Sample records for municipal waste processing

  1. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  2. Modern technologies of processing municipal solid waste: investing in the future

    NASA Astrophysics Data System (ADS)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  3. 40 CFR 62.15410 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...

  4. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  5. Municipal solid waste management in Tehran: Changes during the last 5 years.

    PubMed

    Malmir, Tahereh; Tojo, Yasumasa

    2016-05-01

    The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.

  6. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  7. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  8. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    USDA-ARS?s Scientific Manuscript database

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  9. Microbiological degradation of pesticides in yard waste composting.

    PubMed

    Fogarty, A M; Tuovinen, O H

    1991-06-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.

  10. Greenhouse gases emission from municipal waste management: The role of separate collection.

    PubMed

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  11. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  13. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  14. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    PubMed

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Does recyclable separation reduce the cost of municipal waste management in Japan?

    PubMed

    Chifari, Rosaria; Lo Piano, Samuele; Matsumoto, Shigeru; Tasaki, Tomohiro

    2017-02-01

    Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif

    Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less

  17. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  18. Municipal solid waste recycling and the significance of informal sector in urban China.

    PubMed

    Linzner, Roland; Salhofer, Stefan

    2014-09-01

    The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers. © The Author(s) 2014.

  19. DIRECT CONVERSION OF MUNICIPAL AND AGRICULTURAL WASTES TO BIODIESEL AND ETHANOL UTILIZING A UNIQUE EXTREMOPHILIC FUNGUS - PHASE I

    EPA Science Inventory

    Sustainable Bioproducts LLC’s proposed research will further develop an efficient, economical and scalable process for conversion of municipal solid wastes and agricultural wastes to biodiesel and ethanol. The technology is based on use of a novel extremophilic fun...

  20. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  1. Quality assessment of compost prepared with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  2. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  3. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  4. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  5. CONTROL OF PCDD/PCDF EMISSIONS FROM MUNICIPAL WASTE COMBUSTION SYSTEMS

    EPA Science Inventory

    The article gives results of tests on five modern municipal waste combustors (MWCs) to characterize or determine the performance of representative combustor types and associated air emission control systems in the regulatory development process. Test results for uncontrolled (com...

  6. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    PubMed

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Kinetic study of solid waste pyrolysis using distributed activation energy model.

    PubMed

    Bhavanam, Anjireddy; Sastry, R C

    2015-02-01

    The pyrolysis characteristics of municipal solid waste, agricultural residues such as ground nut shell, cotton husk and their blends are investigated using non-isothermal thermogravimetric analysis (TGA) with in a temperature range of 30-900 °C at different heating rates of 10 °C, 30 °C and 50 °C/min in inert atmosphere. From the thermograms obtained from TGA, it is observed that the maximum rate of degradation occurred in the second stage of the pyrolysis process for all the solid wastes. The distributed activation energy model (DAEM) is used to study the pyrolysis kinetics of the solid wastes. The kinetic parameters E (activation energy), k0 (frequency factor) are calculated from this model. It is found that the range of activation energies for agricultural residues are lower than the municipal solid waste. The activation energies for the municipal solid waste pyrolysis process drastically decreased with addition of agricultural residues. The proposed DAEM is successfully validated with TGA experimental data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Design of an innovative, ecological portable waste compressor for in-house recycling of paper, plastic and metal packaging waste.

    PubMed

    Xevgenos, D; Athanasopoulos, N; Kostazos, P K; Manolakos, D E; Moustakas, K; Malamis, D; Loizidou, M

    2015-05-01

    Waste management in Greece relies heavily on unsustainable waste practices (mainly landfills and in certain cases uncontrolled dumping of untreated waste). Even though major improvements have been achieved in the recycling of municipal solid waste during recent years, there are some barriers that hinder the achievement of high recycling rates. Source separation of municipal solid waste has been recognised as a promising solution to produce high-quality recycled materials that can be easily directed to secondary materials markets. This article presents an innovative miniature waste separator/compressor that has been designed and developed for the source separation of municipal solid waste at a household level. The design of the system is in line with the Waste Framework Directive (2008/98/EC), since it allows for the separate collection (and compression) of municipal solid waste, namely: plastic (polyethylene terephthalate and high-density polyethylene), paper (cardboard and Tetrapak) and metal (aluminium and tin cans). It has been designed through the use of suitable software tools (LS-DYNA, INVENTROR and COMSOL). The results from the simulations, as well as the whole design process and philosophy, are discussed in this article. © The Author(s) 2015.

  10. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  12. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making.

    PubMed

    He, Li; Huang, G H; Lu, Hongwei

    2011-10-15

    Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Non-composted municipal solid waste byproduct influences soil and plant nutrients five years after soil reclamation

    USDA-ARS?s Scientific Manuscript database

    Concerns for the mounting supply of municipal solid waste being generated combined with decreasing landfill space have compelled military installations to evaluate alternative methods for disposal. One approach to reduce landfilling is the use of a new garbage-processing technology that sterilizes a...

  14. Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie

    2017-11-01

    Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.

  15. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  16. IMPACT OF DECISION-MAKING STRATEGIES AND COMMUNICATION PROCESSES ON THE PUBLIC ACCEPTABILITY OF MUNICIPAL WASTE COMBUSTION RESIDUE UTILIZATION IN THE UNITED STATES

    EPA Science Inventory

    Of the identified current and proposed construction projects in which municipal solid waste combustion residues replace traditionally used materials, approximately half are located on landfills or other property controlled by project sponsors, one third are in publicly accessible...

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    PubMed

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Quantification of greenhouse gas emissions from waste management processes for municipalities--a comparative review focusing on Africa.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2011-07-01

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The presentmore » works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.« less

  1. Small enterprise opportunities in municipal solid waste management.

    PubMed

    Grierson, J P; Brown, A

    1999-02-01

    Most developing countries are rapidly urbanizing, with growing urban populations fueling demand for more and better urban services which many cities simply cannot provide given the current financial constraints. With the public sector unable to service the needs of expanding cities, small businesses are moving in to fill the vacuum. Such fledgling private sector initiatives have often prevented problems from becoming crises, while also demonstrating that private sector enterprises have an important role to play in meeting the demand for municipal services. Waste collection and processing is an area which could benefit from private sector involvement and greater public-private coordination. The authors examine the progress to date of an action-research initiative led by the Collaborative Group on Municipal Solid Waste Management in Low-income Countries which is developing best practice guidelines for expanding the involvement of micro- and small enterprises in municipal solid waste management.

  2. Food waste management using an electrostatic separator with corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved foodmore » particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.« less

  3. Food waste management using an electrostatic separator with corona discharge

    NASA Astrophysics Data System (ADS)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  4. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  5. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  6. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  7. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  8. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    USDA-ARS?s Scientific Manuscript database

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  9. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  10. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  11. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  12. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  13. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  14. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  15. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  16. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  17. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  18. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  19. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  20. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...

  1. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  3. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  4. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  5. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  6. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  7. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  8. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  9. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  10. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  11. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  12. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  13. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  14. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  15. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  16. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  17. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  18. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  19. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  20. PERFORMANCE OF AN AIR CLASSIFIER TO REMOVE LIGHT ORGANIC CONTAMINATION FROM ALUMINUM RECOVERED FROM MUNICIPAL WASTE BY EDDY CURRENT SEPARATION. TEST NO. 5.03, RECOVERY 1, NEW ORLEANS

    EPA Science Inventory

    The report describes a test in which aluminum cans recovered from municipal waste, together with known amounts of contaminant, were processed by a 'zig-zag' vertical air classifier to remove aerodynamically light contaminant. Twelve test runs were conducted; the proportions of co...

  1. Development of tools for evaluating integrated municipal waste management using life-cycle management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorneloe, S.; Weitz, K.; Nishtala, S.

    1998-08-01

    Municipal solid waste (MSW) management increasingly is based on integrated systems. The US initiated research in 1994 through funding by the US Environmental Protection Agency and the US Department of Energy to develop (1) a decision support tool; (2) a database; and (3) case studies. This paper provides an overview of the research that is in process.

  2. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  3. 77 FR 7147 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ...: Municipal Solid Waste Landfills (MSWLFs) and Non- Municipal, Non-Hazardous Waste Disposal Units That Receive Conditionally Exempt Small Quantity Generator (CESQG) Hazardous Waste (Renewal) AGENCY: Environmental Protection... Adequacy Determination: Municipal Solid Waste Landfills (MSWLFs) and Non-Municipal, Non-Hazardous Waste...

