methods.

  1. Multivariate Analysis of Seismic Field Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M. Kathleen

    1999-06-01

    This report includes the details of the model building procedure and prediction of seismic field data. Principal Components Regression, a multivariate analysis technique, was used to model seismic data collected as two pieces of equipment were cycled on and off. Models built that included only the two pieces of equipment of interest had trouble predicting data containing signals not included in the model. Evidence for poor predictions came from the prediction curves as well as spectral F-ratio plots. Once the extraneous signals were included in the model, predictions improved dramatically. While Principal Components Regression performed well for the present datamore » sets, the present data analysis suggests further work will be needed to develop more robust modeling methods as the data become more complex.« less

  2. Analysis techniques for multivariate root loci. [a tool in linear control systems

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.; Stein, G.; Laub, A. J.

    1980-01-01

    Analysis and techniques are developed for the multivariable root locus and the multivariable optimal root locus. The generalized eigenvalue problem is used to compute angles and sensitivities for both types of loci, and an algorithm is presented that determines the asymptotic properties of the optimal root locus.

  3. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003

    NASA Astrophysics Data System (ADS)

    Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe

    2013-02-01

    Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.

  4. Comparative forensic soil analysis of New Jersey state parks using a combination of simple techniques with multivariate statistics.

    PubMed

    Bonetti, Jennifer; Quarino, Lawrence

    2014-05-01

    This study has shown that the combination of simple techniques with the use of multivariate statistics offers the potential for the comparative analysis of soil samples. Five samples were obtained from each of twelve state parks across New Jersey in both the summer and fall seasons. Each sample was examined using particle-size distribution, pH analysis in both water and 1 M CaCl2 , and a loss on ignition technique. Data from each of the techniques were combined, and principal component analysis (PCA) and canonical discriminant analysis (CDA) were used for multivariate data transformation. Samples from different locations could be visually differentiated from one another using these multivariate plots. Hold-one-out cross-validation analysis showed error rates as low as 3.33%. Ten blind study samples were analyzed resulting in no misclassifications using Mahalanobis distance calculations and visual examinations of multivariate plots. Seasonal variation was minimal between corresponding samples, suggesting potential success in forensic applications. © 2014 American Academy of Forensic Sciences.

  5. Modelling Truck Camper Production

    ERIC Educational Resources Information Center

    Kramlich, G. R., II; Kobylski, G.; Ahner, D.

    2008-01-01

    This note describes an interdisciplinary project designed to enhance students' knowledge of the basic techniques taught in a multivariable calculus course. The note discusses the four main requirements of the project and then the solutions for each requirement. Concepts covered include differentials, gradients, Lagrange multipliers, constrained…

  6. Design of multivariable feedback control systems via spectral assignment. [as applied to aircraft flight control

    NASA Technical Reports Server (NTRS)

    Liberty, S. R.; Mielke, R. R.; Tung, L. J.

    1981-01-01

    Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.

  7. Site 765: Sedimentology

    USGS Publications Warehouse

    ,

    1990-01-01

    Various techniques were used to decipher the sedimentation history of Site 765, including Markov chain analysis of facies transitions, XRD analysis of clay and other minerals, and multivariate analysis of smear-slide data, in addition to the standard descriptive procedures employed by the shipboard sedimentologist. This chapter presents brief summaries of methodology and major findings of these three techniques, a summary of the sedimentation history, and a discussion of trends in sedimentation through time.

  8. Multivariate curve resolution of incomplete fused multiset data from chromatographic and spectrophotometric analyses for drug photostability studies.

    PubMed

    De Luca, Michele; Ragno, Gaetano; Ioele, Giuseppina; Tauler, Romà

    2014-07-21

    An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Development of Pattern Recognition Techniques for the Evaluation of Toxicant Impacts to Multispecies Systems

    DTIC Science & Technology

    1993-06-18

    the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and clustering methods...rule rather than the exception. In the Standardized Aquatic Microcosm and the Mixed Flask Culture (MFC) microcosms, multivariate analysis and...experiments using two microcosm protocols. We use nonmetric clustering, a multivariate pattern recognition technique developed by Matthews and Heame (1991

  10. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  11. Technique and cue selection for graphical presentation of generic hyperdimensional data

    NASA Astrophysics Data System (ADS)

    Howard, Lee M.; Burton, Robert P.

    2013-12-01

    Several presentation techniques have been created for visualization of data with more than three variables. Packages have been written, each of which implements a subset of these techniques. However, these packages generally fail to provide all the features needed by the user during the visualization process. Further, packages generally limit support for presentation techniques to a few techniques. A new package called Petrichor accommodates all necessary and useful features together in one system. Any presentation technique may be added easily through an extensible plugin system. Features are supported by a user interface that allows easy interaction with data. Annotations allow users to mark up visualizations and share information with others. By providing a hyperdimensional graphics package that easily accommodates presentation techniques and includes a complete set of features, including those that are rarely or never supported elsewhere, the user is provided with a tool that facilitates improved interaction with multivariate data to extract and disseminate information.

  12. MULTIVARIATE ANALYSIS OF DRINKING BEHAVIOUR IN A RURAL POPULATION

    PubMed Central

    Mathrubootham, N.; Bashyam, V.S.P.; Shahjahan

    1997-01-01

    This study was carried out to find out the drinking pattern in a rural population, using multivariate techniques. 386 current users identified in a community were assessed with regard to their drinking behaviours using a structured interview. For purposes of the study the questions were condensed into 46 meaningful variables. In bivariate analysis, 14 variables including dependent variables such as dependence, MAST & CAGE (measuring alcoholic status), Q.F. Index and troubled drinking were found to be significant. Taking these variables and other multivariate techniques too such as ANOVA, correlation, regression analysis and factor analysis were done using both SPSS PC + and HCL magnum mainframe computer with FOCUS package and UNIX systems. Results revealed that number of factors such as drinking style, duration of drinking, pattern of abuse, Q.F. Index and various problems influenced drinking and some of them set up a vicious circle. Factor analysis revealed mainly 3 factors, abuse, dependence and social drinking factors. Dependence could be divided into low/moderate dependence. The implications and practical applications of these tests are also discussed. PMID:21584077

  13. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    DOE R&D Accomplishments Database

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  14. Social Competence in the Preschool: A Multivariate View.

    ERIC Educational Resources Information Center

    Connolly, Jennifer; Doyle, Anna-Beth

    This study was designed to provide additional understanding of the construct of social competence by using multiple assessments, including both behavioral and inferential techniques. Indices of qualitative social behaviors and of quantitative interaction dimensions were collected on 66 preschoolers during free play. Scores on the Kohn and Rosman…

  15. Racial Variation in Vocational Rehabilitation Outcomes: A Structural Equation Modeling Approach

    ERIC Educational Resources Information Center

    Martin, Frank H.

    2010-01-01

    Numerous studies have indicated racial and ethnic disparities in the vocational rehabilitation (VR) system, including differences in acceptance, services provided, closure types, and employment outcomes. Few of these studies, however, have used advanced multivariate techniques or latent constructs to measure quality of employment outcomes (QEO) or…

  16. Multivariate Analysis, Retrieval, and Storage System (MARS). Volume 1: MARS System and Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Vanderberg, J. D.; Woodbury, N. W.

    1974-01-01

    A method for rapidly examining the probable applicability of weight estimating formulae to a specific aerospace vehicle design is presented. The Multivariate Analysis Retrieval and Storage System (MARS) is comprised of three computer programs which sequentially operate on the weight and geometry characteristics of past aerospace vehicles designs. Weight and geometric characteristics are stored in a set of data bases which are fully computerized. Additional data bases are readily added to the MARS system and/or the existing data bases may be easily expanded to include additional vehicles or vehicle characteristics.

  17. Multivariable PID controller design tuning using bat algorithm for activated sludge process

    NASA Astrophysics Data System (ADS)

    Atikah Nor’Azlan, Nur; Asmiza Selamat, Nur; Mat Yahya, Nafrizuan

    2018-04-01

    The designing of a multivariable PID control for multi input multi output is being concerned with this project by applying four multivariable PID control tuning which is Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method. The determination of this study is to investigate the performance of selected optimization technique to tune the parameter of MPID controller. The selected optimization technique is Bat Algorithm (BA). All the MPID-BA tuning result will be compared and analyzed. Later, the best MPID-BA will be chosen in order to determine which techniques are better based on the system performances in terms of transient response.

  18. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  19. Toward exploratory analysis of diversity unified across fields of study: an information visualization approach

    Treesearch

    Tuan Pham; Julia Jones; Ronald Metoyer; Frederick Colwell

    2014-01-01

    The study of the diversity of multivariate objects shares common characteristics and goals across disciplines, including ecology and organizational management. Nevertheless, subject-matter experts have adopted somewhat separate diversity concepts and analysis techniques, limiting the potential for sharing and comparing across disciplines. Moreover, while large and...

  20. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Rios-Velazquez, Carlos; Vazquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2014-06-01

    Investigations focusing on devising rapid and accurate methods for developing signatures for microorganisms that could be used as biological warfare agents' detection, identification, and discrimination have recently increased significantly. Quantum cascade laser (QCL)-based spectroscopic systems have revolutionized many areas of defense and security including this area of research. In this contribution, infrared spectroscopy detection based on QCL was used to obtain the mid-infrared (MIR) spectral signatures of Bacillus thuringiensis, Escherichia coli, and Staphylococcus epidermidis. These bacteria were used as microorganisms that simulate biothreats (biosimulants) very truthfully. The experiments were conducted in reflection mode with biosimulants deposited on various substrates including cardboard, glass, travel bags, wood, and stainless steel. Chemometrics multivariate statistical routines, such as principal component analysis regression and partial least squares coupled to discriminant analysis, were used to analyze the MIR spectra. Overall, the investigated infrared vibrational techniques were useful for detecting target microorganisms on the studied substrates, and the multivariate data analysis techniques proved to be very efficient for classifying the bacteria and discriminating them in the presence of highly IR-interfering media.

  1. Load compensation in a lean burn natural gas vehicle

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Anupam

    A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.

  2. The Effect of the Multivariate Box-Cox Transformation on the Power of MANOVA.

    ERIC Educational Resources Information Center

    Kirisci, Levent; Hsu, Tse-Chi

    Most of the multivariate statistical techniques rely on the assumption of multivariate normality. The effects of non-normality on multivariate tests are assumed to be negligible when variance-covariance matrices and sample sizes are equal. Therefore, in practice, investigators do not usually attempt to remove non-normality. In this simulation…

  3. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  4. Multivariate evoked response detection based on the spectral F-test.

    PubMed

    Rocha, Paulo Fábio F; Felix, Leonardo B; Miranda de Sá, Antonio Mauricio F L; Mendes, Eduardo M A M

    2016-05-01

    Objective response detection techniques, such as magnitude square coherence, component synchrony measure, and the spectral F-test, have been used to automate the detection of evoked responses. The performance of these detectors depends on both the signal-to-noise ratio (SNR) and the length of the electroencephalogram (EEG) signal. Recently, multivariate detectors were developed to increase the detection rate even in the case of a low signal-to-noise ratio or of short data records originated from EEG signals. In this context, an extension to the multivariate case of the spectral F-test detector is proposed. The performance of this technique is assessed using Monte Carlo. As an example, EEG data from 12 subjects during photic stimulation is used to demonstrate the usefulness of the proposed detector. The multivariate method showed detection rates consistently higher than those ones when only one signal was used. It is shown that the response detection in EEG signals with the multivariate technique was statistically significant if two or more EEG derivations were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. F100 Multivariable Control Synthesis Program. Computer Implementation of the F100 Multivariable Control Algorithm

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1983-01-01

    As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.

  6. Simulating Multivariate Nonnormal Data Using an Iterative Algorithm

    ERIC Educational Resources Information Center

    Ruscio, John; Kaczetow, Walter

    2008-01-01

    Simulating multivariate nonnormal data with specified correlation matrices is difficult. One especially popular method is Vale and Maurelli's (1983) extension of Fleishman's (1978) polynomial transformation technique to multivariate applications. This requires the specification of distributional moments and the calculation of an intermediate…

  7. Detangling complex relationships in forensic data: principles and use of causal networks and their application to clinical forensic science.

    PubMed

    Lefèvre, Thomas; Lepresle, Aude; Chariot, Patrick

    2015-09-01

    The search for complex, nonlinear relationships and causality in data is hindered by the availability of techniques in many domains, including forensic science. Linear multivariable techniques are useful but present some shortcomings. In the past decade, Bayesian approaches have been introduced in forensic science. To date, authors have mainly focused on providing an alternative to classical techniques for quantifying effects and dealing with uncertainty. Causal networks, including Bayesian networks, can help detangle complex relationships in data. A Bayesian network estimates the joint probability distribution of data and graphically displays dependencies between variables and the circulation of information between these variables. In this study, we illustrate the interest in utilizing Bayesian networks for dealing with complex data through an application in clinical forensic science. Evaluating the functional impairment of assault survivors is a complex task for which few determinants are known. As routinely estimated in France, the duration of this impairment can be quantified by days of 'Total Incapacity to Work' ('Incapacité totale de travail,' ITT). In this study, we used a Bayesian network approach to identify the injury type, victim category and time to evaluation as the main determinants of the 'Total Incapacity to Work' (TIW). We computed the conditional probabilities associated with the TIW node and its parents. We compared this approach with a multivariable analysis, and the results of both techniques were converging. Thus, Bayesian networks should be considered a reliable means to detangle complex relationships in data.

  8. Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques.

    PubMed

    Teutonico, D; Musuamba, F; Maas, H J; Facius, A; Yang, S; Danhof, M; Della Pasqua, O

    2015-10-01

    Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets.

  9. Characterizing multivariate decoding models based on correlated EEG spectral features

    PubMed Central

    McFarland, Dennis J.

    2013-01-01

    Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267

  10. The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples

    ERIC Educational Resources Information Center

    Avetisyan, Marianna; Fox, Jean-Paul

    2012-01-01

    In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…

  11. All-Possible-Subsets for MANOVA and Factorial MANOVAs: Less than a Weekend Project

    ERIC Educational Resources Information Center

    Nimon, Kim; Zientek, Linda Reichwein; Kraha, Amanda

    2016-01-01

    Multivariate techniques are increasingly popular as researchers attempt to accurately model a complex world. MANOVA is a multivariate technique used to investigate the dimensions along which groups differ, and how these dimensions may be used to predict group membership. A concern in a MANOVA analysis is to determine if a smaller subset of…

  12. Multivariate mixed linear model analysis of longitudinal data: an information-rich statistical technique for analyzing disease resistance data

    USDA-ARS?s Scientific Manuscript database

    The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...

  13. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  14. Acoustic method of damage sensing in composite materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Walker, James; Lansing, Matthew

    1994-01-01

    The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.

  15. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  16. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review.

    PubMed

    Hou, Deyi; O'Connor, David; Nathanail, Paul; Tian, Li; Ma, Yan

    2017-12-01

    Heavy metal soil contamination is associated with potential toxicity to humans or ecotoxicity. Scholars have increasingly used a combination of geographical information science (GIS) with geostatistical and multivariate statistical analysis techniques to examine the spatial distribution of heavy metals in soils at a regional scale. A review of such studies showed that most soil sampling programs were based on grid patterns and composite sampling methodologies. Many programs intended to characterize various soil types and land use types. The most often used sampling depth intervals were 0-0.10 m, or 0-0.20 m, below surface; and the sampling densities used ranged from 0.0004 to 6.1 samples per km 2 , with a median of 0.4 samples per km 2 . The most widely used spatial interpolators were inverse distance weighted interpolation and ordinary kriging; and the most often used multivariate statistical analysis techniques were principal component analysis and cluster analysis. The review also identified several determining and correlating factors in heavy metal distribution in soils, including soil type, soil pH, soil organic matter, land use type, Fe, Al, and heavy metal concentrations. The major natural and anthropogenic sources of heavy metals were found to derive from lithogenic origin, roadway and transportation, atmospheric deposition, wastewater and runoff from industrial and mining facilities, fertilizer application, livestock manure, and sewage sludge. This review argues that the full potential of integrated GIS and multivariate statistical analysis for assessing heavy metal distribution in soils on a regional scale has not yet been fully realized. It is proposed that future research be conducted to map multivariate results in GIS to pinpoint specific anthropogenic sources, to analyze temporal trends in addition to spatial patterns, to optimize modeling parameters, and to expand the use of different multivariate analysis tools beyond principal component analysis (PCA) and cluster analysis (CA). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Multivariate Statistical Approach Applied to Sediment Source Tracking Through Quantification and Mineral Identification, Cheyenne River, South Dakota

    NASA Astrophysics Data System (ADS)

    Valder, J.; Kenner, S.; Long, A.

    2008-12-01

    Portions of the Cheyenne River are characterized as impaired by the U.S. Environmental Protection Agency because of water-quality exceedences. The Cheyenne River watershed includes the Black Hills National Forest and part of the Badlands National Park. Preliminary analysis indicates that the Badlands National Park is a major contributor to the exceedances of the water-quality constituents for total dissolved solids and total suspended solids. Water-quality data have been collected continuously since 2007, and in the second year of collection (2008), monthly grab and passive sediment samplers are being used to collect total suspended sediment and total dissolved solids in both base-flow and runoff-event conditions. In addition, sediment samples from the river channel, including bed, bank, and floodplain, have been collected. These samples are being analyzed at the South Dakota School of Mines and Technology's X-Ray Diffraction Lab to quantify the mineralogy of the sediments. A multivariate statistical approach (including principal components, least squares, and maximum likelihood techniques) is applied to the mineral percentages that were characterized for each site to identify the contributing source areas that are causing exceedances of sediment transport in the Cheyenne River watershed. Results of the multivariate analysis demonstrate the likely sources of solids found in the Cheyenne River samples. A further refinement of the methods is in progress that utilizes a conceptual model which, when applied with the multivariate statistical approach, provides a better estimate for sediment sources.

  18. Multivariate stochastic simulation with subjective multivariate normal distributions

    Treesearch

    P. J. Ince; J. Buongiorno

    1991-01-01

    In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...

  19. Uses of Multivariate Analytical Techniques in Online and Blended Business Education: An Assessment of Current Practice and Recommendations for Future Research

    ERIC Educational Resources Information Center

    Arbaugh, J. B.; Hwang, Alvin

    2013-01-01

    Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…

  20. Multivariate geometry as an approach to algal community analysis

    USGS Publications Warehouse

    Allen, T.F.H.; Skagen, S.

    1973-01-01

    Multivariate analyses are put in the context of more usual approaches to phycological investigations. The intuitive common-sense involved in methods of ordination, classification and discrimination are emphasised by simple geometric accounts which avoid jargon and matrix algebra. Warnings are given that artifacts result from technique abuses by the naive or over-enthusiastic. An analysis of a simple periphyton data set is presented as an example of the approach. Suggestions are made as to situations in phycological investigations, where the techniques could be appropriate. The discipline is reprimanded for its neglect of the multivariate approach.

  1. Reagent-free bacterial identification using multivariate analysis of transmission spectra

    NASA Astrophysics Data System (ADS)

    Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.

    2012-10-01

    The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.

  2. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  3. DEFINITION OF MULTIVARIATE GEOCHEMICAL ASSOCIATIONS WITH POLYMETALLIC MINERAL OCCURRENCES USING A SPATIALLY DEPENDENT CLUSTERING TECHNIQUE AND RASTERIZED STREAM SEDIMENT DATA - AN ALASKAN EXAMPLE.

    USGS Publications Warehouse

    Jenson, Susan K.; Trautwein, C.M.

    1984-01-01

    The application of an unsupervised, spatially dependent clustering technique (AMOEBA) to interpolated raster arrays of stream sediment data has been found to provide useful multivariate geochemical associations for modeling regional polymetallic resource potential. The technique is based on three assumptions regarding the compositional and spatial relationships of stream sediment data and their regional significance. These assumptions are: (1) compositionally separable classes exist and can be statistically distinguished; (2) the classification of multivariate data should minimize the pair probability of misclustering to establish useful compositional associations; and (3) a compositionally defined class represented by three or more contiguous cells within an array is a more important descriptor of a terrane than a class represented by spatial outliers.

  4. Stochastic modelling of temperatures affecting the in situ performance of a solar-assisted heat pump: The multivariate approach and physical interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loveday, D.L.; Craggs, C.

    Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less

  5. Usage of multivariate geostatistics in interpolation processes for meteorological precipitation maps

    NASA Astrophysics Data System (ADS)

    Gundogdu, Ismail Bulent

    2017-01-01

    Long-term meteorological data are very important both for the evaluation of meteorological events and for the analysis of their effects on the environment. Prediction maps which are constructed by different interpolation techniques often provide explanatory information. Conventional techniques, such as surface spline fitting, global and local polynomial models, and inverse distance weighting may not be adequate. Multivariate geostatistical methods can be more significant, especially when studying secondary variables, because secondary variables might directly affect the precision of prediction. In this study, the mean annual and mean monthly precipitations from 1984 to 2014 for 268 meteorological stations in Turkey have been used to construct country-wide maps. Besides linear regression, the inverse square distance and ordinary co-Kriging (OCK) have been used and compared to each other. Also elevation, slope, and aspect data for each station have been taken into account as secondary variables, whose use has reduced errors by up to a factor of three. OCK gave the smallest errors (1.002 cm) when aspect was included.

  6. Boosting Higgs pair production in the [Formula: see text] final state with multivariate techniques.

    PubMed

    Behr, J Katharina; Bortoletto, Daniela; Frost, James A; Hartland, Nathan P; Issever, Cigdem; Rojo, Juan

    2016-01-01

    The measurement of Higgs pair production will be a cornerstone of the LHC program in the coming years. Double Higgs production provides a crucial window upon the mechanism of electroweak symmetry breaking and has a unique sensitivity to the Higgs trilinear coupling. We study the feasibility of a measurement of Higgs pair production in the [Formula: see text] final state at the LHC. Our analysis is based on a combination of traditional cut-based methods with state-of-the-art multivariate techniques. We account for all relevant backgrounds, including the contributions from light and charm jet mis-identification, which are ultimately comparable in size to the irreducible 4 b QCD background. We demonstrate the robustness of our analysis strategy in a high pileup environment. For an integrated luminosity of [Formula: see text] ab[Formula: see text], a signal significance of [Formula: see text] is obtained, indicating that the [Formula: see text] final state alone could allow for the observation of double Higgs production at the High Luminosity LHC.

  7. Robust Nonlinear Feedback Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)

    2001-01-01

    This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.

  8. Characterizing multivariate decoding models based on correlated EEG spectral features.

    PubMed

    McFarland, Dennis J

    2013-07-01

    Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. [Use of multiple regression models in observational studies (1970-2013) and requirements of the STROBE guidelines in Spanish scientific journals].

    PubMed

    Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M

    In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Multivariate pattern recognition for diagnosis and prognosis in clinical neuroimaging: state of the art, current challenges and future trends.

    PubMed

    Haller, Sven; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon; Van De Ville, Dimitri

    2014-05-01

    Many diseases are associated with systematic modifications in brain morphometry and function. These alterations may be subtle, in particular at early stages of the disease progress, and thus not evident by visual inspection alone. Group-level statistical comparisons have dominated neuroimaging studies for many years, proving fascinating insight into brain regions involved in various diseases. However, such group-level results do not warrant diagnostic value for individual patients. Recently, pattern recognition approaches have led to a fundamental shift in paradigm, bringing multivariate analysis and predictive results, notably for the early diagnosis of individual patients. We review the state-of-the-art fundamentals of pattern recognition including feature selection, cross-validation and classification techniques, as well as limitations including inter-individual variation in normal brain anatomy and neurocognitive reserve. We conclude with the discussion of future trends including multi-modal pattern recognition, multi-center approaches with data-sharing and cloud-computing.

  11. Cole-Cole, linear and multivariate modeling of capacitance data for on-line monitoring of biomass.

    PubMed

    Dabros, Michal; Dennewald, Danielle; Currie, David J; Lee, Mark H; Todd, Robert W; Marison, Ian W; von Stockar, Urs

    2009-02-01

    This work evaluates three techniques of calibrating capacitance (dielectric) spectrometers used for on-line monitoring of biomass: modeling of cell properties using the theoretical Cole-Cole equation, linear regression of dual-frequency capacitance measurements on biomass concentration, and multivariate (PLS) modeling of scanning dielectric spectra. The performance and robustness of each technique is assessed during a sequence of validation batches in two experimental settings of differing signal noise. In more noisy conditions, the Cole-Cole model had significantly higher biomass concentration prediction errors than the linear and multivariate models. The PLS model was the most robust in handling signal noise. In less noisy conditions, the three models performed similarly. Estimates of the mean cell size were done additionally using the Cole-Cole and PLS models, the latter technique giving more satisfactory results.

  12. Longitudinal assessment of treatment effects on pulmonary ventilation using 1H/3He MRI multivariate templates

    NASA Astrophysics Data System (ADS)

    Tustison, Nicholas J.; Contrella, Benjamin; Altes, Talissa A.; Avants, Brian B.; de Lange, Eduard E.; Mugler, John P.

    2013-03-01

    The utitlity of pulmonary functional imaging techniques, such as hyperpolarized 3He MRI, has encouraged their inclusion in research studies for longitudinal assessment of disease progression and the study of treatment effects. We present methodology for performing voxelwise statistical analysis of ventilation maps derived from hyper­ polarized 3He MRI which incorporates multivariate template construction using simultaneous acquisition of IH and 3He images. Additional processing steps include intensity normalization, bias correction, 4-D longitudinal segmentation, and generation of expected ventilation maps prior to voxelwise regression analysis. Analysis is demonstrated on a cohort of eight individuals with diagnosed cystic fibrosis (CF) undergoing treatment imaged five times every two weeks with a prescribed treatment schedule.

  13. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  14. Application of multivariate statistical techniques for differentiation of ripe banana flour based on the composition of elements.

    PubMed

    Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat

    2009-01-01

    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.

  15. Appraisal of salinity and fluoride in a semi-arid region of India using statistical and multivariate techniques.

    PubMed

    Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal

    2009-12-01

    Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.

  16. Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yang, Sibo; Fan, Rongwei; Yu, Xin; Chen, Deying

    2018-06-01

    In this paper, discrimination of soft tissues using laser-induced breakdown spectroscopy (LIBS) in combination with multivariate statistical methods is presented. Fresh pork fat, skin, ham, loin and tenderloin muscle tissues are manually cut into slices and ablated using a 1064 nm pulsed Nd:YAG laser. Discrimination analyses between fat, skin and muscle tissues, and further between highly similar ham, loin and tenderloin muscle tissues, are performed based on the LIBS spectra in combination with multivariate statistical methods, including principal component analysis (PCA), k nearest neighbors (kNN) classification, and support vector machine (SVM) classification. Performances of the discrimination models, including accuracy, sensitivity and specificity, are evaluated using 10-fold cross validation. The classification models are optimized to achieve best discrimination performances. The fat, skin and muscle tissues can be definitely discriminated using both kNN and SVM classifiers, with accuracy of over 99.83%, sensitivity of over 0.995 and specificity of over 0.998. The highly similar ham, loin and tenderloin muscle tissues can also be discriminated with acceptable performances. The best performances are achieved with SVM classifier using Gaussian kernel function, with accuracy of 76.84%, sensitivity of over 0.742 and specificity of over 0.869. The results show that the LIBS technique assisted with multivariate statistical methods could be a powerful tool for online discrimination of soft tissues, even for tissues of high similarity, such as muscles from different parts of the animal body. This technique could be used for discrimination of tissues suffering minor clinical changes, thus may advance the diagnosis of early lesions and abnormalities.

  17. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System.

    PubMed

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure ( P <0.05). Multivariate logistic regression analysis showed no statistically significant relationship ( P >0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant ( P <0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y.

  18. Weighing of risk factors for penetrating keratoplasty graft failure: application of Risk Score System

    PubMed Central

    Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D.; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio

    2017-01-01

    AIM To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. METHODS The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. RESULTS Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure (P<0.05). Multivariate logistic regression analysis showed no statistically significant relationship (P>0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant (P<0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. CONCLUSION After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y. PMID:28393027

  19. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    PubMed

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in challenging Raman endoscopic applications.

  20. Fresh Biomass Estimation in Heterogeneous Grassland Using Hyperspectral Measurements and Multivariate Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Darvishzadeh, R.; Skidmore, A. K.; Mirzaie, M.; Atzberger, C.; Schlerf, M.

    2014-12-01

    Accurate estimation of grassland biomass at their peak productivity can provide crucial information regarding the functioning and productivity of the rangelands. Hyperspectral remote sensing has proved to be valuable for estimation of vegetation biophysical parameters such as biomass using different statistical techniques. However, in statistical analysis of hyperspectral data, multicollinearity is a common problem due to large amount of correlated hyper-spectral reflectance measurements. The aim of this study was to examine the prospect of above ground biomass estimation in a heterogeneous Mediterranean rangeland employing multivariate calibration methods. Canopy spectral measurements were made in the field using a GER 3700 spectroradiometer, along with concomitant in situ measurements of above ground biomass for 170 sample plots. Multivariate calibrations including partial least squares regression (PLSR), principal component regression (PCR), and Least-Squared Support Vector Machine (LS-SVM) were used to estimate the above ground biomass. The prediction accuracy of the multivariate calibration methods were assessed using cross validated R2 and RMSE. The best model performance was obtained using LS_SVM and then PLSR both calibrated with first derivative reflectance dataset with R2cv = 0.88 & 0.86 and RMSEcv= 1.15 & 1.07 respectively. The weakest prediction accuracy was appeared when PCR were used (R2cv = 0.31 and RMSEcv= 2.48). The obtained results highlight the importance of multivariate calibration methods for biomass estimation when hyperspectral data are used.

  1. Identification of complex metabolic states in critically injured patients using bioinformatic cluster analysis.

    PubMed

    Cohen, Mitchell J; Grossman, Adam D; Morabito, Diane; Knudson, M Margaret; Butte, Atul J; Manley, Geoffrey T

    2010-01-01

    Advances in technology have made extensive monitoring of patient physiology the standard of care in intensive care units (ICUs). While many systems exist to compile these data, there has been no systematic multivariate analysis and categorization across patient physiological data. The sheer volume and complexity of these data make pattern recognition or identification of patient state difficult. Hierarchical cluster analysis allows visualization of high dimensional data and enables pattern recognition and identification of physiologic patient states. We hypothesized that processing of multivariate data using hierarchical clustering techniques would allow identification of otherwise hidden patient physiologic patterns that would be predictive of outcome. Multivariate physiologic and ventilator data were collected continuously using a multimodal bioinformatics system in the surgical ICU at San Francisco General Hospital. These data were incorporated with non-continuous data and stored on a server in the ICU. A hierarchical clustering algorithm grouped each minute of data into 1 of 10 clusters. Clusters were correlated with outcome measures including incidence of infection, multiple organ failure (MOF), and mortality. We identified 10 clusters, which we defined as distinct patient states. While patients transitioned between states, they spent significant amounts of time in each. Clusters were enriched for our outcome measures: 2 of the 10 states were enriched for infection, 6 of 10 were enriched for MOF, and 3 of 10 were enriched for death. Further analysis of correlations between pairs of variables within each cluster reveals significant differences in physiology between clusters. Here we show for the first time the feasibility of clustering physiological measurements to identify clinically relevant patient states after trauma. These results demonstrate that hierarchical clustering techniques can be useful for visualizing complex multivariate data and may provide new insights for the care of critically injured patients.

  2. Pre-Adult MRI of Brain Cancer and Neurological Injury: Multivariate Analyses

    PubMed Central

    Levman, Jacob; Takahashi, Emi

    2016-01-01

    Brain cancer and neurological injuries, such as stroke, are life-threatening conditions for which further research is needed to overcome the many challenges associated with providing optimal patient care. Multivariate analysis (MVA) is a class of pattern recognition technique involving the processing of data that contains multiple measurements per sample. MVA can be used to address a wide variety of neuroimaging challenges, including identifying variables associated with patient outcomes; understanding an injury’s etiology, development, and progression; creating diagnostic tests; assisting in treatment monitoring; and more. Compared to adults, imaging of the developing brain has attracted less attention from MVA researchers, however, remarkable MVA growth has occurred in recent years. This paper presents the results of a systematic review of the literature focusing on MVA technologies applied to brain injury and cancer in neurological fetal, neonatal, and pediatric magnetic resonance imaging (MRI). With a wide variety of MRI modalities providing physiologically meaningful biomarkers and new biomarker measurements constantly under development, MVA techniques hold enormous potential toward combining available measurements toward improving basic research and the creation of technologies that contribute to improving patient care. PMID:27446888

  3. Fitting Nonlinear Curves by use of Optimization Techniques

    NASA Technical Reports Server (NTRS)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  4. Sampling effort affects multivariate comparisons of stream assemblages

    USGS Publications Warehouse

    Cao, Y.; Larsen, D.P.; Hughes, R.M.; Angermeier, P.L.; Patton, T.M.

    2002-01-01

    Multivariate analyses are used widely for determining patterns of assemblage structure, inferring species-environment relationships and assessing human impacts on ecosystems. The estimation of ecological patterns often depends on sampling effort, so the degree to which sampling effort affects the outcome of multivariate analyses is a concern. We examined the effect of sampling effort on site and group separation, which was measured using a mean similarity method. Two similarity measures, the Jaccard Coefficient and Bray-Curtis Index were investigated with 1 benthic macroinvertebrate and 2 fish data sets. Site separation was significantly improved with increased sampling effort because the similarity between replicate samples of a site increased more rapidly than between sites. Similarly, the faster increase in similarity between sites of the same group than between sites of different groups caused clearer separation between groups. The strength of site and group separation completely stabilized only when the mean similarity between replicates reached 1. These results are applicable to commonly used multivariate techniques such as cluster analysis and ordination because these multivariate techniques start with a similarity matrix. Completely stable outcomes of multivariate analyses are not feasible. Instead, we suggest 2 criteria for estimating the stability of multivariate analyses of assemblage data: 1) mean within-site similarity across all sites compared, indicating sample representativeness, and 2) the SD of within-site similarity across sites, measuring sample comparability.

  5. OGLE II Eclipsing Binaries In The LMC: Analysis With Class

    NASA Astrophysics Data System (ADS)

    Devinney, Edward J.; Prsa, A.; Guinan, E. F.; DeGeorge, M.

    2011-01-01

    The Eclipsing Binaries (EBs) via Artificial Intelligence (EBAI) Project is applying machine learning techniques to elucidate the nature of EBs. Previously, Prsa, et al. applied artificial neural networks (ANNs) trained on physically-realistic Wilson-Devinney models to solve the light curves of the 1882 detached EBs in the LMC discovered by the OGLE II Project (Wyrzykowski, et al.) fully automatically, bypassing the need for manually-derived starting solutions. A curious result is the non-monotonic distribution of the temperature ratio parameter T2/T1, featuring a subsidiary peak noted previously by Mazeh, et al. in an independent analysis using the EBOP EB solution code (Tamuz, et al.). To explore this and to gain a fuller understanding of the multivariate EBAI LMC observational plus solutions data, we have employed automatic clustering and advanced visualization (CAV) techniques. Clustering the OGLE II data aggregates objects that are similar with respect to many parameter dimensions. Measures of similarity for example, could include the multidimensional Euclidean Distance between data objects, although other measures may be appropriate. Applying clustering, we find good evidence that the T2/T1 subsidiary peak is due to evolved binaries, in support of Mazeh et al.'s speculation. Further, clustering suggests that the LMC detached EBs occupying the main sequence region belong to two distinct classes. Also identified as a separate cluster in the multivariate data are stars having a Period-I band relation. Derekas et al. had previously found a Period-K band relation for LMC EBs discovered by the MACHO Project (Alcock, et al.). We suggest such CAV techniques will prove increasingly useful for understanding the large, multivariate datasets increasingly being produced in astronomy. We are grateful for the support of this research from NSF/RUI Grant AST-05-75042 f.

  6. Diagnostic tools for nearest neighbors techniques when used with satellite imagery

    Treesearch

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....

  7. Inferring phase equations from multivariate time series.

    PubMed

    Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L

    2007-08-10

    An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.

  8. Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.

    2006-07-01

    Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as amore » part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.« less

  9. Multivariate Analysis of Schools and Educational Policy.

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    This report describes a multivariate analysis technique that approaches the problems of educational production function analysis by (1) using comparable measures of output across large experiments, (2) accounting systematically for differences in socioeconomic background, and (3) treating the school as a complete system in which different…

  10. Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques

    NASA Astrophysics Data System (ADS)

    Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.

    2009-08-01

    In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.

  11. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data

    NASA Astrophysics Data System (ADS)

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-01

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively.

  13. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study.

    PubMed

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients.

  14. Total anthocyanin content determination in intact açaí (Euterpe oleracea Mart.) and palmitero-juçara (Euterpe edulis Mart.) fruit using near infrared spectroscopy (NIR) and multivariate calibration.

