Sample records for muon-nucleus interactions based

  1. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  2. First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Cooper, R. L.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fitzpatrick, R. S.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Jordan, J. R.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mahn, K.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Thornton, R. T.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration

    2018-04-01

    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K+→μ+νμ) at the NuMI beamline absorber. These signal νμ -carbon events are distinguished from primarily pion decay in flight νμ and ν¯μ backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9 σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω =Eν-Eμ), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.

  3. Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at < E ν > = 4.2 GeV

    DOE PAGES

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  4. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanuki, T.; Honda, M.; Kajita, T.

    2007-02-15

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the {pi}-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The {mu}{sup +}+{mu}{sup -} data show good agreement in the 1{approx}30 GeV/c range, but a large disagreement above 30 GeV/c. The {mu}{sup +}/{mu}{sup -} ratiomore » shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).].« less

  5. Hadron-nucleus interactions at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.; He, Z.; Tow, D.M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  6. Hadron-nucleus interactions at high energies

    NASA Astrophysics Data System (ADS)

    Chiu, Charles B.; He, Zuoxiu; Tow, Don M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  7. Measurement of muon plus proton final states in muon neutrinos interactions on CH at 4.2 GeV

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza; Minerva Collaboration

    2015-04-01

    MINERvA (Main INjector Experiment for v-A) is a neutrino scattering experiment in Fermilab's NuMI high-intensity neutrino beam. MINERvA was designed to make precision measurements of neutrino and antineutrino cross sections on a variety of materials including plastic scintillator(CH), C, Fe, Pb, He and water. We present a result of charged-current muon neutrino scattering on hydrocarbon (CH) at an average neutrino energy of 4.2 GeV in which the final state includes a muon, at least one proton, and no pions exiting the nucleus . Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus.

  8. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons.more » As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.« less

  9. Muon collider interaction region design

    DOE PAGES

    Alexahin, Y. I.; Gianfelice-Wendt, E.; Kashikhin, V. V.; ...

    2011-06-02

    Design of a muon collider interaction region (IR) presents a number of challenges arising from low β* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV center-of-mass muon collider IR is presented. It can too provide an average luminosity of 10 34 cm -2s -1 with an adequate protection of magnet and detector components.

  10. Shadowing in deep inelastic muon scattering from nuclear targets

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Brüll, A.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Foster, J.; Ftacnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kaiser, R.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Seidel, A.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; De La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.; European Muon Collaboration

    1988-09-01

    Results are presented on the ratio of the inelastic muon-nucleus cross section per nucleon for carbon and calcium relative to that for deuterium. The measurements were made in the kinematic range of low x (0.003-0.1) and low Q2 (0.3-3.2 GeV 2) at an incident muon energy of 280 GeV. The calcium to deuterium ratio shows a significant x dependence which is interpreted as a shadowing effect. No strong Q2 dependence is observed. This suggests that the effect is due at least partially to parton interactions within the nucleus.

  11. Hadronic interactions and EAS muon pseudorapidities investigated with the Muon Tracking Detector in KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Zabierowski, J.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; KASCADE-Grande Collaboration

    2009-12-01

    The Muon Tracking Detector in the KASCADE-Grande EAS experiment allows the precise measurement of shower muon directions up to 700 m distance from the shower center. This directional information is used to study the pseudorapidity of muons in EAS, closely related to the pseudorapidity of their parent mesons. Moreover, the mean value of muon pseudorapidity in a registered shower reflects the longitudinal development of its hadronic component. All of this makes it a good tool for testing hadronic interaction models. The possibilities of such tests given by the KASCADE-Grande experimental setup are discussed and an example of the obtained muon pseudorapidity spectrum is shown.

  12. First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    DOE PAGES

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; ...

    2018-04-06

    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (more » $$K^+ \\rightarrow \\mu^+ \

  13. First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.

    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (more » $$K^+ \\rightarrow \\mu^+ \

  14. Nucleus-nucleus interactions between 20 and 65 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Derrickson, J. H.; Fountain, W. F.; Meegan, C. A.; Parnell, T. A.; Roberts, F. E.; Watts, J. W.; Oda, H.; Takahashi, Y.; Jones, W. V.

    1987-01-01

    A hybrid electronic-counter/emulsion-chamber instrument was exposed to high-energy cosmic rays on a balloon. The data on 105 nucleus-nucleus collisions in the energy range 20-65 GeV/nucleon and for incident nuclear charges Zp in the range of 22 to 28 are presented. Inclusive characteristics of particle production on different targets (plastic, emulsion, and lead) are shown and compared with models based on the superposition of nucleon-nucleus interactions. Features of a subset of the more central collisions with a plastic target and some characteristics of individual events with the highest multiplicity of produced particles are described.

  15. High statistics measurement of the underground muon pair separation at Gran Sasso

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, E.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Huang, Y.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lari, T.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Rastelli, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Ugolotti, D.; Vakili, M.; Walter, C. W.; Webb, R.

    1999-08-01

    We present a measurement of the underground decoherence function using multi-muon events observed in the MACRO detector at Gran Sasso at an average depth of 3800 hg/cm2. Muon pair separations up to 70 m have been measured, corresponding to parent mesons with P⊥<=1-2 GeV/c. Improved selection criteria are used to reduce detector effects mainly in the low distance separation region of muon pairs. Special care is given to a new unfolding procedure designed to minimize systematic errors in the numerical algorithm. The accuracy of the measurement is such that the possible contribution of rare processes, such as μ+/-+N-->μ+/-+N+μ++μ-, can be experimentally studied. The measured decoherence function is compared with the predictions of the hadronic interaction model of the HEMAS Monte Carlo code. Good agreement is obtained. We interpret this agreement to indicate that no anomalous P⊥ components in soft hadron-nucleus and nucleus-nucleus collisions are required by the MACRO experimental data. Preliminary comparisons with other Monte Carlo codes point out that the uncertainties associated with the hadronic interaction model may be as large as 20%, depending on the energy. MACRO data can be used as a benchmark for future work on the discrimination of shower models in the primary energy region around and below the knee of the spectrum.

  16. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  17. Interaction of 160-GeV muon with emulsion nuclei

    NASA Astrophysics Data System (ADS)

    Othman, S. M.; Ghoneim, M. T.; Hussein, M. T.; El-Samman, H.; Hussein, A.

    In this work we present some results of the interaction of high-energy muons with emulsion nuclei. The interaction results in emission of a number of fragments as a consequence of electromagnetic dissociation of the excited target nuclei. This excitation is attributed to absorption of photons by the target nuclei due to the intense electric field of the very fast incident muon particles. The interactions take place at impact parameters that allow ultra-peripheral collisions to take place, leading to giant resonances and hence multifragmentation of emulsion targets. Charge identification, range, energy spectra, angular distribution and topological cross-section of the produced fragments are measured and evaluated.

  18. Simulation of atmospheric temperature effects on cosmic ray muon flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting inmore » a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.« less

  19. Lamb shift of electronic states in neutral muonic helium, an electron-muon-nucleus system

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; Ivanov, Vladimir G.; Amusia, Miron

    2015-03-01

    Neutral muonic helium is an exotic atomic system consisting of an electron, a muon, and a nucleus. Being a three-body system, it possesses a clear hierarchy. This allows us to consider it as a hydrogenlike atom with a compound nucleus, which is, in turn, another hydrogenlike system. There are a number of corrections to the Bohr energy levels, all of which can be treated as contributions of generic hydrogenlike theory. While the form of those contributions is the same for all hydrogenlike atoms, their relative numerical importance differs from atom to atom. Here, the leading contribution to the (electronic) Lamb shift in neutral muonic helium is found in a closed analytic form together with the most important corrections. We believe that the Lamb shift in neutral muonic hydrogen is measurable, at least through a measurement of the (electronic) 1 s -2 s transition. We present a theoretical prediction for the 1 s -2 s transitions with an uncertainty of 3 ppm (9 GHz ), as well as for the 2 s -2 p Lamb shift with an uncertainty of 1.3 GHz .

  20. Detection of Quadrupole Interactions by Muon Level Crossing Resonance

    NASA Astrophysics Data System (ADS)

    Cox, S. F. J.