  4. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    PubMed

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  5. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  6. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  7. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  9. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  10. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  11. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  12. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  13. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.« less

  15. Waste: A Hot Item These Days!

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Describes technologies used to conserve energy by using process wastes in the following situations: (1) incineration at a photographic company, (2) wet oxidation at a paper mill, and (3) sewage skimmings fuel at a municipal waste water plant. (MA)

  16. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  17. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  18. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  19. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  1. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE PAGES

    Liang, Ling; Li, Chenlin; Xu, Feng; ...

    2017-07-24

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  2. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ling; Li, Chenlin; Xu, Feng

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  3. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  5. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid...

  6. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  7. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  8. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  9. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  10. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal solid...

  11. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  12. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    PubMed

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  14. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    PubMed

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  15. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    PubMed

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  16. 40 CFR 240.100 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES General Provisions § 240.100 Scope. (a) The prescribed guidelines are applicable... of municipal-type solid wastes. The application of this capacity criterion will be interpreted to...

  17. Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

    EPA Pesticide Factsheets

    Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

  18. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  19. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  20. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  1. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  2. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  3. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  4. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  5. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  6. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  7. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  8. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  9. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  10. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  11. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  12. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  13. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  14. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  15. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  16. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  17. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  18. 75 FR 82370 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants; State of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ... Guidelines (EGs) applicable to existing Large Municipal Waste Combustors (LMWCs). These EGs apply to municipal waste combustors with a capacity to combust more than 250 tons per day of municipal solid waste... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities AGENCY: Environmental Protection Agency...

  19. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal solid waste at the following MWC sites: (a) Foster Wheeler Charleston Resource Recovery Facility... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste...

  20. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal solid waste at the following MWC sites: (a) Foster Wheeler Charleston Resource Recovery Facility... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste...

  1. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.53a Standard for municipal waste combustor organics. (a) [Reserved] (b) On and after... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  2. 40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...

  3. 40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...

  4. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) [Reserved... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  5. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Standards for municipal waste combustor operator training and certification. (a) No later than the date 6...

  6. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial performance...

  7. A review on current status of municipal solid waste management in India.

    PubMed

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  8. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    PubMed

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  9. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  10. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 1. Municipal Waste Combustor Ash.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evlauate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  11. Modular life cycle assessment of municipal solid waste management.

    PubMed

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material substitution as key variables. In countries with advanced waste management systems such as Switzerland, there is limited improvement potential with further increases in recycling rates. In these cases, the focus of political measures should be laid on (i) the utilization of secondary materials in applications where they replace high-impact primary production, and (ii) an increased recovery of energy in waste-to-energy plants. Copyright © 2018. Published by Elsevier Ltd.

  12. Assessment of economic instruments for countries with low municipal waste management performance: An approach based on the analytic hierarchy process.

    PubMed

    Kling, Maximilian; Seyring, Nicole; Tzanova, Polia

    2016-09-01

    Economic instruments provide significant potential for countries with low municipal waste management performance in decreasing landfill rates and increasing recycling rates for municipal waste. In this research, strengths and weaknesses of landfill tax, pay-as-you-throw charging systems, deposit-refund systems and extended producer responsibility schemes are compared, focusing on conditions in countries with low waste management performance. In order to prioritise instruments for implementation in these countries, the analytic hierarchy process is applied using results of a literature review as input for the comparison. The assessment reveals that pay-as-you-throw is the most preferable instrument when utility-related criteria are regarded (wb = 0.35; analytic hierarchy process distributive mode; absolute comparison) mainly owing to its waste prevention effect, closely followed by landfill tax (wb = 0.32). Deposit-refund systems (wb = 0.17) and extended producer responsibility (wb = 0.16) rank third and fourth, with marginal differences owing to their similar nature. When cost-related criteria are additionally included in the comparison, landfill tax seems to provide the highest utility-cost ratio. Data from literature concerning cost (contrary to utility-related criteria) is currently not sufficiently available for a robust ranking according to the utility-cost ratio. In general, the analytic hierarchy process is seen as a suitable method for assessing economic instruments in waste management. Independent from the chosen analytic hierarchy process mode, results provide valuable indications for policy-makers on the application of economic instruments, as well as on their specific strengths and weaknesses. Nevertheless, the instruments need to be put in the country-specific context along with the results of this analytic hierarchy process application before practical decisions are made. © The Author(s) 2016.

  13. Solid Waste: Resource Recovery and Reuse

    ERIC Educational Resources Information Center

    Bernardo, James V.

    1973-01-01

    Discusses some of the processes involved in resource recovery (recycling) from municipal solid wastes. Provides specific examples of recovery of valuable resources, and suggests that the environmental consequences and technology related to solid waste treatment should be included in high school science courses. (JR)

  14. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  15. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  16. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  17. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  18. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  19. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  20. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  1. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  2. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  3. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  4. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste... Part 62—Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1 State MWC units Alabama...

  5. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  6. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Municipal Waste Combustor Operating... and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994 Pt. 60, Subpt. Cb, Table 3 Table 3 to Subpart Cb of Part 60—Municipal Waste Combustor...

  7. Occupational exposure to the municipal solid waste workers in Chandigarh, India.

    PubMed

    Ravindra, Khaiwal; Kaur, Kamalpreet; Mor, Suman

    2016-11-01

    Manual handling of municipal solid waste is of serious concern owing to emerging occupational risks. Considering this, health risks of municipal solid waste workers involved in street sweeping, waste collection, waste processing and rag picking were assessed in Chandigarh, India, using an interview schedule as a study tool. Result shows that the waste worker profession is mainly dominated by males, except in rag pickers, and with a lower literacy rate. Age distribution shows that 16% of waste collectors and 11% of rag pickers were below 18 years of age. Daily income of the waste workers ranges from ₹100 to ₹200. It was observed that 22.2% of waste collectors, 43.2% of street sweepers and 25.5% of rag pickers do not use any type of protective gears owing to their casual attitude, which results in various types of injuries. The major occupational health issues reported by various categories of waste workers were respiratory disorders, injuries and allergies having prevalence of 12.3%-17.6%, 4.9%-44.4% and 35.3%-48.9%, respectively. Waste workers are vulnerable to occupational health hazards and hence there is a need to safeguard them through formulation of new laws and policies. © The Author(s) 2016.

  8. Development of Proposals for Solid Municipal Waste Landfill Placing by Example of Regions of the Far North

    NASA Astrophysics Data System (ADS)

    Oznobihina, L. A.; Pelymskaya, O.

    2017-11-01

    The sustainable development of each region, the quality of its environment depends to a great extent on the provision of environmental safety, especially in the field of waste management. The growth of industrial production in the Tyumen region and the improvement of the population social base contributes to a significant increase in production and consumption waste. The article is devoted to the problem of the emergence, recycling and utilization of an increasing amount of solid municipal waste every year. The author considers the unresolved issues of the location, processing and disposal of waste in the Nefteyugansk District, the Khanty-Mansi Autonomous Okrug - Yugra, leading to increase in their volumes, the size of the territory they occupy, increase in the number of unauthorized landfills, intensive pollution of soils, surface and groundwaters and atmospheric air. Proposals for the placement of a comprehensive inter-municipal TKO testing ground have been developed. The most favorable territory for the location of the TKO enterprise was determined.

  9. Assessment strategies for municipal selective waste collection schemes.

    PubMed

    Ferreira, Fátima; Avelino, Catarina; Bentes, Isabel; Matos, Cristina; Teixeira, Carlos Afonso

    2017-01-01

    An important strategy to promote a strong sustainable growth relies on an efficient municipal waste management, and phasing out waste landfilling through waste prevention and recycling emerges as a major target. For this purpose, effective collection schemes are required, in particular those regarding selective waste collection, pursuing a more efficient and high quality recycling of reusable materials. This paper addresses the assessment and benchmarking of selective collection schemes, relevant to guide future operational improvements. In particular, the assessment is based on the monitoring and statistical analysis of a core-set of performance indicators that highlights collection trends, complemented with a performance index that gathers a weighted linear combination of these indicators. This combined analysis underlines a potential tool to support decision makers involved in the process of selecting the collection scheme with best overall performance. The presented approach was applied to a case study conducted in Oporto Municipality, with data gathered from two distinct selective collection schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.