    PubMed

    Inácio, Maria Raquel Cavalcanti; de Lima, Kássio Michell Gomes; Lopes, Valquiria Garcia; Pessoa, José Dalton Cruz; de Almeida Teixeira, Gustavo Henrique

    2013-02-15

    The aim of this study was to evaluate near-infrared reflectance spectroscopy (NIR), and multivariate calibration potential as a rapid method to determinate anthocyanin content in intact fruit (açaí and palmitero-juçara). Several multivariate calibration techniques, including partial least squares (PLS), interval partial least squares, genetic algorithm, successive projections algorithm, and net analyte signal were compared and validated by establishing figures of merit. Suitable results were obtained with the PLS model (four latent variables and 5-point smoothing) with a detection limit of 6.2 g kg(-1), limit of quantification of 20.7 g kg(-1), accuracy estimated as root mean square error of prediction of 4.8 g kg(-1), mean selectivity of 0.79 g kg(-1), sensitivity of 5.04×10(-3) g kg(-1), precision of 27.8 g kg(-1), and signal-to-noise ratio of 1.04×10(-3) g kg(-1). These results suggest NIR spectroscopy and multivariate calibration can be effectively used to determine anthocyanin content in intact açaí and palmitero-juçara fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. An efficient swarm intelligence approach to feature selection based on invasive weed optimization: Application to multivariate calibration and classification using spectroscopic data.

    PubMed

    Sheykhizadeh, Saheleh; Naseri, Abdolhossein

    2018-04-05

    Variable selection plays a key role in classification and multivariate calibration. Variable selection methods are aimed at choosing a set of variables, from a large pool of available predictors, relevant to the analyte concentrations estimation, or to achieve better classification results. Many variable selection techniques have now been introduced among which, those which are based on the methodologies of swarm intelligence optimization have been more respected during a few last decades since they are mainly inspired by nature. In this work, a simple and new variable selection algorithm is proposed according to the invasive weed optimization (IWO) concept. IWO is considered a bio-inspired metaheuristic mimicking the weeds ecological behavior in colonizing as well as finding an appropriate place for growth and reproduction; it has been shown to be very adaptive and powerful to environmental changes. In this paper, the first application of IWO, as a very simple and powerful method, to variable selection is reported using different experimental datasets including FTIR and NIR data, so as to undertake classification and multivariate calibration tasks. Accordingly, invasive weed optimization - linear discrimination analysis (IWO-LDA) and invasive weed optimization- partial least squares (IWO-PLS) are introduced for multivariate classification and calibration, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms.

    PubMed

    Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari

    2013-05-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.

  17. Information extraction from multivariate images

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Kegley, K. A.; Schiess, J. R.

    1986-01-01

    An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.

  18. Analyzing Faculty Salaries When Statistics Fail.

    ERIC Educational Resources Information Center

    Simpson, William A.

    The role played by nonstatistical procedures, in contrast to multivariant statistical approaches, in analyzing faculty salaries is discussed. Multivariant statistical methods are usually used to establish or defend against prima facia cases of gender and ethnic discrimination with respect to faculty salaries. These techniques are not applicable,…

  19. Using Interactive Graphics to Teach Multivariate Data Analysis to Psychology Students

    ERIC Educational Resources Information Center

    Valero-Mora, Pedro M.; Ledesma, Ruben D.

    2011-01-01

    This paper discusses the use of interactive graphics to teach multivariate data analysis to Psychology students. Three techniques are explored through separate activities: parallel coordinates/boxplots; principal components/exploratory factor analysis; and cluster analysis. With interactive graphics, students may perform important parts of the…

  20. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2010-04-15

    A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.

  1. The Characterization of Biosignatures in Caves Using an Instrument Suite

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.

  2. The Characterization of Biosignatures in Caves Using an Instrument Suite.

    PubMed

    Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.

  3. PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.

  4. The integrated manual and automatic control of complex flight systems

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  5. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  6. An Incident Cohort Study Comparing Survival on Home Hemodialysis and Peritoneal Dialysis (Australia and New Zealand Dialysis and Transplantation Registry)

    PubMed Central

    Nadeau-Fredette, Annie-Claire; Hawley, Carmel M.; Pascoe, Elaine M.; Chan, Christopher T.; Clayton, Philip A.; Polkinghorne, Kevan R.; Boudville, Neil; Leblanc, Martine

    2015-01-01

    Background and objectives Home dialysis is often recognized as a first-choice therapy for patients initiating dialysis. However, studies comparing clinical outcomes between peritoneal dialysis and home hemodialysis have been very limited. Design, setting, participants, & measurements This Australia and New Zealand Dialysis and Transplantation Registry study assessed all Australian and New Zealand adult patients receiving home dialysis on day 90 after initiation of RRT between 2000 and 2012. The primary outcome was overall survival. The secondary outcomes were on-treatment survival, patient and technique survival, and death-censored technique survival. All results were adjusted with three prespecified models: multivariable Cox proportional hazards model (main model), propensity score quintile–stratified model, and propensity score–matched model. Results The study included 10,710 patients on incident peritoneal dialysis and 706 patients on incident home hemodialysis. Treatment with home hemodialysis was associated with better patient survival than treatment with peritoneal dialysis (5-year survival: 85% versus 44%, respectively; log-rank P<0.001). Using multivariable Cox proportional hazards analysis, home hemodialysis was associated with superior patient survival (hazard ratio for overall death, 0.47; 95% confidence interval, 0.38 to 0.59) as well as better on-treatment survival (hazard ratio for on-treatment death, 0.34; 95% confidence interval, 0.26 to 0.45), composite patient and technique survival (hazard ratio for death or technique failure, 0.34; 95% confidence interval, 0.29 to 0.40), and death-censored technique survival (hazard ratio for technique failure, 0.34; 95% confidence interval, 0.28 to 0.41). Similar results were obtained with the propensity score models as well as sensitivity analyses using competing risks models and different definitions for technique failure and lag period after modality switch, during which events were attributed to the initial modality. Conclusions Home hemodialysis was associated with superior patient and technique survival compared with peritoneal dialysis. PMID:26068181

  7. Dangers in Using Analysis of Covariance Procedures.

    ERIC Educational Resources Information Center

    Campbell, Kathleen T.

    Problems associated with the use of analysis of covariance (ANCOVA) as a statistical control technique are explained. Three problems relate to the use of "OVA" methods (analysis of variance, analysis of covariance, multivariate analysis of variance, and multivariate analysis of covariance) in general. These are: (1) the wasting of information when…

  8. Multivariate classification of infrared spectra of cell and tissue samples

    DOEpatents

    Haaland, David M.; Jones, Howland D. T.; Thomas, Edward V.

    1997-01-01

    Multivariate classification techniques are applied to spectra from cell and tissue samples irradiated with infrared radiation to determine if the samples are normal or abnormal (cancerous). Mid and near infrared radiation can be used for in vivo and in vitro classifications using at least different wavelengths.

  9. MULTIVARIATE ANALYSIS ON LEVELS OF SELECTED METALS, PARTICULATE MATTER, VOC, AND HOUSEHOLD CHARACTERISTICS AND ACTIVITIES FROM THE MIDWESTERN STATES NHEXAS

    EPA Science Inventory

    Microenvironmental and biological/personal monitoring information were collected during the National Human Exposure Assessment Survey (NHEXAS), conducted in the six states comprising U.S. EPA Region Five. They have been analyzed by multivariate analysis techniques with general ...

  10. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  11. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  12. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  13. Multivariable Techniques for High-Speed Research Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  14. Effects of implant system, impression technique, and impression material on accuracy of the working cast.

    PubMed

    Wegner, Kerstin; Weskott, Katharina; Zenginel, Martha; Rehmann, Peter; Wöstmann, Bernd

    2013-01-01

    This in vitro study aimed to identify the effects of the implant system, impression technique, and impression material on the transfer accuracy of implant impressions. The null hypothesis tested was that, in vitro and within the parameters of the experiment, the spatial relationship of a working cast to the placement of implants is not related to (1) the implant system, (2) the impression technique, or (3) the impression material. A steel maxilla was used as a reference model. Six implants of two different implant systems (Standard Plus, Straumann; Semados, Bego) were fixed in the reference model. The target variables were: three-dimensional (3D) shift in all directions, implant axis direction, and rotation. The target variables were assessed using a 3D coordinate measuring machine, and the respective deviations of the plaster models from the nominal values of the reference model were calculated. Two different impression techniques (reposition/pickup) and four impression materials (Aquasil Ultra, Flexitime, Impregum Penta, P2 Magnum 360) were investigated. In all, 80 implant impressions for each implant system were taken. Statistical analysis was performed using multivariate analysis of variance. The implant system significantly influenced the transfer accuracy for most spatial dimensions, including the overall 3D shift and implant axis direction. There was no significant difference between the two implant systems with regard to rotation. Multivariate analysis of variance showed a significant effect on transfer accuracy only for the implant system. Within the limits of the present study, it can be concluded that the transfer accuracy of the intraoral implant position on the working cast is far more dependent on the implant system than on the selection of a specific impression technique or material.

  15. Assessing the independent contribution of maternal educational expectations to children's educational attainment in early adulthood: a propensity score matching analysis.

    PubMed

    Pingault, Jean Baptiste; Côté, Sylvana M; Petitclerc, Amélie; Vitaro, Frank; Tremblay, Richard E

    2015-01-01

    Parental educational expectations have been associated with children's educational attainment in a number of long-term longitudinal studies, but whether this relationship is causal has long been debated. The aims of this prospective study were twofold: 1) test whether low maternal educational expectations contributed to failure to graduate from high school; and 2) compare the results obtained using different strategies for accounting for confounding variables (i.e. multivariate regression and propensity score matching). The study sample included 1,279 participants from the Quebec Longitudinal Study of Kindergarten Children. Maternal educational expectations were assessed when the participants were aged 12 years. High school graduation—measuring educational attainment—was determined through the Quebec Ministry of Education when the participants were aged 22-23 years. Findings show that when using the most common statistical approach (i.e. multivariate regressions to adjust for a restricted set of potential confounders) the contribution of low maternal educational expectations to failure to graduate from high school was statistically significant. However, when using propensity score matching, the contribution of maternal expectations was reduced and remained statistically significant only for males. The results of this study are consistent with the possibility that the contribution of parental expectations to educational attainment is overestimated in the available literature. This may be explained by the use of a restricted range of potential confounding variables as well as the dearth of studies using appropriate statistical techniques and study designs in order to minimize confounding. Each of these techniques and designs, including propensity score matching, has its strengths and limitations: A more comprehensive understanding of the causal role of parental expectations will stem from a convergence of findings from studies using different techniques and designs.

  16. Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis.

    PubMed

    Hall, Gregory J; Clow, Kerin E; Kenny, Jonathan E

    2005-10-01

    As part of a strategy for preventing the introduction of aquatic nuisance species (ANS) to U.S. estuaries, ballast water exchange (BWE) regulations have been imposed. Enforcing these regulations requires a reliable method for determining the port of origin of water in the ballast tanks of ships entering U.S. waters. This study shows that a three-dimensional fluorescence fingerprinting technique, excitation emission matrix (EEM) spectroscopy, holds great promise as a ballast water analysis tool. In our technique, EEMs are analyzed by multivariate classification and curve resolution methods, such as N-way partial least squares Regression-discriminant analysis (NPLS-DA) and parallel factor analysis (PARAFAC). We demonstrate that classification techniques can be used to discriminate among sampling sites less than 10 miles apart, encompassing Boston Harbor and two tributaries in the Mystic River Watershed. To our knowledge, this work is the first to use multivariate analysis to classify water as to location of origin. Furthermore, it is shown that curve resolution can show seasonal features within the multidimensional fluorescence data sets, which correlate with difficulty in classification.

  17. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  18. Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation

    ERIC Educational Resources Information Center

    Hsieh, Fushing; Ferrer, Emilio; Chen, Shu-Chun; Chow, Sy-Miin

    2010-01-01

    In this article we present an exploratory tool for extracting systematic patterns from multivariate data. The technique, hierarchical segmentation (HS), can be used to group multivariate time series into segments with similar discrete-state recurrence patterns and it is not restricted by the stationarity assumption. We use a simulation study to…

  19. Integration of ecological indices in the multivariate evaluation of an urban inventory of street trees

    Treesearch

    J. Grabinsky; A. Aldama; A. Chacalo; H. J. Vazquez

    2000-01-01

    Inventory data of Mexico City's street trees were studied using classical statistical arboricultural and ecological statistical approaches. Multivariate techniques were applied to both. Results did not differ substantially and were complementary. It was possible to reduce inventory data and to group species, boroughs, blocks, and variables.

  20. An Artificial Intelligence Approach to the Symbolic Factorization of Multivariable Polynomials. Technical Report No. CS74019-R.

    ERIC Educational Resources Information Center

    Claybrook, Billy G.

    A new heuristic factorization scheme uses learning to improve the efficiency of determining the symbolic factorization of multivariable polynomials with interger coefficients and an arbitrary number of variables and terms. The factorization scheme makes extensive use of artificial intelligence techniques (e.g., model-building, learning, and…

  1. Model transformations for state-space self-tuning control of multivariable stochastic systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.

    1988-01-01

    The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.

  2. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, George

    1993-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multiparameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resource.

  3. Multivariate statistical analysis software technologies for astrophysical research involving large data bases

    NASA Technical Reports Server (NTRS)

    Djorgovski, Stanislav

    1992-01-01

    The existing and forthcoming data bases from NASA missions contain an abundance of information whose complexity cannot be efficiently tapped with simple statistical techniques. Powerful multivariate statistical methods already exist which can be used to harness much of the richness of these data. Automatic classification techniques have been developed to solve the problem of identifying known types of objects in multi parameter data sets, in addition to leading to the discovery of new physical phenomena and classes of objects. We propose an exploratory study and integration of promising techniques in the development of a general and modular classification/analysis system for very large data bases, which would enhance and optimize data management and the use of human research resources.

  4. LIVER ULTRASONOGRAPHY IN DOLPHINS: USE OF ULTRASONOGRAPHY TO ESTABLISH A TECHNIQUE FOR HEPATOBILIARY IMAGING AND TO EVALUATE METABOLIC DISEASE-ASSOCIATED LIVER CHANGES IN BOTTLENOSE DOLPHINS (TURSIOPS TRUNCATUS).

    PubMed

    Seitz, Kelsey E; Smith, Cynthia R; Marks, Stanley L; Venn-Watson, Stephanie K; Ivančić, Marina

    2016-12-01

    The objective of this study was to establish a comprehensive technique for ultrasound examination of the dolphin hepatobiliary system and apply this technique to 30 dolphins to determine what, if any, sonographic changes are associated with blood-based indicators of metabolic syndrome (insulin greater than 14 μIU/ml or glucose greater than 112 mg/dl) and iron overload (transferrin saturation greater than 65%). A prospective study of individuals in a cross-sectional population with and without elevated postprandial insulin levels was performed. Twenty-nine bottlenose dolphins ( Tursiops truncatus ) in a managed collection were included in the final data analysis. An in-water ultrasound technique was developed that included detailed analysis of the liver and pancreas. Dolphins with hyperinsulinemia concentrations had larger livers compared with dolphins with nonelevated concentrations. Using stepwise, multivariate regression including blood-based indicators of metabolic syndrome in dolphins, glucose was the best predictor of and had a positive linear association with liver size (P = 0.007, R 2 = 0.24). Bottlenose dolphins are susceptible to metabolic syndrome and associated complications that affect the liver, including fatty liver disease and iron overload. This study facilitated the establishment of a technique for a rapid, diagnostic, and noninvasive ultrasonographic evaluation of the dolphin liver. In addition, the study identified ultrasound-detectable hepatic changes associated primarily with elevated glucose concentration in dolphins. Future investigations will strive to detail the pathophysiological mechanisms for these changes.

  5. Analytical methods in multivariate highway safety exposure data estimation

    DOT National Transportation Integrated Search

    1984-01-01

    Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...

  6. Computer-delivered interventions for reducing alcohol consumption: meta-analysis and meta-regression using behaviour change techniques and theory.

    PubMed

    Black, Nicola; Mullan, Barbara; Sharpe, Louise

    2016-09-01

    The current aim was to examine the effectiveness of behaviour change techniques (BCTs), theory and other characteristics in increasing the effectiveness of computer-delivered interventions (CDIs) to reduce alcohol consumption. Included were randomised studies with a primary aim of reducing alcohol consumption, which compared self-directed CDIs to assessment-only control groups. CDIs were coded for the use of 42 BCTs from an alcohol-specific taxonomy, the use of theory according to a theory coding scheme and general characteristics such as length of the CDI. Effectiveness of CDIs was assessed using random-effects meta-analysis and the association between the moderators and effect size was assessed using univariate and multivariate meta-regression. Ninety-three CDIs were included in at least one analysis and produced small, significant effects on five outcomes (d+ = 0.07-0.15). Larger effects occurred with some personal contact, provision of normative information or feedback on performance, prompting commitment or goal review, the social norms approach and in samples with more women. Smaller effects occurred when information on the consequences of alcohol consumption was provided. These findings can be used to inform both intervention- and theory-development. Intervention developers should focus on, including specific, effective techniques, rather than many techniques or more-elaborate approaches.

  7. Assessment of Spatial and Temporal Variation of Surface Water Quality in Streams Affected by Coalbed Methane Development

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Liu, T.; Caffrey, P. A.

    2015-12-01

    Water quality data have been collected from three representative stream reaches in a coalbed methane (CBM) development area for over five years to improve the understanding of salt loading in the system. These streams are located within Atlantic Rim development area of the Muddy Creek in south-central Wyoming. Significant development of CBM wells is ongoing in the study area. Three representative sampling stream reaches included the Duck Pond Draw and Cow Creek, which receive co-produced water, and; South Fork Creek, and upstream Cow Creek which do not receive co-produced water. Water samples were assayed for various parameters which included sodium, calcium, magnesium, fluoride, chlorine, nitrate, O-phosphate, sulfate, carbonate, bicarbonates, and other water quality parameters such as pH, conductivity, and TDS. Based on these water quality parameters we have investigated various hydrochemical and geochemical processes responsible for the high variability in water quality in the region. However, effective interpretation of complex databases to understand aforementioned processes has been a challenging task due to the system's complexity. In this work we applied multivariate statistical techniques including cluster analysis (CA), principle component analysis (PCA) and discriminant analysis (DA) to analyze water quality data and identify similarities and differences among our locations. First, CA technique was applied to group the monitoring sites based on the multivariate similarities. Second, PCA technique was applied to identify the prevalent parameters responsible for the variation of water quality in each group. Third, the DA technique was used to identify the most important factors responsible for variation of water quality during low flow season and high flow season. The purpose of this study is to improve the understanding of factors or sources influencing the spatial and temporal variation of water quality. The ultimate goal of this whole research is to develop coupled salt loading and GIS-based hydrological modelling tool that will be able to simulate the salt loadings under various user defined scenarios in the regions undergoing CBM development. Therefore, the findings from this study will be used to formulate the predominant processes responsible for solute loading.

  8. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  9. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  10. Update and review of accuracy assessment techniques for remotely sensed data

    NASA Technical Reports Server (NTRS)

    Congalton, R. G.; Heinen, J. T.; Oderwald, R. G.

    1983-01-01

    Research performed in the accuracy assessment of remotely sensed data is updated and reviewed. The use of discrete multivariate analysis techniques for the assessment of error matrices, the use of computer simulation for assessing various sampling strategies, and an investigation of spatial autocorrelation techniques are examined.

  11. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  12. [Near infrared spectroscopy based process trajectory technology and its application in monitoring and controlling of traditional Chinese medicine manufacturing process].

    PubMed

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.

  13. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  15. Multivariable control of a rapid thermal processor using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Dankoski, Paul C. P.

    The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.

  16. Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging.

    PubMed

    Falahati, Farshad; Westman, Eric; Simmons, Andrew

    2014-01-01

    Machine learning algorithms and multivariate data analysis methods have been widely utilized in the field of Alzheimer's disease (AD) research in recent years. Advances in medical imaging and medical image analysis have provided a means to generate and extract valuable neuroimaging information. Automatic classification techniques provide tools to analyze this information and observe inherent disease-related patterns in the data. In particular, these classifiers have been used to discriminate AD patients from healthy control subjects and to predict conversion from mild cognitive impairment to AD. In this paper, recent studies are reviewed that have used machine learning and multivariate analysis in the field of AD research. The main focus is on studies that used structural magnetic resonance imaging (MRI), but studies that included positron emission tomography and cerebrospinal fluid biomarkers in addition to MRI are also considered. A wide variety of materials and methods has been employed in different studies, resulting in a range of different outcomes. Influential factors such as classifiers, feature extraction algorithms, feature selection methods, validation approaches, and cohort properties are reviewed, as well as key MRI-based and multi-modal based studies. Current and future trends are discussed.

  17. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  18. An introduction to metabolomics and its potential application in veterinary science.

    PubMed

    Jones, Oliver A H; Cheung, Victoria L

    2007-10-01

    Metabolomics has been found to be applicable to a wide range of fields, including the study of gene function, toxicology, plant sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an introduction to metabolomics and discuss its potential in the field of veterinary science.

  19. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  20. Q-Technique and Graphics Research.

    ERIC Educational Resources Information Center

    Kahle, Roger R.

    Because Q-technique is as appropriate for use with visual and design items as for use with words, it is not stymied by the topics one is likely to encounter in graphics research. In particular Q-technique is suitable for studying the so-called "congeniality" of typography, for various copytesting usages, and for multivariate graphics research. The…

  1. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  2. Common side closure type, but not stapler brand or oversewing, influences side-to-side anastomotic leak rates.

    PubMed

    Fleetwood, V A; Gross, K N; Alex, G C; Cortina, C S; Smolevitz, J B; Sarvepalli, S; Bakhsh, S R; Poirier, J; Myers, J A; Singer, M A; Orkin, B A

    2017-03-01

    Anastomotic leak (AL) increases costs and cancer recurrence. Studies show decreased AL with side-to-side stapled anastomosis (SSA), but none identify risk factors within SSAs. We hypothesized that stapler characteristics and closure technique of the common enterotomy affect AL rates. Retrospective review of bowel SSAs was performed. Data included stapler brand, staple line oversewing, and closure method (handsewn, HC; linear stapler [Barcelona technique], BT; transverse stapler, TX). Primary endpoint was AL. Statistical analysis included Fisher's test and logistic regression. 463 patients were identified, 58.5% BT, 21.2% HC, and 20.3% TX. Covidien staplers comprised 74.9%, Ethicon 18.1%. There were no differences between stapler types (Covidien 5.8%, Ethicon 6.0%). However, AL rates varied by common side closure (BT 3.7% vs. TX 10.6%, p = 0.017), remaining significant on multivariate analysis. Closure method of the common side impacts AL rates. Barcelona technique has fewer leaks than transverse stapled closure. Further prospective evaluation is recommended. Copyright © 2017. Published by Elsevier Inc.

  3. A Quality by Design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods.

    PubMed

    Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu

    2011-05-01

    This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Comparison of outcomes for single-incision laparoscopic inguinal herniorrhaphy and traditional three-port laparoscopic herniorrhaphy at a single institution.

    PubMed

    Buckley, F Paul; Vassaur, Hannah; Monsivais, Sharon; Sharp, Nicole E; Jupiter, Daniel; Watson, Rob; Eckford, John

    2014-01-01

    Evidence in the literature regarding the potential of single-incision laparoscopic (SILS) inguinal herniorrhaphy currently is limited. A retrospective comparison of SILS and traditional multiport laparoscopic (MP) inguinal hernia repair was conducted to assess the safety and feasibility of the minimally invasive laparoscopic technique. All laparoscopic inguinal hernia repairs performed by three surgeons at a single institution during 4 years were reviewed. Statistical evaluation included descriptive analysis of demographics including age, gender, body mass index (BMI), and hernia location (uni- or bilateral), in addition to bivariate and multivariate analyses of surgical technique and outcomes including operative times, conversions, and complications. The study compared 129 patients who underwent SILS inguinal hernia repair and 76 patients who underwent MP inguinal hernia repair. The cases included 190 men (92.68 %) with a mean age of 55.36 ± 18.01 years (range, 8-86 years) and a mean BMI of 26.49 ± 4.33 kg/m(2) (range, 17.3-41.7 kg/m(2)). These variables did not differ significantly between the SILS and MP cohorts. The average operative times for the SILS and MP unilateral cases were respectively 57.51 and 66.96 min. For the bilateral cases, the average operative times were 81.07 min for SILS and 81.38 min for MP. A multivariate analysis using surgical approach, BMI, case complexity, and laterality as the covariates demonstrated noninferiority of the SILS technique in terms of operative time (p = 0.031). No conversions from SILS to MP occurred, and the rates of conversion to open procedure did not differ significantly between the cohorts (p = 1.00, Fisher's exact test), nor did the complication rates (p = 0.65, χ (2)). As shown by the findings, SILS inguinal herniorrhaphy is a safe and feasible alternative to traditional MP inguinal hernia repair and can be performed successfully with similar operative times, conversion rates, and complication rates. Prospective trials are essential to confirm equivalence in these areas and to detect differences in patient-centered outcomes.

  5. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.

    2015-04-01

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.

  6. Validated univariate and multivariate spectrophotometric methods for the determination of pharmaceuticals mixture in complex wastewater.

    PubMed

    Riad, Safaa M; Salem, Hesham; Elbalkiny, Heba T; Khattab, Fatma I

    2015-04-05

    Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p=0.05. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Identification of Differential Item Functioning in Multiple-Group Settings: A Multivariate Outlier Detection Approach

    ERIC Educational Resources Information Center

    Magis, David; De Boeck, Paul

    2011-01-01

    We focus on the identification of differential item functioning (DIF) when more than two groups of examinees are considered. We propose to consider items as elements of a multivariate space, where DIF items are outlying elements. Following this approach, the situation of multiple groups is a quite natural case. A robust statistics technique is…

  8. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water

    USDA-ARS?s Scientific Manuscript database

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...

  10. Multivariate analysis in thoracic research.

    PubMed

    Mengual-Macenlle, Noemí; Marcos, Pedro J; Golpe, Rafael; González-Rivas, Diego

    2015-03-01

    Multivariate analysis is based in observation and analysis of more than one statistical outcome variable at a time. In design and analysis, the technique is used to perform trade studies across multiple dimensions while taking into account the effects of all variables on the responses of interest. The development of multivariate methods emerged to analyze large databases and increasingly complex data. Since the best way to represent the knowledge of reality is the modeling, we should use multivariate statistical methods. Multivariate methods are designed to simultaneously analyze data sets, i.e., the analysis of different variables for each person or object studied. Keep in mind at all times that all variables must be treated accurately reflect the reality of the problem addressed. There are different types of multivariate analysis and each one should be employed according to the type of variables to analyze: dependent, interdependence and structural methods. In conclusion, multivariate methods are ideal for the analysis of large data sets and to find the cause and effect relationships between variables; there is a wide range of analysis types that we can use.

  11. A tensor approach to modeling of nonhomogeneous nonlinear systems

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Sain, M.

    1980-01-01

    Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.

  12. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.

    PubMed

    Soleimani, Hossein; Hensman, James; Saria, Suchi

    2017-08-21

    Missing data and noisy observations pose significant challenges for reliably predicting events from irregularly sampled multivariate time series (longitudinal) data. Imputation methods, which are typically used for completing the data prior to event prediction, lack a principled mechanism to account for the uncertainty due to missingness. Alternatively, state-of-the-art joint modeling techniques can be used for jointly modeling the longitudinal and event data and compute event probabilities conditioned on the longitudinal observations. These approaches, however, make strong parametric assumptions and do not easily scale to multivariate signals with many observations. Our proposed approach consists of several key innovations. First, we develop a flexible and scalable joint model based upon sparse multiple-output Gaussian processes. Unlike state-of-the-art joint models, the proposed model can explain highly challenging structure including non-Gaussian noise while scaling to large data. Second, we derive an optimal policy for predicting events using the distribution of the event occurrence estimated by the joint model. The derived policy trades-off the cost of a delayed detection versus incorrect assessments and abstains from making decisions when the estimated event probability does not satisfy the derived confidence criteria. Experiments on a large dataset show that the proposed framework significantly outperforms state-of-the-art techniques in event prediction.

  13. Experimental analysis of computer system dependability

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar, K.; Tang, Dong

    1993-01-01

    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.

  14. Computation Techniques for the Volume of a Tetrahedron

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2010-01-01

    The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a…

  15. Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero

    2000-01-01

    This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.

  16. MANCOVA for one way classification with homogeneity of regression coefficient vectors

    NASA Astrophysics Data System (ADS)

    Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.

    2017-11-01

    The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.

  17. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models

    NASA Astrophysics Data System (ADS)

    Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.

    2007-01-01

    Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.

  18. Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network.

    PubMed

    Ziada, A M; Lisle, T C; Snow, P B; Levine, R F; Miller, G; Crawford, E D

    2001-04-15

    The advent of advanced computing techniques has provided the opportunity to analyze clinical data using artificial intelligence techniques. This study was designed to determine whether a neural network could be developed using preoperative prognostic indicators to predict the pathologic stage and time of biochemical failure for patients who undergo radical prostatectomy. The preoperative information included TNM stage, prostate size, prostate specific antigen (PSA) level, biopsy results (Gleason score and percentage of positive biopsy), as well as patient age. All 309 patients underwent radical prostatectomy at the University of Colorado Health Sciences Center. The data from all patients were used to train a multilayer perceptron artificial neural network. The failure rate was defined as a rise in the PSA level > 0.2 ng/mL. The biochemical failure rate in the data base used was 14.2%. Univariate and multivariate analyses were performed to validate the results. The neural network statistics for the validation set showed a sensitivity and specificity of 79% and 81%, respectively, for the prediction of pathologic stage with an overall accuracy of 80% compared with an overall accuracy of 67% using the multivariate regression analysis. The sensitivity and specificity for the prediction of failure were 67% and 85%, respectively, demonstrating a high confidence in predicting failure. The overall accuracy rates for the artificial neural network and the multivariate analysis were similar. Neural networks can offer a convenient vehicle for clinicians to assess the preoperative risk of disease progression for patients who are about to undergo radical prostatectomy. Continued investigation of this approach with larger data sets seems warranted. Copyright 2001 American Cancer Society.

  19. Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Libera, D.

    2017-12-01

    Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.

  20. Application of the MNA design method to a nonlinear turbofan engine. [multivariable Nyquist array method

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1981-01-01

    Using nonlinear digital simulation as a representative model of the dynamic operation of the QCSEE turbofan engine, a feedback control system is designed by variable frequency design techniques. Transfer functions are generated for each of five power level settings covering the range of operation from approach power to full throttle (62.5% to 100% full power). These transfer functions are then used by an interactive control system design synthesis program to provide a closed loop feedback control using the multivariable Nyquist array and extensions to multivariable Bode diagrams and Nichols charts.

  1. Multivariate Quantitative Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Capezza, Mary

    1995-01-01

    Technique of multivariate quantitative chemical analysis devised for use in determining relative proportions of two components mixed and sprayed together onto object to form thermally insulating foam. Potentially adaptable to other materials, especially in process-monitoring applications in which necessary to know and control critical properties of products via quantitative chemical analyses of products. In addition to chemical composition, also used to determine such physical properties as densities and strengths.

  2. Proceedings of the Workshop on Multivariable Control Systems Held at Wright-Patterson AFB, OH, on 3 December 1982.

    DTIC Science & Technology

    1983-09-01

    promising method of af- craft multivariable flight controller design. Like any ne.! design technique, there is still more to learn about the r.~ cd...M4atix - Feedback Gain Ma trix - Fandom ’htrix Z - Number of Outputs L1 - Roll Moment • : ’ - 7oll Moment with Inertia TrML 523 a.. Symbols m - Number of

  3. Does the Implantation Technique for Totally Implantable Venous Access Ports (TIVAPs) Influence Long-Term Outcome?

    PubMed

    Biacchi, Daniele; Sammartino, Paolo; Sibio, Simone; Accarpio, Fabio; Cardi, Maurizio; Sapienza, Paolo; De Cesare, Alessandro; Atta, Joseph Maher Fouad; Impagnatiello, Alessio; Di Giorgio, Angelo

    2016-02-01

    Totally implantable venous access ports (TIVAP) are eventually explanted for various reasons, related or unrelated to the implantation technique used. Having more information on long-term explantation would help improve placement techniques. From a series of 1572 cancer patients who had TIVAPs implanted in our center with the cutdown technique or Seldinger technique, we studied the 542 patients who returned to us to have their TIVAP explanted after 70 days or more. As outcome measures we distinguished between TIVAPs explanted for long-term complications (infection, catheter-, reservoir-, and patient-related complications) and TIVAPs no longer needed. Univariate and multivariate analyses were run to investigate the reasons for explantation and their possible correlation with implantation techniques. The most common reason for explantation was infection (47.6 %), followed by catheter-related (20.8 %), patient-related (14.7 %), and reservoir-related complications (4.7 %). In the remaining 12.2 % of cases, the TIVAP was explanted complication free after the planned treatments ended. Infection correlated closely with longer TIVAP use. Univariate and multivariate analyses identified the Seldinger technique as a major risk factor for venous thrombosis and catheter dislocation. The need for long-term TIVAP explantation in about one-third of cancer patients is related to the implantation techniques used.

  4. Sexual Assault Disclosure: The Effect of Victim Race and Perpetrator Type on Empathy, Culpability, and Service Referral for Survivors in a Hypothetical Scenario.

    PubMed

    Franklin, Cortney A; Garza, Alondra D

    2018-03-01

    The aftermath of sexual assault warrants further attention surrounding the responses provided by those to whom survivors disclose, especially when perpetrator type or victim race may affect whether the bystander response is supportive or attributes culpability to the victim. Disclosure responses have significant consequences for survivors' posttrauma mental health and formal help-seeking behavior. The current study used a sample of 348 self-report, paper-and-pencil surveys administered during the fall 2015 semester to a purposive sample of undergraduate students with a mean age of 20.94 years old at a midsized, Southern public university. Survey design included a randomly assigned 2 × 2 hypothetical sexual assault disclosure vignette. The objective of the study was to assess the effect of perpetrator type (stranger vs. acquaintance) and victim race (White vs. Black) on empathic concern, culpability attributions, and resource referral. Between-subjects factorial ANOVA and multivariate ordinary least squares (OLS) regression models were estimated to identify the role of vignette manipulations, participant-sexual victimization history, and rape myth acceptance on empathy, culpability, and resource referral for the sexual assault survivor portrayed in the vignette. Multivariate analyses included main effects and moderation models. Findings revealed increased culpability and decreased resource referral for victims of acquaintance rape as compared with stranger rape, independent of victim race. Although no direct victim race effects emerged in the multivariate analyses, race moderated the effect of culpability on resource referral indicating culpability attributions decreased resource referral, but only when the victim was Black . Implications from the results presented here include a continued focus on bystander intervention strategies, empathy-building techniques, and educational programming targeting potential sexual assault disclosees and race stereotypes that disadvantage victims of color.

  5. Preoperative nomogram to predict the likelihood of complications after radical nephroureterectomy.

    PubMed

    Raman, Jay D; Lin, Yu-Kuan; Shariat, Shahrokh F; Krabbe, Laura-Maria; Margulis, Vitaly; Arnouk, Alex; Lallas, Costas D; Trabulsi, Edouard J; Drouin, Sarah J; Rouprêt, Morgan; Bozzini, Gregory; Colin, Pierre; Peyronnet, Benoit; Bensalah, Karim; Bailey, Kari; Canes, David; Klatte, Tobias

    2017-02-01

    To construct a nomogram based on preoperative variables to better predict the likelihood of complications occurring within 30 days of radical nephroureterectomy (RNU). The charts of 731 patients undergoing RNU at eight academic medical centres between 2002 and 2014 were reviewed. Preoperative clinical, demographic and comorbidity indices were collected. Complications occurring within 30 days of surgery were graded using the modified Clavien-Dindo scale. Multivariate logistic regression determined the association between preoperative variables and post-RNU complications. A nomogram was created from the reduced multivariate model with internal validation using the bootstrapping technique with 200 repetitions. A total of 408 men and 323 women with a median age of 70 years and a body mass index of 27 kg/m 2 were included. A total of 75% of the cohort was white, 18% had an Eastern Cooperative Oncology Group (ECOG) performance status ≥2, 20% had a Charlson comorbidity index (CCI) score >5 and 50% had baseline chronic kidney disease (CKD) ≥ stage III. Overall, 279 patients (38%) experienced a complication, including 61 events (22%) with Clavien grade ≥ III. A multivariate model identified five variables associated with complications, including patient age, race, ECOG performance status, CKD stage and CCI score. A preoperative nomogram incorporating these risk factors was constructed with an area under curve of 72.2%. Using standard preoperative variables from this multi-institutional RNU experience, we constructed and validated a nomogram for predicting peri-operative complications after RNU. Such information may permit more accurate risk stratification on an individual cases basis before major surgery. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  6. Computation of nonlinear least squares estimator and maximum likelihood using principles in matrix calculus

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.

