Science.gov

Sample records for municipal residue biomass

  1. Agricultural Residues and Biomass Energy Crops

    SciTech Connect

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  2. Trends in the management of residual municipal solid waste.

    PubMed

    Rada, E C; Istrate, I A; Ragazzi, M

    2009-06-01

    In agreement with European Union directives, the integrated management of municipal solid waste must be developed ensuring a balanced relationship between the streams of selective collection and the one regarding the residual waste. A theoretical scenario is made where the residual municipal solid waste is composed only of non-recyclable fractions. An important aspect concerns the role of the organic fraction as selective collection can significantly decrease its content in the residual waste. This paper focuses on the planning, design and management consequences of this unsteady scenario. The treatments that are considered are: combustion, gasification, pyrolysis, integrated thermal plants, aerobic mechanical-biological treatments, anaerobic mechanical-biological treatments and other types of treatment. The considerations are based on the experience of the authors not only in terms of development of research but also in terms of transfer of the research results to the real scale, and knowledge of the state-of-the-art of the sector.

  3. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  4. Quantification and characterization of cotton crop biomass residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton crop residual biomass remaining in the field after mechanical seed cotton harvest is not typically harvested and utilized off-site thereby generating additional revenue for producers. Recently, interest has increased in utilizing biomass materials as feedstock for the production of fuel and ...

  5. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste.

    PubMed

    Liu, Xiao; Wang, Wei; Gao, Xingbao; Zhou, Yingjun; Shen, Renjie

    2012-02-01

    The effects of thermal pretreatment on the physical and chemical properties of three typical municipal biomass wastes (MBWs), kitchen waste (KW), vegetable/fruit residue (VFR), and waste activated sludge (WAS) were investigated. The results show that thermal pretreatment at 175 °C/60 min significantly decreases viscosity, improves the MBW dewatering performance, as well as increases soluble chemical oxygen demand, soluble sugar, soluble protein, and especially organic compounds with molecular weights >10 kDa. For KW, VFR and WAS, 59.7%, 58.5% and 25.2% of the organic compounds can be separated in the liquid phase after thermal treatment. WAS achieves a 34.8% methane potential increase and a doubled methane production rate after thermal pretreatment. In contrast, KW and VFR show 7.9% and 11.7% methane decrease because of melanoidin production.

  6. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site ₋ Biomass Power Analysis

    SciTech Connect

    Hunsberger, R.; Mosey, G.

    2015-01-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  7. COMPACTING BIOMASS AND MUNICIPAL SOLID WASTES TO FORM AND UPGRADED FUEL

    SciTech Connect

    Henry Liu; Yadong Li

    2000-11-01

    Biomass waste materials exist in large quantity in every city and in numerous industrial plants such as wood processing plants and waste paper collection centers. Through minimum processing, such waste materials can be turned into a solid fuel for combustion at existing coal-fired power plants. Use of such biomass fuel reduces the amount of coal used, and hence reduces the greenhouse effect and global warming, while at the same time it reduces the use of land for landfill and the associated problems. The carbon-dioxide resulting from burning biomass fuel is recycled through plant growth and hence does not contribute to global warming. Biomass fuel also contains little sulfur and hence does not contribute to acid rain problems. Notwithstanding the environmental desirability of using biomass waste materials, not much of them are used currently due to the need to densify the waste materials and the high cost of conventional methods of densification such as pelletizing and briquetting. The purpose of this project was to test a unique new method of biomass densification developed from recent research in coal log pipeline (CLP). The new method can produce large agglomerates of biomass materials called ''biomass logs'' which are more than 100 times larger and 30% denser than conventional ''pellets'' or ''briquettes''. The Phase I project was to perform extensive laboratory tests and an economic analysis to determine the technical and economic feasibility of the biomass log fuel (BLF). A variety of biomass waste materials, including wood processing residues such as sawdust, mulch and chips of various types of wood, combustibles that are found in municipal solid waste stream such as paper, plastics and textiles, energy crops including willows and switch grass, and yard waste including tree trimmings, fallen leaves, and lawn grass, were tested by using this new compaction technology developed at Capsule Pipeline Research Center (CPRC), University of Missouri-Columbia (MU

  8. Combined Municipal Solid Waste and biomass system optimization for district energy applications.

    PubMed

    Rentizelas, Athanasios A; Tolis, Athanasios I; Tatsiopoulos, Ilias P

    2014-01-01

    Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

  9. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect

    Rentizelas, Athanasios A. Tolis, Athanasios I. Tatsiopoulos, Ilias P.

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers

  10. Biomass energy from crop and forest residues.

    PubMed

    Pimentel, D; Moran, M A; Fast, S; Weber, G; Bukantis, R; Balliett, L; Boveng, P; Cleveland, C; Hindman, S; Young, M

    1981-06-05

    Residues remaining after the harvest of crop and forestry products are being proposed as a substantial energy source for the nation. An estimated 22 percent of the residues might be utilized, providing a renewable source of high-grade energy with the potential of supplying 1 percent of the current U.S. gasoline consumption as ethanol or 4 percent of the total electrical energy used. These net energy benefits are limited by high energy costs to collect, transport, and process the residues. Environmental threats include soil erosion, water runoff, and nutrient loss.

  11. Economic feasibility of drying municipal solid-waste combustion residue

    SciTech Connect

    Blaisdell, M.; Lee, D.; Baetz, B. . Dept. of Civil Engineering and Engineering Mechanics)

    1990-08-01

    Incineration of municipal solid waste (MSW) is increasing in many parts of the world. Waste incineration creates an ash residue that must be disposed of typically in a solid-waste landfill. The ash is often water-quenched after incineration and may contain up to 50% moisture by weight. This moisture increases the weight of the ash sent to the landfill and the leachate load placed on the landfill's leachate collection system. In this paper, current literature on MSW ash is reviewed, current ash handling practices are outlined, and the economic feasibility of ash-moisture reduction schemes are investigated. Electric heating of the quenched bottom ash is shown to be an economically feasible scheme for moisture reduction. For current cost levels, the net yearly benefit may be as high as $1,200,000 for a typical 500 tons per day (TPD) plant.

  12. Metallic elements fractionation in municipal solid waste incineration residues

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  13. Potential of biomass residue availability; The case of Thailand

    SciTech Connect

    Bhattacharya, S.C.; Shrestha, R.M.; Ngamkajornvivat, S. )

    1989-01-01

    An acute shortage of fuel wood and charcoal prevails in many developing countries. A logical approach to the problem places emphasis on the development of alternative energy sources, including use of biomass residues. An assessment of the potential of biomass residues for energy and other uses calls for an estimation of their annual production. Also, because the residues are normally bulky they should be utilized near their place of origin whenever possible to avoid high transportation costs. Thus knowledge of the total national generation of residues per year does not provide enough information for planning residue utilization. This article illustrates a method of residue estimation that takes the case of Thailand as an example. It presents the annual generation of nine agricultural resides (paddy husk, paddy straw, bagasse, cotton stalk, corn cob, groundnut shell, cassava stalk and coconut husk and shell) and one forestry residue (sawdust) in different agroeconomic zones and regions of Thailand. The methodology used for the investigation of crop-to-residue ratios is outlined. The annual generation figures for the different residues along with observations about their traditional uses are presented.

  14. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  15. Presence of metals in biomass residues after pyrolysis

    NASA Astrophysics Data System (ADS)

    Guehenneux, G.; Varin, S.; Baussand, P.

    2003-05-01

    In contribution to research into renewable energy, pyrolysis tests are run to develop the process of pyrolysis of biomass allowing the production of Hydrogen. Various families of combustibles (oleaginous, lignocellulosics, and seeds) have been tested at different temperatures. The pyrolysis of biomass is hampered by technical problems such as the blockage of the furnace by tars. The residues are collected and treated in a solution of chloric and nitric acid, so that the mineral part is extracted and then analysed by ICP. The first results indicate the presence ofmetals: Ni, Mg, Zn, Mn, Fe... Various proposais for the use of these residues so as to avoid pollution due to their accumulation have been put forward. These ashes can be recombined with fuels, acting as catalysts to reduce the formation of tar and increase the production of hydrogen.

  16. Potential for electricity generation from biomass residues in Cuba

    SciTech Connect

    Lora, E.S.

    1995-11-01

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase in the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.

  17. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent.

    PubMed

    Wang, Bei; Lan, Christopher Q

    2011-05-01

    Biomass productivity of 350 mg DCW L(-1)day(-1) with a final biomass concentration of 3.15 g DCW L(-1) was obtained with Neochloris oleoabundans grown in artificial wastewater at sodium nitrate and phosphate concentrations of 140 and 47 mg L(-1), respectively, with undetectable levels of residual N and P in effluents. In secondary municipal wastewater effluents enriched with 70 mg N L(-1), the alga achieved a final biomass concentration of 2.1 g DCW L(-1) and a biomass productivity of 233.3 mg DCW L(-1)day(-1). While N removal was very sensitive to N:P ratio, P removal was independent of N:P ratio in the tested range. These results indicate that N. oleoabundans could potentially be employed for combined biofuel production and wastewater treatment.

  18. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater.

    PubMed

    Choi, Hee Jeong; Lee, Seung Mok

    2015-04-01

    The aim of this study is to investigate the effect of the N/P ratio on biomass growth with the simultaneous removal of nutrients from municipal wastewaters. An optical panel photobioreactor is employed for this investigation because it provides a uniform light distribution within the reactor, which enhances the efficiency of the reactor in the cultivation of microalgae. The N/P ratio is varied over a wide range, i.e., from 5 to 30, for the assessment of its effect on biomass productivity. There is not a strong correlation between biomass productivity and TN removal, and these factors do not seem to be proportional in the wastewater using the microalgae we employed. In contrast, the TP removal depends greatly on both the N/P ratio and biomass productivity. The optimum value of the N/P ratio for biomass productivity in and nutrient removal from municipal wastewater treatment using microalgae varies from 5 to 30, depending on the ecological conditions in the wastewater.

  19. Low-Temperature Catalytic Gasification of Wet Biomass Residues

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, R. Scott

    2004-10-27

    Low-temperature hydrothermal gasification can be applied to biorefinery residues as an efficient energy recovery process. Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to medium heating value gas at relatively low temperature (350 degrees Celsius). In the pressurized-water environment (21 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas is produced with high-levels of methane, as dictated by thermodynamic equilibrium. Processing systems and results will be described for both bench-scale and scaled-up reactor systems. The bench-scale systems include both short-term 1-liter batch reactor tests and longer-term continuous flow reactor tests using a 1-liter fixed bed of catalyst in a tubular reactor. The scaled-up reactor is a 4.4 liter version of the continuous flow system, which also includes a high-pressure heat exchanger to demonstrate process efficiency.

  20. Co-combustion of shredder residues and municipal solid waste in a Swedish municipal solid waste incinerator.

    PubMed

    Redin, L A; Hjelt, M; Marklund, S

    2001-12-01

    Incinerating automotive shredder residue (ASR) in order to increase the recovery from end of life vehicles (ELVs) is an attractive option when recycling this material. In this study, incineration combined with energy recovery, was investigated. The incineration experiments, where 20% shredder residue (SR) was burnt with conventional municipal solid waste (MSW), were conducted in a full-scale MSW horizontal grate incinerator. Measurements were made before, during and after the incineration. The results showed some minor increases in the emission levels of raw gases sampled after an electrostatic filter, but almost no significant differences when sampled after a wet scrubber. An increased level of 'non-toxic' metals was detected within the bottom ash. It was concluded that refined SR, in small quantities, is suitable to add to MSW.

  1. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    SciTech Connect

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  2. Improving material and energy recovery from the sewage sludge and biomass residues

    SciTech Connect

    Kliopova, Irina Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  3. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    PubMed Central

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  4. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation.

    PubMed

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59-62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered.

  5. Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin.

    PubMed

    Huang, Yanqin; Wei, Zhiguo; Yin, Xiuli; Wu, Chuangzhi

    2012-01-01

    Pyrolytic characteristics of acid hydrolysis residue (AHR) of corncob and pinewood (CAHR, WAHR) were investigated using a thermo-gravimetric analyzer (TGA) and a self-designed pyrolysis apparatus. Gasification reactivity of CAHR char was then examined using TGA and X-ray diffractometer. Result of TGA showed that thermal degradation curves of AHR descended smoothly along with temperature increasing from 150 °C to 850 °C, while a "sharp mass loss stage" for original biomass feedstock (OBF) was observed. Char yield from AHR (42.64-30.35 wt.%) was found to be much greater than that from OBF (26.4-19.15 wt.%). In addition, gasification reactivity of CAHR char was lower than that of corncob char, and there was big difference in micro-crystallite structure. It was also found that CAHR char reactivity decreased with pyrolysis temperature, but increased with pyrolysis heating rate and gasification temperature at 850-950 °C. Furthermore, CAHR char reactivity performed better under steam atmosphere than under CO2 atmosphere.

  6. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content.

    PubMed

    Prabpai, S; Charerntanyarak, L; Siri, B; Moore, M R; Noller, Barry N

    2009-08-01

    The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

  7. Effects of residues from municipal solid waste landfill on corn yield and heavy metal content

    SciTech Connect

    Prabpai, S. Charerntanyarak, L. Siri, B. Moore, M.R. Noller, Barry N.

    2009-08-15

    The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

  8. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  9. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    PubMed

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables.

  10. Physical and Chemical Correlates of Microbial Activity and Biomass in Composting Municipal Sewage Sludge

    PubMed Central

    McKinley, Vicky L.; Vestal, J. Robie

    1985-01-01

    Various physical and chemical parameters were monitored to evaluate their influence on the microbial communities present in composting municipal sewage sludge. Temperature, moisture content, depth, pH, protein content, total nitrogen, total carbon, lipid phosphate biomass, and the rates of microbial incorporation of substrates into lipids were measured at several times throughout the 17- to 19-day composting runs. Temperature was found to have the most consistent and dramatic effect on microbial activity and biomass. When temperatures exceeded 55 to 60°C, microbial activity fell dramatically, usually by more than 1 order of magnitude. Microbial activity was generally greatest in samples taken from the 35 to 50°C areas of the composting piles. Changes in the composition of the compost over time included increased pH, increased protein content, and decreased total organic content. The changes in these parameters appeared to reflect the microbial activity and biomass present. The results of this study indicate that the rate of composting may best be optimized by controlling the composting temperatures, provided that the other parameters fall within reasonable limits in the starting material. PMID:16346940

  11. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M

    2017-02-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO4. Final leaching values for some elements and membranes, but not the majority, were below than those of certified coal fly ash (e.g. Al or Cr), a material which is commonly used in construction materials; at the same time, some of these values were reduced to below the Danish law thresholds on the use of contaminated soil in constructions. These results show the potential of ED as a technology to upgrade municipal solid waste incineration residues.

  12. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    SciTech Connect

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residues increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.

  13. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff.

    PubMed

    Saejung, Chewapat; Thammaratana, Thani

    2016-12-01

    Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.

  14. Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge.

    PubMed

    Hei, Liang; Lee, Charles C C; Wang, Hui; Lin, Xiao-Yan; Chen, Xiao-Hong; Wu, Qi-Tang

    2016-10-01

    The study was carried out to investigate the use of a high biomass plant, Pennisetum hydridum, to treat municipal sewage sludge (MSS). An experiment composed of plots with four treatments, soil, fresh sludge, soil-sludge mixture and phyto-treated sludge, was conducted. It showed that the plant could not survive directly in fresh MSS when cultivated from stem cuttings. The experiment transplanting the incubated cutting with nurse medium of P. hydridum in soil and fresh MSS, showed that the plants grew normally in fresh MSS. The pilot experiment of P. hydridum and Alocasia macrorrhiza showed that the total yield and nutrient amount of P. hydridum were 9.2 times and 3.6 times more than that of A. macrorrhiza. After plant treatment, MSS was dried, stabilized and suitable to be landfilled or incinerated, with a calorific value of about 5.6MJ/kg (compared to the initial value of 1.9MJ/kg fresh sludge).

  15. Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii.

    PubMed

    Watanabe, Hideo; Li, Dalin; Nakagawa, Yoshinao; Tomishige, Keiichi; Watanabe, Makoto M

    2015-09-01

    Catalytic gasification of the oil-extracted residue biomass of Botryococcus braunii was demonstrated in a laboratory-scale continuous feeding dual bed reactor. Steam gasification at 1023 K over Ni-Fe/Mg/Al catalyst can completely reform tar derived from pyrolysis of the residue biomass into C1 gases and hydrogen, and has achieved 91%-C conversion to gaseous product (CO+CO2+CH4). Composition of product gas has higher contents of CO and H2 with their ratio (H2/CO) of around 2.4 which is slightly H2-rich syngas. Maximum hydrogen yield of 74.7 mmol g-biomass(-1) obtained in this work is much higher than that from gasification of other algal biomass reported in literature. The residue biomass of B. braunii can be a superior renewable source of syngas or hydrogen.

  16. Environmental risks of utilizing crop and forest residues for biomass energy

    SciTech Connect

    Pimentel, D.; Fast, S.; Gallahan, D.; Moran, M.A.

    1983-08-01

    Crop and forest residues are a valuable biomass resource for natural, agricultural, and forest ecosystems. These residues are essential to protect the soil from erosion and rapid water runoff and to maintain soil organic matter and nutrients. Thus, only an estimated 20% of the total residues remaining after harvest can be utilized for conversion because of environmental limitations and the impracticality of harvesting residues on some lands. Although the potential contribution of biomass energy to U.S. energy needs is relatively small, it is renewable energy (assuming no environmental degradation) and therefore has some long term value to the nation's energy program.

  17. Energy recovery from automotive shredder residue through co-combustion with municipal solid waste

    SciTech Connect

    Mark, F.E.; Fisher, M.M.; Smith, K.A.

    1998-07-01

    This project was commissioned by the Association of Plastics Manufacturers in Europe (APME) and the American Plastics Council (APC) to evaluate the operational and environmental impacts associated with the co-combustion of automotive shredder residue (ASR) with municipal solid waste (MSW) in a modern, commercial waste-to-energy plant. This paper describes the shredding and combustion facilities utilized for the program, discusses study protocols and test results, and presents analytical results of ASR characterizations, raw and clean boiler gas sampling and solid residues sampling. The study concludes that cocombustion of ASR and MSW improved burnout, did not adversely impact boiler performance, stack emissions or disposal or the combustion residues (ash) and is, therefore, an environmentally sound method of recovering the energy value in ASR.

  18. Environmentally-benign conversion of biomass residues to electricity

    NASA Astrophysics Data System (ADS)

    Davies, Andrew

    As petroleum resources are finite, it is imperative to use them wisely in energy conversion applications and, at the same time, develop alternative energy sources. Biomass is one of the renewable energy sources that can be used to partially replace fossil fuels. Biomass-based fuels can be produced domestically and can reduce dependency on fuel imports. Due to their abundant supply, and given that to an appreciable extent they can be considered carbon-neutral, their use for power generation is of technological interest. However, whereas biomasses can be directly burned in furnaces, such a conventional direct combustion technique is ill-controlled and typically produces considerable amounts of health-hazardous airborne compounds [1,2]. Thus, an alternative technology for biomass utilization is described herein to address increasing energy needs in an environmentally-benign manner. More specifically, a multi-step process/device is presented to accept granulated or pelletized biomass, and generate an easily-identifiable form of energy as a final product. To achieve low emissions of products of incomplete combustion, the biomass is gasified pyrolytically, mixed with air, ignited and, finally, burned in nominally premixed low-emission flames. Combustion is thus indirect, since the biomass is not directly burned, instead its gaseous pyrolyzates are burned upon mixing with air. Thereby, combustion is well-controlled and can be complete. A demonstration device has been constructed to convert the internal energy of plastics into "clean" thermal energy and, eventually to electricity.

  19. Cultivation of the Marine Macroalgae Chaetomorpha linum in Municipal Wastewater for Nutrient Recovery and Biomass Production.

    PubMed

    Ge, Shijian; Champagne, Pascale

    2017-03-21

    Compared to microalgae, macroalgae are larger in size, thereby imposing lower separation and drying costs. This study demonstrates the feasibility of cultivating macroalgae Chaetomorpha linum in different types of municipal wastewaters, their ability to remove nutrient and their biomass composition for downstream biofuel production. Screening experiments indicated that C. linum grew well on primary (PW) and secondary wastewaters (SW), as well as centrate wastewater (CW) diluted to less than 20%. In a subsequent experiment, a step feeding approach was found to significantly increase biomass productivity to 10.7 ± 0.2 g AFDW·m(-2)·d(-1) (p < 0.001), a 26.5% improvement in comparison to the control with single feeding, when grown on 10-CW; meanwhile, nitrogen and phosphorus removal efficiencies rose to 86.8 ± 1.1% (p < 0.001) and 92.6 ± 0.2% (p < 0.001), respectively. The CO2-supplemented SW cultures (10.1 ± 0.4 g AFDW·m(-2)·d(-1)) were 1.20 times more productive than the corresponding controls without CO2 supplementation (p < 0.001); however, similar improvements were not observed in PW (p = 0.07) and 10-CW cultures (p = 0.07). Moreover, wastewater type and nutrient concentration influenced biomass composition (protein, carbohydrate and lipid). These findings indicate that the application of the macroalgae C. linum could represent an effective wastewater treatment alternative that could also provide a feedstock for downstream processing to biofuels.

  20. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  1. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates.

    PubMed

    Quina, Margarida J; Bordado, João M; Quinta-Ferreira, Rosa M

    2014-02-01

    This work focuses on the assessment of technological properties and on the leaching behavior of lightweight aggregates (LWA) produced by incorporating different quantities of air pollution control (APC) residues from municipal solid waste (MSW) incineration. Currently this hazardous waste has been mostly landfilled after stabilization/solidification. The LWA were produced by pelletizing natural clay, APC residues as-received from incineration plant, or after a washing treatment, a small amount of oil and water. The pellets were fired in a laboratory chamber furnace over calcium carbonate. The main technological properties of the LWA were evaluated, mainly concerning morphology, bulk and particle densities, compressive strength, bloating index, water adsorption and porosity. Given that APC residues do not own expansive (bloating) properties, the incorporation into LWA is only possible in moderate quantities, such as 3% as received or 5% after pre-washing treatment. The leaching behavior of heavy metals from sintered LWA using water or acid solutions was investigated, and despite the low acid neutralization capacity of the synthetic aggregates, the released quantities were low over a wide pH range. In conclusion, after a washing pre-treatment and if the percentage of incorporation is low, these residues may be incorporated into LWA. However, the recycling of APC residues from MSW incineration into LWA does not revealed any technical advantage.

  2. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  3. Gasification of agricultural residues (biomass): Influence of inorganic constituents

    SciTech Connect

    DeGroot, W.F.; Kannan, M.P.; Richards, G.N. ); Theander, O. )

    1990-01-01

    Four different biomass samples are included in this study, viz., sphagnum peat, wheat straw, sugar beet pulp, and potato pulp. They were chosen to represent a wide range of plant origin and inorganic content. This paper represents a preliminary investigation of an approach based on pyrolysis of biomass to produce volatile products and chars, followed by gasification of the chars. The particular interest lies in the investigation of the influence of the indigenous metal ions on the rate of gasification. Carbon dioxide has been used for the gasification, and the biomass was analyzed for nine metals, uronic acids (which are implicated in the binding of inorganic counterions), protein, and Klason lignin. The highest individual metal ion content was 13,964 ppm of potassium in potato pulp, and the gasification rates, under constant conditions, covered up to a 20-fold range, with char from potato pulp being the most readily gasified and char from peat the most resistant. The correlation of gasification rates with content of the major metal ions (alkali metals and alkaline earths) was poor. However, a high level of correlation was observed when wheat straw was omitted. It is speculated that the latter biomass may be anomalous with respect to the other three because of its high silica content.

  4. Improving material and energy recovery from the sewage sludge and biomass residues.

    PubMed

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented.

  5. Effects of residual biomass burning on the CO2 flux from a paddy field

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Kunishio, A.; Akaike, Y.; Kawamoto, Y.; Ono, K.; Iwata, T.

    2012-12-01

    Paddy field is one of the most important eco-system in monsoon Asia, and takes a great important role in CO2 uptake. Carbon budget in agricultural field is influenced by some artificial management. After the harvest, residual biomass is burned on fields, brought out from fields, or remained and harrowed into the fields. If open burning was conducted in a field, one part of biomass carbon is emitted into atmosphere as CO2, and the other part is harrowed into soils. In this study, quantity of lost carbon according to burning of residual biomass were investigated at a single rice cropping field in western Japan, in which long-term continuous CO2 flux (NEE) measurement by the eddy-covariance technique was conducted. In addition, an experimental paddy field was divided into two areas to investigate what impact is brought on the annual CO2 flux by the difference of disposal management of residual biomass after the harvest. Residual biomass was burned and plowed into soil at the one area on Nov. 29th, 2011, and residue was not burned and directly plowed into soil at the other area as usual. We illustrate some results for the control term before the burning experiment, and for the comparison term after the experiment.

  6. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  7. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    PubMed

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  8. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater.

    PubMed

    Laureni, Michele; Weissbrodt, David G; Szivák, Ilona; Robin, Orlane; Nielsen, Jeppe Lund; Morgenroth, Eberhard; Joss, Adriano

    2015-09-01

    Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side

  9. Chemical stabilization of air pollution control residues from municipal solid waste incineration.

    PubMed

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2010-07-15

    The by-products of the municipal solid waste incineration (MSWI) generally contain hazardous pollutants, with particular relevance to air pollution control (APC) residues. This waste may be harmful to health and detrimental to the environmental condition, mainly due to soluble salts, toxic heavy metals and trace organic compounds. Solidification/stabilization (S/S) with binders is a common industrial technology for treating such residues, involving however, a significant increase in the final mass that is landfilled. In our work, the chemical stabilization of APC residues by using NaHS x xH(2)O, H(3)PO(4), Na(2)CO(3), C(5)H(10)NNaS(2) x 3 H(2)O, Na(2)O x SiO(2) was investigated, and it was possible to conclude that all these additives lead to an improvement of the stabilization process of the most problematic heavy metals. Indeed, compliance leaching tests showed that after the stabilization treatment the waste becomes non-hazardous with respect to heavy metals. Chromium revealed to be a problematic metal, mainly when H(3)PO(4), Na(2)CO(3) and Na(2)O x SiO(2) were used for stabilization. Nevertheless, soluble phosphates are the most efficient additives for stabilizing the overall metals. The effect of the additives tested on the elements associated with soluble salts (K, Na, Cl(-)) is almost negligible, and therefore, the soluble fraction is hardly reduced without further treatment, such as pre-washing.

  10. Characterization of air pollution control residues produced in a municipal solid waste incinerator in Portugal.

    PubMed

    Quina, Margarida J; Santos, Regina C; Bordado, João C; Quinta-Ferreira, Rosa M

    2008-04-01

    This study is mainly related with the physical and chemical characterization of a solid waste, produced in a municipal solid waste (MSW) incineration process, which is usually referred as air pollution control (APC) residue. The moisture content, loss on ignition (LOI), particle size distribution, density, porosity, specific surface area and morphology were the physical properties addressed here. At the chemical level, total elemental content (TC), total availability (TA) and the leaching behaviour with compliance tests were determined, as well as the acid neutralization capacity (ANC). The main mineralogical crystalline phases were identified, and the thermal behaviour of the APC residues is also shown. The experimental work involves several techniques such as laser diffraction spectrometry, mercury porosimetry, helium pycnometry, gas adsorption, flame atomic absorption spectrometry (FAAS), ion chromatography, scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and simultaneous thermal analysis (STA). The results point out that the APC residues do not comply with regulations in force at the developed countries, and therefore the waste should be considered hazardous. Among the considered heavy metals, lead, zinc and chromium were identified as the most problematic ones, and their total elemental quantities are similar for several samples collected in an industrial plant at different times. Moreover, the high amount of soluble salts (NaCl, KCl, calcium compounds) may constitute a major problem and should be taken into account for all management strategies. The solubility in water is very high (more than 24% for a solid/liquid ratio of 10) and thus the possible utilizations of this residue are very limited, creating difficulties also in the ordinary treatments, such as in solidification/stabilization with binders.

  11. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  12. Effects of residual biomass burning on the methane emission from a paddy field

    NASA Astrophysics Data System (ADS)

    Kunishio, A.; Akaike, Y.; Kawamoto, Y.; Murakami, H.; Ono, K.; Iwata, T.

    2012-12-01

    Methane (CH4) is generated by organic matter decomposition in anaerobic soil. It is said that about 20% of CH4 sources is paddy fields. At some paddy fields, residual biomass left after the harvest is burned and plowed into soil. And at the other fields, unburned residue is directly plowed. It is an unsolved problem what impact is brought on CH4 budget during following cultivated period by the difference in the plowed biomass amount in soil after the harvest. In this study, an experimental paddy field was divided into two areas. At one area biomass residue is burned and at the other area residue is directly plowed. On that basis, long-term continuous measurements of micrometeorological CH4 flux were conducted in both areas. Experimental site is located reclaimed land in the southern part of Okayama Prefecture, Japan. Single rice cropping cultivation has continued in a similar way every year. Intermittent irrigation water managements, or 3-days flooded and 4-days drained conditions, were carried out during almost all the period of rice cultivated term. CH4 flux was calculated by aerodynamic gradient technique. The open biomass burning experiment was conducted at one area in November 29, 2011. We illustrate some results for the control term before the burning experiment, and for the comparison term after the experiment.

  13. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  14. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.

    PubMed

    Maurya, Rahulkumar; Paliwal, Chetan; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Tonmoy; Satpati, Gour Gopal; Pal, Ruma; Ghosh, Arup; Mishra, Sandhya

    2016-05-01

    The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris.

  15. Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology.

    PubMed

    Guarienti, Michela; Gianoncelli, Alessandra; Bontempi, Elza; Moscoso Cardozo, Sdenka; Borgese, Laura; Zizioli, Daniela; Mitola, Stefania; Depero, Laura E; Presta, Marco

    2014-08-30

    Municipal solid waste incinerator (MSWI) residues can generate negative environmental impacts when improperly handled. The COlloidal Silica Medium to Obtain Safe inert (COSMOS) technology represents a new method to stabilize MSWI residues and to produce inert safe material. Here we report the results about aquatic biotoxicity of lixiviated MSWI fly ash and the corresponding inertized COSMOS material using a zebrafish (Danio rerio) embryo toxicity test. Quantitative assessment of waste biotoxicity included evaluation of mortality rate and of different morphological and teratogenous endpoints in zebrafish embryos exposed to tested materials from 3 to 72h post-fertilization. The results demonstrate that lixiviated MSWI fly ash exerts a dose-dependent lethal effect paralleled by dramatic morphological/teratogenous alterations and apoptotic events in the whole embryo body. Similar effects were observed following MSWI fly ash stabilization in classical concrete matrices, demonstrating that the obtained materials are not biologically safe. On the contrary, no significant mortality and developmental defects were observed in zebrafish embryos exposed to COSMOS inert solution. Our results provide the first experimental in vivo evidence that, in contrast with concrete stabilization procedure, COSMOS technology provides a biologically safe inert.

  16. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  17. Collection, transportation, and storage of biomass residues in the Pacific Northwest

    SciTech Connect

    Inaba, L.K.; Eakin, D.E.

    1981-11-01

    This study was conducted to identify potential methods for the collection, transportation and storage of agricultural and forest residues in the Pacific Northwest. Information was gathered from available literature and through contacts with researchers, equipment manufacturers, and other individuals involved in forest and agricultural activities. This information was evaluated, combined, and adapted for situations existing in the Pacific Northwest. A number of methods for collection, transportation, and storage of biomass residues using currently available technology are described. Many of these methods can be applied to residue fuel materials along with their current uses in the forest and agricultural industries.

  18. Do biomass harvesting guidelines influence herpetofauna following harvests of logging residues for renewable energy?.