    1992-02-01

    The positive muon proves to be a very versatile and sensitive magnetic resonance probe: implanted in virtually any material its polarisation may be monitored via the asymmetry in its radioactive decay, giving information on the sites occupied by the muon in lattices or molecules, and the local fields experienced at these sites. The scope of these experiments has been greatly extended by the development of a technique of cross relaxation or level crossing resonance which allows quadrupole splittings on nuclei adjacent to the muon to be measured. The principles of the technique and the conditions necessary for detection of the spectra are described, together with a number of applications. Of especial interest is the manner in which muons mimic the behaviour of protons in matter. In metal lattices, for instance, muons invariably adopt the same interstitial sites as do protons in the dilute hydride phases, so that they can be used to study problems of localisation and diffusion common to those of hydrogen in metals. Studies of the muon level crossing resonance in copper have given valuable information on the crystallographic site, electronic structure and low temperature mobility of the interstitial defect. In semiconductors, muons are expected to trap at other impurities - notably acceptors - in processes analogous to the passivation of dopants by hydrogen. Muon resonance offers the exciting prospect of spectroscopic study of these passivation complexes. In molecular materials, substitution of protons by muons can be thought of rather like deuteration. Muons implanted in ice produce a significant change in the quadrupole coupling constant of adjacent 17O nuclei which may be traced to the effects of the large muon zero point energy; the resonance spectrum also exhibits temperature dependent features which may be informative on the nature and lifetime of defects in the ice structure. Muon level crossing resonance has already been studied in an oxide superconductor and

  1. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter

    2009-07-01

    The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

  2. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  3. Tests of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Rivera-Rangel, D.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; Souza, V. de; Pierro, F. Di; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K. H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2018-01-01

    The KASCADE-Grande observatory was a ground-based air shower array dedicated to study the energy and composition of cosmic rays in the energy interval E = 1 PeV -1 EeV. The experiment consisted of different detector systems which allowed the simultaneous measurement of distinct components of air showers (EAS), such as the muon content. In this contribution, we study the total muon number and the lateral density distribution of muons in EAS detected by KASCADE-Grande as a function of the zenith angle and the total number of charged particles. The attenuation length of the muon content of EAS is also measured. The results are compared with the predictions of the SIBYLL 2.3 high-energy hadronic interaction model.

  4. Polarized muon beams for muon collider

    NASA Astrophysics Data System (ADS)

    Skrinsky, A. N.

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance.

  5. Muon Telescope (MuTe): A first study using Geant4

    NASA Astrophysics Data System (ADS)

    Asorey, H.; Balaguera-Rojas, A.; Calderon-Ardila, R.; Núñez, L. A.; Sanabria-Gómez, J. D.; Súarez-Durán, M.; Tapia, A.

    2017-07-01

    Muon tomography is based on recording the difference of absorption of muons by matter, as ordinary radiography does for using X-rays. The interaction of cosmic rays with the atmosphere produces extensive air showers which provides an abundant source for atmospheric muons, benefiting various applications of muon tomography, particularly the study of the inner structure of volcanoes. The MuTe (for Muon Telescope) is a hybrid detector composed of scintillation bars and a water Cherenkov detector designed to measure cosmic muon flux crossing volcanic edifices. This detector consists of two scintillator plates (1.44 m2 with 30 x 30 pixels), with a maximum distance of 2.0m of separation. In this work we report the first simulation of the MuTe using GEANT4 -set of simulation tools, based in C++ - that provides information about the interaction between radiation and matter. This computational tool allows us to know the energy deposited by the muons and modeling the response of the scintillators and the water cherenkov detector to the passage of radiation which is crucial to compare to our data analysis.

  6. Lost Muon Study for the Muon G-2 Experiment at Fermilab*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, S.; Crnkovic, J.; Morse, W. M.

    The Fermilab Muon g-2 Experiment has a goal of measuring the muon anomalous magnetic moment to a precision of 140 ppb - a fourfold improvement over the 540 ppb precision obtained by the BNL Muon g-2 Experiment. Some muons in the storage ring will interact with material and undergo bremsstrahlung, emitting radiation and loosing energy. These so called lost muons will curl in towards the center of the ring and be lost, but some of them will be detected by the calorimeters. A systematic error will arise if the lost muons have a different average spin phase than the storedmore » muons. Algorithms are being developed to estimate the relative number of lost muons, so as to optimize the stored muon beam. This study presents initial testing of algorithms that can be used to estimate the lost muons by using either double or triple detection coincidences in the calorimeters.« less

  7. A plastic scintillator-based muon tomography system with an integrated muon spectrometer

    NASA Astrophysics Data System (ADS)

    Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.

    2015-10-01

    A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.

  8. Muon and neutron observations in connection with the corotating interaction regions

    NASA Astrophysics Data System (ADS)

    da Silva, M. R.; Dal Lago, A.; Echer, E.; de Lucas, A.; Gonzalez, W. D.; Schuch, N. J.; Munakata, K.; Vieira, L. E. A.; Guarnieri, F. L.

    Ground cosmic ray observations are used for studying several kinds of interplanetary structures. The cosmic ray data has different responses to each kind of interplanetary structure. This article has as objective to study cosmic ray muon and neutron signatures due to the passage of corotating interaction region (CIR) in the interplanetary medium, and identify the signatures in the cosmic ray data due to these events. The cosmic ray muon data used in this work are recorded by the multidirectional muon detector installed at INPE’s Observatório Espacial do Sul OES/CRSPE/INPE-MCT, in São Martinho da Serra, RS (Brazil) and the neutron data was recorded by the neutron monitor installed in Newark (USA). The CIR events were selected in the period from 2001 to 2004. CIRs clearly affect cosmic ray density in the interplanetary medium in the Earth’s vicinity, where the magnetic field plays an important role.

  9. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  10. Muonic alchemy: Transmuting elements with the inclusion of negative muons

    NASA Astrophysics Data System (ADS)

    Moncada, Félix; Cruz, Daniel; Reyes, Andrés

    2012-06-01

    In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.

  11. Comparison of Muon Capture in Light and in Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Measday, David F.; Stocki, Trevor J.

    2007-10-01

    We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.

  12. Study of multiplicity correlations in nucleus-nucleus interactions at high energy

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Sultan, E. M.; Baz, Shadiah S.

    2015-06-01

    In the present paper, some results on the correlations of the nucleus-nucleus interactions, at high energy, between different particle multiplicities are reported. The correlations between the multiplicities of the different charged particles emitted in the interactions of 22Ne and 28Si nuclei with emulsion at (4.1-4.5)A GeV/c have been studied. The correlations of the compound multiplicity nc, defined as the sum of both numbers of the shower particles ns and grey particles ng, have been investigated. The experimental data have been compared with the corresponding theoretical ones, calculated according to the modified cascade evaporation model (MCEM). An agreement has already been fairly obtained between the experimental values and the calculated ones. The dependence of the average compound multiplicity, on the numbers of shower, grey, black and heavy particles is obvious and the values of the slope have been found to be independent of the projectile nucleus. On the other hand, the variation of the average shower, grey, black and heavy particles is found to increase linearly with the compound particles. A strong correlation has been observed between the number of produced shower particles and the number of compound particles. Moreover, the value of the average compound multiplicity is found to increase with the increase of the projectile mass. Finally, an attempt has also been made to study the scaling of the compound multiplicity distribution showing that the compound multiplicity distribution is nearly consistent with the KNO scaling behavior.

  13. Spectra of hadrons and muons in the atmosphere: primary spectra, characteristics of hadron-air interactions

    NASA Astrophysics Data System (ADS)

    Yushkov, A. V.; Lagutin, A. A.

    2008-01-01

    Self-consistency of interaction models QGSJET 01, SIBYLL 2.1, NEXUS 3.97 and QGSJET II is checked in terms of their ability to reproduce simultaneously experimental data on fluxes of muons and hadrons. From this point of view SIBYLL 2.1 gives the most acceptable, though not quite satisfactory, results. Analysis of the situation for muons supports our previous conclusions, that the high-energy muon deficit is due both to underestimation of primary light nuclei fluxes in direct emulsion chamber experiments and to softness of p+A→π, K+X inclusive spectra in fragmentation region, especially prominent in case of QGSJET 01 model.

  14. Measurement of the muon antineutrino double-differential cross section for quasielastic-like scattering on hydrocarbon at Eν˜3.5 GeV

    NASA Astrophysics Data System (ADS)

    Patrick, C. E.; Aliaga, L.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Han, J. Y.; Harris, D. A.; Henry, S.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Lu, X.-G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nowak, G. M.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Peters, E.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Teklu, A. M.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Zhang, D.; Miner ν A Collaboration

    2018-03-01

    We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We include in our signal definition zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data that incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.

  15. Measurement of the muon antineutrino double-differential cross section for quasielastic-like scattering on hydrocarbon at E ν ~ 3.5 GeV

    DOE PAGES

    Patrick, C. E.; Aliaga, L.; Bashyal, A.; ...

    2018-03-08

    We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We also include in our signal definition, zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data thatmore » incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.« less

  16. Study of muon-induced neutron production using accelerator muon beam at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.

    2015-08-17

    Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experimentmore » for more comprehensive study of muon-induced neutron production.« less

  17. Extending theories on muon-specific interactions

    DOE PAGES

    Carlson, Carl E.; Freid, Michael C.

    2015-11-23

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W to μν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance ofmore » the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.« less

  18. Extending theories on muon-specific interactions

    NASA Astrophysics Data System (ADS)

    Carlson, Carl E.; Freid, Michael

    2015-11-01

    The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond-the-standard-model physics could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious problems when confronting high energy data. The prime example is radiative corrections to W →μ ν decay which exceed experimental bounds. We show how embedding the model in a larger and arguably renormalizable theory restores gauge invariance of the vector particle interactions and controls the high energy behavior of decay and scattering amplitudes. Thus, beyond-the-standard-model explanations of the proton radius puzzle can still be viable.