    2017-11-01

    This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation

  7. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations

    NASA Astrophysics Data System (ADS)

    Chen, Quansheng; Qi, Shuai; Li, Huanhuan; Han, Xiaoyan; Ouyang, Qin; Zhao, Jiewen

    2014-10-01

    To rapidly and efficiently detect the presence of adulterants in honey, three-dimensional fluorescence spectroscopy (3DFS) technique was employed with the help of multivariate calibration. The data of 3D fluorescence spectra were compressed using characteristic extraction and the principal component analysis (PCA). Then, partial least squares (PLS) and back propagation neural network (BP-ANN) algorithms were used for modeling. The model was optimized by cross validation, and its performance was evaluated according to root mean square error of prediction (RMSEP) and correlation coefficient (R) in prediction set. The results showed that BP-ANN model was superior to PLS models, and the optimum prediction results of the mixed group (sunflower ± longan ± buckwheat ± rape) model were achieved as follow: RMSEP = 0.0235 and R = 0.9787 in the prediction set. The study demonstrated that the 3D fluorescence spectroscopy technique combined with multivariate calibration has high potential in rapid, nondestructive, and accurate quantitative analysis of honey adulteration.

  8. Univariate and multivariate analysis of tannin-impregnated wood species using vibrational spectroscopy.

    PubMed

    Schnabel, Thomas; Musso, Maurizio; Tondi, Gianluca

    2014-01-01

    Vibrational spectroscopy is one of the most powerful tools in polymer science. Three main techniques--Fourier transform infrared spectroscopy (FT-IR), FT-Raman spectroscopy, and FT near-infrared (NIR) spectroscopy--can also be applied to wood science. Here, these three techniques were used to investigate the chemical modification occurring in wood after impregnation with tannin-hexamine preservatives. These spectroscopic techniques have the capacity to detect the externally added tannin. FT-IR has very strong sensitivity to the aromatic peak at around 1610 cm(-1) in the tannin-treated samples, whereas FT-Raman reflects the peak at around 1600 cm(-1) for the externally added tannin. This high efficacy in distinguishing chemical features was demonstrated in univariate analysis and confirmed via cluster analysis. Conversely, the results of the NIR measurements show noticeable sensitivity for small differences. For this technique, multivariate analysis is required and with this chemometric tool, it is also possible to predict the concentration of tannin on the surface.

  9. Forensic analysis of dyed textile fibers.

    PubMed

    Goodpaster, John V; Liszewski, Elisa A

    2009-08-01

    Textile fibers are a key form of trace evidence, and the ability to reliably associate or discriminate them is crucial for forensic scientists worldwide. While microscopic and instrumental analysis can be used to determine the composition of the fiber itself, additional specificity is gained by examining fiber color. This is particularly important when the bulk composition of the fiber is relatively uninformative, as it is with cotton, wool, or other natural fibers. Such analyses pose several problems, including extremely small sample sizes, the desire for nondestructive techniques, and the vast complexity of modern dye compositions. This review will focus on more recent methods for comparing fiber color by using chromatography, spectroscopy, and mass spectrometry. The increasing use of multivariate statistics and other data analysis techniques for the differentiation of spectra from dyed fibers will also be discussed.

  10. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha

    2007-01-01

    The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...

  11. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoan, E-mail: hoan.ho@wdc.com; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Zhu, Jingxi, E-mail: jingxiz@andrew.cmu.edu

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It wasmore » also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.« less

  12. Cooperative control theory and integrated flight and propulsion control

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.

    1995-01-01

    The major contribution of this research was the exposition of the fact that airframe and engine interactions could be present, and their effects could include loss of stability and performance of the control systems. Also, the significance of two directional, as opposed to one-directional, coupling was identified and explained. A multivariable stability and performance analysis methodology was developed, and applied to several candidate aircraft configurations. In these example evaluations, the significance of these interactions was underscored. Also exposed was the fact that with interactions present along with some integrated control approaches, the engine command/limiting logic (which represents an important nonlinear component of the engine control system) can impact closed-loop airframe/engine system stability. Finally, a brief investigation of control-law synthesis techniques appropriate for the class of systems was pursued, and it was determined that multivariable techniques, including model-following formulations of LQG and/or H infinity methods, showed promise. However, for practical reasons, decentralized control architectures are preferred, which is an architecture incompatible with these synthesis methods. The major contributions of the second phase of the grant was the development of conditions under which no decentralized controller could achieve closed loop system requirements on stability and/or performance. Sought were conditions that depended only on properties of the plant and the requirement, and independent of any particular control law or synthesis approach. Therefore, they could be applied a priori, before synthesis of a candidate control law. Under this grant, such conditions were found regarding stability, and encouraging initial results were obtained regarding performance.

  13. Multivariate analyses of tinnitus complaint and change in tinnitus complaint: a masker study.

    PubMed

    Jakes, S; Stephens, S D

    1987-11-01

    Multivariate statistical techniques were used to re-analyse the data from the recent DHSS multi-centre masker study. These analyses were undertaken to three ends. First, to clarify and attempt to replicate the previously found factor structure of complaints about tinnitus. Secondly, to attempt to identify common factors in the change or improvement measures pre- and post-masker treatment. Thirdly, to identify predictors of any such outcome factors. Two complaint factors were identified; 'Distress' and 'intrusiveness'. A series of analyses were conducted on change measures using different numbers of subjects and variables. When only semantic differential scales were used, the change factors were very similar to the complaint factors noted above. When variables measuring other aspects of improvement were included, several other factors were identified. These included; 'tinnitus helped', 'masking effects', 'residual inhibition' and 'matched loudness'. Twenty-five conceptually distinct predictors of outcome were identified. These predictor variables were quite different for different outcome factors. For example, high-frequency hearing loss was a predictor of tinnitus being helped by the masker, and a low frequency match and a low masking threshold predicted therapeutic success on residual inhibition. Decrease in matched loudness was predicted by louder tinnitus initially.

  14. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  15. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  16. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  17. Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples

    NASA Astrophysics Data System (ADS)

    Dyar, M. Darby; Giguere, Stephen; Carey, CJ; Boucher, Thomas

    2016-12-01

    This project examines the causes, effects, and optimization of continuum removal in laser-induced breakdown spectroscopy (LIBS) to produce the best possible prediction accuracy of elemental composition in geological samples. We compare prediction accuracy resulting from several different techniques for baseline removal, including asymmetric least squares (ALS), adaptive iteratively reweighted penalized least squares (Air-PLS), fully automatic baseline correction (FABC), continuous wavelet transformation, median filtering, polynomial fitting, the iterative thresholding Dietrich method, convex hull/rubber band techniques, and a newly-developed technique for Custom baseline removal (BLR). We assess the predictive performance of these methods using partial least-squares analysis for 13 elements of geological interest, expressed as the weight percentages of SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O, and the parts per million concentrations of Ni, Cr, Zn, Mn, and Co. We find that previously published methods for baseline subtraction generally produce equivalent prediction accuracies for major elements. When those pre-existing methods are used, automated optimization of their adjustable parameters is always necessary to wring the best predictive accuracy out of a data set; ideally, it should be done for each individual variable. The new technique of Custom BLR produces significant improvements in prediction accuracy over existing methods across varying geological data sets, instruments, and varying analytical conditions. These results also demonstrate the dual objectives of the continuum removal problem: removing a smooth underlying signal to fit individual peaks (univariate analysis) versus using feature selection to select only those channels that contribute to best prediction accuracy for multivariate analyses. Overall, the current practice of using generalized, one-method-fits-all-spectra baseline removal results in poorer predictive performance for all methods. The extra steps needed to optimize baseline removal for each predicted variable and empower multivariate techniques with the best possible input data for optimal prediction accuracy are shown to be well worth the slight increase in necessary computations and complexity.

  18. Portable XRF and principal component analysis for bill characterization in forensic science.

    PubMed

    Appoloni, C R; Melquiades, F L

    2014-02-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Multivariate Strategies in Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Hansen, Lars Kai

    2007-01-01

    We discuss aspects of multivariate fMRI modeling, including the statistical evaluation of multivariate models and means for dimensional reduction. In a case study we analyze linear and non-linear dimensional reduction tools in the context of a "mind reading" predictive multivariate fMRI model.

  20. Metric Selection for Evaluation of Human Supervisory Control Systems

    DTIC Science & Technology

    2009-12-01

    finding a significant effect when there is none becomes more likely. The inflation of type I error due to multiple dependent variables can be handled...with multivariate analysis techniques, such as Multivariate Analysis of Variance (MANOVA) (Johnson & Wichern, 2002). However, it should be noted that...the few significant differences among many insignificant ones. The best way to avoid failure to identify significant differences is to design an

  1. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  2. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE PAGES

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong; ...

    2017-12-18

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  3. Quantitative methods for analysing cumulative effects on fish migration success: a review.

    PubMed

    Johnson, J E; Patterson, D A; Martins, E G; Cooke, S J; Hinch, S G

    2012-07-01

    It is often recognized, but seldom addressed, that a quantitative assessment of the cumulative effects, both additive and non-additive, of multiple stressors on fish survival would provide a more realistic representation of the factors that influence fish migration. This review presents a compilation of analytical methods applied to a well-studied fish migration, a more general review of quantitative multivariable methods, and a synthesis on how to apply new analytical techniques in fish migration studies. A compilation of adult migration papers from Fraser River sockeye salmon Oncorhynchus nerka revealed a limited number of multivariable methods being applied and the sub-optimal reliance on univariable methods for multivariable problems. The literature review of fisheries science, general biology and medicine identified a large number of alternative methods for dealing with cumulative effects, with a limited number of techniques being used in fish migration studies. An evaluation of the different methods revealed that certain classes of multivariable analyses will probably prove useful in future assessments of cumulative effects on fish migration. This overview and evaluation of quantitative methods gathered from the disparate fields should serve as a primer for anyone seeking to quantify cumulative effects on fish migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  5. Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chao; Akintayo, Adedotun; Jiang, Zhanhong

    Non-intrusive load monitoring (NILM) of electrical demand for the purpose of identifying load components has thus far mostly been studied using univariate data, e.g., using only whole building electricity consumption time series to identify a certain type of end-use such as lighting load. However, using additional variables in the form of multivariate time series data may provide more information in terms of extracting distinguishable features in the context of energy disaggregation. In this work, a novel probabilistic graphical modeling approach, namely the spatiotemporal pattern network (STPN) is proposed for energy disaggregation using multivariate time-series data. The STPN framework is shownmore » to be capable of handling diverse types of multivariate time-series to improve the energy disaggregation performance. The technique outperforms the state of the art factorial hidden Markov models (FHMM) and combinatorial optimization (CO) techniques in multiple real-life test cases. Furthermore, based on two homes' aggregate electric consumption data, a similarity metric is defined for the energy disaggregation of one home using a trained model based on the other home (i.e., out-of-sample case). The proposed similarity metric allows us to enhance scalability via learning supervised models for a few homes and deploying such models to many other similar but unmodeled homes with significantly high disaggregation accuracy.« less

  6. PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.

    PubMed

    Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.

  7. Multivariate class modeling techniques applied to multielement analysis for the verification of the geographical origin of chili pepper.

    PubMed

    Naccarato, Attilio; Furia, Emilia; Sindona, Giovanni; Tagarelli, Antonio

    2016-09-01

    Four class-modeling techniques (soft independent modeling of class analogy (SIMCA), unequal dispersed classes (UNEQ), potential functions (PF), and multivariate range modeling (MRM)) were applied to multielement distribution to build chemometric models able to authenticate chili pepper samples grown in Calabria respect to those grown outside of Calabria. The multivariate techniques were applied by considering both all the variables (32 elements, Al, As, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Fe, Ga, La, Li, Mg, Mn, Na, Nd, Ni, Pb, Pr, Rb, Sc, Se, Sr, Tl, Tm, V, Y, Yb, Zn) and variables selected by means of stepwise linear discriminant analysis (S-LDA). In the first case, satisfactory and comparable results in terms of CV efficiency are obtained with the use of SIMCA and MRM (82.3 and 83.2% respectively), whereas MRM performs better than SIMCA in terms of forced model efficiency (96.5%). The selection of variables by S-LDA permitted to build models characterized, in general, by a higher efficiency. MRM provided again the best results for CV efficiency (87.7% with an effective balance of sensitivity and specificity) as well as forced model efficiency (96.5%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data

    PubMed Central

    Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan

    2009-01-01

    Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561

  9. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  10. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ

    NASA Astrophysics Data System (ADS)

    Yilmaz, Işik; Marschalko, Marian; Bednarik, Martin

    2013-04-01

    The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However, Area Under Curve (AUC) values obtained from all three models showed that the map obtained from soft computing (ANN) model looks like more accurate than the other models, accuracies of all three models can be evaluated relatively similar. The results also showed that the conditional probability is an essential method in preparation of collapse susceptibility map and highly compatible with GIS operating features.

  11. Evaluation of the Risk Factors for a Rotator Cuff Retear After Repair Surgery.

    PubMed

    Lee, Yeong Seok; Jeong, Jeung Yeol; Park, Chan-Deok; Kang, Seung Gyoon; Yoo, Jae Chul

    2017-07-01

    A retear is a significant clinical problem after rotator cuff repair. However, no study has evaluated the retear rate with regard to the extent of footprint coverage. To evaluate the preoperative and intraoperative factors for a retear after rotator cuff repair, and to confirm the relationship with the extent of footprint coverage. Cohort study; Level of evidence, 3. Data were retrospectively collected from 693 patients who underwent arthroscopic rotator cuff repair between January 2006 and December 2014. All repairs were classified into 4 types of completeness of repair according to the amount of footprint coverage at the end of surgery. All patients underwent magnetic resonance imaging (MRI) after a mean postoperative duration of 5.4 months. Preoperative demographic data, functional scores, range of motion, and global fatty degeneration on preoperative MRI and intraoperative variables including the tear size, completeness of rotator cuff repair, concomitant subscapularis repair, number of suture anchors used, repair technique (single-row or transosseous-equivalent double-row repair), and surgical duration were evaluated. Furthermore, the factors associated with failure using the single-row technique and transosseous-equivalent double-row technique were analyzed separately. The retear rate was 7.22%. Univariate analysis revealed that rotator cuff retears were affected by age; the presence of inflammatory arthritis; the completeness of rotator cuff repair; the initial tear size; the number of suture anchors; mean operative time; functional visual analog scale scores; Simple Shoulder Test findings; American Shoulder and Elbow Surgeons scores; and fatty degeneration of the supraspinatus, infraspinatus, and subscapularis. Multivariate logistic regression analysis revealed patient age, initial tear size, and fatty degeneration of the supraspinatus as independent risk factors for a rotator cuff retear. Multivariate logistic regression analysis of the single-row group revealed patient age and fatty degeneration of the supraspinatus as independent risk factors for a rotator cuff retear. Multivariate logistic regression analysis of the transosseous-equivalent double-row group revealed a frozen shoulder as an independent risk factor for a rotator cuff retear. Our results suggest that patient age, initial tear size, and fatty degeneration of the supraspinatus are independent risk factors for a rotator cuff retear, whereas the completeness of rotator cuff repair based on the extent of footprint coverage and repair technique are not.

  12. Assessing the Independent Contribution of Maternal Educational Expectations to Children’s Educational Attainment in Early Adulthood: A Propensity Score Matching Analysis

    PubMed Central

    Pingault, Jean Baptiste; Côté, Sylvana M.; Petitclerc, Amélie; Vitaro, Frank; Tremblay, Richard E.

    2015-01-01

    Background Parental educational expectations have been associated with children’s educational attainment in a number of long-term longitudinal studies, but whether this relationship is causal has long been debated. The aims of this prospective study were twofold: 1) test whether low maternal educational expectations contributed to failure to graduate from high school; and 2) compare the results obtained using different strategies for accounting for confounding variables (i.e. multivariate regression and propensity score matching). Methodology/Principal Findings The study sample included 1,279 participants from the Quebec Longitudinal Study of Kindergarten Children. Maternal educational expectations were assessed when the participants were aged 12 years. High school graduation – measuring educational attainment – was determined through the Quebec Ministry of Education when the participants were aged 22–23 years. Findings show that when using the most common statistical approach (i.e. multivariate regressions to adjust for a restricted set of potential confounders) the contribution of low maternal educational expectations to failure to graduate from high school was statistically significant. However, when using propensity score matching, the contribution of maternal expectations was reduced and remained statistically significant only for males. Conclusions/Significance The results of this study are consistent with the possibility that the contribution of parental expectations to educational attainment is overestimated in the available literature. This may be explained by the use of a restricted range of potential confounding variables as well as the dearth of studies using appropriate statistical techniques and study designs in order to minimize confounding. Each of these techniques and designs, including propensity score matching, has its strengths and limitations: A more comprehensive understanding of the causal role of parental expectations will stem from a convergence of findings from studies using different techniques and designs. PMID:25803867

  13. Comparison of Multivariate Spatial Dependence Structures of DPIL and Flowmeter Hydraulic Conductivity Data Sets at the MADE Site

    NASA Astrophysics Data System (ADS)

    Xiao, B.; Haslauer, C. P.; Bohling, G. C.; Bárdossy, A.

    2017-12-01

    The spatial arrangement of hydraulic conductivity (K) determines water flow and solute transport behaviour in groundwater systems. This presentation demonstrates three advances over commonly used geostatistical methods by integrating measurements from novel measurement techniques and novel multivariate non-Gaussian dependence models: The spatial dependence structure of K was analysed using both data sets of K. Previously encountered similarities were confirmed in low-dimensional dependence. These similarities become less stringent and deviate more from symmetric Gaussian dependence in dimensions larger than two. Measurements of small and large K values are more uncertain than medium K values due to decreased sensitivity of the measurement devices at both ends of the K scale. Nevertheless, these measurements contain useful information that we include in the estimation of the marginal distribution and the spatial dependence structure as ``censored measurements'' that are estimated jointly without the common assumption of independence. The spatial dependence structure of the two data sets and their cross-covariances are used to infer the spatial dependence and the amount of the bias between the two data sets. By doing so, one spatial model for K is constructed that is used for simulation and that reflects the characteristics of both measurement techniques. The concept of the presented methodology is to use all available information for the estimation of a stochastic model of the primary parameter (K) at the highly heterogeneous Macrodispersion Experiment (MADE) site. The primary parameter has been measured by two independent measurement techniques whose sets of locations do not overlap. This site offers the unique opportunity of large quantities of measurements of K (31123 direct push injection logging based measurements and 2611 flowmeter based measurements). This improved dependence structure of K will be included into the estimated non-Gaussian dependence models and is expected to reproduce observed solute concentrations at the site better than existing dependence models of K.

  14. Establishing Benchmarks for Outcome Indicators: A Statistical Approach to Developing Performance Standards.

    ERIC Educational Resources Information Center

    Henry, Gary T.; And Others

    1992-01-01

    A statistical technique is presented for developing performance standards based on benchmark groups. The benchmark groups are selected using a multivariate technique that relies on a squared Euclidean distance method. For each observation unit (a school district in the example), a unique comparison group is selected. (SLD)

  15. A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Mayberry, Paul W.

    A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…

  16. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on leafy greens

    USDA-ARS?s Scientific Manuscript database

    Ensuring the supply of safe, contaminant free fresh fruit and vegetables is of importance to consumers, suppliers and governments worldwide. In this study, three hyperspectral imaging (HSI) configurations coupled with two multivariate image analysis techniques are compared for detection of fecal con...

  17. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  18. Multivariate meta-analysis: potential and promise.

    PubMed

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-09-10

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day 'Multivariate meta-analysis' event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Multivariate meta-analysis: Potential and promise

    PubMed Central

    Jackson, Dan; Riley, Richard; White, Ian R

    2011-01-01

    The multivariate random effects model is a generalization of the standard univariate model. Multivariate meta-analysis is becoming more commonly used and the techniques and related computer software, although continually under development, are now in place. In order to raise awareness of the multivariate methods, and discuss their advantages and disadvantages, we organized a one day ‘Multivariate meta-analysis’ event at the Royal Statistical Society. In addition to disseminating the most recent developments, we also received an abundance of comments, concerns, insights, critiques and encouragement. This article provides a balanced account of the day's discourse. By giving others the opportunity to respond to our assessment, we hope to ensure that the various view points and opinions are aired before multivariate meta-analysis simply becomes another widely used de facto method without any proper consideration of it by the medical statistics community. We describe the areas of application that multivariate meta-analysis has found, the methods available, the difficulties typically encountered and the arguments for and against the multivariate methods, using four representative but contrasting examples. We conclude that the multivariate methods can be useful, and in particular can provide estimates with better statistical properties, but also that these benefits come at the price of making more assumptions which do not result in better inference in every case. Although there is evidence that multivariate meta-analysis has considerable potential, it must be even more carefully applied than its univariate counterpart in practice. Copyright © 2011 John Wiley & Sons, Ltd. PMID:21268052

  20. Adventures in Uncertainty: An Empirical Investigation of the Use of a Taylor's Series Approximation for the Assessment of Sampling Errors in Educational Research.

    ERIC Educational Resources Information Center

    Wilson, Mark

    This study investigates the accuracy of the Woodruff-Causey technique for estimating sampling errors for complex statistics. The technique may be applied when data are collected by using multistage clustered samples. The technique was chosen for study because of its relevance to the correct use of multivariate analyses in educational survey…

  1. Classification of white wine aromas with an electronic nose.

    PubMed

    Lozano, J; Santos, J P; Horrillo, M C

    2005-09-15

    This paper reports the use of a tin dioxide multisensor array based electronic nose for recognition of 29 typical aromas in white wine. Headspace technique has been used to extract aroma of the wine. Multivariate analysis, including principal component analysis (PCA) as well as probabilistic neural networks (PNNs), has been used to identify the main aroma added to the wine. The results showed that in spite of the strong influence of ethanol and other majority compounds of wine, the system could discriminate correctly the aromatic compounds added to the wine with a minimum accuracy of 97.2%.

  2. Multivariate image analysis of laser-induced photothermal imaging used for detection of caries tooth

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ashraf F.; Abdel Aziz, Wessam M.; El-Sharkawy, Yasser H.

    2010-08-01

    Time-resolved photothermal imaging has been investigated to characterize tooth for the purpose of discriminating between normal and caries areas of the hard tissue using thermal camera. Ultrasonic thermoelastic waves were generated in hard tissue by the absorption of fiber-coupled Q-switched Nd:YAG laser pulses operating at 1064 nm in conjunction with a laser-induced photothermal technique used to detect the thermal radiation waves for diagnosis of human tooth. The concepts behind the use of photo-thermal techniques for off-line detection of caries tooth features were presented by our group in earlier work. This paper illustrates the application of multivariate image analysis (MIA) techniques to detect the presence of caries tooth. MIA is used to rapidly detect the presence and quantity of common caries tooth features as they scanned by the high resolution color (RGB) thermal cameras. Multivariate principal component analysis is used to decompose the acquired three-channel tooth images into a two dimensional principal components (PC) space. Masking score point clusters in the score space and highlighting corresponding pixels in the image space of the two dominant PCs enables isolation of caries defect pixels based on contrast and color information. The technique provides a qualitative result that can be used for early stage caries tooth detection. The proposed technique can potentially be used on-line or real-time resolved to prescreen the existence of caries through vision based systems like real-time thermal camera. Experimental results on the large number of extracted teeth as well as one of the thermal image panoramas of the human teeth voltanteer are investigated and presented.

  3. Analysis of Forest Foliage Using a Multivariate Mixture Model

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.; Peterson, David L.; Johnson, L. F.; Ganapol, B.

    1997-01-01

    Data with wet chemical measurements and near infrared spectra of ground leaf samples were analyzed to test a multivariate regression technique for estimating component spectra which is based on a linear mixture model for absorbance. The resulting unmixed spectra for carbohydrates, lignin, and protein resemble the spectra of extracted plant starches, cellulose, lignin, and protein. The unmixed protein spectrum has prominent absorption spectra at wavelengths which have been associated with nitrogen bonds.

  4. Properties of multivariable root loci. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yagle, A. E.

    1981-01-01

    Various properties of multivariable root loci are analyzed from a frequency domain point of view by using the technique of Newton polygons, and some generalizations of the SISO root locus rules to the multivariable case are pointed out. The behavior of the angles of arrival and departure is related to the Smith-MacMillan form of G(s) and explicit equations for these angles are obtained. After specializing to first order and a restricted class of higher order poles and zeros, some simple equations for these angles that are direct generalizations of the SISO equations are found. The unusual behavior of root loci on the real axis at branch points is studied. The SISO root locus rules for break-in and break-out points are shown to generalize directly to the multivariable case. Some methods for computing both types of points are presented.

  5. Mathematical models for exploring different aspects of genotoxicity and carcinogenicity databases.

    PubMed

    Benigni, R; Giuliani, A

    1991-12-01

    One great obstacle to understanding and using the information contained in the genotoxicity and carcinogenicity databases is the very size of such databases. Their vastness makes them difficult to read; this leads to inadequate exploitation of the information, which becomes costly in terms of time, labor, and money. In its search for adequate approaches to the problem, the scientific community has, curiously, almost entirely neglected an existent series of very powerful methods of data analysis: the multivariate data analysis techniques. These methods were specifically designed for exploring large data sets. This paper presents the multivariate techniques and reports a number of applications to genotoxicity problems. These studies show how biology and mathematical modeling can be combined and how successful this combination is.

  6. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis.

    PubMed

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-03-09

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B 1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B 1 affected peanuts at EU regulatory limits of 1250 μg kg -1 and 8 μg kg -1 , respectively.

  7. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    PubMed Central

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-01-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg−1 and 8 μg kg−1, respectively. PMID:28276454

  8. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis

    NASA Astrophysics Data System (ADS)

    Sieger, Markus; Kos, Gregor; Sulyok, Michael; Godejohann, Matthias; Krska, Rudolf; Mizaikoff, Boris

    2017-03-01

    Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg-1 and 8 μg kg-1, respectively.

  9. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    PubMed

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. © 2014 Society of Chemical Industry.

  10. Interpreting Popov criteria in Lure´ systems with complex scaling stability analysis

    NASA Astrophysics Data System (ADS)

    Zhou, J.

    2018-06-01

    The paper presents a novel frequency-domain interpretation of Popov criteria for absolute stability in Lure´ systems by means of what we call complex scaling stability analysis. The complex scaling technique is developed for exponential/asymptotic stability in LTI feedback systems, which dispenses open-loop poles distribution, contour/locus orientation and prior frequency sweeping. Exploiting the technique for alternatively revealing positive realness of transfer functions, re-interpreting Popov criteria is explicated. More specifically, the suggested frequency-domain stability conditions are conformable both in scalar and multivariable cases, and can be implemented either graphically with locus plotting or numerically without; in particular, the latter is suitable as a design tool with auxiliary parameter freedom. The interpretation also reveals further frequency-domain facts about Lure´ systems. Numerical examples are included to illustrate the main results.

  11. Conventional 4-field box radiotherapy technique for cancer cervix: potential for geographic miss without CECT scan-based planning.

    PubMed

    Nagar, Y S; Singh, S; Kumar, S; Lal, P

    2004-01-01

    The advantage of 4-field radiation to the pelvis is that the use of lateral portals spares a portion of the small bowel anteriorly and rectum posteriorly. The standard lateral portals defined in textbooks are not always adequate especially in advanced cancer cervix. An analysis was done to determine adequacy of margins of standard lateral pelvic portals with CECT defined tumor volumes. The study included 40 patients of FIGO stage IIB and IIIB treated definitively for cancer cervix between 1998 and 2000. An inadequate margin was defined if the cervical growth and uterus were not encompassed by the 95% isodose. An inadequate posterior margin was common with bulky disease (P = 0.06) and with retroverted uterus (P = 0.08). Menopausal status, FIGO stage, associated myoma, and age were of no apparent prognostic significance. Bulk retained significant on multivariate analysis. An inadequate anterior margin was common in premenopausal (P = 0.01); anteverted uterus (P = 0.02); associated myoma (P = 0.01); and younger patients (P = 0.03). It was not influenced by bulk or stage. Menopausal status and associated myoma retained significant on multivariate analysis. Without the knowledge of precise tumor volume, the 4-field technique with standard portals is potentially risky as it may under dose the tumor through lateral portals and the standard AP/ PA portals are a safer option.

  12. Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery.

    PubMed

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2018-05-01

    This work reports the second part of a review intending to give the state of the art of major metabolic phenotyping strategies. It particularly deals with inherent advantages and limits regarding data analysis issues and biological information retrieval tools along with translational challenges. This Part starts with introducing the main data preprocessing strategies of the different metabolomics data. Then, it describes the main data analysis techniques including univariate and multivariate aspects. It also addresses the challenges related to metabolite annotation and characterization. Finally, functional analysis including pathway and network strategies are discussed. The last section of this review is devoted to practical considerations and current challenges and pathways to bring metabolomics into clinical environments.

  13. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    NASA Astrophysics Data System (ADS)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  14. Causal diagrams and multivariate analysis II: precision work.

    PubMed

    Jupiter, Daniel C

    2014-01-01

    In this Investigators' Corner, I continue my discussion of when and why we researchers should include variables in multivariate regression. My examination focuses on studies comparing treatment groups and situations for which we can either exclude variables from multivariate analyses or include them for reasons of precision. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Application of multivariable search techniques to structural design optimization

    NASA Technical Reports Server (NTRS)

    Jones, R. T.; Hague, D. S.

    1972-01-01

    Multivariable optimization techniques are applied to a particular class of minimum weight structural design problems: the design of an axially loaded, pressurized, stiffened cylinder. Minimum weight designs are obtained by a variety of search algorithms: first- and second-order, elemental perturbation, and randomized techniques. An exterior penalty function approach to constrained minimization is employed. Some comparisons are made with solutions obtained by an interior penalty function procedure. In general, it would appear that an interior penalty function approach may not be as well suited to the class of design problems considered as the exterior penalty function approach. It is also shown that a combination of search algorithms will tend to arrive at an extremal design in a more reliable manner than a single algorithm. The effect of incorporating realistic geometrical constraints on stiffener cross-sections is investigated. A limited comparison is made between minimum weight cylinders designed on the basis of a linear stability analysis and cylinders designed on the basis of empirical buckling data. Finally, a technique for locating more than one extremal is demonstrated.

  16. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses.

    PubMed

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-12-01

    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  17. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.

    1998-01-01

    The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.

  18. Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification

    PubMed Central

    Ahlinder, Linnea; Ekstrand-Hammarström, Barbro; Geladi, Paul; Österlund, Lars

    2013-01-01

    It is a challenging task to characterize the biodistribution of nanoparticles in cells and tissue on a subcellular level. Conventional methods to study the interaction of nanoparticles with living cells rely on labeling techniques that either selectively stain the particles or selectively tag them with tracer molecules. In this work, Raman imaging, a label-free technique that requires no extensive sample preparation, was combined with multivariate classification to quantify the spatial distribution of oxide nanoparticles inside living lung epithelial cells (A549). Cells were exposed to TiO2 (titania) and/or α-FeO(OH) (goethite) nanoparticles at various incubation times (4 or 48 h). Using multivariate classification of hyperspectral Raman data with partial least-squares discriminant analysis, we show that a surprisingly large fraction of spectra, classified as belonging to the cell nucleus, show Raman bands associated with nanoparticles. Up to 40% of spectra from the cell nucleus show Raman bands associated with nanoparticles. Complementary transmission electron microscopy data for thin cell sections qualitatively support the conclusions. PMID:23870252

  19. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  20. Multivariate analysis on unilateral cleft lip and palate treatment outcome by EUROCRAN index: A retrospective study.

    PubMed

    Yew, Ching Ching; Alam, Mohammad Khursheed; Rahman, Shaifulizan Abdul

    2016-10-01

    This study is to evaluate the dental arch relationship and palatal morphology of unilateral cleft lip and palate patients by using EUROCRAN index, and to assess the factors that affect them using multivariate statistical analysis. A total of one hundred and seven patients from age five to twelve years old with non-syndromic unilateral cleft lip and palate were included in the study. These patients have received cheiloplasty and one stage palatoplasty surgery but yet to receive alveolar bone grafting procedure. Five assessors trained in the use of the EUROCRAN index underwent calibration exercise and ranked the dental arch relationships and palatal morphology of the patients' study models. For intra-rater agreement, the examiners scored the models twice, with two weeks interval in between sessions. Variable factors of the patients were collected and they included gender, site, type and, family history of unilateral cleft lip and palate; absence of lateral incisor on cleft side, cheiloplasty and palatoplasty technique used. Associations between various factors and dental arch relationships were assessed using logistic regression analysis. Dental arch relationship among unilateral cleft lip and palate in local population had relatively worse scoring than other parts of the world. Crude logistics regression analysis did not demonstrate any significant associations among the various socio-demographic factors, cheiloplasty and palatoplasty techniques used with the dental arch relationship outcome. This study has limitations that might have affected the results, example: having multiple operators performing the surgeries and the inability to access the influence of underlying genetic predisposed cranio-facial variability. These may have substantial influence on the treatment outcome. The factors that can affect unilateral cleft lip and palate treatment outcome is multifactorial in nature and remained controversial in general. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Risk Factors of Catheter-Related Thrombosis (CRT) in Cancer Patients: A Patient-Level Data (IPD) Meta-Analysis of Clinical Trials and Prospective Studies

    PubMed Central

    Saber, W.; Moua, T.; Williams, E. C.; Verso, M.; Agnelli, G.; Couban, S.; Young, A.; De Cicco, M.; Biffi, R.; van Rooden, C. J.; Huisman, M. V.; Fagnani, D.; Cimminiello, C.; Moia, M.; Magagnoli, M.; Povoski, S. P.; Malak, S. F.; Lee, A. Y.

    2010-01-01

    Background Knowledge of independent, baseline risk factors of catheter-related thrombosis (CRT) may help select adult cancer patients at high risk to receive thromboprophylaxis. Objectives We conducted a meta-analysis of individual patient-level data to identify these baseline risk factors. Patients/Methods MEDLINE, EMBASE, CINAHL, CENTRAL, DARE, Grey literature databases were searched in all languages from 1995-2008. Prospective studies and randomized controlled trials (RCTs) were eligible. Studies were included if original patient-level data were provided by the investigators and if CRT was objectively confirmed with valid imaging. Multivariate logistic regression analysis of 17 prespecified baseline characteristics was conducted. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated. Results A total sample of 5636 subjects from 5 RCTs and 7 prospective studies was included in the analysis. Among these subjects, 425 CRT events were observed. In multivariate logistic regression, the use of implanted ports as compared with peripherally implanted central venous catheters (PICC), decreased CRT risk (OR = 0.43; 95% CI, 0.23-0.80), whereas past history of deep vein thrombosis (DVT) (OR = 2.03; 95% CI, 1.05-3.92), subclavian venipuncture insertion technique (OR = 2.16; 95% CI, 1.07-4.34), and improper catheter tip location (OR = 1.92; 95% CI, 1.22-3.02), increased CRT risk. Conclusions CRT risk is increased with using PICC catheters, previous history of DVT, subclavian venipuncture insertion technique and improper positioning of the catheter tip. These factors may be useful for risk stratifying patients to select those for thromboprophylaxis. Prospective studies are needed to validate these findings. PMID:21040443

  2. Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review

    PubMed Central

    Kucha, Christopher T.; Liu, Li; Ngadi, Michael O.

    2018-01-01

    Fat is one of the most important traits determining the quality of pork. The composition of the fat greatly influences the quality of pork and its processed products, and contribute to defining the overall carcass value. However, establishing an efficient method for assessing fat quality parameters such as fatty acid composition, solid fat content, oxidative stability, iodine value, and fat color, remains a challenge that must be addressed. Conventional methods such as visual inspection, mechanical methods, and chemical methods are used off the production line, which often results in an inaccurate representation of the process because the dynamics are lost due to the time required to perform the analysis. Consequently, rapid, and non-destructive alternative methods are needed. In this paper, the traditional fat quality assessment techniques are discussed with emphasis on spectroscopic techniques as an alternative. Potential spectroscopic techniques include infrared spectroscopy, nuclear magnetic resonance and Raman spectroscopy. Hyperspectral imaging as an emerging advanced spectroscopy-based technology is introduced and discussed for the recent development of assessment for fat quality attributes. All techniques are described in terms of their operating principles and the research advances involving their application for pork fat quality parameters. Future trends for the non-destructive spectroscopic techniques are also discussed. PMID:29382092

  3. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  4. Quality by design case study: an integrated multivariate approach to drug product and process development.