    PubMed

    Fritts, Sarah; Moorman, Christopher; Grodsky, Steven; Hazel, Dennis; Homyack, Jessica; Farrell, Chris; Castleberry, Steven

    2016-04-01

    Forests are a major supplier of renewable energy; however, gleaning logging residues for use as woody biomass feedstock could negatively alter habitat for species dependent on downed wood. Biomass Harvesting Guidelines (BHGs) recommend retaining a portion of woody biomass on the forest floor following harvest. Despite BHGs being developed to help ensure ecological sustainability, their contribution to biodiversity has not been evaluated experimentally at operational scales. We compared herpetofauanal evenness, diversity, and richness and abundance of Anaxyrus terrestris and Gastrophryne carolinensis among six treatments that varied in volume and spatial arrangement of woody biomass retained after clearcutting loblolly pine (Pinus taeda) plantations in North Carolina, USA (n = 4), 2011-2014 and Georgia (n = 4), USA 2011-2013. Treatments were: (1) biomass harvest with no BHGs, (2) 15% retention with biomass clustered, (3) 15% retention with biomass dispersed, (4) 30% retention with biomass clustered, (5) 30% retention with biomass dispersed, and (6) no biomass harvest. We captured individuals with drift fence arrays and compared evenness, diversity, and richness metrics among treatments with repeated-measure, linear mixed-effects models. We determined predictors of A. terrestris and G. carolinensis abundances using a priori candidate N-mixture models with woody biomass volume, vegetation structure, and groundcover composition as covariates. We had 206 captures of 25 reptile species and 8710 captures of 17 amphibian species during 53690 trap nights. Herpetofauna diversity, evenness, and richness were similar among treatments. A. terrestris abundance was negatively related to volume of retained woody biomass in treatment units in North Carolina in 2013. G. carolinensis abundance was positively related with volume of retained woody debris in treatment units in Georgia in 2012. Other relationships between A. terrestris and G. carolinensis abundances and habitat metrics

  19. Potential for hydrogen and methane production from biomass residues in Canada.

    PubMed

    Levin, David B; Zhu, Heguang; Beland, Michel; Cicek, Nazim; Holbein, Bruce E

    2007-02-01

    Canada generates approximately 1.45 x 10(8)t of residual biomass per year, containing an estimated energy value of 2.28 x 10(9)GJ, which is equivalent to about 22% of Canada's current annual energy use. Anaerobic digestion of these biomass residues using conventional technologies could generate 1.14 x 10(10)m(3)/year of CH(4) with a heating value of 4.56 x 10(8)GJ. Conversion of these residues using emerging technologies that favor the synthesis of H(2) and represses the synthesis of CH(4) could generate 1.47 x 10(10)m(3)/year renewable H(2), with a heating value of 1.89 x 10(8)GJ. While CH(4)-production results in a larger amount of energy recovery, generating H(2) from waste biomass is a renewable alternative that could fuel the hydrogen economy. Additional research to further both the technical and commercial development of microbial bio-energy from biomass is warranted.

  20. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor

    PubMed Central

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-01-01

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates — an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed. PMID:27684439

  1. Fast Pyrolysis of Biomass Residues in a Twin-screw Mixing Reactor.

    PubMed

    Funke, Axel; Richter, Daniel; Niebel, Andreas; Dahmen, Nicolaus; Sauer, Jörg

    2016-09-09

    Fast pyrolysis is being increasingly applied in commercial plants worldwide. They run exclusively on woody biomass, which has favorable properties for conversion with fast pyrolysis. In order to increase the synergies of food production and the energetic and/or material use of biomass, it is desirable to utilize residues from agricultural production, e.g., straw. The presented method is suitable for converting such a material on an industrial scale. The main features are presented and an example of mass balances from the conversion of several biomass residues is given. After conversion, fractionated condensation is applied in order to retrieve two condensates - an organic-rich and an aqueous-rich one. This design prevents the production of fast pyrolysis bio-oil that exhibits phase separation. A two phase bio-oil is to be expected because of the typically high ash content of straw biomass, which promotes the production of water of reaction during conversion. Both fractionated condensation and the use of biomass with high ash content demand a careful approach for establishing balances. Not all kind of balances are both meaningful and comparable to other results from the literature. Different balancing methods are presented, and the information that can be derived from them is discussed.

  2. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.

    PubMed

    Cho, Dae-Hyun; Ramanan, Rishiram; Heo, Jina; Kang, Zion; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Kim, Hee-Sik

    2015-09-01

    Algae based wastewater treatment coupled to biofuel production has financial benefits and practical difficulties. This study evaluated the factors influencing diversity and growth of indigenous algal consortium cultivated on untreated municipal wastewater in a high rate algal pond (HRAP) for a period of 1 year using multivariate statistics. Diversity analyses revealed the presence of Chlorophyta, Cyanophyta and Bacillariophyta. Dominant microalgal genera by biovolume in various seasons were Scenedesmus sp., Microcystis sp., and Chlorella sp. Scenedesmus sp., persisted throughout the year but none of three strains co-dominated with the other. The most significant factors affecting genus dominance were temperature, inflow cyanophyta and organic carbon concentration. Cyanophyta concentration affected microalgal biomass and diversity, whereas temperature impacted biomass. Preferred diversity of microalgae is not sustained in wastewater systems but is obligatory for biofuel production. This study serves as a guideline to sustain desired microalgal consortium in wastewater treatment plants for biofuel production.

  3. Municipal Solid Waste Resources

    SciTech Connect

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  4. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    PubMed

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed

    2016-11-21

    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber.

  5. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    PubMed

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill.

  6. Development of Value-Added Products from Residual Algae to Biomass

    SciTech Connect

    Behnke, Craig

    2016-02-29

    DOE Award # EE0000393 was awarded to fund research into the development of beneficial uses of surplus algal biomass and the byproducts of biofuel production. At the time of award, Sapphire’s intended fuel production pathway was a fairly conventional extraction of lipids from biomass, resulting in a defatted residue which could be processed using anaerobic digestion. Over the lifetime of the award, we conducted extensive development work and arrived at the conclusion that anaerobic digestion presented significant technical challenges for this high-nitrogen, high-ash, and low carbon material. Over the same timeframe, Sapphire’s fuel production efforts came to focus on hydrothermal liquefaction. As a result of this technology focus, the residue from fuel production became unsuitable for either anaerobic digestion (or animal feed uses). Finally, we came to appreciate the economic opportunity that the defatted biomass could represent in the animal feed space, as well as understanding the impact of seasonal production on a biofuels extraction plant, and sought to develop uses for surplus biomass produced in excess of the fuel production unit’s capacity.

  7. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania.

    PubMed

    Nonga, H E; Simon, C; Karimuribo, E D; Mdegela, R H

    2010-08-01

    Occurrence of antimicrobial residues in commercial chicken eggs was determined in Morogoro municipality between January and February 2007. Twenty smallholder farmers were interviewed on the types of antimicrobials, reasons of use and their awareness on antimicrobial withdrawal period. Seventy egg samples were collected for qualitative antimicrobial drug residues analysis by use of agar well diffusion and Delvotest SP assays. It was found that farmers use antimicrobial drugs as prophylaxis and treatment of common chicken diseases namely fowl typhoid (85%), infectious bursa disease (Gumboro) (65%) infectious coryza (65%), collibacilosis (55%), coccidiosis (54%), Newcastle disease (50%), helminthosis (20%) and fowl pox (15%). Antimicrobials accounted for 85% of the drugs commonly used. It was also found that 65% of the farmers treat their chicken themselves. The common drugs were oxytetracycline (75%), egg booster (50%), amprolium (35%), sulphamethoxypyridazine (35%), sulphanilamide (25%), chlortetracyclines (10%), chloramphenicol (10%), sulphadiazine-trimethoprim (20%), duoxycycline (20%), sulphadiazine (25%) and flumequine (10%). Eighty per cent of the farmers had knowledge on antimicrobial withdrawal period sold eggs before withdrawal period and almost 85% were unaware of possible effects of antimicrobial residues in humans. All 70 eggs were positive to antimicrobial residues by Delvotest kit, but 21.4% positive with agar well diffusion test. It was concluded that the presence of antimicrobial residues in table eggs could be of public health significance to the egg consumers in Morogoro municipality.

  8. Bonding exterior grade structural panels with copolymer resins of biomass residue components, phenol, and formaldehyde

    SciTech Connect

    Chen, C.M.

    1993-12-31

    Components of various forest and agricultural residue biomass-including the polyphenolic compounds-were converted into aqueous solution and/or suspension by extraction and digestion. Some biomass components reacted vigorously under alkaline catalysis with formaldehyde and initially showed a high degree of exothermic reaction; however, other components did not react as vigorously under these conditions, indicating that different biomass materials require different methods to obtain optimum reactivity for the copolymerization with phenol. Our primary goal is to develop adhesives capable of producing acceptable bond quality, as determined by the wood products industries` standards, under a reasonable range of gluing conditions. Copolymer resins of phenol, formaldehyde, and biomass components were synthesized and evaluated for gluability of bonding exterior grade structural replaced with chemicals derived from peanut hulls, pecan shell flour, pecan pith, southern pine bark, and pine needle required shorter press times. These resins also tolerated a broader range of gluing conditions. In summary, it appears that the technology of the fast curing copolymer resins of biomass components as adhesives for wood products has been developed and is ready to be transferred to industrial practice.

  9. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  10. Recycling the nutrients in residues from methane digesters of aquatic macrophytes for new biomass production

    NASA Astrophysics Data System (ADS)

    Hanisak, M. D.; Williams, L. D.; Ryther, J. H.

    1980-04-01

    The floating freshwater macrophyte Eichhornia crassipes (water hyacinth) was fermented anaerobically to produce 0.4 l of biogas/g volatile solids at 60% methane with a bioconversion efficiency of 47%. Both the liquid and solid digester residues were a rich source of nutrients that were recycled to produce additional biomass. An approximate balance of the nitrogen recycled through the culture-digester-culture system indicated that nitrogen was conserved within the digester. All of the nitrogen originally added to the digester in the form of shredded water hyacinths could be found in the liquid (48%) and solid (52%) residues; 65.5% of the nitrogen in these residues could be reassimilated by cultures of water hyacinths. This study indicated the potential of bioconversion of aquatic macrophytes to methane as a possible means of both producing and conserving energy.

  11. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth.

  12. Impact of forest biomass residues to the energy supply chain on regional air quality.

    PubMed

    Rafael, S; Tarelho, L; Monteiro, A; Sá, E; Miranda, A I; Borrego, C; Lopes, M

    2015-02-01

    The increase of the share of renewable energy in Portugal can be met from different sources, of which forest biomass residues (FBR) can play a main role. Taking into account the demand for information about the strategy of FBR to energy, and its implications on the Portuguese climate policy, the impact of energy conversion of FBR on air quality is evaluated. Three emission scenarios were defined and a numerical air quality model was selected to perform this evaluation. The results reveal that the biomass thermal plants contribute to an increment of the pollutant concentrations in the atmosphere, however restricted to the surrounding areas of the thermal plants, and most significant for NO₂ and O₃.

  13. Changes in soil microbial biomass and residual indices as ecological indicators of land use change in temperate permanent grassland.

    PubMed

    Murugan, Rajasekaran; Loges, Ralf; Taube, Friedhelm; Sradnick, André; Joergensen, Rainer Georg

    2014-05-01

    The relationship between microbial biomass, residues and their contribution to microbial turnover is important to understand ecosystem C storage. The effects of permanent grassland (100 % ryegrass--PG), conversion to modified grassland (mixture of grass and clover--MG) or maize monoculture (MM) on the dynamics of soil organic C (SOC), microbial biomass, fungal ergosterol and microbial residues (bacterial muramic acid and fungal glucosamine) were investigated. Cattle slurry was applied to quantify the effects of fertilisation on microbial residues and functional diversity of microbial community across land use types. Slurry application significantly increased the stocks of microbial biomass C and S and especially led to a shift in microbial residues towards bacterial tissue. The MM treatment decreased the stocks of SOC, microbial biomass C, N and S and microbial residues compared with the PG and MG treatments at 0-40 cm depth. The MM treatment led to a greater accumulation of saprotrophic fungi, as indicated by the higher ergosterol-to-microbial biomass C ratio and lower microbial biomass C/S ratio compared with the grassland treatments. The absence of a white clover population in the PG treatment caused a greater accumulation of fungal residues (presumably arbuscular mycorrhizal fungi (AMF), which do not contain ergosterol but glucosamine), as indicated by the significantly higher fungal C-to-bacterial C ratio and lower ergosterol-to-microbial biomass C ratio compared with the MG treatment. In addition to these microbial biomass and residual indices, the community level physiological profiles (CLPP) demonstrated distinct differences between the PG and MG treatments, suggesting the potential of these measurements to act as an integrative indicator of soil functioning.

  14. Influence of exogenous CO₂ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater.

    PubMed

    Hu, Bing; Min, Min; Zhou, Wenguang; Li, Yecong; Mohr, Michael; Cheng, Yanling; Lei, Hanwu; Liu, Yuhuan; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2012-04-01

    The effects of exogenous CO₂ on the growth and lipid accumulation of a local screened facultative heterotrophic microalgae strain Auxenochlorella protothecoides (UMN280) as well as nutrient removal from concentrated municipal wastewater stream (centrate) were examined in this study. A 12-day batch experiment was conducted with CO₂ aeration at three levels, namely, 0%, 1%, and 5% (v/v) CO₂ mixed with air, under light intensity of 60 μmol/(m² @@s). A two-stage growth pattern was observed. The first stage (first-fifth day) was dominated by heterotrophic growth in which organic carbon was the main carbon source. The second stage (6th-12th day) was dominated by autotrophic growth in which exogenous CO₂ had a positive effect on algal biomass accumulation. The addition of 5% CO₂ was better than that of 1% CO₂ on the biomass and lipid production. The uptakes of nutrients were similar between injection and no injection of CO₂, except on phosphorus removal which was affected by the acidification of CO₂.

  15. Processing of residues and municipal waste in circulating fluidized beds: Operating experience, design concepts and future developments

    SciTech Connect

    Plass, L.; Albrecht, J.; Loeffler, J.C.

    1997-12-31

    Based on experience on processing of unconventional fuels in commercial Circulating Fluidized Bed (CFB) gasifiers new plant concepts for thermal treatment of residues and municipal waste are presented. Particular emphasis is put on optimizing process efficiencies and environmental performance of the overall processes. The thermal treatment of waste is carried out in two steps: Gasification in a CFB-reactor is followed by a high temperature reactor for complete breakdown of gaseous condensable hydrocarbons and for slagging of dust entrained in the CFB product gas. Major details of the process alternatives are discussed in view of economical and ecological aspects.

  16. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  17. Economics of biomass fuels for electricity production: A case study with crop residues

    NASA Astrophysics Data System (ADS)

    Maung, Thein Aye

    In the United Sates and around the world, electric power plants are among the biggest sources of greenhouse gas emissions which the Intergovernmental Panel on Climate Change argued was the main cause of climate change and global warming. This dissertation explores the factors which may induce electricity producers to use biomass fuels for power generation and thereby mitigate the impact of greenhouse gas emissions. Analyses in this dissertation suggest that there are two important factors which will play a major role in determining the future degree of bioelectricity production: the price of coal and the future price of carbon emissions. Using The Forest and Agricultural Sector Optimization Model--Green House Gas version (FASOMGHG) in a case study examining the competitiveness of crop residues, this dissertation finds that crop residues currently cost much more than coal as an electricity generation feedstock because they have lower heat content and higher production/hauling costs. For them to become cost competitive with coal, the combined costs of production and hauling must be cut by more than half or the coal price needs to rise. In particular, for crop residues to have any role in electricity generation either the price of coal has to increase to about 43 per ton or the carbon equivalent price must rise to about 15 per ton. The simulation results also show that crop residues with higher heat content such as wheat residues will have greater opportunities in bioelectricity production than the residues with lower heat content. In addition, the analysis shows that improvements in crop yield do not have much impact on bioelectricity production. However, the energy recovery efficiency does have significant positive impact on the bioelectricity desirability but again only if the carbon equivalent price rises substantially. The analysis also shows the desirability of cofiring biomass as opposed to 100% replacement because this reduces haling costs and increases the

  18. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    PubMed

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes.

  19. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1.

    PubMed

    Lee, Ok Kyung; Oh, You-Kwan; Lee, Eun Yeol

    2015-11-01

    The residual biomass of Chlorella sp. KR-1 obtained after lipid extraction was used for saccharification and bioethanol production. The carbohydrate was saccharified using simple enzymatic and chemical methods using Pectinex at pH 5.5 and 45°C and 0.3N HCl at 121°C for 15min with 76.9% and 98.2% yield, respectively, without any pretreatment. The residual biomass contained 49.7% carbohydrate consisting of 82.4% fermentable sugar and 17.6% non-fermentable sugar, which is valuable for bioethanol fermentation. Approximately 98.2% of the total carbohydrate was converted into monosaccharide (fermentable+non-fermentable sugar) using dilute acid saccharification. The fermentable sugar was subsequently fermented to bioethanol through separate hydrolysis and fermentation with a fermentation yield of 79.3%. Overall, 0.4g ethanol/g fermentable sugar and 0.16g ethanol/g residual biomass were produced.

  20. Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste.

    PubMed

    Park, Stephen; Li, Yebo

    2012-05-01

    Algae biomass residue was co-digested with lipid-rich fat, oil, and grease waste (FOG) to evaluate the effect on methane yield and macronutrient degradation. Co-digestion of algae biomass residue and FOG, each at 50% of the organic loading, allowed for an increased loading rate up to 3g VS/Ld, resulting in a specific methane yield of 0.54 L CH(4)/g VSd and a volumetric reactor productivity of 1.62 L CH(4)/Ld. Lipids were the key contributor to methane yields, accounting for 68-83% of the total methane potential. Co-digestion with algae biomass residue fractions of 33%, 50%, and 67% all maintained lipid degradations of at least 60% when the organic loading rate was increased to 3g VS/Ld, while synergetic effects on carbohydrate and protein degradation were less evident with increased loading.

  1. Environmental residuals and capital costs of energy recovery from municipal sludge and feedlot manure

    SciTech Connect

    Ballou, S W; Dale, L; Johnson, R; Chambers, W; Mittelhauser, H

    1980-09-01

    The capital and environmental cost of energy recovery from municipal sludge and feedlot manure is analyzed. Literature on waste processing and energy conversion and interviews with manufacturers were used for baseline data for construction of theoretical models using three energy conversion processes: anaerobic digestion, incineration, and pyrolysis. Process characteristics, environmental impact data, and capital costs are presented in detail for each conversion system. The energy recovery systems described would probably be sited near large sources of sludge and manure, i.e., metropolitan sewage treatment plants and large feedlots in cattle-raising states. Although the systems would provide benefits in terms of waste disposal as well as energy production, they would also involve additional pollution of air and water. Analysis of potential siting patterns and pollution conflicts is needed before energy recovery systems using municipal sludge can be considered as feasible energy sources.

  2. Valorisation of biodiesel production wastes: Anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol.

    PubMed

    Santos-Ballardo, David U; Font-Segura, Xavier; Ferrer, Antoni Sánchez; Barrena, Raquel; Rossi, Sergio; Valdez-Ortiz, Angel

    2015-03-01

    One of the principal opportunity areas in the development of the microalgal biodiesel industry is the energy recovery from the solid microalgal biomass residues to optimise the fuel production. This work reports the cumulative methane yields reached from the anaerobic digestion of the solid microalgal biomass residues using different types of inocula, reporting also the improvement of biogas production using the co-digestion of microalgal biomass with glycerol. Results demonstrate that the solid microalgal biomass residues showed better biogas production using a mesophilic inoculum, reaching almost two-fold higher methane production than under thermophilic conditions. Furthermore, the solid microalgal biomass residues methane production rate showed an increase from 173.78 ± 9.57 to 438.46 ± 40.50 mL of methane per gram of volatile solids, when the co-digestion with glycerol was performed. These results are crucial to improve the energy balance of the biodiesel production from Tetraselmis suecica, as well as proposing an alternative way to treat the wastes derived from the microalgae biodiesel production.

  3. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Park, Jong Moon

    2017-03-01

    The goal of this study was to investigate the influences of gradually mixotrophic culture conditions on microalgal biomass and lipid production by a consortium of indigenous microalgae and bacteria present in raw municipal wastewater. Lab-scale photobioreactors containing the consortium were operated in repeated batch mode. Initial cultivation (phase I) was performed using only the municipal wastewater, then 10% and 25% of the reactor volumes were replaced with the effluent from a sewage sludge fermentation system producing volatile fatty acids (SSFV) at the beginnings of phase II and phase III, respectively. The highest biomass productivity (117.1±2.7mg/L/d) was attained during phase II, but the lipid productivity (17.2±0.2mg/L/d) was attained during phase III. The increase in the effluent from the SSFV influenced microalgal diversity with a preference for Chlorella sp., but bacterial diversity increased significantly during phase III.

  4. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from −58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of −58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  5. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal

    PubMed Central

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-01-01

    Abstract During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions. PMID:26064039

  6. Atmospheric Emissions from Forest Biomass Residues to Energy Supply Chain: A Case Study in Portugal.

    PubMed

    Rafael, Sandra; Tarelho, Luis; Monteiro, Alexandra; Monteiro, Tânia; Gonçalves, Catarina; Freitas, Sylvio; Lopes, Myriam

    2015-06-01

    During the past decades, pressures on global environment and energy security have led to an increasing demand on renewable energy sources and diversification of the world's energy supply. The Portuguese energy strategy considers the use of Forest Biomass Residues (FBR) to energy as being essential to accomplish the goals established in the National Energy Strategy for 2020. However, despite the advantages pointing to FBR to the energy supply chain, few studies have evaluated the potential impacts on air quality. In this context, a case study was selected to estimate the atmospheric emissions of the FBR to the energy supply chain in Portugal. Results revealed that production, harvesting, and energy conversion processes are the main culprits for the biomass energy supply chain emissions (with a contribution higher than 90%), while the transport processes have a minor importance for all the pollutants. Compared with the coal-fired plants, the FBR combustion produces lower greenhouses emissions, on a mass basis of fuel consumed; the same is true for NOX and SO2 emissions.

  7. Biogas production from vietnamese animal manure, plant residues and organic waste: influence of biomass composition on methane yield.

    PubMed

    Cu, T T T; Nguyen, T X; Triolo, J M; Pedersen, L; Le, V D; Le, P D; Sommer, S G

    2015-02-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg(-1) volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg(-1) VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam.

  8. Biogas Production from Vietnamese Animal Manure, Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield

    PubMed Central

    Cu, T. T. T.; Nguyen, T. X.; Triolo, J. M.; Pedersen, L.; Le, V. D.; Le, P. D.; Sommer, S. G.

    2015-01-01

    Anaerobic digestion is an efficient and renewable energy technology that can produce biogas from a variety of biomasses such as animal manure, food waste and plant residues. In developing countries this technology is widely used for the production of biogas using local biomasses, but there is little information about the value of these biomasses for energy production. This study was therefore carried out with the objective of estimating the biogas production potential of typical Vietnamese biomasses such as animal manure, slaughterhouse waste and plant residues, and developing a model that relates methane (CH4) production to the chemical characteristics of the biomass. The biochemical methane potential (BMP) and biomass characteristics were measured. Results showed that piglet manure produced the highest CH4 yield of 443 normal litter (NL) CH4 kg−1 volatile solids (VS) compared to 222 from cows, 177 from sows, 172 from rabbits, 169 from goats and 153 from buffaloes. Methane production from duckweed (Spirodela polyrrhiza) was higher than from lawn grass and water spinach at 340, 220, and 110.6 NL CH4 kg−1 VS, respectively. The BMP experiment also demonstrated that the CH4 production was inhibited with chicken manure, slaughterhouse waste, cassava residue and shoe-making waste. Statistical analysis showed that lipid and lignin are the most significant predictors of BMP. The model was developed from knowledge that the BMP was related to biomass content of lipid, lignin and protein from manure and plant residues as a percentage of VS with coefficient of determination (R-square) at 0.95. This model was applied to calculate the CH4 yield for a household with 17 fattening pigs in the highlands and lowlands of northern Vietnam. PMID:25557826

  9. Evaluation of Cement, Lime, and Asphalt Amended Municipal Solid Waste Incinerator Residues

    DTIC Science & Technology

    1989-09-01

    waste does not contain sufficient pozzolans for lime solidification, or if organics in the cement residue mixes are excessive, a low 3 strength material...occur due to insufficient coverage of the residue by the asphalt binder . This defeats the asphalt’s primary metal immobilization mechanism...stabilized waste form direct contact with an cidic environment (Cote, 1986). Asphalt Amended Wastes. As with most thermoplastic agent, asphalt binder

  10. Anaerobic digestion of residual municipal solid waste using biological-mechanical pre-treatment: the plant of Varennes Jarcy.

    PubMed

    Fruteau de Laclos, H; Thiebaut, E; Saint-Joly, C

    2008-01-01

    Residual municipal solid waste can be treated by anaerobic digestion after a sorting process in order to remove the unwanted materials. After a mechanical sorting the quality of the final compost can hardly cope with requirements for agriculture use. In this way, a more efficient sorting process using a specific equipment that provides a combined biological and mechanical effect, has been implemented on the plant of Varennes Jarcy prior to anaerobic digestion. This paper presents the main results obtained on this plant. The reduction of biodegradable organics in particle lower than 10 mm allows a very efficient separation by screening. An additional ballistic sorting removes the remaining glass. The composition of the resulting sorted waste was close to a source-sorted organic fraction. The sorted waste exhibit methane yields comparable with raw biodegradable organics, showing that the pre-treatment had little impact on anaerobic digestion performance.

  11. Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2013-09-03

    This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.

  12. Production and characterization of biochar from agricultural by-products: Overview and use of cotton biomass residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a newly constructed scientific term for a porous carbonaceous solid produced by dry carbonization or pyrolysis and gasification of biomass. Crop residues and agricultural processing byproducts are major source materials for producing bioenergy (syngas and bio-oil) and biochar by pyrolys...

  13. A New Grain Harvesting System for Single Pass Grain Harvest, Biomass Collection, Crop Residue Sizing and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  14. A New Grain Harvesting System for Single-Pass Grain Harvest, Biomass Collection, Crop Residue Sizing, and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  15. Determining pathogen and indicator levels in Class B municipal organic residuals used for land application

    EPA Science Inventory

    Biosolids are nutrient rich organic residuals that are currently in use to amend soils for food production. Treatment requirements to inactivate pathogens for production of Class A biosolids are energy intensive. One less energy intensive alternative is to treat biosolids to Cl...

  16. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.

    PubMed

    Steubing, Bernhard; Zah, Rainer; Ludwig, Christian

    2012-01-03

    The optimal use of forest energy wood, industrial wood residues, waste wood, agricultural residues, animal manure, biowaste, and sewage sludge in 2010 and 2030 was assessed for Europe. An energy system model was developed comprising 13 principal fossil technologies for the production of heat, electricity, and transport and 173 bioenergy conversion routes. The net environmental benefits of substituting fossil energy with bioenergy were calculated for all approximately 1500 combinations based on life cycle assessment (LCA) results. An optimization model determines the best use of biomass for different environmental indicators within the quantified EU-27 context of biomass availability and fossil energy utilization. Key factors determining the optimal use of biomass are the conversion efficiencies of bioenergy technologies and the kind and quantity of fossil energy technologies that can be substituted. Provided that heat can be used efficiently, optimizations for different environmental indicators almost always indicate that woody biomass is best used for combined heat and power generation, if coal, oil, or fuel oil based technologies can be substituted. The benefits of its conversion to SNG or ethanol are significantly lower. For non-woody biomass electricity generation, transportation, and heating yield almost comparable benefits as long as high conversion efficiencies and optimal substitutions are assured. The shares of fossil heat, electricity, and transportation that could be replaced with bioenergy are also provided.

  17. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.

  18. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.

    PubMed

    Luna Galiano, Y; Fernández Pereira, C; Vale, J

    2011-01-15

    The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished.

  19. Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities.

    PubMed

    Rambo, M K D; Schmidt, F L; Ferreira, M M C

    2015-11-01

    The present study aims to identify the renewable resources available in Brazil such as açai seed, coconut husks, coffee husks, rice husks, eucalyptus sawdust, grass, soy peel, bamboo, banana stems and banana stalks. To identify such renewable energy sources, samples were examined for their physical and chemical characteristics using X-ray diffraction (XRD), proximate and ultimate analyses, thermogravimetric analysis (TGA), calorific value determination, near-infrared (NIR) spectroscopy, UV spectroscopy, high-pH anion-exchange chromatography (HPAEC-PAD) and accelerated solvent extraction (ASE). Among the biomasses, açai and coffee exhibited higher total sugar content, 67.70% and 62.55%, respectively. Sawdust exhibited low ash, along with the highest calorific value and lignin content. The highest glucose contents were observed in bamboo (44.65%) and sawdust (38.80%). The maximum yield for the bioproducts levulinic acid (LA), formic acid (FA) and furfural were estimated; açai exhibited the highest yield of LA and FA, while coffee exhibited the best furfural yield. All of these properties indicate that the residues are potential candidates for bioenergy production.

  20. Ciprofloxacin residues in municipal biosolid compost do not selectively enrich populations of resistant bacteria.

    PubMed

    Youngquist, Caitlin P; Liu, Jinxin; Orfe, Lisa H; Jones, Stephen S; Call, Douglas R

    2014-12-01

    Biosolids and livestock manure are valuable high-carbon soil amendments, but they commonly contain antibiotic residues that might persist after land application. While composting reduces the concentration of extractable antibiotics in these materials, if the starting concentration is sufficiently high then remaining residues could impact microbial communities in the compost and soil to which these materials are applied. To examine this issue, ciprofloxacin was added to biosolid compost feedstock to achieve a total concentration of 19 ppm, approximately 5-fold higher than that normally detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (1 to 3.5 ppm). This feedstock was placed into mesh bags that were buried in aerated compost bays. Once a week, a set of bags was removed and analyzed (treated and untreated, three replicates of each; 4 weeks). Addition of ciprofloxacin had no effect on the recovery of resistant bacteria at any time point (P = 0.86), and a separate bioassay showed that aqueous extractions from materials with an estimated 59 ppm ciprofloxacin had no effect on the growth of a susceptible strain of Escherichia coli (P = 0.28). Regression analysis showed that growth of the susceptible strain of E. coli can be reduced given a sufficiently high concentration of ciprofloxacin (P < 0.007), a result that is consistent with adsorption being the primary mechanism of sequestration. While analytical methods detected biologically significant concentrations of ciprofloxacin in the materials tested here, the culture-based methods were consistent with the materials having sufficient adsorptive capacity to prevent typical concentrations of ciprofloxacin residues from selectively enriching populations of resistant bacteria.

  1. Ciprofloxacin Residues in Municipal Biosolid Compost Do Not Selectively Enrich Populations of Resistant Bacteria

    PubMed Central

    Youngquist, Caitlin P.; Liu, Jinxin; Orfe, Lisa H.; Jones, Stephen S.

    2014-01-01

    Biosolids and livestock manure are valuable high-carbon soil amendments, but they commonly contain antibiotic residues that might persist after land application. While composting reduces the concentration of extractable antibiotics in these materials, if the starting concentration is sufficiently high then remaining residues could impact microbial communities in the compost and soil to which these materials are applied. To examine this issue, ciprofloxacin was added to biosolid compost feedstock to achieve a total concentration of 19 ppm, approximately 5-fold higher than that normally detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (1 to 3.5 ppm). This feedstock was placed into mesh bags that were buried in aerated compost bays. Once a week, a set of bags was removed and analyzed (treated and untreated, three replicates of each; 4 weeks). Addition of ciprofloxacin had no effect on the recovery of resistant bacteria at any time point (P = 0.86), and a separate bioassay showed that aqueous extractions from materials with an estimated 59 ppm ciprofloxacin had no effect on the growth of a susceptible strain of Escherichia coli (P = 0.28). Regression analysis showed that growth of the susceptible strain of E. coli can be reduced given a sufficiently high concentration of ciprofloxacin (P < 0.007), a result that is consistent with adsorption being the primary mechanism of sequestration. While analytical methods detected biologically significant concentrations of ciprofloxacin in the materials tested here, the culture-based methods were consistent with the materials having sufficient adsorptive capacity to prevent typical concentrations of ciprofloxacin residues from selectively enriching populations of resistant bacteria. PMID:25261519

  2. The good, the bad or the ugly: Microbial biomass of biogas residues as a contributor to soil carbon cycle

    NASA Astrophysics Data System (ADS)

    Coban, H.; Miltner, A.; Kaestner, M.