    PubMed

    Karagiannidis, A; Perkoulidis, G

    2009-04-01

    This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.

  11. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...

  12. 40 CFR 258.4 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS General § 258.4 Research, development, and... include such terms and conditions at least as protective as the criteria for municipal solid waste... and quantities of municipal solid waste and non-hazardous wastes which the State Director deems...

  13. Analysis of municipal waste generation rate in Poland compared to selected European countries

    NASA Astrophysics Data System (ADS)

    Klojzy-Karczmarczyk, Beata; Makoudi, Said

    2017-10-01

    The generated municipal waste rates provided in the planning documents are a tool for forecasting the mass of waste generated in individual waste management regions. An important issue is the decisive separation of two concepts: waste generated and waste collected. The study includes analysis of the generation rate for Poland with division into urban and rural areas. The estimated and projected rate of municipal waste generation for Poland provided in subsequent editions of National Waste Management Plans (KPGO) changed since 2000 within wide range from about 300 to more than 500 kg per capita in an individual year (kg/pc/year). Currently, the National Waste Management Plan for the years 2017-2022 estimates municipal waste generation rate at approx. 270 kg/per capita/year with a projected increase to 330 kg/per capita/year in 2030. Most European countries adopt higher municipal waste generation rate, often exceeding 600 kg/per capita/year. The objective of the paper is therefore to analyze the causes of this difference in the declared values. The morphological composition of municipal waste stream in Poland and in selected European countries (e.g. France, Belgium, Switzerland) was analyzed. At present it is not possible to balance the value of the generation rate with the rate of waste collection in Poland. The conducted analyzes allow for determining a number of reasons for variation of the rate value in particular countries, mostly morphological composition of municipal waste, inclusion of household-like waste from infrastructure facilities or not and amount of waste collected in rural areas. The differences in the generation rates and provided possible reasons indicate the need to harmonize the methodology for estimating rates of municipal waste generation in various countries, including Poland.

  14. Are municipal solid waste collectors at increased risk of Hepatitis A Virus infection? A Greek cross-sectional study.

    PubMed

    Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos

    2016-12-01

    Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.

  15. Presidential Green Chemistry Challenge: 1999 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1999 award winner, Biofine, developed a process to convert waste cellulose in paper mill sludge, municipal solid waste, etc. into levulinic acid (LA), a building block for other chemicals.

  16. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  17. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  18. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  19. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  20. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  1. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  2. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  3. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  4. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  5. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  6. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  7. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  8. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  9. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  10. Assessment of application of selected waste for production of biogas

    NASA Astrophysics Data System (ADS)

    Pawlita-Posmyk, Monika; Wzorek, Małgorzata

    2017-10-01

    Recently, the idea of biogas production has become a popular topic in Poland. Biogas is a valuable source of renewable energy with a potential application in electricity and heat production. Numerous types of technological solutions of biogas production are closely linked to the availability of substrates in the area, as well as their quantity and their properties. The paper presents the assessment of application in biogas production selected wastes such as communal and household sewage sludge and waste from a paper production in Opole region (Poland). The annual productions of methane, biogas and electricity were estimated. Chosen physico-chemical properties important in fermentation process were taken into consideration in the assessment. The highest value of potential energy was obtained using waste from the paper industry but the most appropriate parameters for this process has sewage sludge from the municipal sewage treatment plant. The use of sewage sludge from domestic and municipal sewage and waste from the paper industry creates the opportunity to reduce the amount of waste materials.

  11. Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE).

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael

    2006-02-01

    A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.

  12. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  13. Modeling Thermal Changes at Municipal Solid Waste Landfills: A Case Study of the Co-Disposal of Secondary Aluminum Processing Waste

    EPA Science Inventory

    The reaction of secondary aluminum processing waste (referred herein to as salt cake) with water has been documented to produce heat and gases such as hydrogen, methane, and ammonia (US EPA 2015). The objective of this project was to assess the impact of salt cake disposal on MS...

  14. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A review on automated sorting of source-separated municipal solid waste for recycling.

    PubMed

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-02-01

    A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Solid Waste Management Solutions for a Rapidly Urbanizing Area in Thailand: Recommendations Based on Stakeholder Input.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2018-06-21

    Municipal solid waste is a significant problem, particularly in developing countries that lack sufficient infrastructure and useable land mass to process it in an appropriate manner. Some developing nations are experiencing a combination of issues that prevent proper management of solid waste. This paper reviews the management of municipal solid waste in northeast Thailand, using the Tha Khon Yang Sub-district Municipality (TKYSM) in Maha Sarakham Province as a case study. The combination of rapid population and economic growth and its associated affluence has led to an increase in the use of consumer items and a concomitant increase in the production of municipal solid waste. In the TKYSM there is pressure on local government to establish a suitable waste management program to resolve the escalating waste crisis. The aim of this study is to provide viable solutions to waste management challenges in the TKYSM, and potentially to offer guidance to other similar localities also facing the same challenges. It is well established that successful changes to waste management require an understanding of local context and consideration of specific issues within a region. Therefore, extensive community consultation and engagement with local experts was undertaken to develop an understanding of the particular waste management challenges of the TKYSM. Research methods included observations, one-on-one interviews and focus groups with a range of different stakeholders. The outcomes of this research highlight a number of opportunities to improve local infrastructure and operational capacity around solid waste management. Waste management in rural and urban areas needs to be approached differently. Solutions include: development of appropriate policy and implementation plans (based around the recommendations of this paper); reduction of the volume of waste going to landfill by establishing a waste separation system; initiation of a collection service that supports waste separation at source; educating the citizens of the municipality; and the local government staff, and for the local government to seek external support from the local temples and expertise from the nearby university.

  17. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  18. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  19. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  20. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  1. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  2. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less

  3. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    PubMed

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  5. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  6. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  7. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  8. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  9. 40 CFR 60.1130 - How do I make my siting analysis available to the public?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30... area where you will construct your municipal waste combustion unit. (b) Publish a notice of a public... waste combustion unit. (2) The areas where the waste that your municipal waste combustion unit combusts...

  10. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  11. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  12. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  13. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  14. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  15. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  16. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  17. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  18. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  19. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  20. Optimization of the treatment cycle of pressed-off leachate produced in a facility processing the organic fraction of municipal solid waste.

    PubMed

    d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico

    2015-01-01

    The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.

  1. Indicators of waste management efficiency related to different territorial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it; Vassura, Ivano, E-mail: ivano.vassura@unibo.it; Monti, Francesco, E-mail: fmonti84@gmail.com

    2011-04-15

    The amount of waste produced and the control of separate collection are crucial issues for the planning of a territorial Integrated Waste Management System, enabling the allocation of each sorted waste fraction to the proper treatment and recycling processes. The present study focuses on assessing indicators of different waste management systems in areas characterized by different territorial conditions. The investigated case study concerns the municipalities of Emilia Romagna (northern Italy), which present a rather uniform socioeconomic situation, but a variety of geographic, urban and waste management characteristics. A survey of waste generation and collection rates was carried out, and correlatedmore » with the different territorial conditions, classifying the municipalities according to altitude and population density. The best environmental performances, in terms of high separate collection rate, were found on average in rural areas in the plain, while the lowest waste generation was associated with rural hill towns.« less

  2. 40 CFR 60.1050 - Who must submit a materials separation plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...

  3. 40 CFR 60.1050 - Who must submit a materials separation plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... separation plan for your municipal waste combustion unit if you commence construction of a new small municipal waste combustion unit after December 6, 2000. (b) If you commence construction of your municipal...

  4. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  5. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    PubMed

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  6. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    USDA-ARS?s Scientific Manuscript database

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  7. USING WASTE TO CLEAN UP THE ENVIRONMENT: CELLULOSIC ETHANOL, THE FUTURE OF FUELS

    EPA Science Inventory

    In the process of converting municipal solid waste (MSW) into ethanol we optimized the first two major steps of pretreatment and enzymatic hydrolysis stages to enhance the sugar yield and to reduce the cost. For the pretreatment process, we tested different parameters of react...

  8. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  9. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    PubMed

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  10. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    PubMed

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw waste as well as planning landfill mining projects. © The Author(s) 2016.