    PubMed

    Huang, Jun; Kaul, Goldi; Cai, Chunsheng; Chatlapalli, Ramarao; Hernandez-Abad, Pedro; Ghosh, Krishnendu; Nagi, Arwinder

    2009-12-01

    To facilitate an in-depth process understanding, and offer opportunities for developing control strategies to ensure product quality, a combination of experimental design, optimization and multivariate techniques was integrated into the process development of a drug product. A process DOE was used to evaluate effects of the design factors on manufacturability and final product CQAs, and establish design space to ensure desired CQAs. Two types of analyses were performed to extract maximal information, DOE effect & response surface analysis and multivariate analysis (PCA and PLS). The DOE effect analysis was used to evaluate the interactions and effects of three design factors (water amount, wet massing time and lubrication time), on response variables (blend flow, compressibility and tablet dissolution). The design space was established by the combined use of DOE, optimization and multivariate analysis to ensure desired CQAs. Multivariate analysis of all variables from the DOE batches was conducted to study relationships between the variables and to evaluate the impact of material attributes/process parameters on manufacturability and final product CQAs. The integrated multivariate approach exemplifies application of QbD principles and tools to drug product and process development.

  5. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  6. Multivariate spatiotemporal visualizations for mobile devices in Flyover Country

    NASA Astrophysics Data System (ADS)

    Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.

    2017-12-01

    Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.

  7. Changes in Landscape Greenness and Climatic Factors over ...

    EPA Pesticide Factsheets

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-dependent patterns, and variation associated with climatic factors. In the present study we leveraged a method, that we previously developed for a pilot study, to address these confounding factors by evaluating NDVI change using autoregression techniques that compare results from univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for ~7,660,636 1-km2 pixels comprising the 48 contiguous states of the USA, over a 25-year period (1989−2013). NDVI changed significantly for 48% of the nation over the 25-year in the univariate analyses where most significant trends (85%) indicated an increase in greenness over time. By including climatic factors in the multivariate analyses of NDVI over time, the detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with a significant NDVI trend indicated that changes were due to direct factors. Whi

  8. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  9. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  10. Forensic Discrimination of Latent Fingerprints Using Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometric Approaches.

    PubMed

    Yang, Jun-Ho; Yoh, Jack J

    2018-01-01

    A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.

  11. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  12. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from whichmore » unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.« less

  13. Improving the detection of evoked responses to periodic stimulation by using bivariate local spectral F-test - Application to EEG during photic stimulation.

    PubMed

    Felix, Leonardo Bonato; Rocha, Paulo Fábio; Mendes, Eduardo Mazoni Andrade Marçal; Miranda de Sá, Antonio Mauricio Ferreira Leite

    2017-10-01

    The spectral local F-test has been applied for detecting evoked responses to rhythmic stimulation that are embedded in the ongoing electroencephalogram (EEG). Based on the sampling distribution of a flat spectrum at the neighbourhood of the stimulation frequency, spectral peaks in an EEG signal that are due to the stimulation may be readily assessed. Nevertheless, the performance of the technique is strongly affected by both the signal-to-noise ratio (SNR) of the responses and the number of data segments used in the estimation. The present work aims at both deriving and evaluating a multivariate extension of local F-test by including the EEG collected at a second distinct derivation. The detection rate with this multivariate detector was found to be greater than that using a single channel in case of equal SNR in both signals. Monte Carlo simulation results showed that the probability of detection with this new detector saturates for signal-to-noise ratios above 12 dB and indicated a greater detection rate in practical situations, even when smaller SNR-values are found in the added signal (e.g. 5 dB for 16 neighbouring frequencies used in the estimation). The technique was next applied to the EEG from 12 subjects during intermittent, photic stimulation leading to superior performance in comparison with the univariate local F-test. Since a higher detection rate with the proposed technique is achieved without the need of increasing the number of data segments, it allows evoked responses to be detected faster, once the same detection rate may be accomplished with less segments. This might be useful in clinical practice. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Performance of Modified Test Statistics in Covariance and Correlation Structure Analysis under Conditions of Multivariate Nonnormality.

    ERIC Educational Resources Information Center

    Fouladi, Rachel T.

    2000-01-01

    Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…

  15. The Recoverability of P-Technique Factor Analysis

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    2009-01-01

    It seems that just when we are about to lay P-technique factor analysis finally to rest as obsolete because of newer, more sophisticated multivariate time-series models using latent variables--dynamic factor models--it rears its head to inform us that an obituary may be premature. We present the results of some simulations demonstrating that even…

  16. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.

  17. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  18. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cella, Laura, E-mail: laura.cella@cnr.it; Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples; Liuzzi, Raffaele

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced asymptomatic heart valvular defects (RVD). Methods and Materials: Fifty-six patients treated with sequential chemoradiation therapy for Hodgkin lymphoma (HL) were retrospectively reviewed for RVD events. Clinical information along with whole heart, cardiac chambers, and lung dose distribution parameters was collected, and the correlations to RVD were analyzed by means of Spearman's rank correlation coefficient (Rs). For the selection of the model order and parameters for NTCP modeling, a multivariate logistic regression method using resampling techniques (bootstrapping) was applied. Model performance was evaluated using the area under themore » receiver operating characteristic curve (AUC). Results: When we analyzed the whole heart, a 3-variable NTCP model including the maximum dose, whole heart volume, and lung volume was shown to be the optimal predictive model for RVD (Rs = 0.573, P<.001, AUC = 0.83). When we analyzed the cardiac chambers individually, for the left atrium and for the left ventricle, an NTCP model based on 3 variables including the percentage volume exceeding 30 Gy (V30), cardiac chamber volume, and lung volume was selected as the most predictive model (Rs = 0.539, P<.001, AUC = 0.83; and Rs = 0.557, P<.001, AUC = 0.82, respectively). The NTCP values increase as heart maximum dose or cardiac chambers V30 increase. They also increase with larger volumes of the heart or cardiac chambers and decrease when lung volume is larger. Conclusions: We propose logistic NTCP models for RVD considering not only heart irradiation dose but also the combined effects of lung and heart volumes. Our study establishes the statistical evidence of the indirect effect of lung size on radio-induced heart toxicity.« less

  19. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  20. Testing Mean Differences among Groups: Multivariate and Repeated Measures Analysis with Minimal Assumptions

    PubMed Central

    Bathke, Arne C.; Friedrich, Sarah; Pauly, Markus; Konietschke, Frank; Staffen, Wolfgang; Strobl, Nicolas; Höller, Yvonne

    2018-01-01

    ABSTRACT To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in factorial designs, when only minimal assumptions on the data can be made. Presently available methods are limited to very particular study designs or assume either multivariate normality or equal covariance matrices across groups, or they do not allow for an assessment of the interaction effects across within-subjects and between-subjects variables. We propose and methodologically validate a parametric bootstrap approach that does not suffer from any of the above limitations, and thus provides a rather general and comprehensive methodological route to inference for multivariate and repeated measures data. As an example application, we consider data from two different Alzheimer’s disease (AD) examination modalities that may be used for precise and early diagnosis, namely, single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These data violate the assumptions of classical multivariate methods, and indeed classical methods would not have yielded the same conclusions with regards to some of the factors involved. PMID:29565679

  1. Statistical analysis of Thematic Mapper Simulator data for the geobotanical discrimination of rock types in southwest Oregon

    NASA Technical Reports Server (NTRS)

    Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.

    1984-01-01

    An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.

  2. An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing.

    PubMed

    Sereshti, Hassan; Poursorkh, Zahra; Aliakbarzadeh, Ghazaleh; Zarre, Shahin; Ataolahi, Sahar

    2018-01-15

    Quality of saffron, a valuable food additive, could considerably affect the consumers' health. In this work, a novel preprocessing strategy for image analysis of saffron thin layer chromatographic (TLC) patterns was introduced. This includes performing a series of image pre-processing techniques on TLC images such as compression, inversion, elimination of general baseline (using asymmetric least squares (AsLS)), removing spots shift and concavity (by correlation optimization warping (COW)), and finally conversion to RGB chromatograms. Subsequently, an unsupervised multivariate data analysis including principal component analysis (PCA) and k-means clustering was utilized to investigate the soil salinity effect, as a cultivation parameter, on saffron TLC patterns. This method was used as a rapid and simple technique to obtain the chemical fingerprints of saffron TLC images. Finally, the separated TLC spots were chemically identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). Accordingly, the saffron quality from different areas of Iran was evaluated and classified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia.

    PubMed

    Rate, Andrew W

    2018-06-15

    Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  5. Integrated control-system design via generalized LQG (GLQG) theory

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.

    1989-01-01

    Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.

  6. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  7. Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations

    PubMed Central

    Kaplan, Jonas T.; Man, Kingson; Greening, Steven G.

    2015-01-01

    Here we highlight an emerging trend in the use of machine learning classifiers to test for abstraction across patterns of neural activity. When a classifier algorithm is trained on data from one cognitive context, and tested on data from another, conclusions can be drawn about the role of a given brain region in representing information that abstracts across those cognitive contexts. We call this kind of analysis Multivariate Cross-Classification (MVCC), and review several domains where it has recently made an impact. MVCC has been important in establishing correspondences among neural patterns across cognitive domains, including motor-perception matching and cross-sensory matching. It has been used to test for similarity between neural patterns evoked by perception and those generated from memory. Other work has used MVCC to investigate the similarity of representations for semantic categories across different kinds of stimulus presentation, and in the presence of different cognitive demands. We use these examples to demonstrate the power of MVCC as a tool for investigating neural abstraction and discuss some important methodological issues related to its application. PMID:25859202

  8. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing.

    PubMed

    Stamate, Mirela Cristina; Todor, Nicolae; Cosgarea, Marcel

    2015-01-01

    The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies.

  9. Comparative multivariate analyses of transient otoacoustic emissions and distorsion products in normal and impaired hearing

    PubMed Central

    STAMATE, MIRELA CRISTINA; TODOR, NICOLAE; COSGAREA, MARCEL

    2015-01-01

    Background and aim The clinical utility of otoacoustic emissions as a noninvasive objective test of cochlear function has been long studied. Both transient otoacoustic emissions and distorsion products can be used to identify hearing loss, but to what extent they can be used as predictors for hearing loss is still debated. Most studies agree that multivariate analyses have better test performances than univariate analyses. The aim of the study was to determine transient otoacoustic emissions and distorsion products performance in identifying normal and impaired hearing loss, using the pure tone audiogram as a gold standard procedure and different multivariate statistical approaches. Methods The study included 105 adult subjects with normal hearing and hearing loss who underwent the same test battery: pure-tone audiometry, tympanometry, otoacoustic emission tests. We chose to use the logistic regression as a multivariate statistical technique. Three logistic regression models were developed to characterize the relations between different risk factors (age, sex, tinnitus, demographic features, cochlear status defined by otoacoustic emissions) and hearing status defined by pure-tone audiometry. The multivariate analyses allow the calculation of the logistic score, which is a combination of the inputs, weighted by coefficients, calculated within the analyses. The accuracy of each model was assessed using receiver operating characteristics curve analysis. We used the logistic score to generate receivers operating curves and to estimate the areas under the curves in order to compare different multivariate analyses. Results We compared the performance of each otoacoustic emission (transient, distorsion product) using three different multivariate analyses for each ear, when multi-frequency gold standards were used. We demonstrated that all multivariate analyses provided high values of the area under the curve proving the performance of the otoacoustic emissions. Each otoacoustic emission test presented high values of area under the curve, suggesting that implementing a multivariate approach to evaluate the performances of each otoacoustic emission test would serve to increase the accuracy in identifying the normal and impaired ears. We encountered the highest area under the curve value for the combined multivariate analysis suggesting that both otoacoustic emission tests should be used in assessing hearing status. Our multivariate analyses revealed that age is a constant predictor factor of the auditory status for both ears, but the presence of tinnitus was the most important predictor for the hearing level, only for the left ear. Age presented similar coefficients, but tinnitus coefficients, by their high value, produced the highest variations of the logistic scores, only for the left ear group, thus increasing the risk of hearing loss. We did not find gender differences between ears for any otoacoustic emission tests, but studies still debate this question as the results are contradictory. Neither gender, nor environment origin had any predictive value for the hearing status, according to the results of our study. Conclusion Like any other audiological test, using otoacoustic emissions to identify hearing loss is not without error. Even when applying multivariate analysis, perfect test performance is never achieved. Although most studies demonstrated the benefit of using the multivariate analysis, it has not been incorporated into clinical decisions maybe because of the idiosyncratic nature of multivariate solutions or because of the lack of the validation studies. PMID:26733749

  10. FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud.

    PubMed

    Márquez, Cristina; López, M Isabel; Ruisánchez, Itziar; Callao, M Pilar

    2016-12-01

    Two data fusion strategies (high- and mid-level) combined with a multivariate classification approach (Soft Independent Modelling of Class Analogy, SIMCA) have been applied to take advantage of the synergistic effect of the information obtained from two spectroscopic techniques: FT-Raman and NIR. Mid-level data fusion consists of merging some of the previous selected variables from the spectra obtained from each spectroscopic technique and then applying the classification technique. High-level data fusion combines the SIMCA classification results obtained individually from each spectroscopic technique. Of the possible ways to make the necessary combinations, we decided to use fuzzy aggregation connective operators. As a case study, we considered the possible adulteration of hazelnut paste with almond. Using the two-class SIMCA approach, class 1 consisted of unadulterated hazelnut samples and class 2 of samples adulterated with almond. Models performance was also studied with samples adulterated with chickpea. The results show that data fusion is an effective strategy since the performance parameters are better than the individual ones: sensitivity and specificity values between 75% and 100% for the individual techniques and between 96-100% and 88-100% for the mid- and high-level data fusion strategies, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Computation techniques for the volume of a tetrahedron

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2010-10-01

    The purpose of this article is to discuss specific techniques for the computation of the volume of a tetrahedron. A few of them are taught in the undergraduate multivariable calculus courses. Few of them are found in text books on coordinate geometry and synthetic solid geometry. This article gathers many of these techniques so as to constitute a minor survey of a teaching-oriented article, useful to both students and teachers according to their needs in the classrooms.

  12. The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.

    PubMed

    Crosse, Michael J; Di Liberto, Giovanni M; Bednar, Adam; Lalor, Edmund C

    2016-01-01

    Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter-often referred to as a temporal response function-that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application.

  13. The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli

    PubMed Central

    Crosse, Michael J.; Di Liberto, Giovanni M.; Bednar, Adam; Lalor, Edmund C.

    2016-01-01

    Understanding how brains process sensory signals in natural environments is one of the key goals of twenty-first century neuroscience. While brain imaging and invasive electrophysiology will play key roles in this endeavor, there is also an important role to be played by noninvasive, macroscopic techniques with high temporal resolution such as electro- and magnetoencephalography. But challenges exist in determining how best to analyze such complex, time-varying neural responses to complex, time-varying and multivariate natural sensory stimuli. There has been a long history of applying system identification techniques to relate the firing activity of neurons to complex sensory stimuli and such techniques are now seeing increased application to EEG and MEG data. One particular example involves fitting a filter—often referred to as a temporal response function—that describes a mapping between some feature(s) of a sensory stimulus and the neural response. Here, we first briefly review the history of these system identification approaches and describe a specific technique for deriving temporal response functions known as regularized linear regression. We then introduce a new open-source toolbox for performing this analysis. We describe how it can be used to derive (multivariate) temporal response functions describing a mapping between stimulus and response in both directions. We also explain the importance of regularizing the analysis and how this regularization can be optimized for a particular dataset. We then outline specifically how the toolbox implements these analyses and provide several examples of the types of results that the toolbox can produce. Finally, we consider some of the limitations of the toolbox and opportunities for future development and application. PMID:27965557

  14. Simulation techniques for estimating error in the classification of normal patterns

    NASA Technical Reports Server (NTRS)

    Whitsitt, S. J.; Landgrebe, D. A.

    1974-01-01

    Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.

  15. Vibration Attenuation of the NASA Langley Evolutionary Structure Experiment Using H(infinity) and Structured Singular Value (mu) Robust Multivariable Control Techniques

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.

    1996-01-01

    This final report summarizes the research results under NASA Contract NAG-1-1254 from May, 1991 - April, 1995. The main contribution of this research are in the areas of control of flexible structures, model validation, optimal control analysis and synthesis techniques, and use of shape memory alloys for structural damping.

  16. A diagnostic analysis of the VVP single-doppler retrieval technique

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.

    1995-01-01

    A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.

  17. Aromatherapy hand massage for older adults with chronic pain living in long-term care.

    PubMed

    Cino, Kathleen

    2014-12-01

    Older adults living in long-term care experience high rates of chronic pain. Concerns with pharmacologic management have spurred alternative approaches. The purpose of this study was to examine a nursing intervention for older adults with chronic pain. This prospective, randomized control trial compared the effect of aromatherapy M technique hand massage, M technique without aromatherapy, and nurse presence on chronic pain. Chronic pain was measured with the Geriatric Multidimensional Pain and Illness Inventory factors, pain and suffering, life interference, and emotional distress and the Iowa Pain Thermometer, a pain intensity scale. Three groups of 39 to 40 participants recruited from seven long-term care facilities participated twice weekly for 4 weeks. Analysis included multivariate analysis of variance and analysis of variance. Participants experienced decreased levels of chronic pain intensity. Group membership had a significant effect on the Geriatric Multidimensional Pain Inventory Pain and Suffering scores; Iowa Pain Thermometer scores differed significantly within groups. M technique hand massage with or without aromatherapy significantly decreased chronic pain intensity compared to nurse presence visits. M technique hand massage is a safe, simple, but effective intervention. Caregivers using it could improve chronic pain management in this population. © The Author(s) 2014.

  18. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)--different cultivation techniques influence fungal biodiversity assessment.

    PubMed

    Unterseher, Martin; Schnittler, Martin

    2009-05-01

    Two cultivation-based isolation techniques - the incubation of leaf fragments (fragment plating) and dilution-to-extinction culturing on malt extract agar - were compared for recovery of foliar endophytic fungi from Fagus sylvatica near Greifswald, north-east Germany. Morphological-anatomical characters of vegetative and sporulating cultures and ITS sequences were used to assign morphotypes and taxonomic information to the isolates. Data analysis included species-accumulation curves, richness estimators, multivariate statistics and null model testing. Fragment plating and extinction culturing were significantly complementary with regard to species composition, because around two-thirds of the 35 fungal taxa were isolated with only one of the two cultivation techniques. The difference in outcomes highlights the need for caution in assessing fungal biodiversity based upon single isolation techniques. The efficiency of cultivation-based studies of fungal endophytes was significantly increased with the combination of the two isolation methods and estimations of species richness, when compared with a 20-years old reference study, which needed three times more isolates with fragment plating to attain the same species richness. Intensified testing and optimisation of extinction culturing in endophyte research is advocated.

  19. Combining microwave resonance technology to multivariate data analysis as a novel PAT tool to improve process understanding in fluid bed granulation.

    PubMed

    Lourenço, Vera; Herdling, Thorsten; Reich, Gabriele; Menezes, José C; Lochmann, Dirk

    2011-08-01

    A set of 192 fluid bed granulation batches at industrial scale were in-line monitored using microwave resonance technology (MRT) to determine moisture, temperature and density of the granules. Multivariate data analysis techniques such as multiway partial least squares (PLS), multiway principal component analysis (PCA) and multivariate batch control charts were applied onto collected batch data sets. The combination of all these techniques, along with off-line particle size measurements, led to significantly increased process understanding. A seasonality effect could be put into evidence that impacted further processing through its influence on the final granule size. Moreover, it was demonstrated by means of a PLS that a relation between the particle size and the MRT measurements can be quantitatively defined, highlighting a potential ability of the MRT sensor to predict information about the final granule size. This study has contributed to improve a fluid bed granulation process, and the process knowledge obtained shows that the product quality can be built in process design, following Quality by Design (QbD) and Process Analytical Technology (PAT) principles. Copyright © 2011. Published by Elsevier B.V.

  20. Multivariate model of female black bear habitat use for a Geographic Information System

    USGS Publications Warehouse

    Clark, Joseph D.; Dunn, James E.; Smith, Kimberly G.

    1993-01-01

    Simple univariate statistical techniques may not adequately assess the multidimensional nature of habitats used by wildlife. Thus, we developed a multivariate method to model habitat-use potential using a set of female black bear (Ursus americanus) radio locations and habitat data consisting of forest cover type, elevation, slope, aspect, distance to roads, distance to streams, and forest cover type diversity score in the Ozark Mountains of Arkansas. The model is based on the Mahalanobis distance statistic coupled with Geographic Information System (GIS) technology. That statistic is a measure of dissimilarity and represents a standardized squared distance between a set of sample variates and an ideal based on the mean of variates associated with animal observations. Calculations were made with the GIS to produce a map containing Mahalanobis distance values within each cell on a 60- × 60-m grid. The model identified areas of high habitat use potential that could not otherwise be identified by independent perusal of any single map layer. This technique avoids many pitfalls that commonly affect typical multivariate analyses of habitat use and is a useful tool for habitat manipulation or mitigation to favor terrestrial vertebrates that use habitats on a landscape scale.

  1. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  2. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein

    2017-10-01

    The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.

  3. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  4. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  5. Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data.

    PubMed

    Beaton, Derek; Dunlop, Joseph; Abdi, Hervé

    2016-12-01

    For nearly a century, detecting the genetic contributions to cognitive and behavioral phenomena has been a core interest for psychological research. Recently, this interest has been reinvigorated by the availability of genotyping technologies (e.g., microarrays) that provide new genetic data, such as single nucleotide polymorphisms (SNPs). These SNPs-which represent pairs of nucleotide letters (e.g., AA, AG, or GG) found at specific positions on human chromosomes-are best considered as categorical variables, but this coding scheme can make difficult the multivariate analysis of their relationships with behavioral measurements, because most multivariate techniques developed for the analysis between sets of variables are designed for quantitative variables. To palliate this problem, we present a generalization of partial least squares-a technique used to extract the information common to 2 different data tables measured on the same observations-called partial least squares correspondence analysis-that is specifically tailored for the analysis of categorical and mixed ("heterogeneous") data types. Here, we formally define and illustrate-in a tutorial format-how partial least squares correspondence analysis extends to various types of data and design problems that are particularly relevant for psychological research that include genetic data. We illustrate partial least squares correspondence analysis with genetic, behavioral, and neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative. R code is available on the Comprehensive R Archive Network and via the authors' websites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence

    PubMed Central

    Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.

    2011-01-01

    Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917

  7. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave.

    PubMed

    Oosterhof, Nikolaas N; Connolly, Andrew C; Haxby, James V

    2016-01-01

    Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA.

  8. CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave

    PubMed Central

    Oosterhof, Nikolaas N.; Connolly, Andrew C.; Haxby, James V.

    2016-01-01

    Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA PMID:27499741

  9. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2012-01-01

    Measures that quantify the impact of heterogeneity in univariate meta-analysis, including the very popular I2 statistic, are now well established. Multivariate meta-analysis, where studies provide multiple outcomes that are pooled in a single analysis, is also becoming more commonly used. The question of how to quantify heterogeneity in the multivariate setting is therefore raised. It is the univariate R2 statistic, the ratio of the variance of the estimated treatment effect under the random and fixed effects models, that generalises most naturally, so this statistic provides our basis. This statistic is then used to derive a multivariate analogue of I2, which we call . We also provide a multivariate H2 statistic, the ratio of a generalisation of Cochran's heterogeneity statistic and its associated degrees of freedom, with an accompanying generalisation of the usual I2 statistic, . Our proposed heterogeneity statistics can be used alongside all the usual estimates and inferential procedures used in multivariate meta-analysis. We apply our methods to some real datasets and show how our statistics are equally appropriate in the context of multivariate meta-regression, where study level covariate effects are included in the model. Our heterogeneity statistics may be used when applying any procedure for fitting the multivariate random effects model. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22763950

  10. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  11. Estimation and Psychometric Analysis of Component Profile Scores via Multivariate Generalizability Theory

    ERIC Educational Resources Information Center

    Grochowalski, Joseph H.

    2015-01-01

    Component Universe Score Profile analysis (CUSP) is introduced in this paper as a psychometric alternative to multivariate profile analysis. The theoretical foundations of CUSP analysis are reviewed, which include multivariate generalizability theory and constrained principal components analysis. Because CUSP is a combination of generalizability…

  12. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  13. A Multivariate Analysis of Galaxy Cluster Properties

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Djorgovski, S.

    1993-05-01

    We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.

  14. Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy

    PubMed Central

    2014-01-01

    Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885

  15. Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals

    NASA Astrophysics Data System (ADS)

    Azami, Hamed; Escudero, Javier

    2017-01-01

    Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.

  16. Application of Fluorescence Spectrometry With Multivariate Calibration to the Enantiomeric Recognition of Fluoxetine in Pharmaceutical Preparations.

    PubMed

    Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana

    2016-04-01

    Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.

  17. Correspondence analysis

    USDA-ARS?s Scientific Manuscript database

    Correspondence analysis is a powerful exploratory multivariate technique for categorical variables with many levels. It is a data analysis tool that characterizes associations between levels of 2 or more categorical variables using graphical representations of the information in a contingency table...

  18. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  19. In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis

    DOE PAGES

    Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan

    2007-11-10

    In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less

  20. Spectral compression algorithms for the analysis of very large multivariate images

    DOEpatents

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  1. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  2. Patient and technique survival in continuous ambulatory peritoneal dialysis in a single center of the west of Mexico.

    PubMed

    Rojas-Campos, Enrique; Alcántar-Medina, Mario; Cortés-Sanabria, Laura; Martínez-Ramírez, Héctor R; Camarena, José L; Chávez, Salvador; Flores, Antonio; Nieves, Juan J; Monteón, Francisco; Gómez-Navarro, Benjamin; Cueto-Manzano, Alfonso M

    2007-01-01

    In Mexico, CAPD survival has been analyzed in few studies from the center of the country. However, there are concerns that such results may not represent what occurs in other province centers of our country, particularly in our geographical area. To evaluate the patient and technique survival on CAPD of a single center of the west of Mexico, and compare them with other reported series. Retrospective cohort study. Tertiary care, teaching hospital located in Guadalajara, Jalisco. Patients from our CAPD program (1999-2002) were retrospectively studied. Interventions. Clinical and biochemical variables at the start of dialysis and at the end of the follow-up were recorded and considered in the analysis of risk factors. Endpoints were patient (alive, dead or lost to follow-up) and technique status at the end of the study (June 2002). 49 patients were included. Mean patient survival (+/- SE) was 3.32 +/- 0.22 years (CI 95%: 2.9-3.8 years). Patients in the present study were younger (39 +/- 17yrs), had larger body surface area (1.72 +/- 0.22 m2), lower hematocrit (25.4 +/- 5.2%), albumin (2.6 +/- 0.6g/dL), and cholesterol (173 +/- 44 mg/dL), and higher urea (300 +/- 93 mg/dL) and creatinine (14.9 +/- 5.6 mg/ dL) than those in other Mexican series. In univariate analysis, the following variables were associated (p < 0.05) to mortality: pre-dialysis age and creatinine clearance, and serum albumin and cholesterol at the end of follow-up. In multivariate analysis, only pre-dialysis creatinine clearance (RR 0.66, p = 0.03) and age (RR 1.08, p = 0.005) significantly predicted mortality. Mean technique survival was 2.83 +/- 0.24 years (CI 95%: 2.4-3.3). Pre-dialysis age (p < 0.05), peritonitis rate (p < 0.05), and serum phosphorus at the end of follow-up (p < 0.05) were associated with technique failure in univariate analysis, while in multivariate analysis, only pre-dialysis age (RR 1.07, p = 0.001) and peritonitis rate (RR 481, p < 0.0001) were technique failure predictors. Patients from this single center of the west of Mexico were younger, had higher body surface area and initiated peritoneal dialysis with a more deteriorated general status than patients reported in other Mexican series; in spite of the latter, patient and technique survival were not different. In our setting, pre-dialysis older age and lower CrCl significantly predicted mortality, while older predialysis age and higher peritonitis rate predicted technique failure.

  3. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula

    PubMed Central

    Giordano, Bruno L.; Kayser, Christoph; Rousselet, Guillaume A.; Gross, Joachim; Schyns, Philippe G.

    2016-01-01

    Abstract We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open‐source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541–1573, 2017. © 2016 Wiley Periodicals, Inc. PMID:27860095

  4. Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.

    PubMed

    Lin, Tsung-I; Wang, Wan-Lun

    2017-10-01

    In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A Multivariate Model of Parent-Adolescent Relationship Variables in Early Adolescence

    ERIC Educational Resources Information Center

    McKinney, Cliff; Renk, Kimberly

    2011-01-01

    Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle…

  6. The importance of extent of choroid plexus cauterization in addition to endoscopic third ventriculostomy for infantile hydrocephalus: a retrospective North American observational study using propensity score-adjusted analysis.

    PubMed

    Fallah, Aria; Weil, Alexander G; Juraschka, Kyle; Ibrahim, George M; Wang, Anthony C; Crevier, Louis; Tseng, Chi-Hong; Kulkarni, Abhaya V; Ragheb, John; Bhatia, Sanjiv

    2017-12-01

    OBJECTIVE Combined endoscopic third ventriculostomy (ETC) and choroid plexus cauterization (CPC)-ETV/CPC- is being investigated to increase the rate of shunt independence in infants with hydrocephalus. The degree of CPC necessary to achieve improved rates of shunt independence is currently unknown. METHODS Using data from a single-center, retrospective, observational cohort study involving patients who underwent ETV/CPC for treatment of infantile hydrocephalus, comparative statistical analyses were performed to detect a difference in need for subsequent CSF diversion procedure in patients undergoing partial CPC (describes unilateral CPC or bilateral CPC that only extended from the foramen of Monro [FM] to the atrium on one side) or subtotal CPC (describes CPC extending from the FM to the posterior temporal horn bilaterally) using a rigid neuroendoscope. Propensity scores for extent of CPC were calculated using age and etiology. Propensity scores were used to perform 1) case-matching comparisons and 2) Cox multivariable regression, adjusting for propensity score in the unmatched cohort. Cox multivariable regression adjusting for age and etiology, but not propensity score was also performed as a third statistical technique. RESULTS Eighty-four patients who underwent ETV/CPC had sufficient data to be included in the analysis. Subtotal CPC was performed in 58 patients (69%) and partial CPC in 26 (31%). The ETV/CPC success rates at 6 and 12 months, respectively, were 49% and 41% for patients undergoing subtotal CPC and 35% and 31% for those undergoing partial CPC. Cox multivariate regression in a 48-patient cohort case-matched by propensity score demonstrated no added effect of increased extent of CPC on ETV/CPC survival (HR 0.868, 95% CI 0.422-1.789, p = 0.702). Cox multivariate regression including all patients, with adjustment for propensity score, demonstrated no effect of extent of CPC on ETV/CPC survival (HR 0.845, 95% CI 0.462-1.548, p = 0.586). Cox multivariate regression including all patients, with adjustment for age and etiology, but not propensity score, demonstrated no effect of extent of CPC on ETV/CPC survival (HR 0.908, 95% CI 0.495-1.664, p = 0.755). CONCLUSIONS Using multiple comparative statistical analyses, no difference in need for subsequent CSF diversion procedure was detected between patients in this cohort who underwent partial versus subtotal CPC. Further investigation regarding whether there is truly no difference between partial versus subtotal extent of CPC in larger patient populations and whether further gain in CPC success can be achieved with complete CPC is warranted.

  7. BIOLOGICAL INTEGRITY IN MID-ATLANTIC COASTAL PLAINS HEADWATER STREAMS

    EPA Science Inventory

    The objective of this study was to assess the applicability of landscape metrics, in conjunction with stream water quality to estimate the biological integrity of headwater streams in the Mid-Atlantic Coastal Plains using multivariate techniques.

  8. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  9. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  10. Multivariate analysis of the volatile components in tobacco based on infrared-assisted extraction coupled to headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Yang, Yanqin; Pan, Yuanjiang; Zhou, Guojun; Chu, Guohai; Jiang, Jian; Yuan, Kailong; Xia, Qian; Cheng, Changhe

    2016-11-01

    A novel infrared-assisted extraction coupled to headspace solid-phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane-divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water-bath heating and nonheating extraction methods, the extraction efficiency of infrared-assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above-mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost-effective, and highly efficient method, the infrared-assisted extraction coupled to headspace solid-phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of stapler hepatectomy during a laparoscopic liver resection

    PubMed Central

    Buell, Joseph F; Gayet, Brice; Han, Ho-Seong; Wakabayashi, Go; Kim, Ki-Hun; Belli, Giulio; Cannon, Robert; Saggi, Bob; Keneko, Hiro; Koffron, Alan; Brock, Guy; Dagher, Ibrahim

    2013-01-01

    Methods An international database of 1499 laparoscopic liver resections was analysed using multivariate and Kaplan–Meier analysis. Results In total, 764 stapler hepatectomies (SH) were compared with 735 electrosurgical resections (ER). SH was employed in larger tumours (4.5 versus 3.8 cm; P < 0.003) with decreased operative times (2.6 versus 3.1 h; P < 0.001), blood loss (100 versus 200 cc; P < 0.001) and length of stay (3.0 versus 7.0 days; P < 0.001). SH incurred a trend towards higher complications (16% versus 13%; P = 0.057) including bile leaks (26/764, 3.4% versus 16/735, 2.2%: P = 0.091). To address group homogeneity, a subset analysis of lobar resections confirmed the benefits of SH. Kaplan–Meier analysis in non-cirrhotic and cirrhotic patients confirmed equivalent patient (P = 0.290 and 0.118) and disease-free survival (P = 0.120 and 0.268). Multivariate analysis confirmed the parenchymal transection technique did not increase the risk of cancer recurrence, whereas tumour size, the presence of cirrhosis and concomitant operations did. Conclusions A SH provides several advantages including: diminished blood loss, transfusion requirements and shorter operative times. In spite of the smaller surgical margins in the SH group, equivalent recurrence and survival rates were observed when matched for parenchyma and extent of resection. PMID:23458439

  12. Bayesian inference on risk differences: an application to multivariate meta-analysis of adverse events in clinical trials.

    PubMed

    Chen, Yong; Luo, Sheng; Chu, Haitao; Wei, Peng

    2013-05-01

    Multivariate meta-analysis is useful in combining evidence from independent studies which involve several comparisons among groups based on a single outcome. For binary outcomes, the commonly used statistical models for multivariate meta-analysis are multivariate generalized linear mixed effects models which assume risks, after some transformation, follow a multivariate normal distribution with possible correlations. In this article, we consider an alternative model for multivariate meta-analysis where the risks are modeled by the multivariate beta distribution proposed by Sarmanov (1966). This model have several attractive features compared to the conventional multivariate generalized linear mixed effects models, including simplicity of likelihood function, no need to specify a link function, and has a closed-form expression of distribution functions for study-specific risk differences. We investigate the finite sample performance of this model by simulation studies and illustrate its use with an application to multivariate meta-analysis of adverse events of tricyclic antidepressants treatment in clinical trials.

  13. Databases, data integration, and expert systems: new directions in mineral resource assessment and mineral exploration

    USGS Publications Warehouse

    McCammon, Richard B.; Ramani, Raja V.; Mozumdar, Bijoy K.; Samaddar, Arun B.

    1994-01-01

    Overcoming future difficulties in searching for ore deposits deeper in the earth's crust will require closer attention to the collection and analysis of more diverse types of data and to more efficient use of current computer technologies. Computer technologies of greatest interest include methods of storage and retrieval of resource information, methods for integrating geologic, geochemical, and geophysical data, and the introduction of advanced computer technologies such as expert systems, multivariate techniques, and neural networks. Much experience has been gained in the past few years in applying these technologies. More experience is needed if they are to be implemented for everyday use in future assessments and exploration.

  14. Comparative effectiveness research in cancer with observational data.

    PubMed

    Giordano, Sharon H

    2015-01-01

    Observational studies are increasingly being used for comparative effectiveness research. These studies can have the greatest impact when randomized trials are not feasible or when randomized studies have not included the population or outcomes of interest. However, careful attention must be paid to study design to minimize the likelihood of selection biases. Analytic techniques, such as multivariable regression modeling, propensity score analysis, and instrumental variable analysis, also can also be used to help address confounding. Oncology has many existing large and clinically rich observational databases that can be used for comparative effectiveness research. With careful study design, observational studies can produce valid results to assess the benefits and harms of a treatment or intervention in representative real-world populations.

  15. A-TEEMTM, a new molecular fingerprinting technique: simultaneous absorbance-transmission and fluorescence excitation-emission matrix method

    NASA Astrophysics Data System (ADS)

    Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc

    2018-04-01

    We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.