  19. Using polarized muons as ultrasensitive spin labels in free radical chemistry

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Roduner, Emil

    2009-08-01

    In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.

  20. Online Learning for Muon Science

    NASA Astrophysics Data System (ADS)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  1. Test of hadronic interaction models with the KASCADE-Grande muon data

    NASA Astrophysics Data System (ADS)

    Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-06-01

    KASCADE-Grande is an air-shower observatory devoted for the detection of cosmic rays with energies in the interval of 1014 - 1018 eV, where the Grande array is responsible for the higher energy range. The experiment comprises different detection systems which allow precise measurements of the charged, electron and muon numbers of extensive air-showers (EAS). These data is employed not only to reconstruct the properties of the primary cosmic-ray particle but also to test hadronic interaction models at high energies. In this contribution, predictions of the muon content of EAS from QGSJET II-2, SIBYLL 2.1 and EPOS 1.99 are confronted with the experimental measurements performed with the KASCADE-Grande experiment in order to test the validity of these hadronic models commonly used in EAS simulations.

  2. Advanced applications of cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged

  3. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Fedosimova, Anastasiya; Gaitinov, Adigam; Grushevskaya, Ekaterina; Lebedev, Igor

    2017-06-01

    In this work the study on the peculiarities of multiparticle production in interactions of asymmetric nuclei to search for unusual features of such interactions, is performed. A research of long-range and short-range multiparticle correlations in the pseudorapidity distribution of secondary particles on the basis of analysis of individual interactions of nuclei of 197 Au at energy 10.7 AGeV with photoemulsion nuclei, is carried out. Events with long-range multiparticle correlations (LC), short-range multiparticle correlations (SC) and mixed type (MT) in pseudorapidity distribution of secondary particles, are selected by the Hurst method in accordance with Hurst curve behavior. These types have significantly different characteristics. At first, they have different fragmentation parameters. Events of LC type are processes of full destruction of the projectile nucleus, in which multicharge fragments are absent. In events of mixed type several multicharge fragments of projectile nucleus are discovered. Secondly, these two types have significantly different multiplicity distribution. The mean multiplicity of LC type events is significantly more than in mixed type events. On the basis of research of the dependence of multiplicity versus target-nuclei fragments number for events of various types it is revealed, that the most considerable multiparticle correlations are observed in interactions of the mixed type, which correspond to the central collisions of gold nuclei and nuclei of CNO-group, i.e. nuclei with strongly asymmetric volume, nuclear mass, charge, etc. Such events are characterised by full destruction of the target-nucleus and the disintegration of the projectile-nucleus on several multi-charged fragments.

  5. Neutrino-nucleus interactions at the LBNF near detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosel, Ulrich

    2015-10-15

    The reaction mechanisms for neutrino interactions with an {sup 40}Ar nucleus with the LBNF flux are calculated with the Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) transport-theoretical implementation of these interactions. Quasielastic scattering, many-body effects, pion production and absorption and Deep Inelastic Scattering are discussed; they all play a role at the LBNF energies and are experimentally entangled with each other. Quasielastic scattering makes up for only about 1/3 of the total cross section whereas pion production channels make up about 2/3 of the total. This underlines the need for a consistent description of the neutrino-nucleus reaction that treats all channels on an equal, consistentmore » footing. The results discussed here can also serve as useful guideposts for the Intermediate Neutrino Program.« less

  6. The < ln A > study with the Muon tracking detector in the KASCADE-Grande experiment - comparison of hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Łuczak, P.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-08-01

    With the KASCADE-Grande Muon Tracking Detector it was possible to measure with high accuracy directions of EAS muons with energy above 0.8 GeV and up to 700 m distance from the shower centre. Reconstructed muon tracks allow investigation of muon pseudorapidity (η) distributions. These distributions are nearly identical to the pseudorapidity distributions of their parent mesons produced in hadronic interactions. Comparison of the η distributions from measured and simulated showers can be used to test the quality of the high energy hadronic interaction models. The pseudorapidity distributions reflect the longitudinal development of EAS and, as such, are sensitive to the mass of the cosmic ray primary particles. With various parameters of the η distribution, obtained from the Muon Tracking Detector data, it is possible to calculate the average logarithm of mass of the primary cosmic ray particles. The results of the < ln A > analysis in the primary energy range 1016 eV-1017 eV with the 1st quartile and the mean value of the distributions will be presented for the QGSJet-II-2, QGSJet-II-4, EPOS 1.99 and EPOS LHC models in combination with the FLUKA model.

  7. Simulation of Underground Muon Flux with Application to Muon Tomography

    NASA Astrophysics Data System (ADS)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  8. Database and interactive monitoring system for the photonics and electronics of RPC Muon Trigger in CMS experiment

    NASA Astrophysics Data System (ADS)

    Wiacek, Daniel; Kudla, Ignacy M.; Pozniak, Krzysztof T.; Bunkowski, Karol

    2005-02-01

    The main task of the RPC (Resistive Plate Chamber) Muon Trigger monitoring system design for the CMS (Compact Muon Solenoid) experiment (at LHC in CERN Geneva) is the visualization of data that includes the structure of electronic trigger system (e.g. geometry and imagery), the way of its processes and to generate automatically files with VHDL source code used for programming of the FPGA matrix. In the near future, the system will enable the analysis of condition, operation and efficiency of individual Muon Trigger elements, registration of information about some Muon Trigger devices and present previously obtained results in interactive presentation layer. A broad variety of different database and programming concepts for design of Muon Trigger monitoring system was presented in this article. The structure and architecture of the system and its principle of operation were described. One of ideas for building this system is use object-oriented programming and design techniques to describe real electronics systems through abstract object models stored in database and implement these models in Java language.

  9. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  10. 20 years of cosmic muons research performed in IFIN-HH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrica, Bogdan

    2012-11-20

    During the last two decades a modern direction in particle physics research has been developed in IFIN-HH Bucharest, Romania. The history started with the WILLI detector built in IFIN-HH Bucharest in collaboration with KIT Karlsruhe (formerly Forschungszentrum Karlsruhe). The detector was designed for measurements of the low energy muon charge ratio (< 1GeV) based on a delayed coincidence method, measuring the decay time of the muons stopped in the detector: the positive muons decay freely, but the negative muons are captured in the atom thus creating muonic atoms and decay depending on the nature of the host atom. In amore » first configuration, the WILLI detector was placed in a fixed position for measuring vertical muons. Further WILLI has been transformed in a rotatable device which allows directional measurements of muon charge ratio and muon flux. The results exhibit a pronounced azimuthal asymmetry (East-West effect) due to the different in fluence of the geomagnetic field on the trajectories of positive and negative muons in air. In parallel, flux measurement, taking into account muon events with nergies > 0.4GeV, show a diurnal modulation of the muon flux. The analysis of the muon events for energies < 0.6GeV reveals an aperiodic variation of the muon flux. A new detection system performing coincidence measurements between the WILLI calorimeter and a small array of 12 scintillators plates has been installed in IFIN-HH starting from the autumn of 2010. The aim of the system is to investigate muon charge ratio from individual EAS by using the mini-array as trigger for the WILLI calorimeter. Such experimental studies could provide detailed information on hadronic interaction models and primary cosmic ray composition at energies around 10{sup 15}eV. Simulation studies and preliminary experimental tests, regarding the performances of the mini-array, have been performed using H and Fe primaries, with energies in a range 10{sup 13}eV - 10{sup 15}eV. The results

  11. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats

    PubMed Central

    Salti, Ahmad; Kummer, Kai K.; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2016-01-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  12. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE PAGES

    Cherwinka, J.; Grant, D.; Halzen, F.; ...

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keV ee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  13. Muon neutrino CCQE at MINERvA

    DOE PAGES

    Betancourt, M.

    2016-12-13

    A precise understanding of quasi-elastic interactions is crucial to measure neutrino oscillations. The MINERvA experiment is currently working on different analyses of muon neutrino charged current quasi-elastic interactions. Here, we present updates to the previous quasi-elastic measurement, using a new flux, and we present the status of several analyses in progress; including double differential cross sections, a study of final state interactions using a sample with muon and a proton and the status of the CCQE analysis in the medium energy neutrino beam.

  14. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Muon Sites in Transition Metal Oxides.