    2013-12-01

    Loss of soil organic matter is a recent problem in soils all over the world. This can be related to enhanced mineralization of the soil organic matter due to land use change, which is a source of anthropogenic carbon dioxide increase. For example, the carbon input from plant residues is reduced because of the increased cultivation of bioenergy crops. In order to avoid soil degradation, application of biogas residues is a common practice in such areas. Biogas residues are side products of biogas production and contain microbial biomass. Application of these residues as soil additive influences the soil microorganisms as well as the carbon cycle. We study this effect by incubating 13C-labeled biogas residues in an arable soil from the Static Fertilization Experiment in Bad Lauchstaedt, Germany. Labeled residues were produced via labeling of active microbial biomass by addition of KH13CO3 to biogas reactors. High enrichment in the various phospholipid fatty acids proved the successful labeling of the biomass. The labeled biogas residues are being long-term incubated in the soil. During incubation, we monitor the fate of the carbon by analyzing the label in phospholipid fatty acids, amino acids as well as carbon dioxide. This allows us to trace the fate of the biogas residues-derived C in soil and to quantify the effect on the transformation of the natural soil organic matter (e.g. negative effects such as priming effects). Also, microbial community dynamics will be determined using molecular biology tools such as denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (Q-PCR). In order to prevent potentially negative effects, various additives such as charred biomaterials, clays and chopped bark will be tested to improve the carbon storage in soil. In conclusion, this study investigates the fate and impact of biogas residues used as a soil additive on the soil microbial community and amount of soil organic matter. It is aimed to understand and

  3. Chemical and ecotoxicological characterization of solid residues produced during the co-pyrolysis of plastics and pine biomass.

    PubMed

    Bernardo, Maria S; Lapa, N; Barbosa, R; Gonçalves, M; Mendes, B; Pinto, F; Gulyurtlu, I

    2009-07-15

    A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)residue B was considered to be hazardous according the European legislation (BTEX concentrations higher than 100 ppb). The results indicate that volatile organic contaminants can be present in sufficient amounts in these residues and their eluates to induce ecotoxicity levels. The extraction of the pyrolysis residue with DCM was an efficient method for removing lighter organic contaminants.

  4. Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil-plant system.

    PubMed

    Jandl, Gerald; Eckhardt, Kai-Uwe; Bargmann, Inge; Kücke, Martin; Greef, Jörg-Michael; Knicker, Heike; Leinweber, Peter

    2013-01-01

    Hydrochars, technically manufactured by hydrothermal carbonization (HTC) of biomass residues, are recently tested in high numbers for their suitability as feedstock for bioenergy production, the bioproduct industry, and as long-term carbon storage in soil, but ecological effects in the soil-plant system are not sufficiently known. Therefore, we investigated the influence of different biomass residues and process duration on the molecular composition of hydrochars, and how hydrochar addition to soils affected the germination of spring barley ( L.) seeds. Samples from biomass residues and the corresponding hydrochars were analyzed by pyrolysis-field ionization mass spectrometry (Py-FIMS) and gaseous emissions from the germination experiments with different soil-hydrochar mixtures by gas chromatography/mass spectrometry (GC/MS). The molecular-level characterization of various hydrochars by Py-FIMS clearly showed that the kind of biomass residue influenced the chemical composition of the corresponding hydrochars more strongly than the process duration. In addition to various detected possible toxic substances, two independent mass spectrometric methods (Py-FIMS and GC/MS) indicated long C-chain aliphatic compounds which are typically degraded to the C-unit ethylene that can evoke phytotoxic effects in high concentrations. This showed for the first time possible chemical compounds to explain toxic effects of hydrochars on plant growth. It is concluded that the HTC process did not result in a consistent product with defined chemical composition. Furthermore, possible toxic effects urgently need to be investigated for each individual hydrochar to assess effects on the soil organic matter composition and the soil biota before hydrochar applications as an amendment on agricultural soils.

  5. Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation)-MBR (membrane bioreactor) and ozone oxidation.

    PubMed

    Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho

    2012-01-01

    Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.

  6. Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues.

    PubMed

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2011-02-01

    In this study, percolation and batch leaching tests were considered in order to characterize the behaviour of air pollution control (APC) residues produced in a municipal solid waste incinerator (MSWI) as a function of the liquid to solid ratio (L/S). This waste is hazardous, and taking into account their physical and chemical properties, leaching of contaminants into the environment is the main concern. In our work the leaching behaviour of toxic heavy metals (Pb, Zn, Cr, Ni and Cu) and inorganics associated with soluble salts (Na, K, Ca and Cl) was addressed. Although pH of the leaching solution is the most important variable, L/S may also play an important role in leaching processes. In our work, results from column and batch tests were compared in terms of concentration (mg/L) and releasing (mg/kg). The APC residues revealed to be hazardous according to both tests, and both Pb and Cl(-) far exceeded the regulatory thresholds. The material exhibits high solubility, and when the liquid to solid ratio was high, more than 50% can be solubilised. The patterns of release may be in some cases availability or solubility controlled, and the former was easier to identify. When the results from column and batch experiments were compared by representing the cumulative released amounts (in mg/kg) as a function of L/S, both curves match for Zn, Ni, Cu, K, Na, Cl and Ca, but for Cr and Pb a significant difference was observed. In fact, the column experiments revealed that under percolation conditions it should be expected slow releasing of Pb along time. From this study, it can be concluded that the released amounts obtained in batch experiments for a certain L/S should be considered as the worst case for medium term. Some simple models proposed on the literature and based on local equilibrium assumption showed good fitting to experimental data for soluble species (non-reactive solutes).

  7. Physicochemical Characterization of various Vietnamese Biomass Residue-derived Biochars (wood, bamboo and risk husk)

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien

    2016-04-01

    This study compares the physico-chemical characteristics of various biocchars produced from biomass residues in Vietnam such as fired wood, rice husk, and bamboo. Wood biochar (WBC), rice husk biochar (RHBC), and bamboo biochar (BBC) were produced under limited oxygen conditions using equipment available locally in Vietnam, known as a Top-Lift Updraft Drum (TLUD). The three biochars are alkaline with pH around 10, but were found to have quite significantly different physico-chemical characteristics. Surface areas (measured by BET) were found to be very significantly higher for WBC and BBC with 479.34 m2/g and 434.53 m2/g, respectively, compared to RHBC (3.29 m2/g). The SEM images correspond with the BET surface area, showing a smooth surface for RHBC, a hollow surface for BBC, and a rough surface for WBC. Total carbon (TC) of WBC and BBC are above 80%, while RHBC has only 47.95% TC. Despite having different TC, the content of hydrogen among the biochars is similar, ranging from 2.07% to 2.34%, and the ratio of H/C also follows the same trend. Thus, although the biochars are produced by the same method, the various feedstocks lead to different physico-chemical properties. Ongoing work is linking these physico-chemical properties to fertiliser efficiencies in terms of nitrate and ammonia adsorption and retention capacities, in order to design optimal biochar properties for use in fertilisation. Key words: physico-chemical characteristic, biochar, surface area, SEM, total carbon, feedstock

  8. CO2 emission and structural characteristics of two calcareous soils amended with municipal solid waste and plant residue

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, N.

    2016-01-01

    This investigation examines the effect of different amendments on selected soil physical and biological properties over a 24-month period in two cropland fields. Urban municipal solid waste (MSW) compost and alfalfa residue (AR) were used as different organic amendments at the rates of 0 (control), 10 and 30 Mg ha-1 to a clay loam soil and a loamy sand soil in a semiarid region. Results showed that the soil improvement was controlled by the application rate and decomposability of amendments and soil type. The addition of organic amendments to the soils improved aggregate stability and consequently enhanced total porosity, especially macropore fraction. The increased soil organic carbon (SOC) and total porosity values as compared to the control treatment were greater in the loamy sand soil than in the clay loam soil. Moreover, compared to the microbial respiration of control plots, the application of MSW resulted in higher values of microbial respiration in the clay loam soil than in the loamy sand soil, whereas the reverse was found for AR. Linear and power functions were provided for the relationships between microbial respiration and SOC in the loamy sand and clay loam soils, respectively. Also, CO2 emission was stimulated significantly as power functions of the total porosity and the ratio of macroporosity to microporosity. However, the soil microbial respiration and carbon storage improved aggregate stability and pore size distribution, and as a response, soil porosity, especially the macropore fraction, controlled CO2 flux.

  9. CO2 emission and structural characteristics of two calcareous soils amended with municipal solid waste and plant residue

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, N.

    2015-11-01

    This investigation examines the effect of different amendments on selected soil physical and biological properties over a twenty four month period in two cropland fields. Urban municipal solid waste (MSW) compost and alfalfa residue (AR) were used as different organic amendments at the rates of 0 (control), 10 and 30 Mg ha-1 to a clay loam soil and a loamy sand soil in a semiarid region. Result showed that the soil improvement was controlled by the application rate and decomposability of amendments and soil type. The addition of organic amendments to the soils improved aggregate stability and consequently enhanced total porosity, especially macro pores fraction. The increased soil organic carbon (SOC) and total porosity values as compared to the control treatment were greater in the loamy sand soil than in the clay loam soil. Moreover, compared to the microbial respiration of control plots, the application of MSW resulted in higher values of microbial respiration in the clay loam soil than in the loamy sand soil, whereas the reverse order was found for AR. Linear and power functions were provided for the relationships between microbial respiration and SOC in the loamy sand and clay loam soils, respectively. Also, CO2 emission was stimulated significantly as power functions of the total porosity and the ratio of macro to micro pores. However, the soil microbial respiration and carbon storage improved aggregate stability and pore size distribution, as a response, soil porosity especially macro pores fraction controlled CO2 flux.

  10. Determining pathogen and indicator levels in class B municipal organic residuals used for land application.

    PubMed

    Rhodes, Eric R; Boczek, Laura A; Ware, Michael W; McKay, Mary; Hoelle, Jill M; Schoen, Mary; Villegas, Eric N

    2015-01-01

    Biosolids are nutrient-rich organic residuals that are currently used to amend soils for food production. Treatment requirements to inactivate pathogens for production of Class A biosolids are energy intensive. One less energy intensive alternative is to treat biosolids to Class B standards, but it could result in higher pathogen loads. Quantitative microbial risk assessments models have been developed on land application of Class B biosolids but contain many uncertainties because of limited data on specific pathogen densities and the use of fecal indicator organisms as accurate surrogates of pathogen loads. To address this gap, a 12-mo study of the levels and relationships between , , and human adenovirus (HAdV) with fecal coliform, somatic, and F-RNA coliphage levels in Class B biosolids from nine wastewater treatment plants throughout the United States was conducted. Results revealed that fecal coliform, somatic, and F-RNA coliphage densities were consistent throughout the year. More important, results revealed that HAdV ( = 2.5 × 10 genome copies dry g) and ( = 4.14 × 10 cysts dry g) were in all biosolids samples regardless of treatment processes, location, or season. oocysts were also detected (38% positive; range: 0-1.9 × 10 oocysts dry g), albeit sporadically. Positive correlations among three fecal indicator organisms and HAdV, but not protozoa, were also observed. Overall, this study reveals that high concentrations of enteric pathogens (e.g., , , and HAdV) are present in biosolids throughout the United States. Microbial densities found can further assist management and policymakers in establishing more accurate risk assessment models associated with land application of Class B biosolids.

  11. Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production.

    PubMed

    Ji, Min-Kyu; Yun, Hyun-Shik; Park, Young-Tae; Kabra, Akhil N; Oh, In-Hwan; Choi, Jaeyoung

    2015-08-15

    The biomass and lipid/carbohydrate production by a green microalga Scenedesmus obliquus under mixotrophic condition using food wastewater and flue gas CO2 with municipal wastewater was investigated. Different dilution ratios (0.5-2%) of municipal wastewater with food wastewater were evaluated in the presence of 5, 10 and 14.1% CO2. The food wastewater (0.5-1%) with 10-14.1% CO2 supported the highest growth (0.42-0.44 g L(-1)), nutrient removal (21-22 mg TN L(-1)), lipid productivity (10-11 mg L(-1)day(-1)) and carbohydrate productivity (13-16 mg L(-1)day(-1)) by S. obliquus after 6 days of cultivation. Food wastewater increased the palmitic and oleic acid contents up to 8 and 6%, respectively. Thus, application of food wastewater and flue gas CO2 can be employed for enhancement of growth, lipid/carbohydrate productivity and wastewater treatment efficiency of S. obliquus under mixotrophic condition, which can lead to development of a cost effective strategy for microalgal biomass production.

  12. Chemical reaction engineering studies on cocracking of petroleum vacuum residue with coal, plastics, and biomass (bagasse and petrocrop)

    SciTech Connect

    Ahmaruzzaman, M.; Sharma, D.K.

    2007-07-01

    This article deals with the studies on cocracking of petroleum vacuum residue (XVR) with thermosetting plastic, I. e., bakelite (BL), Samla coal (SC), biomass, I. e., bagasse (BG) or C. procera (CL) and their binary, ternary, and quaternary mixtures in a thermogravimetric analyzer (TGA). The kinetic studies were performed using the Coats and Redfern kinetic modeling equation. The overall activation energies obtained were 25 kJ/mole for petroleum vacuum residue, 99 kJ/mole for polypropylene, 21 kJ/mole for coal, 23 kJ/mole for Calotropis procera, and 25 kJ/mole for the combination of these four materials. However, other models, such as van Krevelan et al. and Horowitz and Metzger have also been used in some cases to compare the results with those obtained by the Coats and Redfern kinetic models. In the present work, the effect of catalysts on the cracking of Basra vacuum residue (BVR) has also been reported.

  13. Lipid Extracted Microalgal Biomass Residue as a Fertilizer Substitute for Zea mays L.

    PubMed

    Maurya, Rahulkumar; Chokshi, Kaumeel; Ghosh, Tonmoy; Trivedi, Khanjan; Pancha, Imran; Kubavat, Denish; Mishra, Sandhya; Ghosh, Arup

    2015-01-01

    High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha(-1)); T3 to T6-100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10-100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant(-1)), which was closely followed by that (63.48 g plant(-1)) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no

  14. Lipid Extracted Microalgal Biomass Residue as a Fertilizer Substitute for Zea mays L.

    PubMed Central

    Maurya, Rahulkumar; Chokshi, Kaumeel; Ghosh, Tonmoy; Trivedi, Khanjan; Pancha, Imran; Kubavat, Denish; Mishra, Sandhya; Ghosh, Arup

    2016-01-01

    High volumes of lipid extracted microalgal biomass residues (LMBRs) are expected to be produced upon commencement of biodiesel production on a large scale, thus necessitating its value addition for sustainable development. LMBRs of Chlorella variabilis and Lyngbya majuscula were employed to substitute the nitrogen content of recommended rate of fertilizer (RRF) for Zea mays L. The pot experiment comprised of 10 treatments, i.e., T1 (No fertilizer); T2 (RRF-120 N: 60 P2O5: 40 K2O kg ha−1); T3 to T6—100, 75, 50, and 25% N through LMBR of the Chlorella sp., respectively; T7 to T10—100, 75, 50, and 25% N through LMBR of Lyngbya sp., respectively. It was found that all LMBR substitution treatments were at par to RRF with respect to grain yield production. T10 gave the highest grain yield (65.16 g plant−1), which was closely followed by that (63.48 g plant−1) under T5. T10 also recorded the highest phosphorus and potassium contents in grains. T4 was markedly superior over control in terms of dry matter accumulation (DMA) as well as carbohydrate content, which was ascribed to higher pigment content and photosynthetic activity in leaves. Even though considerably lower DMA was obtained in Lyngbya treatments, which might have been due to the presence of some toxic factors, no reduction in grain yield was apparent. The length of the tassel was significantly higher in either of the LMBRs at any substitution rates over RRF, except T6 and T7. The ascorbate peroxidase activity decreased with decreasing dose of Chlorella LMBR, while all the Lyngbya LMBR treatments recorded lower activity, which were at par with each other. Among the Chlorella treatments, only T5 recorded significantly higher values of glutathione reductase activity over RRF, while the rest were at par. There were significant increases in carbohydrate and crude fat, respectively, only in T4 and T3 over RRF, while no change was observed in crude protein due to LMBR treatments. Apparently, there was no

  15. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-02-23

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and (1)H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass.

  16. SERI Biomass Program

    NASA Astrophysics Data System (ADS)

    Bergeron, P. W.; Corder, R. E.; Hill, A. M.; Lindsey, H.; Lowenstein, M. Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  17. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge

    SciTech Connect

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-15

    Highlights: • Two strategies to reduce PCDD/F formation when co-firing solid recovered fuel (SRF) and biomass. • They were co-combustion with municipal sewage sludge (MSS) and addition of ammonium sulphate. • PCDD/Fs were significantly reduced for a biomass rich in chlorine when adding ammonium sulphate. • MSS had a suppressing effect on PCDD/F formation during co-combustion with SRF. • A link is presented between gaseous alkali chlorides, chlorine in deposits and PCDD/F formation. - Abstract: Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW{sub th} circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS

  18. Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-microXRF spectroscopy.

    PubMed

    Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai

    2007-09-01

    By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.

  19. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    SciTech Connect

    George, Anthe; Geier, Manfred; Dedrick, Daniel E.

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  20. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.

    PubMed

    Lee, Chang Soo; Lee, Sang-Ah; Ko, So-Ra; Oh, Hee-Mock; Ahn, Chi-Yong

    2015-01-01

    Effects of photoperiod were investigated in lab-scale photobioreactors containing algal-bacterial consortia to reduce organic nutrients from municipal wastewater. Under three photoperiod conditions (12 h:12 h, 36 h:12 h, and 60 h:12 h dark–light cycles), nutrient removals and biomass productions were measured along with monitoring microbial population dynamics. After a batch operation for 12 days, 59–80% carbon, 35–88% nitrogen, and 43–89% phosphorus were removed from influents, respectively. In this study, carbon removal was related positively to the length of dark cycles, while nitrogen and phosphorus removals inversely. On the contrast, the highest microbial biomass in terms of chlorophyll a, dry cell weight, and algal/bacterial rRNA gene markers was produced under the 12 h:12 h dark–light cycle among the three photoperiods. The results showed 1) simultaneous growths between algae and bacteria in the microbial consortia and 2) efficient nitrogen and phosphorus removals along with high microbial biomass production under prolonged light conditions. Statistical analyses indicated that carbon removal was significantly related to the ratio of bacteria to algae in the microbial consortia along with prolonged dark conditions (p < 0.05). In addition, the ratio of nitrogen removal to phosphorus removal decreased significantly under prolonged dark conditions (p < 0.001). These results indicated that the photoperiod condition has remarkable impacts on adjusting nutrient removal, producing microbial biomass, and altering algal-bacterial population dynamics. Therefore, the control of photoperiod was suggested as an important operating parameter in the algal wastewater treatment.

  1. Environmental analysis of biomass-ethanol facilities

    SciTech Connect

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  2. Cellulosic butanol production from agricultural biomass and residues: Recent advances in technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter details the recent advances made on bioconversion of lignocellulosic biomass to butanol, a superior biofuel that can be used in internal combustion engines or transportation industry. It should be noted that butanol producing cultures cannot tolerate or produce more than 20-30 g/L of ac...

  3. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  4. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.

    PubMed

    Svensson, Malin; Berg, Magnus; Ifwer, Karin; Sjöblom, Rolf; Ecke, Holger

    2007-06-01

    Co-landfilling of incineration ash and cellulose might facilitate the alkaline degradation of cellulose. A major degradation product is isosaccharinic acid (ISA), a complexing agent for metals. The impact of ISA on the mobility of Pb, Zn, Cr, Cu and Cd from a municipal solid waste incineration dry scrubber residue was studied at laboratory using a reduced 2(5-1) factorial design. Factors investigated were the amount of calcium isosaccharinate (Ca(ISA)(2)), L/S ratio, temperature, contact time and type of atmosphere (N(2), air, O(2)). The effects of pH and Ca(ISA)(2) as well as other factors on the leaching of metals were quantified and modelled using multiple linear regression (alpha=0.05). Cd was excluded from the study since the concentrations were below the detection limit. The presence of Ca(ISA)(2) resulted in a higher leaching of Cu indicating complex formation. Ca(ISA)(2) alone had no effect on the leaching of Pb, Zn and Cr. A secondary effect on the mobilization was predicted to occur since Ca(ISA)(2) had a positive effect on the pH and the leaching of Pb, Zn and Cr increased with increasing pH. The leaching of Pb varied from 24 up to 66 wt.% of the total Pb amount (1.74+/-0.02 g(kgTS)(-1)) in the dry scrubber residue. The corresponding interval for Zn (7.29+/-0.07 g(kgTS)(-1)) and Cu (0.50+/-0.02 g(kgTS)(-1)) were 0.5-14 wt.% of Zn and 0.8-70wt.% of Cu. Maximum leaching of Cr (0.23+/-0.03 g(kgTS)(-1)) was 4.0 wt.%. At conditions similar to a compacted and covered landfill (4 degrees C, 7 days, 0 vol.% O(2)) the presence of ISA can increase the leaching of Cu from 2 to 46 wt.% if the amount of cellulose-based waste increases 20 times, from the ratio 1:100 to 1:5. As well, the leaching of Pb, Zn, and Cr can increase from 32 to 54 wt.% (Pb), 0.8-8.0 wt.% (Zn), and 0.5 to 4.0 wt.% (Cr) depending on the amount of cellulose and L/S ratio and pH value. Therefore, a risk (alpha=0.05) exists that higher amounts of metals are leached from landfills where cellulose

  5. Washington State biomass data book

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  6. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.

    PubMed

    Zhang, Chunmin; Zhang, Yalei; Zhuang, Baolu; Zhou, Xuefei

    2014-11-01

    Supplementing proper nutrients could be a strategy for enhancing algal biomass, nutrients uptake and lipid accumulation in the coupling system of biodiesel production and municipal wastewater treatment. However, there is scant information reporting systematic studies on screening and optimization of key supplemented components in the coupling system. The main factors were scientifically screened and optimized using statistical methods. Plackett-Burman design (PBD) was used to explore the roles of added nutrient factors, whereas response surface methodology (RSM) was employed for optimization. Based on the statistic analysis, the optimum added TP and FeCl3·6H2O concentrations for Scenedesmus obliquus-like microalgae growth, nutrients uptake and lipid accumulation were 4.41 mg L(-1) and 6.48 mg L(-1), respectively. The corresponding biomass, lipid content and TN/TP removal efficiency were 1.46 g L(-1), 36.26% and >99%. The predicted value agreed well with the experimental value, as determined by validation experiments, which confirmed the availability and accuracy of the model.

  7. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.

    PubMed

    Hernández, D; Solana, M; Riaño, B; García-González, M C; Bertucco, A

    2014-10-01

    Renewable fuels and energy are of major concern worldwide and new raw materials and processes for its generation are being investigated. Among these raw materials, algae are a promising source of lipids and energy. Thus, in this work four different algae have been used for lipid extraction and biogas generation. Lipids were obtained by supercritical CO2 extraction (SCCO2), while anaerobic digestion of the lipid-exhausted algae biomass was used for biogas production. The extracted oil composition was analyzed (saturated, monounsaturated and polyunsaturated fatty acids) and quantified. The highest lipid yields were obtained from Tetraselmis sp. (11%) and Scenedesmus almeriensis (10%), while the highest methane production from the lipid-exhausted algae biomass corresponded to Tetraselmis sp. (236mLCH4/gVSadded).

  8. Critical analysis of the integration of residual municipal solid waste incineration and selective collection in two Italian tourist areas.

    PubMed

    Ranieri, Ezio; Rada, Elena Cristina; Ragazzi, Marco; Masi, Salvatore; Montanaro, Comasia

    2014-06-01

    Municipal solid waste management is not only a contemporary problem, but also an issue at world level. In detail, the tourist areas are more difficult to be managed. The dynamics of municipal solid waste production in tourist areas is affected by the addition of a significant amount of population equivalent during a few months. Consequences are seen in terms of the amount of municipal solid waste to be managed, but also on the quality of selective collection. In this article two case studies are analyzed in order to point out some strategies useful for a correct management of this problem, also taking into account the interactions with the sector of waste-to-energy. The case studies concern a tourist area in the north of Italy and another area in the south. Peak production is clearly visible during the year. Selective collection variations demonstrate that the tourists' behavior is not adequate to get the same results as with the resident population.

  9. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge.

    PubMed

    Åmand, Lars-Erik; Kassman, Håkan

    2013-08-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MW(th) circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel.

  10. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks, and linters from cotton gin waste (CGW), guayule whole plant, and gu...

  11. Laboratory measurements of emissions of nonmethane volatile organic compounds from biomass burning in Chinese crop residues

    NASA Astrophysics Data System (ADS)

    Inomata, S.; Tanimoto, H.; PAN, X.; Taketani, F.; Komazaki, Y.; Miyakawa, T.; Kanaya, Y.; Wang, Z.

    2014-12-01

    The emission factors (EFs) of volatile organic compounds (VOCs) from the burning of Chinese crop residue were investigated as a function of modified combustion efficiency by the laboratory experiments. The VOCs including acetonitrile, aldehydes/ketones, furan, and aromatic hydrocarbons were monitored by proton-transfer-reaction mass spectrometry. Two samples, wheat straw and rape plant, were burned in dry conditions and for some experiments wheat straw was burned under wet conditions. We compared the present data to the field data reported by Kudo et al. [2014]. The agreement between the field and laboratory data was obtained for aromatics for relatively more smoldering data of dry samples but the field data were slightly underestimated compared with the laboratory data for oxygenated VOCs (OVOCs) and acetonitrile. When the EFs from the burning of wet samples were investigated, the underestimations for OVOCs and acetonitrile were improved compared with the data of dry samples. It may be a property of the burning of crop residue in the region of high temperature and high humidity that some inside parts of piled crop residue and/or the crop residue facing on the ground are still wet. But the ratios for acetic acid/glycolaldehyde was still lower than 1. This may suggest that strong loss processes of acetic acid/glycolaldehyde are present in the fresh plume.Kudo S., H. Tanimoto, S. Inomata, S. Saito, X. L. Pan, Y. Kanaya, F. Taketani, Z. F. Wang, H. Chen, H. Dong, M. Zhang, and K. Yamaji (2014), Emissions of nonmethane volatile organic compounds from open crop residue burning in Yangtze River Delta region, China, J. Geophys. Res. Atmos., 119, 7684-7698, doi: 10.1002/2013JD021044.

  12. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability.

  13. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    PubMed

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  14. Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass.

    PubMed

    Ahmaruzzaman, M

    2008-07-01

    Higher heating value (HHV) and analysis of chars obtained from cocracking of petroleum vacuum residue (XVR) with coal (SC), biomass (BG, CL) and plastics (PP, PS, BL) are important which define the energy content and determine the clean and efficient use of these chars. The main aim of the present study is to analyze the char obtained from cocracking in terms of their proximate analysis data and determination of the HHV of the chars. The char obtained from XVR+PP cocracking showed a HHV of 32.84 MJ/kg, whereas that from CL cracking showed a HHV of 18.52 MJ/kg. The experimentally determined heating values of the char samples obtained from cocracking have been correlated with the theoretical equation based on proximate analysis data. There exists a variety of correlations for predicting HHV from proximate analysis of fuels. Based upon proximate analysis data, the models were tested. The best results show coefficient of determination (R2) of 0.965 and average absolute and bias error of 3.07% and 0.41%, respectively. The heating values obtained from the model were in good agreement with that obtained by experiment. Proximate analysis of the chars obtained from the cocracking of XVR with coal, biomass and plastics showed that there exists a definite interaction of the reactive species, when they were cocracked together.

  15. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics.

  16. Release of nitrogen precursors from coal and biomass residues in a bubbling fluidized bed

    SciTech Connect

    P. Abelha; I. Gulyurtlu; I. Cabrita

    2008-01-15

    This work was undertaken with the aim of quantifying the relative amounts of NH{sub 3} and HCN released from different residues during their devolatilization under fluidized bed conditions. The results were compared with data collected for bituminous coals of different origin. The relation between amounts of HCN and NH{sub 3} released and the levels of NOX and N{sub 2}O formed during cocombustion was also addressed. The partitioning of nitrogen between volatiles and char was also quantified. The pyrolysis studies were undertaken in a small fluidized bed reactor of 80 mm of ID and 500 mm high using an inert atmosphere (N{sub 2}). The HCN and NH{sub 3} were quantified by bubbling the pyrolysis gases in absorbing solutions which were subsequently analyzed with selective electrodes. The combustion studies were carried out on a pilot installation. The fluidized bed combustor is square in cross section with each side being 300 mm long. There is secondary air supply to the freeboard at different heights to deal with high volatile fuels as almost all waste materials are. The temperatures in the bed and in the freeboard and that of the flue gases leaving the reactor were continuously monitored. The results obtained suggest that, while coal releases nitrogen mostly as HCN, residues like RDF and sewage sludge give out fuel-N in greater quantities as NH{sub 3}. Residues at fluidized bed combustion (FBC) temperatures release more than 80% of the fuel-N with the volatiles. The NH{sub 3} evolved during pyrolysis acted as a reducing agent on NOX emissions. The presence of calcium significantly reduces the emission of N{sub 2}O probably by interfering with HCN chemistry. With high amounts of residues in the fuel mixture, the relative importance of char on the nitrogen chemistry substantially decreases. By using cocombustion, it is possible to reduce fuel-N conversion to NOX and N{sub 2}O, by tuning the amounts of coal and residue in the mixture. 29 refs., 18 figs., 3 tabs.

  17. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  18. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets.

    PubMed

    Wang, Congwei; Peng, Jianghong; Li, Hui; Bi, Xiaotao T; Legros, Robert; Lim, C J; Sokhansanj, Shahab

    2013-01-01

    Oxidative torrefaction of sawdust with a carrier gas containing 3-6% O(2) was investigated in a TG and a fluidized bed reactor, with the properties of the torrefied sawdust and pellets compared with traditional torrefaction without any O(2), as well as the dry raw material. It is found that the oxidative torrefaction process produced torrefied sawdust and pellets of similar properties as normally torrefied sawdust and corresponding pellets, especially on the density, energy consumption for pelletization, higher heating value and energy yield. For moisture absorption and hardness of the torrefied pellets, the oxidative torrefaction process showed slightly poor but negligible performance. Therefore, it is feasible to use oxygen laden combustion flue gases as the carrier gas for torrefaction of biomass. Besides, torrefied sawdust can be made into dense and strong pellets of high hydrophobicity at a higher die temperature than normally used in the production of traditional control pellets.

  19. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  20. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, James L.; Chen, Guang Jiong

    1998-01-01

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  1. Bioconversion of waste biomass to useful products

    DOEpatents

    Grady, J.L.; Chen, G.J.

    1998-10-13

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  2. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue.

    PubMed

    Kumar, Adepu K; Parikh, Bhumika S; Pravakar, Mohanty

    2016-05-01

    The present investigation demonstrated pretreatment of lignocellulosic biomass rice straw using natural deep eutectic solvents (NADESs), and separation of high-quality lignin and holocellulose in a single step. Qualitative analysis of the NADES extract showed that the extracted lignin was of high purity (>90 %), and quantitative analysis showed that nearly 60 ± 5 % (w/w) of total lignin was separated from the lignocellulosic biomass. Addition of 5.0 % (v/v) water during pretreatment significantly enhanced the total lignin extraction, and nearly 22 ± 3 % more lignin was released from the residual biomass into the NADES extract. X-ray diffraction studies of the untreated and pretreated rice straw biomass showed that the crystallinity index ratio was marginally decreased from 46.4 to 44.3 %, indicating subtle structural alterations in the crystalline and amorphous regions of the cellulosic fractions. Thermogravimetric analysis of the pretreated biomass residue revealed a slightly higher T dcp (295 °C) compared to the T dcp (285 °C) of untreated biomass. Among the tested NADES reagents, lactic acid/choline chloride at molar ratio of 5:1 extracted maximum lignin of 68 ± 4 mg g(-1) from the rice straw biomass, and subsequent enzymatic hydrolysis of the residual holocellulose enriched biomass showed maximum reducing sugars of 333 ± 11 mg g(-1) with a saccharification efficiency of 36.0 ± 3.2 % in 24 h at 10 % solids loading.

  3. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.