  16. A Self-Organizing Maps approach to assess the wave climate of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Barbariol, Francesco; Marcello Falcieri, Francesco; Scotton, Carlotta; Benetazzo, Alvise; Bergamasco, Andrea; Bergamasco, Filippo; Bonaldo, Davide; Carniel, Sandro; Sclavo, Mauro

    2015-04-01

    The assessment of wave conditions at sea is fruitful for many research fields in marine and atmospheric sciences and for the human activities in the marine environment. To this end, in the last decades the observational network, that mostly relies on buoys, satellites and other probes from fixed platforms, has been integrated with numerical models outputs, which allow to compute the parameters of sea states (e.g. the significant wave height, the mean and peak wave periods, the mean and peak wave directions) over wider regions. Apart from the collection of wave parameters observed at specific sites or modeled on arbitrary domains, the data processing performed to infer the wave climate at those sites is a crucial step in order to provide high quality data and information to the community. In this context, several statistical techniques has been used to model the randomness of wave parameters. While univariate and bivariate probability distribution functions (pdf) are routinely used, multivariate pdfs that model the probability structure of more than two wave parameters are hardly managed. Recently, the Self-Organizing Maps (SOM) technique has been successfully applied to represent the multivariate random wave climate at sites around the Iberian peninsula and the South America continent. Indeed, the visualization properties offered by this technique allow to get the dependencies between the different parameters by visual inspection. In this study, carried out in the frame of the Italian National Flagship Project "RITMARE", we take advantage of the SOM technique to assess the multivariate wave climate over the Adriatic Sea, a semi-enclosed basin in the north-eastern Mediterranean Sea, where winds from North-East (called "Bora") and South-East (called "Sirocco") mainly blow causing sea storms. By means of the SOM techniques we can observe the multivariate character of the typical Bora and Sirocco wave features in the Adriatic Sea. To this end, we used both observed and modeled wave parameters. The "Acqua Alta" oceanographic tower in the northern Adriatic Sea (ISMAR-CNR) and the Italian Data Buoy Network (RON, managed by ISPRA) off the western Adriatic coasts furnished the wave parameters at specific sites of interest. Widespread wave parameters were obtained by means of a numerical SWAN wave model that was implemented on the whole Adriatic Sea with a 6x6 km2 resolution and forced by the high resolution COSMO-I7 atmospheric model for the period 2007-2013.

  17. Quality Reporting of Multivariable Regression Models in Observational Studies: Review of a Representative Sample of Articles Published in Biomedical Journals.

    PubMed

    Real, Jordi; Forné, Carles; Roso-Llorach, Albert; Martínez-Sánchez, Jose M

    2016-05-01

    Controlling for confounders is a crucial step in analytical observational studies, and multivariable models are widely used as statistical adjustment techniques. However, the validation of the assumptions of the multivariable regression models (MRMs) should be made clear in scientific reporting. The objective of this study is to review the quality of statistical reporting of the most commonly used MRMs (logistic, linear, and Cox regression) that were applied in analytical observational studies published between 2003 and 2014 by journals indexed in MEDLINE.Review of a representative sample of articles indexed in MEDLINE (n = 428) with observational design and use of MRMs (logistic, linear, and Cox regression). We assessed the quality of reporting about: model assumptions and goodness-of-fit, interactions, sensitivity analysis, crude and adjusted effect estimate, and specification of more than 1 adjusted model.The tests of underlying assumptions or goodness-of-fit of the MRMs used were described in 26.2% (95% CI: 22.0-30.3) of the articles and 18.5% (95% CI: 14.8-22.1) reported the interaction analysis. Reporting of all items assessed was higher in articles published in journals with a higher impact factor.A low percentage of articles indexed in MEDLINE that used multivariable techniques provided information demonstrating rigorous application of the model selected as an adjustment method. Given the importance of these methods to the final results and conclusions of observational studies, greater rigor is required in reporting the use of MRMs in the scientific literature.

  18. Hybrid approach combining chemometrics and likelihood ratio framework for reporting the evidential value of spectra.

    PubMed

    Martyna, Agnieszka; Zadora, Grzegorz; Neocleous, Tereza; Michalska, Aleksandra; Dean, Nema

    2016-08-10

    Many chemometric tools are invaluable and have proven effective in data mining and substantial dimensionality reduction of highly multivariate data. This becomes vital for interpreting various physicochemical data due to rapid development of advanced analytical techniques, delivering much information in a single measurement run. This concerns especially spectra, which are frequently used as the subject of comparative analysis in e.g. forensic sciences. In the presented study the microtraces collected from the scenarios of hit-and-run accidents were analysed. Plastic containers and automotive plastics (e.g. bumpers, headlamp lenses) were subjected to Fourier transform infrared spectrometry and car paints were analysed using Raman spectroscopy. In the forensic context analytical results must be interpreted and reported according to the standards of the interpretation schemes acknowledged in forensic sciences using the likelihood ratio approach. However, for proper construction of LR models for highly multivariate data, such as spectra, chemometric tools must be employed for substantial data compression. Conversion from classical feature representation to distance representation was proposed for revealing hidden data peculiarities and linear discriminant analysis was further applied for minimising the within-sample variability while maximising the between-sample variability. Both techniques enabled substantial reduction of data dimensionality. Univariate and multivariate likelihood ratio models were proposed for such data. It was shown that the combination of chemometric tools and the likelihood ratio approach is capable of solving the comparison problem of highly multivariate and correlated data after proper extraction of the most relevant features and variance information hidden in the data structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  20. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  1. Sequential design of discrete linear quadratic regulators via optimal root-locus techniques

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Yates, Robert E.; Ganesan, Sekar

    1989-01-01

    A sequential method employing classical root-locus techniques has been developed in order to determine the quadratic weighting matrices and discrete linear quadratic regulators of multivariable control systems. At each recursive step, an intermediate unity rank state-weighting matrix that contains some invariant eigenvectors of that open-loop matrix is assigned, and an intermediate characteristic equation of the closed-loop system containing the invariant eigenvalues is created.

  2. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2010-09-01

    crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity

  3. LASSO NTCP predictors for the incidence of xerostomia in patients with head and neck squamous cell carcinoma and nasopharyngeal carcinoma

    PubMed Central

    Lee, Tsair-Fwu; Liou, Ming-Hsiang; Huang, Yu-Jie; Chao, Pei-Ju; Ting, Hui-Min; Lee, Hsiao-Yi

    2014-01-01

    To predict the incidence of moderate-to-severe patient-reported xerostomia among head and neck squamous cell carcinoma (HNSCC) and nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT). Multivariable normal tissue complication probability (NTCP) models were developed by using quality of life questionnaire datasets from 152 patients with HNSCC and 84 patients with NPC. The primary endpoint was defined as moderate-to-severe xerostomia after IMRT. The numbers of predictive factors for a multivariable logistic regression model were determined using the least absolute shrinkage and selection operator (LASSO) with bootstrapping technique. Four predictive models were achieved by LASSO with the smallest number of factors while preserving predictive value with higher AUC performance. For all models, the dosimetric factors for the mean dose given to the contralateral and ipsilateral parotid gland were selected as the most significant predictors. Followed by the different clinical and socio-economic factors being selected, namely age, financial status, T stage, and education for different models were chosen. The predicted incidence of xerostomia for HNSCC and NPC patients can be improved by using multivariable logistic regression models with LASSO technique. The predictive model developed in HNSCC cannot be generalized to NPC cohort treated with IMRT without validation and vice versa. PMID:25163814

  4. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    EPA Science Inventory

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  5. Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Kosek, Wiesław

    2008-02-01

    This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.

  6. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  7. A Survey of Injuries Affecting Pre-Professional Ballet Dancers.

    PubMed

    Caine, Dennis; Bergeron, Glen; Goodwin, Brett J; Thomas, Jessica; Caine, Caroline G; Steinfeld, Sam; Dyck, Kevin; André, Suzanne

    2016-01-01

    A cross-sectional design was employed retrospectively to evaluate injuries self-reported by 71 pre-professional ballet dancers over one season. Some of the descriptive findings of this survey were consistent with those of previous research and suggest particular demographic and injury trends in pre-professional ballet. These results include gender distribution, mean age and age range of participants, training hours, injury location, acute versus overuse injuries, as well as average number of physiotherapy treatments per dancer. Other results provide information that was heretofore unreported or inconsistent with previous investigations. These findings involved proportion of dancers injured, average number of injuries per dancer, overall injury incidence during an 8.5 month period, incidence rate by technique level, mean time loss per injury, proportion of recurrent injury, and activity practiced at time of injury. The results of univariate analyses revealed several significant findings, including a decrease in incidence rate of injury with increased months of experience in the pre-professional program, dancers having lower injury risk in rehearsal and performance than in class, and a reduced risk of injury for dancers at certain technique levels. However, only this latter finding remained significant in multivariate analysis. The results of this study underscore the importance of determining injury rates by gender, technique level, and activity setting in addition to overall injury rates. They also point to the necessity of looking at both overall and individual dancer-based injury risks.

  8. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  9. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  10. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  11. Differences in chewing sounds of dry-crisp snacks by multivariate data analysis

    NASA Astrophysics Data System (ADS)

    De Belie, N.; Sivertsvik, M.; De Baerdemaeker, J.

    2003-09-01

    Chewing sounds of different types of dry-crisp snacks (two types of potato chips, prawn crackers, cornflakes and low calorie snacks from extruded starch) were analysed to assess differences in sound emission patterns. The emitted sounds were recorded by a microphone placed over the ear canal. The first bite and the first subsequent chew were selected from the time signal and a fast Fourier transformation provided the power spectra. Different multivariate analysis techniques were used for classification of the snack groups. This included principal component analysis (PCA) and unfold partial least-squares (PLS) algorithms, as well as multi-way techniques such as three-way PLS, three-way PCA (Tucker3), and parallel factor analysis (PARAFAC) on the first bite and subsequent chew. The models were evaluated by calculating the classification errors and the root mean square error of prediction (RMSEP) for independent validation sets. It appeared that the logarithm of the power spectra obtained from the chewing sounds could be used successfully to distinguish the different snack groups. When different chewers were used, recalibration of the models was necessary. Multi-way models distinguished better between chewing sounds of different snack groups than PCA on bite or chew separately and than unfold PLS. From all three-way models applied, N-PLS with three components showed the best classification capabilities, resulting in classification errors of 14-18%. The major amount of incorrect classifications was due to one type of potato chips that had a very irregular shape, resulting in a wide variation of the emitted sounds.

  12. Detection and identification of bacteria in a juice matrix with Fourier transform-near infrared spectroscopy and multivariiate analysis.

    PubMed

    Rodriguez-Saona, L E; Khambaty, F M; Fry, F S; Dubois, J; Calvey, E M

    2004-11-01

    The use of Fourier transform-near infrared (FT-NIR) spectroscopy combined with multivariate pattern recognition techniques was evaluated to address the need for a fast and senisitive method for the detection of bacterial contamination in liquids. The complex cellular composition of bacteria produces FT-NIR vibrational transitions (overtone and combination bands), forming the basis for identification and subtyping. A database including strains of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus cereus, and Bacillus thuringiensis was built, with special care taken to optimize sample preparation. The bacterial cells were treated with 70% (vol/vol) ethanolto enhance safe handling of pathogenic strains and then concentrated on an aluminum oxide membrane to obtain a thin bacterial film. This simple membrane filtration procedure generated reproducible FT-NIR spectra that allowed for the rapid discrimination among closely related strains. Principal component analysis and soft independent modeling of class analogy of transformed spectra in the region 5,100 to 4,400 cm(-1) were able to discriminate between bacterial species. Spectroscopic analysis of apple juices inoculated with different strains of E. coli at approximately 10(5) CFU/ml showed that FT-NIR spectralfeatures are consistent with bacterial contamination and soft independent modeling of class analogy correctly predicted the identity of the contaminant as strains of E. coli. FT-NIR in conjunction with multivariate techniques can be used for the rapid and accurate evaluation of potential bacterial contamination in liquids with minimal sample manipulation, and hence limited exposure of the laboratory worker to the agents.

  13. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.

    PubMed

    Wiktelius, Daniel; Ahlinder, Linnea; Larsson, Andreas; Höjer Holmgren, Karin; Norlin, Rikard; Andersson, Per Ola

    2018-08-15

    Collecting data under field conditions for forensic investigations of chemical warfare agents calls for the use of portable instruments. In this study, a set of aged, crude preparations of sulfur mustard were characterized spectroscopically without any sample preparation using handheld Raman and portable IR instruments. The spectral data was used to construct Random Forest multivariate models for the attribution of test set samples to the synthetic method used for their production. Colored and fluorescent samples were included in the study, which made Raman spectroscopy challenging although fluorescence was diminished by using an excitation wavelength of 1064 nm. The predictive power of models constructed with IR or Raman data alone, as well as with combined data was investigated. Both techniques gave useful data for attribution. Model performance was enhanced when Raman and IR spectra were combined, allowing correct classification of 19/23 (83%) of test set spectra. The results demonstrate that data obtained with spectroscopy instruments amenable for field deployment can be useful in forensic studies of chemical warfare agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  15. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach.

    PubMed

    Gul, Sehrish; Zou, Xiang; Hassan, Che Hashim; Azam, Muhammad; Zaman, Khalid

    2015-12-01

    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.

  16. A Cyber-Attack Detection Model Based on Multivariate Analyses

    NASA Astrophysics Data System (ADS)

    Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  17. The bio-optical properties of CDOM as descriptor of lake stratification.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Martini, Silvia; Rossi, Claudio; Santinelli, Chiara; Seritti, Alfredo

    2006-11-01

    Multivariate statistical techniques are used to demonstrate the fundamental role of CDOM optical properties in the description of water masses during the summer stratification of a deep lake. PC1 was linked with dissolved species and PC2 with suspended particles. In the first principal component that the role of CDOM bio-optical properties give a better description of the stratification of the Salto Lake with respect to temperature. The proposed multivariate approach can be used for the analysis of different stratified aquatic ecosystems in relation to interaction between bio-optical properties and stratification of the water body.

  18. Risk factors for leg wound complications following endoscopic versus traditional saphenous vein harvesting.

    PubMed

    Allen, K B; Heimansohn, D A; Robison, R J; Schier, J J; Griffith, G L; Fitzgerald, E B; Isch, J H; Abraham, S; Shaar, C J

    2000-01-01

    Risk factors for leg wound complications following traditional saphenectomy have included: obesity, diabetes, female gender, anemia, age, and peripheral vascular disease. Use of an endoscopic saphenectomy technique may modify the risk factor profile associated with a traditional longitudinal incision. From September 1996 to May 1999, 276 consecutive patients who underwent elective isolated coronary artery bypass grafting performed by a single surgeon (K.B.A.) had their greater saphenous vein harvested endoscopically. During the period from January 1999 to May 1999, the surgical records of 643 patients who underwent the same operation and had a traditional longitudinal saphenectomy were reviewed for postoperative leg wound complications. Group demographics were similar regarding preoperative risk stratification and traditionally identified wound complication risk factors (diabetes, gender, obesity, preoperative anemia, and peripheral vascular disease). Leg wound complications were defined as: hematoma, dehiscence, cellulitis, necrosis, or abscess requiring dressing changes, antibiotics and/or debridement prior to complete epithelialization. Follow-up was 100% at six weeks. Leg wound complications following endoscopic harvest occurred in 3% (9/276) of patients versus 17% (110/643) of traditional harvest patients (p < 0.0001). No univariate risk factors for wound complications were associated with endoscopic saphenectomy. Univariate predictors of wound complications following traditional saphenectomy included: diabetes (p = 0.001), obesity (p = 0.0005), and female gender (p = 0.005). Multivariable risk factors for leg wound complications following saphenectomy were traditional harvest technique (OR 7.56, CI 3.8-17.2, p < 0.0001), diabetes (OR 2.10, CI 1.4-3.2, p = 0.0006) and obesity (OR 1.82, CI 1.2-2.8, p = 0.007). Traditional longitudinal saphenectomy is a multivariable risk factor for development of leg wound complications. Endoscopic saphenectomy modifies the risk factor profile for wound complications and should be the standard of care, particularly for obese and/or diabetic patients who require venous conduit during coronary artery bypass grafting.

  19. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  20. Traceability of 'Limone di Siracusa PGI' by a multidisciplinary analytical and chemometric approach.

    PubMed

    Amenta, M; Fabroni, S; Costa, C; Rapisarda, P

    2016-11-15

    Food traceability is increasingly relevant with respect to safety, quality and typicality issues. Lemon fruits grown in a typical lemon-growing area of southern Italy (Siracusa), have been awarded the PGI (Protected Geographical Indication) recognition as 'Limone di Siracusa'. Due to its peculiarity, consumers have an increasing interest about this product. The detection of potential fraud could be improved by using the tools linking the composition of this production to its typical features. This study used a wide range of analytical techniques, including conventional techniques and analytical approaches, such as spectral (NIR spectra), multi-elemental (Fe, Zn, Mn, Cu, Li, Sr) and isotopic ((13)C/(12)C, (18)O/(16)O) marker investigations, joined with multivariate statistical analysis, such as PLS-DA (Partial Least Squares Discriminant Analysis) and LDA (Linear Discriminant Analysis), to implement a traceability system to verify the authenticity of 'Limone di Siracusa' production. The results demonstrated a very good geographical discrimination rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Linear models of coregionalization for multivariate lattice data: Order-dependent and order-free cMCARs.

    PubMed

    MacNab, Ying C

    2016-08-01

    This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.

  2. Using Fisher information to track stability in multivariate systems

    EPA Science Inventory

    With the current proliferation of data, the proficient use of statistical and mining techniques offer substantial benefits to capture useful information from any dataset. As numerous approaches make use of information theory concepts, here, we discuss how Fisher information (FI...

  3. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    NASA Astrophysics Data System (ADS)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods.

  4. Piggyback technique in adult orthotopic liver transplantation: an analysis of 1067 liver transplants at a single center

    PubMed Central

    Nakamura, Noboru; Vaidya, Anil; Levi, David M.; Kato, Tomoaki; Nery, Jose R.; Madariaga, Juan R.; Molina, Enrique; Ruiz, Phillip; Gyamfi, Anthony; Tzakis, Andreas G.

    2006-01-01

    Background. Orthotopic liver transplantation (OLT) in adult patients has traditionally been performed using conventional caval reconstruction technique (CV) with veno-venous bypass. Recently, the piggyback technique (PB) without veno-venous bypass has begun to be widely used. The aim of this study was to assess the effect of routine use of PB on OLTs in adult patients. Patients and methods. A retrospective analysis was undertaken of 1067 orthotopic cadaveric whole liver transplantations in adult patients treated between June 1994 and July 2001. PB was used as the routine procedure. Patient demographics, factors including cold ischemia time (CIT), warm ischemia time (WIT), operative time, transfusions, blood loss, and postoperative results were assessed. The effects of clinical factors on graft survival were assessed by univariate and multivariate analyses.In all, 918 transplantations (86%) were performed with PB. Blood transfusion, WIT, and usage of veno-venous bypass were less with PB. Seventy-five (8.3%) cases with PB had refractory ascites following OLT (p=NS). Five venous outflow stenosis cases (0.54%) with PB were noted (p=NS). The liver and renal function during the postoperative periods was similar. Overall 1-, 3-, and 5-year patient survival rates were 85%, 78%, and 72% with PB. Univariate analysis showed that cava reconstruction method, CIT, WIT, amount of transfusion, length of hospital stay, donor age, and tumor presence were significant factors influencing graft survival. Multivariate analysis further reinforced the fact that CIT, donor age, amount of transfusion, and hospital stay were prognostic factors for graft survival. Conclusions. PB can be performed safely in the majority of adult OLTs. Results of OLT with PB are as same as for CV. Liver function, renal function, morbidity, mortality, and patient and graft survival are similar to CV. However, amount of transfusion, WIT, and use of veno-venous bypass are less with PB. PMID:18333273

  5. Risk factors and outcomes of high peritonitis rate in continuous ambulatory peritoneal dialysis patients: A retrospective study.

    PubMed

    Tian, Yuanshi; Xie, Xishao; Xiang, Shilong; Yang, Xin; Zhang, Xiaohui; Shou, Zhangfei; Chen, Jianghua

    2016-12-01

    Peritonitis remains a major complication of peritoneal dialysis (PD). A high peritonitis rate (HPR) affects continuous ambulatory peritoneal dialysis (CAPD) patients' technique survival and mortality. Predictors and outcomes of HPR, rather than the first peritonitis episode, were rarely studied in the Chinese population. In this study, we examined the risk factors associated with HPR and its effects on clinical outcomes in CAPD patients.This is a single center, retrospective, observational cohort study. A total of 294 patients who developing at least 1 episode of peritonitis were followed up from March 1st, 2002, to July 31, 2014, in our PD center. Multivariate logistic regression was used to determine the factors associated with HPR, and the Cox proportional hazard model was conducted to assess the effects of HPR on clinical outcomes.During the study period of 2917.5 patient-years, 489 episodes of peritonitis were recorded, and the total peritonitis rate was 0.168 episodes per patient-year. The multivariate analysis showed that factors associated with HPR include a quick occurrence of peritonitis after CAPD initiation (shorter than 12 months), and a low serum albumin level at the start of CAPD. In the Cox proportional hazard model, HPR was a significant predictor of technique failure. There were no differences between HPR and low peritonitis rate (LPR) group for all-cause mortality. However, when the peritonitis rate was considered as a continuous variable, a positive correlation was observed between the peritonitis rate and mortality.We found the quick peritonitis occurrence after CAPD and the low serum albumin level before CAPD were strongly associated with an HPR. Also, our results verified that HPR was positively correlated with technique failure. More importantly, the increase in the peritonitis rate suggested a higher risk of all-cause mortality.These results may help to identify and target patients who are at higher risk of HPR at the start of CAPD and to take interventions to reduce peritonitis incidence and improve clinical outcomes.

  6. Risk factors and outcomes of high peritonitis rate in continuous ambulatory peritoneal dialysis patients

    PubMed Central

    Tian, Yuanshi; Xie, Xishao; Xiang, Shilong; Yang, Xin; Zhang, Xiaohui; Shou, Zhangfei; Chen, Jianghua

    2016-01-01

    Abstract Peritonitis remains a major complication of peritoneal dialysis (PD). A high peritonitis rate (HPR) affects continuous ambulatory peritoneal dialysis (CAPD) patients’ technique survival and mortality. Predictors and outcomes of HPR, rather than the first peritonitis episode, were rarely studied in the Chinese population. In this study, we examined the risk factors associated with HPR and its effects on clinical outcomes in CAPD patients. This is a single center, retrospective, observational cohort study. A total of 294 patients who developing at least 1 episode of peritonitis were followed up from March 1st, 2002, to July 31, 2014, in our PD center. Multivariate logistic regression was used to determine the factors associated with HPR, and the Cox proportional hazard model was conducted to assess the effects of HPR on clinical outcomes. During the study period of 2917.5 patient-years, 489 episodes of peritonitis were recorded, and the total peritonitis rate was 0.168 episodes per patient-year. The multivariate analysis showed that factors associated with HPR include a quick occurrence of peritonitis after CAPD initiation (shorter than 12 months), and a low serum albumin level at the start of CAPD. In the Cox proportional hazard model, HPR was a significant predictor of technique failure. There were no differences between HPR and low peritonitis rate (LPR) group for all-cause mortality. However, when the peritonitis rate was considered as a continuous variable, a positive correlation was observed between the peritonitis rate and mortality. We found the quick peritonitis occurrence after CAPD and the low serum albumin level before CAPD were strongly associated with an HPR. Also, our results verified that HPR was positively correlated with technique failure. More importantly, the increase in the peritonitis rate suggested a higher risk of all-cause mortality. These results may help to identify and target patients who are at higher risk of HPR at the start of CAPD and to take interventions to reduce peritonitis incidence and improve clinical outcomes. PMID:27930566

  7. Estimating the decomposition of predictive information in multivariate systems

    NASA Astrophysics Data System (ADS)

    Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele

    2015-03-01

    In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.

  8. Estimating multivariate similarity between neuroimaging datasets with sparse canonical correlation analysis: an application to perfusion imaging.

    PubMed

    Rosa, Maria J; Mehta, Mitul A; Pich, Emilio M; Risterucci, Celine; Zelaya, Fernando; Reinders, Antje A T S; Williams, Steve C R; Dazzan, Paola; Doyle, Orla M; Marquand, Andre F

    2015-01-01

    An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed. One classical technique for estimating the relationship between two datasets is canonical correlation analysis (CCA). However, in the context of high-dimensional data the application of CCA is extremely challenging. A recent extension of CCA, sparse CCA (SCCA), overcomes this limitation, by regularizing the model parameters while yielding a sparse solution. In this work, we modify SCCA with the aim of facilitating its application to high-dimensional neuroimaging data and finding meaningful multivariate image-to-image correspondences in intra-modal studies. In particular, we show how the optimal subset of variables can be estimated independently and we look at the information encoded in more than one set of SCCA transformations. We illustrate our framework using Arterial Spin Labeling data to investigate multivariate similarities between the effects of two antipsychotic drugs on cerebral blood flow.

  9. Radiographic failure and rates of re-operation after acromioclavicular joint reconstruction: a comparison of surgical techniques.

    PubMed

    Spencer, H T; Hsu, L; Sodl, J; Arianjam, A; Yian, E H

    2016-04-01

    To compare radiographic failure and re-operation rates of anatomical coracoclavicular (CC) ligament reconstructional techniques with non-anatomical techniques after chronic high grade acromioclavicular (AC) joint injuries. We reviewed chronic AC joint reconstructions within a region-wide healthcare system to identify surgical technique, complications, radiographic failure and re-operations. Procedures fell into four categories: (1) modified Weaver-Dunn, (2) allograft fixed through coracoid and clavicular tunnels, (3) allograft loop coracoclavicular fixation, and (4) combined allograft loop and synthetic cortical button fixation. Among 167 patients (mean age 38.1 years, (standard deviation (sd) 14.7) treated at least a four week interval after injury, 154 had post-operative radiographs available for analysis. Radiographic failure occurred in 33/154 cases (21.4%), with the lowest rate in Technique 4 (2/42 4.8%, p = 0.001). Half the failures occurred by six weeks, and the Kaplan-Meier survivorship at 24 months was 94.4% (95% confidence interval (CI) 79.6 to 98.6) for Technique 4 and 69.9% (95% CI 59.4 to 78.3) for the other techniques when combined. In multivariable survival analysis, Technique 4 had better survival than other techniques (Hazard Ratio 0.162, 95% CI 0.039 to 0.068, p = 0.013). Among 155 patients with a minimum of six months post-operative insurance coverage, re-operation occurred in 9.7% (15 patients). However, in multivariable logistic regression, Technique 4 did not reach a statistically significant lower risk for re-operation (odds ratio 0.254, 95% CI 0.05 to 1.3, p = 0.11). In this retrospective series, anatomical CC ligament reconstruction using combined synthetic cortical button and allograft loop fixation had the lowest rate of radiographic failure. Anatomical coracoclavicular ligament reconstruction using combined synthetic cortical button and allograft loop fixation had the lowest rate of radiographic failure. ©2016 The British Editorial Society of Bone & Joint Surgery.

  10. Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lucia, Frank C. Jr.; Gottfried, Jennifer L.; Munson, Chase A.

    2008-11-01

    A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate themore » importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.« less

  11. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    PubMed

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Partial Least Squares Calibration Modeling Towards the Multivariate Limit of Detection for Enriched Isotopic Mixtures via Laser Ablation Molecular Isotopic Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Candace; Profeta, Luisa; Akpovo, Codjo

    The psuedo univariate limit of detection was calculated to compare to the multivariate interval. ompared with results from the psuedounivariate LOD, the multivariate LOD includes other factors (i.e. signal uncertainties) and the reveals the significance in creating models that not only use the analyte’s emission line but also its entire molecular spectra.

  13. Dose-surface analysis for prediction of severe acute radio-induced skin toxicity in breast cancer patients.

    PubMed

    Pastore, Francesco; Conson, Manuel; D'Avino, Vittoria; Palma, Giuseppe; Liuzzi, Raffaele; Solla, Raffaele; Farella, Antonio; Salvatore, Marco; Cella, Laura; Pacelli, Roberto

    2016-01-01

    Severe acute radiation-induced skin toxicity (RIST) after breast irradiation is a side effect impacting the quality of life in breast cancer (BC) patients. The aim of the present study was to develop normal tissue complication probability (NTCP) models of severe acute RIST in BC patients. We evaluated 140 consecutive BC patients undergoing conventional three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery in a prospective study assessing acute RIST. The acute RIST was classified according to the RTOG scoring system. Dose-surface histograms (DSHs) of the body structure in the breast region were extracted as representative of skin irradiation. Patient, disease, and treatment-related characteristics were analyzed along with DSHs. NTCP modeling by Lyman-Kutcher-Burman (LKB) and by multivariate logistic regression using bootstrap resampling techniques was performed. Models were evaluated by Spearman's Rs coefficient and ROC area. By the end of radiotherapy, 139 (99%) patients developed any degree of acute RIST. G3 RIST was found in 11 of 140 (8%) patients. Mild-moderate (G1-G2) RIST was still present at 40 days after treatment in six (4%) patients. Using DSHs for LKB modeling of acute RIST severity (RTOG G3 vs. G0-2), parameter estimates were TD50=39 Gy, n=0.38 and m=0.14 [Rs = 0.25, area under the curve (AUC) = 0.77, p = 0.003]. On multivariate analysis, the most predictive model of acute RIST severity was a two-variable model including the skin receiving ≥30 Gy (S30) and psoriasis [Rs = 0.32, AUC = 0.84, p < 0.001]. Using body DSH as representative of skin dose, the LKB n parameter was consistent with a surface effect for the skin. A good prediction performance was obtained using a data-driven multivariate model including S30 and a pre-existing skin disease (psoriasis) as a clinical factor.

  14. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration.

    PubMed

    Guo, Canyong; Luo, Xuefang; Zhou, Xiaohua; Shi, Beijia; Wang, Juanjuan; Zhao, Jinqi; Zhang, Xiaoxia

    2017-06-05

    Vibrational spectroscopic techniques such as infrared, near-infrared and Raman spectroscopy have become popular in detecting and quantifying polymorphism of pharmaceutics since they are fast and non-destructive. This study assessed the ability of three vibrational spectroscopy combined with multivariate analysis to quantify a low-content undesired polymorph within a binary polymorphic mixture. Partial least squares (PLS) regression and support vector machine (SVM) regression were employed to build quantitative models. Fusidic acid, a steroidal antibiotic, was used as the model compound. It was found that PLS regression performed slightly better than SVM regression in all the three spectroscopic techniques. Root mean square errors of prediction (RMSEP) were ranging from 0.48% to 1.17% for diffuse reflectance FTIR spectroscopy and 1.60-1.93% for diffuse reflectance FT-NIR spectroscopy and 1.62-2.31% for Raman spectroscopy. The results indicate that diffuse reflectance FTIR spectroscopy offers significant advantages in providing accurate measurement of polymorphic content in the fusidic acid binary mixtures, while Raman spectroscopy is the least accurate technique for quantitative analysis of polymorphs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions

    PubMed Central

    Li, Haoran; Xiong, Li; Jiang, Xiaoqian

    2014-01-01

    Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241

  16. A Multivariate Quality Loss Function Approach for Optimization of Spinning Processes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shankar; Mitra, Ankan

    2018-05-01

    Recent advancements in textile industry have given rise to several spinning techniques, such as ring spinning, rotor spinning etc., which can be used to produce a wide variety of textile apparels so as to fulfil the end requirements of the customers. To achieve the best out of these processes, they should be utilized at their optimal parametric settings. However, in presence of multiple yarn characteristics which are often conflicting in nature, it becomes a challenging task for the spinning industry personnel to identify the best parametric mix which would simultaneously optimize all the responses. Hence, in this paper, the applicability of a new systematic approach in the form of multivariate quality loss function technique is explored for optimizing multiple quality characteristics of yarns while identifying the ideal settings of two spinning processes. It is observed that this approach performs well against the other multi-objective optimization techniques, such as desirability function, distance function and mean squared error methods. With slight modifications in the upper and lower specification limits of the considered quality characteristics, and constraints of the non-linear optimization problem, it can be successfully applied to other processes in textile industry to determine their optimal parametric settings.

  17. Vector wind and vector wind shear models 0 to 27 km altitude for Cape Kennedy, Florida, and Vandenberg AFB, California

    NASA Technical Reports Server (NTRS)

    Smith, O. E.

    1976-01-01

    The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.

  18. Variation of Water Quality Parameters with Siltation Depth for River Ichamati Along International Border with Bangladesh Using Multivariate Statistical Techniques

    NASA Astrophysics Data System (ADS)

    Roy, P. K.; Pal, S.; Banerjee, G.; Biswas Roy, M.; Ray, D.; Majumder, A.

    2014-12-01

    River is considered as one of the main sources of freshwater all over the world. Hence analysis and maintenance of this water resource is globally considered a matter of major concern. This paper deals with the assessment of surface water quality of the Ichamati river using multivariate statistical techniques. Eight distinct surface water quality observation stations were located and samples were collected. For the samples collected statistical techniques were applied to the physico-chemical parameters and depth of siltation. In this paper cluster analysis is done to determine the relations between surface water quality and siltation depth of river Ichamati. Multiple regressions and mathematical equation modeling have been done to characterize surface water quality of Ichamati river on the basis of physico-chemical parameters. It was found that surface water quality of the downstream river was different from the water quality of the upstream. The analysis of the water quality parameters of the Ichamati river clearly indicate high pollution load on the river water which can be accounted to agricultural discharge, tidal effect and soil erosion. The results further reveal that with the increase in depth of siltation, water quality degraded.

  19. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  20. Visualization Case Study: Eyjafjallajökull Ash (Invited)

    NASA Astrophysics Data System (ADS)

    Simmon, R.

    2010-12-01

    Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.

  1. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  2. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  3. Primary non-transecting bulbar urethroplasty long-term success rates are similar to transecting urethroplasty.

    PubMed

    Anderson, Kirk M; Blakely, Stephen A; O'Donnell, Colin I; Nikolavsky, Dmitriy; Flynn, Brian J

    2017-01-01

    To review the long-term outcomes of transecting versus non-transecting urethroplasty to repair bulbar urethral strictures. A retrospective review was conducted of 342 patients who underwent anterior urethroplasty performed by a single surgeon from 2003 to 2014. Patients were excluded from further analysis if there had been prior urethroplasty, stricture location outside the bulbous urethra, or age <18 years. In the transecting group, surgical techniques used included excision and primary anastomosis and augmented anastomotic urethroplasty. In the non-transecting group, surgical techniques used included non-transecting anastomotic urethroplasty and dorsal and/or ventral buccal grafting. The primary endpoint was stricture resolution in transecting vs. non-transecting bulbar urethroplasty. Success was defined as freedom from secondary procedures including dilation, urethrotomy, or repeat urethroplasty. One hundred and fifty-two patients met inclusion criteria. At a mean follow-up of 65 months (range: 10-138 months), stricture-free recurrence in the transecting and non-transecting groups was similar, 83% (n = 85/102) and 82% (n = 41/50), respectively (p = 0.84). Surgical technique (p = 0.91), stricture length (p = 0.8), and etiology (p = 0.6) did not affect stricture recurrence rate on multivariate analysis. There was no difference detected in time to stricture recurrence (p = 0.21). In this retrospective series, transecting and non-transecting primary bulbar urethroplasty resulted in similar long-term stricture resolution rate. Prospective studies are needed to determine what differences may present in outcomes related to sexual function and long-term success.

  4. Assessment of Platelet Function in Traumatic Brain Injury-A Retrospective Observational Study in the Neuro-Critical Care Setting.

    PubMed

    Lindblad, Caroline; Thelin, Eric Peter; Nekludov, Michael; Frostell, Arvid; Nelson, David W; Svensson, Mikael; Bellander, Bo-Michael

    2018-01-01

    Despite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI), stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA) measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort. Adult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI), P2Y 12 receptor, and thrombin receptor (TRAP). ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively. In total, 178 patients were included (48% unfavorable outcome). ASPI levels increased from initially low values in a time-dependent fashion ( p  < 0.001). Patients on cyclooxygenase inhibitors demonstrated low ASPI levels ( p  < 0.001), while platelet transfusion increased them ( p  < 0.001). The first ASPI ( p  = 0.039) and TRAP ( p  = 0.009) were significant predictors of outcome, but not lesion progression, in univariate analyses. In multivariable analysis, MEA values were not independently correlated with outcome. A general longitudinal trend of MEA is identified in this TBI cohort, even in patients without known antiplatelet therapies. Values appear also affected by platelet inhibitory treatment and by platelet transfusions. While significant in univariate models to predict outcome, MEA values did not independently correlate to outcome or lesion progression in multivariable analyses. Further prospective studies to monitor coagulation in TBI patients are warranted, in particular the interpretation of pathological MEA values in patients without antiplatelet therapies.