  11. Plant That Makes Fuel Out Of Garbage and Waste Called A Success

    Science.gov Websites

    , to run a turbine to generate electricity or as a transportation fuel. Pathogens in the food municipal solid waste and food processing wastes. The plant was operated close to neighbors in a light market of $1 billion. Other potential customers include food processors and waste haulers, who must now

  12. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  13. Quantification of food waste in public catering services - A case study from a Swedish municipality.

    PubMed

    Eriksson, Mattias; Persson Osowski, Christine; Malefors, Christopher; Björkman, Jesper; Eriksson, Emelie

    2017-03-01

    Food waste is a major problem that must be reduced in order to achieve a sustainable food supply chain. Since food waste valorisation measures, like energy recovery, have limited possibilities to fully recover the resources invested in food production, there is a need to prevent food waste. Prevention is most important at the end of the value chain, where the largest number of sub-processes have already taken place and occur in vain if the food is not used for its intended purpose, i.e. consumption. Catering facilities and households are at the very end of the food supply chain, and in Sweden the public catering sector serves a large number of meals through municipal organisations, including schools, preschools and elderly care homes. Since the first step in waste reduction is to establish a baseline measurement in order to identify problems, this study sought to quantify food waste in schools, preschools and elderly care homes in one municipality in Sweden. The quantification was conducted during three months, spread out over three semesters, and was performed in all 30 public kitchen units in the municipality of Sala. The kitchen staff used kitchen scales to quantify the mass of wasted and served food divided into serving waste (with sub-categories), plate waste and other food waste. The food waste level was quantified as 75g of food waste per portion served, or 23% of the mass of food served. However, there was great variation between kitchens, with the waste level ranging from 33g waste per portion served (13%) to 131g waste per portion served (34%). Wasted food consisted of 64% serving waste, 33% plate waste and 3% other food waste. Preschools had a lower waste level than schools, possibly due to preschool carers eating together with the children. Kitchens that received warm food prepared in another kitchen (satellite kitchens) had a 42% higher waste level than kitchens preparing all food themselves (production units), possibly due to the latter having higher flexibility in cooking the right amount of food and being able to chill and save surplus food. The large variation between kitchens indicates that they have different causes of food waste, but also different opportunities to reduce it. Detailed waste quantification for each kitchen can therefore be the first step in the process of waste reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 40 CFR 62.103 - Identification of sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.103 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction... Tons Per Day of Municipal Solid Waste ...

  15. BEHAVIOR AND ASSIMILATION OF ORGANIC AND INORGANIC PRIOIRTY POLLUTANTS CODISPOSED WITH MUNICIPAL REFUSE - VOLUME II - APPENDICES

    EPA Science Inventory

    Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....

  16. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission guidelines for municipal solid...

  17. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission guidelines for municipal solid...

  18. Design criteria for Reedy Creek Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felicione, F.S.; Logan, J.A.

    1980-11-01

    This document defines the basic criteria for the 100-ton/day pilot plant which will use the Andco-Torrax pyrolysis process at Walt Disney World in Orlando, Florida, to produce hot water. The waste will simulate transuranic wastes which are stored at INEL. The Andco-Torrax process is designed to convert mixed municipal refuse into energy and is called slagging pyrolysis solid waste conversion. (DLC)

  19. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    PubMed

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  20. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    USDA-ARS?s Scientific Manuscript database

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  1. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  2. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  3. 40 CFR 60.1175 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit. (e) Procedures for maintaining a proper level of combustion air supply. (f... Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced... municipal waste combustion units. (c) Procedures for receiving, handling, and feeding municipal solid waste...

  4. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  5. HEAVY METAL ASPECTS OF COMPOST USE

    EPA Science Inventory

    Composts prepared from municipal solid waste, biosolids, food processing wastes, manures, yard debris, and agricultural byproducts and residues are increasingly available for agricultural use. Although many benefits are possible from use of composts, these products must be safe f...

  6. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less

  7. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less

  8. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  9. Caught between the global economy and local bureaucracy: the barriers to good waste management practice in South Africa.

    PubMed

    Godfrey, Linda; Scott, Dianne; Trois, Cristina

    2013-03-01

    Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.

  10. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    PubMed Central

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  11. 40 CFR 62.1115 - Identification of sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.1115 Identification of sources. The plan applies to existing municipal solid waste landfills for which construction, reconstruction... 51451, Sept. 23, 1999] Emissions From Small Existing Municipal Waste Combustion Units ...

  12. 75 FR 2845 - Interstate Movement of Garbage from Hawaii; Availability of an Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... municipal solid waste to three existing ports on the Columbia River via barge and the transfer and... from Hawaiian Waste Systems, LLC, to transport 150,000 tons of municipal solid waste (MSW) annually in... environmental assessment (REA) titled ``Regional Movement of Plastic-baled Municipal Solid Waste from Hawaii to...

  13. 40 CFR 60.56b - Standards for air curtain incinerators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the capacity to combust greater than 250 tons per day of municipal solid waste and that combusts a fuel feed stream composed of 100 percent yard waste and no other municipal solid waste materials shall...

  14. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less

  15. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. EVALUATION OF COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  17. EVALUATION OF THE COLLIER COUNTY, FLORIDA LANDFILL MINING DEMONSTRATION

    EPA Science Inventory

    This report describes the landfill mining process as demonstrated under the U.S. EPA, Risk Reduction Engineering Laboratory's Municipal Waste Innovative Technology Evaluation (MITE) Program by the Collier County (Florida) Solid Waste Management Department. Landfill mining is the ...

  18. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less

  19. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    PubMed

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    PubMed

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  1. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  2. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  3. 40 CFR 62.4178 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Municipal Solid Waste Landfills § 62.4178 Identification of plan. (a) Identification of plan. Kansas plan for control of landfill gas emissions from existing municipal solid waste landfills and... to all existing municipal solid waste landfills for which construction, reconstruction, or...

  4. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  5. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less

  6. Carbon balance in municipal solid waste management--a case study of Nonthaburi municipality, Thailand.

    PubMed

    Nanthapong, Kampol; Polprasert, Chongchin

    2013-12-01

    This research aimed to investigate the carbon equivalences associated with the unit processes of municipal solid waste management (MSWM) in Nonthaburi municipality. In addition, factors affecting MSWM's carbon-related activities were determined to find the reduction potential of carbon emissions into the atmosphere. Afield survey was conducted to quantify the amount of resources used in MSWM. Then, they were evaluated in terms of carbon equivalences occurring in the process scheme and categorized into carbon emissions, fixation and reduction,following a carbon-balanced model. From carbon balance analysis of the base-line-scenario MSWM, the carbon emissions were found to be -2,374.56 MTCE/y, resulting in the average carbon unit of-22.98 kg CE/ton solid waste. The negative sign indicates a carbon reduction, instead of an emission,from this MSWM practice, which helps to reduce the concentration of carbon dioxide in the atmosphere. The results of the model reveal that the highest contribution to carbon reduction potential in MSWM is recycling. Accordingly, it is strongly recommended that a policy promoting reuse, recovery, and recycling be pursued in every step of MSWM to assist in, not only extending landfill service life span, but also alleviating the increasing global warming problems.

  7. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have low temperature ignition, less char formation and reduced CO2 emission with the high heating energy value similar to coal. It is concluded that solid fuels from paper based waste and plastics can be a good energy resource as an alternative and sustainable fuel, which may help to alleviate the environmental problems related to landfill space at the same time.

  8. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  9. Elimination of ethanethiol released from municipal wastes by absorption sequencing electrochemical oxidation.

    PubMed

    Gong, Xiao; Yang, Xu; Zheng, Haoyue; Wu, Zucheng

    2017-07-01

    As a typical municipal waste landfill gas, ethanethiol can become an air pollutant because of its low odor threshold concentration and toxicity to human beings. A hybrid process of absorption combined with electrochemical oxidation to degrade ethanethiol was investigated. The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF 4 ) was employed as an absorbent to capture ethanethiol from the air stream. Electrochemical oxidation demonstrated that ethanethiol could be oxidized on a β-PbO 2 anode modified with fluoride, while [BMIM]BF 4 was used as an electrolyte. After a reaction time of 90 min under a current density of 50 mA/cm 2 , ethanethiol could be thoroughly destructed by the successive attack of hydroxyl radicals (·OH) electrogenerated on the surface of the β-PbO 2 anode, while the sulfur atoms in ethanethiol were ultimately converted to sulfate ions [Formula: see text]. The reaction mechanism is proposed, and the operating condition is also estimated with a kinetic model. This hybrid process could be a promising way to remove thiol compounds from municipal waste landfill gases.