    NASA Astrophysics Data System (ADS)

    Chan, Kwaichow Benjamin

    Muon behavior in a selected series of transition -metal oxides has been investigated by the Muon Spin Rotation (muSR) technique. The materials studied are the corundum structured oxides (M_2 O_3: M = Fe, Cr, V, Ti) and the high-Tc superconducting oxides in Y-Ba-Cu-O system. The muon is first implanted into the oxide crystalline and its subsequent behavior in the presence of magnetic field is monitored through counting the positron emitted by the decayed muon. The muon is found to behave like a free muon and to become localized at low temperatures and diffusional at higher temperatures. The location of the muon is important for interpreting the muSR data. To identify muon sites, a combination of electrostatic potential and magnetic dipolar field calculation is used. Dipole -field calculation allows matching the experimental results to the calculated values if the origin of the magnetic field is dominantly dipolar as in the case of V _2O_3 and Cr _2O_3. In the potential model, in addition to the coulombic interaction, the muon is assumed to form a muon-oxygen bond in analogy to the hydroxyl bond (OH)^-. Morse potential is used to simulate the mu^+ -O^= bonding. The potential minima found are then assigned as muon sites. A set of muon sites thus found in these oxides are their implications are presented. The inadequacies of the classical model and a more realistic model for predicting muon sites are also discussed.

  16. Neutrino-nucleus reactions based on recent structure studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshio; National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588

    2015-05-15

    Neutrino-nucleus reactions are studied with the use of new shell model Hamiltonians, which have proper tensor components in the interactions and prove to be successful in the description of Gamow-Teller (GT) strengths in nuclei. The new Hamiltonians are applied to obtain new neutrino-nucleus reaction cross sections in {sup 12}C, {sup 13}C, {sup 56}Fe and {sup 56}Ni induced by solar and supernova neutrinos. The element synthesis by neutrino processes in supernova explosions is discussed with the new cross sections. The enhancement of the production yields of {sup 7}Li, {sup 11}B and {sup 55}Mn is obtained while fragmented GT strength in {supmore » 56}Ni with two-peak structure is found to result in smaller e-capture rates at stellar environments. The monopole-based universal interaction with tensor force of π+ρ meson exchanges is used to evaluate GT strength in {sup 40}Ar and ν-induced reactions on {sup 40}Ar. It is found to reproduce well the experimental GT strength in {sup 40}Ar.« less

  17. Direct observation of nanoparticle-cancer cell nucleus interactions.

    PubMed

    Dam, Duncan Hieu M; Lee, Jung Heon; Sisco, Patrick N; Co, Dick T; Zhang, Ming; Wasielewski, Michael R; Odom, Teri W

    2012-04-24

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultrafast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy.

  18. Image reconstruction of muon tomographic data using a density-based clustering method

    NASA Astrophysics Data System (ADS)

    Perry, Kimberly B.

    Muons are subatomic particles capable of reaching the Earth's surface before decaying. When these particles collide with an object that has a high atomic number (Z), their path of travel changes substantially. Tracking muon movement through shielded containers can indicate what types of materials lie inside. This thesis proposes using a density-based clustering algorithm called OPTICS to perform image reconstructions using muon tomographic data. The results show that this method is capable of detecting high-Z materials quickly, and can also produce detailed reconstructions with large amounts of data.

  19. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  20. Direct Observation of Nanoparticle-Cancer Cell Nucleus Interactions

    PubMed Central

    Dam, Duncan Hieu M.; Lee, Jung Heon; Sisco, Patrick N.; Co, Dick T.; Zhang, Ming; Wasielewski, Michael R.; Odom, Teri W.

    2012-01-01

    We report the direct visualization of interactions between drug-loaded nanoparticles and the cancer cell nucleus. Nanoconstructs composed of nucleolin-specific aptamers and gold nanostars were actively transported to the nucleus and induced major changes to the nuclear phenotype via nuclear envelope invaginations near the site of the construct. The number of local deformations could be increased by ultra-fast, light-triggered release of the aptamers from the surface of the gold nanostars. Cancer cells with more nuclear envelope folding showed increased caspase 3 and 7 activity (apoptosis) as well as decreased cell viability. This newly revealed correlation between drug-induced changes in nuclear phenotype and increased therapeutic efficacy could provide new insight for nuclear-targeted cancer therapy. PMID:22424173

  1. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  2. Simulation of a small muon tomography station system based on RPCs

    NASA Astrophysics Data System (ADS)

    Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.

    2014-10-01

    In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.

  3. Using Muons to Image the Subsurface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consistsmore » of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .« less

  4. Sensitivity of atmospheric muon flux calculation to low energy hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Djemil, T.; Attallah, R.; Capdevielle, J. N.

    2007-10-01

    We investigate in this paper the impact of some up-to-date hadronic interaction models on the calculation of the atmospheric muon flux. Calculations are carried out with the air shower simulation code CORSIKA in combination with the hadronic interaction models FLUKA and UrQMD below 80 GeV/nucleon and NEXUS elsewhere. We also examine the atmospheric effects using two different parametrizations of the US standard atmosphere. The cosmic ray spectra of protons and α particles, the only primary particles considered here, are taken according to the force field model which describes properly solar modulation. Numerical results are compared with the BESS-2001 experimental data.

  5. Lateral distribution of muons in IceCube cosmic ray events

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.

    2013-01-01

    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations.

  6. High speed fault tolerant secure communication for muon chamber using FPGA based GBTx emulator

    NASA Astrophysics Data System (ADS)

    Sau, Suman; Mandal, Swagata; Saini, Jogender; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2015-12-01

    The Compressed Baryonic Matter (CBM) experiment is a part of the Facility for Antiproton and Ion Research (FAIR) in Darmstadt at the GSI. The CBM experiment will investigate the highly compressed nuclear matter using nucleus-nucleus collisions. This experiment will examine lieavy-ion collisions in fixed target geometry and will be able to measure hadrons, electrons and muons. CBM requires precise time synchronization, compact hardware, radiation tolerance, self-triggered front-end electronics, efficient data aggregation schemes and capability to handle high data rate (up to several TB/s). As a part of the implementation of read out chain of Muon Cliamber(MUCH) [1] in India, we have tried to implement FPGA based emulator of GBTx in India. GBTx is a radiation tolerant ASIC that can be used to implement multipurpose high speed bidirectional optical links for high-energy physics (HEP) experiments and is developed by CERN. GBTx will be used in highly irradiated area and more prone to be affected by multi bit error. To mitigate this effect instead of single bit error correcting RS code we have used two bit error correcting (15, 7) BCH code. It will increase the redundancy which in turn increases the reliability of the coded data. So the coded data will be less prone to be affected by noise due to radiation. The data will go from detector to PC through multiple nodes through the communication channel. The computing resources are connected to a network which can be accessed by authorized person to prevent unauthorized data access which might happen by compromising the network security. Thus data encryption is essential. In order to make the data communication secure, advanced encryption standard [2] (AES - a symmetric key cryptography) and RSA [3], [4] (asymmetric key cryptography) are used after the channel coding. We have implemented GBTx emulator on two Xilinx Kintex-7 boards (KC705). One will act as transmitter and other will act as receiver and they are connected

  7. Feasibility of using backscattered muons for archeological imaging

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.

    2013-12-01

    Use of nondestructive methods to accurately locate and characterize underground objects such as rooms and tools found at archeological sites is ideal to preserve these historic sites. High-energy cosmic ray muons are very sensitive to density variation and have been used to image volcanoes and archeological sites such as the Egyptian and Mayan pyramids. Muons are subatomic particles produced in the upper atmosphere that penetrate the earth's crust up to few kilometers. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale making it useful for this type of work. However, the muon detector must be placed below the target of interest. For imaging volcanoes, the upper portion is imaged when the detector is placed on the earth's surface at the volcano's base. For sites of interest beneath the ground surface, the muon detector would need to be placed below the site in a tunnel or borehole. Placing the detector underground can be costly and may disturb the historical site. We will assess the feasibility of imaging the subsurface using upward traveling muons, to eliminate the current constraint of positioning the detector below the target. This work consists of three parts 1) determine the backscattered flux rate from theory, 2) distinguish backscattered from forward scattered muons at the detector, and 3) validate the theoretical results with field experimentation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Densitometric tomography using the measurement of muon flux

    NASA Astrophysics Data System (ADS)

    Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.

    2013-12-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.

  9. Final muon cooling for a muon collider

    NASA Astrophysics Data System (ADS)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  10. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  11. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    DOE PAGES

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; ...

    2018-03-28

    Here, this work presents a generalized muon trajectory estimation (GMTE) algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguards verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstructionmore » algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS are explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm’s precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm RMS for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. Finally, the effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.« less

  12. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.