    PubMed

    González-Vila, F J; Tinoco, P; Almendros, G; Martin, F

    2001-03-01

    The structural transformations undergone by lignocellulosic biomass (freeze-dried rye grass, Lolium rigidum) subjected to progressive isothermal heating (burning at 350 degrees C under oxidizing conditions for 30, 45, 60, 75, and 90 s) have been monitored by Curie-point pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The pyrograms suggest that even charred residues after severe heating (carbon loss ca. 50%) still contain substantial concentrations of some resistant plant structural components. Several trends were observed when monitoring the relative concentrations of the different groups of pyrolysis compounds released during successive charring stages: (i) the tetrapyrrole moiety of chlorophylls is rapidly destroyed as indicated by the decreasing yields of pyrroles and pyrrolines, whereas the phytol backbone is comparatively more resistant, leading to phytadienes after dehydration and reduction; (ii) the increasing yields of imidazoles from progressively heated samples (maximum at 45 s stage) suggest accumulation of newly formed nitrogen-containing compounds that may survive natural fires; (iii) the lignin backbone shows a relative resistance, the yields of aromatic products pointing to progressive demethoxylation; and, (iv) a selective accumulation of recalcitrant alkyl material occurred, which is interpreted as the result of thermal condensation of hydrocarbons and fatty acids into macromolecular materials in the charred residue. In terms of the intensity of the isothermal heating, the yields of the different classes of alkyl compounds follow the order phytadienes < fatty acids < alkanes < wax esters < sterols.

  4. Biomass conversion to mixed alcohols

    SciTech Connect

    Holtzapple, M.T.; Loescher, M.; Ross, M.

    1996-10-01

    This paper discusses the MixAlco Process which converts a wide variety of biomass materials (e.g. municipal solid waste, sewage sludge, agricultural residues) to mixed alcohols. First, the biomass is treated with lime to enhance its digestibility. Then, a mixed culture of acid-forming microorganisms converts the lime-treated biomass to volatile fatty acids (VFA) such as acetic, propionic, and butyric acids. To maintain fermentor pH, a neutralizing agent (e.g. calcium carbonate or lime) is added, so the fermentation actually produces VFA salts such as calcium acetate, propionate, and butyrate. The VFA salts are recovered and thermally converted to ketones (e.g. acetone, methylethyl ketone, diethyl ketone) which are subsequently hydrogenated to mixed alcohols (e.g. isopropanol, isobutanol, isopentanol). Processing costs are estimated at $0.72/gallon of mixed alcohols making it potentially attractive for transportation fuels.

  5. CONCERNS WITH THE BENEFICIAL REUSE IN AGRICULTURE OF RESIDUALS FROM MUNICIPAL WASTEWATER TREATMENT AND ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The pathogenic organisms that may be present in such residuals, processes commonly employed for controlling them; these processes' effectiveness and how extensively they are used; and issues and concerns with beneficial reuse will be discussed. Processes presently being researche...

  6. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law.

  7. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  8. Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances.

    PubMed

    Herod, Alan A; Zhuo, Yuqun; Kandiyoti, Rafael

    2003-06-30

    Size-exclusion chromatography (SEC) using 1-methyl-2-pyrrolidinone (NMP) as eluent has been calibrated using various standard polymers and model compounds and applied to the analysis of extracts of coal, petroleum and kerogens, to petroleum vacuum residues, soots, biomass tars and humic substances. Three separate columns of different molecular mass (MM) ranges were used, with detection by UV absorption; an evaporative light scattering detector was used for samples with no UV absorption. Fractionation was useful to separate signal from the less abundant high-mass material, which was normally masked by the strong signal from the more abundant low-mass material in the absence of fractionation. Fractionation methods used to isolate high-mass materials before SEC analysis included planar chromatography, column chromatography and solvent solubility. The apparently large molecules were concentrated into the fractions not soluble in common solvents and were relatively immobile in planar chromatography. All samples and fractions contained some material excluded from the column porosity. Evidence from other techniques suggests that the excluded material is of different structures from that of the resolved material rather than consisting of aggregates of small molecules. We speculate that the excluded material may elute early because the structures of this material are three-dimensional rather than planar or near planar.

  9. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    PubMed

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.

  10. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    ERIC Educational Resources Information Center

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  11. Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production.

    PubMed

    Torri, Cristian; Samorì, Chiara; Adamiano, Alessio; Fabbri, Daniele; Faraloni, Cecilia; Torzillo, Giuseppe

    2011-09-01

    The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/w(dry-biomass). This oil was converted into biodiesel with a 8.7 ± 1% w/w(dry-biomass) yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/w(dry-biomass)) and 28 ± 2% w/w(dry-biomass) of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.

  12. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis.

    PubMed

    Xu, Xinyang; Zhao, Bing; Sun, Manli; Chen, Xi; Zhang, Mingchuan; Li, Haibo; Xu, Shucong

    2017-02-21

    Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell blend have been studied in this work. The behavior of co-pyrolysis was researched by a method of multi-heating rates and different blend ratios to analyze thermal decomposition stages. The experimental data of the blended samples in TG-DTG plots were compared with calculated data to investigate the interactions during co-pyrolysis. The bio-chars investigated by SEM and FTIR spectra were used to examine the physical and chemical changes. The results showed there are four thermal decomposition stages during co-pyrolysis, with hydrocarbon transforming to gas evolution in the second and the third stages. The inhibitive interaction occurred between 260 and 400°C and the accelerative interaction occurred between 450 and 900°C during co-pyrolysis. The activation energy of the blended sample was 51.97-178.84kJ/mol in the second stage and 207.04-630.73kJ/mol in the third stage calculated by DAEM.

  13. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  14. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.

    PubMed

    Heberer, Th; Reddersen, K; Mechlinski, A

    2002-01-01

    Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.

  15. Impact of liming and drying municipal sewage sludge on the amount and availability of (14)C-acetyl sulfamethoxazole and (14)C-acetaminophen residues.

    PubMed

    Geng, Chunnu; Bergheaud, Valérie; Garnier, Patricia; Zhu, Yong-Guan; Haudin, Claire-Sophie

    2016-01-01

    Acetyl Sulfamethoxazole (AC-SMX) and acetaminophen (ACM) can be found in municipal sewage sludge, and their content and availability may be influenced by sludge treatments, such as drying and liming. A sludge similarly centrifuged with/without a flocculant was spiked with (14)C-labelled AC-SMX or ACM. Then, it was either limed (20% CaO) or/and dried under different laboratory conditions (1 week at ambient temperature; and 48 h at 40 or 80 °C). The total amount and distribution of the (14)C-compounds among several chemical fractions, based on the sludge floc definition, were assessed at the end of the treatments. All the (14)C-activity brought initially was recovered in the limed and/or dried sludges for AC-SMX but only between 44.4 and 84.9% for ACM, with the highest rate obtained for the limed sludge. Drying at 80 °C or liming increased the percentage of the sludge total organic carbon recovered in the extracts containing soluble extracellular polymeric substances (S-EPS) and the percentage of the total (14)C-activity extracted simultaneously. The non-extractable residues represented only 3.9-11.6% of the total (14)C-activity measured in the treated sludges for AC-SMX and 16.9-21.8% for ACM. The presence of AC-SMX and ACM residues in the treated sludges, after liming and drying under different conditions, was shown using some (14)C-labelled molecules. At this time scale and according to the extraction method selected, most of the (14)C-residues remained soluble and easily extractable for both compounds. This result implies that certain precautions should be taken when storing sludges before being spread on the field. Sludge piles, particularly the limed sludge, should be protected from rain to limit the production of lixiviates, which may contain residues of AC-SMX and ACM.

  16. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the north-east WPCP plant of Philadelphia.

    PubMed

    Glindemann, Dietmar; Novak, John; Witherspoon, Jay

    2006-01-01

    This study shows for the first time that overlooked mg/L concentrations of industrial dimethyl sulfoxide (DMSO) waste residues in sewage can cause "rotten cabbage" odor problems bydimethyl sulfide (DMS) in conventional municipal wastewater treatment. In laboratory studies, incubation of activated sludge with 1-10 mg/L DMSO in bottles produced dimethyl sulfide (DMS) at concentrations that exceeded the odor threshold by approximately 4 orders of magnitude in the headspace gas. Aeration at a rate of 6 m3 air/m3 sludge resulted in emission of the DMS into the exhaust air in a manner analogous to that of an activated sludge aeration tank. A field study atthe NEWPCP sewage treatment plant in Philadelphia found DMSO levels intermittently peaking as high as 2400 mg/L in sewage near an industrial discharger. After 3 h, the DMSO concentration in the influent to the aeration tank rose from a baseline level of less than 0.01 mg/L to a level of 5.6 mg/L and the DMS concentration in the mixed liquor rose from less than 0.01 to 0.2 mg/L. Finding this link between the intermittent occurrence of DMSO residues in influent of the treatment plant and the odorant DMS in the aeration tank was the keyto understanding and eliminating the intermittent "canned corn" or "rotten cabbage" odor emissions from the aeration tank that had randomly plagued this plant and its city neighborhood for two decades. Sewage authorities should consider having wastewater samples analyzed for DMSO and DMS to check for this possible odor problem and to determine whether DMSO emission thresholds should be established to limit odor generation at sewage treatment plants.

  17. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.

    PubMed

    Inanc, Bulent; Inoue, Yuzo; Yamada, Masato; Ono, Yusaku; Nagamori, Masanao

    2007-03-22

    In this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V). However, no significant release of heavy metals under aerobic conditions was observed compared to anaerobic and control cells. Furthermore, there was no meaningful correlation between oxidation-reduction potential (ORP) and heavy metal concentrations in the leachates although some researchers speculate that aeration may result in excessive heavy metal leaching. No meaningful correlation between dissolved organic carbon (DOC) and leaching of Cu and Pb was another interesting observation. The only heavy metal that exceeded the state discharge limits (10mg/l, to be enforced after April 2005) in the aerobic cell leachate samples was boron and there was no correlation between boron leaching and ORP. Higher B levels in aerobic cell should be due to comparatively lower pH values in this cell. However, it is anticipated that this slightly increased concentrations of B (maximum 25mg/l) will not create a risk for bioreactor operation; rather it should be beneficial for long-term stability of the landfill through faster washout. It was concluded that aerobization of landfills of heavy metal rich MSWI bottom ash and shredded residues is possible with no dramatic increase in heavy metals in the leachate.

  18. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    PubMed

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill.

  19. Batch tests on mineral deposit formation due to co-mingling of leachates derived from municipal solid wastes and waste-to-energy combustion residues.

    PubMed

    Cardoso, Antonio J; Levine, Audrey D

    2009-02-01

    Deposit formation in leachate collection systems can be problematic for landfill operations. Deposits from municipal solid waste (MSW) derived leachates are impacted by microbial activity and biofilm development, whereas leachates generated from co-disposal of MSW with combustion residues (CR) from waste-to-energy (WTE) facilities and other mineral-rich waste materials are more prone to forming dense mineral deposits dominated by calcium carbonate. In this study, leachates from laboratory lysimeters containing either WTE-CR or shredded MSW were mixed at different volumetric ratios. The mixed leachates were incubated for 5 weeks in batch tests to evaluate the potential for formation of precipitates. Although mineral precipitates have been reported to form in landfills with no co-disposal practices, in this study mineral precipitates did not form in either the WTE-CR derived leachate or the MSW derived leachate, but formed in all leachate mixtures. Mineral precipitates consisted of calcium carbonate particles, with the highest yield from a 1:1 combination of the WTE-CR derived leachate mixed with the MSW derived leachate. The introduction of gaseous carbon dioxide or air into WTE-CR derived leachate resulted in the production of particles of similar chemical composition but different morphology. Operation of landfills to prevent co-mingling of mineral-rich leachates with microbially active leachates and/or to control leachate exposure to sources of carbon dioxide may help to prevent this type of precipitate formation in leachate collection systems.

  20. Development potentials and policy options of biomass in China.

    PubMed

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to10(6) tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts' energy distribution also varies from province to province in China

  1. Development Potentials and Policy Options of Biomass in China

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Liu, Litao; Yao, Zhijun; Liu, Gang; Lucas, Mario

    2010-10-01

    Biomass, one of the most important renewable energies, is playing and will continue to play an important role in the future energy structure of the world. This article aims to analyze the position and role, assess the resource availability, discuss the geographic distribution, market scale and industry development, and present the policy options of biomass in China. The resource availability and geographical distribution of biomass byproducts are assessed in terms of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater. The position of biomass use for power generation is just next to hydropower among types of renewable energy in China. The potential quantity of all biomass byproducts energy in 2004 is 3511 Mtce (Mtce is the abbreviation of million tons of coal equivalents and 1 Mtce is equal to106 tce.), while the acquirable quantity is 460 Mtce. Biomass energy plays a critical role in rural regions of China. The geographical distribution and quantity of biomass byproducts resources depends mainly on the relationship between ecological zones and climate conditions. Our estimation shows that the total quantity of crop residues, manure, forest and wood biomass byproducts, municipal waste and wastewater resources are 728, 3926, 2175, 155 and 48240 Mt (million tons), respectively. Crop residues come mainly from the provinces of Henan, Shandong, Heilongjiang, Jilin and Sichuan. All manure is mainly located in the provinces of Henan, Shandong, Sichuan, Hebei and Hunan. Forest and wood biomass byproducts are mainly produced in the provinces or autonomous regions of Tibet, Sichuan, Yunnan, Heilongjiang and Inner Mongolia, while most of municipal waste mainly comes from Guangdong, Shandong, Heilongjiang, Hubei and Jiangsu. Most of wastewater is largely discharged from advanced provinces like Guangdong, Jiangsu, Zhejiang, Shandong and Henan. Biomass byproducts’ energy distribution also varies from province to province in China. Based on

  2. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  3. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process.

    PubMed

    Hoang, Minh Hien; Ha, Nguyen Cam; Thom, Le Thi; Tam, Luu Thi; Anh, Hoang Thi Lan; Thu, Ngo Thi Hoai; Hong, Dang Diem

    2014-12-01

    Today microalgae represent a viable alternative source of squalene for commercial application. The species Schizochytrium mangrovei, a heterotrophic microalga, has been widely studied and provides a high amount of squalene, polyunsaturated fatty acids and has good profiles for biodiesel production. Our work was aimed at examining the squalene contents in Vietnam's heterotrophic marine microalga S. mangrovei PQ6 biomass and residues of the biodiesel process from this strain. Thin-layer chromatography and high-performance liquid chromatography (HPLC) methods were successfully applied to the determination of squalene in S. mangrovei PQ6. The squalene content and production of S. mangrovei PQ6 reached 33.00 ± 0.02 and 33.04 ± 0.03 mg g(-1) of dry cell weight; and 0.992 g L(-1) and 1.019 g L(-1) in 30 and 150 L bioreactors, respectively after 96 h of fermentation. In addition, squalene was also detected in spent biomass (approximately 80.10 ± 0.03 mg g(-1) of spent biomass) from the S. mangrovei PQ6 biodiesel production process. The structure of squalene in residues of the biodiesel process was confirmed from its nuclear magnetic resonance spectra. The results obtained from our work suggest that there is tremendous potential in the exploitation of squalene as a value-added by-product besides biodiesel from S. mangrovei PQ6 to reduce biodiesel price.

  4. SERI biomass program annual technical report: 1982

    SciTech Connect

    Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

    1983-02-01

    The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

  5. Ethanol from biomass: A status report

    SciTech Connect

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  6. Characterization of fine and carbonaceous particles emissions from pelletized biomass-coal blends combustion: Implications on residential crop residue utilization in China

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Wang, Yan; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Li, Jun; Zhang, Gan

    2016-09-01

    Bulk biofuel, biomass pellets and pelletized biomass-coal blends were combusted in a typical rural conventional household stove and a high-efficiency stove. Reductions in PM2.5, organic carbon (OC) and elemental carbon (EC) emissions were evaluated by comparing emission factors (EFs) among 19 combinations of biofuel/residential stove types measured using a dilution sampling system. In the low-efficiency stove, the average EFs of PM2.5, OC, and EC of biomass pellets were 2.64 ± 1.56, 0.42 ± 0.36, and 0.30 ± 0.11 g/kg, respectively, significantly lower than those burned in bulk form. EFPM2.5 and EFOC of pelletized biomass combustion in the high-efficiency stove were lower than those of the same biofuel burned in the low-efficiency stove. Furthermore, pelletized corn residue and coal blends burned in the high-efficiency stove could significantly decrease emissions. Compared with the bulk material burned in the low-efficiency stove, the reduction rates of PM2.5, OC and EC from pelletized blends in the high-efficiency stove can reach 84%, 96% and 93%, respectively. If the annually produced corn residues in 2010 had been blended with 10% anthracite coal powder and burnt as pellets, it would have reduced about 82% of PM2.5, 90-96% of OC and 81-92% of EC emission in comparison with burning raw materials in conventional household stoves. Given the low cost, high health benefit and reduction effect on atmospheric pollutants, pelletized blends could be a promising alternative to fossil fuel resources or traditional bulk biofuel.

  7. Energy from Biomass.

    ERIC Educational Resources Information Center

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  8. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  9. Prioritizing pharmaceuticals in municipal wastewater

    EPA Science Inventory

    Oral presentation at SETAC North America 32nd annual meeting, describing our prioritization of active pharmaceutical ingredients (APIs), based on estimates of risks posed by API residues originating from municipal wastewater. Goals of this project include prioritization of APIs f...

  10. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  11. Biomass Production and Soil Carbon Level Changes in Various Tillage, Residue Management, and Cropping Systems in Moderately High Organic Matter Soils in Eastern South Dakota, U.S.A.

    NASA Astrophysics Data System (ADS)

    Woodard, H. J.; Bly, A.

    2003-12-01

    A four-year replicated field study was conducted in eastern South Dakota to assess the impact of maize (Zea mays L.), soybean (Glycine max L.), and spring wheat (Triticum aestivum L.) on crop residue accumulation and soil carbon when various tillage, crop residue management, and crop rotation scenarios were applied. Before planting, half the plots were chisel plowed and harrowed (tilled vs. no-till treatments). Corn-soybean, soybean-wheat, or corn-wheat-soybean rotations were established (rotation treatments). After grain harvest, crop residues were removed on half of the plots (residue-removed vs. residue-retained treatments). The range of initial soil carbon levels (loss by ignition method) for the 0-15cm depth was 1.7-3.0%. Post-harvest crop residue accumulation was greatest for the residue-retained treatment compared to the residue-removed treatment and for the no-till treatment compared to the tilled treatment. In addition, surface biomass accumulation was greatest when maize was part of a crop rotation. Maize can produce greater levels of biomass compared to either spring wheat or soybean. The least surface biomass accumulation was measured in the soybean-wheat rotation.

  12. Carbon decomposition process of the residual biomass in the paddy soil of a single-crop rice field

    NASA Astrophysics Data System (ADS)

    Okada, K.; Iwata, T.

    2014-12-01

    In cultivated fields, residual organic matter is plowed into soil after harvest and decaying in fallow season. Greenhouse gases such as CO2 and CH4 is generated by the decomposition of the substantial organic matter and released into the atmosphere. In some fields, open burning is carried out by tradition, when carbon in residual matter is released into atmosphere as CO2. However, burning effect on carbon budget between crop lands and atmosphere is not entirely considered yet. In this study, coarse organic matter (COM) in paddy soil of a single-crop rice field was sampled on regular intervals between January, 2011 and August, 2014 The amount of carbon release from residual matter was estimated by analyzing of the variations in carbon content of COM. Effects of soil temperature (Ts) and soil water content (SWC) at the paddy field on the rate of carbon decomposition was investigated. Though decreasing rate of COM was much smaller in winter season, it is accelerated at the warming season between April and June every year. Decomposition was resisted for next rice cultivated season despite of highest soil temperature. In addition, the observational field was divided into two areas, and three time open burning experiments were conducted in November, 2011, 2012, and 2013. In each year, three sampling surveys, or plants before harvest and residuals before and after the burning experiment, were done. From these surveys, it is suggested that about 48±2% of carbon contents of above-ground plant was yield out as grain by harvest, and about 27±2% of carbon emitted as CO2 by burning. Carbon content of residuals plowed into soil after the harvest was estimated 293±1 and 220±36gC/m2 in no-burned and burned area, respectively, based on three-years average. It is estimated that 70 and 60% of the first input amount of COM was decomposed after a year in no-burned and burned area, respectively.

  13. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  14. Biomass [updated

    SciTech Connect

    Turhollow Jr, Anthony F

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  15. Global and Regional Potential for Biofuels From Residue and Waste

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Smith, S. J.

    2007-12-01

    As co-products, agricultural and forestry residues as well as municipal solid waste (MSW) represent potential low cost lignocellulosic biomass feedstocks for the production of second generation biofuels. For agriculture, the maximum supply is a function of crop-specific attributes (harvest index and energy content of residue) and total crop production (yield and total harvested area). For forestry, two potential residue streams are considered: residue left from timber harvesting (tree tops and branches), and residue from mills (wood scraps and sawdust). The harvest index, milling efficiencies, and energy content of wood are used to estimate the total potential supply of forestry residues. MSW is predicted as a function of GDP and the proportional waste composition indicative of various regions. Limiting factors for supply of biomass feedstock from these sources include agricultural and forest productivity, residue required to prevent soil erosion and maintain soil nutrients, and cost of aggregation and transport. Using the ObjECTS MiniCAM Integrated Assessment Model, the global role of residue biomass as a feedstock for biofuels is modeled for the next century under different climate policy scenarios.

  16. Survey of the use of biomass as a fuel to produce electric energy in the United States

    SciTech Connect

    Easterly, J.L.; Saris, E.C.

    1984-04-26

    A survey of utilities, municipalities, and small power and cogeneration facilities using biomass fuels to produce electric power found production to be in the five to 50 MW range. Wood is the major energy source, followed by agricultural residues, animal manure, municipal solid waste, landfill gas, and sewage gas. Summaries of the data break down the number of kilowatts produced from each energy source, the number of facilities, and the status of planning, construction, and operation at the facilties in each category. A regional breakdown by fuel type shows the South Atlantic and Mid-Atlantic regions to be the largest users of biomass. Utilities contribute only 10% of the biomass-generated capacity because it is generally easier for non-utility firms to collect and use biomass, some of which may be generated on the premises. 2 figures, 4 tables.

  17. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater.

    PubMed

    Li, Yecong; Zhou, Wenguang; Hu, Bing; Min, Min; Chen, Paul; Ruan, Roger R

    2012-09-01

    In this research, the effect of light intensity on biomass accumulation, wastewater nutrient removal through algae cultivation, and biodiesel productivity was investigated with algae species Chlorella kessleri and Chlorella protothecoide. The light intensities studied were 0, 15, 30, 60, 120, and 200 µmol m(-2) s(-1). The results showed that light intensity had profound impact on tested responses for both strains, and the dependence of these responses on light intensity varied with different algae strains. For C. kessleri, the optimum light intensity was 120 µmol m(-2) S(-1) for all responses except for COD removal. For C. protothecoide, the optimum light intensity was 30 µmol m(-2) S(-1). The major components of the biodiesel produced from algae biomass were 16-C and 18-C FAME, and the highest biodiesel contents were 24.19% and 19.48% of dried biomass for C. kessleri and C. protothecoide, respectively. Both species were capable of wastewater nutrients removal under all lighting conditions with high removal efficiencies.

  18. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products.

  19. Comparative life cycle assessment (LCA) of construction and demolition (C&D) derived biomass and U.S. northeast forest residuals gasification for electricity production.

    PubMed

    Nuss, Philip; Gardner, Kevin H; Jambeck, Jenna R

    2013-04-02

    With the goal to move society toward less reliance on fossil fuels and the mitigation of climate change, there is increasing interest and investment in the bioenergy sector. However, current bioenergy growth patterns may, in the long term, only be met through an expansion of global arable land at the expense of natural ecosystems and in competition with the food sector. Increasing thermal energy recovery from solid waste reduces dependence on fossil- and biobased energy production while enhancing landfill diversion. Using inventory data from pilot processes, this work assesses the cradle-to-gate environmental burdens of plasma gasification as a route capable of transforming construction and demolition (C&D) derived biomass (CDDB) and forest residues into electricity. Results indicate that the environmental burdens associated with CDDB and forest residue gasification may be similar to conventional electricity generation. Land occupation is lowest when CDDB is used. Environmental impacts are to a large extent due to coal cogasified, coke used as gasifier bed material, and fuel oil cocombusted in the steam boiler. However, uncertainties associated with preliminary system designs may be large, particularly the heat loss associated with pilot scale data resulting in overall low efficiencies of energy conversion to electricity; a sensitivity analysis assesses these uncertainties in further detail.

  20. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  1. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    NASA Astrophysics Data System (ADS)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  2. Energy conversion of biomass crops and agroindustrial residues by combined biohydrogen/biomethane system and anaerobic digestion.

    PubMed

    Corneli, Elisa; Dragoni, Federico; Adessi, Alessandra; De Philippis, Roberto; Bonari, Enrico; Ragaglini, Giorgio

    2016-07-01

    Aim of this study was to evaluate the suitability of ensiled giant reed, ensiled maize, ensiled olive pomace, wheat bran for combined systems (CS: dark fermentation+anaerobic digestion (AD)) producing hydrogen-rich biogas (biohythane), tested in batch under basic operational conditions (mesophilic temperatures, no pH control). Substrates were also analyzed under a single stage AD batch test, in order to investigate the effects of DF on estimated energy recovery (ER) in combined systems. In CS, maize and wheat bran exhibited the highest hydrogen potential (13.8 and 18.9NLkgVS(-1)) and wheat bran the highest methane potential (243.5NLkgVS(-1)). In one-stage AD, giant reed, maize and wheat bran showed the highest methane production (239.5, 267.3 and 260.0NLkgVS(-1)). Butyrate/acetate ratio properly described the dark fermentation, correlating with hydrogen production (r=0.92). Wheat bran proved to be a promising residue for CS in terms of hydrogen/methane potential and ER.

  3. Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops

    SciTech Connect

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; Ghiasi, Bahman; Kumar, Linoj; Sokhansanj, Shahab

    2016-04-05

    Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h-1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets, respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.

  4. Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2016-04-05

    Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h-1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets, respectively.more » The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less

  5. Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Veres, P. R.; Williams, J.; Yokelson, R. J.

    2015-01-01

    We deployed a high-resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass-burning emissions from peat, crop residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standard calibrations and composition sensitive, mass-dependent calibration curves was applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign the best identities to most major "exact masses", including many high molecular mass species. Using these methods, approximately 80-96% of the total NMOC mass detected by the PTR-TOF-MS and Fourier transform infrared (FTIR) spectroscopy was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of these are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open three-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic compounds were detected from many fuel types, that together accounted for 0.1-8.7% of the fuel nitrogen, and some may play a role in new particle formation.

  6. Two-phase photoperiodic cultivation of algal-bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater.

    PubMed

    Lee, Chang Soo; Oh, Hyung-Seok; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2016-01-01

    This study investigated the photoperiodic effects on the biomass production and nutrient removal in the algal-bacterial wastewater treatment, under the following three conditions: (1) a natural 12h:12h LD cycle, (2) a dark-elongated 12h:60h LD cycle, and (3) a two-phase photoperiodic 12h:60h LD, followed by 12h:12h LD cycles. The two-phase photoperiodic operation showed the highest dry cell weight and lipid productivity (282.6mgL(-1)day(-1), 71.4mgL(-1)day(-1)) and most efficient nutrient removals (92.3% COD, 95.8% TN, 98.1% TP). The genetic markers and sequencing analyses indicated rapid increments of bacteria, subsequent growths of Scenedesmus, and stabilized population balances between algae and bacteria. In addition, the two-phase photoperiod provided a higher potential for the algal-bacterial consortia to utilize various organic carbon substrates.

  7. Thermophilic biogasification of biomass

    SciTech Connect

    Ghosh, S.; Klass, D.L.; Edwards, V.H.; Christopher, R.W.

    1980-01-01

    Secondary sewage effluent- and fresh-water-grown water hyacinths (Eichhornia crassipes), Coastal Bermuda grass (Cynodon dactylon), and a hyacinth-grass-municipal solid waste-sludge (biomass-waste) blend were used as test feeds to develop a fast thermophilic biomass- digestion process. For the pure biomass feeds thermophilic digestion has no apparent advantage over mesophilic digestion, but the reverse is true for the biomass-waste blend. Alkaline pretreatment of the feed improved thermophilic digester performance substantially. For a given plant feed load, the reactor volume, culture-heating requirements, and CH4 production rate for thermophilic digestion of the pretreated biomass-waste feed were 18,46, and 135% of those for conventional mesophilic digestion. For a biomass-waste feed the respective volatile solids reduction and energy recovery efficiencies were 46 and 49% for thermophilic and 36 and 43% for mesophilic digestions.

  8. Northeast regional biomass program. Retrospective, 1983--1993

    SciTech Connect

    Savitt, S.; Morgan, S.

    1995-01-01

    Ten years ago, when Congress initiated the Regional Biomass Energy Program, biomass fuel use in the Northeast was limited primarily to the forest products industry and residential wood stoves. An enduring form of energy as old as settlement in the region, residential wood-burning now takes its place beside modern biomass combustion systems in schools and other institutions, industrial cogeneration facilities, and utility-scale power plants. Biomass today represents more than 95 percent of all renewable energy consumed in the Northeast: a little more than one-half quadrillion BTUs yearly, or five percent of the region`s total energy demand. Yet given the region`s abundance of overstocked forests, municipal solid waste and processed wood residues, this represents just a fraction of the energy potential the biomass resource has to offer.This report provides an account of the work of the Northeast Regional Biomass Program (NRBP) over it`s first ten years. The NRBP has undertaken projects to promote the use of biomass energy and technologies.

  9. Biomass energy: Sustainable solution for greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  10. Evaluation of the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators.

    PubMed

    Hsi, Hsing-Cheng; Yu, Tsung-Hsien

    2007-04-01

    Leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from raw and solidified air pollution control (APC) residues with selected solvents, including acetic acid, simulated acid rain, humic acid, linear alkylbenzene sulfonate (LAS) and n-hexane was investigated. High-chlorinated PCDD/F congeners were observed in all leachates of raw APC residue samples, with the largest total leaching concentration (61.60 ngm(-3); 0.30 ngI-TEQm(-3)) from treatment with humic acid. Low-chlorinated congeners were mainly leached with LAS and n-hexane. Solidification and stabilization (S/S) processes with cement and sulfur-containing chelating agent decreased the leachability of PCDD/Fs by up to 98% with humic acid and LAS as solvents. However, S/S processes enhanced the leachability of both high- and low-chlorinated PCDD/F congeners with n-hexane as the solvent, which largely increased the toxic equivalent quantity of leachates. These results suggest that conventional S/S processes may effectively restrain the release of PCDD/Fs when APC residues are leached with rain water or natural organic compounds (e.g., humic acid), but may have a deteriorated effect when APC residues are leached with nonpolar organic solvents (e.g., n-hexane) coexisting in the landfill sites.

  11. Hydrothermal carbonization of municipal waste streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass ...

  12. 2007 Biomass Program Overview

    SciTech Connect

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  13. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass and Algal Residues via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    SciTech Connect

    Elliott, Douglas; Olarte, M. V.; Hart, T. R.

    2016-07-21

    Beginning in 2010, UOP, along with the Department of Energy and other project partners, designed a pathway for an integrated biorefinery to process solid biomass into transportation fuel blendstocks. The integrated biorefinery (IBR) would convert second generation feedstocks into pyrolysis oil which would then be upgraded into fuel blendstocks without the limitations of traditional biofuels.

  14. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status.

    PubMed

    Cruz-Paredes, Carla; López-García, Álvaro; Rubæk, Gitte H; Hovmand, Mads F; Sørensen, Peter; Kjøller, Rasmus

    2017-01-01

    Reutilizing biomass ashes in agriculture can substitute inputs of P from finite primary sources. However, recycling of ashes is disputed due to their content of toxic substances such as heavy metals. This study evaluates the potential risk of replacing easily soluble inorganic P fertilizer with P in biomass ashes in a barley crop grown on soil with adequate P status. Two contrasting doses of three different types of ashes were applied to an agricultural field with spring barley and compared to similar doses of triple-superphosphate fertilizer. In the second growing season after biomass ash application, grain, straw and root dry matter yield, and P and Cd uptake were determined. Resin-extractable P was measured in soil and the symbiotic arbuscular mycorrhizal fungal activity, colonization, and community composition were assessed. Crop yield was not affected by ash application, while P-uptake and mycorrhizal status were slightly enhanced with high ash applications. Changes to the mycorrhizal community composition were evident with high ash doses. Cadmium uptake in aboveground plant tissue was unaffected by ash treatments, but increased in roots with increasing doses. Consequently, we conclude that fertilization with biomass ashes can replace conventional fertilizers without risk to barley crops in the short term.