  10. An Industrial Ecology Approach to Municipal Solid Waste ...

    EPA Pesticide Factsheets

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  11. Management of packaging waste in Poland--development agenda and accession to the EU.

    PubMed

    Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam

    2004-06-01

    In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.

  12. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  13. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  14. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  15. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  16. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  17. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  18. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  19. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  20. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  1. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  2. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  3. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  4. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  5. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  6. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  7. Assessment of public vs private MSW management: a case study.

    PubMed

    Massoud, M A; El-Fadel, M; Abdel Malak, A

    2003-09-01

    Public-private partnerships in urban environmental services have witnessed increased interest in recent years primarily to reform the weak performance of the public sector, reduce cost, improve efficiency, and ensure environmental protection. In this context, successful public-private partnerships require a thorough analysis of opportunities, a deliberate attention to process details, and a continuous examination of services to determine whether they are more effectively performed by the private sector. A comparative assessment of municipal solid waste collection services in the two largest cities in Lebanon where until recently municipal solid waste collection is private in one and public in the other is conducted. While quality of municipal solid waste collection improved, due to private sector participation, the corresponding cost did not, due to monopoly and an inadequate organizational plan defining a proper division of responsibilities between the private and the public sector.

  8. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  9. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Report: new guidelines for characterization of municipal solid waste: the Portuguese case.

    PubMed

    da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria

    2008-10-01

    This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).

  11. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed.

    PubMed

    Sun, Rui; Ismail, Tamer M; Ren, Xiaohan; Abd El-Salam, M

    2015-05-01

    In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on the combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  13. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    PubMed

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and

  14. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 40 CFR 62.7856 - Albuquerque/Bernalillo County Air Quality Control Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POLLUTANTS New Mexico Landfill Gas Emissions from Existing Municipal Solid Waste Landfills § 62.7856... County Municipal Solid Waste Landfill Designated Pollutant Plan, as adopted by the Albuquerque/Bernalillo... all existing municipal solid waste landfills under the jurisdiction of the Albuquerque/Bernalillo...

  16. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  17. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  18. 40 CFR 60.59b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994 or for Which... the owner or operator plans to combust in the affected facility. (4) The municipal waste combustor..., municipal waste combustor unit load measurements, and particulate matter control device inlet temperatures...

  19. 40 CFR 98.340 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.340 Definition of the source category. (a) This source category applies to municipal solid waste (MSW) landfills that accepted... of the following sources at municipal solid waste (MSW) landfills: Landfills, landfill gas collection...

  20. Electricity production from municipal solid waste in Brazil.

    PubMed

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  1. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    PubMed

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  2. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  3. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  4. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  5. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  6. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn; Wang, Dian; Yan, Jiao

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solidmore » (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.« less

  7. SOLID WASTE OPTIONS FOR MUNICIPAL PLANNERS - VERSION 3.1 - A SOFTWARE TOOL FOR PRELIMINARY PLANNING - USER DOCUMENTATION

    EPA Science Inventory

    Municipalities face many challenges in managing nonhazardous solid waste. For instance, landfills are reaching capacity throughout the country, tipping fees are increasing, and regulations affecting the disposal and recycling of municipal solid waste (MSW) are being promulgated ...

  8. 40 CFR 62.14352 - Designated facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not... facility to which this subpart applies is each municipal solid waste landfill in all States, protectorates... for landfills exempted by paragraphs (b) and (c) of this section. (1) The municipal solid waste...

  9. 40 CFR 62.14352 - Designated facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30, 1991 and Have Not... facility to which this subpart applies is each municipal solid waste landfill in all States, protectorates... for landfills exempted by paragraphs (b) and (c) of this section. (1) The municipal solid waste...

  10. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  11. Small Scale Gasification Application and Perspectives in Circular Economy

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  12. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.

  13. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  14. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  15. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  16. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  17. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  18. 40 CFR 62.14350 - Scope and delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...

  19. 40 CFR 62.14350 - Scope and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...

  20. 77 FR 39702 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Municipal Solid Waste... electronic docket, go to www.regulations.gov . Title: NESHAP for Municipal Solid Waste Landfills (Renewal... Emission Standards for Hazardous Air Pollutants (NESHAP) for Municipal Solid Waste (MSW) Landfills were...

  1. 77 FR 6681 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants; State of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... tons per day of municipal solid waste (MSW). This action corrects an error in the regulatory language... per day of municipal solid waste (MSW), and for which construction, reconstruction, or modification... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities; Correction AGENCY: Environmental...

  2. 40 CFR 60.1665 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...

  3. 40 CFR 62.15120 - What information must I include in the plant-specific operating manual?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... startup, shutdown, and malfunction of the municipal waste combustion unit. (e) Procedures for maintaining... DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units... the basic combustion principles that apply to municipal waste combustion units. (c) Procedures for...

  4. 40 CFR 62.14350 - Scope and delegation of authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to May 30... designated pollutants from certain municipal solid waste landfills in accordance with section 111(d) of the Clean Air Act and 40 CFR part 60, subpart B. This municipal solid waste landfills Federal plan applies...

  5. 40 CFR 60.1005 - When does this subpart become effective?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...

  6. 40 CFR 60.1005 - When does this subpart become effective?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...

  7. 40 CFR 60.1005 - When does this subpart become effective?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...

  8. Estimating maquiladora hazardous waste generation on the U.S./Mexico border

    NASA Astrophysics Data System (ADS)

    Bowen, Mace M.; Kontuly, Thomas; Hepner, George F.

    1995-03-01

    Maquiladoras, manufacturing plants that primarily assemble foreign components for reexport, are located in concentrations along the northern frontier of the US/Mexico border. These plants process a wide variety of materials using modern industrial technologies within the context of developing world institutions and infrastructure. Hazardous waste generation by maquiladoras represents a critical environmental management issue because of the spatial concentration of these plants in border municipalities where the infrastructure for waste management is nonexistent or poor. These border municipalities contain rapidly increasing populations, which further stress their waste handling infrastructure capacities while exposing their populations to greater contaminant risks. Limited empirical knowledge exists concerning hazardous waste types and generation rates from maquiladorsas. There is no standard reporting method for waste generation or methodology for estimating generation rates at this time. This paper presents a method that can be used for the rapid assessment of hazardous waste generation. A first approximation of hazardous waste generation is produced for maquiladoras in the three municipalities of Nogales, Sonora, Mexicali, Baja California, and Cd. Juarez, Chihuahua, using the INVENT model developed by the World Bank. In addition, our intent is to evaluate the potential of the INVENT model for adaptation to the US/Mexico border industrial situation. The press of border industrial development, especially with the recent adoption of the NAFTA, make such assessments necessary as a basis for the environmental policy formulation and management needed in the immediate future.

  9. Cannon shredding of municipal solid waste for the preparation of biological feedstock

    NASA Astrophysics Data System (ADS)

    Burke, J.

    1981-04-01

    Explosive decompression as a method of size reduction of materials found in municipal solid waste (MSW) was studied and preliminary data related to the handling and wet separation of exploded material was gathered. Steam was emphasized as the source of pressure. Municipal refuse was placed in an 8-ft long, 10.75-in. ID steel cannon which was sealed and pressurized. After an appropriate time, the cannon muzzle closure was opened and the test material expelled from the cannon through a constrictive orifice, resulting in explosive decompression. Flash evaporation of pressurized saturated water, expansion of steam, and the strong turbulence at the cannon muzzle accomplished size reduction. Hydraulic processing is shown to be an effective technique for separating heavy and light fractions.

  10. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Units a b c

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Units a b c ER31JA03.008 ...

  11. The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste.

    PubMed

    Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej

    2015-03-01

    The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.

  12. Municipal waste processing apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayberry, J L

    1987-01-15

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feedmore » plate which shakes the materials so that they tend to lie flat.« less

  13. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview.

    PubMed

    Hartmann, H; Ahring, B K

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS x m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS x m(-3)d(-1) are applied. Multi-stage systems show in some investigations a higher reduction of recalcitrant organic matter compared to single-stage systems, but they are seldom applied in full-scale. An extended cost-benefit calculation shows that the highest overall benefit of the process is achieved at an OLR that is lower and a hydraulic retention time (HRT) that is longer than those values of OLR and HRT, at which the highest biogas production is achieved.