    Here, this work presents a generalized muon trajectory estimation (GMTE) algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguards verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstructionmore » algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS are explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm’s precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm RMS for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. Finally, the effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.« less

  13. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    NASA Astrophysics Data System (ADS)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  14. A Micromegas-based telescope for muon tomography: The WatTo experiment

    NASA Astrophysics Data System (ADS)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  15. Muon Simulation at the Daya Bay SIte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengyun, Guan; Jun, Cao; Changgen, Yang

    2006-05-23

    With a pretty good-resolution mountain profile, we simulated the underground muon background at the Daya Bay site. To get the sea-level muon flux parameterization, a modification to the standard Gaisser's formula was introduced according to the world muon data. MUSIC code was used to transport muon through the mountain rock. To deploy the simulation, first we generate a statistic sample of sea-level muon events according to the sea-level muon flux distribution formula; then calculate the slant depth of muon passing through the mountain using an interpolation method based on the digitized data of the mountain; finally transport muons through rockmore » to get underground muon sample, from which we can get results of muon flux, mean energy, energy distribution and angular distribution.« less

  16. Study of multi-muon bundles in cosmic ray showers detected with the DELPHI detector at LEP

    NASA Astrophysics Data System (ADS)

    Delphi Collaboration; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Shellard, R. C.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2007-11-01

    The DELPHI detector at LEP has been used to measure multi-muon bundles originating from cosmic ray interactions with air. The cosmic events were recorded in “parasitic mode” between individual e+e- interactions and the total live time of this data taking is equivalent to 1.6 × 106 s. The DELPHI apparatus is located about 100 m underground and the 84 metres rock overburden imposes a cutoff of about 52 GeV/c on muon momenta. The data from the large volume Hadron Calorimeter allowed the muon multiplicity of 54,201 events to be reconstructed. The resulting muon multiplicity distribution is compared with the prediction of the Monte Carlo simulation based on CORSIKA/QGSJET01. The model fails to describe the abundance of high multiplicity events. The impact of QGSJET internal parameters on the results is also studied.

  17. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Aoki, S.; Ariga, A.; Ariga, T.; Bay, F.; Bronner, C.; Ereditato, A.; Friend, M.; Hartz, M.; Hiraki, T.; Ichikawa, A. K.; Ishida, T.; Ishii, T.; Juget, F.; Kikawa, T.; Kobayashi, T.; Kubo, H.; Matsuoka, K.; Maruyama, T.; Minamino, A.; Murakami, A.; Nakadaira, T.; Nakaya, T.; Nakayoshi, K.; Otani, M.; Oyama, Y.; Patel, N.; Pistillo, C.; Sakashita, K.; Sekiguchi, T.; Suzuki, S. Y.; Tada, S.; Yamada, Y.; Yamamoto, K.; Yokoyama, M.

    2015-05-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced in conjunction with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06± 0.05± 0.10)× 10^4cm^{-2} normalized with 4× 10^{11} protons on target with 250 kA horn operation. The result is in agreement with the prediction, which is corrected based on hadron production data.

  18. Study of photonuclear muon interactions at Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Dadykin, V. L.; Novoseltsev, Y. F.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    The method of pion-muon-electron decays recording was used to distinguish between purely electron-photon and hadronic cascades, induced by high energy muons underground. At energy approx. 1 Tev a ratio of the number of hadronic to electromagnetic cascades was found equal 0.11 + or - .03 in agreement with expectation. But, at an energy approx. 4 Tev a sharp increase of this ratio was indicated though not statistically sound (0.52 + or - .13).

  19. Toward construction of the unified lepton-nucleus interaction model from a few hundred MeV to GeV region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, S. X.; Hayato, Y.; Hirai, M.

    2015-05-15

    Next generation neutrino oscillation experiments will need a quantitative understanding of neutrino-nucleus interaction far better than ever. Kinematics covered by the relevant neutrino-nucleus interaction spans wide region, from the quasi-elastic, through the resonance region, to the deeply inelastic scattering region. The neutrino-nucleus interaction in each region has quite different characteristics. Obviously, it is essential to combine different expertise to construct a unified model that covers all the kinematical region of the neutrino-nucleus interaction. Recently, several experimentalists and theorists got together to form a collaboration to tackle this problem. In this contribution, we report the collaboration’s recent activity and a goalmore » in near future.« less

  20. Large-Angle Scattering of Multi-GeV Muons on Thin Lead Targets

    NASA Astrophysics Data System (ADS)

    Longhin, A.; Paoloni, A.; Pupilli, F.

    2015-10-01

    The probability of large-angle scattering for multi-GeV muons in lead targets with a thickness of O(10 - 1) radiation lengths is studied. The new estimates presented here are based both on simulation programs (GEANT4 libraries) and theoretical calculations. In order to validate the results provided by simulation, a comparison is drawn with experimental data from the literature. This study is particularly relevant when applied to muons originating from νμ CC interactions of CNGS beam neutrinos. In that circumstance the process under study represents the dominant background for the νμ → ντ search in the τ→ μ channel for the OPERA experiment at LNGS. Finally we also investigate, in the CNGS context, possible contributions from the muon photo-nuclear process which might in principle also produce a large-angle muon scattering signature in the detector.

  1. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  2. Muon Energy Reconstruction in ANTARES and Its Application to the Diffuse Neutrino Flux

    NASA Astrophysics Data System (ADS)

    Romeyer, A.; Bruijn, R.; Zornoza, J.-d.-D.; ANTARES Collaboration

    2003-07-01

    The Europ ean collab oration ANTARES aims to operate a large neutrino telescope in the Mediterranean Sea, 2400 m deep, 40 km from Toulon (France). Muon neutrinos are detected through the muon produced in charged current interactions in the medium surrounding the detector. The Cherenkov light emitted by the muon is registered by a 3D photomultiplier array. Muon energy can be inferred using 3 different methods based on the knowledge of the features of muon energy losses. They result in an energy resolution of a factor ˜ 2 above 1 TeV. The ANTARES sensitivity to diffuse neutrino flux models is obtained from an energy cut, rejecting most of the atmospheric neutrino background which has a softer spectrum. Fake upgoing events from downgoing atmospheric muons are rejected using dedicated variables. After 1 year of data taking, the ANTARES sensitivity is E 2 dΦν /dEν º 8 · 10-8 GeV cm-2 s-1 sr -1 for a 10 string detector and an E -2 diffuse flux spectrum.

  3. Cosmic muon induced EM showers in NO$$\

    DOE PAGES

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter; ...

    2016-11-15

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  4. Cosmic muon induced EM showers in NO$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  5. A three-dimensional code for muon propagation through the rock: MUSIC

    NASA Astrophysics Data System (ADS)

    Antonioli, P.; Ghetti, C.; Korolkova, E. V.; Kudryavtsev, V. A.; Sartorelli, G.

    1997-10-01

    We present a new three-dimensional Monte-Carlo code MUSIC (MUon SImulation Code) for muon propagation through the rock. All processes of muon interaction with matter with high energy loss (including the knock-on electron production) are treated as stochastic processes. The angular deviation and lateral displacement of muons due to multiple scattering, as well as bremsstrahlung, pair production and inelastic scattering are taken into account. The code has been applied to obtain the energy distribution and angular and lateral deviations of single muons at different depths underground. The muon multiplicity distributions obtained with MUSIC and CORSIKA (Extensive Air Shower simulation code) are also presented. We discuss the systematic uncertainties of the results due to different muon bremsstrahlung cross-sections.

  6. Charm production in deep inelastic muon-iron interactions at 200 GeV/c

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S. C.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Declais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Maselli, S.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1987-03-01

    Dimuon and trimuon events have been studied in deep inelastic muon scattering on an iron target at an incident muon energy of 200 GeV. The events are shown to originate mainly from charm production. Comparison of the measured cross sections with data taken at higher muon energies shows that charm production originates predominantly from transverse virtual photons. Within the framework of the photon gluon fusion model this indicates that the parity of the gluon is odd.

  7. Correlation of high energy muons with primary composition in extensive air shower

    NASA Technical Reports Server (NTRS)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  8. Production of π0 mesons in muon-hydrogen interactions at 200 GeV

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Rousseau, M. D.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1983-09-01

    The z and p {/T 2} distributions of π0 mesons produced by the interaction of 200 GeV muons on hydrogen are presented. Comparisons are made with other π0 and charged hadron data and with the predictions of perturbative QCD. The data show a rise of < p {/T 2}> with W 2 which is consistent with QCD, and with z 2 which requires a contribution from a primordial k T . The fraction of total energy which appears as π0 mesons is 0.27±0.05.

  9. Overview of the Neutrinos from Stored Muons Facility - nuSTORM

    DOE PAGES

    Adey, D.; Appleby, R. B.; Bayes, R.; ...

    2017-07-19

    Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less

  10. Muon-Induced Neutrons Do Not Explain the DAMA Data

    NASA Astrophysics Data System (ADS)

    Klinger, J.; Kudryavtsev, V. A.

    2015-04-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC /MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be Φnν=1.0 ×10-9 cm-2 s-1 . We predict 3.49 ×10-5 counts /day /kg /keV , which accounts for less than 0.3% of the DAMA signal modulation amplitude.

  11. Can muon-induced backgrounds explain the DAMA data?

    NASA Astrophysics Data System (ADS)

    Klinger, Joel; Kudryavtsev, Vitaly A.