  5. Designing Interactive Online Nursing Courses

    ERIC Educational Resources Information Center

    Jain, Smita; Jain, Pawan

    2015-01-01

    This study empirically tests the relation between the instructional design elements and the overall meaningful interactions among online students. Eighteen online graduate nursing courses are analyzed using bivariate and multivariate analysis techniques. Findings suggest that the quantity of meaningful interaction among learners can be improved by…

  6. Measures of precision for dissimilarity-based multivariate analysis of ecological communities

    PubMed Central

    Anderson, Marti J; Santana-Garcon, Julia

    2015-01-01

    Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. PMID:25438826

  7. Moving Beyond Univariate Post-Hoc Testing in Exercise Science: A Primer on Descriptive Discriminate Analysis.

    PubMed

    Barton, Mitch; Yeatts, Paul E; Henson, Robin K; Martin, Scott B

    2016-12-01

    There has been a recent call to improve data reporting in kinesiology journals, including the appropriate use of univariate and multivariate analysis techniques. For example, a multivariate analysis of variance (MANOVA) with univariate post hocs and a Bonferroni correction is frequently used to investigate group differences on multiple dependent variables. However, this univariate approach decreases power, increases the risk for Type 1 error, and contradicts the rationale for conducting multivariate tests in the first place. The purpose of this study was to provide a user-friendly primer on conducting descriptive discriminant analysis (DDA), which is a post-hoc strategy to MANOVA that takes into account the complex relationships among multiple dependent variables. A real-world example using the Statistical Package for the Social Sciences syntax and data from 1,095 middle school students on their body composition and body image are provided to explain and interpret the results from DDA. While univariate post hocs increased the risk for Type 1 error to 76%, the DDA identified which dependent variables contributed to group differences and which groups were different from each other. For example, students in the very lean and Healthy Fitness Zone categories for body mass index experienced less pressure to lose weight, more satisfaction with their body, and higher physical self-concept than the Needs Improvement Zone groups. However, perceived pressure to gain weight did not contribute to group differences because it was a suppressor variable. Researchers are encouraged to use DDA when investigating group differences on multiple correlated dependent variables to determine which variables contributed to group differences.

  8. A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.

    PubMed

    Ince, Robin A A; Giordano, Bruno L; Kayser, Christoph; Rousselet, Guillaume A; Gross, Joachim; Schyns, Philippe G

    2017-03-01

    We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc. 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of these numerical calculations, using the multivariate adaptive regression splines (MARS) technique, conclusions of this research work are exposed.

  10. Effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts.

    PubMed

    Ebadian, Behnaz; Rismanchian, Mansor; Dastgheib, Badrosadat; Bajoghli, Farshad

    2015-01-01

    Different factors such as impression techniques and materials can affect the passive fit between the superstructure and implant. The aim of this study was to determine the effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts. Four internal hex implants (Biohorizons Ø4 mm) were placed on a metal maxillary model perpendicular to the horizontal plane in maxillary lateral incisors, right canine and left first premolar areas. Three impression techniques including open tray, closed tray using ball top screw abutments and closed tray using short impression copings and two impression materials (polyether and polyvinyl siloxane) were evaluated (n = 60). The changes in distances between implant analogues in mediolateral (x) and anteroposterior (y) directions and analogue angles in x/z and y/z directions in the horizontal plane on the definitive casts were measured by coordinate measuring machine. The data were analyzed by multivariate two-way analysis of variance and one sample t-test (α = 0.05). No statistical significant differences were observed between different impression techniques and materials. However, deviation and distortion of definitive casts had a significant difference with the master model when short impression copings and polyvinyl siloxane impression material were used (P < 0.05). In open tray technique, there was a significant difference in the rotation of analogs compared with the master model with both impression materials (P < 0.05). There was no difference between open and closed tray impression techniques; however, less distortion and deviation were observed in the open tray technique. In the closed tray impression technique, ball top screw was more accurate than short impression copings.

  11. Effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts

    PubMed Central

    Ebadian, Behnaz; Rismanchian, Mansor; Dastgheib, Badrosadat; Bajoghli, Farshad

    2015-01-01

    Background: Different factors such as impression techniques and materials can affect the passive fit between the superstructure and implant. The aim of this study was to determine the effect of different impression materials and techniques on the dimensional accuracy of implant definitive casts. Materials and Methods: Four internal hex implants (Biohorizons Ø4 mm) were placed on a metal maxillary model perpendicular to the horizontal plane in maxillary lateral incisors, right canine and left first premolar areas. Three impression techniques including open tray, closed tray using ball top screw abutments and closed tray using short impression copings and two impression materials (polyether and polyvinyl siloxane) were evaluated (n = 60). The changes in distances between implant analogues in mediolateral (x) and anteroposterior (y) directions and analogue angles in x/z and y/z directions in the horizontal plane on the definitive casts were measured by coordinate measuring machine. The data were analyzed by multivariate two-way analysis of variance and one sample t-test (α = 0.05). Results: No statistical significant differences were observed between different impression techniques and materials. However, deviation and distortion of definitive casts had a significant difference with the master model when short impression copings and polyvinyl siloxane impression material were used (P < 0.05). In open tray technique, there was a significant difference in the rotation of analogs compared with the master model with both impression materials (P < 0.05). Conclusion: There was no difference between open and closed tray impression techniques; however, less distortion and deviation were observed in the open tray technique. In the closed tray impression technique, ball top screw was more accurate than short impression copings. PMID:25878678

  12. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.

    PubMed

    Nnane, Daniel Ekane

    2011-11-15

    Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  14. Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study.

    PubMed

    Prabitha, Vasumathi Gopala; Suchetha, Sambasivan; Jayanthi, Jayaraj Lalitha; Baiju, Kamalasanan Vijayakumary; Rema, Prabhakaran; Anuraj, Koyippurath; Mathews, Anita; Sebastian, Paul; Subhash, Narayanan

    2016-01-01

    Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.

  15. Use of chemometrics to compare NIR and HPLC for the simultaneous determination of drug levels in fixed-dose combination tablets employed in tuberculosis treatment.

    PubMed

    Teixeira, Kelly Sivocy Sampaio; da Cruz Fonseca, Said Gonçalves; de Moura, Luís Carlos Brigido; de Moura, Mario Luís Ribeiro; Borges, Márcia Herminia Pinheiro; Barbosa, Euzébio Guimaraes; De Lima E Moura, Túlio Flávio Accioly

    2018-02-05

    The World Health Organization recommends that TB treatment be administered using combination therapy. The methodologies for quantifying simultaneously associated drugs are highly complex, being costly, extremely time consuming and producing chemical residues harmful to the environment. The need to seek alternative techniques that minimize these drawbacks is widely discussed in the pharmaceutical industry. Therefore, the objective of this study was to develop and validate a multivariate calibration model in association with the near infrared spectroscopy technique (NIR) for the simultaneous determination of rifampicin, isoniazid, pyrazinamide and ethambutol. These models allow the quality control of these medicines to be optimized using simple, fast, low-cost techniques that produce no chemical waste. In the NIR - PLS method, spectra readings were acquired in the 10,000-4000cm -1 range using an infrared spectrophotometer (IRPrestige - 21 - Shimadzu) with a resolution of 4cm -1 , 20 sweeps, under controlled temperature and humidity. For construction of the model, the central composite experimental design was employed on the program Statistica 13 (StatSoft Inc.). All spectra were treated by computational tools for multivariate analysis using partial least squares regression (PLS) on the software program Pirouette 3.11 (Infometrix, Inc.). Variable selections were performed by the QSAR modeling program. The models developed by NIR in association with multivariate analysis provided good prediction of the APIs for the external samples and were therefore validated. For the tablets, however, the slightly different quantitative compositions of excipients compared to the mixtures prepared for building the models led to results that were not statistically similar, despite having prediction errors considered acceptable in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identifying environmental features for land management decisions

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Multivariate statistical analysis and imaging processing techniques are being applied to the study of arid/semiarid environments, with emphasis on desertification. Field level indicators of land-soil biota degradation are being sifted out with staging up to the low aircraft reconnaissance level, to LANDSAT TM & MSS, and even to the AVHRR level. Three completed projects are reviewed: riparian habitat on the Humboldt River floodplain, Salt Lake County Urban expansion detection, and salinization/desertification detection in the delta area. Beginning projects summarized include: comparative condition of rangeland in Rush Valley; modeling a GIS/remote sensing data base for Cache County; universal soil loss equation applied to Pinyon-Juniper; relating MSS to ground radiometry near Battle Mountain; and riparian habitat mapping on Mary's River, Nevada.

  17. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1979-01-01

    The research is classified in two categories: (1) the use of modern multivariable frequency domain methods for control of engine models in the neighborhood of a set-point, and (2) the use of nonlinear modelling and optimization techniques for control of engine models over a more extensive part of the flight envelope. Progress in the first category included the extension of CARDIAD (Complex Acceptability Region for Diagonal Dominance) methods developed with the help of the grant to the case of engine models with four inputs and four outputs. A suitable bounding procedure for the dominance function was determined. Progress in the second category had its principal focus on automatic nonlinear model generation. Simulations of models produced satisfactory results where compared with the NASA DYNGEN digital engine deck.

  18. Detecting depth gradients in the mid-Cretaceous Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Bryant, R.

    2017-12-01

    Multivariate data sets can be simplified using techniques like ordination and detrended correspondence analysis to identify important ecological gradients such as water depth, and thus provide insight into the environmental distribution of species (Patzkowsky & Holland, 2012). Here, these methods will be applied to abundance data of foraminiferal assemblages from the Western Interior Seaway through the Cenomanian/Turonian boundary ( 94-93 Ma). Through this interval the seaway experienced rapid and abrupt environmental and oceanographic changes, including the onset of Oceanic Anoxic Event 2 (OAE2) and peak transgression. The intense ocean and biosphere changes are well documented in the WIS, but the effect of OAE2 coupled with rising sea level on foraminiferal communities across the seaway is still poorly understood.

  19. Do religion and religiosity have anything to do with alcohol consumption patterns? Evidence from two fish landing sites on Lake Victoria Uganda.

    PubMed

    Tumwesigye, Nazarius M; Atuyambe, Lynn; Kibira, Simon P S; Wabwire-Mangen, Fred; Tushemerirwe, Florence; Wagner, Glenn J

    2013-09-01

    Fish landing sites have high levels of harmful use of alcohol. This paper examines the role of religion and religiosity on alcohol consumption at two fish landing sites on Lake Victoria in Uganda. Questionnaires were administered to randomly selected people at the sites. Dependent variables included alcohol consumption during the previous 30 days, whereas the key independent variables were religion and religiosity. Bivariate and multivariate analysis techniques were applied. People reporting low religiosity were five times more likely to have consumed alcohol (95% confidence interval: 2.45-10.04) compared with those reporting low/average religiosity. Religion and religiosity are potential channels for controlling alcohol use.

  20. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  1. University of South Carolina CB Support, Basic Research in Materials and Techniques for Optical Computing Standoff Sensors

    DTIC Science & Technology

    2004-10-01

    chloroform-soaked swab prior to making electrical contact with directly related to the oxidation and reduction potential of the an alligator clip. In...other cases, no cleaning protocol was used emitting layers.’.’ Wrighton et al.𔃺 examined the cyclic and a direct connection via an alligator clip was...applied to optical spectra of complex mix- samples requires techniques of simple multivariate patterntame (gasoline, blood , environmental samples

  2. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  3. Clinical validation of robot simulation of toothbrushing - comparative plaque removal efficacy

    PubMed Central

    2014-01-01

    Background Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Methods Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33–47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33–47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. Results The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. Conclusions The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing. This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning. PMID:24996973

  4. Clinical validation of robot simulation of toothbrushing--comparative plaque removal efficacy.

    PubMed

    Lang, Tomas; Staufer, Sebastian; Jennes, Barbara; Gaengler, Peter

    2014-07-04

    Clinical validation of laboratory toothbrushing tests has important advantages. It was, therefore, the aim to demonstrate correlation of tooth cleaning efficiency of a new robot brushing simulation technique with clinical plaque removal. Clinical programme: 27 subjects received dental cleaning prior to 3-day-plaque-regrowth-interval. Plaque was stained, photographically documented and scored using planimetrical index. Subjects brushed teeth 33-47 with three techniques (horizontal, rotating, vertical), each for 20s buccally and for 20s orally in 3 consecutive intervals. The force was calibrated, the brushing technique was video supported. Two different brushes were randomly assigned to the subject. Robot programme: Clinical brushing programmes were transfered to a 6-axis-robot. Artificial teeth 33-47 were covered with plaque-simulating substrate. All brushing techniques were repeated 7 times, results were scored according to clinical planimetry. All data underwent statistical analysis by t-test, U-test and multivariate analysis. The individual clinical cleaning patterns are well reproduced by the robot programmes. Differences in plaque removal are statistically significant for the two brushes, reproduced in clinical and robot data. Multivariate analysis confirms the higher cleaning efficiency for anterior teeth and for the buccal sites. The robot tooth brushing simulation programme showed good correlation with clinically standardized tooth brushing.This new robot brushing simulation programme can be used for rapid, reproducible laboratory testing of tooth cleaning.

  5. An operator calculus for surface and volume modeling

    NASA Technical Reports Server (NTRS)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  6. Applications of Infrared and Raman Spectroscopies to Probiotic Investigation

    PubMed Central

    Santos, Mauricio I.; Gerbino, Esteban; Tymczyszyn, Elizabeth; Gomez-Zavaglia, Andrea

    2015-01-01

    In this review, we overview the most important contributions of vibrational spectroscopy based techniques in the study of probiotics and lactic acid bacteria. First, we briefly introduce the fundamentals of these techniques, together with the main multivariate analytical tools used for spectral interpretation. Then, four main groups of applications are reported: (a) bacterial taxonomy (Subsection 4.1); (b) bacterial preservation (Subsection 4.2); (c) monitoring processes involving lactic acid bacteria and probiotics (Subsection 4.3); (d) imaging-based applications (Subsection 4.4). A final conclusion, underlying the potentialities of these techniques, is presented. PMID:28231205

  7. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  8. Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design.

    PubMed

    Selvarasu, Suresh; Kim, Do Yun; Karimi, Iftekhar A; Lee, Dong-Yup

    2010-10-01

    We present an integrated framework for characterizing fed-batch cultures of mouse hybridoma cells producing monoclonal antibody (mAb). This framework systematically combines data preprocessing, elemental balancing and statistical analysis technique. Initially, specific rates of cell growth, glucose/amino acid consumptions and mAb/metabolite productions were calculated via curve fitting using logistic equations, with subsequent elemental balancing of the preprocessed data indicating the presence of experimental measurement errors. Multivariate statistical analysis was then employed to understand physiological characteristics of the cellular system. The results from principal component analysis (PCA) revealed three major clusters of amino acids with similar trends in their consumption profiles: (i) arginine, threonine and serine, (ii) glycine, tyrosine, phenylalanine, methionine, histidine and asparagine, and (iii) lysine, valine and isoleucine. Further analysis using partial least square (PLS) regression identified key amino acids which were positively or negatively correlated with the cell growth, mAb production and the generation of lactate and ammonia. Based on these results, the optimal concentrations of key amino acids in the feed medium can be inferred, potentially leading to an increase in cell viability and productivity, as well as a decrease in toxic waste production. The study demonstrated how the current methodological framework using multivariate statistical analysis techniques can serve as a potential tool for deriving rational medium design strategies. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Heuristics to Facilitate Understanding of Discriminant Analysis.

    ERIC Educational Resources Information Center

    Van Epps, Pamela D.

    This paper discusses the principles underlying discriminant analysis and constructs a simulated data set to illustrate its methods. Discriminant analysis is a multivariate technique for identifying the best combination of variables to maximally discriminate between groups. Discriminant functions are established on existing groups and used to…

  10. A Forward Glimpse into Inverse Problems through a Geology Example

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2012-01-01

    This paper describes a forward approach to an inverse problem related to detecting the nature of geological substrata which makes use of optimization techniques in a multivariable calculus setting. The true nature of the related inverse problem is highlighted. (Contains 2 figures.)

  11. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  12. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    NASA Astrophysics Data System (ADS)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  13. Response Surface Modeling Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  14. Evaluation of drinking quality of groundwater through multivariate techniques in urban area.

    PubMed

    Das, Madhumita; Kumar, A; Mohapatra, M; Muduli, S D

    2010-07-01

    Groundwater is a major source of drinking water in urban areas. Because of the growing threat of debasing water quality due to urbanization and development, monitoring water quality is a prerequisite to ensure its suitability for use in drinking. But analysis of a large number of properties and parameter to parameter basis evaluation of water quality is not feasible in a regular interval. Multivariate techniques could streamline the data without much loss of information to a reasonably manageable data set. In this study, using principal component analysis, 11 relevant properties of 58 water samples were grouped into three statistical factors. Discriminant analysis identified "pH influence" as the most distinguished factor and pH, Fe, and NO₃⁻ as the most discriminating variables and could be treated as water quality indicators. These were utilized to classify the sampling sites into homogeneous clusters that reflect location-wise importance of specific indicator/s for use to monitor drinking water quality in the whole study area.

  15. Robust Multivariable Estimation of the Relevant Information Coming from a Wheel Speed Sensor and an Accelerometer Embedded in a Car under Performance Tests

    PubMed Central

    Hernandez, Wilmar

    2005-01-01

    In the present paper, in order to estimate the response of both a wheel speed sensor and an accelerometer placed in a car under performance tests, robust and optimal multivariable estimation techniques are used. In this case, the disturbances and noises corrupting the relevant information coming from the sensors' outputs are so dangerous that their negative influence on the electrical systems impoverish the general performance of the car. In short, the solution to this problem is a safety related problem that deserves our full attention. Therefore, in order to diminish the negative effects of the disturbances and noises on the car's electrical and electromechanical systems, an optimum observer is used. The experimental results show a satisfactory improvement in the signal-to-noise ratio of the relevant signals and demonstrate the importance of the fusion of several intelligent sensor design techniques when designing the intelligent sensors that today's cars need.

  16. Study of archaeological coins of different dynasties using libs coupled with multivariate analysis

    NASA Astrophysics Data System (ADS)

    Awasthi, Shikha; Kumar, Rohit; Rai, G. K.; Rai, A. K.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique having unique capability of an in-situ monitoring tool for detection and quantification of elements present in different artifacts. Archaeological coins collected form G.R. Sharma Memorial Museum; University of Allahabad, India has been analyzed using LIBS technique. These coins were obtained from excavation of Kausambi, Uttar Pradesh, India. LIBS system assembled in the laboratory (laser Nd:YAG 532 nm, 4 ns pulse width FWHM with Ocean Optics LIBS 2000+ spectrometer) is employed for spectral acquisition. The spectral lines of Ag, Cu, Ca, Sn, Si, Fe and Mg are identified in the LIBS spectra of different coins. LIBS along with Multivariate Analysis play an effective role for classification and contribution of spectral lines in different coins. The discrimination between five coins with Archaeological interest has been carried out using Principal Component Analysis (PCA). The results show the potential relevancy of the methodology used in the elemental identification and classification of artifacts with high accuracy and robustness.

  17. Multivariate Longitudinal Analysis with Bivariate Correlation Test

    PubMed Central

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model’s parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated. PMID:27537692

  18. Multivariate Longitudinal Analysis with Bivariate Correlation Test.

    PubMed

    Adjakossa, Eric Houngla; Sadissou, Ibrahim; Hounkonnou, Mahouton Norbert; Nuel, Gregory

    2016-01-01

    In the context of multivariate multilevel data analysis, this paper focuses on the multivariate linear mixed-effects model, including all the correlations between the random effects when the dimensional residual terms are assumed uncorrelated. Using the EM algorithm, we suggest more general expressions of the model's parameters estimators. These estimators can be used in the framework of the multivariate longitudinal data analysis as well as in the more general context of the analysis of multivariate multilevel data. By using a likelihood ratio test, we test the significance of the correlations between the random effects of two dependent variables of the model, in order to investigate whether or not it is useful to model these dependent variables jointly. Simulation studies are done to assess both the parameter recovery performance of the EM estimators and the power of the test. Using two empirical data sets which are of longitudinal multivariate type and multivariate multilevel type, respectively, the usefulness of the test is illustrated.

  19. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  20. Mining Recent Temporal Patterns for Event Detection in Multivariate Time Series Data

    PubMed Central

    Batal, Iyad; Fradkin, Dmitriy; Harrison, James; Moerchen, Fabian; Hauskrecht, Milos

    2015-01-01

    Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes. PMID:25937993

  1. Modeling and Simulation of Upset-Inducing Disturbances for Digital Systems in an Electromagnetic Reverberation Chamber

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    This report describes a modeling and simulation approach for disturbance patterns representative of the environment experienced by a digital system in an electromagnetic reverberation chamber. The disturbance is modeled by a multi-variate statistical distribution based on empirical observations. Extended versions of the Rejection Samping and Inverse Transform Sampling techniques are developed to generate multi-variate random samples of the disturbance. The results show that Inverse Transform Sampling returns samples with higher fidelity relative to the empirical distribution. This work is part of an ongoing effort to develop a resilience assessment methodology for complex safety-critical distributed systems.

  2. Numerical analysis of the effect of the kind of activating agent and the impregnation ratio on the parameters of the microporous structure of the active carbons

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2015-09-01

    The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.

  3. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    PubMed

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  5. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables

    NASA Astrophysics Data System (ADS)

    Cannon, Alex J.

    2018-01-01

    Most bias correction algorithms used in climatology, for example quantile mapping, are applied to univariate time series. They neglect the dependence between different variables. Those that are multivariate often correct only limited measures of joint dependence, such as Pearson or Spearman rank correlation. Here, an image processing technique designed to transfer colour information from one image to another—the N-dimensional probability density function transform—is adapted for use as a multivariate bias correction algorithm (MBCn) for climate model projections/predictions of multiple climate variables. MBCn is a multivariate generalization of quantile mapping that transfers all aspects of an observed continuous multivariate distribution to the corresponding multivariate distribution of variables from a climate model. When applied to climate model projections, changes in quantiles of each variable between the historical and projection period are also preserved. The MBCn algorithm is demonstrated on three case studies. First, the method is applied to an image processing example with characteristics that mimic a climate projection problem. Second, MBCn is used to correct a suite of 3-hourly surface meteorological variables from the Canadian Centre for Climate Modelling and Analysis Regional Climate Model (CanRCM4) across a North American domain. Components of the Canadian Forest Fire Weather Index (FWI) System, a complicated set of multivariate indices that characterizes the risk of wildfire, are then calculated and verified against observed values. Third, MBCn is used to correct biases in the spatial dependence structure of CanRCM4 precipitation fields. Results are compared against a univariate quantile mapping algorithm, which neglects the dependence between variables, and two multivariate bias correction algorithms, each of which corrects a different form of inter-variable correlation structure. MBCn outperforms these alternatives, often by a large margin, particularly for annual maxima of the FWI distribution and spatiotemporal autocorrelation of precipitation fields.

  6. Increasing Complexity of Clinical Research in Gastroenterology: Implications for Training Clinician-Scientists

    PubMed Central

    Scott, Frank I.; McConnell, Ryan A.; Lewis, Matthew E.; Lewis, James D.

    2014-01-01

    Background Significant advances have been made in clinical and epidemiologic research methods over the past 30 years. We sought to demonstrate the impact of these advances on published research in gastroenterology from 1980 to 2010. Methods Three journals (Gastroenterology, Gut, and American Journal of Gastroenterology) were selected for evaluation given their continuous publication during the study period. Twenty original clinical articles were randomly selected from each journal from 1980, 1990, 2000, and 2010. Each article was assessed for topic studied, whether the outcome was clinical or physiologic, study design, sample size, number of authors and centers collaborating, and reporting of statistical methods such as sample size calculations, p-values, confidence intervals, and advanced techniques such as bioinformatics or multivariate modeling. Research support with external funding was also recorded. Results A total of 240 articles were included in the study. From 1980 to 2010, there was a significant increase in analytic studies (p<0.001), clinical outcomes (p=0.003), median number of authors per article (p<0.001), multicenter collaboration (p<0.001), sample size (p<0.001), and external funding (p<0.001)). There was significantly increased reporting of p-values (p=0.01), confidence intervals (p<0.001), and power calculations (p<0.001). There was also increased utilization of large multicenter databases (p=0.001), multivariate analyses (p<0.001), and bioinformatics techniques (p=0.001). Conclusions There has been a dramatic increase in complexity in clinical research related to gastroenterology and hepatology over the last three decades. This increase highlights the need for advanced training of clinical investigators to conduct future research. PMID:22475957

  7. Multivariate statistical analysis of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, Ricardo; Caramelo, Liliana; Pereira, Mário

    2013-04-01

    Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  8. The use of multivariate statistics in studies of wildlife habitat

    Treesearch

    David E. Capen

    1981-01-01

    This report contains edited and reviewed versions of papers presented at a workshop held at the University of Vermont in April 1980. Topics include sampling avian habitats, multivariate methods, applications, examples, and new approaches to analysis and interpretation.

  9. Medicalising normality? Using a simulated dataset to assess the performance of different diagnostic criteria of HIV-associated cognitive impairment

    PubMed Central

    De Francesco, Davide; Leech, Robert; Sabin, Caroline A.; Winston, Alan

    2018-01-01

    Objective The reported prevalence of cognitive impairment remains similar to that reported in the pre-antiretroviral therapy era. This may be partially artefactual due to the methods used to diagnose impairment. In this study, we evaluated the diagnostic performance of the HIV-associated neurocognitive disorder (Frascati criteria) and global deficit score (GDS) methods in comparison to a new, multivariate method of diagnosis. Methods Using a simulated ‘normative’ dataset informed by real-world cognitive data from the observational Pharmacokinetic and Clinical Observations in PeoPle Over fiftY (POPPY) cohort study, we evaluated the apparent prevalence of cognitive impairment using the Frascati and GDS definitions, as well as a novel multivariate method based on the Mahalanobis distance. We then quantified the diagnostic properties (including positive and negative predictive values and accuracy) of each method, using bootstrapping with 10,000 replicates, with a separate ‘test’ dataset to which a pre-defined proportion of ‘impaired’ individuals had been added. Results The simulated normative dataset demonstrated that up to ~26% of a normative control population would be diagnosed with cognitive impairment with the Frascati criteria and ~20% with the GDS. In contrast, the multivariate Mahalanobis distance method identified impairment in ~5%. Using the test dataset, diagnostic accuracy [95% confidence intervals] and positive predictive value (PPV) was best for the multivariate method vs. Frascati and GDS (accuracy: 92.8% [90.3–95.2%] vs. 76.1% [72.1–80.0%] and 80.6% [76.6–84.5%] respectively; PPV: 61.2% [48.3–72.2%] vs. 29.4% [22.2–36.8%] and 33.9% [25.6–42.3%] respectively). Increasing the a priori false positive rate for the multivariate Mahalanobis distance method from 5% to 15% resulted in an increase in sensitivity from 77.4% (64.5–89.4%) to 92.2% (83.3–100%) at a cost of specificity from 94.5% (92.8–95.2%) to 85.0% (81.2–88.5%). Conclusion Our simulations suggest that the commonly used diagnostic criteria of HIV-associated cognitive impairment label a significant proportion of a normative reference population as cognitively impaired, which will likely lead to a substantial over-estimate of the true proportion in a study population, due to their lower than expected specificity. These findings have important implications for clinical research regarding cognitive health in people living with HIV. More accurate methods of diagnosis should be implemented, with multivariate techniques offering a promising solution. PMID:29641619

  10. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  11. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments

    PubMed Central

    Avalappampatty Sivasamy, Aneetha; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T2 method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T2 statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better. PMID:26357668

  12. A Dynamic Intrusion Detection System Based on Multivariate Hotelling's T2 Statistics Approach for Network Environments.

    PubMed

    Sivasamy, Aneetha Avalappampatty; Sundan, Bose

    2015-01-01

    The ever expanding communication requirements in today's world demand extensive and efficient network systems with equally efficient and reliable security features integrated for safe, confident, and secured communication and data transfer. Providing effective security protocols for any network environment, therefore, assumes paramount importance. Attempts are made continuously for designing more efficient and dynamic network intrusion detection models. In this work, an approach based on Hotelling's T(2) method, a multivariate statistical analysis technique, has been employed for intrusion detection, especially in network environments. Components such as preprocessing, multivariate statistical analysis, and attack detection have been incorporated in developing the multivariate Hotelling's T(2) statistical model and necessary profiles have been generated based on the T-square distance metrics. With a threshold range obtained using the central limit theorem, observed traffic profiles have been classified either as normal or attack types. Performance of the model, as evaluated through validation and testing using KDD Cup'99 dataset, has shown very high detection rates for all classes with low false alarm rates. Accuracy of the model presented in this work, in comparison with the existing models, has been found to be much better.

  13. Multivariate approaches for stability control of the olive oil reference materials for sensory analysis - part II: applications.

    PubMed

    Valverde-Som, Lucia; Ruiz-Samblás, Cristina; Rodríguez-García, Francisco P; Cuadros-Rodríguez, Luis

    2018-02-09

    The organoleptic quality of virgin olive oil depends on positive and negative sensory attributes. These attributes are related to volatile organic compounds and phenolic compounds that represent the aroma and taste (flavour) of the virgin olive oil. The flavour is the characteristic that can be measured by a taster panel. However, as for any analytical measuring device, the tasters, individually, and the panel, as a whole, should be harmonized and validated and proper olive oil standards are needed. In the present study, multivariate approaches are put into practice in addition to the rules to build a multivariate control chart from chromatographic volatile fingerprinting and chemometrics. Fingerprinting techniques provide analytical information without identify and quantify the analytes. This methodology is used to monitor the stability of sensory reference materials. The similarity indices have been calculated to build multivariate control chart with two olive oils certified reference materials that have been used as examples to monitor their stabilities. This methodology with chromatographic data could be applied in parallel with the 'panel test' sensory method to reduce the work of sensory analysis. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  14. Evaluation of the microscopic distribution of florfenicol in feed pellets for salmon by Fourier Transform infrared imaging and multivariate analysis.

    PubMed

    Bastidas, Camila Y; von Plessing, Carlos; Troncoso, José; Del P Castillo, Rosario

    2018-04-15

    Fourier Transform infrared imaging and multivariate analysis were used to identify, at the microscopic level, the presence of florfenicol (FF), a heavily-used antibiotic in the salmon industry, supplied to fishes in feed pellets for the treatment of salmonid rickettsial septicemia (SRS). The FF distribution was evaluated using Principal Component Analysis (PCA) and Augmented Multivariate Curve Resolution with Alternating Least Squares (augmented MCR-ALS) on the spectra obtained from images with pixel sizes of 6.25 μm × 6.25 μm and 1.56 μm × 1.56 μm, in different zones of feed pellets. Since the concentration of the drug was 3.44 mg FF/g pellet, this is the first report showing the powerful ability of the used of spectroscopic techniques and multivariate analysis, especially the augmented MCR-ALS, to describe the FF distribution in both the surface and inner parts of feed pellets at low concentration, in a complex matrix and at the microscopic level. The results allow monitoring the incorporation of the drug into the feed pellets. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Resemblance profiles as clustering decision criteria: Estimating statistical power, error, and correspondence for a hypothesis test for multivariate structure.

    PubMed

    Kilborn, Joshua P; Jones, David L; Peebles, Ernst B; Naar, David F

    2017-04-01

    Clustering data continues to be a highly active area of data analysis, and resemblance profiles are being incorporated into ecological methodologies as a hypothesis testing-based approach to clustering multivariate data. However, these new clustering techniques have not been rigorously tested to determine the performance variability based on the algorithm's assumptions or any underlying data structures. Here, we use simulation studies to estimate the statistical error rates for the hypothesis test for multivariate structure based on dissimilarity profiles (DISPROF). We concurrently tested a widely used algorithm that employs the unweighted pair group method with arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a decision criterion. We simulated unstructured multivariate data from different probability distributions with increasing numbers of objects and descriptors, and grouped data with increasing overlap, overdispersion for ecological data, and correlation among descriptors within groups. Using simulated data, we measured the resolution and correspondence of clustering solutions achieved by DISPROF with UPGMA against the reference grouping partitions used to simulate the structured test datasets. Our results highlight the dynamic interactions between dataset dimensionality, group overlap, and the properties of the descriptors within a group (i.e., overdispersion or correlation structure) that are relevant to resemblance profiles as a clustering criterion for multivariate data. These methods are particularly useful for multivariate ecological datasets that benefit from distance-based statistical analyses. We propose guidelines for using DISPROF as a clustering decision tool that will help future users avoid potential pitfalls during the application of methods and the interpretation of results.

  16. An overview of groundwater chemistry studies in Malaysia.

    PubMed

    Kura, Nura Umar; Ramli, Mohammad Firuz; Sulaiman, Wan Nor Azmin; Ibrahim, Shaharin; Aris, Ahmad Zaharin

    2018-03-01

    In this paper, numerous studies on groundwater in Malaysia were reviewed with the aim of evaluating past trends and the current status for discerning the sustainability of the water resources in the country. It was found that most of the previous groundwater studies (44 %) focused on the islands and mostly concentrated on qualitative assessment with more emphasis being placed on seawater intrusion studies. This was then followed by inland-based studies, with Selangor state leading the studies which reflected the current water challenges facing the state. From a methodological perspective, geophysics, graphical methods, and statistical analysis are the dominant techniques (38, 25, and 25 %) respectively. The geophysical methods especially the 2D resistivity method cut across many subjects such as seawater intrusion studies, quantitative assessment, and hydraulic parameters estimation. The statistical techniques used include multivariate statistical analysis techniques and ANOVA among others, most of which are quality related studies using major ions, in situ parameters, and heavy metals. Conversely, numerical techniques like MODFLOW were somewhat less admired which is likely due to their complexity in nature and high data demand. This work will facilitate researchers in identifying the specific areas which need improvement and focus, while, at the same time, provide policymakers and managers with an executive summary and knowledge of the current situation in groundwater studies and where more work needs to be done for sustainable development.

  17. An R package for the integrated analysis of metabolomics and spectral data.

    PubMed

    Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel

    2016-06-01

    Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Ability of preoperative 3.0-Tesla magnetic resonance imaging to predict the absence of side-specific extracapsular extension of prostate cancer.

    PubMed

    Hara, Tomohiko; Nakanishi, Hiroyuki; Nakagawa, Tohru; Komiyama, Motokiyo; Kawahara, Takashi; Manabe, Tomoko; Miyake, Mototaka; Arai, Eri; Kanai, Yae; Fujimoto, Hiroyuki

    2013-10-01

    Recent studies have shown an improvement in prostate cancer diagnosis with the use of 3.0-Tesla magnetic resonance imaging. We retrospectively assessed the ability of this imaging technique to predict side-specific extracapsular extension of prostate cancer. From October 2007 to August 2011, prostatectomy was carried out in 396 patients after preoperative 3.0-Tesla magnetic resonance imaging. Among these, 132 (primary sample) and 134 patients (validation sample) underwent 12-core prostate biopsy at the National Cancer Center Hospital of Tokyo, Japan, and at other institutions, respectively. In the primary dataset, univariate and multivariate analyses were carried out to predict side-specific extracapsular extension using variables determined preoperatively, including 3.0-Tesla magnetic resonance imaging findings (T2-weighted and diffusion-weighted imaging). A prediction model was then constructed and applied to the validation study sample. Multivariate analysis identified four significant independent predictors (P < 0.05), including a biopsy Gleason score of ≥8, positive 3.0-Tesla diffusion-weighted magnetic resonance imaging findings, ≥2 positive biopsy cores on each side and a maximum percentage of positive cores ≥31% on each side. The negative predictive value was 93.9% in the combination model with these four predictors, meanwhile the positive predictive value was 33.8%. Good reproducibility of these four significant predictors and the combination model was observed in the validation study sample. The side-specific extracapsular extension prediction by the biopsy Gleason score and factors associated with tumor location, including a positive 3.0-Tesla diffusion-weighted magnetic resonance imaging finding, have a high negative predictive value, but a low positive predictive value. © 2013 The Japanese Urological Association.

  19. A population-based analysis of temporal perioperative complication rates after minimally invasive radical prostatectomy.