  14. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 2. Waste Glass.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWD) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  15. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation). Final Report. Volume 3. Waste Tires.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  16. MUNICIPAL WASTE COMBUSTION ASSESSMENT: MEDICAL WASTE COMBUSTION PRACTICES AT MUNICIPAL WASTE COMBUSTION FACILITIES

    EPA Science Inventory

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for mun...

  17. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  18. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.

    PubMed

    Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui

    2013-10-01

    The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less

  20. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  1. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  2. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  3. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  4. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  5. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  6. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  7. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  8. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  9. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  10. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  11. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  12. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  13. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  14. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  15. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  16. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  17. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  18. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  19. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  20. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  1. 77 FR 42493 - Proposed Consent Decree Relating to the New Source Performance Standards for Municipal Solid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... Performance Standards for Municipal Solid Waste Landfills AGENCY: Environmental Protection Agency (EPA... solid waste landfills (``MSW Landfills''). The Act requires EPA to review, and if appropriate, revise...'') for municipal solid waste landfills (``MSW Landfills''), 40 CFR part 60, subpart WWW (40 CFR 60.750...

  2. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  3. 40 CFR 62.8855 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...

  4. 40 CFR 62.8855 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...

  5. 40 CFR 62.3645 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...

  6. 40 CFR 60.1040 - Do all five components of these new source performance standards apply at the same time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...

  7. 40 CFR 62.8855 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...

  8. 40 CFR 62.8855 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...

  9. 40 CFR 62.3335 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...

  10. 40 CFR 62.3645 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...

  11. 40 CFR 62.3335 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...

  12. 40 CFR 62.3645 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...

  13. 40 CFR 62.3335 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...

  14. 40 CFR 60.1040 - Do all five components of these new source performance standards apply at the same time?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is...? No, you must meet the preconstruction requirements before you commence construction of the municipal waste combustion unit. After the municipal waste combustion unit begins operation, you must meet all of...

  15. 40 CFR 62.3335 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...

  16. 40 CFR 62.3645 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...

  17. 40 CFR 62.8855 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.8855 Identification of plan—negative declaration. On July 25...

  18. 40 CFR 62.3335 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Illinois Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3335 Identification of plan—negative declaration...

  19. 40 CFR 62.3645 - Identification of plan-negative declaration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Indiana Emissions from Small Municipal Waste Combustion Units with the Capacity to Combust at Least 35 Tons Per Day of Municipal Solid Waste But No More Than 250 Tons Per Day of Municipal Solid Waste and Commenced Construction on Or Before August 30, 1999 § 62.3645 Identification of plan—negative declaration...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metin, E.; Eroeztuerk, A.; Neyim, C

    This paper provides a general overview of solid waste data and management practices employed in Turkey during the last decade. Municipal solid waste statistics and management practices including waste recovery and recycling initiatives have been evaluated. Detailed data on solid waste management practices including collection, recovery and disposal, together with the results of cost analyses, have been presented. Based on these evaluations basic cost estimations on collection and sorting of recyclable solid waste in Turkey have been provided. The results indicate that the household solid waste generation in Turkey, per capita, is around 0.6 kg/year, whereas municipal solid waste generationmore » is close to 1 kg/year. The major constituents of municipal solid waste are organic in nature and approximately 1/4 of municipal solid waste is recyclable. Separate collection programmes for recyclable household waste by more than 60 municipalities, continuing in excess of 3 years, demonstrate solid evidence for public acceptance and continuing support from the citizens. Opinion polls indicate that more than 80% of the population in the project regions is ready and willing to participate in separate collection programmes. The analysis of output data of the Material Recovery Facilities shows that, although paper, including cardboard, is the main constituent, the composition of recyclable waste varies strongly by the source or the type of collection point.« less

  1. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Decision Support Model for Municipal Solid Waste Management at Department of Defense Installations.

    DTIC Science & Technology

    1995-12-01

    Huang uses "Grey Dynamic Programming for Waste Management Planning Under Uncertainty." Fuzzy Dynamic Programming (FDP) is usually designed to...and Composting Programs. Washington: Island Press, 1991. Junio, D.F. Development of an Analytical Hierarchy Process ( AHP ) Model for Siting of

  3. Analytic Hierarchy and Economic Analysis of a Plasma Gasification System for Naval Air Station Oceana-Dam Neck

    DTIC Science & Technology

    2014-08-30

    asbestos containing material, pathological wastes, contaminated soils, glass waste, hazardous fly ash, solvents, ceramic waste, incinerator ash, paints...industrial waste into synthetic gas (Syn-Gas) and slag . For this study, the focus will be on the disposal of municipal solid waste. However, there is...Chemical Reactor The two primary by-products resulting from the gasification process are molten slag , which is collected through a portal at the base

  4. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  5. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (a) through (o) of this section are not subject to this subpart. (a) A municipal waste combustor.../infectious waste incinerator covered by 40 CFR part 60, subpart Ce or subpart Ec. (c) An electric utility... under section 3005 of the Solid Waste Disposal Act or covered by 40 CFR part 63, subpart EEE (e.g...

  6. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    PubMed

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  7. A facility location model for municipal solid waste management system under uncertain environment.

    PubMed

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on...

  10. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on...

  11. 40 CFR 60.3078 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...

  12. 40 CFR 60.3078 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...

  13. 40 CFR 60.3078 - What definitions must I know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal solid... solid waste landfill is a landfill that is not connected by road to a Class I municipal solid waste...

  14. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2017-09-04

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  15. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    PubMed Central

    Yukalang, Nachalida; Clarke, Beverley

    2017-01-01

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572

  16. Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rui, E-mail: Sunsr@hit.edu.cn; Ismail, Tamer M., E-mail: temoil@aucegypt.edu; Ren, Xiaohan

    Highlights: • The effects of moisture content on the burning process of MSW are investigated. • A two-dimensional mathematical model was built to simulate the combustion process. • Temperature distributions, process rates, gas species were measured and simulated. • The The conversion ratio of C/CO and N/NO in MSW are inverse to moisture content. - Abstract: In order to reveal the features of the combustion process in the porous bed of a waste incinerator, a two-dimensional unsteady state model and experimental study were employed to investigate the combustion process in a fixed bed of municipal solid waste (MSW) on themore » combustion process in a fixed bed reactor. Conservation equations of the waste bed were implemented to describe the incineration process. The gas phase turbulence was modeled using the k–ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The rate of moisture evaporation, devolatilization rate, and char burnout was calculated according to the waste property characters. The simulation results were then compared with experimental data for different moisture content of MSW, which shows that the incineration process of waste in the fixed bed is reasonably simulated. The simulation results of solid temperature, gas species and process rate in the bed are accordant with experimental data. Due to the high moisture content of fuel, moisture evaporation consumes a vast amount of heat, and the evaporation takes up most of the combustion time (about 2/3 of the whole combustion process). The whole bed combustion process reduces greatly as MSW moisture content increases. The experimental and simulation results provide direction for design and optimization of the fixed bed of MSW.« less

  17. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.

    PubMed

    Haight, M

    2005-01-01

    Biological treatment processes including anaerobic digestion (biogasification) and composting are increasingly being considered by waste management officials and planners as alternatives for managing the mainly organic residues of municipal solid wastes (MSW). The integrated waste management model which is based upon the application of life-cycle analysis was employed to compare the environmental burdens of landfilling, composting and anaerobic digestion of MSW at a mid-sized Canadian community. Energy consumption (or recovery), residue recoveries and emissions to air and water were quantified. Scenario comparisons were analyzed to demonstrate that the environmental burdens associated with anaerobic digestion are reduced in comparison with the alternative options. The major benefit occurs as a result of the electricity produced from burning the biogas and then supplying the 'green power' to the local electrical grid.

  18. [Assessment of medical waste management in a Palestinian hospital].

    PubMed

    Al-Khatib, I A; Khatib, R A

    2006-01-01

    We studied medical waste management in a Palestinian hospital in the West Bank and the role of municipality in this management. In general, "good management practices" were inadequate; there was insufficient separation between hazardous and non-hazardous wastes, an absence of necessary rules and regulations for the collection of wastes from the hospital wards and the on-site transport to a temporary storage location inside and outside the hospital and inadequate waste treatment and disposal of hospital wastes along with municipal garbage. Moreover, training of personnel was lacking and protective equipment and measures for staff were not available. No special landfills for hazardous wastes were found within the municipality.