    2016-05-01

    We present an accurate simulation of the muon-induced background in the DAMA/LIBRA experiment. Muon sampling underground has been performed using the MUSIC/MUSUN codes and subsequent interactions in the rock around the DAMA/LIBRA detector cavern and the experimental setup including shielding, have been simulated with GEANT4.9.6. In total we simulate the equivalent of 20 years of muon data. We have calculated the total muon-induced neutron flux in the DAMA/LIBRA detector cavern as Φμ n = 1.0 × 10-9 cm-2s-1, which is consistent with other simulations. After selecting events which satisfy the DAMA/LIBRA signal criteria, our simulation predicts 3.49 × 10-5 cpd/kg/keV which accounts for less than 0.3% of the DAMA/LIBRA modulation amplitude. We conclude from our work that muon-induced backgrounds are unable to contribute to the observed signal modulation.

  12. The active muon shield in the SHiP experiment

    NASA Astrophysics Data System (ADS)

    Akmete, A.; Alexandrov, A.; Anokhina, A.; Aoki, S.; Atkin, E.; Azorskiy, N.; Back, J. J.; Bagulya, A.; Baranov, A.; Barker, G. J.; Bay, A.; Bayliss, V.; Bencivenni, G.; Berdnikov, A. Y.; Berdnikov, Y. A.; Bertani, M.; Betancourt, C.; Bezshyiko, I.; Bezshyyko, O.; Bick, D.; Bieschke, S.; Blanco, A.; Boehm, J.; Bogomilov, M.; Bondarenko, K.; Bonivento, W. M.; Boyarsky, A.; Brenner, R.; Breton, D.; Brundler, R.; Bruschi, M.; Büscher, V.; Buonaura, A.; Buontempo, S.; Cadeddu, S.; Calcaterra, A.; Campanelli, M.; Chauveau, J.; Chepurnov, A.; Chernyavsky, M.; Choi, K.-Y.; Chumakov, A.; Ciambrone, P.; Dallavalle, G. M.; D'Ambrosio, N.; D'Appollonio, G.; De Lellis, G.; De Roeck, A.; De Serio, M.; Dedenko, L.; Di Crescenzo, A.; Di Marco, N.; Dib, C.; Dijkstra, H.; Dmitrenko, V.; Domenici, D.; Donskov, S.; Dubreuil, A.; Ebert, J.; Enik, T.; Etenko, A.; Fabbri, F.; Fabbri, L.; Fedin, O.; Fedorova, G.; Felici, G.; Ferro-Luzzi, M.; Fini, R. A.; Fonte, P.; Franco, C.; Fukuda, T.; Galati, G.; Gavrilov, G.; Gerlach, S.; Golinka-Bezshyyko, L.; Golubkov, D.; Golutvin, A.; Gorbunov, D.; Gorbunov, S.; Gorkavenko, V.; Gornushkin, Y.; Gorshenkov, M.; Grachev, V.; Graverini, E.; Grichine, V.; Guler, A. M.; Guz, Yu.; Hagner, C.; Hakobyan, H.; van Herwijnen, E.; Hollnagel, A.; Hosseini, B.; Hushchyn, M.; Iaselli, G.; Iuliano, A.; Jacobsson, R.; Jonker, M.; Kadenko, I.; Kamiscioglu, C.; Kamiscioglu, M.; Khabibullin, M.; Khaustov, G.; Khotyantsev, A.; Kim, S. H.; Kim, V.; Kim, Y. G.; Kitagawa, N.; Ko, J.-W.; Kodama, K.; Kolesnikov, A.; Kolev, D. I.; Kolosov, V.; Komatsu, M.; Konovalova, N.; Korkmaz, M. A.; Korol, I.; Korol'ko, I.; Korzenev, A.; Kovalenko, S.; Krasilnikova, I.; Krivova, K.; Kudenko, Y.; Kurochka, V.; Kuznetsova, E.; Lacker, H. M.; Lai, A.; Lanfranchi, G.; Lantwin, O.; Lauria, A.; Lebbolo, H.; Lee, K. Y.; Lévy, J.-M.; Lopes, L.; Lyubovitskij, V.; Maalmi, J.; Magnan, A.; Maleev, V.; Malinin, A.; Mefodev, A.; Mermod, P.; Mikado, S.; Mikhaylov, Yu.; Milstead, D. A.; Mineev, O.; Montanari, A.; Montesi, M. C.; Morishima, K.; Movchan, S.; Naganawa, N.; Nakamura, M.; Nakano, T.; Novikov, A.; Obinyakov, B.; Ogawa, S.; Okateva, N.; Owen, P. H.; Paoloni, A.; Park, B. D.; Paparella, L.; Pastore, A.; Patel, M.; Pereyma, D.; Petrenko, D.; Petridis, K.; Podgrudkov, D.; Poliakov, V.; Polukhina, N.; Prokudin, M.; Prota, A.; Rademakers, A.; Ratnikov, F.; Rawlings, T.; Razeti, M.; Redi, F.; Ricciardi, S.; Roganova, T.; Rogozhnikov, A.; Rokujo, H.; Rosa, G.; Rovelli, T.; Ruchayskiy, O.; Ruf, T.; Samoylenko, V.; Saputi, A.; Sato, O.; Savchenko, E. S.; Schmidt-Parzefall, W.; Serra, N.; Shakin, A.; Shaposhnikov, M.; Shatalov, P.; Shchedrina, T.; Shchutska, L.; Shevchenko, V.; Shibuya, H.; Shustov, A.; Silverstein, S. B.; Simone, S.; Skorokhvatov, M.; Smirnov, S.; Sohn, J. Y.; Sokolenko, A.; Starkov, N.; Storaci, B.; Strolin, P.; Takahashi, S.; Timiryasov, I.; Tioukov, V.; Tosi, N.; Treille, D.; Tsenov, R.; Ulin, S.; Ustyuzhanin, A.; Uteshev, Z.; Vankova-Kirilova, G.; Vannucci, F.; Venkova, P.; Vilchinski, S.; Villa, M.; Vlasik, K.; Volkov, A.; Voronkov, R.; Wanke, R.; Woo, J.-K.; Wurm, M.; Xella, S.; Yilmaz, D.; Yilmazer, A. U.; Yoon, C. S.; Zaytsev, Yu.

    2017-05-01

    The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. An essential task for the experiment is to keep the Standard Model background level to less than 0.1 event after 2× 1020 protons on target. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muon-induced combinatorial background. A novel active muon shield is used to magnetically deflect the muons out of the acceptance of the spectrometer. This paper describes the basic principle of such a shield, its optimization and its performance.

  13. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  14. Mu2e: a Muon to Electron Conversion Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Brown, David

    2014-03-01

    We present the status of Mu2e, a proposed experiment to measure the rate of muon to electron conversion in the field of a nucleus. The Mu2e experiment will be hosted by Fermilab at a new muon campus, using a new beamline to deliver protons to the muon generation target. Mu2e will use a series of three solenoids to collect, transport, stop, and analyze the muons produced when the 8 GeV pulsed proton beam from the booster hits the tungsten production target. The 200 nsec wide proton pulse is designed to have a ratio of out-of-time to in-time protons better than 10-10, insuring a measurement time window of approximately 1 microsecond essentially free from beam pion background. A precision, low-mass straw tube tracker will measure electron momenta with a precision of 1/1000, allowing clean separation of the conversion signal from Decay In Orbit electrons, the principle experimental background. Extensive coverage of multi-layer scintillation counters will detect 99.99% of the cosmic muons which could generate fake signals. A crystal calorimeter will provide particle ID to further reduce backgrounds. Detailed simulations show a 3-year run with 7.56×1017 stopped muons will allow a Single Event Sensitivity of 2×10-17, allowing an estimated 90% confidence level sensitivity to R of 6×10-17, a four-orders of magnitude improvement over existing limits. The Mu2e schedule is technically limited, with commissioning beginning in 2019. Mu2e may also run at Project X with 10× higher luminosity using either an aluminum or titanium target after minimal upgrades.

  15. Process of negative-muon-induced formation of an ionized acceptor center ({sub μ}A){sup –} in crystals with the diamond structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belousov, Yu. M., E-mail: theorphys@phystech.edu

    The formation of an ionized acceptor center by a negative muon in crystals with the diamond structure is considered. The negative muon entering a target is captured by a nucleus, forming a muonic atom {sub μ}A coupled to a lattice. The appearing radiation-induced defect has a significant electric dipole moment because of the violation of the local symmetry of the lattice and changes the phonon spectrum of the crystal. The ionized acceptor center is formed owing to the capture of an electron interacting with the electric dipole moment of the defect and with the radiation of a deformation-induced local-mode phonon.more » Upper and lower bounds of the formation rate of the ionized acceptor center in diamond, silicon, and germanium crystals are estimated. It is shown that the kinetics of the formation of the acceptor center should be taken into account when processing μSR experimental data.« less

  16. Study of muon inelastic scattering with the 100-ton scintillation detector of the Artemovsk Scientific Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zatsepin, G.T.; Korol'kova, E.V.; Kudryavtsev, V.A.