  15. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  16. Northeast Regional Biomass Program

    SciTech Connect

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  17. Energy potential of residue from wood transformation industry in the central metropolitan area of the Principality of Asturias (northwest Spain).

    PubMed

    Paredes-Sánchez, José Pablo; Gutiérrez-Trashorras, Antonio José; Xiberta-Bernat, Jorge

    2014-03-01

    The development of modern cities favours the formation of metropolitan zones with urban and industrial areas. The central metropolitan area (CMA) of the Principality of Asturias (northwest Spain), takes up 9.6% of the territory and represents 78% of its population. The first and second wood transformation industries of the CMA generate rather large amounts of biomass residues suitable for both reclaim and energy valuation considering technical, economic, and environmental restrictions. The results obtained from the evaluation of the biomass and the bioenergy of these residues are 7.9 kt/year and 114.7 TJ/year, respectively. The location for the development of a densified solid biofuels plant to produce pellets from these available residues is proposed for the Siero municipality, which is in the CMA. The plant would have an annual potential production capacity for the conventional pelletization process equivalent to 10 MW of fuel output.

  18. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    PubMed

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater.

  19. Bacterial antibiotic resistance in soils irrigated with reclaimed municipal wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater reclamation for municipal irrigation and groundwater recharge is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR) in soil bacteria after exposure to residual chemicals in rec...

  20. Biomass -- A new assessment

    SciTech Connect

    Hartung, H.A.

    1999-07-01

    Photo-conversion of atmospheric CO{sub 2} to biomass by plants is the world's basic source of food, fiber, oxygen and fossil fuel; for many people and some industries, biomass combustion supplies a significant amount of the energy they need. Much ingenuity has been applied to developing strategies for recovering energy directly from biomass by cleaning burning, gasification and liquid fuel production; these processes generally have economic or ecological features that keep them out of the main stream of technological development. By contrast, fresh biomass can be digested anaerobically at high conversion, with stimulation, to methane-rich gas and a stabilized organic residue, using technology already at hand. As an example, methane can be produced from sugarcane at a total cost of about $.50/mcf. This process, originally devised to control the level of CO{sub 2} in the atmosphere, provides opportunities to contribute to that goal while supplying clean pipeline gas, electricity or petrochemicals.

  1. Biomass energies: resources, links, constraints

    SciTech Connect

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  2. Biomass pretreatment

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  3. Regional assessment of nonforestry related biomass resources: Arkansas

    SciTech Connect

    Not Available

    1988-11-01

    This document consists of spreadsheets detailing in a county by county manner agricultural crop, agricultural waste, municipal waste and industrial waste in Arkansas that are potential biomass energy sources.

  4. Regional assessment of nonforestry related biomass resources: North Carolina

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes and industrial wastes of North Carolina that are potential biomass energy sources.

  5. Regional assessment of nonforestry related biomass resources: Alabama

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes and industrial wastes of Alabama that are potential biomass energy sources.

  6. Regional assessment of nonforestry related biomass resources: Missouri

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal waste and industrial wastes of Missouri that are potential biomass energy resources.

  7. Regional assessment of nonforestry related biomass resources: Virginia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of Virginia that are potential biomass energy sources.

  8. Regional assessment of nonforestry related biomass resources: Georgia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes in Georgia that are potential biomass energy sources.

  9. Regional assessment of nonforestry related biomass resources: West Virginia

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing on a county by county basis the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of West Virginia that are potential biomass energy sources.

  10. Regional assessment of nonforestry related biomass resources: South Carolina

    SciTech Connect

    Not Available

    1988-11-01

    This document is a collection of spreadsheets detailing in a county by county manner the agricultural crop, agricultural wastes, municipal wastes, and industrial wastes of South Carolina that are potential biomass energy sources.

  11. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  12. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals.

    PubMed

    Lundin, Lisa; Jansson, Stina

    2014-01-01

    The use of waste wood as an energy carrier has increased during the last decade. However, the higher levels of alkali metals and chlorine in waste wood compared to virgin biomass can promote the formation of deposits and organic pollutants. Here, the effect of fuel composition and the inhibitory effects of ammonium sulfate, (NH4)2SO4, on the concentrations of persistent organic pollutants (POPs) in the flue gas of a lab-scale combustor was investigated. Ammonium sulfate is often used as a corrosion-preventing additive and may also inhibit formation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In addition to PCDDs and PCDFs, polychlorinated naphthalenes (PCN) and biphenyls (PCB) were also analyzed. It was found that the flue gas composition changed dramatically when (NH4)2SO4 was added: CO, SO2, and NH3 levels increased, while those of HCl decreased to almost zero. However, the additive's effects on POP formation were less pronounced. When (NH4)2SO4 was added to give an S:Cl ratio of 3, only the PCDF concentration was reduced, indicating that this ratio was not sufficient to achieve a general reduction in POP emissions. Conversely, at an S:Cl ratio of 6, significant reductions in the WHO-TEQ value and the PCDD and PCDF contents of the flue gas were observed. The effect on the PCDF concentration was especially pronounced. PCN formation seemed to be promoted by the elevated CO concentrations caused by adding (NH4)2SO4.

  13. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents.

  14. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  15. Biomass in the Netherlands

    SciTech Connect

    Kwant, K.W. Jr.; Smakman, G.J.J.; Nillesen, F.H.G.

    1995-11-01

    The energy production from waste and biomass is one of the most promising methods of exploiting renewable energy in the Netherlands. The position of Dutch industry can be improved by means of technological development. An action plan for energy from waste and biomass will be implemented to double the energy output from the present 26 PJ to 54 PJ in 2000. Actions focus on targeted Research and Development with industry and market introduction with the energy production and distribution sector. The government will impose an energy tax (20%) on electricity and natural gas for households. Being a densely populated country the biomass resources originate mainly from waste and residue streams, while as a condition for conversion processes strict environmental regulations have to be met. Landfill gas is widely extracted and converted into energy. Part of the organic fraction of MSW is source separated, digested and upgraded to natural gas quality, while the digestate is used as compost. New development are in the area of cocombustion of wastewood in coal fired power stations. The first plant is under construction. A major R&D programme is set up with industry and research institutes on gasification of residues and biomass. At laboratory and pilotplant scale gasification experiments will be carried out with the different available streams. The major effect will be devoted to blending streams and gas cleaning.

  16. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  17. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  18. IMPROVING BIOMASS LOGISTICS COST WITHIN AGRONOMIC SUSTAINABILITY CONSTRAINTS AND BIOMASS QUALITY TARGETS

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; Christopher T. Wright; David J. Muth; William Smith

    2012-10-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  19. Incentives and barriers to siting biomass ethanol plants

    SciTech Connect

    Donovan, C.T.; Fehrs, J.E.

    1996-12-31

    Currently, there are 38 facilities in the United States with the capacity to produce approximately 1.5 billion gallons of ethanol annually. Most are located in the Midwest and use corn as feedstock. Others use other starch-rich residues or waste materials, such as cheese whey, potato processing waste, and waste beer as feedstock. Ethanol can also be produced from cellulose-rich materials, such as wood waste, paper sludge, municipal solid waste, and short rotation woody crops. However, the processes to convert cellulosic biomass to ethanol are less technologically mature, which is the primary reason why no commercial facilities produce ethanol from cellulosic materials. A number of technical, economic, and environmental factors indicate there are substantial opportunities for producing ethanol from cellulosic materials. In the 11-state Northeast region alone (from Maine to Maryland), the amount of biomass materials discarded in 1993 and potentially available from energy crops in the future could produce more than 2.7 billion gallons per year of ethanol. If priority were placed in encouraging the use of high ethanol fuels (such as E85) in public vehicle fleets alone, as much as 175 million gallons per year of fuel could be used. Theoretical analyses of air, ash, and wastewater emissions from hypothetical biomass ethanol plants indicate such plants should be able to meet existing environmental standards. Sensitivity analyses of various siting issues indicate that the availability of production incentives, the cost of capital, and feedstock cost have the greatest impact on the economic viability of a biomass ethanol plant.

  20. Superheater Corrosion Produced By Biomass Fuels

    SciTech Connect

    Sharp, William; Singbeil, Douglas; Keiser, James R

    2012-01-01

    About 90% of the world's bioenergy is produced by burning renewable biomass fuels. Low-cost biomass fuels such as agricultural wastes typically contain more alkali metals and chlorine than conventional fuels. Although the efficiency of a boiler's steam cycle can be increased by raising its maximum steam temperature, alkali metals and chlorine released in biofuel boilers cause accelerated corrosion and fouling at high superheater steam temperatures. Most alloys that resist high temperature corrosion protect themselves with a surface layer of Cr{sub 2}O{sub 3}. However, this Cr{sub 2}O{sub 3} can be fluxed away by reactions that form alkali chromates or volatilized as chromic acid. This paper reviews recent research on superheater corrosion mechanisms and superheater alloy performance in biomass boilers firing black liquor, biomass fuels, blends of biomass with fossil fuels and municipal waste.

  1. Implementing District Energy Systems: Municipal Approaches To Overcoming Barriers

    NASA Astrophysics Data System (ADS)

    Simpson, Kevin George

    Climate change and energy security are issues facing municipalities throughout the world. Efficient, resilient, sustainable, community-based energy systems, such as district energy systems (DES), fuelled mostly by renewables, are an important tool for addressing both climate change and energy security at the municipal level. In spite of their benefits, DES are not widely adopted in Canada (CDEA, 2011). This is due to the complex nature of the barriers which project proponents face. This thesis examines the experience of the City of Prince George in adopting and implementing the Downtown DES. Using a case study methodology, data was collected through a review of relevant municipal documents and a series of semi-structured, open-ended interviews. A thematic analysis revealed unexpected barriers related to lack of adequate public consultation and negative perceptions regarding biomass as a fuel for the DES. These `lessons learned' were then developed into recommendations for other municipalities considering DES.

  2. Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield.

    PubMed

    Liu, H W; Walter, H K; Vogt, G M; Vogt, H S; Holbein, B E

    2002-01-20

    Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials.

  3. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    PubMed

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  4. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. BIOSEP: A NEW ETHANOL RECOVERY TECHNOLOGY FOR SMALL SCALE RURAL PRODUCTION OF ETHANOL FROM BIOMASS

    EPA Science Inventory

    Research activities on bioethanol have increased substantially as a result of the current concerns with energy security. Inexpensive biomass including forest residues, mill residues, agricultural residues, urban wood wastes and dedicated energy corps that exists in abundance acr...

  6. Fuels from biomass. Technology and feasibility

    SciTech Connect

    Robinson, J.S. .

    1980-01-01

    This book for engineers, research workers and managers is concerned with decreasing conventional fuel consumption and increasing the use of synthetic fuels. There are 10 chapters: Sources of biomass - wastes and residues (including forestry residues); Sources of biomass - energy farms (including silviculture and aquaculture); Thermal conversion methods; Primary biochemical conversions (production of methane and glucose); Secondary conversion processes (methanol, hydrocarbons, ammonia, ethanol etc.); Case studies and economics - describing pyrolysis methods, production of methane by anaerobic fermentation, and biomass sources (3 chapters); Market penetration analysis; and Environmental impacts. Extensive illustrative data is a list of sourand a listes.

  7. Phycoremediation of municipal wastewater by microalgae to produce biofuel.

    PubMed

    Singh, Amit Kumar; Sharma, Nikunj; Farooqi, Humaira; Abdin, Malik Zainul; Mock, Thomas; Kumar, Shashi

    2017-02-03

    Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after ten days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid content in comparison to growth in control media. The FAME and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.

  8. Synthetic organic chemicals in earthworms from agriculture soil amended with municipal biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Biosolids resulting from municipal wastewater treatment are known to contain residues of pharmaceuticals, personal care products (PPCPs) and other synthetic organic compounds. Many of these are contaminants of emerging concern for their potential endocrine disruption of fish and wildli...

  9. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect

    Unknown

    2001-10-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  10. Biomass shock pretreatment

    SciTech Connect

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  11. Microbial conversion of biomass to methane

    SciTech Connect

    Chynoweth, D.P.

    1981-01-01

    Laboratory studies have investigated the anaerobic digestion of a variety of feedstocks including sea kelp, water hyacinth, terrestrial herbaceous and woody plants, sewage sludge, municipal solid waste, and biomass-organic waste blends. The results of these and other studies are used to illustrate key factors which influence methane production rates and yields, including feed organic composition, nutrients, inoculum, temperature, retention time, feed concentration, particle size, and mixing. A new process recently developed which combines biological and thermal operations for conversion of biomass to substitute natural gas is described.

  12. High Pressure Biomass Gasification

    SciTech Connect

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  13. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    PubMed

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the

  14. A-xylosidase enhanced conversion of plant biomass into fermentable sugars

    SciTech Connect

    Walton, Jonathan D.; Scott-Craig, John S.; Borrusch, Melissa

    2016-08-02

    The invention relates to increasing the availability of fermentable sugars from plant biomass, such as glucose and xylose. As described herein, .alpha.-xylosidases can be employed with cellulases to enhance biomass conversion into free, fermentable sugar residues.

  15. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass.

    PubMed

    Meryemoğlu, Bahar; Hasanoğlu, Arif; Irmak, Sibel; Erbatur, Oktay

    2014-01-01

    In this study, kenaf biomass, its dried hydrolysate residue (solid residue left after removing water from hydrolysate) and non-hydrolyzed kenaf residue (solid residue left after hydrolysis process) were liquefied at various temperatures. Hydrolysis of biomass was performed in subcritical water condition. The oil+gas yield of biomass materials increased as the temperature increased from 250 to 300°C. Increasing temperature to 350°C resulted in decreases in oil+gas contents for all biomass feeds studied. On the other hand, preasphaltene+asphaltene (PA+A) and char yields significantly decreased with increasing the process temperature. The use of carbon or activated carbon supported Ru catalyst in the process significantly decreased char and PA+A formations. Oils produced from liquefaction of kenaf, dried kenaf hydrolysate and non-hydrolyzed kenaf residue consist of fuel related components such as aromatic hydrocarbons, benzene and benzene derivative compounds, indane and trans/cis-decalin.

  16. Anaerobic digestion of municipal solid waste: Technical developments

    SciTech Connect

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  17. Mercury emissions from biomass burning in China.

    PubMed

    Huang, Xin; Li, Mengmeng; Friedli, Hans R; Song, Yu; Chang, Di; Zhu, Lei

    2011-11-01

    Biomass burning covers open fires (forest and grassland fires, crop residue burning in fields, etc.) and biofuel combustion (crop residues and wood, etc., used as fuel). As a large agricultural country, China may produce large quantities of mercury emissions from biomass burning. A new mercury emission inventory in China is needed because previous studies reflected outdated biomass burning with coarse resolution. Moreover, these studies often adopted the emission factors (mass of emitted species per mass of biomass burned) measured in North America. In this study, the mercury emissions from biomass burning in China (excluding small islands in the South China Sea) were estimated, using recently measured mercury concentrations in various biomes in China as emission factors. Emissions from crop residues and fuelwood were estimated based on annual reports distributed by provincial government. Emissions from forest and grassland fires were calculated by combining moderate resolution imaging spectroradiometer (MODIS) burned area product with combustion efficiency (ratio of fuel consumption to total available fuels) considering fuel moisture. The average annual emission from biomass burning was 27 (range from 15.1 to 39.9) Mg/year. This inventory has high spatial resolution (1 km) and covers a long period (2000-2007), making it useful for air quality modeling.

  18. Residue management: Back to the roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addressing the issues of climate change and sustainable biomass feedstocks have soil as a common theme. Managing crop residues is directly related to soil management. Understanding how soil and crop residue management interact provides insight on how to assure agricultural soil can serve as a carbon...

  19. Biomass development in slow sand filters.

    PubMed

    Campos, L C; Su, M F J; Graham, N J D; Smith, S R

    2002-11-01

    Microbial biomass development in the sand and schmutzdecke layer was determined in two full-scale slow sand filters, operated with and without a light excluding cover. A standard chloroform fumigation-extraction technique was adapted to routinely measure microbial biomass concentrations in the sand beds. Sand was sampled to a depth of 10 cm and schmutzdecke was also collected at the same random positions on the uncovered filter. Interstitial microbial biomass in the uncovered sand bed increased with time and decreased with sampling depth. There was a small accumulation of sand biomass with time in the covered filter, but no relationship was apparent between biomass concentration and depth in this filter. Schmutzdecke did not develop on the covered filter and was spatially highly variable in the uncovered condition compared to the consistent patterns observed in interstitial biomass production. It is speculated that microbial biomass in the sand of uncovered filters is largely related to carbon inputs from photosynthetic activity in the schmutzdecke and involves mechanisms that spatially distribute carbon substrate from the schmutzdecke to the sand. However, total organic carbon and dissolved organic carbon removals were similar in both filters suggesting that relatively small biomass populations in covered filters are sufficient to remove residual labile carbon during advanced water treatment and little further advantage to water purification and organic carbon removal is gained by the increased production of biomass in uncovered slow sand filter beds.

  20. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  1. Biomass Energy Research

    SciTech Connect

    Traylor, T.D.; Pitsenbarger, J.

    1996-03-01

    Biomass Energy Research announces on a bimonthly basis the current worldwide research and development (R&D) information available on biomass power systems, alternate feedstocks from biomass, and biofuels supply options.

  2. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  3. Energy from Biomass for Conversion of Biomass

    NASA Astrophysics Data System (ADS)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  4. 76 FR 4103 - Central Minnesota Municipal Power Agency, Midwest Municipal Transmission Group; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Central Minnesota Municipal Power Agency, Midwest Municipal Transmission... Municipal Power Agency and Midwest Municipal Transmission Group submitted an amendment to a petition for...

  5. Moisture Effects on Nitrogen Availability in Municipal Biosolids from End-of-Life Municipal Lagoons.

    PubMed

    Jeke, Nicholson N; Zvomuya, Francis; Ross, Lisette

    2015-11-01

    Nitrogen (N) availability affects plant biomass yield and, hence, phytoextraction of contaminants during phytoremediation of end-of-life municipal lagoons. End-of-life lagoons are characterized by fluctuating moisture conditions, but the effects on biosolid N dynamics have not been adequately characterized. This 130-d laboratory incubation investigated effects of three moisture levels (30, 60, and 90% water-filled pore space [WFPS]) on N mineralization (N) in biosolids from a primary (PB) and a secondary (SB) municipal lagoon cell. Results showed a net increase in N with time at 60% WFPS and a net decrease at 90% WFPS in PB, while N at 30% WFPS did not change significantly. Moisture level and incubation time had no significant effect on N in SB. Nitrogen mineralization rate in PB followed three-half-order kinetics. Potentially mineralizable N (N) in PB was significantly greater at 60% WFPS (222 mg kg) than at 30% WFPS (30 mg kg), but rate constants did not differ significantly between the moisture levels. Nitrogen mineralization in SB followed first-order kinetics, with N significantly greater at 60% WFPS (68.4 mg kg) and 90% WFPS (94.1 mg kg) than at 30% WFPS (32 mg kg). Low N in SB suggests high-N-demanding plants may eventually have limited effectiveness to remediate biosolids in the secondary cell. While high N in PB would provide sufficient N to support high biomass yield, phytoextraction potential is reduced under dry and near-saturated conditions. These results have important implications on the management of moisture during phytoextraction of contaminants in end-of-life municipal lagoons.

  6. My Biomass, Your Biomass, Our Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US is pursuing an array of renewable energy sources to reduce reliance on imported fossil fuels and reduce greenhouse gas emissions. Biomass energy and biomass ethanol are key components in the pursuit. The need for biomass feedstock to produce sufficient ethanol to meet any of the numerous stat...

  7. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    SciTech Connect

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee; Zhang, Xuesong; Thomson, Allison M.; Lin, Erda; Jiang, Kejun; Clarke, Leon E.; Edmonds, James A.; Kyle, Page G.; Yu, Sha; Zhou, Yuyu; Zhou, Sheng

    2016-01-05

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ of the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.

  8. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  9. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  10. Hydrothermal conversion of biomass to fuels and energetic materials.

    PubMed

    Kruse, Andrea; Funke, Axel; Titirici, Maria-Magdalena

    2013-06-01

    Available biomass, preferentially residues, can be divided in two groups: biomass with a high or natural water content ('wet' or 'green' biomass) and biomass with low water content such as wood and straw. In 'dry' biomass gasification processes, originating in most coal processing technologies, biomass of low water content is necessary to avoid the energy loss by water evaporation. In contrast, hydrothermal processes need water as reaction medium; therefore, these processes are preferentially used for wet or 'green' biomass. In this review paper we will describe the main research directions in the hydrothermal conversion of biomass into fuels and carbon throughout gasification to produce H2 or CH4, liquefaction to produce crude oils and phenols from lignin as well as carbonization to produce carbonaceous materials which can be either used as fuels (carbon negative chars) or interesting energetic materials (hydrothermal carbons).

  11. Hydrothermal carbonization of municipal waste streams.

    PubMed

    Berge, Nicole D; Ro, Kyoung S; Mao, Jingdong; Flora, Joseph R V; Chappell, Mark A; Bae, Sunyoung

    2011-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique. The objectives of this study were to evaluate the environmental implications associated with the carbonization of representative municipal waste streams (including gas and liquid products), to evaluate the physical, chemical, and thermal properties of the produced hydrochar, and to determine carbonization energetics associated with each waste stream. Results from batch carbonization experiments indicate 49-75% of the initially present carbon is retained within the char, while 20-37% and 2-11% of the carbon is transferred to the liquid- and gas-phases, respectively. The composition of the produced hydrochar suggests both dehydration and decarboxylation occur during carbonization, resulting in structures with high aromaticities. Process energetics suggest feedstock carbonization is exothermic.

  12. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  13. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  14. Guidance: Interim Municipal Settlement Policy

    EPA Pesticide Factsheets

    Interim guidance and fact sheets regarding settlements involving municipalities or municipal waste under Section 122 CERCLA as amended by SARA. Interim policy sets forth the criteria by which EPA generally determines whether to exercise enforcement discretion to pursue MSW generators and transporters as PRPs.

  15. Energy Management in Municipal Buildings.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Community Affairs, Boston. Energy Conservation Project.

    This manual is written for the manager or supervisor responsible for instituting an energy management program for municipal buildings. An introduction discusses the management issues facing municipal government in dealing with the need to reduce energy consumption. The guide reviews methods for central coordination of activity to ensure that…

  16. Health and safety implications of alternative energy technologies. I. Geothermal and biomass

    NASA Astrophysics Data System (ADS)

    Watson, A. P.; Etnier, E. L.

    1981-07-01

    An evaluation of potential occupational and public health aspects of geopressure, hydrothermal, hot dry rock, silviculture, crop and animal residues, fermentable plant products, municipal waste, and plantation energy technologies has been performed. Future development of these energy options in the United States will contain hazards that could easily be eliminated by safer equipment design and common-sense attention to operation and maintenance. Occupational exposure to hydrogen sulfide gas occurs near all geothermal sites and wherever organic matter decomposes anaerobically. Respiratory damage has occurred to laborers in geothermal fields, while farm workers have been fatally overcome when employed near agitating liquid manure systems. However, the most frequent and severe of reported injuries to geothermal workers is dermal exposure to caustic sludges produced by H2S abatement systems. Principal health and safety considerations of biomass pathways are directly related to the diffuse nature of solar energy fixation by photosynthesis and subsequent transfer to animal food chains. Since the potential fuel is in an unconcentrated form, cultivation, harvest, and transport are necessarily laborintensive. Thus, a significant potential for occupational injuries and fatalities exists. Of all biomass systems evaluated, direct burning of solid fuels presents the greatest public health risk. Data are presented to characterize the population at risk and the frequency and severity of injuries.

  17. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system.

  18. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  19. The relative cost of biomass energy transport.

    PubMed

    Searcy, Erin; Flynn, Peter; Ghafoori, Emad; Kumar, Amit

    2007-04-01

    Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for small- and large-project sizes, the relative cost of transportation by truck, rail, ship, and pipeline for three biomass feedstocks, by truck and pipeline for ethanol, and by transmission line for electrical power. Distance fixed costs (loading and unloading) and distance variable costs (transport, including power losses during transmission), are calculated for each biomass type and mode of transportation. Costs are normalized to a common basis of a giga Joules of biomass. The relative cost of moving products vs feedstock is an approximate measure of the incentive for location of biomass processing at the source of biomass, rather than at the point of ultimate consumption of produced energy. In general, the cost of transporting biomass is more than the cost of transporting its energy products. The gap in cost for transporting biomass vs power is significantly higher than the incremental cost of building and operating a power plant remote from a transmission grid. The cost of power transmission and ethanol transport by pipeline is highly dependent on scale of project. Transport of ethanol by truck has a lower cost than by pipeline up to capacities of 1800 t/d. The high cost of transshipment to a ship precludes shipping from being an economical mode of transport for distances less than 800 km (woodchips) and 1500 km (baled agricultural residues).

  20. Biomass Estimates for Five Western States.

    SciTech Connect

    Howard, James O.

    1990-10-01

    The purpose of this report is to describe the woody biomass resource within US Department of Energy's Pacific Northwest and Alaska Regional Biomass Program, comprised of southeast Alaska, Idaho, Montana, Oregon, and Washington. In addition to the regional forest biomass assessment, information will be presented for logging residue, which represents current energy conversion opportunities. The information presented in the report is based on data and relationships already published. Regionally applicable biomass equations are generally not available for species occurring in the west. Because of this, a number of assumptions were made to develop whole-tree biomass tables. These assumptions are required to link algorithms from biomass studies to regional timber inventory data published by the Forest Inventory and Analysis Research Units (FIA), of the Pacific Northwest and Intermountain Research Stations, US Forest Service. These sources and assumptions will be identified later in this report. Tabular biomass data will be presented for 11 resource areas, identified in the FS inventory publications. This report does not include information for the vast area encompassing interior Alaska. Total tress biomass as defined in the report refers to the above ground weight of a tree above a 1.0 foot stump, and exclusive of foliage. A glossary is included that defines specific terms as used in the report. Inventory terminology is derived from forest inventory reports from Forest Inventory and Analysis units at the Intermountain and Pacific Northwest Research Stations. 39 refs., 15 figs., 23 tabs.

  1. Bioethanol production from dedicated energy crops and residues in Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, one of the major technological goals is cost-effective lignocellulosic ethanol production from biomass feedstocks. Lignocellulosic biomass of five dedicated energy crops and two crops residues were tested for bioethanol production using cellulose solvent-based lignocellulose fractionation...

  2. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    DTIC Science & Technology

    2003-11-01

    Because crop residue is a byproduct of grain production, it is currently abun- dant, underutilized, and low cost. Corn stover and cereal straw are the...States and the world. This roadmap focuses on the feedstock supply of lignocellulosic biomass, such as corn stover, straw , or wood, that can be...attendees focused primarily on corn and cereal straw crop residues, while recognizing that the resultant biomass supply technologies and infrastructure must

  3. Biomass analyses for four areas in the Tennessee Valley Authority

    SciTech Connect

    Perry, J.D.

    1985-04-01

    Analyses for four biomass procurement areas in the Tennessee Valley are presented. The Marlow and Perryville, Tennessee, sites can provide 38,000 dry tons of industrial residue annually. Mulberry Creek, Alabama, and Watts Bar, Tennessee, can annually provide 330,000 dry tons of industrial residue and/or forest biomass. Methanol can be produced at the Perryville and Marlow sites and ethanol at Mulberry Creek and Watts Bar. 5 figs., 9 tabs.

  4. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    PubMed

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility.

  5. Wallowa County Integrated Biomass Energy Center

    SciTech Connect

    Christoffersen, Nils

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  6. Lignocellulosic biomass conversion to ethanol by Saccharomyces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As interest in alternative energy sources rises, the concept of agriculture as an energy producer has become increasingly attractive (Outlaw et al. 2005). Renewable biomass, including lignocellulosic materials and agricultural residues, are low-cost materials for bioethanol production (Bothast and ...

  7. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  8. Assessment of Biomass Resources in Afghanistan

    SciTech Connect

    Milbrandt, A.; Overend, R.

    2011-01-01

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  9. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. "bonfires" of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  10. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were

  11. Enduring values of municipal utilities

    SciTech Connect

    Telly, C.S.; Grove, J.F.

    1981-05-01

    The value of municipal utilities is assessed in terms of their social responsibility, the political responsiveness of the owners, and pricing policy - issues which conflict with the traditional concept of corporate responsibility to the shareholder and which reveal a growing demand for accountability. Although municipal utilities are only a small part of the economic, legal, and political setting, they contribute as a small, locally-controlled natural monopoly to the American goals of democracy and self-determination. (DCK)

  12. Photovoltaics for municipal planners

    SciTech Connect

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  13. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  14. Bottom-up estimate of biomass burning in mainland China

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyuan; Ohara, Toshimasa; Akimoto, Hajime

    To assess the contribution of biomass burning to the emissions of atmospheric trace species in China, we estimated various biomass-burning activities using statistical data, survey data, expert estimates and a satellite data set. Fuel wood and crop residue burned as fuel and in the field are the major sources of biomass burning in China, accounting for nearly 90% of the total biomass burning on dry weight base. Field burning of crop residue estimated from satellite burned area is less than 1% of that estimated from ground survey data; because of this and because biofuel is burned indoor, the majority of biomass burning in China is not seeable from satellite. Statistical data showed that the occurrence of forest fire in China has decreased dramatically since the 1980s; however, the forest fire area detected by satellites in 2000 was 13 times that shown by statistics. Grassland fires are a minor source of biomass burning in China. We estimated carbon monoxide (CO) emission from open biomass burning (field burning of crop residue and forest and grassland fires) to be 16.5 Tg in 2000, with a 90% uncertainty range of 3.4-34 Tg. Uncertainties in CO emission factors, especially for field burning of crop residue, contributed much more to the variance than those in the activity data. This suggests the importance of narrowing the uncertainty range of emission factors.

  15. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  16. Education Highlights: Forest Biomass

    ScienceCinema

    Barone, Rachel; Canter, Christina

    2016-07-12

    Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.

  17. Biomass energy development

    SciTech Connect

    Smith, W.H.

    1986-01-01

    This book describes strategies to develop biomass energy; capture and use waste when possible; select and improve plant species as energy crops adaptable to both terrestrial and aquatic environments; advance both biological and thermochemical conversion technologies to produce needed fuel forms (solids, liquids, or gases); and adapt these to compatible utilization options. More specifically, some topics include: characteristics of industrial wood energy users; research on short-rotation woody crops in the South; biomass production and nutrient removal by leucaena in colder subtropics; biomass programs of the Southern Agricultural Energy Center; biomass production from herbaceous plants; marine biomass production; harvesting systems for aquatic biomass; thermochemical processes for bioenergy production; utilization of biomass fuel for production of electric power; gas cleaning systems for small scale gasifiers; prediction of methane yields from biomass; methane production and utilization at fuel alcohol production facilities; ethanol fermentations; production of ethanol from wood by acid hydrolysis and fermentation; and material and energy balances for processing high fiber sugarcane.

  18. Education Highlights: Forest Biomass

    SciTech Connect

    Barone, Rachel; Canter, Christina

    2016-01-27

    Argonne intern Rachel Barone from Ithaca College worked with Argonne mentor Christina Canter in studying forest biomass. This research will help scientists develop large scale use of biofuels from forest biomass.

  19. Biomass for Electricity Generation

    EIA Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  20. Pretreated densified biomass products

    DOEpatents

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  1. Biomass Program Biopower Factsheet

    SciTech Connect

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  2. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  3. Biomass compositional analysis for energy applications.

    PubMed

    Hames, Bonnie R

    2009-01-01

    In its broadest definition, biomass can be described as all material that was or is a part of a living organism. For renewable energy applications, however, the definition of biomass is usually limited to include only materials that are plant-derived such as agricultural residues (e.g., wheat straw, corn stover) by-products of industrial processes (e.g., sawdust, sugar cane bagasse, pulp residues, distillers grains), or dedicated energy crops (e.g., switchgrass, sorghum, Miscanthus, short-rotation woody crops). This chapter describes analytical methods developed to measure plant components with an emphasis on the measurement of components that are important for biomass conversion. The methods described here can be viewed as a portfolio of analytical methods, with consistent assumptions and compatible sample preparation steps, selected for simplicity, robust application, and the ability to obtain a summative mass closure on most samples that accurately identifies greater than 95% of the mass of a plant biomass sample. The portfolio of methods has been successfully applied to a wide variety of biomass feedstock as well as liquid and solid fractions of both thermochemical pretreatment and enzymatic saccharification (1).