  19. 40 CFR 60.1440 - What is yard waste?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...

  20. 40 CFR 60.1440 - What is yard waste?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What is yard waste? 60.1440 Section 60...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste...

  1. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin

    2015-04-01

    The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    PubMed

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  3. Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method.

    PubMed

    Pomberger, R; Sarc, R; Lorber, K E

    2017-03-01

    This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of current situations and prognosis of future paths. One of the interesting coherences shown by the method is the linked development of recycling & composting (60-65%) with incineration (40-35%) performance over the last 20years in the EU 28. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sustainable Practices for Landfill Design and Operation (Part of book series Waste Management Principles and Practice)

    EPA Science Inventory

    The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past fifty years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and prov...

  5. Cost/Benefits of Solid Waste Reuse

    ERIC Educational Resources Information Center

    Schulz, Helmut W.

    1975-01-01

    Municipalities and industry are being forced to seek alternatives to sanitary landfills and incineration as means of eliminating solid wastes. Based on the Columbia study, the two most cost-effective, environmentally acceptable alternatives are the high temperature, oxygen-fed pyrolysis process and the co-combustion of refuse-derived fuel in…

  6. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review.

    PubMed

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh; Sadiq, Rehan

    2015-01-01

    Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, and finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Influence of effective stress and dry density on the permeability of municipal solid waste.

    PubMed

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  8. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment.

    PubMed

    Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh

    2012-04-01

    This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.

  9. Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste.

    PubMed

    Fei, Xunchang; Zekkos, Dimitrios; Raskin, Lutgarde

    2015-02-01

    Duplicate carefully-characterized municipal solid waste (MSW) specimens were reconstituted with waste constituents obtained from a MSW landfill and biodegraded in large-scale landfill simulators for about a year. Repeatability and relationships between changes in physical, chemical, and microbial characteristics taking place during the biodegradation process were evaluated. Parameters such as rate of change of soluble chemical oxygen demand in the leachate (rsCOD), rate of methane generation (rCH4), rate of specimen volume reduction (rVt), DNA concentration in the leachate, and archaeal community structures in the leachate and solid waste were monitored during operation. The DNA concentration in the leachate was correlated to rCH4 and rVt. The rCH4 was related to rsCOD and rVt when waste biodegradation was intensive. The structures of archaeal communities in the leachate and solid waste of both simulators were very similar and Methanobacteriaceae were the dominant archaeal family throughout the testing period. Monitoring the chemical and microbial characteristics of the leachate was informative of the biodegradation process and volume reduction in the simulators, suggesting that leachate monitoring could be informative of the extent of biodegradation in a full-scale landfill. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Zhang, Y; Banks, C J

    2013-02-01

    Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  12. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  13. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  14. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  15. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  16. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  17. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  18. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  19. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  20. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  1. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  2. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  3. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  4. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  5. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  6. RCRA Sustainable Materials Management Information

    EPA Pesticide Factsheets

    This asset includes a broad variety of documents, descriptive data, technical analyses and guidance materials relative to voluntary improvements in resource conservation, the beneficial use of sustainable materials and the management of non-hazardous wastes and materials. Included in this asset are participant information and outreach materials of various voluntary programs relating to better materials and waste management programs. An example is the WasteWise program and Sustainable Materials Management (SMM) Challenges, which help organizations and businesses apply sustainable materials management practices to reduce municipal and select industrial wastes. Also included in this asset are guidance materials to assist municipalities in recycling and reuse of municipal solid waste, including diverting materials to composting, and the use of conversion methods such as anaerobic digestion. Another component are the data necessary to compile reports on the characterization of municipal solid waste (including such waste streams as food waste, yard and wood waste, discarded electronics, and household non-hazardous waste), the recycled content of manufactured goods, and other analyses performed using such tools as the Waste Assessment Reduction Model (WARM).For industrial non-hazardous waste, this asset includes guidance and outreach materials on industrial materials recycling and waste minimization. Finally, this asset includes research analyses on sustainable materia

  7. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Don; Barton, David; Case, Glenn

    2013-07-01

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibilitymore » for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)« less

  8. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  9. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  10. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  11. Risk of Potential Exposure Incident in Non-healthcare Workers in Contact with Infectious and Municipal Waste

    PubMed Central

    Kanisek, Sanja; Gmajnić, Rudika; Barać, Ivana

    2018-01-01

    Abstract Introduction The proper classification of sharp and infectious waste in situ by the healthcare workers is an important measure of prevention of sharps and other exposure incidents in non-healthcare workers, who handle such waste. The aim was to examine the practice of classifying sharp and infectious waste in family and dental practices. Methods An analysis of 50 bags of infectious and 50 bags of municipal waste from five family and five dental practices for five days in October 2016 at the Health centre Osijek. Results Healthcare workers in 70% of the practices deposited sharps in infectious waste. In 56% of infectious waste bags, sharp object were found. More risky bags of infectious waste were produced by family practices (64%), but with no significant differences in relation to dental practices (48%), (P=0.143). Disposing of infectious into municipal waste was the case in 90% of the practitioners, where in 60% of municipal waste bags, infectious waste was disposed. Dental practices produced more risky bags of municipal waste (76%) in relation to family practices (44%), but with no significant difference (P=0.714). Conclusions The results of this research point to importance of performing audits of proper disposal of sharps and infectious waste to reduce the risks of injury to non-healthcare workers who come into contact with the said waste. Given results could be used for framing written protocols of proper disposal of sharps and infectious waste that should be visibly available in family and dental practices and for education of healthcare workers. PMID:29651317

  12. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh

    2015-01-15

    Highlights: • We review Municipal Solid Waste Management studies with focus on multiple stakeholders. • We focus on studies with multi-criteria decision analysis methods and discover their trends. • Most studies do not offer solutions for situations where stakeholders compete for more benefits or have unequal voting powers. • Governments and experts are the most participated stakeholders and AHP is the most dominant method. - Abstract: Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, andmore » finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies.« less

  13. Municipal waste disposal crisis. Hearings before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One hundredth Congress, First Session, March 19, May 6, and June 5, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Members of Congress and other government officials were among those testifying at a hearing to discuss the problems involved in municipal waste disposal. According to a number of studies the municipal solid waste problem in this country is growing rapidly. As of 1985, we as a nation were generating nearly 200 million tons of municipal waste each year, and this figure is growing at an estimated rate of between 25 and 75 million tons per year. Cities across the country are now struggling with many issues relating to municipal waste disposal. One of the key issues is the safe disposalmore » of municipal incinerator ash. The toxicity of the ashes, particularly the fly ash has been acknowledged under certain circumstances by EPA. An attempt should be made to concentrate on finding treatment solutions that will detoxify residues which are determined to be toxic.« less

  14. 78 FR 45 - Approval and Promulgation of Implementation Plans; Georgia: New Source Review-Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste or biosolids...

  15. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  16. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  17. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    NASA Astrophysics Data System (ADS)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  18. Behavior of an MBT waste in monotonic triaxial shear tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Athma Ram, E-mail: athma.bhandari@beg.utexas.edu; Powrie, William, E-mail: w.powrie@soton.ac.uk

    2013-04-15

    Highlights: ► We studied the stress–strain–strength characteristics of an MBT waste. ► Rate of mobilization of strength with strain depends on initial density. ► Image analysis technique was used to determine whole-specimen displacement fields. ► Initial mode of deformation of a loose specimen is one-dimensional compression. ► Reinforcing elements enhance the resistance to lateral and volumetric deformation. - Abstract: Legislation in some parts of the world now requires municipal solid waste (MSW) to be processed prior to landfilling to reduce its biodegradability and hence its polluting potential through leachate and fugitive emission of greenhouse gases. This pre-processing may be achievedmore » through what is generically termed mechanical–biological-treatment (MBT). One of the major concerns relating to MBT wastes is that the strength of the material may be less than for raw MSW, owing to the removal of sheet, stick and string-like reinforcing elements during processing. Also, the gradual increase in mobilized strength over strains of 30% or so commonly associated with unprocessed municipal solid waste may not occur with treated wastes. This paper describes a series of triaxial tests carried out to investigate the stress–strain–strength characteristics of an MBT waste, using a novel digital image analysis technique for the determination of detailed displacement fields over the whole specimen. New insights gained into the mechanical behavior of MBT waste include the effect of density on the stress–strain response, the initial 1-D compression of lightly consolidated specimens, and the likely reinforcing effect of small sheet like particles remaining in the waste.« less

  19. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...