    1989-02-01

    From the spectrum of nuclear and electromagnetic showers, measured with the underground 100-ton scintillation detector at the Artemovsk Scientific Station (ASS) at our institute, we have obtained the characteristics of inelastic scattering of muons by nuclei with {l angle}{ital A}{r angle}=25. The cross sections for {mu}{ital A} and {gamma}{ital A} interactions agree with the predictions of the generalized vector-dominance model. The shadowing parameter for nucleons in the nucleus, {alpha}, and the average relative energy loss by a muon for inelastic scattering, {ital b}{sub {ital n}}, are, within the errors, constant in the energy-transfer range {nu}=0.1--3 TeV and in the muonmore » energy range {ital E}{sub {mu}}=0.4--5 TeV. For {nu}{gt}0.1 TeV and {ital E}{sub {mu}}{gt}0.4 TeV we find {l angle}{alpha}{r angle}=0.93{plus minus}0.02 and {l angle}{ital b}{sub {ital n}}{r angle}=(0.41{plus minus}0.03){center dot}10{sup {minus}6} g{sup {minus}1}{center dot}cm{sup 2}.« less

  17. Studies on muon tomography for archaeological internal structures scanning

    NASA Astrophysics Data System (ADS)

    Gómez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2016-05-01

    Muon tomography is a potential non-invasive technique for internal structure scanning. It has already interesting applications in geophysics and can be used for archaeological purposes. Muon tomography is based on the measurement of the muon flux after crossing the structure studied. Differences on the mean density of these structures imply differences on the detected muon rate for a given direction. Based on this principle, Monte Carlo simulations represent a useful tool to provide a model of the expected muon rate and angular distribution depending on the composition of the studied object, being useful to estimate the expected detected muons and to better understand the experimental results. These simulations are mainly dependent on the geometry and composition of the studied object and on the modelling of the initial muon flux at surface. In this work, the potential of muon tomography in archaeology is presented and evaluated with Monte Carlo simulations by estimating the differences on the muon rate due to the presence of internal structures and its composition. The influence of the chosen muon model at surface in terms of energy and angular distributions in the final result has been also studied.

  18. Relevance of the hadronic interaction model in the interpretation of multiple muon data as detected with the MACRO experiment

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Hawthorne, A.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Rainó, A.; Rastelli, A.; Reynoldson, J.; Ronga, F.; Rubizzo, U.; Sanzgiri, A.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlé, G.; Togo, V.; Walter, C. W.; Webb, R.

    1999-03-01

    With the aim of discussing the effect of the possible sources of systematic uncertainties in simulation models, the analysis of multiple muon events from the MACRO experiment at Gran Sasso is reviewed. In particular, the predictions from different currently available hadronic interaction models are compared.

  19. Electron-Muon Ranger: Performance in the MICE muon beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, D.

    2015-12-16

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. Lastly, the EMR also proved to be a powerful tool for the reconstruction of muon momenta inmore » the range 100–280 MeV/c.« less

  20. Electron-muon ranger: performance in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bene, P.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Bradshaw, T. W.; Bravar, U.; Bross, A. D.; Cadoux, F.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; Debieux, S.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Graulich, J. S.; Greis, J.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Husi, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Masciocchi, F.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nicola, L.; Noah Messomo, E.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rothenfusser, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Sandström, R.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Wisting, H.; Yang, X.; Young, A.; Zisman, M.

    2015-12-01

    The Muon Ionization Cooling Experiment (MICE) will perform a detailed study of ionization cooling to evaluate the feasibility of the technique. To carry out this program, MICE requires an efficient particle-identification (PID) system to identify muons. The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter that forms part of the PID system and tags muons that traverse the cooling channel without decaying. The detector is capable of identifying electrons with an efficiency of 98.6%, providing a purity for the MICE beam that exceeds 99.8%. The EMR also proved to be a powerful tool for the reconstruction of muon momenta in the range 100-280 MeV/c.

  1. A search for an excited muon decaying to a muon and two jets in pp collisions at $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-07-11

    In this study, a new search signature for excited leptons is explored. Excited muons are sought in the channelmore » $${pp}\\to \\mu {\\mu }^{* }\\to \\mu \\mu \\ {\\rm{jet}}\\;{\\rm{jet}}$$, assuming both the production and decay occur via a contact interaction. The analysis is based on 20.3 fb –1 of pp collision data at a centre-of-mass energy of $$\\sqrt{s}\\;=\\;8\\;{\\rm{TeV}}$$ taken with the ATLAS detector at the large hadron collider. No evidence of excited muons is found, and limits are set at the 95% confidence level on the cross section times branching ratio as a function of the excited-muon mass $${m}_{{\\mu }^{* }}$$. For $${m}_{{\\mu }^{* }}$$ between 1.3 and 3.0 TeV, the upper limit on $$\\sigma B({\\mu }^{* }\\to \\mu q\\bar{q}$$) is between 0.6 and 1 fb. Limits on $$\\sigma B$$ are converted to lower bounds on the compositeness scale Λ. In the limiting case $${\\rm{\\Lambda }}={m}_{{\\mu }^{* }}$$, excited muons with a mass below 2.8 TeV are excluded. With the same model assumptions, these limits at larger $${\\mu }^{* }$$ masses improve upon previous limits from traditional searches based on the gauge-mediated decay $${\\mu }^{* }\\to \\mu \\gamma $$.« less

  2. Forward scattering effects on muon imaging

    NASA Astrophysics Data System (ADS)

    Gómez, H.; Gibert, D.; Goy, C.; Jourde, K.; Karyotakis, Y.; Katsanevas, S.; Marteau, J.; Rosas-Carbajal, M.; Tonazzo, A.

    2017-12-01

    Muon imaging is one of the most promising non-invasive techniques for density structure scanning, specially for large objects reaching the kilometre scale. It has already interesting applications in different fields like geophysics or nuclear safety and has been proposed for some others like engineering or archaeology. One of the approaches of this technique is based on the well-known radiography principle, by reconstructing the incident direction of the detected muons after crossing the studied objects. In this case, muons detected after a previous forward scattering on the object surface represent an irreducible background noise, leading to a bias on the measurement and consequently on the reconstruction of the object mean density. Therefore, a prior characterization of this effect represents valuable information to conveniently correct the obtained results. Although the muon scattering process has been already theoretically described, a general study of this process has been carried out based on Monte Carlo simulations, resulting in a versatile tool to evaluate this effect for different object geometries and compositions. As an example, these simulations have been used to evaluate the impact of forward scattered muons on two different applications of muon imaging: archaeology and volcanology, revealing a significant impact on the latter case. The general way in which all the tools used have been developed can allow to make equivalent studies in the future for other muon imaging applications following the same procedure.

  3. A drift chamber tracking system for muon scattering tomography applications

    NASA Astrophysics Data System (ADS)

    Burns, J.; Quillin, S.; Stapleton, M.; Steer, C.; Snow, S.

    2015-10-01

    Muon scattering tomography (MST) allows the identification of shielded high atomic number (high-Z) materials by measuring the scattering angle of cosmic ray muons passing through an inspection region. Cosmic ray muons scatter to a greater degree due to multiple Coulomb scattering in high-Z materials than low-Z materials, which can be measured as the angular difference between the incoming and outgoing trajectories of each muon. Measurements of trajectory are achieved by placing position sensitive particle tracking detectors above and below the inspection volume. By localising scattering information, the point at which a series of muons scatter can be used to reconstruct an image, differentiating high, medium and low density objects. MST is particularly useful for differentiating between materials of varying density in volumes that are difficult to inspect visually or by other means. This paper will outline the experimental work undertaken to develop a prototype MST system based on drift chamber technology. The planar drift chambers used in this prototype measure the longitudinal interaction position of an ionising particle from the time taken for elections, liberated in the argon (92.5%), carbon dioxide (5%), methane (2.5%) gas mixture, to reach a central anode wire. Such a system could be used to enhance the detection of shielded radiological material hidden within regular shipping cargo.

  4. A search for free quarks in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; von Holtey, G.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thenard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Wimpenny, S. J.

    1983-12-01

    A search was made at the CERN SPS for long-lived fractionally charged particles produced in deep inelastic muon interactions on a Be target using the existing muon beam line as a spectrometer. No such particles were found, leading to upper limits for the production cross section of the order of 10-36 cm2 for 200 GeV incident muon momentum and quark masses below 9 GeV for the 2/3 charge and 15 GeV for 1/3 charge.

  5. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  6. Development of a 3D muon disappearance algorithm for muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Blackwell, T. B.; Kudryavtsev, V. A.

    2015-05-01

    Upon passing through a material, muons lose energy, scatter off nuclei and atomic electrons, and can stop in the material. Muons will more readily lose energy in higher density materials. Therefore multiple muon disappearances within a localized volume may signal the presence of high-density materials. We have developed a new technique that improves the sensitivity of standard muon scattering tomography. This technique exploits these muon disappearances to perform non-destructive assay of an inspected volume. Muons that disappear have their track evaluated using a 3D line extrapolation algorithm, which is in turn used to construct a 3D tomographic image of the inspected volume. Results of Monte Carlo simulations that measure muon disappearance in different types of target materials are presented. The ability to differentiate between different density materials using the 3D line extrapolation algorithm is established. Finally the capability of this new muon disappearance technique to enhance muon scattering tomography techniques in detecting shielded HEU in cargo containers has been demonstrated.