  4. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact

    NASA Astrophysics Data System (ADS)

    Permadi, Didin Agustian; Kim Oanh, Nguyen Thi

    2013-10-01

    This paper presents an emission inventory (EI) for biomass open burning (OB) sources including forest, agro-residue and municipal solid waste (MSW) in Indonesia for year 2007. The EI covered toxic air pollutants and greenhouse gases (GHGs) and was presented as annual and monthly average for every district, and further on a grid of 0.25° × 0.25°. A rigorous analysis of activity data and emission factor ranges was done to produce the low, best and high emission estimates for each species. Development of EI methodology for MSW OB which, to our best knowledge, has not been presented in detail in the literature was a focus of this paper. The best estimates of biomass OB emission of toxic air pollutants for the country, in Gg, were: 9.6 SO2; 98 NOx; 7411 CO; 335 NMVOC; 162 NH3; 439 PM10; 357 PM2.5; 24 BC; and 147 OC. The best emission estimates of GHGs, in Gg, were: 401 CH4, 57,247 CO2; and 3.6 N2O. The low and high values of the emission estimates for different species were found to range from -86% to +260% of the corresponding best estimates. Crop residue OB contributed more than 80% of the total biomass OB emissions, followed by forest fire of 2-12% (not including peat soil fire emission) and MSW (1-8%). An inter-annual active fires count for Indonesia showed relatively low values in 2007 which may be attributed to the high rainfall intensity under the influence of La Niña climate pattern in the year. Total estimated net climate forcing from OB in Indonesia was 110 (20 year horizon) and 73 (100 year horizon) Tg CO2 equivalents which is around 0.9-1.1% of that reported for the global biomass OB for both time horizons. The spatial distribution showed higher emissions in large urban areas in Java and Sumatra Island, while the monthly emissions indicated higher values during the dry months of August-October.

  5. Irradiation enhancement of biomass conversion

    NASA Astrophysics Data System (ADS)

    Smith, G. S.; Kiesling, H. E.; Galyean, M. L.; Bader, J. R.

    The vast supply of cellulosic agricultural residues and industrial by-products that is produced each year is a prospective resource of biomass suitable for conversion to useful products such as feedstock for the chemicals industry and feedstuffs for the livestock industry. Conversions of such biomass is poor at present, and utilization is inefficient, because of physio-chemical barriers to biological degradation and (or) anti-quality components such as toxicants that restrict biological usages. Improvements in biodegradability of ligno-cellulosic materials have been accomplished by gamma-ray and electron-beam irradiation at intermediate dosage (˜ 50 Mrad; .5 MGy); but applications of the technology have been hampered by questionable interpretations of results. Recent research with organic wastes such as sewage sludge and straw suggests opportunity for important applications of irradiation technology in enhancement of biomass conversion. Data from experiments using irradiated straw as feed for ruminants are presented and discussed in relation to research on prospective usage of sewage products as feed for ruminants. Findings are discussed in regard to prospective applications in industrial fermentation processes. Possible usage of irradiation technology for destruction of toxicants in exotic plants is considered in regard to prospective new feedstuffs.

  6. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H [Federal Way, WA; Lanning, David N [Federal Way, WA; Broderick, Thomas F [Lake Forest Park, WA

    2012-04-17

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  7. EERC Center for Biomass Utilization 2005

    SciTech Connect

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  8. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect

    Little, S.N.; Shainsky, L.J.

    1995-03-01

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  9. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  10. Understanding Biomass Feedstock Variability

    SciTech Connect

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  11. Chapter 8: Biomass Pyrolysis Oils

    SciTech Connect

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  12. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol.

  13. Biomass energy analysis for crop dehydration

    SciTech Connect

    Whittier, J.P.; Haase, S.G.; Quinn, M.W.

    1994-12-31

    In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

  14. Polishing of municipal secondary effluent using native microalgae consortia.

    PubMed

    Beltrán-Rocha, Julio César; Barceló-Quintal, Icela Dagmar; García-Martínez, Magdalena; Osornio-Berthet, Luis; Saavedra-Villarreal, Nidia; Villarreal-Chiu, Juan; López-Chuken, Ulrico Javier

    2017-04-01

    This work evaluates the use of native microalgae consortia for a dual role: polishing treatment of municipal wastewater effluents and microalgae biomass feedstock potential for biodiesel or biofertilizer production. An initial screening was undertaken to test N and P removal from secondary effluents and biomass production by 12 consortia. A subsequent treatment was performed by selected consortia (01 and 12) under three operational conditions: stirring (S), S + 12 h of daily aeration (S + A) and S + A enriched with CO2 (S + AC). All treatments resulted in compliance with environmental regulations (e.g. Directive 91/271/EEC) and high removal efficiency of nutrients: 64-79% and 80-94% of total N and PO4(3-)-P respectively. During the experiments it was shown that pH alkalinization due to microalgae growth benefits the chemical removal of ammonia and phosphorus. Moreover, advantages of pH increase could be accomplished by intermittent CO2 addition which in this research (treatment S + AC) promoted higher yield and lipid concentration. The resulting dry biomass analysis showed a low lipid content (0.5-4.3%) not ideal for biodiesel production. Moreover, the high rate of ash (29.3-53.0%) suggests that biomass could be readily recycled as a biofertilizer due to mineral supply and organic constituents formed by C, N and P (e.g. carbohydrate, protein, and lipids).

  15. Babassu nut residues: potential for bioenergy use in the North and Northeast of Brazil.

    PubMed

    de Paula Protásio, Thiago; Fernando Trugilho, Paulo; da Silva César, Antônia Amanda; Napoli, Alfredo; Alves de Melo, Isabel Cristina Nogueira; Gomes da Silva, Marcela

    2014-01-01

    Babassu is considered the largest native oil resource worldwide and occurs naturally in Brazil. The purpose of this study was to evaluate the potential of babassu nut residues (epicarp, mesocarp and endocarp) for bioenergy use, especially for direct combustion and charcoal production. The material was collected in the rural area of the municipality of Sítio Novo do Tocantins, in the state of Tocantins, Brazil. Analyses were performed considering jointly the three layers that make up the babassu nut shell. The following chemical characterizations were performed: molecular (lignin, total extractives and holocellulose), elemental (C, H, N, S and O), immediate (fixed carbon, volatiles and ash), energy (higher heating value and lower heating value), physical (basic density and energy density) and thermal (thermogravimetry and differential thermal analysis), besides the morphological characterization by scanning electron microscopy. Babassu nut residues showed a high bioenergy potential, mainly due to their high energy density. The use of this biomass as a bioenergy source can be highly feasible, given their chemical and thermal characteristics, combined with a low ash content. Babassu nut shell showed a high basic density and a suitable lignin content for the sustainable production of bioenergy and charcoal, capable of replacing coke in Brazilian steel plants.

  16. Aggregate stability in mine residues after reclamation with biochar

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Acosta, José; Faz, Ángel; Zornoza, Raúl

    2016-04-01

    This study aims to assess how the addition of biochar and marble waste to acidic mine residues affected aggregate stability (AS) and contributed to the improvement of soil texture. For this purpose, a lab incubation was carried out for 90 days. Biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) were added to the soil at a rate of 20 g kg-1. The marble waste (MW) was added at a rate of 200 g kg-1, with the aim of increasing pH from 3 to 8 (pH of the native soils of the area). Biochars and MW were applied independently and combined. A control treatment was used without application of amendments. The evolution of AS was periodically monitored at 2, 4, 7, 15, 30 and 90 days by the method of artificial rainfall. Results showed, at the end of the incubation, that the addition of MW alone did not significantly increased AS with comparison to CT (30%). However, the biochar, alone or together with MW, significantly increased AS, the treatment receiving CR derived biochar being the one with the highest values (46%). Increments in AS were significant from the day 30 of incubation. AS showed a significant correlation with the total organic carbon content, but was not correlated with organic carbon fractions (soluble, labile, recalcitrant), inorganic carbon, microbial biomass carbon, enzyme activities, exchangeable fraction of heavy metals (As, Cd, Cu, Pb, Zn), pH, electrical conductivity nor greenhouse gas emissions (NO₂, CH₄). Thus, the application of biochar (alone or in combination with MW as a source of calcium carbonate) significantly increased the formation of stable aggregates in former acidic mine residues, favoring the development of soil structure, essential to create a soil from residues. It seems that the total content of organic carbon is directly controlling aggregation, rather than other labile organic sources. Moreover, pH, salinity or the presence of exchangeable metals did not seem to affect soil aggregation

  17. Geotechnical hazards associated with closed municipal solid waste landfill sites

    NASA Astrophysics Data System (ADS)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  18. Co-firing coal and municipal solid waste

    SciTech Connect

    Demirbas, A.

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  19. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  20. Complex pendulum biomass sensor

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  1. Cofiring biomass with coal: Opportunities for Malaysia

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Shamsuddin, A. H.

    2013-06-01

    Malaysia generated 108,175 GWh of electricity in 2010 where 39.51 % was sourced from coal. Coal power generation is also planned to overtake natural gas as the main fuel for electricity generation within the next two decades. Malaysia also has a vast biomass resource that is currently under-utilised for electricity generation. This paper studies the option of cofiring biomass in existing Malaysian coal power plants to increase the nation's renewable energy mix as well as to reduce its power sector carbon dioxide emission. Benefits of cofiring to the nation were discussed and agricultural residues from palm oil and paddy was identified as a potential source of biomass for cofiring. It was also found that there is a willingness for cofiring by stakeholders but barriers existed in the form of technical issues and lack of clear direction and mechanism.

  2. Biofuel from biomass via photo-electrochemical reactions: An overview

    NASA Astrophysics Data System (ADS)

    Ibrahim, N.; Kamarudin, S. K.; Minggu, L. J.

    2014-08-01

    Biomass is attracting a great deal of attention as a renewable energy resource to reduce carbon dioxide (CO2) emissions. Converting biomass from municipal, agricultural and livestock into biofuel and electrical power has significant environmental and economic advantages. The conversion of biomass into practical energy requires elegant designs and further investigation. Thus, biomass is a promising renewable energy source due to its low production cost and simple manufacturing processes. Biofuel (hydrogen and methanol) from biomass will be possible to be used for transportation with near-zero air pollution, involves efficient uses of land and major contribution to reduce dependence on insecure source of petroleum. Photoelectrochemical (PEC) reactions study has potential pathway for producing fuel from biomass and bio-related compound in the near future. This review highlights recent work related to the PEC conversion of biomass and bio-related compounds into useful biofuels and electricity. This review covers different types of photochemical reaction cells utilizing various types of organic and inorganic waste. It also presents recent developments in photoelectrodes, photocatalysts and electrolytes as well as the production of different types of fuel from PEC cells and highlights current developments and problems in PEC reactions.

  3. Analysis of Municipal Pipe Network Franchise Institution

    NASA Astrophysics Data System (ADS)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  4. 75 FR 6199 - Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc.; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Federal Energy Regulatory Commission Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc.; Notice of Filing February 1, 2010. Take notice that on January 25, 2010, Central Minnesota Municipal Power Agency and Midwest Municipal Transmission Group, Inc. (CMMPA/ MMTG) filed with...

  5. Process for treating biomass

    DOEpatents

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  6. Process for treating biomass

    DOEpatents

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  7. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Biomass Processing Photolibrary

    DOE Data Explorer

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  9. Baghdad Municipal Solid Waste Landfill

    DTIC Science & Technology

    2006-10-19

    SOLID WASTE LANDFILL SIGIR PA... Solid Waste Landfill 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...Municipal Solid Waste Landfill , Baghdad, Iraq (Report Number SIGIR-PA-06-067) We are providing this project assessment report for your information

  10. Super blue box recycling (SUBBOR) enhanced two-stage anaerobic digestion process for recycling municipal solid waste: laboratory pilot studies.

    PubMed

    Vogt, G M; Liu, H W; Kennedy, K J; Vogt, H S; Holbein, B E

    2002-12-01

    The super blue box recycling (SUBBOR) process is an enhanced, multi-stage anaerobic digestion process for mixed municipal solid waste (MSW) and other biomass feedstock materials. The technology centers on enhanced high solids, thermophilic digestion after steam-pressure disruption of the ligno-cellulosic fiber components that are recalcitrant to conventional anaerobic digestion. Mixed MSW, rich in organic components but also containing inorganic materials, such as glass, aluminum and steel, as well as non-digestible plastic materials, has been laboratory pilot tested with a fully integrated process train designed to treat and recycle all of the MSW components. Methane yields from the MSW were 0.36 m3 CH4/kg volatile solids (VS) representing a 40% increase over the yield obtained from conventional single stage digestion. The secondary digestion step after steam pressure disruption also provided a 40% improvement in total solids and VS reduction. The residual organic fraction following two-stage digestion was fine in texture and was recovered as a clean peat fraction with reduced contents of heavy metal and other fugitive non-digested contaminants. Mass and energy balance determinations indicated a high degree of MSW diversion from landfill disposal (>80%) was achievable by the SUBBOR process as well as substantial net electrical and thermal energy production. Continuous long-term trials of the SUBBOR process at 25,000 tonnes/year are underway.

  11. Comparative study of different waste biomass for energy application.

    PubMed

    Motghare, Kalyani A; Rathod, Ajit P; Wasewar, Kailas L; Labhsetwar, Nitin K

    2016-01-01

    Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and

  12. Hydrothermal carbonization of agricultural residues.

    PubMed

    Oliveira, Ivo; Blöhse, Dennis; Ramke, Hans-Günter

    2013-08-01

    The work presented in this article addresses the application of hydrothermal carbonization (HTC) to produce a solid fuel named HTC-Biochar, whose characteristics are comparable to brown coal. Several batch HTC experiments were performed using agricultural residues (AR) as substrates, commonly treated in farm-based biogas plants in Germany. Different AR were used in different combinations with other biomass residues. The biogas potential from the resulting process water was also determined. The combination of different AR lead to the production of different qualities of HTC-Biochars as well as different mass and energy yields. Using more lignocellulosic residues lead to higher mass and energy yields for the HTC-Biochar produced. Whilst residues rich in carbohydrates of lower molecular weight such as corn silage and dough residues lead to the production of a HTC-Biochar of better quality and more similar to brown coal. Process water achieved a maximum of 16.3 L CH4/kg FM (fresh matter).

  13. Biomass fuel exposure and respiratory diseases in India.

    PubMed

    Prasad, Rajendra; Singh, Abhijeet; Garg, Rajiv; Giridhar, Giridhar B

    2012-10-01

    One half of the world's population relies on biomass fuel as the primary source of domestic energy. Biomass fuel exposure causes a high degree of morbidity and mortality in humans. This is especially true in the context of developing countries, which account for 99% of the world's biomass fuel use. Biomass fuel consists of fire wood, dung cakes, agricultural crop residues such as straw, grass, and shrubs, coal fuels and kerosene. Together, they supply 75% of the domestic energy in India. An estimated three-quarters of Indian households use biomass fuel as the primary means for domestic cooking. Ninety percent of rural households and 32% of urban households cook their meals on a biomass stove. There are wide variations between the rural and urban households regarding the specific type of biomass fuel used. Globally, almost 2 million deaths per year are attributable to solid fuel use, with more than 99% of these occurring in developing countries. Biomass fuel accounts for 5-6% of the national burden of disease. Burning biomass fuels emits toxic fumes into the air that consist of small solid particles, carbon monoxide, polyorganic and polyaromatic hydrocarbons, and formaldehyde. Exposure to biomass fuels has been found to be associated with many respiratory diseases such as acute lower respiratory infections, chronic obstructive pulmonary disease, lung cancer, pulmonary tuberculosis, and asthma. Biomass fuel exposure is closely related to the burden of disease in India. Hopes are that future studies will examine the morbidity associated with biomass exposure and seek to prevent it. Concerted efforts to improve stove design and transition to high-efficiency low-emission fuels may reduce respiratory disease associated with biomass fuel exposure.

  14. RESIDUAL RISK ASSESSMENTS - RESIDUAL RISK ...

    EPA Pesticide Factsheets

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Coke Ovens. These assesments utilize existing models and data bases to examine the multi-media and multi-pollutant impacts of air toxics emissions on human health and the environment. Details on the assessment process and methodologies can be found in EPA's Residual Risk Report to Congress issued in March of 1999 (see web site). To assess the health risks imposed by air toxics emissions from Coke Ovens to determine if control technology standards previously established are adequately protecting public health.

  15. Gasohol - Analysis and biomass alternatives

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The economics of fermentation ethanol as a near-term alternative to liquid hydrocarbon fuels are analyzed and alternatives to grain-fermented ethanol are examined. Based on estimates of raw material and production costs and energy consumption, it is shown that net production costs for alcohol fuel from corn amount to $2.14/gallon, with no significant net consumption or gain in energy. It is also pointed out that the use of grain for alcohol production will influence quantities available for livestock production and export, and that land available for grain production is limited. Consideration is then given to the economic potential of using cellulosic biomass from agricultural and forest residues in the production of ethanol fuels and coal gasification for methanol production, and it is pointed out that these alternatives offer economic, energy and oil-savings advantages over ethanol production from grains.

  16. Biomass Research Program

    SciTech Connect

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  17. Energetische Verwertung von Biomasse

    NASA Astrophysics Data System (ADS)

    Zahoransky, Richard; Allelein, Hans-Josef; Bollin, Elmar; Oehler, Helmut; Schelling, Udo

    Etwa 0,1% der Solarenergie wandeln sich durch Photosynthese aus dem Kohlendioxid der Luft in Biomasse um. Die Biomassen sind als Festbrennstoff nutzbar oder zu gasförmigen Brennstoffen weiterverarbeitbar. Zwei Arten von Biomassen sind zu unterscheiden: Anfallende Biomasse

  18. Biomass Research Program

    ScienceCinema

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2016-07-12

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  19. BIOMASS TO BIO-OIL BY LIQUEFACTION

    SciTech Connect

    Wang, Huamin; Wang, Yong

    2013-01-10

    Significant efforts have been devoted to develop processes for the conversion of biomass, an abundant and sustainable source of energy, to liquid fuels and chemicals, in order to replace diminishing fossil fuels and mitigate global warming. Thermochemical and biochemical methods have attracted the most attention. Among the thermochemical processes, pyrolysis and liquefaction are the two major technologies for the direct conversion of biomass to produce a liquid product, often called bio-oil. This chapter focuses on the liquefaction, a medium-temperature and high-pressure thermochemical process for the conversion of biomass to bio-oil. Water has been most commonly used as a solvent and the process is known as hydrothermal liquefaction (HTL). Fundamentals of HTL process, key factors determining HTL behavior, role of catalyst in HTL, properties of produced bio-oil, and the current status of the technology are summarized. The liquefaction of biomass by using organic solvents, a process called solvolysis, is also discussed. A wide range of biomass feedstocks have been tested for liquefaction including wood, crop residues, algae, food processing waste, and animal manure.

  20. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-18

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  1. Engineered plant biomass feedstock particles

    DOEpatents

    Dooley, James H.; Lanning, David N.; Broderick, Thomas F.

    2011-10-11

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  2. Bamboo: An Overlooked Biomass Resource?

    SciTech Connect

    Scurlock, J.M.O.

    2000-02-01

    Bamboo is the common term applied to a broad group (1250 species) of large woody grasses, ranging from 10 cm to 40 m in height. Already in everyday use by about 2.5 billion people, mostly for fiber and food within Asia, bamboo may have potential as a bioenergy or fiber crop for niche markets, although some reports of its high productivity seem to be exaggerated. Literature on bamboo productivity is scarce, with most reports coming from various parts of Asia. There is little evidence overall that bamboo is significantly more productive than many other candidate bioenergy crops, but it shares a number of desirable fuel characteristics with certain other bioenergy feedstocks, such as low ash content and alkali index. Its heating value is lower than many woody biomass feedstocks but higher than most agricultural residues, grasses and straws. Although non-fuel applications of bamboo biomass may be actually more profitable than energy recovery, there may also be potential for co-productio n of bioenergy together with other bamboo processing. A significant drawback is the difficulty of selective breeding, given the lack of knowledge of flowering physiology. Further research is also required on propagation techniques, establishment and stand management, and mechanized harvesting needs to be developed.

  3. Catalytic destruction of tars in biomass-derived gases

    SciTech Connect

    Mudge, L K; Baker, E G; Brown, M D; Wilcox, W A

    1988-02-01

    The Biomass and Municipal Waste Technology Division of the US Department of Energy is sponsoring studies at the Pacific Northwest Laboratory on catalytic destruction of condensible hydrocarbons (tars) in biomass-derived gases. Currently gasifiers generate a significant amount of tars in the product gases. These tars create problems with plugging in downstream equipment and with wastewater treatment. Partial oxidation of the gas stream in a secondary fluid bed of catalyst destroys the tars in biomass-derived gases while increasing the energy content of the product gas by over 20%. Catalysts that remain active for tar destruction are used in the secondary reactor which is specially designed to promote destruction of tars and minimize oxidation of combustible gases such as CO and H/sub 2/. Results of studies with different catalysts which have been tested for this application are described.

  4. Surfactant toxicity identification with a municipal wastewater

    SciTech Connect

    Amato, J.R.; Wayment, D.D.

    1998-12-31

    An acute toxicity identification evaluation following US EPA guidelines was performed with a municipal wastewater to identify effluent components responsible for lethality of larval fathead minnows (Pimephales promelas) and Ceriodaphnia dubia. Ammonia toxicity, also present in the effluent, was not the object of this study. The study was designed to characterize effluent toxicity not due to ammonia. To minimize ammonia toxicity interferences, all Phase 1 testing was performed at pH`s where ammonia toxicity would be negligible. Phase 1 toxicity characterization results indicated surfactants as the class of compounds causing acute non-ammonia toxicity for both test species. A distinct toxicant characteristic, specifically sublation at alkaline pH, was employed to track suspect surfactant loadings in the collection system. Concurrently, effluent surfactant residue testing determined nonionic surfactants were at adequate concentrations and were sufficiently toxic to cause the measured adverse effects. Influent surfactant toxicity was determined to be much less than in the final effluent indicating the treatment process was enhancing surfactant toxicity.

  5. Biomass CHP Catalog of Technologies

    EPA Pesticide Factsheets

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  6. Comprehensive Utilization of Biomass Process Residues Rich in Cellulose

    NASA Astrophysics Data System (ADS)

    Zhong, Mei; Li, Qiang; Yu, Jian; Dong, Li; Wang, Yin; Xu, Guangwen

    2010-11-01

    This article investigated the method preparing porous material (PM) with VL and SL. Applications of the prepared material was tested in removal aqueous phenol and COD in tarry water and as the catalyst support for selective catalytic reduction (SCR) of NO in flue gas. The results showed that the optimal activation condition in CO2 for the carbonized VL at 800° C was at 875° C for 1 h, which provided large BET surface area and micropore volume. This material exhibited the highest adsorption to aqueous phenol among all the tested materials including a commercial activated carbon made from coconut shell, showing the potential application of the VL-base porous material in wastewater treatment. The study demonstrated also that the vanadium-base selective catalytic reduction (SCR) catalyst supported on the VL-base porous material (V2O5/VL-PM) provided fairly good activity as well SO2 resistance at temperatures round 200° C for SCR of NO. The activation of the carbonized SL material in H2O was better than that in CO2 for developing the pore structure of the porous material. Steam can improve the formation of mesopore than CO2. This was confirmed by the conclusion that higher COD removal rate was occurred on the PM-1 from SL when H2O was used as an activator.

  7. The effect of broiler litter, swine effluent, and municipal biosolids land application on small plot pathogen, antibiotic resistance, and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land applying agricultural and municipal wastes carries an inherent risk associated with nutrient and pathogen runoff and contamination, but with that risk comes a potentially sustainable process to reclaim otherwise residual waste material. Few studies compare the two residuals. The purpose of th...

  8. Biomass cogeneration. A business assessment

    SciTech Connect

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  9. Relative importance of P and N in macrophyte and epilithic algae biomass in a wastewater-impacted oligotrophic river.

    PubMed

    Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina

    2016-08-01

    The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.

  10. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  11. Quantifying logging residue - before the fact

    SciTech Connect

    Bones, J.T.

    1982-06-01

    Tree biomass estimation, which is being integrated into the U.S. Forest Service Renewable Resources Evaluation Program, will give foresters the ability to estimate the amount of logging residues they might expect from harvested treetops and branches and residual rough, rotten, and small trees before the actual harvest. With planning, and increased demand for such timber products as pulpwood and fuelwood, product recovery could be increased by up to 43 percent in softwood stands and 99% in hardwoods. Recovery levels affect gross product receipts and site preparation costs. An example of product recovery and residue generation is presented for three harvesting options in Pennsylvania hardwood stands. Under the whole-tree harvesting option, 46% more product was recovered than in single product harvesting, and logging residue levels were reduced by 58%.

  12. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.

    PubMed

    Valentino, Francesco; Karabegovic, Lamija; Majone, Mauro; Morgan-Sagastume, Fernando; Werker, Alan

    2015-06-15

    PHA content was attributed to interpreted differences in the biomass initial physiological state and not due to changes in feedstock nutrient loading. We found that the accumulation process production rates for mixed cultures can be sustained long after the maximum PHA content of the biomass was reached. Within the specific context of the applied fed-batch feed-on-demand methods, active biomass growth was interpreted to have been largely restricted to the PHA-storing phenotypic fraction of the biomass. This study suggests practical prospects for mixed culture PHA production using a wide range of volatile fatty acid (VFA) rich feedstocks. Such VFA sources derived from residual industrial or municipal organic wastes often naturally contain associated nutrients ranging in levels from limitation to excess.

  13. Enhancing biomass utilization for bioenergy-crop rotation systems and alternative conversion processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass for bioenergy has a great deal of potential for decreasing our dependence upon fossil fuels and decreasing the net CO2 accumulation in the atmosphere. Crop residues are often promoted as a means of meeting the total biomass goals to provide sufficient amounts of materials for liquid fuel pro...

  14. Composting of municipal solid waste.

    PubMed

    Kumar, Sunil

    2011-06-01

    This paper reviews the literature on the composting process, which is one of the technological options for the processing of municipal solid wastes (MSWs). The process assumes a great significance, particularly from the point of its economic viability, capability for recycling of nutrients and waste minimization with minimum environmental problems. A number of studies on various aspects of the composting process, including process control and monitoring parameters such as temperature, pH, moisture content, aeration, and porosity are reviewed. Salient observations on microbial properties of composting are described and details of vermicomposting, as well as a detailed analysis of patents on composting of MSW, are presented.

  15. Municipal solid waste gasification: Perspectives

    SciTech Connect

    Bain, R.; Overend, R.P.; Chornet, E.; Craig, K.R.

    1996-12-31

    The paper consists of the transparencies that were used during the presentation. Flowcharts are presented for processing options for municipal solid wastes and refuse derived fuels, and for the gasification of refuse derived fuels. Summaries are presented on gasification and gas conditioning goals, the history of MSW gasification, clean gas requirements for engines, and recent history of several gasification processes (Lurgi CFB, TPS CFB, Thermoselect pilot plant, and Proler pilot plant). Challenges are listed and a flowchart for a typical gasification/gas conditioning process is given.

  16. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  17. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.

    PubMed

    Ho, L; Ho, G

    2012-09-15

    High free ammonia released during anaerobic digestion of livestock wastes is widely known to inhibit methanogenic microorganisms and result in low methane production. This was encountered during our earlier thermophilic semi-continuously fed continuously-stirred tank reactor (CSTR) treatment of piggery wastewater. This study explored chemical and biological means to mitigate ammonia inhibition on thermophilic anaerobic treatment of piggery wastewater with the aim to increase organic volatile carbon reduction and methane production. A series of thermophilic anaerobic batch experiments were conducted on the digested piggery effluent to investigate the effects of pH reduction (pH 8.3 to 7.5, 7.0 and 6.5) and additions of biomass (10% v/v and 19% v/v anaerobic digested piggery biomass and aerobic-anaerobic digested municipal biomass), natural zeolite (10, 15 and 20 g/L) and humic acid (1, 5 and 10 g/L) on methane production at 55 °C for 9-11 days. Reduction of the wastewater pH from its initial pH of 8.3 to 6.5 produced the greatest stimulation of methane production (3.4 fold) coupled with reductions in free ammonia (38 fold) and total volatile fatty acids (58% TVFA), particularly acetate and propionate. Addition of 10-20 g/L zeolite to piggery wastewater with and without pH reduction to 6.5 further enhanced total VFA reduction and methane production over their respective controls, with 20 g/L zeolite producing the highest enhancement effect despite the ammonia-nitrogen concentrations of the treated wastewaters remaining high. Without pH reduction, zeolite concentration up to 20 g/L was required to achieve comparable methane enhancement as the pH-reduced wastewater at pH 6.5. Although biomass (10% v/v piggery and municipal wastes) and low humic acid (1 and 5 g/L) additions enhanced total VFA reduction and methane production, they elevated the residual effluent total COD concentrations over the control wastewaters (pH-unadjusted and pH-reduced) unlike zeolite

  18. Harvesting and transporting high-tonnage crops for biomass

    SciTech Connect

    Clayton, J.E.; Eiland, B.R.

    1984-01-01

    Forage and sugarcane harvesters were used for harvesting sweet sorghum and sugarcane for biomass. One system of field transport with capability for dumping into highway trucks was used. Two methods of drying, collecting, densifying and transporting sugarcane residue were tested for providing material for commerical boilers. A method of rapid field drying is needed.

  19. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  20. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  1. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and

  2. Effects of solubility properties of solvents and biomass on biomass pretreatment.

    PubMed

    Weerachanchai, Piyarat; Kwak, Sang Kyu; Lee, Jong-Min

    2014-10-01

    Hildebrand solubility parameters of biomasses and pretreatment solvents were examined by a method of intrinsic viscosity. This is to be used as basic information in selecting a suitable solvent for biomass pretreatment processes. The effects of mixing1-ethyl-3-methylimidazolium acetate (EMIM-AC) and different solvents, lignin content in a pretreatment solvent, and biomass type on the Hildebrand solubility parameter and thermodynamic properties were carried out and calculated in this work. The Hildebrand solubility parameters of the mixtures are according to those of organic solvents: δH[EMIM-AC/DMA]=25.07<δH[EMIM-AC/DMF]=25.48<δH[EMIM-AC/DMSO]=26.10<δH[EMIM-AC/Ethanolamine]=26.95. The Hildebrand solubility parameters of biomass compositions (microcrystalline cellulose, xylan and alkali lignin) and biomasses (cassava pulp residue and rice straw) vary in the ranges of 25.14-26.13. The increases of lignin content in the pretreatment solvents lead to the Hildebrand solubility parameter becoming closer to that of lignin.

  3. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  4. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  5. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Jay R. Gunderson; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2002-09-01

    The Energy & Environmental Research Center (EERC) has completed a project to examine fundamental issues that could limit the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC attempted to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low-volatile fuels with lower reactivities can experience problematic fouling when switched to higher-volatile and more reactive coal-biomass blends. Higher heat release rates at the grate can cause increased clinkering or slagging at the grate due to higher temperatures. Combustion and loss of volatile matter can start much earlier for biomass fuels compared to design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates, various chlorides, and phosphates. These species in combination with different flue gas temperatures, because of changes in fuel heating value, can adversely affect ash deposition behavior. The goal of this project was to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project were: (1) Modification of an existing pilot-scale combustion system to simulate a grate-fired system. (2) Verification testing of the simulator. (3) Laboratory-scale testing and fuel characterization to

  6. BARRIER ISSUES TO THE UTILIZATION OF BIOMASS

    SciTech Connect

    Bruce C. Folkedahl; Darren D. Schmidt; Greg F. Weber; Christopher J. Zygarlicke

    2001-10-01

    The Energy & Environmental Research Center (EERC) is conducting a project to examine the fundamental issues limiting the use of biomass in small industrial steam/power systems in order to increase the future use of this valuable domestic resource. Specifically, the EERC is attempting to elucidate the ash-related problems--grate clinkering and heat exchange surface fouling--associated with cofiring coal and biomass in grate-fired systems. Utilization of biomass in stoker boilers designed for coal can be a cause of concern for boiler operators. Boilers that were designed for low volatile fuels with lower reactivities can experience damaging fouling when switched to higher volatile and more reactive lower-rank fuels, such as when cofiring biomass. Higher heat release rates at the grate can cause more clinkering or slagging at the grate because of higher temperatures. Combustion and loss of volatile matter can start too early for biomass fuels compared to the design fuel, vaporizing alkali and chlorides which then condense on rear walls and heat exchange tube banks in the convective pass of the stoker, causing noticeable increases in fouling. In addition, stoker-fired boilers that switch to biomass blends may encounter new chemical species such as potassium sulfates and various chlorides, in combination with different flue gas temperatures because of changes in fuel heating value which can adversely affect ash deposition behavior. The goal of this project is to identify the primary ash mechanisms related to grate clinkering and heat exchange surface fouling associated with cofiring coal and biomass--specifically wood and agricultural residuals--in grate-fired systems, leading to future mitigation of these problems. The specific technical objectives of the project are: Modification of an existing EERC pilot-scale combustion system to simulate a grate-fired system; Verification testing of the simulator; Laboratory-scale testing and fuel characterization to determine ash

  7. Sustainable Biomass Supply Systems

    SciTech Connect

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  8. Heavy metal partitioning in a municipal solid waste incinerator

    SciTech Connect

    Sorum, L.; Fossum, M.; Hustad, J.E.; Evensen, E.