  20. 40 CFR 62.15015 - Can my small municipal waste combustion unit be covered by both a State plan and this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...

  1. 40 CFR 62.15015 - Can my small municipal waste combustion unit be covered by both a State plan and this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...

  2. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  3. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...

  4. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...

  5. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...

  6. 40 CFR 62.15015 - Can my small municipal waste combustion unit be covered by both a State plan and this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...

  7. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  8. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  9. 40 CFR 62.15015 - Can my small municipal waste combustion unit be covered by both a State plan and this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...

  10. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  11. 40 CFR 62.15015 - Can my small municipal waste combustion unit be covered by both a State plan and this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15015 Can my small municipal waste combustion unit be covered by both a State plan and this subpart? (a) If your...

  12. 40 CFR 60.1560 - Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons per day...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion unit reduce its capacity to less than 35 tons per day rather than comply with my State plan? 60... Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1560 Can an affected municipal waste combustion unit reduce its capacity to less than 35 tons...

  13. 40 CFR Table 5 to Subpart Bbbb of... - Model Rule-Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Limits for Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart BBBB of Part 60... Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 5 Table 5 to Subpart... Combustion Units For the following municipal waste combustion units You must meet the following carbon...

  14. 76 FR 76974 - Notice of Receipt of, and Opportunity To Comment on, a Plan by Fiberight of Blairstown LLC for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... Municipal Solid Waste Intended for Use as a Feedstock for Renewable Fuel Production at a Blairstown, IA... from municipal solid waste (MSW) prior to its use as a feedstock for renewable fuel production at their... pursuant to 40 CFR 80.1450(b)(1)(viii) for the separation of recyclable material from municipal solid waste...

  15. 40 CFR 98.348 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills § 98.348 Definitions. Except as specified in this... contained in landfill gas. Industrial waste landfill means any landfill other than a municipal solid waste... capacity means the maximum amount of solid waste a landfill can accept. For the purposes of this subpart...

  16. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies.

    PubMed

    Rada, E C; Ragazzi, M; Fedrizzi, P

    2013-04-01

    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-03-01

    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10 3  tonnes in 2007 to 437×10 3  tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10 3 and 7×10 3  tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10 3 to 253×10 6  tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10 3 to 158×10 3  tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  18. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    PubMed

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  19. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  20. Critical evaluation of municipal solid waste composting and potential compost markets.

    PubMed

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  1. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers

    PubMed Central

    Ncube, Esper Jacobeth; Voyi, Kuku

    2017-01-01

    Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 103 cfu/m3) and fungi (12.8 × 103 cfu/m3), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job. PMID:28167969

  3. Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-01-01

    Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 10 3  cfu/m 3 ) and fungi (12.8 × 10 3  cfu/m 3 ), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job.

  4. A system dynamics model to evaluate effects of source separation of municipal solid waste management: A case of Bangkok, Thailand.

    PubMed

    Sukholthaman, Pitchayanin; Sharp, Alice

    2016-06-01

    Municipal solid waste has been considered as one of the most immediate and serious problems confronting urban government in most developing and transitional economies. Providing solid waste performance highly depends on the effectiveness of waste collection and transportation process. Generally, this process involves a large amount of expenditures and has very complex and dynamic operational problems. Source separation has a major impact on effectiveness of waste management system as it causes significant changes in quantity and quality of waste reaching final disposal. To evaluate the impact of effective source separation on waste collection and transportation, this study adopts a decision support tool to comprehend cause-and-effect interactions of different variables in waste management system. A system dynamics model that envisages the relationships of source separation and effectiveness of waste management in Bangkok, Thailand is presented. Influential factors that affect waste separation attitudes are addressed; and the result of change in perception on waste separation is explained. The impacts of different separation rates on effectiveness of provided collection service are compared in six scenarios. 'Scenario 5' gives the most promising opportunities as 40% of residents are willing to conduct organic and recyclable waste separation. The results show that better service of waste collection and transportation, less monthly expense, extended landfill life, and satisfactory efficiency of the provided service at 60.48% will be achieved at the end of the simulation period. Implications of how to get public involved and conducted source separation are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Combustion Power Unit--400: CPU-400.

    ERIC Educational Resources Information Center

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  6. Effective dialogue: enhanced public engagement as a legitimising tool for municipal waste management decision-making.

    PubMed

    Garnett, Kenisha; Cooper, Tim

    2014-12-01

    The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies and sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical-deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical-deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  8. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...

  9. 40 CFR 35.928-1 - Approval of the industrial cost recovery system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment works or (2) the charges to be collected by the grantee in providing waste water treatment... accepting waste-waters from other municipalities, the subscribers receiving waste treatment services from... municipalities contributing wastes to the treatment works. The public shall be consulted prior to adoption of the...

  10. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  11. Co-digestion of agricultural and municipal waste to produce energy and soil amendment

    USDA-ARS?s Scientific Manuscript database

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) produ...

  12. 76 FR 22822 - Approval and Promulgation of State Plans for Designated Facilities and Pollutants: Florida...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Solid Waste Incinerator (OSWI) units from the State of Florida; Large Municipal Waste Combustor (LMWC), Small Municipal Waste Combustor (SMWC), and OSWI units from Jefferson County, Kentucky; LMWC, SMWC, and..., North Carolina; LMWC, SMWC, Hospital/Medical/Infectious Waste Incinerator (HMIWI), and OSWI units from...

  13. Determination of specific gravity of municipal solid waste.

    PubMed

    Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E

    2014-05-01

    This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  15. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    PubMed

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  16. 40 CFR 60.2977 - What definitions must I know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Is not connected by road to a Class I municipal solid waste landfill, as defined by Alaska regulatory code 18 AAC 60.300(c) or, if connected by road, is located more than 50 miles from a Class I municipal... municipal solid waste landfill is a landfill that is not connected by road to a Class I municipal solid...

  17. 78 FR 23524 - Approval and Promulgation of Implementation Plans; North Carolina: Deferral of Carbon Dioxide (CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... treatment, or manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste...

  18. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    PubMed

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  19. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  20. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  1. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  2. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  3. 40 CFR 62.15095 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...

  4. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  5. 40 CFR 62.15095 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...

  6. 40 CFR 62.15095 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...

  7. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  8. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  9. 40 CFR 62.15095 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...

  10. 40 CFR 62.15095 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my municipal waste combustion unit and not restart it? 62.15095 Section 62.15095 Protection of... Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15095 What must I do if I plan to permanently close my municipal waste combustion unit and not restart...

  11. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  12. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  13. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  14. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  15. 40 CFR 60.1380 - What must I include in my notice of construction?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...

  16. 40 CFR 60.1380 - What must I include in my notice of construction?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...

  17. 40 CFR 60.1380 - What must I include in my notice of construction?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...

  18. 40 CFR 60.1380 - What must I include in my notice of construction?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...

  19. 40 CFR 60.1380 - What must I include in my notice of construction?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit. (2) The planned initial startup date of your municipal waste combustion unit. (3) The types of fuels you plan to combust in your municipal waste combustion unit. (4) The capacity of...

  20. Production and characterization refuse derived fuel (RDF) from high organic and moisture contents of municipal solid waste (MSW)

    NASA Astrophysics Data System (ADS)

    Dianda, P.; Mahidin; Munawar, E.

    2018-03-01

    Many cities in developing countries is facing a serious problems to dealing with huge municipal solid waste (MSW) generated. The main approach to manage MSW is causes environmental impact associated with the leachate and landfill gas emissions. On the other hand, the energy available also limited by rapid growth of population and economic development due to shortage of the natural resource. In this study, the potential utilized of MSW to produce refuse derived fuel (RDF) was investigate. The RDF was produced with various organic waste content. Then, the RDF was subjected to laboratory analysis to determine its characteristic including the calorific value. The results shows the moisture content was increased by increasing organic waste content, while the calorific value was found 17-36 MJ/kg. The highest calorific value was about 36 MJ/kg obtained at RDF with 40% organic waste content. This results indicated that the RDF can be use to substitute coal in main burning process and calcinations of cement industry.

Top