    PubMed

    Schmitges, Jan; Trinh, Quoc-Dien; Abdollah, Firas; Sun, Maxine; Bianchi, Marco; Budäus, Lars; Zorn, Kevin; Perotte, Paul; Schlomm, Thorsten; Haese, Alexander; Montorsi, Francesco; Menon, Mani; Graefen, Markus; Karakiewicz, Pierre I

    2011-09-01

    Existing population-based reports on complication rates after minimally invasive radical prostatectomy (MIRP) did not address temporal trends. To examine contemporary temporal trends in perioperative MIRP outcomes. Between 2001 and 2007, 4387 patients undergoing MIRP were identified using the Nationwide Inpatient Sample. To examine the rates and trends of intraoperative and postoperative complications, transfusion rates, length of stay in excess of the median, and in-hospital mortality. We tested the effect of the late (2006-2007) versus the early (2001-2005) study period on all outcomes using multivariable logistic regression models controlled for clustering among hospitals. Intraoperative and postoperative complications decreased from 7.0% to 0.8% (p < 0.001) and from 28.5% to 8.7% (p < 0.001), respectively. Transfusion rates decreased from 3.5% to 2.1% (p = 0.3). Hospital length of stay >2 d decreased from 56% to 15% (p < 0.001). In multivariable analyses, intraoperative (odds ratio [OR]: 0.41; p = 0.002) and postoperative (OR: 0.65; p = 0.007) complications were less frequent in the late versus the early study period. Late study period patients were less likely to stay >2 d than early study period patients (OR: 0.34; p > 0.001). Limitations of these findings include the lack of adjustment for several patient variables including disease characteristics, surgeon variables including surgeon caseload, and the restriction to in-hospital events. Our analyses demonstrate that in-hospital complication rates and length of stay after MIRP decreased over time. This implies that temporal differences specific to complication rates after MIRP must be considered when comparisons are made with other radical prostatectomy techniques. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression

    PubMed Central

    Jackson, Dan; White, Ian R; Riley, Richard D

    2013-01-01

    Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213

  1. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  2. Considerations in cross-validation type density smoothing with a look at some data

    NASA Technical Reports Server (NTRS)

    Schuster, E. F.

    1982-01-01

    Experience gained in applying nonparametric maximum likelihood techniques of density estimation to judge the comparative quality of various estimators is reported. Two invariate data sets of one hundered samples (one Cauchy, one natural normal) are considered as well as studies in the multivariate case.

  3. Assessing the sensitivity and robustness of prediction models for apple firmness using spectral scattering technique

    USDA-ARS?s Scientific Manuscript database

    Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...

  4. DEVELOPMENT OF HOURLY PROBABILISTIC UTILITY NOX EMISSION INVENTORIES USING TIME SERIES TECHNIQUES: PART 2-MULTIVARIATE APPROACH. (R826766)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. A Comparison of Two Approaches to Beta-Flexible Clustering.

    ERIC Educational Resources Information Center

    Belbin, Lee; And Others

    1992-01-01

    A method for hierarchical agglomerative polythetic (multivariate) clustering, based on unweighted pair group using arithmetic averages (UPGMA) is compared with the original beta-flexible technique, a weighted average method. Reasons the flexible UPGMA strategy is recommended are discussed, focusing on the ability to recover cluster structure over…

  6. Academic Departments and Student Attitudes toward Different Dimensions of Web-based Education.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    2001-01-01

    Describes research at the Naval Postgraduate School that investigated student attitudes toward various aspects of Web-based instruction. Results of a survey, which were analyzed using a variety of multivariate and univariate statistical techniques, showed significantly different attitudes toward different dimensions of Web-based education…

  7. Dental Implant Patients and Their Satisfaction with Treatment.

    ERIC Educational Resources Information Center

    Tawares, Mary; And Others

    1990-01-01

    The study developed a profile of dental implant patients from 38 private practices to document characteristics of endosseous implant recipients of the past 10 years. Data were then analyzed using multivariate techniques to examine the relationship between these characteristics and patient-reported outcomes. Patients tended to have high incomes and…

  8. Evaluating the "cushion effect" among children in frontal motor vehicle crashes.

    PubMed

    Harbaugh, Calista M; Zhang, Peng; Henderson, Brianna; Derstine, Brian A; Holcombe, Sven A; Wang, Stewart C; Kohoyda-Inglis, Carla; Ehrlich, Peter F

    2018-05-01

    The "Cushion Effect," the phenomenon in which obesity protects against abdominal injury in adults in motor vehicle accidents, has not been evaluated among pediatric patients. This work evaluates the association between subcutaneous fat cross-sectional area, quantified using analytic morphomic techniques and abdominal injury. This retrospective study includes 119 patients aged 1 to 18years involved in frontal impact motor vehicle accidents (2003-2015) with computed tomography scans. Subcutaneous fat cross-sectional area was measured and converted to age- and gender-adjusted percentiles from population-based normative data. Multivariable analysis determined the risk of the primary outcome, Maximum Abbreviated Injury Scale (MAIS) 2+ abdominal injury, after adjusting for age, weight, seatbelt status, and impact rating. MAIS 2+ abdominal injuries occurred in 20 (16.8%) of the patients. Subcutaneous fat area percentile was not significantly associated with MAIS 2+ abdominal injury on multivariable logistic regression (adjusted Odds Ratio, 0.86; 95% CI, 0.72-1.03; p=0.10). The "cushion effect" was not apparent among pediatric frontal motor vehicle crash victims in this study. Future work is needed to investigate other analytic morphomic measures. By understanding how body composition relates to injury patterns, there is a unique opportunity to improve vehicle safety design. Prognosis Study, Level III. Copyright © 2018. Published by Elsevier Inc.

  9. Perception of control, coping and psychological stress of infertile women undergoing IVF.

    PubMed

    Gourounti, Kleanthi; Anagnostopoulos, Fotios; Potamianos, Grigorios; Lykeridou, Katerina; Schmidt, Lone; Vaslamatzis, Grigorios

    2012-06-01

    The study aimed to examine: (i) the association between perception of infertility controllability and coping strategies; and (ii) the association between perception of infertility controllability and coping strategies to psychological distress, applying multivariate statistical techniques to control for the effects of demographic variables. This cross-sectional study included 137 women with fertility problems undergoing IVF in a public hospital. All participants completed questionnaires that measured fertility-related stress, state anxiety, depressive symptomatology, perception of control and coping strategies. Pearson's correlation coefficients were calculated between all study variables, followed by hierarchical multiple linear regression. Low perception of personal and treatment controllability was associated with frequent use of avoidance coping and high perception of treatment controllability was positively associated with problem-focused coping. Multivariate analysis showed that, when controlling for demographic factors, low perception of personal control and avoidance coping were positively associated with fertility-related stress and state anxiety, and problem-appraisal coping was negatively and significantly associated with fertility-related stress and depressive symptomatology scores. The findings of this study merit the understanding of the role of control perception and coping in psychological stress of infertile women to identify beforehand those women who might be at risk of experiencing high stress and in need of support. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment.

    PubMed

    Djuris, Jelena; Djuric, Zorica

    2017-11-30

    Mathematical models can be used as an integral part of the quality by design (QbD) concept throughout the product lifecycle for variety of purposes, including appointment of the design space and control strategy, continual improvement and risk assessment. Examples of different mathematical modeling techniques (mechanistic, empirical and hybrid) in the pharmaceutical development and process monitoring or control are provided in the presented review. In the QbD context, mathematical models are predominantly used to support design space and/or control strategies. Considering their impact to the final product quality, models can be divided into the following categories: high, medium and low impact models. Although there are regulatory guidelines on the topic of modeling applications, review of QbD-based submission containing modeling elements revealed concerns regarding the scale-dependency of design spaces and verification of models predictions at commercial scale of manufacturing, especially regarding real-time release (RTR) models. Authors provide critical overview on the good modeling practices and introduce concepts of multiple-unit, adaptive and dynamic design space, multivariate specifications and methods for process uncertainty analysis. RTR specification with mathematical model and different approaches to multivariate statistical process control supporting process analytical technologies are also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    PubMed

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  13. Predictors of the Perception of Smoking Health Risks in Smokers With or Without Schizophrenia.

    PubMed

    Kowalczyk, William J; Wehring, Heidi J; Burton, George; Raley, Heather; Feldman, Stephanie; Heishman, Stephen J; Kelly, Deanna L

    2017-01-01

    This study sought to examine the predictors of health risk perception in smokers with or without schizophrenia. The health risk subscale from the Smoking Consequences Questionnaire was dichotomized and used to measure health risk perception in smokers with (n = 67) and without schizophrenia (n = 100). A backward stepwise logistic regression was conducted using variables associated at the bivariate level to determine multivariate predictors. Overall, 62.5% of smokers without schizophrenia and 40.3% of smokers with schizophrenia completely recognize the health risks of smoking (p ≤ .01). Multivariate predictors for smokers without schizophrenia included: sex (Exp (B) = .3; p < .05), Smoking Consequences Questionnaire state enhancement (Exp (B) = .69; p < .01), and craving relief (Exp (B) = 1.8; p < .01). Among smokers with schizophrenia, predictors were education (Exp (B) = .7; p < .05), nicotine dependence (Exp (B) = .5; p < .01), motivation to quit (Exp (B) = 1.8; p < .01), and Smoking Consequences Questionnaire craving relief (Exp (B) = 1.8; p < .01). There was overlap and differences between predictors in smokers with and without schizophrenia. Commonly used techniques for education on the health consequences of cigarettes may work in smokers with schizophrenia, but intervention efforts specifically tailored to smokers with schizophrenia might be more efficacious.

  14. Predictors of the Perception of Smoking Health Risks in Smokers With or Without Schizophrenia

    PubMed Central

    Kowalczyk, William J.; Wehring, Heidi J.; Burton, George; Raley, Heather; Feldman, Stephanie; Heishman, Stephen J.; Kelly, Deanna L.

    2017-01-01

    Objective This study sought to examine the predictors of health risk perception in smokers with or without schizophrenia. Methods The health risk subscale from the Smoking Consequences Questionnaire was dichotomized and used to measure health risk perception in smokers with (n = 67) and without schizophrenia (n = 100). A backward stepwise logistic regression was conducted using variables associated at the bivariate level to determine multivariate predictors. Results Overall, 62.5% of smokers without schizophrenia and 40.3% of smokers with schizophrenia completely recognize the health risks of smoking (p ≤ .01). Multivariate predictors for smokers without schizophrenia included: sex (Exp (B) = .3; p < .05), Smoking Consequences Questionnaire state enhancement (Exp (B) = .69; p < .01), and craving relief (Exp (B) = 1.8; p < .01). Among smokers with schizophrenia, predictors were education (Exp (B) = .7; p < .05), nicotine dependence (Exp (B) = .5; p < .01), motivation to quit (Exp (B) = 1.8; p < .01), and Smoking Consequences Questionnaire craving relief (Exp (B) = 1.8; p < .01). Conclusions There was overlap and differences between predictors in smokers with and without schizophrenia. Commonly used techniques for education on the health consequences of cigarettes may work in smokers with schizophrenia, but intervention efforts specifically tailored to smokers with schizophrenia might be more efficacious. PMID:27858591

  15. Characteristics of patients making serious inhaler errors with a dry powder inhaler and association with asthma-related events in a primary care setting

    PubMed Central

    Westerik, Janine A. M.; Carter, Victoria; Chrystyn, Henry; Burden, Anne; Thompson, Samantha L.; Ryan, Dermot; Gruffydd-Jones, Kevin; Haughney, John; Roche, Nicolas; Lavorini, Federico; Papi, Alberto; Infantino, Antonio; Roman-Rodriguez, Miguel; Bosnic-Anticevich, Sinthia; Lisspers, Karin; Ställberg, Björn; Henrichsen, Svein Høegh; van der Molen, Thys; Hutton, Catherine; Price, David B.

    2016-01-01

    Abstract Objective: Correct inhaler technique is central to effective delivery of asthma therapy. The study aim was to identify factors associated with serious inhaler technique errors and their prevalence among primary care patients with asthma using the Diskus dry powder inhaler (DPI). Methods: This was a historical, multinational, cross-sectional study (2011–2013) using the iHARP database, an international initiative that includes patient- and healthcare provider-reported questionnaires from eight countries. Patients with asthma were observed for serious inhaler errors by trained healthcare providers as predefined by the iHARP steering committee. Multivariable logistic regression, stepwise reduced, was used to identify clinical characteristics and asthma-related outcomes associated with ≥1 serious errors. Results: Of 3681 patients with asthma, 623 (17%) were using a Diskus (mean [SD] age, 51 [14]; 61% women). A total of 341 (55%) patients made ≥1 serious errors. The most common errors were the failure to exhale before inhalation, insufficient breath-hold at the end of inhalation, and inhalation that was not forceful from the start. Factors significantly associated with ≥1 serious errors included asthma-related hospitalization the previous year (odds ratio [OR] 2.07; 95% confidence interval [CI], 1.26–3.40); obesity (OR 1.75; 1.17–2.63); poor asthma control the previous 4 weeks (OR 1.57; 1.04–2.36); female sex (OR 1.51; 1.08–2.10); and no inhaler technique review during the previous year (OR 1.45; 1.04–2.02). Conclusions: Patients with evidence of poor asthma control should be targeted for a review of their inhaler technique even when using a device thought to have a low error rate. PMID:26810934

  16. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  17. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  18. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-05-25

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  19. Methods for spectral image analysis by exploiting spatial simplicity

    DOEpatents

    Keenan, Michael R.

    2010-11-23

    Several full-spectrum imaging techniques have been introduced in recent years that promise to provide rapid and comprehensive chemical characterization of complex samples. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful chemical information. Multivariate factor analysis techniques, such as Principal Component Analysis and Alternating Least Squares-based Multivariate Curve Resolution, have proven effective for extracting the essential chemical information from high dimensional spectral image data sets into a limited number of components that describe the spectral characteristics and spatial distributions of the chemical species comprising the sample. There are many cases, however, in which those constraints are not effective and where alternative approaches may provide new analytical insights. For many cases of practical importance, imaged samples are "simple" in the sense that they consist of relatively discrete chemical phases. That is, at any given location, only one or a few of the chemical species comprising the entire sample have non-zero concentrations. The methods of spectral image analysis of the present invention exploit this simplicity in the spatial domain to make the resulting factor models more realistic. Therefore, more physically accurate and interpretable spectral and abundance components can be extracted from spectral images that have spatially simple structure.

  20. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    PubMed

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Application of two tests of multivariate discordancy to fisheries data sets

    USGS Publications Warehouse

    Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.

    2008-01-01

    The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.

  2. Quantifying the Value of Downscaled Climate Model Information for Adaptation Decisions: When is Downscaling a Smart Decision?

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Wootten, A.; Eaton, M. J.; Runge, M. C.; Littell, J. S.; Bryan, A. M.; Carter, S. L.

    2015-12-01

    Two types of decisions face society with respect to anthropogenic climate change: (1) whether to enact a global greenhouse gas abatement policy, and (2) how to adapt to the local consequences of current and future climatic changes. The practice of downscaling global climate models (GCMs) is often used to address (2) because GCMs do not resolve key features that will mediate global climate change at the local scale. In response, the development of downscaling techniques and models has accelerated to aid decision makers seeking adaptation guidance. However, quantifiable estimates of the value of information are difficult to obtain, particularly in decision contexts characterized by deep uncertainty and low system-controllability. Here we demonstrate a method to quantify the additional value that decision makers could expect if research investments are directed towards developing new downscaled climate projections. As a proof of concept we focus on a real-world management problem: whether to undertake assisted migration for an endangered tropical avian species. We also take advantage of recently published multivariate methods that account for three vexing issues in climate impacts modeling: maximizing climate model quality information, accounting for model dependence in ensembles of opportunity, and deriving probabilistic projections. We expand on these global methods by including regional (Caribbean Basin) and local (Puerto Rico) domains. In the local domain, we test whether a high resolution (2km) dynamically downscaled GCM reduces the multivariate error estimate compared to the original coarse-scale GCM. Initial tests show little difference between the downscaled and original GCM multivariate error. When propagated through to a species population model, the Value of Information analysis indicates that the expected utility that would accrue to the manager (and species) if this downscaling were completed may not justify the cost compared to alternative actions.

  3. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach.

    PubMed

    Castello, Lucía V; Galetto, Leonardo

    2013-01-01

    Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  4. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach

    PubMed Central

    Castello, Lucía V.; Galetto, Leonardo

    2013-01-01

    Abstract Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex. PMID:23805053

  5. Single-Isocenter Multiple-Target Stereotactic Radiosurgery: Risk of Compromised Coverage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roper, Justin, E-mail: justin.roper@emory.edu; Department of Biostatistics and Bioinformatics, Winship Cancer Institute of Emory University, Atlanta, Georgia; Chanyavanich, Vorakarn

    2015-11-01

    Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multitarget stereotactic radiosurgery (SRS). Methods and Materials: This retrospective study included 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, noncoplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage was relatedmore » to PTV volume, PTV separation, and rotational error. Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values <95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were >95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage. Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increased with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.« less

  6. Predictors of unsuccessful outcome in cemented femoral revisions using bone impaction grafting; Cox regression analysis of 208 cases.

    PubMed

    Te Stroet, Martijn A J; Rijnen, Wim H C; Gardeniers, Jean W M; Schreurs, B Willem; Hannink, Gerjon

    2016-09-29

    Despite improvements in the technique of femoral impaction bone grafting, reconstruction failures still can occur. Therefore, the aim of our study was to determine risk factors for the endpoint re-revision for any reason. We used prospectively collected demographic, clinical and surgical data of all 202 patients who underwent 208 femoral revisions using the X-change Femoral Revision System (Stryker-Howmedica), fresh-frozen morcellised allograft and a cemented polished Exeter stem in our department from 1991 to 2007. Univariable and multivariable Cox regression analyses were performed to identify potential factors associated with re-revision. The mean follow-up was 10.6 (5-21) years. The cumulative re-revision rate was 6.3% (13/208). After univariable selection, sex, age, body mass index (BMI), American Association of Anesthesiologists (ASA) classification, type of removed femoral component, and mesh used for reconstruction were included in multivariable regression analysis.In the multivariable analysis, BMI was the only factor that was significantly associated with the risk of re-revision after bone impaction grafting (BMI ≥30 vs. BMI <30, HR = 6.54 [95% CI 1.89-22.65]; p = 0.003). BMI was the only factor associated with the risk of re-revision for any reason. Besides BMI also other factors, such as Endoklinik score and the type of removed femoral component, can provide guidance in the process of preclinical decision making. With the knowledge obtained from this study, preoperative patient selection, informed consent, and treatment protocols can be better adjusted to the individual patient who needs to undergo a femoral revision with impaction bone grafting.

  7. Metabolic phenotyping of urine for discriminating alcohol-dependent from social drinkers and alcohol-naive subjects.

    PubMed

    Mostafa, Hamza; Amin, Arwa M; Teh, Chin-Hoe; Murugaiyah, Vikneswaran; Arif, Nor Hayati; Ibrahim, Baharudin

    2016-12-01

    Alcohol-dependence (AD) is a ravaging public health and social problem. AD diagnosis depends on questionnaires and some biomarkers, which lack specificity and sensitivity, however, often leading to less precise diagnosis, as well as delaying treatment. This represents a great burden, not only on AD individuals but also on their families. Metabolomics using nuclear magnetic resonance spectroscopy (NMR) can provide novel techniques for the identification of novel biomarkers of AD. These putative biomarkers can facilitate early diagnosis of AD. To identify novel biomarkers able to discriminate between alcohol-dependent, non-AD alcohol drinkers and controls using metabolomics. Urine samples were collected from 30 alcohol-dependent persons who did not yet start AD treatment, 54 social drinkers and 60 controls, who were then analysed using NMR. Data analysis was done using multivariate analysis including principal component analysis (PCA) and orthogonal partial least square-discriminate analysis (OPLS-DA), followed by univariate and multivariate logistic regression to develop the discriminatory model. The reproducibility was done using intraclass correlation coefficient (ICC). The OPLS-DA revealed significant discrimination between AD and other groups with sensitivity 86.21%, specificity 97.25% and accuracy 94.93%. Six biomarkers were significantly associated with AD in the multivariate logistic regression model. These biomarkers were cis-aconitic acid, citric acid, alanine, lactic acid, 1,2-propanediol and 2-hydroxyisovaleric acid. The reproducibility of all biomarkers was excellent (0.81-1.0). This study revealed that metabolomics analysis of urine using NMR identified AD novel biomarkers which can discriminate AD from social drinkers and controls with high accuracy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Theories of Memory and Aging: A Look at the Past and a Glimpse of the Future

    PubMed Central

    Festini, Sara B.

    2017-01-01

    The present article reviews theories of memory and aging over the past 50 years. Particularly notable is a progression from early single-mechanism perspectives to complex multifactorial models proposed to account for commonly observed age deficits in memory function. The seminal mechanistic theories of processing speed, limited resources, and inhibitory deficits are discussed and viewed as especially important theories for understanding age-related memory decline. Additionally, advances in multivariate techniques including structural equation modeling provided new tools that led to the development of more complex multifactorial theories than existed earlier. The important role of neuroimaging is considered, along with the current prevalence of intervention studies. We close with predictions about new directions that future research on memory and aging will take. PMID:27257229

  9. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOEpatents

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  10. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.

  11. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  12. Viewpoints: A New Computer Program for Interactive Exploration of Large Multivariate Space Science and Astrophysics Data.

    NASA Astrophysics Data System (ADS)

    Levit, Creon; Gazis, P.

    2006-06-01

    The graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform (windows, linux, Apple OSX) application which leverages some of the power latent in the GPU to enable smooth interactive exploration and analysis of large high-dimensional data using a variety of classical and recent techniques. The targeted application area is the interactive analysis of complex, multivariate space science and astrophysics data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 10^6-10^8.

  13. Compensator improvement for multivariable control systems

    NASA Technical Reports Server (NTRS)

    Mitchell, J. R.; Mcdaniel, W. L., Jr.; Gresham, L. L.

    1977-01-01

    A theory and the associated numerical technique are developed for an iterative design improvement of the compensation for linear, time-invariant control systems with multiple inputs and multiple outputs. A strict constraint algorithm is used in obtaining a solution of the specified constraints of the control design. The result of the research effort is the multiple input, multiple output Compensator Improvement Program (CIP). The objective of the Compensator Improvement Program is to modify in an iterative manner the free parameters of the dynamic compensation matrix so that the system satisfies frequency domain specifications. In this exposition, the underlying principles of the multivariable CIP algorithm are presented and the practical utility of the program is illustrated with space vehicle related examples.

  14. Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches.

    PubMed

    Varekar, Vikas; Karmakar, Subhankar; Jha, Ramakar

    2016-02-01

    The design of surface water quality sampling location is a crucial decision-making process for rationalization of monitoring network. The quantity, quality, and types of available dataset (watershed characteristics and water quality data) may affect the selection of appropriate design methodology. The modified Sanders approach and multivariate statistical techniques [particularly factor analysis (FA)/principal component analysis (PCA)] are well-accepted and widely used techniques for design of sampling locations. However, their performance may vary significantly with quantity, quality, and types of available dataset. In this paper, an attempt has been made to evaluate performance of these techniques by accounting the effect of seasonal variation, under a situation of limited water quality data but extensive watershed characteristics information, as continuous and consistent river water quality data is usually difficult to obtain, whereas watershed information may be made available through application of geospatial techniques. A case study of Kali River, Western Uttar Pradesh, India, is selected for the analysis. The monitoring was carried out at 16 sampling locations. The discrete and diffuse pollution loads at different sampling sites were estimated and accounted using modified Sanders approach, whereas the monitored physical and chemical water quality parameters were utilized as inputs for FA/PCA. The designed optimum number of sampling locations for monsoon and non-monsoon seasons by modified Sanders approach are eight and seven while that for FA/PCA are eleven and nine, respectively. Less variation in the number and locations of designed sampling sites were obtained by both techniques, which shows stability of results. A geospatial analysis has also been carried out to check the significance of designed sampling location with respect to river basin characteristics and land use of the study area. Both methods are equally efficient; however, modified Sanders approach outperforms FA/PCA when limited water quality and extensive watershed information is available. The available water quality dataset is limited and FA/PCA-based approach fails to identify monitoring locations with higher variation, as these multivariate statistical approaches are data-driven. The priority/hierarchy and number of sampling sites designed by modified Sanders approach are well justified by the land use practices and observed river basin characteristics of the study area.

  15. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine

    NASA Astrophysics Data System (ADS)

    Li, Shaoxin; Zhang, Yanjiao; Xu, Junfa; Li, Linfang; Zeng, Qiuyao; Lin, Lin; Guo, Zhouyi; Liu, Zhiming; Xiong, Honglian; Liu, Songhao

    2014-09-01

    This study aims to present a noninvasive prostate cancer screening methods using serum surface-enhanced Raman scattering (SERS) and support vector machine (SVM) techniques through peripheral blood sample. SERS measurements are performed using serum samples from 93 prostate cancer patients and 68 healthy volunteers by silver nanoparticles. Three types of kernel functions including linear, polynomial, and Gaussian radial basis function (RBF) are employed to build SVM diagnostic models for classifying measured SERS spectra. For comparably evaluating the performance of SVM classification models, the standard multivariate statistic analysis method of principal component analysis (PCA) is also applied to classify the same datasets. The study results show that for the RBF kernel SVM diagnostic model, the diagnostic accuracy of 98.1% is acquired, which is superior to the results of 91.3% obtained from PCA methods. The receiver operating characteristic curve of diagnostic models further confirm above research results. This study demonstrates that label-free serum SERS analysis technique combined with SVM diagnostic algorithm has great potential for noninvasive prostate cancer screening.

  16. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  17. Discrimination of premalignant lesions and cancer tissues from normal gastric tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin

    2013-06-01

    The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.

  18. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  19. A Method for Exploiting Redundancy to Accommodate Actuator Limits in Multivariable Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan; Roulette, Greg

    1995-01-01

    This paper introduces a new method for accommodating actuator saturation in a multivariable system with actuator redundancy. Actuator saturation can cause significant deterioration in control system performance because unmet demand may result in sluggish transients and oscillations in response to setpoint changes. To help compensate for this problem, a technique has been developed which takes advantage of redundancy in multivariable systems to redistribute the unmet control demand over the remaining useful effectors. This method is not a redesign procedure, rather it modifies commands to the unlimited effectors to compensate for those which are limited, thereby exploiting the built-in redundancy. The original commands are modified by the increments due to unmet demand, but when a saturated effector comes off its limit, the incremental commands disappear and the original unmodified controller remains intact. This scheme provides a smooth transition between saturated and unsaturated modes as it divides up the unmet requirement over any available actuators. This way, if there is sufficiently redundant control authority, performance can be maintained.

  20. Measures of precision for dissimilarity-based multivariate analysis of ecological communities.

    PubMed

    Anderson, Marti J; Santana-Garcon, Julia

    2015-01-01

    Ecological studies require key decisions regarding the appropriate size and number of sampling units. No methods currently exist to measure precision for multivariate assemblage data when dissimilarity-based analyses are intended to follow. Here, we propose a pseudo multivariate dissimilarity-based standard error (MultSE) as a useful quantity for assessing sample-size adequacy in studies of ecological communities. Based on sums of squared dissimilarities, MultSE measures variability in the position of the centroid in the space of a chosen dissimilarity measure under repeated sampling for a given sample size. We describe a novel double resampling method to quantify uncertainty in MultSE values with increasing sample size. For more complex designs, values of MultSE can be calculated from the pseudo residual mean square of a permanova model, with the double resampling done within appropriate cells in the design. R code functions for implementing these techniques, along with ecological examples, are provided. © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  1. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    PubMed

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  2. Simulation of multivariate stationary stochastic processes using dimension-reduction representation methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo

    2018-03-01

    In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.

  3. Improving Prediction Accuracy for WSN Data Reduction by Applying Multivariate Spatio-Temporal Correlation

    PubMed Central

    Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman

    2011-01-01

    This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626

  4. New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares.

    PubMed

    Fadel, Maya Abou; de Juan, Anna; Vezin, Hervé; Duponchel, Ludovic

    2016-12-01

    Electron paramagnetic resonance (EPR) spectroscopy is a powerful technique that is able to characterize radicals formed in kinetic reactions. However, spectral characterization of individual chemical species is often limited or even unmanageable due to the severe kinetic and spectral overlap among species in kinetic processes. Therefore, we applied, for the first time, multivariate curve resolution-alternating least squares (MCR-ALS) method to EPR time evolving data sets to model and characterize the different constituents in a kinetic reaction. Here we demonstrate the advantage of multivariate analysis in the investigation of radicals formed along the kinetic process of hydroxycoumarin in alkaline medium. Multiset analysis of several EPR-monitored kinetic experiments performed in different conditions revealed the individual paramagnetic centres as well as their kinetic profiles. The results obtained by MCR-ALS method demonstrate its prominent potential in analysis of EPR time evolved spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Monograph on the use of the multivariate Gram Charlier series Type A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayodom, T.; Heydt, G.

    1978-01-01

    The Gram-Charlier series in an infinite series expansion for a probability density function (pdf) in which terms of the series are Hermite polynomials. There are several Gram-Charlier series - the best known is Type A. The Gram-Charlier series, Type A (GCA) exists for both univariate and multivariate random variables. This monograph introduces the multivariate GCA and illustrates its use through several examples. A brief bibliography and discussion of Hermite polynomials is also included. 9 figures, 2 tables.

  6. Rapid differentiation of Ghana cocoa beans by FT-NIR spectroscopy coupled with multivariate classification

    NASA Astrophysics Data System (ADS)

    Teye, Ernest; Huang, Xingyi; Dai, Huang; Chen, Quansheng

    2013-10-01

    Quick, accurate and reliable technique for discrimination of cocoa beans according to geographical origin is essential for quality control and traceability management. This current study presents the application of Near Infrared Spectroscopy technique and multivariate classification for the differentiation of Ghana cocoa beans. A total of 194 cocoa bean samples from seven cocoa growing regions were used. Principal component analysis (PCA) was used to extract relevant information from the spectral data and this gave visible cluster trends. The performance of four multivariate classification methods: Linear discriminant analysis (LDA), K-nearest neighbors (KNN), Back propagation artificial neural network (BPANN) and Support vector machine (SVM) were compared. The performances of the models were optimized by cross validation. The results revealed that; SVM model was superior to all the mathematical methods with a discrimination rate of 100% in both the training and prediction set after preprocessing with Mean centering (MC). BPANN had a discrimination rate of 99.23% for the training set and 96.88% for prediction set. While LDA model had 96.15% and 90.63% for the training and prediction sets respectively. KNN model had 75.01% for the training set and 72.31% for prediction set. The non-linear classification methods used were superior to the linear ones. Generally, the results revealed that NIR Spectroscopy coupled with SVM model could be used successfully to discriminate cocoa beans according to their geographical origins for effective quality assurance.

  7. Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations.

    PubMed

    Schroeder, David; Keefe, Daniel F

    2016-01-01

    We present Visualization-by-Sketching, a direct-manipulation user interface for designing new data visualizations. The goals are twofold: First, make the process of creating real, animated, data-driven visualizations of complex information more accessible to artists, graphic designers, and other visual experts with traditional, non-technical training. Second, support and enhance the role of human creativity in visualization design, enabling visual experimentation and workflows similar to what is possible with traditional artistic media. The approach is to conceive of visualization design as a combination of processes that are already closely linked with visual creativity: sketching, digital painting, image editing, and reacting to exemplars. Rather than studying and tweaking low-level algorithms and their parameters, designers create new visualizations by painting directly on top of a digital data canvas, sketching data glyphs, and arranging and blending together multiple layers of animated 2D graphics. This requires new algorithms and techniques to interpret painterly user input relative to data "under" the canvas, balance artistic freedom with the need to produce accurate data visualizations, and interactively explore large (e.g., terabyte-sized) multivariate datasets. Results demonstrate a variety of multivariate data visualization techniques can be rapidly recreated using the interface. More importantly, results and feedback from artists support the potential for interfaces in this style to attract new, creative users to the challenging task of designing more effective data visualizations and to help these users stay "in the creative zone" as they work.

  8. A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by 13C-NMR.

    PubMed

    Merchak, Noelle; Silvestre, Virginie; Loquet, Denis; Rizk, Toufic; Akoka, Serge; Bejjani, Joseph

    2017-01-01

    Triacylglycerols, which are quasi-universal components of food matrices, consist of complex mixtures of molecules. Their site-specific 13 C content, their fatty acid profile, and their position on the glycerol moiety may significantly vary with the geographical, botanical, or animal origin of the sample. Such variables are valuable tracers for food authentication issues. The main objective of this work was to develop a new method based on a rapid and precise 13 C-NMR spectroscopy (using a polarization transfer technique) coupled with multivariate linear regression analyses in order to quantify the whole set of individual fatty acids within triacylglycerols. In this respect, olive oil samples were analyzed by means of both adiabatic 13 C-INEPT sequence and gas chromatography (GC). For each fatty acid within the studied matrix and for squalene as well, a multivariate prediction model was constructed using the deconvoluted peak areas of 13 C-INEPT spectra as predictors, and the data obtained by GC as response variables. This 13 C-NMR-based strategy, tested on olive oil, could serve as an alternative to the gas chromatographic quantification of individual fatty acids in other matrices, while providing additional compositional and isotopic information. Graphical abstract A strategy based on the multivariate linear regression of variables obtained by a rapid 13 C-NMR technique was developed for the quantification of individual fatty acids within triacylglycerol matrices. The conceived strategy was tested on olive oil.

  9. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  10. SUGGESTIONS FOR OPTIMIZED PLANNING OF MULTIVARIATE MONITORING OF ATMOSPHERIC POLLUTION

    EPA Science Inventory

    Recent work in factor analysis of multivariate data sets has shown that variables with little signal should not be included in the factor analysis. Work also shows that rotational ambiguity is reduced if sources impacting a receptor have both large and small contributions. Thes...

  11. A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine

    PubMed Central

    Zou, Wei; She, Jianwen; Tolstikov, Vladimir V.

    2013-01-01

    Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC–LC), reversed-phase liquid chromatography (RP–LC), and gas chromatography (GC). All three techniques are coupled to a mass spectrometer (MS) in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM) and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow. PMID:24958150

  12. Arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears.

    PubMed

    Jung, Sung-Weon; Kim, Dong-Hee; Kang, Seung-Hoon; Lee, Ji-Heon

    2017-07-01

    While a conventional single- or double-row repair technique could be applied for repair of C-shaped tears, a different surgical strategy should be considered for repair of U- or L-shaped tears because they typically have complex patterns with anterior, posterior, or both mobile leaves. This study was performed to examine the outcomes of the modified Mason-Allen technique for footprint restoration in the treatment of large U- or L-shaped rotator cuff tears. Thirty-two patients who underwent an arthroscopic modified Mason-Allen technique for large U- or L-shaped rotator cuff tears between January 2012 and December 2013 were included in this study. Margin convergence was first performed to reduce the tear gap and tension, and then, an arthroscopic Mason-Allen technique was performed to restore the rotator cuff footprint in a side-to-end repair fashion. All patients were evaluated preoperatively and for a minimum of 2 years of follow-up with a visual analog scale (VAS) for pain, Constant score, and ultrasonography. There was significant improvement in all VAS and Constant scores compared with the preoperative values (P < 0.001). Functional results by Constant scores included 9 cases that were classified as excellent, 11 cases as good, 8 cases as fair, and 2 cases as poor. Binary logistic regression analysis revealed that heavy work, pseudoparalysis, joint space narrowing, fatty degeneration of the SST and IST, and a positive tangent sign were found to significantly correlate with functional outcomes. Multivariable logistic regression analysis revealed that only fatty degeneration of the SST was a risk factor for fair/poor clinical outcomes. Complications occurred in 5 of the 32 patients (15.6 %), and the reoperation rate due to complications was 6.3 % (2 of 32 patients). An arthroscopic modified Mason-Allen technique was sufficient to restore the footprint of the rotator cuff in our data. Overall satisfactory results were achieved in most patients, with the exception of those with severe fatty degeneration. An arthroscopic modified Mason-Allen technique could be an effective and reliable alternative for patients with large U- or L-shaped rotator cuff tears. Case Series, Therapeutic Level IV.