    1997-12-01

    Norway has the following priorities for management of municipal solid waste (MSW) (1) Reduce waste generation and toxic components in waste, (2) Encourage re-use, recycling and energy recovery, and (3) Secure an environmentally safe management of residues. MSW consists of household waste and waste from the service and trade industry delivered to municipal waste treatment plants or recycling schemes. In 1995, a total of 2.7 million tons of MSW (1.26 million tons of household waste and 1.44 million tons of waste from service and trade industry) was handled as follows: 68% was deposited on landfills, 18% was combusted, 13% recycled and 1% composted. Combustion of MSW is handled in five larger plants with energy recovery located in different cities in Norway. In addition, a new incinerator for MSW is planned. This incinerator will have to meet the new emission regulations given by the European Union which are more stringent than the present regulations. Hence, Norway is moving towards more stringent regulations, leading to an increased interest in the environmental aspects of MSW incinerators. During 1995 Trondheim Energy Company carried out an investigation program to examine the residues from the incinerator. Primary attention was on the heavy metals in the bottom ash, fly ash and the landfill leacate. The program was conducted in order to establish more information about characteristics of the residues and thus be able to undertake a sounder evaluation of the environmental aspects of the final treatment of these products. This program was supplementary to the emission analysis done periodically for the flue gas and drain water. The objective of this work has been to establish knowledge about the partitioning of heavy metals through the incinerator and calculate the concentrations of heavy metal in the input MSW.

  9. Lessons Learned: Community Solar for Municipal Utilities

    SciTech Connect

    2016-12-01

    This report outlines the work that STAT has completed, discusses the range of approaches utilities are taking, and highlights several challenges municipal utilities face in deciding whether and how to pursue community solar. As this report shows, there is no 'silver bullet' in terms of municipal utility community solar design or implementation - programs vary significantly and are highly dependent on localized contexts.

  10. 78 FR 67467 - Registration of Municipal Advisors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... financial advisors to register with the and comply with regulations issued by the .'' \\4\\ \\2\\ See, e.g... transparency when engaging in transactions or investments with municipal advisors. \\8\\ See, e.g., MSRB Study... provide municipal advisory services, unless they are statutorily excluded.\\10\\ \\9\\ See 15 U.S.C....

  11. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  12. Feasibility of Biomass Biodrying for Gasification Process

    NASA Astrophysics Data System (ADS)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004

  13. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.

    PubMed

    Phanphanich, Manunya; Mani, Sudhagar

    2011-01-01

    Thermal pretreatment or torrefaction of biomass under anoxic condition can produce an energy dense and consistent quality solid biomass fuel for combustion and co-firing applications. This paper investigates the fuel characteristics and grindability of pine chips and logging residues torrefied at temperatures ranging from 225 °C to 300 °C and 30 min residence time. Grinding performance of torrefied biomass evaluated by determining energy required for grinding, particle size distribution and average particle size were compared with raw biomass and coal. Specific energy required for grinding of torrefied biomass decreased significantly with increase in torrefaction temperatures. The grinding energy of torrefied biomass was reduced to as low as 24 kW h/t at 300 °C torrefaction temperature. The gross calorific value of torrefied chips increased with increase in torrefaction temperature. Torrefaction of biomass clearly showed the improved fuel characteristics and grinding properties closer to coal.

  14. Municipal waste-to-energy technology assessment

    SciTech Connect

    Barrett, R.E.; Krause, H.H., Jr.; Engdahl, R.B.; Levy, A.; Oxley, J.H. )

    1992-01-01

    Two major technologies are available to burn municipal solid waste (MSW) to generate steam for the production of electricity: mass-burn and refuse-derived fuel (RDF) systems. Mass-burn systems process as-received waste directly in a combustor, such as a reciprocating, rotary, or roller-grate furnace, with only limited removal of undesirable objects. Refuse-derived-fuel (RDF) systems first process the waste to produce refuse-derived fuel via shredding and other operations before combustion in spreader-stoker, fluidized-bed, and other suitable combustors. Although mass-burn systems with specially designed grates are now considered proven technology, there is much interest in RDF systems, because RDF can be used in a wide range of combustors, including some utility power plants of conventional design. However, a number of technical issues remain for both mass-burn and RDF-firing systems, and further research is warranted. Disposal of the ash residues from the combustor and/or the waste from the air-pollution control equipment is a major issue preventing more widespread use of this technology. Selection of materials of construction is also an important issue. Continuous-emission-monitoring requirements may be exceeding the technical capabilities for reliable, long-term operation. The occasional receipt of biologically active waste or waste containing heavy metals is still a troublesome issue. Dioxin emissions seem to be a problem only in plants of early design, although the issue of dioxin emissions continues to be a major one in permit applications and public relations. 58 refs., 28 figs., 16 tabs.

  15. Start-up of the SHARON and ANAMMOX process in landfill bioreactors using aerobic and anaerobic ammonium oxidising biomass.

    PubMed

    Shalini, S Sri; Joseph, Kurian

    2013-12-01

    The main aim of this study is to analyse the feasibility to use aerobic ammonium oxidising bacteria (AOB) and anammox/AnAOB biomass enriched from mined municipal solid waste for in situ SHARON and ANAMMOX processes in laboratory scale landfill bioreactors (LFBR) for ammonia nitrogen removal. For this purpose, three LFBRs were operated as Control (without biomass seed), SHARON (with AOB biomass seed) and ANAMMOX (with anammox biomass seed) for 315 days. Results showed nitrogen loading rate of 1.0 kg N/d was effectively removed in SHARON and ANAMMOX LFBR. In SHARON LFBR, partial nitritation efficiency reached up to 98.5% with AOB population of MPN of 5.1 × 10(6)/mL obtained. ANAMMOX LFBR gave evolution of 95% of nitrogen gas as the end product confirmed the ANAMMOX process. Nitrogen transformations, biomass development and hydrazine and hydroxylamine formation authenticated the enriched AOB and anammox biomass activity in landfill bioreactors.

  16. Energy conversion of biomass in coping with global warming

    SciTech Connect

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  17. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into a municipal sewers are treated at wastewater treatment plants. These may contain both man-made and naturally occurring radionuclides which can accumulate in the treatment plant.

  18. Fixed Bed Biomass Gasifier

    SciTech Connect

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  19. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  20. Biomass production in Florida

    SciTech Connect

    Smith, W.H.; Dowd, M.L.

    1981-08-01

    Florida posseses climatic, land, and water resources favorable for abundant biomass production. Therefore, a statewide program has been initiated to determine adapted species for the available array of production sites. Plant resources under investigation include woody, aquatic, grasses, hydrocarbon, and root crop species. The goal is to produce a continuous stream of biomass for the various biofuel conversion options. Preliminary yields from energy cropping experiments range from about 10 to nearly 90 metric tons per hectare per year, depending on the crop and the production systems employed. (Refs. 15).

  1. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  2. The potential for constructed wetlands to treat alkaline bauxite-residue leachate: Phragmites australis growth.

    PubMed

    Higgins, D; Curtin, T; Pawlett, M; Courtney, R

    2016-12-01

    High alkalinity (pH > 12) of bauxite-residue leachates presents challenges for the long-term storage and managements of the residue. Recent evidence has highlighted the potential for constructed wetlands to effectively buffer the alkalinity, but there is limited evidence on the potential for wetland plants to establish and grow in soils inundated with residue leachate. A pot-based trial was conducted to investigate the potential for Phragmites australis to establish and grow in substrate treated with residue leachate over a pH range of 8.6-11.1. The trial ran for 3 months, after which plant growth and biomass were determined. Concentrations of soluble and exchangeable trace elements in the soil substrate and also in the aboveground and belowground biomass were determined. Residue leachate pH did not affect plant biomass or microbial biomass. With the exception of Na, there was no effect on exchangeable trace elements in the substrate; however, increases in soluble metals (As, Cd and Na) were observed with increasing leachate concentration. Furthermore, increases in Al, As and V were observed in belowground biomass and for Cd and Cr in aboveground biomass. Concentrations within the vegetation biomass were less than critical phytotoxic levels. Results demonstrate the ability for P. australis to grow in bauxite-residue leachate-inundated growth media without adverse effects.

  3. Municipal pleural cancer mortality in Spain

    PubMed Central

    Lopez-Abente, G; Hernandez-Barrera, V; Pollan, M; Aragones, N; Perez-Gomez, B

    2005-01-01

    Background: Pleural cancer is a recognised indicator of exposure to asbestos and mesothelioma mortality. Aims: To investigate the distribution of municipal mortality due to this tumour, using the autoregressive spatial model proposed by Besag, York, and Molliè. Methods: It was possible to compile and ascertain the posterior distribution of relative risk on the basis of a single Bayesian spatial model covering all of Spain's 8077 municipal areas. Maps were plotted depicting standardised mortality ratios, smoothed relative risk (RR) estimates, and the distribution of the posterior probability that RR >1. Results: There was a higher risk of death due to pleural cancer in well defined towns and areas, many of which correspond to municipalities where asbestos using industries once existed for many years, the prime example being the municipal pattern registered for Barcelona Province. The quality of mortality data, the suitability of the model used, and the usefulness of municipal atlases for environmental surveillance are discussed. PMID:15723885

  4. [Evaluation model for municipal health planning management].

    PubMed

    Berretta, Isabel Quint; Lacerda, Josimari Telino de; Calvo, Maria Cristina Marino

    2011-11-01

    This article presents an evaluation model for municipal health planning management. The basis was a methodological study using the health planning theoretical framework to construct the evaluation matrix, in addition to an understanding of the organization and functioning designed by the Planning System of the Unified National Health System (PlanejaSUS) and definition of responsibilities for the municipal level under the Health Management Pact. The indicators and measures were validated using the consensus technique with specialists in planning and evaluation. The applicability was tested in 271 municipalities (counties) in the State of Santa Catarina, Brazil, based on population size. The proposed model features two evaluative dimensions which reflect the municipal health administrator's commitment to planning: the guarantee of resources and the internal and external relations needed for developing the activities. The data were analyzed using indicators, sub-dimensions, and dimensions. The study concludes that the model is feasible and appropriate for evaluating municipal performance in health planning management.

  5. 1990 Washington State directory of biomass energy facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  6. 1990 Washington State directory of biomass energy facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

  7. Method for pretreating lignocellulosic biomass

    DOEpatents

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  8. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  9. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice.

    PubMed

    Bhattacharyya, P; Chakrabarti, K; Chakraborty, A; Nayak, D C; Tripathy, S; Powell, M A

    2007-01-01

    The importance of the use of potassium in agriculture is increasing in South Asia for making most productive use of the nutrient in terms of economic returns. Nutrient supply traditionally by cattle manure is constrained by its insufficient availability. Municipal waste compost may be an alternative source of nutrient supplements. Field experiments were conducted at the Experimental Farm of Calcutta University, West Bengal, India during the wet seasons of 1997, 1998 and 1999 on flooded lowland rice. Potassium fractions in municipal waste compost and cattle manure were determined by sequential extraction and also the potassium uptake by rice to compare the effectiveness of municipal waste compost with traditional manure. Potassium was significantly bound to the organic matter in municipal waste compost. Potassium uptake by rice grain and straw increased significantly with the combined application of organics and fertilizers and it was higher in grain than in straw. Water-soluble and non-exchangeable potassium contents of municipal waste compost and cattle manure were highly correlated with the uptake of potassium by straw and grain. Exchangeable and residual potassium were also significantly correlated with the uptake of potassium by straw and grain of rice. Much higher uptake of K in rice straw and rain resulted from applying the manures in conjunction with fertilizers than when applied singly.

  10. Emissions from Biomass Burning in the Yucatan

    NASA Technical Reports Server (NTRS)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; Weinheimer, A.; Knapp, D. J.; Montzka, D. D.; Holloway, J.; Weibring, P.; Flocke, F.; Zheng, W.; Toohey, D.; Wennberg, P. O.; Wiedinmyer, C.; Mauldin, L.; Fried, A.; Richter, D.; Walega, J.; Jimenez, J. L.

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  11. Electrolytic Removal of Nitrate From CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo; Sager, John

    1996-01-01

    The controlled ecological life support system (CELSS) resource recovery system is a waste processing system using aerobic and anaerobic bioreactors to recover plant nutrients and secondary foods from inedible biomass. Crop residues contain significant amounts of nitrate which presents two problems: (1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, (2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. A technique was proposed to remove the nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand using a four compartment electrolytic cell.

  12. Biogasification of municipal solid wastes

    NASA Astrophysics Data System (ADS)

    Diaz, L. F.; Savage, G. M.; Trezek, G. J.; Golueke, C. G.

    1981-06-01

    A series of experiments on the anaerobic digestion of the organic fraction of municipal refuse was performed. The refuse fraction used in the study was one of the portions segregated in a resource recovery system developed at the University of California, Berkeley. The scale of experiments includes 4, 9, and 1600-L digesters. The refuse used as feed was enriched by the addition of raw sewage sludge in various ratios, i.e., from 0-100 percent of the total volatile solids. No other sources of nutrients or chemicals for pH control were introduced into the reactors. Organic loading rates ranging from 1.1-6.4 g of volatile solids/Ld were obtained. Typical hydraulic detention times were 15 to 30 days. Temperatures were kept within the range of 72-104 F (22-40 C). Digestion efficiency was based on energy conversion and gas production.

  13. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O2 generation, CO2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future

  14. Electrochemical fermentation of biomass

    SciTech Connect

    Brumm, T.J.; Day, D.L.; Steinberg, M.P.

    1983-12-01

    This paper summarizes research or the integration of aerobic biomass treatment and in situ electrolysis. Water is split into oxygen (used for microbial respiration) and hydrogen. The microflora greatly enhanced hydrogen production; Faraday current efficiencies > 100% were seen. There was, however, evidence of microbial inhibition due to the electrolysis.

  15. Switchgrass for biomass energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum) is a native warm-season grass and is the model herbaceous perennial biomass energy feedstock for the USA. More than 75-years of experience confirm that switchgrass will be productive and sustainable on rain-fed marginally-productive cropland east of the 100th meridian....

  16. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  17. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  18. Biomass Conversion Factsheet

    SciTech Connect

    2016-06-05

    To efficiently convert algae, diverse types of cellulosic biomass, and emerging feedstocks into renewable fuels, the U.S. Department of Energy (DOE) supports research, development, and demonstration of technologies. This research will help ensure that these renewable fuels are compatible with today’s vehicles and infrastructure.

  19. Sustainable biomass removal rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop non-grain biomass (straw or stover) is a potential bioenergy feedstock suitable for thermochemical (controlled combustion) or fermentation to ethanol platforms. It is critical to prevent soil degradation; thereby, maintain soil's capacity to produce food, feed, fiber and fuel. Overharvest of cr...

  20. Biomass Program Factsheet

    SciTech Connect

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  1. Carbon Fiber from Biomass

    SciTech Connect

    Milbrandt, Anelia; Booth, Samuel

    2016-09-01

    Carbon fiber (CF), known also as graphite fiber, is a lightweight, strong, and flexible material used in both structural (load-bearing) and non-structural applications (e.g., thermal insulation). The high cost of precursors (the starting material used to make CF, which comes predominately from fossil sources) and manufacturing have kept CF a niche market with applications limited mostly to high-performance structural materials (e.g., aerospace). Alternative precursors to reduce CF cost and dependence on fossil sources have been investigated over the years, including biomass-derived precursors such as rayon, lignin, glycerol, and lignocellulosic sugars. The purpose of this study is to provide a comprehensive overview of CF precursors from biomass and their market potential. We examine the potential CF production from these precursors, the state of technology and applications, and the production cost (when data are available). We discuss their advantages and limitations. We also discuss the physical properties of biomass-based CF, and we compare them to those of polyacrylonitrile (PAN)-based CF. We also discuss manufacturing and end-product considerations for bio-based CF, as well as considerations for plant siting and biomass feedstock logistics, feedstock competition, and risk mitigation strategies. The main contribution of this study is that it provides detailed technical and market information about each bio-based CF precursor in one document while other studies focus on one precursor at a time or a particular topic (e.g., processing). Thus, this publication allows for a comprehensive view of the CF potential from all biomass sources and serves as a reference for both novice and experienced professionals interested in CF production from alternative sources.

  2. Prospects for the use of municipal solid wastes as secondary energy resources in Russia

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.

    2013-09-01

    An analysis is made of both domestic and world experience in the field of energy recovery from municipal solid wastes (MSWs). The results are presented of an investigation of solid residues being formed in the process of thermal treatment of MSWs at the garbage-burning plants located in Moscow. The feasibility of utilization of ash and slag at thermal power plants incinerating MSW is shown.

  3. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect

    Shih, Chien-Ju

    2010-01-01

    bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important

  4. Evaluation of Biomass Availability for Biogas Production at Regional Level

    NASA Astrophysics Data System (ADS)

    Dzene, I.; Bodescu, F.

    2009-01-01

    Currently available data were used in an integrated deterministic modelling approach to assess the total biomass availability. The conceptual approach of combining the benefits of relational database and GIS modelling was tested in two eastern European countries - in Latvia and Romania, both located in different bio-geographical regions. The developed system has proven its efficiency in dealing with heterogeneity in different levels of complexity regarding environmental and ecological structures. The overall approach of assessing the biomass resources was first to estimate the quantity of material generated from municipal waste and agricultural practices in each of research areas. The quantity of material that could be recovered from these practices was then taken into account and the technical and environmental constraints associated with other site factors were evaluated. As a result, the particular areas with high, medium and low potential in each country were identified.

  5. Enzymes for improved biomass conversion

    SciTech Connect

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  6. Alkali activation processes for incinerator residues management.

    PubMed

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered.

  7. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  8. Biomass stakeholder views and concerns: Environmental groups and some trade association

    SciTech Connect

    Peelle, E.

    2000-01-01

    This exploratory study of the views and concerns of 25 environmental organizations found high interest and concern about which biomass feedstocks would be used and how these biomass materials would be converted to energy. While all favored renewable energy over fossil or nuclear energy, opinion diverged over whether energy crops, residues, or both should be the primary source of a biomass/bioenergy fuel cycle. About half of the discussants favored biomass ``in general'' as a renewable energy source, while the others were distributed about equally over five categories, from favor-with-conditions, uncertain, skeptical, opposed, to ``no organizational policy.''

  9. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  10. Disinfection of Ebola Virus in Sterilized Municipal Wastewater

    PubMed Central

    Fischer, Robert J.; Casson, Leonard W.; de Carvalho, Nathalia Aquino; Haas, Charles N.; Munster, Vincent J.

    2017-01-01

    Concerns have been raised regarding handling of Ebola virus contaminated wastewater, as well as the adequacy of proposed disinfection approaches. In the current study, we investigate the inactivation of Ebola virus in sterilized domestic wastewater utilizing sodium hypochlorite addition and pH adjustment. No viral inactivation was observed in the one-hour tests without sodium hypochlorite addition or pH adjustment. No virus was recovered after 20 seconds (i.e. 4.2 log10 unit inactivation to detection limit) following the addition of 5 and 10 mg L-1 sodium hypochlorite, which resulted in immediate free chlorine residuals of 0.52 and 1.11 mg L-1, respectively. The addition of 1 mg L-1 sodium hypochlorite resulted in an immediate free chlorine residual of 0.16 mg L-1, which inactivated 3.5 log10 units of Ebola virus in 20 seconds. Further inactivation was not evident due to the rapid consumption of the chlorine residual. Elevating the pH to 11.2 was found to significantly increase viral decay over ambient conditions. These results indicate the high susceptibility of the enveloped Ebola virus to disinfection in the presence of free chlorine in municipal wastewater; however, we caution that extension to more complex matrices (e.g. bodily fluids) will require additional verification. PMID:28146555

  11. Biomass and biomass change in lodgepole pine stands in Alberta.

    PubMed

    Monserud, Robert A; Huang, Shongming; Yang, Yuqing

    2006-06-01

    We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0

  12. Biomass Burning Data and Information

    Atmospheric Science Data Center

    2015-04-21

    Biomass Burning Data and Information This data set represents ... geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ... models of the atmosphere. Project Title:  Biomass Burning Discipline:  Tropospheric Composition ...

  13. Reburn system with feedlot biomass

    DOEpatents

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  14. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-06-01

    The bibliography contains citations concerning the use of sewage sludge as forestry and farm crop fertilizer. References discuss degassed biomass, fertilizer-grade residues, compost fertilizers, biological conversion of organic wastes, organic environmental pollution, and iron salts. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  16. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops.

  17. Municipal waste management in Sicily: Practices and challenges

    SciTech Connect

    Messineo, Antonio Panno, Domenico

    2008-07-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  18. The 2014 National Emission Inventory for Rangeland Fires and Crop Residue Burning

    EPA Science Inventory

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions I...

  19. Radioactivity in municipal sewage and sludge.

    PubMed Central

    Martin, J E; Fenner, F D

    1997-01-01

    health concerns because sufficient decay occurs before it can reach the public however, incineration, which is done in winter months, directly releases the 131I from sewage sludge to the atmosphere, and even though exposures to both workers and the public were found to be considerably lower than 1% of natural background, incineration of sludge in a pathway for public exposure. Although 131I was readily measurable in sewage sludge, only about 1% of the radioione administered to patients was found in the sludge. The fate of the remaining radioactivity has not been established; some may be in secondary and tertiary residuals, but it is quite likely that most passed through the plant and was discharged in dilute concentrations in plant emissions. The behavior of radioiodine and other radioactive materials released into municipal seweage systems, such as those from large medical facilities, is not yet well understood. PMID:9258296

  20. Vehicular fuels and oxychemicals from biomass thermochemical tars

    SciTech Connect

    Soltes, E.J.; Lin, S.C.K.

    1983-01-01

    Catalytic hydroprocessing (hydrotreating and hydrocracking) of biomass thermochemical tars can yield mixtures of liquid hydrocarbons and alkyl aromatics of chemical compositions similar to those presently used in diesel and gasoline engine fuels. Phenolics can be coproduced. Compositions of hydroprocessed tars are similar regardless of biomass feedstock used, suggesting that the two-stage process of pyrolysis and hydroprocessing may afford a somewhat universal route to the generation of useful hydrocarbons and oxychemicals from a variety of agricultural and forestry residues. 26 references, 6 figures, 1 table.

  1. Valorization of biomass: deriving more value from waste.

    PubMed

    Tuck, Christopher O; Pérez, Eduardo; Horváth, István T; Sheldon, Roger A; Poliakoff, Martyn

    2012-08-10

    Most of the carbon-based compounds currently manufactured by the chemical industry are derived from petroleum. The rising cost and dwindling supply of oil have been focusing attention on possible routes to making chemicals, fuels, and solvents from biomass instead. In this context, many recent studies have assessed the relative merits of applying different dedicated crops to chemical production. Here, we highlight the opportunities for diverting existing residual biomass--the by-products of present agricultural and food-processing streams--to this end.

  2. Biomass sustainability and certification.

    PubMed

    Pavanan, Krishna C; Bosch, Roeland A; Cornelissen, Rob; Philp, Jim C

    2013-07-01

    The major challenges for humanity include energy security, food security, climate change, and a growing world population. They are all linked together by an instinctive, and yet increasingly complex and evolving concept, that of sustainability. Industrial biotechnology is seen as part of the overall solution, principally to combat climate change and strengthen energy security. At its beating heart is a huge policy challenge - the sustainability of biomass.

  3. East Bay Municipal Utility District Settlement

    EPA Pesticide Factsheets

    The East Bay Municipal Utility District and its seven member communities own and operate a separate sanitary sewer system, which serves approximately 650,000 customers on the eastern side of San Francisco Bay in California.

  4. Thermophilic biogasification of biomass

    SciTech Connect

    Ghosh, S.; Klass, D.L.; Christopher, R.W.; Edwards, V.H.

    1980-01-01

    Mesophilic and thermophilic digestion runs were conducted with the pure land-based biomass species, water hyacinth (Eichhornia crassipes) and Coastal Bermuda grass (Cynodon dactylon), and a blend of hyacinth, grass, MSW, and sewage sludge. A mixed biomass-waste hybrid feed was included because it has a superior nutritional balance relative to the pure feeds and it facilitates year-round operation of a biomass-to-SNG process. (7) The studies were conducted at 35/sup 0/ and 55/sup 0/C, generally believed to be optimum for mesophilic and thermophilic digestion of organic feeds. Results of mesophilic digestion were to provide baseline performance data for evaluation of thermophilic digester performance. It was decided that the feed affording the best thermophilic performance would be pretreated with dilute sodium hydroxide solution at the selected digestion temperature of 55/sup 0/C to improve methane production rate and yield. In addition, thermophilic runs were planned to investigate ways to reduce chemical requirements for alkaline pretreatment and feed slurry neutralization.

  5. Hydrolysis of biomass material

    DOEpatents

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  6. Bioenergy: Agricultural Crop Residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  7. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  8. Alteration of municipal and industrial slags under atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  9. Grass and herbaceous plants for biomass

    SciTech Connect

    Prine, G.M.; Mislevy, P.

    1983-01-01

    Florida has little fossil fuel resources, but the state does have an adequate climate for high plant biomass production. Grasses and herbaceous plants are renewable resources which could furnish a portion of Florida's energy needs. Dry matter yields of various annual and perennial grasses and herbaceous plants which can be grown in Florida are presented in this paper. Residues of crops already being grown for other reasons would be an economical source of biomass. The best alternative for an energy crop appears to be tropical perennial shrub-like legumes and tall, strong-stemmed grasses that have their top growth killed by frosts each winter and that regrow annually from below-ground regenerative plant parts. Napiergrass or elephantgrass (Pennisetum purpureum L.), leucaena (Leucaena leucocephala (Lam.) de Wit) and sugarcane (Saccharum spp.) are examples of such energy plants. Napiergrass (PI 300086) had dry matter yields when cut once at the end of the season of 44.5 and 52.4 Mg/ha in 1981 and 1982 respectively, at Gainesville, Fla. and 56.7 Mg/ha for the first season after planting (1982) at Ona, Fla. A dry matter yield of 73 Mg/ha was obtained from a 10-year-old clump of leucaena at Gainesville in 1981. However, research needs to be conducted on methods of harvesting and storing biomass plants to be used for energy. Napiergrass and other grasses may be solar dried standing after a freeze or following cutting in the fall and then be rolled into large bales for storage in the open or crude shelters. A year-round supply of economical biomass must be available before grasses and herbaceous plants are widely grown and used for energy purposes. 6 references.

  10. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    PubMed Central

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-01-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use. PMID:27470705

  11. An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass

    NASA Astrophysics Data System (ADS)

    Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath

    2016-07-01

    We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.

  12. Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives

    PubMed Central

    Dashtban, Mehdi; Schraft, Heidi; Qin, Wensheng

    2009-01-01

    The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains. PMID:19774110

  13. Potential soil quality impact of harvesting crop residues for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humankind is in the midst of one of the greatest technological, environmental and social transitions since the industrial revolution, as we strive to replace fossil energy with renewable biomass resources. This presentation will (1) briefly review increased public interest in harvesting crop residue...

  14. Honey Lake hybrid geothermal wood residue power project

    SciTech Connect

    Toland, J.

    1981-05-01

    The Honey Lake Hybrid Geothermal Wood Residue Power Project with a planned output of 50 MW is undergoing feasibility studies funded by GeoProducts Corporation, Department of Water Resources, State of California, US Department of Energy and the Forest Service, USDA. The outlook is optimistic. It is reliably estimated that the required volume of woody biomass can be made available without environmental degradation.

  15. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  16. Briquette comprising caking coal and municipal solid waste

    SciTech Connect

    Schulz, H.W.

    1980-09-30

    Briquettes of specified geometry and composition are produced to serve as feed material or ''burden'' in a moving-burden gasifier for the production of a synthesis or fuel gas from organic solid waste materials and coal, including especially, the so-called ''caking'' coals, as in the process of copending application number 675,918. The briquettes are formed from a well-blended mixture of shredded organic solid wastes, including especially, municipal solid waste (Msw) or biomass, and crushed caking coal, including coal fines. A binder material may or may not be required, depending on the coal/msw ratio and the compaction pressure employed. The briquettes may be extruded, stamped, or pressed, employing compaction pressures in excess of 1000 psi, and preferably in the range of 2000 to 10,000 psi. The briquettes may be circular, polygonal, or irregular in cross-section; they may be solid, or concentrically perforated to form a hollow cylinder or polygon; they may be formed into saddles, pillows or doughnuts. The ratio of caking coal to shredded municipal solid waste is controlled so that each part of the predominantly cellulosic organic solid waste will be blended with 0.5 to 3.0 parts of crushed coal. Suitable binder materials include dewatered sewage slude (Dss), ''black liquor'' rich in lignin derivatives, black strap molasses, waste oil, and starch. The binder concentration is preferably in the range of 2 to 6 percent. If coals high in sulfur content are to be processed, at least a stoichiometric equivalent of dolomite may be included in the briquette formulation to eliminate a major fraction of the sulfur with the slag.

  17. Polyhydroxyalkanoate copolymers from forest biomass.

    PubMed

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  18. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  19. Functional Opportunities of the School Administration in Municipalities with Local Agencies and Free Municipality Experiments.

    ERIC Educational Resources Information Center

    Stromberg, Lars

    1987-01-01

    Efforts to achieve greater decentralization, deregulation, and management by objectives in the public sector have left an indelible mark on the school sector in Sweden during the 1980s. The experimental scheme of local agencies and free municipalities illustrates two such reforms. Under the free municipality experiment, a number of municipalities…

  20. Biomass process handbook

    SciTech Connect

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  1. Emissions of fine particle fluoride from biomass burning.

    PubMed

    Jayarathne, Thilina; Stockwell, Chelsea E; Yokelson, Robert J; Nakao, Shunsuke; Stone, Elizabeth A

    2014-11-04

    The burning of biomasses releases fluorine to the atmosphere, representing a major and previously uncharacterized flux of this atmospheric pollutant. Emissions of fine particle (PM2.5) water-soluble fluoride (F-) from biomass burning were evaluated during the fourth Fire Laboratory at Missoula Experiment (FLAME-IV) using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and ion chromatography with conductivity detection. F- was detected in 100% of the PM2.5 emissions from conifers (n=11), 94% of emissions from agricultural residues (n=16), and 36% of the grasses and other perennial plants (n=14). When F- was quantified, it accounted for an average (±standard error) of 0.13±0.02% of PM2.5. F- was not detected in remaining samples (n=15) collected from peat burning, shredded tire combustion, and cook-stove emissions. Emission factors (EF) of F- emitted per kilogram of biomass burned correlated with emissions of PM2.5 and combustion efficiency, and also varied with the type of biomass burned and the geographic location where it was harvested. Based on recent evaluations of global biomass burning, we estimate that biomass burning releases 76 Gg F- yr(-1) to the atmosphere, with upper and lower bounds of 40-150 Gg F- yr(-1). The estimated F- flux from biomass burning is comparable to total fluorine emissions from coal combustion plus other anthropogenic sources. These data demonstrate that biomass burning represents a major source of fluorine to the atmosphere in the form of fine particles, which have potential to undergo long-range transport.

  2. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  3. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  4. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  5. Harvesting forest biomass for energy in Minnesota: An assessment of guidelines, costs and logistics

    NASA Astrophysics Data System (ADS)

    Saleh, Dalia El Sayed Abbas Mohamed

    The emerging market for renewable energy in Minnesota has generated a growing interest in utilizing more forest biomass for energy. However, this growing interest is paralleled with limited knowledge of the environmental impacts and cost effectiveness of utilizing this resource. To address environmental and economic viability concerns, this dissertation has addressed three areas related to biomass harvest: First, existing biomass harvesting guidelines and sustainability considerations are examined. Second, the potential contribution of biomass energy production to reduce the costs of hazardous fuel reduction treatments in these trials is assessed. Third, the logistics of biomass production trials are analyzed. Findings show that: (1) Existing forest related guidelines are not sufficient to allow large-scale production of biomass energy from forest residue sustainably. Biomass energy guidelines need to be based on scientific assessments of how repeated and large scale biomass production is going to affect soil, water and habitat values, in an integrated and individual manner over time. Furthermore, such guidelines would need to recommend production logistics (planning, implementation, and coordination of operations) necessary for a potential supply with the least site and environmental impacts. (2) The costs of biomass production trials were assessed and compared with conventional treatment costs. In these trials, conventional mechanical treatment costs were lower than biomass energy production costs less income from biomass sale. However, a sensitivity analysis indicated that costs reductions are possible under certain site, prescriptions and distance conditions. (3) Semi-structured interviews with forest machine operators indicate that existing fuel reduction prescriptions need to be more realistic in making recommendations that can overcome operational barriers (technical and physical) and planning and coordination concerns (guidelines and communications

  6. Two-stage dilute acid prehydrolysis of biomass

    DOEpatents

    Grohmann, Karel; Torget, Robert W.

    1992-01-01

    A two-stage dilute acid prehydrolysis process on xylan containing hemicellulose in biomass is effected by: treating feedstock of hemicellulosic material comprising xylan that is slow hydrolyzable and xylan that is fast hydrolyzable under predetermined low temperature conditions with a dilute acid for a residence time sufficient to hydrolyze the fast hydrolyzable xylan to xylose; removing said xylose from said fast hydrolyzable xylan and leaving a residue; and treating said residue having a slow hydrolyzable xylan with a dilute acid under predetermined high temperature conditions for a residence time required to hydrolyze said slow hydrolyzable xylan to xylose.

  7. Solar biomass energy: an overview of u.s. Potential.

    PubMed

    Burwell, C C

    1978-03-10

    The U.S. annual biomass production for food, lumber, paper, and fiber, if used exclusively for energy, would provide 25 percent of current energy requirements. The collection of unharvested wood residues and cull trees for direct use as fuel for small nearby space-heating applications-especially for peak winter conditions-is an important near-term solar energy opportunity. Improved management of hundreds of millions of acres of productive forest land is an important opportunity for the long term. Harvest of cropland residues for energy values, new biomass production using intensive short-rotation silviculture, resubstitution of natural products for petroleum-based synthetics, and forest management for large-scale production of electricity and synthetic fuels are judged to be less appropriate directions for the U.S. energy system to take.

  8. Fuels from biomass and wastes

    NASA Astrophysics Data System (ADS)

    Klass, D. L.; Emert, G. H.

    The production, use, and effects of fuels from biomass and waste energy sources are discussed. Biomass procurement from silviculture, including hybrid poplar and sycamore farms, in addition to the growth of mass algal culture and Jerusalem artichokes for fuels are considered. The conversion of biomass and solid waste materials through biological and thermal gasification, hydrolysis and extraction, and fermentation to produce ethanol, along with natural and thermal liquefaction processes involving euphorbia lathyris and cellulosic materials are elaborated. Environmental and health aspects of biomass and waste conversion systems are outlined, noting the large land surface areas needed for significant contributions to total demands from biomass, specific instances and case studies are reviewed for biomass use in Indiana, the Dominican Republic, the southeast U.S., and in small wood stoves.

  9. Pretreatment of Biomass by Aqueous Ammonia for Bioethanol Production

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Gupta, Rajesh; Lee, Y. Y.

    The methods of pretreatment of lignocellulosic biomass using aqueous ammonia are described. The main effect of ammonia treatment of biomass is delignification without significantly affecting the carbohydrate contents. It is a very effective pretreatment method especially for substrates that have low lignin contents such as agricultural residues and herbaceous feedstock. The ammonia-based pretreatment is well suited for simultaneous saccharification and co-fermentation (SSCF) because the treated biomass retains cellulose as well as hemicellulose. It has been demonstrated that overall ethanol yield above 75% of the theoretical maximum on the basis of total carbohydrate is achievable from corn stover pretreated with aqueous ammonia by way of SSCF. There are two different types of pretreatment methods based on aqueous ammonia: (1) high severity, low contact time process (ammonia recycle percolation; ARP), (2) low severity, high treatment time process (soaking in aqueous ammonia; SAA). Both of these methods are described and discussed for their features and effectiveness.

  10. An advanced extruder-feeder biomass liquefaction reactor system

    NASA Astrophysics Data System (ADS)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  11. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    SciTech Connect

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; Schulz, Roland; Lindner, Benjamin; Smith, Jeremy. C.

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose binding of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.

  12. Mechanism of lignin inhibition of enzymatic biomass deconstruction

    DOE PAGES

    Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong; ...

    2015-12-01

    The conversion of plant biomass to ethanol via enzymatic cellulose hydrolysis offers a potentially sustainable route to biofuel production. However, the inhibition of enzymatic activity in pretreated biomass by lignin severely limits the efficiency of this process. By performing atomic-detail molecular dynamics simulation of a biomass model containing cellulose, lignin, and cellulases (TrCel7A), we elucidate detailed lignin inhibition mechanisms. We find that lignin binds preferentially both to the elements of cellulose to which the cellulases also preferentially bind (the hydrophobic faces) and also to the specific residues on the cellulose-binding module of the cellulase that are critical for cellulose bindingmore » of TrCel7A (Y466, Y492, and Y493). In conclusion, lignin thus binds exactly where for industrial purposes it is least desired, providing a simple explanation of why hydrolysis yields increase with lignin removal.« less

  13. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  14. Protection of biomass from snail overgrazing in a trickling filter using sponge media as a biomass carrier: down-flow hanging sponge system.

    PubMed

    Onodera, Takashi; Syutsubo, Kazuaki; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Mizuochi, Motoyuki; Harada, Hideki

    2015-01-01

    This study investigated down-flow hanging sponge (DHS) technology as a promising trickling filter (TF) using sponge media as a biomass carrier with an emphasis on protection of the biomass against macrofauna overgrazing. A pilot-scale DHS reactor fed with low-strength municipal sewage was operated under ambient temperature conditions for 1 year at a sewage treatment plant in Bangkok, Thailand. The results showed that snails (macrofauna) were present on the surface of the sponge media, but could not enter into it, because the sponge media with smaller pores physically protected the biomass from the snails. As a result, the sponge media maintained a dense biomass, with an average value of 22.3 gVSS/L sponge (58.1 gTSS/L sponge) on day 370. The snails could graze biomass on the surface of the sponge media. The DHS reactor process performance was also successful. The DHS reactor requires neither chemical treatments nor specific operations such as flooding for snail control. Overall, the results of this study indicate that the DHS reactor is able to protect biomass from snail overgrazing.

  15. Estimating Phytoplankton Biomass and Productivity.

    DTIC Science & Technology

    1981-06-01

    Identlfy by block nuusbet) -Estimates of phytoplankton biomass and rates of production can provide a manager with some insight into questions concerning...and growth. Phytoplankton biomass is the amount of algal material present, whereas productivity is the rate at which algal cell material is produced...biomass and productivity parameters. Munawar et al. (1974) reported that cell volume was better correlated to chlorophyll a and photosynthe- sis rates

  16. PHA recovery from biomass.

    PubMed

    Madkour, Mohamed H; Heinrich, Daniel; Alghamdi, Mansour A; Shabbaj, Ibraheem I; Steinbüchel, Alexander

    2013-09-09

    The recovery of polyhydroxyalkanoates (PHAs) from biomass, that is, from bacterial cells, is one of the major obstacles in the industrial production of these polyesters. Since PHAs are naturally synthesized as intracellular storage compounds for carbon and energy and are for this deposited in the cytoplasm of the bacterial cell, PHAs are more or less tightly linked with the entire biomass, and the polyesters must be released from the cells before their isolation and purification can be conducted. This additional step, that is, the release from the cells, is a major difference from most other biotechnological processes where the product occurs outside of the cells because it is secreted into the medium in a bioreactor or because it is synthesized in vitro in an enzyme reactor in a cell free system. This additional step contributes significantly to the overall costs of production. In this review we provide an overview about the different processes that result in the release of PHA from the cells, and we evaluate these processes with regard to the suitability at large scale in the industry.

  17. Catalytic liquefaction of biomass

    SciTech Connect

    Davis, H.; Figueroa, C.; Karatas, C.; Kloden, D.; Schaleger, L.; Yaghoubzadeh, N.

    1981-10-01

    The bench-scale continuous liquefaction unit or CLU is in operation as a back-mixed reactor. Its capabilities include temperatures up to 370/sup 0/C, reaction times of about 10 to 30 minutes and pressures up to 4000 PSIG. It is in use exploring a factorial experiment in temperature, time, slurry pH, gas to slurry feed ratio and other variables. From early runs at times of about 20 minutes, temperatures of 350/sup 0/C or higher and slurry pH's above 8 are desirable. The reactor has been used only on Douglas fir wood slurries. However, it is available for a wide range of biomass or even fossil feedstocks. New methods of characterizing oil and water-soluble products have been developed and applied to CLU products. Conditions under which formate ion, probable intermediate in both water gas shift reaction and reduction of biomass oxygen by CO, is formed in large quantities have been found. Raw wood chips have been shown to undergo solvolysis - total dissolution - when mixed with wood liquefaction oil and heated under certain conditions. This phenomenon must occur to some degree in the initial stages of the PERC process. Solvolysis is suggested as a possible way to get the benefits of oil recycle without the uneconomicaly high recycle ratios of the PERC process.

  18. Nitrogen recovery from a stabilized municipal landfill leachate.

    PubMed

    Di Iaconi, Claudio; Pagano, Michele; Ramadori, Roberto; Lopez, Antonio

    2010-03-01

    The present paper reports the results of an investigation aimed at evaluating the effectiveness of magnesium ammonium phosphate precipitation (MAP), commonly called struvite, for removing ammonia from a mature municipal landfill leachate. MAP precipitation was carried out at laboratory scale by adding phosphoric acid and magnesium oxide as external sources of phosphorus and magnesium, respectively, and regulating the pH at 9.0. The effect of Mg:NH(4):PO(3) ratio was studied. Due to the low solubility of MgO, a low ammonia removal efficiency (i.e. 67%), with a rather high residual concentration, was obtained when the stoichiometric molar ratio was applied. However, by doubling the amount of magnesium oxide (i.e. by using a molar ratio of 2:1:1), ammonia removal efficiency increased up to 95% with a residual concentration compatible with a successive biological treatment. The struvite produced in the present study showed a composition close to the theoretical one. Furthermore, the precipitate was characterized by a heavy metal content much lower than that of typical raw soil, excluding any concern about heavy metal contamination in the case of its use as a fertilizer. The economic analysis of the process showed that ammonia can be removed at a cost of 9.6 euro/kg NH(4)-N(removed). This value can be greatly reduced, however, if the value of the struvite produced is considered.

  19. Impact of socioeconomic status on municipal solid waste generation rate.

    PubMed

    Khan, D; Kumar, A; Samadder, S R

    2016-03-01

    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes.

  20. Electrolytic removal of nitrate from crop residues.

    PubMed

    Colon, G; Sager, J C

    2001-01-01

    The Controlled Ecological Life Support System (CELSS) resource recovery system, which is a waste-processing system,uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. Crop residues contain a significant amount of nitrate. There are actually two major problems concerning nitrate: 1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, and 2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. The nitrate anion causes several problems in the resource recovery system in such a way that removal prior to the process is highly desirable. The technique proposed to remove nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand was a four-compartment electrolytic cell. In order to establish the electrolytic cell performance variables, experiments were carried out using potato crop residue aqueous leachate as the diluate solution. The variables studied were the potato biomass leachate composition and electrical properties, preparation of compartment solutions to be compatible with the electrolytic system, limiting current density, nutrients removal rates as a function of current density, fluid hydrodynamic conditions, applied voltage, and process operating time during batch recirculation operation. Results indicated that the limiting current density (maximum operating current density) was directly proportional to the solution electrical conductivity an a power function of the linear fluid velocity in the range between 0.083 and 0.403 m/s. During the electrolytic cell once-through operation, the nitrate, potassium, and other nutrient removal rates were proportional to the current density and were inversely proportional to fluid velocity. The removal of monovalent ions was found to be higher than divalent ones. Under batch recirculation operation at constant applied voltage of 4.5 and 8.5 V, it was found that the nutrient

  1. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    PubMed

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  2. OBSERVING TERRESTRIAL BIOMASS GLOBALLY: http://biomass.geo-wiki.org

    NASA Astrophysics Data System (ADS)

    Fritz, S.; Shchepashchenko, D.; McCallum, I.; Perger, C.; Schill, C.; Baccini, A.; Gallaun, H.; Kindermann, G.; Obersteiner, M.; Santoro, M.; Schmullius, C. C.; Shvidenko, A.

    2011-12-01

    Terrestrial biomass has been recognized as an essential climate variable and as such represents an important dataset for the scientific community. While a lot of effort has gone into producing such datasets in recent years, there is a need to begin to harmonize efforts. To that end, http://Biomass.Geo-Wiki.org presents a collection of global, regional and in-situ biomass datasets produced by a number of institutions, overlaid on the Google Earth platform (Table). Datasets contain above ground live biomass, forest woody biomass and in-situ forest biomass measurements and span spatial scales from global to national, regional and plot measurements in the northern Eurasia (Table). All datasets obtained were converted into unified units and a common color scheme and are available for visual comparison. As we assemble further datasets, the goal is to perform various scientific tasks including: gap analysis, cross-product validation, possible harmonization and hybrid product development. Furthermore, this tool could potentially provide the necessary scientific platform to enhance collaboration in the area of global biomass monitoring.
    Onboard Biomass Datasets Description

  3. Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Strand, S. E.

    2010-12-01

    One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed from contact with the atmosphere are primarily the deep ocean sediments. Many deep ocean sediment ecologies are acclimated to massive inputs of terrestrial plant biomass. Nonetheless, marine degradation rates of lignocellulose are slower than terrestrial rates (Keil et al. 2010). Additionally, anaerobic conditions are easily achieved in many deep ocean sediments, inhibiting lignocellulose degradation further, while the dominance of sulfate in the water column as electron acceptor prevents the release of methane from methanogenesis to the atmosphere. The potential benefit of massive removal of excess terrestrial biomass to the deep ocean will be estimated and compared to other uses including biochar and BECS. The impact of the biomass on the marine environment will be discussed and potential sequestration sites in the Gulf of Mexico and the Atlantic compared. Keil, R. G., J. M. Nuwer, et al. (2010). "Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment." Marine Chemistry (In Press, online 6 August 2010). Strand, S. E. and G. Benford (2009). "Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments." Environ. Sci. Technol. 43(4): 1000-1007.

  4. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    PubMed

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass.

  5. The survival strategy of the soil microbial biomass

    NASA Astrophysics Data System (ADS)

    Brookes, Philip; Kemmitt, Sarah; Dungait, Jennifer; Xu, Jianming

    2014-05-01

    The soil microbial biomass (biomass) is defined as the sum of the masses of all soil microorganisms > 5000 µm3 (e.g. fungi, bacteria, protozoa, yeasts, actinomycetes and algae). Typically comprising about 1 to 3 % of total soil organic matter (SOM), the biomass might be though to live in a highly substrate-rich environment. However, the SOM is, normally, only exceedingly slowly available to the biomass. However the biomass can survive for months or even years on this meagre energy source. Not surprisingly, therefore, the biomass exhibits many features typical of a dormant or resting population. These include a very low rate of basal and specific respiration, a slow rate of cell division (about once every six months on average) and slow turnover rate. These are clearly adaptations to existing in an environment where substrate availability is very low. Yet, paradoxically, the biomass, in soils worldwide, has an adenosine triphosphate (ATP) concentration (around 10 to 12 µmol ATP g-1 biomass C), and an Adenylate Energy Charge (AEC = [(ATP) + (0.5 ADP)]/[(ATP)+(ADP) + (AMP)]) which are typical of microorganisms growing exponentially in a chemostat. This sets us several questions. Firstly, under the condition of extremely limited substrate availability in soil, why does the biomass not mainly exist as spores, becoming active, by increasing both its ATP concentration and AEC, when substrate (plant and animal residues) becomes available? We surmise that a spore strategy may put organisms at a competitive disadvantage, compared to others which are prepared to invest energy, maintaining high ATP and ATP, to take advantage of a 'food event' as soon as it becomes available. Secondly, since SOM is available (although only very slowly) to the biomass, why have some groups not evolved the ability to mineralize it faster, obtain more energy, and so gain a competitive advantage? We believe that the reason why organisms do not use this strategy is, simply, that they cannot. Our

  6. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    SciTech Connect

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  7. Benchmarking in municipal solid waste recycling.

    PubMed

    Lavee, Doron; Khatib, Mahmood

    2010-11-01

    The paper presents an analysis of the factors influencing the recycling potential of municipalities in Israel, including population size and density, geographic location, current waste levels, and current waste management system. We employ a standard regression analysis in order to develop an econometric model to predict where potential for economically efficient recycling is highest. By applying this model to readily available data, it is possible to predict with close to 90% accuracy whether or not recycling will be economically efficient in any given municipality. Government agencies working to promote advanced waste management solutions have at their disposal only limited resources and budget, and so must concentrate their efforts where they will be most effective. The paper thus provides policy-makers with a powerful tool to help direct their efforts to promote recycling at those municipalities where it is indeed optimal.

  8. System and process for biomass treatment

    SciTech Connect

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  9. Land application of organic residuals: Public health threat or environmental benefit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waste residuals consist of manure and biosolids produced by concentrated animal feeding operations and municipal waste water treatment plants. All wastes need to be disposed of in a proper manner, protecting public and environmental health, but also in a sustainable fashion to ensure that no system...

  10. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  11. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  12. Activated carbon briquettes from biomass materials.

    PubMed

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  13. Process for concentrated biomass saccharification

    DOEpatents

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  14. Growing perennial forages for biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent attention given to converting biomass into ethanol to fuel cars and trucks or burning it to generate electricity has captured society’s interest. There are three main routes for converting biomass into usable forms of energy or other chemical end products: (i) biochemical, (ii) thermochemical...

  15. Spatial and temporal distribution of tropical biomass burning

    SciTech Connect

    Hao, W.M.; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5{degrees} latitude x 5{degrees} longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominant in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted. 32 refs., 3 figs., 3 tabs.

  16. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  17. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  18. Hydrogen production by gasification of municipal solid waste

    SciTech Connect

    Rogers, R. III

    1994-05-20

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  19. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

  20. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    PubMed

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems.

  1. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  2. Biomass resources for alcohol fuels

    NASA Astrophysics Data System (ADS)

    MacDowell, J. E.

    The production of alcohol fuel from biomass represents a fast and practical means of adding to the dwindling petroleum supply. The biomass feed-stocks which will feed the alcohol distilleries must be carefully selected. Using food chain biomass crops for conversion to alcohol will cause a reduction in the amount of food available and increase the cost of food and alcohol feedstocks. The food chains should not be drastically interrupted, and agricultural economic balances should not be altered. Various alternatives to alcohol production are presented, which lie within the confines of selected biomass feedstocks and will not interrupt normal agricultural activities. A corn processing and distillation process is shown graphically as an example; the biomass to alcohol conversion potential of feedstocks is given, and the potential cropland for conversion in the U.S.A. is shown as a percentage of the nation's total land area.

  3. 124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    124. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: RAMP DETAILS Sheet 6 of 11 (#3278) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  4. 110. PLAN AND ELEVATION OF HUNTINGTON BEACH MUNICIPAL PIER: PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. PLAN AND ELEVATION OF HUNTINGTON BEACH MUNICIPAL PIER: PIER APPROACH TO MID-SECTION Sheet 1 of 9 (#3252) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  5. 122. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF EXTENSION TO PIER Sheet 4 of 11 (#3276) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  6. 121. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF EXISTING PIER Sheet 3 of 11 (#3275) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  7. 120. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LAYOUT OF EXISTING PIER Sheet 2 of 11 (#3274) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  8. 126. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: EXTENSION DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    126. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: EXTENSION DETAILS Sheet 7 of 11 (#3280) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  9. 111. PLAN AND ELEVATION OF HUNTINGTON BEACH MUNICIPAL PIER: PIER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. PLAN AND ELEVATION OF HUNTINGTON BEACH MUNICIPAL PIER: PIER MID-SECTION TO END Sheet 2 of 9 (#3253) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  10. 123. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: REPAIR DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: REPAIR DETAILS Sheet 5 of 11 (#3277) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  11. 125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: MODIFIED RAMP DETAILS Sheet 6A of 11 (#3279) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  12. 127. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: FRAMING DETAILS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    127. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: FRAMING DETAILS Sheet 8 of 11 (#3281) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  13. 128. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: BOAT LANDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: BOAT LANDING DETAILS Sheet 9 of 11 (#3282) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. 130. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DETAILS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DETAILS. Sheet 11 of 11 (#3284) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  15. 129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    129. PLAN OF IMPROVEMENT, HUNTINGTON BEACH MUNICIPAL PIER: LIGHTING DIAGRAM. Sheet lO of 11 (#3283) - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  16. TOXICITY REDUCTION EVALUATION PROTOCOL FOR MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    This document presents a generalized protocol for conducting a Toxicity Reduction evaluation (TRE) at a municipal wastewater treatment plant (WWTP). This protocol is designed to provide guidance to municipalities in preparing TRE plans, evaluating the information generated durin...

  17. 77 FR 59061 - Extension of Temporary Registration of Municipal Advisors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... the temporary registration of municipal advisors under the Securities Exchange Act of 1934 (``Exchange... permanent registration of municipal advisors. See Securities Exchange Act Release No. 63576 (December 20... From the Federal Register Online via the Government Publishing Office SECURITIES AND...

  18. 75 FR 70759 - Self-Regulatory Organizations; Municipal Securities Rulemaking Board; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ...: Provide that each municipal securities broker, municipal securities dealer, and municipal advisor shall... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Self-Regulatory Organizations; Municipal Securities Rulemaking Board; Notice of Filing...

  19. Cofiring of coal and biomass in advanced fluidized bed gasifiers

    SciTech Connect

    Hoppe, J.A.

    1998-12-31

    The cofiring of coal and biomass is now being considered by the scientific community and as a viable option to the sustained year round operation of biomass based plants which are currently limited in duration due to the biomass growing season dependency. There are many industrial applications which would also accommodate the use of waste residuals including biomass resources for production of cogenerated electricity, steam and syn-gas based chemicals and fuels (methanol, ethanol, ammonia, etc.). A good example of this is the bagasse-based biomass project NREL is currently supporting using the IGT U-Gas gasifier technology which is under way in a pilot plant operation located in Maui, Hawaii in the sugar cane fields accessible to a nearby seaport which could accommodate other alternate fuel handling facilities. In addition the use of bagasse types of biomass wastes can support the environmental clean-up and disposal of these and other types of wastes such as wood wastes from pulp and paper mills, and vegetation and floral wastes in tropical regions such as South Asia. Using cofiring of coal fines and biomass can be economically attractive in areas where high and low grade coal is mined and can add to the electrification and district heating of these remotely located villages and hamlets. Large scale facilities can be envisioned, but there is a need for testing and proving these options in areas where there is no existing infrastructure for providing local electric and district heat. Industrial scale coal-based IGCC facilities are economically operated in many places in China and in urban industrial complexes such as the Shanghai Coke and Chemical Plant Group (SCCPG) in the southern region of Shanghai (SCCPG has a license for the U-Gas gasification technology in China).

  20. Enzymatic hydrolysis of biomass from wood.

    PubMed

    Álvarez, Consolación; Reyes-Sosa, Francisco Manuel; Díez, Bruno

    2016-03-01

    Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta-xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta-mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2-20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.

  1. GRI's (Gas Research Institute's) methane from biomass and wastes subprogram. Status report 1983. Topical report

    SciTech Connect

    Not Available

    1983-12-01

    This 1983 status report discusses ongoing and planned activities in GRI's Biomass and Wastes Subprogram. Among the wastes being examined as potential feedstocks for SNG are municipal solid wastes, landfill, sewage sludge, and certain industrial and agricultural wastes. Crops being examined are sorghum, napier grass, water hyacinth, hybrid poplar, and certain aquatic weeds. A major focus of the subprogram is to apply newly developed advanced biotechnologies to potential biomass feedstocks and conversion processes. Research and development (RandD) activities in the subprogram are subdivided into two project areas: Methane From Biomass and Methane From Wastes. Presented are objectives and goals, accomplishments, strategy and basis for each project area, and a status review sheet for projects within the project area.

  2. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  3. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  4. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass

    NASA Astrophysics Data System (ADS)

    Oktaviananda, Cyrilla; Rahmawati, Ria F.; Prasetya, Agus; Purnomo, Chandra W.; Yuliansyah, Ahmad T.; Cahyono, Rochim B.

    2017-03-01

    Hydrothemal treatment is a thermochemical process that converts biomass into a coal-like materials called hydrochar by applying elevated temperature to biomass in a suspension with water under saturated pressure for a certain time. With this conversion process, easy to handle fuel with well-defined properties can be created from biomass residues, even with high moisture content. In this research, the effects of temperature (200-330°C) and biomass to water ratio (5%-20%) at initial pressure of 1.0 MPa to hydrothermal treatment of biomass (in the form of sawdust) were examined. All samples were then characterized in terms of yield, proximate analysis, calorific value,and changes in functional groups by FTIR. Approximately 52-69% of the original material was recovered as hydrochar. The gross calorific value ranged from 5472-7032 cal/g compared 5180 cal/g in the raw material. Fixed carbon ranged from 26.035-wt% compared with 26.269 wt% in the raw material.

  5. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  6. Treatment of biomass to obtain fermentable sugars

    DOEpatents

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  7. Biomass for energy in the European Union - a review of bioenergy resource assessments

    PubMed Central

    2012-01-01

    This paper reviews recent literature on bioenergy potentials in conjunction with available biomass conversion technologies. The geographical scope is the European Union, which has set a course for long term development of its energy supply from the current dependence on fossil resources to a dominance of renewable resources. A cornerstone in European energy policies and strategies is biomass and bioenergy. The annual demand for biomass for energy is estimated to increase from the current level of 5.7 EJ to 10.0 EJ in 2020. Assessments of bioenergy potentials vary substantially due to methodological inconsistency and assumptions applied by individual authors. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter probably developing into the most important source over the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is an ultimately limiting factor. PMID:22546368

  8. Alternative strategies for energy recovery from municipal solid waste Part A: Mass and energy balances.

    PubMed

    Consonni, S; Giugliano, M; Grosso, M

    2005-01-01

    This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.

  9. The economic prospects of cellulosic biomass for biofuel production

    NASA Astrophysics Data System (ADS)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be

  10. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China.

    PubMed

    Tu, Jiangcheng; Zhao, Qingliang; Wei, Liangliang; Yang, Qianqian

    2012-03-01

    The analysis of heavy metals is very important for assessing the feasibility of the agricultural utilization for the municipal sludge. In this paper, a four-step sequential extraction method was applied to extract heavy metals (Cu, Zn, Mn, Cr, and Ni) in municipal sludges from seven individual wastewater treatment plants located in Jilin and Heilongjiang Province, China, for estimating the mobility and bioavailability of the metal ions in the agricultural application. The total concentrations of heavy metals and their chemical fractions after the sequential extraction were determined. Principal component analysis (PCA) was applied to analyze the relations of heavy metals fractions in the municipal sludges. Experimental results indicated that the total concentrations of Cu, Zn, Cr, and Ni in all sludge samples were below the threshold values set out by the Chinese legislation (GB18918-2002). Specially, Zn had a high bioavailability and mobility, Cu and Cr had potential bioavailability, while Mn mainly existed in the residual fraction of municipal sludge. On the other hand, Ni had different mobility in different municipal sludge. PCA results were confirmed by the environmental behavior of heavy metals.

  11. 40 CFR 40.115-4 - Municipality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DEMONSTRATION GRANTS § 40.115-4 Municipality. (a) Under the Federal Water Pollution Control Act, a city, town... 208 of the act. (b) Under the Resource Conservation and Recovery Act, a city, town, borough, county... planning or administration of solid waste management, or an Indian tribe or authorized tribal...

  12. 40 CFR 40.115-4 - Municipality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEMONSTRATION GRANTS § 40.115-4 Municipality. (a) Under the Federal Water Pollution Control Act, a city, town... 208 of the act. (b) Under the Resource Conservation and Recovery Act, a city, town, borough, county... planning or administration of solid waste management, or an Indian tribe or authorized tribal...

  13. 40 CFR 40.115-4 - Municipality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DEMONSTRATION GRANTS § 40.115-4 Municipality. (a) Under the Federal Water Pollution Control Act, a city, town... 208 of the act. (b) Under the Resource Conservation and Recovery Act, a city, town, borough, county... planning or administration of solid waste management, or an Indian tribe or authorized tribal...

  14. 40 CFR 40.115-4 - Municipality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DEMONSTRATION GRANTS § 40.115-4 Municipality. (a) Under the Federal Water Pollution Control Act, a city, town... 208 of the act. (b) Under the Resource Conservation and Recovery Act, a city, town, borough, county... planning or administration of solid waste management, or an Indian tribe or authorized tribal...

  15. 40 CFR 40.115-4 - Municipality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DEMONSTRATION GRANTS § 40.115-4 Municipality. (a) Under the Federal Water Pollution Control Act, a city, town... 208 of the act. (b) Under the Resource Conservation and Recovery Act, a city, town, borough, county... planning or administration of solid waste management, or an Indian tribe or authorized tribal...

  16. Municipal Finance: The Duke Law Journal Symposium.

    ERIC Educational Resources Information Center

    Duke Univ., Durham, NC.

    This special issue addresses many of the more salient aspects of municipal finance. Colin Blaydon and Steven Gilford survey a number of social and economic issues that lie at the heart of any attempt to deal meaningfully with the current urban crisis. Donna Shalala and Carol Bellamy focus on the state's attempts to meet the financial emergency…

  17. 76 FR 823 - Registration of Municipal Advisors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    .... To help the Commission process and review your comments more efficiently, please use only one method... Public Reference Room, 100 F Street, NE., Washington, DC 20549, on official business days between the... advisors.'' \\9\\ Research also suggests that participation by municipal advisory firms in the issuance...

  18. CP corrosion control of municipal infrastructure

    SciTech Connect

    Gummow, R.A.

    2000-02-01

    Since its introduction in 1824, cathodic protection (CP) technology has developed to become a fundamental tool for preventing corrosion on municipal infrastructure. Potable water storage tanks and piping, prestressed concrete cylinder pipe, reinforced concrete structures, bridges, parking structures, underground fuel tanks, and effluent treatment clarifiers now benefit from this technology.

  19. Chlorine Disinfection of Blended Municipal Wastewater Effluents

    EPA Science Inventory

    Blending is a practice used in the wastewater industry to manage wet weather events when the influx of storm water to municipal treatment facilities could compromise the hydraulic capacity of the facility’s biological treatment system. To prevent this, wastewater is treated thro...

  20. Municipal Theater of Lima: Reconstruction after fire

    NASA Astrophysics Data System (ADS)

    Moy, Jorge; Segami, Mario; Ferrari, Jose; Moscoso, Richard A.

    2002-11-01

    The Municipal Theater of Lima was inaugurated on 28 July 1920 as the Forero Theater and was acquired by the Metropolitan Municipality of Lima in 1929. On 2 August 1998 it was partially destroyed by fire. The damage to the audience area was minimal, allowing complete restoration. However, the stage was destroyed, which required a complete reconstruction. The Municipality of Lima launched a project competition for its reconstruction and restoration the results of which were known in 2001. One of the objectives was the correction of well-known acoustical defects, which had been never solved. The results of computer simulations of the original theater with a commercially available ray-tracing-type computer program will be presented, showing its acoustical evaluation and available options to correct the acoustical defects. The acquisition of five lots around the theater site will allow increases in the fly tower, the dressing rooms, the pit, and the shops. There are plans for the modernization of the technical and mechanical services, the accesses, the air-conditioning system, and security as well. These modifications will allow all types of presentations of contemporary arts. Retaking its position as first in the national scene, the Municipal Theater will be able to house sophisticated national and international performances.