  13. Multivariate pattern dependence

    PubMed Central

    Saxe, Rebecca

    2017-01-01

    When we perform a cognitive task, multiple brain regions are engaged. Understanding how these regions interact is a fundamental step to uncover the neural bases of behavior. Most research on the interactions between brain regions has focused on the univariate responses in the regions. However, fine grained patterns of response encode important information, as shown by multivariate pattern analysis. In the present article, we introduce and apply multivariate pattern dependence (MVPD): a technique to study the statistical dependence between brain regions in humans in terms of the multivariate relations between their patterns of responses. MVPD characterizes the responses in each brain region as trajectories in region-specific multidimensional spaces, and models the multivariate relationship between these trajectories. We applied MVPD to the posterior superior temporal sulcus (pSTS) and to the fusiform face area (FFA), using a searchlight approach to reveal interactions between these seed regions and the rest of the brain. Across two different experiments, MVPD identified significant statistical dependence not detected by standard functional connectivity. Additionally, MVPD outperformed univariate connectivity in its ability to explain independent variance in the responses of individual voxels. In the end, MVPD uncovered different connectivity profiles associated with different representational subspaces of FFA: the first principal component of FFA shows differential connectivity with occipital and parietal regions implicated in the processing of low-level properties of faces, while the second and third components show differential connectivity with anterior temporal regions implicated in the processing of invariant representations of face identity. PMID:29155809

  14. Neonatal Pulmonary MRI of Bronchopulmonary Dysplasia Predicts Short-term Clinical Outcomes.

    PubMed

    Higano, Nara S; Spielberg, David R; Fleck, Robert J; Schapiro, Andrew H; Walkup, Laura L; Hahn, Andrew D; Tkach, Jean A; Kingma, Paul S; Merhar, Stephanie L; Fain, Sean B; Woods, Jason C

    2018-05-23

    Bronchopulmonary dysplasia (BPD) is a serious neonatal pulmonary condition associated with premature birth, but the underlying parenchymal disease and trajectory are poorly characterized. The current NICHD/NHLBI definition of BPD severity is based on degree of prematurity and extent of oxygen requirement. However, no clear link exists between initial diagnosis and clinical outcomes. We hypothesized that magnetic resonance imaging (MRI) of structural parenchymal abnormalities will correlate with NICHD-defined BPD disease severity and predict short-term respiratory outcomes. Forty-two neonates (20 severe BPD, 6 moderate, 7 mild, 9 non-BPD controls; 40±3 weeks post-menstrual age) underwent quiet-breathing structural pulmonary MRI (ultrashort echo-time and gradient echo) in a NICU-sited, neonatal-sized 1.5T scanner, without sedation or respiratory support unless already clinically prescribed. Disease severity was scored independently by two radiologists. Mean scores were compared to clinical severity and short-term respiratory outcomes. Outcomes were predicted using univariate and multivariable models including clinical data and scores. MRI scores significantly correlated with severities and predicted respiratory support at NICU discharge (P<0.0001). In multivariable models, MRI scores were by far the strongest predictor of respiratory support duration over clinical data, including birth weight and gestational age. Notably, NICHD severity level was not predictive of discharge support. Quiet-breathing neonatal pulmonary MRI can independently assess structural abnormalities of BPD, describe disease severity, and predict short-term outcomes more accurately than any individual standard clinical measure. Importantly, this non-ionizing technique can be implemented to phenotype disease and has potential to serially assess efficacy of individualized therapies.

  15. Binge eating disorder and depressive symptoms among females of child-bearing age: the Korea Nurses' Health Study.

    PubMed

    Kim, O; Kim, M S; Kim, J; Lee, J E; Jung, H

    2018-01-17

    Most studies regarding the relationship between binge eating disorder (BED) and depression have targeted obese populations. However, nurses, particularly female nurses, are one of the vocations that face these issues due to various reasons including high stress and shift work. This study investigated the prevalence of BED and the correlation between BED and severity of self-reported depressive symptoms among female nurses in South Korea. Participants were 7,267 female nurses, of which 502 had symptoms of BED. Using the propensity score matching (PSM) technique, 502 nurses with BED and 502 without BED were included in the analyses. Data were analyzed using descriptive statistics, Spearman's correlation, and multivariable ordinal logistic regression analysis. The proportion of binge eating disorder was 6.90% among the nurses, and 81.3% of nurses displayed some levels of depressive symptoms. Multivariable ordinal logistic regression analysis revealed that age (40 years old and older), alcohol consumption (frequent drinkers), self-rated health, sleep problems, and stress were associated with self-reported depression symptoms. Overall, after adjusting for confounders, nurses with BED had 1.80 times the risk (95% CI = [1.41-2.30]; p-value < 0.001) of experiencing a greater severity of self-reported depression symptoms. Korean female nurse showed a higher prevalence of both binge eating disorder and depressive symptoms, and the association between the two factors was proven in the study. Therefore, hospital management and health policy makers should be alarmed and agreed on both examining nurses on such problems and providing organized and systematic assistance.

  16. Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps.

    PubMed

    Mendoza-Carranza, Manuel; Ejarque, Elisabet; Nagelkerke, Leopold A J

    2018-01-01

    Tropical small-scale fisheries are typical for providing complex multivariate data, due to their diversity in fishing techniques and highly diverse species composition. In this paper we used for the first time a supervised Self-Organizing Map (xyf-SOM), to recognize and understand the internal heterogeneity of a tropical marine small-scale fishery, using as model the fishery fleet of San Pedro port, Tabasco, Mexico. We used multivariate data from commercial logbooks, including the following four factors: fish species (47), gear types (bottom longline, vertical line+shark longline and vertical line), season (cold, warm), and inter-annual variation (2007-2012). The size of the xyf-SOM, a fundamental characteristic to improve its predictive quality, was optimized for the minimum distance between objects and the maximum prediction rate. The xyf-SOM successfully classified individual fishing trips in relation to the four factors included in the model. Prediction percentages were high (80-100%) for bottom longline and vertical line + shark longline, but lower prediction values were obtained for vertical line (51-74%) fishery. A confusion matrix indicated that classification errors occurred within the same fishing gear. Prediction rates were validated by generating confidence interval using bootstrap. The xyf-SOM showed that not all the fishing trips were targeting the most abundant species and the catch rates were not symmetrically distributed around the mean. Also, the species composition is not homogeneous among fishing trips. Despite the complexity of the data, the xyf-SOM proved to be an excellent tool to identify trends in complex scenarios, emphasizing the diverse and complex patterns that characterize tropical small scale-fishery fleets.

  17. A Review of Structural Equation Modeling Applications in Turkish Educational Science Literature, 2010-2015

    ERIC Educational Resources Information Center

    Karakaya-Ozyer, Kubra; Aksu-Dunya, Beyza

    2018-01-01

    Structural equation modeling (SEM) is one of the most popular multivariate statistical techniques in Turkish educational research. This study elaborates the SEM procedures employed by 75 educational research articles which were published from 2010 to 2015 in Turkey. After documenting and coding 75 academic papers, categorical frequencies and…

  18. NIR monitoring of in-service wood structures

    Treesearch

    Michela Zanetti; Timothy G. Rials; Douglas Rammer

    2005-01-01

    Near infrared spectroscopy (NIRS) was used to study a set of Southern Yellow Pine boards exposed to natural weathering for different periods of exposure time. This non-destructive spectroscopic technique is a very powerful tool to predict the weathering of wood when used in combination with multivariate analysis (Principal Component Analysis, PCA, and Projection to...

  19. Music and Suicidality: A Quantitative Review and Extension

    ERIC Educational Resources Information Center

    Stack, Steven; Lester, David; Rosenberg, Jonathan S.

    2012-01-01

    This article provides the first quantitative review of the literature on music and suicidality. Multivariate logistic regression techniques are applied to 90 findings from 21 studies. Investigations employing ecological data on suicide completions are 19.2 times more apt than other studies to report a link between music and suicide. More recent…

  20. Sexual Orientation, Weight Concerns, and Eating-Disordered Behaviors in Adolescent Girls and Boys.

    ERIC Educational Resources Information Center

    Austin, S. Bryn; Ziyadeh, Najat; Kahn, Jessica A.; Camargo, Carlos A.; Colditz, Graham A.; Field, Alison E.

    2004-01-01

    Objective: To examine sexual orientation group differences in eating disorder symptoms in adolescent girls and boys. Method: Cross-sectional associations were examined using multivariate regression techniques using data gathered in 1999 from 10,583 adolescents in the Growing Up Today Study, a cohort of children of women participating in the…

  1. Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves

    USDA-ARS?s Scientific Manuscript database

    Food safety in the production of fresh produce for human consumption is a worldwide issue and needs to be addressed to decrease foodborne illnesses and resulting costs. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for detection of fecal contaminates on spina...

  2. Time Poverty Thresholds and Rates for the US Population

    ERIC Educational Resources Information Center

    Kalenkoski, Charlene M.; Hamrick, Karen S.; Andrews, Margaret

    2011-01-01

    Time constraints, like money constraints, affect Americans' well-being. This paper defines what it means to be time poor based on the concepts of necessary and committed time and presents time poverty thresholds and rates for the US population and certain subgroups. Multivariate regression techniques are used to identify the key variables…

  3. Simulating the Effects of Common and Specific Abilities on Test Performance: An Evaluation of Factor Analysis

    ERIC Educational Resources Information Center

    McFarland, Dennis J.

    2014-01-01

    Purpose: Factor analysis is a useful technique to aid in organizing multivariate data characterizing speech, language, and auditory abilities. However, knowledge of the limitations of factor analysis is essential for proper interpretation of results. The present study used simulated test scores to illustrate some characteristics of factor…

  4. Effects of Student Characteristics on Grades in Compulsory School

    ERIC Educational Resources Information Center

    Lekholm, Alli Klapp; Cliffordson, Christina

    2009-01-01

    The purpose of the study was to investigate how different student characteristics such as gender influence grades. In order to answer these questions, multivariate techniques were used. The data derive from The Gothenburg Educational Longitudinal Database (GOLD), and the subjects were 99,070 ninth-grade students born in 1987. The analyses were…

  5. ASCAL: A Microcomputer Program for Estimating Logistic IRT Item Parameters.

    ERIC Educational Resources Information Center

    Vale, C. David; Gialluca, Kathleen A.

    ASCAL is a microcomputer-based program for calibrating items according to the three-parameter logistic model of item response theory. It uses a modified multivariate Newton-Raphson procedure for estimating item parameters. This study evaluated this procedure using Monte Carlo Simulation Techniques. The current version of ASCAL was then compared to…

  6. Statistical Modeling of the Individual: Rationale and Application of Multivariate Stationary Time Series Analysis

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2005-01-01

    Results obtained with interindividual techniques in a representative sample of a population are not necessarily generalizable to the individual members of this population. In this article the specific condition is presented that must be satisfied to generalize from the interindividual level to the intraindividual level. A way to investigate…

  7. Using Matlab in a Multivariable Calculus Course.

    ERIC Educational Resources Information Center

    Schlatter, Mark D.

    The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…

  8. A New Predictive Model of Centerline Segregation in Continuous Cast Steel Slabs by Using Multivariate Adaptive Regression Splines Approach

    PubMed Central

    García Nieto, Paulino José; González Suárez, Victor Manuel; Álvarez Antón, Juan Carlos; Mayo Bayón, Ricardo; Sirgo Blanco, José Ángel; Díaz Fernández, Ana María

    2015-01-01

    The aim of this study was to obtain a predictive model able to perform an early detection of central segregation severity in continuous cast steel slabs. Segregation in steel cast products is an internal defect that can be very harmful when slabs are rolled in heavy plate mills. In this research work, the central segregation was studied with success using the data mining methodology based on multivariate adaptive regression splines (MARS) technique. For this purpose, the most important physical-chemical parameters are considered. The results of the present study are two-fold. In the first place, the significance of each physical-chemical variable on the segregation is presented through the model. Second, a model for forecasting segregation is obtained. Regression with optimal hyperparameters was performed and coefficients of determination equal to 0.93 for continuity factor estimation and 0.95 for average width were obtained when the MARS technique was applied to the experimental dataset, respectively. The agreement between experimental data and the model confirmed the good performance of the latter.

  9. Development of a robust framework for controlling high performance turbofan engines

    NASA Astrophysics Data System (ADS)

    Miklosovic, Robert

    This research involves the development of a robust framework for controlling complex and uncertain multivariable systems. Where mathematical modeling is often tedious or inaccurate, the new method uses an extended state observer (ESO) to estimate and cancel dynamic information in real time and dynamically decouple the system. As a result, controller design and tuning become transparent as the number of required model parameters is reduced. Much research has been devoted towards the application of modern multivariable control techniques on aircraft engines. However, few, if any, have been implemented on an operational aircraft, partially due to the difficulty in tuning the controller for satisfactory performance. The new technique is applied to a modern two-spool, high-pressure ratio, low-bypass turbofan with mixed-flow afterburning. A realistic Modular Aero-Propulsion System Simulation (MAPSS) package, developed by NASA, is used to demonstrate the new design process and compare its performance with that of a supplied nominal controller. This approach is expected to reduce gain scheduling over the full operating envelope of the engine and allow a controller to be tuned for engine-to-engine variations.

  10. Using Boosting Decision Trees in Gravitational Wave Searches triggered by Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Zuraw, Sarah; LIGO Collaboration

    2015-04-01

    The search for gravitational wave bursts requires the ability to distinguish weak signals from background detector noise. Gravitational wave bursts are characterized by their transient nature, making them particularly difficult to detect as they are similar to non-Gaussian noise fluctuations in the detector. The Boosted Decision Tree method is a powerful machine learning algorithm which uses Multivariate Analysis techniques to explore high-dimensional data sets in order to distinguish between gravitational wave signal and background detector noise. It does so by training with known noise events and simulated gravitational wave events. The method is tested using waveform models and compared with the performance of the standard gravitational wave burst search pipeline for Gamma-ray Bursts. It is shown that the method is able to effectively distinguish between signal and background events under a variety of conditions and over multiple Gamma-ray Burst events. This example demonstrates the usefulness and robustness of the Boosted Decision Tree and Multivariate Analysis techniques as a detection method for gravitational wave bursts. LIGO, UMass, PREP, NEGAP.

  11. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  12. Multivariate normative comparisons using an aggregated database

    PubMed Central

    Murre, Jaap M. J.; Huizenga, Hilde M.

    2017-01-01

    In multivariate normative comparisons, a patient’s profile of test scores is compared to those in a normative sample. Recently, it has been shown that these multivariate normative comparisons enhance the sensitivity of neuropsychological assessment. However, multivariate normative comparisons require multivariate normative data, which are often unavailable. In this paper, we show how a multivariate normative database can be constructed by combining healthy control group data from published neuropsychological studies. We show that three issues should be addressed to construct a multivariate normative database. First, the database may have a multilevel structure, with participants nested within studies. Second, not all tests are administered in every study, so many data may be missing. Third, a patient should be compared to controls of similar age, gender and educational background rather than to the entire normative sample. To address these issues, we propose a multilevel approach for multivariate normative comparisons that accounts for missing data and includes covariates for age, gender and educational background. Simulations show that this approach controls the number of false positives and has high sensitivity to detect genuine deviations from the norm. An empirical example is provided. Implications for other domains than neuropsychology are also discussed. To facilitate broader adoption of these methods, we provide code implementing the entire analysis in the open source software package R. PMID:28267796

  13. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    PubMed

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Vibrational biospectroscopy: from plants to animals to humans. A historical perspective

    NASA Astrophysics Data System (ADS)

    Shaw, R. Anthony; Mantsch, Henry H.

    1999-05-01

    Today, more than ever, vibrational spectroscopy means different things to different people. From their roots as molecular fingerprinting techniques, both infrared and Raman spectroscopy have evolved to the point where they play roles in a staggering variety of scientific endeavors. This survey focuses upon biological and medical applications. The past 40 years have witnessed enormous advances in our understanding of the building blocks of life, and vibrational spectroscopy has played an important role. That role is reviewed briefly here. In parallel with these efforts, the near-IR community developed powerful 'chemometric' methods to extract a wealth of information from spectra that appeared superficially featureless. As vibrational spectroscopy is finding new niches in the medical and clinical realms, these chemometric methods are proving to be a valuable (but not infallible!) adjunct to conventional spectral interpretation. This survey includes a brief outline of biomedical vibrational spectroscopy and imaging, including several representative examples to illustrate the strengths and pitfalls of a growing reliance upon multivariate quantitation and classification methods.

  15. Exploring biological, chemical and geomorphological patterns in fluvial ecosystems with Structural Equation Modelling

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Surridge, B.; Lerner, D. N.:

    2009-04-01

    River ecosystems represent complex networks of interacting biological, chemical and geomorphological processes. These processes generate spatial and temporal patterns in biological, chemical and geomorphological variables, and a growing number of these variables are now being used to characterise the status of rivers. However, integrated analyses of these biological-chemical-geomorphological networks have rarely been undertaken, and as a result our knowledge of the underlying processes and how they generate the resulting patterns remains weak. The apparent complexity of the networks involved, and the lack of coherent datasets, represent two key challenges to such analyses. In this paper we describe the application of a novel technique, Structural Equation Modelling (SEM), to the investigation of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be tested against available data. This is a significant departure from the solely exploratory analyses which characterise other multivariate techniques. We took biological, chemical and river habitat survey data collected by the Environment Agency for 400 sites in rivers spread across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river typology, substrate material and degree of physical modification. We developed a number of a-priori conceptual models, reflecting current research questions or existing knowledge, and tested the ability of these conceptual models to explain the variance and covariance within the dataset. The conceptual models we developed were able to explain correctly the variance and covariance shown by the datasets, proving to be a relevant representation of the processes involved. The models explained 65% of the variance in indices describing benthic macroinvertebrate communities. Dissolved oxygen was of primary importance, but geomorphological factors, including river habitat type and degree of habitat degradation, also had significant explanatory power. The addition of spatial variables, such as latitude or longitude, did not provide additional explanatory power. This suggests that the variables already included in the models effectively represented the eco-regions across which our data were distributed. The models produced new insights into the relative importance of chemical and geomorphological factors for river macroinvertebrate communities. The SEM technique proved a powerful tool for exploring complex biological-chemical-geomorphological networks, for example able to deal with the co-correlations that are common in rivers due to multiple feedback mechanisms.

  16. Space construction base control system

    NASA Technical Reports Server (NTRS)

    Kaczynski, R. F.

    1979-01-01

    Several approaches for an attitude control system are studied and developed for a large space construction base that is structurally flexible. Digital simulations were obtained using the following techniques: (1) the multivariable Nyquist array method combined with closed loop pole allocation, (2) the linear quadratic regulator method. Equations for the three-axis simulation using the multilevel control method were generated and are presented. Several alternate control approaches are also described. A technique is demonstrated for obtaining the dynamic structural properties of a vehicle which is constructed of two or more submodules of known dynamic characteristics.

  17. New robust bilinear least squares method for the analysis of spectral-pH matrix data.

    PubMed

    Goicoechea, Héctor C; Olivieri, Alejandro C

    2005-07-01

    A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.

  18. Multivariate moment closure techniques for stochastic kinetic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less

  19. Work Activities and Compensation of Male and Female Cardiologists

    PubMed Central

    Jagsi, Reshma; Biga, Cathie; Poppas, Athena; Rodgers, George P.; Walsh, Mary N.; White, Patrick J.; McKendry, Colleen; Sasson, Joseph; Schulte, Phillip J.; Douglas, Pamela S.

    2016-01-01

    BACKGROUND Much remains unknown about experiences, including working activities and pay, of women in cardiology, which is a predominantly male specialty. OBJECTIVES The goal of this study was to describe the working activities and pay of female cardiologists compared with their male colleagues and to determine whether sex differences in compensation exist after accounting for differences in work activities and other characteristics. METHODS The personal, job, and practice characteristics of a national sample of practicing cardiologists were described according to sex. We applied the Peters-Belson technique and multivariate regression analysis to evaluate whether gender differences in compensation existed after accounting for differences in other measured characteristics. The study used 2013 data reported by practice administrators to MedAxiom, a subscription-based service provider to cardiology practices. Data regarding cardiologists from 161 U.S. practices were included, and the study sample included 2,679 subjects (229 women and 2,450 men). RESULTS Women were more likely to be specialized in general/noninvasive cardiology (53.1% vs. 28.2%), and a lower proportion (11.4% vs. 39.3%) reported an interventional subspecialty compared with men. Job characteristics that differed according to sex included the proportion working full-time (79.9% vs. 90.9%; p < 0.001), the mean number of half-days worked (387 vs. 406 days; p = 0.001), and mean work relative value units generated (7,404 vs. 9,497; p <0.001) for women and men, respectively. Peters-Belson analysis revealed that based on measured job and productivity characteristics, the women in this sample would have been expected to have a mean salary that was $31,749 (95% confidence interval: $16,303 to $48,028) higher than that actually observed. Multivariate analysis confirmed the direction and magnitude of the independent association between sex and salary. CONCLUSIONS Men and women practicing cardiology in this national sample had different job activities and salaries. Substantial sex-based salary differences existed even after adjusting for measures of personal, job, and practice characteristics. PMID:26560679

  20. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.

  1. Seasonal assessment and apportionment of surface water pollution using multivariate statistical methods: Sinos River, southern Brazil.

    PubMed

    Alves, Darlan Daniel; Riegel, Roberta Plangg; de Quevedo, Daniela Müller; Osório, Daniela Montanari Migliavacca; da Costa, Gustavo Marques; do Nascimento, Carlos Augusto; Telöken, Franko

    2018-06-08

    Assessment of surface water quality is an issue of currently high importance, especially in polluted rivers which provide water for treatment and distribution as drinking water, as is the case of the Sinos River, southern Brazil. Multivariate statistical techniques allow a better understanding of the seasonal variations in water quality, as well as the source identification and source apportionment of water pollution. In this study, the multivariate statistical techniques of cluster analysis (CA), principal component analysis (PCA), and positive matrix factorization (PMF) were used, along with the Kruskal-Wallis test and Spearman's correlation analysis in order to interpret a water quality data set resulting from a monitoring program conducted over a period of almost two years (May 2013 to April 2015). The water samples were collected from the raw water inlet of the municipal water treatment plant (WTP) operated by the Water and Sewage Services of Novo Hamburgo (COMUSA). CA allowed the data to be grouped into three periods (autumn and summer (AUT-SUM); winter (WIN); spring (SPR)). Through the PCA, it was possible to identify that the most important parameters in contribution to water quality variations are total coliforms (TCOLI) in SUM-AUT, water level (WL), water temperature (WT), and electrical conductivity (EC) in WIN and color (COLOR) and turbidity (TURB) in SPR. PMF was applied to the complete data set and enabled the source apportionment water pollution through three factors, which are related to anthropogenic sources, such as the discharge of domestic sewage (mostly represented by Escherichia coli (ECOLI)), industrial wastewaters, and agriculture runoff. The results provided by this study demonstrate the contribution provided by the use of integrated statistical techniques in the interpretation and understanding of large data sets of water quality, showing also that this approach can be used as an efficient methodology to optimize indicators for water quality assessment.

  2. Physics Mining of Multi-Source Data Sets

    NASA Technical Reports Server (NTRS)

    Helly, John; Karimabadi, Homa; Sipes, Tamara

    2012-01-01

    Powerful new parallel data mining algorithms can produce diagnostic and prognostic numerical models and analyses from observational data. These techniques yield higher-resolution measures than ever before of environmental parameters by fusing synoptic imagery and time-series measurements. These techniques are general and relevant to observational data, including raster, vector, and scalar, and can be applied in all Earth- and environmental science domains. Because they can be highly automated and are parallel, they scale to large spatial domains and are well suited to change and gap detection. This makes it possible to analyze spatial and temporal gaps in information, and facilitates within-mission replanning to optimize the allocation of observational resources. The basis of the innovation is the extension of a recently developed set of algorithms packaged into MineTool to multi-variate time-series data. MineTool is unique in that it automates the various steps of the data mining process, thus making it amenable to autonomous analysis of large data sets. Unlike techniques such as Artificial Neural Nets, which yield a blackbox solution, MineTool's outcome is always an analytical model in parametric form that expresses the output in terms of the input variables. This has the advantage that the derived equation can then be used to gain insight into the physical relevance and relative importance of the parameters and coefficients in the model. This is referred to as physics-mining of data. The capabilities of MineTool are extended to include both supervised and unsupervised algorithms, handle multi-type data sets, and parallelize it.

  3. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia.

    PubMed

    Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid

    2008-01-01

    A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.

  4. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  5. Early identification of patients requiring massive transfusion, embolization, or hemostatic surgery for traumatic hemorrhage: a systematic review protocol.

    PubMed

    Tran, Alexandre; Matar, Maher; Steyerberg, Ewout W; Lampron, Jacinthe; Taljaard, Monica; Vaillancourt, Christian

    2017-04-13

    Hemorrhage is a major cause of early mortality following a traumatic injury. The progression and consequences of significant blood loss occur quickly as death from hemorrhagic shock or exsanguination often occurs within the first few hours. The mainstay of treatment therefore involves early identification of patients at risk for hemorrhagic shock in order to provide blood products and control of the bleeding source if necessary. The intended scope of this review is to identify and assess combinations of predictors informing therapeutic decision-making for clinicians during the initial trauma assessment. The primary objective of this systematic review is to identify and critically assess any existing multivariable models predicting significant traumatic hemorrhage that requires intervention, defined as a composite outcome comprising massive transfusion, surgery for hemostasis, or angiography with embolization for the purpose of external validation or updating in other study populations. If no suitable existing multivariable models are identified, the secondary objective is to identify candidate predictors to inform the development of a new prediction rule. We will search the EMBASE and MEDLINE databases for all randomized controlled trials and prospective and retrospective cohort studies developing or validating predictors of intervention for traumatic hemorrhage in adult patients 16 years of age or older. Eligible predictors must be available to the clinician during the first hour of trauma resuscitation and may be clinical, lab-based, or imaging-based. Outcomes of interest include the need for surgical intervention, angiographic embolization, or massive transfusion within the first 24 h. Data extraction will be performed independently by two reviewers. Items for extraction will be based on the CHARMS checklist. We will evaluate any existing models for relevance, quality, and the potential for external validation and updating in other populations. Relevance will be described in terms of appropriateness of outcomes and predictors. Quality criteria will include variable selection strategies, adequacy of sample size, handling of missing data, validation techniques, and measures of model performance. This systematic review will describe the availability of multivariable prediction models and summarize evidence regarding predictors that can be used to identify the need for intervention in patients with traumatic hemorrhage. PROSPERO CRD42017054589.

  6. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  7. An error bound for a discrete reduced order model of a linear multivariable system

    NASA Technical Reports Server (NTRS)

    Al-Saggaf, Ubaid M.; Franklin, Gene F.

    1987-01-01

    The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.

  8. Experiments to Determine Whether Recursive Partitioning (CART) or an Artificial Neural Network Overcomes Theoretical Limitations of Cox Proportional Hazards Regression

    NASA Technical Reports Server (NTRS)

    Kattan, Michael W.; Hess, Kenneth R.; Kattan, Michael W.

    1998-01-01

    New computationally intensive tools for medical survival analyses include recursive partitioning (also called CART) and artificial neural networks. A challenge that remains is to better understand the behavior of these techniques in effort to know when they will be effective tools. Theoretically they may overcome limitations of the traditional multivariable survival technique, the Cox proportional hazards regression model. Experiments were designed to test whether the new tools would, in practice, overcome these limitations. Two datasets in which theory suggests CART and the neural network should outperform the Cox model were selected. The first was a published leukemia dataset manipulated to have a strong interaction that CART should detect. The second was a published cirrhosis dataset with pronounced nonlinear effects that a neural network should fit. Repeated sampling of 50 training and testing subsets was applied to each technique. The concordance index C was calculated as a measure of predictive accuracy by each technique on the testing dataset. In the interaction dataset, CART outperformed Cox (P less than 0.05) with a C improvement of 0.1 (95% Cl, 0.08 to 0.12). In the nonlinear dataset, the neural network outperformed the Cox model (P less than 0.05), but by a very slight amount (0.015). As predicted by theory, CART and the neural network were able to overcome limitations of the Cox model. Experiments like these are important to increase our understanding of when one of these new techniques will outperform the standard Cox model. Further research is necessary to predict which technique will do best a priori and to assess the magnitude of superiority.

  9. Does Robotic Roux-en-Y Gastric Bypass Provide Outcome Advantages over Standard Laparoscopic Approaches?

    PubMed

    Rogula, Tomasz; Koprivanac, Marijan; Janik, Michał Robert; Petrosky, Jacob A; Nowacki, Amy S; Dombrowska, Agnieszka; Kroh, Matthew; Brethauer, Stacy; Aminian, Ali; Schauer, Philip

    2018-04-10

    The aim was to compare clinical outcomes of patients treated with totally robotic Roux-en-Y gastric bypass (TRRYGB) with those treated with the different laparoscopic Roux-en-Y gastric bypass (LRYGB) techniques. The clinical benefit of the robotic approach to bariatric surgery compared to the standard laparoscopic approach is unclear. There are no studies directly comparing outcomes of TRRYGB with different LRYGB techniques. Outcomes of 578 obese patients who underwent RYGB between 2011 and 2014 at an academic center were assessed. Multivariable analysis and propensity matching were used for comparing TRRYGB to different LRYGB techniques, including 21-mm EEA circular-stapled gastrojejunal anastomosis (GJA, LRYGB-21CS), linear-stapled GJA (LRYGB-LS), and hand-sewn GJA (LRYGB-HS). The TRRYGB technique required a longer mean operative time compared to the other groups, respectively 204 ± 46 vs. 139 ± 30 min (LRYGB-21CS), 206 ± 37 vs. 158 ± 30 min (LRYGB-LS), and 210 ± 36 vs. 167 ± 30 min (LRYGB-HS). TRRYGB experienced a lower stricture rate (2 vs. 17%, P = 0.003), shorter hospital stay (2.6 ± 1.2 vs. 4.3 ± 5.5 days, P = 0.008), and lower readmission rate (12 vs. 28%, P = 0.009). No significant differences in outcomes were observed when comparing RRYGB to LRYGB-LS or LRYGB-HS. TRRYGB increases operative time compared to all LRYGB techniques. TRRYGB was superior to LRYGB-21CS in terms of significantly shorter hospital stay, lower readmission rate, and less frequent GJA stricture formation. TRRYGB provides no clinical advantages over the LRYGB-LS and LRYGB-HS techniques.

  10. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  11. Independent Predictors of Prognosis Based on Oral Cavity Squamous Cell Carcinoma Surgical Margins.

    PubMed

    Buchakjian, Marisa R; Ginader, Timothy; Tasche, Kendall K; Pagedar, Nitin A; Smith, Brian J; Sperry, Steven M

    2018-05-01

    Objective To conduct a multivariate analysis of a large cohort of oral cavity squamous cell carcinoma (OCSCC) cases for independent predictors of local recurrence (LR) and overall survival (OS), with emphasis on the relationship between (1) prognosis and (2) main specimen permanent margins and intraoperative tumor bed frozen margins. Study Design Retrospective cohort study. Setting Tertiary academic head and neck cancer program. Subjects and Methods This study included 426 patients treated with OCSCC resection between 2005 and 2014 at University of Iowa Hospitals and Clinics. Patients underwent excision of OCSCC with intraoperative tumor bed frozen margin sampling and main specimen permanent margin assessment. Multivariate analysis of the data set to predict LR and OS was performed. Results Independent predictors of LR included nodal involvement, histologic grade, and main specimen permanent margin status. Specifically, the presence of a positive margin (odds ratio, 6.21; 95% CI, 3.3-11.9) or <1-mm/carcinoma in situ margin (odds ratio, 2.41; 95% CI, 1.19-4.87) on the main specimen was an independent predictor of LR, whereas intraoperative tumor bed margins were not predictive of LR on multivariate analysis. Similarly, independent predictors of OS on multivariate analysis included nodal involvement, extracapsular extension, and a positive main specimen margin. Tumor bed margins did not independently predict OS. Conclusion The main specimen margin is a strong independent predictor of LR and OS on multivariate analysis. Intraoperative tumor bed frozen margins do not independently predict prognosis. We conclude that emphasis should be placed on evaluating the main specimen margins when estimating prognosis after OCSCC resection.

  12. Sensory imbalance as mechanism of orientation disruption in the leafminer, Phyllocnistis citrella: Elucidation by multivariate geometric designs and response surface models

    USDA-ARS?s Scientific Manuscript database

    Experimental designs developed to address mixtures are ideally suited for many areas of experimental biology including pheromone blend studies because they address the confounding of proportionality and concentration intrinsic to factorial and one-factor-at-a-time designs. Geometric multivariate des...

  13. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.

    PubMed

    Gorzsás, András; Sundberg, Björn

    2014-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a fast, sensitive, inexpensive, and nondestructive technique for chemical profiling of plant materials. In this chapter we discuss the instrumental setup, the basic principles of analysis, and the possibilities for and limitations of obtaining qualitative and semiquantitative information by FT-IR spectroscopy. We provide detailed protocols for four fully customizable techniques: (1) Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS): a sensitive and high-throughput technique for powders; (2) attenuated total reflectance (ATR) spectroscopy: a technique that requires no sample preparation and can be used for solid samples as well as for cell cultures; (3) microspectroscopy using a single element (SE) detector: a technique used for analyzing sections at low spatial resolution; and (4) microspectroscopy using a focal plane array (FPA) detector: a technique for rapid chemical profiling of plant sections at cellular resolution. Sample preparation, measurement, and data analysis steps are listed for each of the techniques to help the user collect the best quality spectra and prepare them for subsequent multivariate analysis.

  14. Optimization of Interior Permanent Magnet Motor by Quality Engineering and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Okada, Yukihiro; Kawase, Yoshihiro

    This paper has described the method of optimization based on the finite element method. The quality engineering and the multivariable analysis are used as the optimization technique. This optimizing method consists of two steps. At Step.1, the influence of parameters for output is obtained quantitatively, at Step.2, the number of calculation by the FEM can be cut down. That is, the optimal combination of the design parameters, which satisfies the required characteristic, can be searched for efficiently. In addition, this method is applied to a design of IPM motor to reduce the torque ripple. The final shape can maintain average torque and cut down the torque ripple 65%. Furthermore, the amount of permanent magnets can be reduced.

  15. Metabolite profiling of Clinacanthus nutans leaves extracts obtained from different drying methods by 1H NMR-based metabolomics

    NASA Astrophysics Data System (ADS)

    Hashim, Noor Haslinda Noor; Latip, Jalifah; Khatib, Alfi

    2016-11-01

    The metabolites of Clinacanthus nutans leaves extracts and their dependence on drying process were systematically characterized using 1H nuclear magnetic resonance spectroscopy (NMR) multivariate data analysis. Principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were able to distinguish the leaves extracts obtained from different drying methods. The identified metabolites were carbohydrates, amino acid, flavonoids and sulfur glucoside compounds. The major metabolites responsible for the separation in PLS-DA loading plots were lupeol, cycloclinacosides, betulin, cerebrosides and choline. The results showed that the combination of 1H NMR spectroscopy and multivariate data analyses could act as an efficient technique to understand the C. nutans composition and its variation.

  16. Optimizing Functional Network Representation of Multivariate Time Series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-09-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

  17. Optimizing Functional Network Representation of Multivariate Time Series

    PubMed Central

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-01-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051

  18. Multivariate missing data in hydrology - Review and applications

    NASA Astrophysics Data System (ADS)

    Ben Aissia, Mohamed-Aymen; Chebana, Fateh; Ouarda, Taha B. M. J.

    2017-12-01

    Water resources planning and management require complete data sets of a number of hydrological variables, such as flood peaks and volumes. However, hydrologists are often faced with the problem of missing data (MD) in hydrological databases. Several methods are used to deal with the imputation of MD. During the last decade, multivariate approaches have gained popularity in the field of hydrology, especially in hydrological frequency analysis (HFA). However, treating the MD remains neglected in the multivariate HFA literature whereas the focus has been mainly on the modeling component. For a complete analysis and in order to optimize the use of data, MD should also be treated in the multivariate setting prior to modeling and inference. Imputation of MD in the multivariate hydrological framework can have direct implications on the quality of the estimation. Indeed, the dependence between the series represents important additional information that can be included in the imputation process. The objective of the present paper is to highlight the importance of treating MD in multivariate hydrological frequency analysis by reviewing and applying multivariate imputation methods and by comparing univariate and multivariate imputation methods. An application is carried out for multiple flood attributes on three sites in order to evaluate the performance of the different methods based on the leave-one-out procedure. The results indicate that, the performance of imputation methods can be improved by adopting the multivariate setting, compared to mean substitution and interpolation methods, especially when using the copula-based approach.

  19. Gaussian closure technique applied to the hysteretic Bouc model with non-zero mean white noise excitation

    NASA Astrophysics Data System (ADS)

    Waubke, Holger; Kasess, Christian H.

    2016-11-01

    Devices that emit structure-borne sound are commonly decoupled by elastic components to shield the environment from acoustical noise and vibrations. The elastic elements often have a hysteretic behavior that is typically neglected. In order to take hysteretic behavior into account, Bouc developed a differential equation for such materials, especially joints made of rubber or equipped with dampers. In this work, the Bouc model is solved by means of the Gaussian closure technique based on the Kolmogorov equation. Kolmogorov developed a method to derive probability density functions for arbitrary explicit first-order vector differential equations under white noise excitation using a partial differential equation of a multivariate conditional probability distribution. Up to now no analytical solution of the Kolmogorov equation in conjunction with the Bouc model exists. Therefore a wide range of approximate solutions, especially the statistical linearization, were developed. Using the Gaussian closure technique that is an approximation to the Kolmogorov equation assuming a multivariate Gaussian distribution an analytic solution is derived in this paper for the Bouc model. For the stationary case the two methods yield equivalent results, however, in contrast to statistical linearization the presented solution allows to calculate the transient behavior explicitly. Further, stationary case leads to an implicit set of equations that can be solved iteratively with a small number of iterations and without instabilities for specific parameter sets.

  20. Simultaneous Determination of Metamizole, Thiamin and Pyridoxin Using UV-Spectroscopy in Combination with Multivariate Calibration

    PubMed Central

    Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul

    2015-01-01

    Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934

Top