  7. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  8. Impact of muon detection thresholds on the separability of primary cosmic rays

    NASA Astrophysics Data System (ADS)

    Müller, S.; Engel, R.; Pierog, T.; Roth, M.

    2018-01-01

    Knowledge of the mass composition of cosmic rays in the transition region of galactic to extragalactic cosmic rays is needed to discriminate different astrophysical models on their origin, acceleration, and propagation. An important observable to separate different mass groups of cosmic rays is the number of muons in extensive air showers. We performed a CORSIKA simulation study to analyze the impact of the detection threshold of muons on the separation quality of different primary cosmic rays in the energy region of the ankle. Using only the number of muons as the composition-sensitive observable, we find a clear dependence of the separation power on the detection threshold for ideal measurements. Although the number of detected muons increases when lowering the threshold, the discrimination power is reduced. If statistical fluctuations for muon detectors of limited size are taken into account, the threshold dependence remains qualitatively the same for small distances to the shower core but is reduced for large core distances. We interpret the impact of the detection threshold of muons on the composition sensitivity in terms of a change of the correlation of the number of muons nμ with the shower maximum Xmax as function of the muon energy as a result of the underlying hadronic interactions and the shower geometry. We further investigate the role of muons produced in a shower by photon-air interactions and conclude that, in addition to the effect of the nμ -Xmax correlation, the separability of primaries is reduced as a consequence of the presence of more muons from photonuclear reactions in proton than in iron showers.

  9. Design and characterization of a small muon tomography system

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; An, Su Jung; Kim, Hyun-Il; Lee, Chae Young; Chung, Heejun; Chung, Yong Hyun

    2015-02-01

    Muon tomography is a useful method for monitoring special nuclear materials (SNMs) because it can provide effective information on the presence of high-Z materials, has a high enough energy to deeply penetrate large amounts of shielding, and does not lead to any health risks and danger above background. We developed a 2-D muon detector and designed a muon tomography system employing four detector modules. Two top and two bottom detectors are, respectively, employed to record the incident and the scattered muon trajectories. The detector module for the muon tomography system consists of a plastic scintillator, wavelength-shifting (WLS) fiber arrays placed orthogonally on the top and the bottom of the scintillator, and a position-sensitive photomultiplier (PSPMT). The WLS fiber arrays absorb light photons emitted by the plastic scintillator and re-emit green lights guided to the PSPMT. The light distribution among the WLS fiber arrays determines the position of the muon interaction; consequently, 3-D tomographic images can be obtained by extracting the crossing points of the individual muon trajectories by using a point-of-closest-approach algorithm. The goal of this study is to optimize the design parameters of a muon tomography system by using the Geant4 code and to experimentally evaluate the performance of the prototype detector. Images obtained by the prototype detector with a 420-nm laser light source showed good agreement with the simulation results. This indicates that the proposed detector is feasible for use in a muon tomography system and can be used to verify the Z-discrimination capability of the muon tomography system.

  10. Muon tomography imaging algorithms for nuclear threat detection inside large volume containers with the Muon Portal detector

    NASA Astrophysics Data System (ADS)

    Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.

    2013-11-01

    Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.

  11. The stopping rate of negative cosmic-ray muons near sea level

    NASA Technical Reports Server (NTRS)

    Spannagel, G.; Fireman, E. L.

    1971-01-01

    A production rate of 0.065 + or - 0.003 Ar-37 atom/kg min of K-39 at 2-mwe depth below sea level was measured by sweeping argon from potassium solutions. This rate is unaffected by surrounding the solution by paraffin and is attributed to negative muon captures and the electromagnetic interaction of fast muons, and not to nucleonic cosmic ray component. The Ar-37 yield from K-39 by the stopping of negative muons in a muon beam of a synchrocyclotron was measured to be 8.5 + or - 1.7%. The stopping rate of negative cosmic ray muons at 2-mwe depth below sea level from these measurements and an estimated 17% electromagnetic production is 0.63 + or - 0.13 muon(-)/kg min. Previous measurements on the muon stopping rate vary by a factor of 5. Our value is slightly higher but is consistent with two previous high values. The sensitivity of the Ar-37 radiochemical method for the detection of muons is considerably higher than that of the previous radiochemical methods and could be used to measure the negative muon capture rates at greater depths.

  12. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  13. Testing of the DPMJET and VENUS hadronic interaction models with help of the atmospheric muons

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Lukyashin, A. V.; Roganova, T. M.; Fedorova, G. F.

    2017-01-01

    The more accurate original calculations of the atmospheric vertical muon energy spectra at energies 102 - 105 GeV have been carried out in terms of DPMJET and VENUS models. The Gaisser-Honda approximations of the measured energy spectra of primary protons, helium and nitrogen nuclei have been used. The package CORSIKA has been used to simulate cascades in the standard atmosphere induced by different primary particles with various fixed energies E. Statistics of simulated cascades for secondary particles with energies (0.01-1)·E was increased up to 106. It has been shown that predictions of the DPMJET and VENUS models for these muon fluxes are below the data of the classical experiments L3 + Cosmic, MACRO and LVD by factors of ˜ 1.6-1.95 at energies above 102 GeV. It has been concluded that these tested models underestimate the production of the most energetic secondary particles, namely, π-mesons and K-mesons, in interactions of the primary protons and other primary nuclei with nuclei in the atmosphere by the same factors.

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    NASA Astrophysics Data System (ADS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N. H.; Hashim, I. H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-08-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 108 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  15. IceTop tank response to muons

    NASA Astrophysics Data System (ADS)

    Demirörs, L.; Beimforde, M.; Eisch, J.; Madsen, J.; Niessen, P.; Spiczak, G.M.; Stoyanov, S.; Tilav, S

    The calibration of the surface air shower array of IceCube - IceTop is based on identifying and understanding the muon response of each IceTop tank. Special calibration runs are carried out throughout the year and are supplemented with austral season measurements with tagging telescope for vertical muons. The vertical equivalent muon (VEM) charge value of each tank is determined and monitored by keeping track of its variation with time and temperature. We also study muons that stop and decay in the tank. The energy spectrum of the electrons from muon decay (Michel spectrum) is well known with maximum energy of 53 MeV. This energy is usually deposited inside the tank and can also be used as a calibration tool. We use both these spectra and compare them to a Monte Carlo simulation to gain a better understanding of the tank properties.

  16. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another groupmore » of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.« less

  17. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  18. Fermilab muon g-2 experiment

    NASA Astrophysics Data System (ADS)

    Gorringe, Tim

    2018-05-01

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb - a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.

  19. Fermilab Muon g-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorringe, Tim

    The Fermilab muon g-2 experiment will measure the muon anomalous magnetic momentmore » $$a_{\\mu}$$ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of $$a_{\\mu}$$ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5$$\\sigma$$ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring $$a_{\\mu}$$, and the current status and the future work for the project.« less

  20. Muon detection studied by pulse-height energy analysis: Novel converter arrangements.

    PubMed

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  1. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  2. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmlid, Leif, E-mail: holmlid@chem.gu.se; Olafsson, Sveinn

    2015-08-15

    Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shownmore » here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.« less

  3. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  4. Muon Intensity Increase by Wedge Absorbers for Low-E Muon Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D. V.; Stratakis, D.; Bradley, J.

    2017-09-01

    Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the matched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.

  5. End-to-end simulation of bunch merging for a muon collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulationmore » of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.« less

  6. Toward a RPC-based muon tomography system for cargo containers.

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.

    2014-10-01

    A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.

  7. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  8. Meson-nucleus potentials and the search for meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  9. Concepts for a Muon Accelerator Front-End

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, Diktys; Berg, Scott; Neuffer, David

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate themore » performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.« less

  10. Higher-Order Systematic Effects in the Muon Beam-Spin Dynamics for Muon g-2

    NASA Astrophysics Data System (ADS)

    Crnkovic, Jason; Brown, Hugh; Krouppa, Brandon; Metodiev, Eric; Morse, William; Semertzidis, Yannis; Tishchenko, Vladimir

    2016-03-01

    The BNL Muon g-2 Experiment (E821) produced a precision measurement of the muon anomalous magnetic moment, where as the Fermilab Muon g-2 Experiment (E989) is an upgraded version of E821 that has a goal of producing a measurement with approximately 4 times more precision. Improving the precision requires a more detailed understanding of the experimental systematic effects, and so three higher-order systematic effects in the muon beam-spin dynamics have recently been found and estimated for E821. The beamline systematic effect originates from muon production in beamline spectrometers, as well as from muons traversing beamline bending magnets. The kicker systematic effect comes from a combination of the variation in time spent inside the muon storage ring across a muon bunch and the temporal structure of the storage ring kicker waveform. Finally, the detector systematic effect arises from a combination of the energy dependent muon equilibrium orbit in the storage ring, muon decay electron drift time, and decay electron detector acceptance effects. Brookhaven Natl Lab.

  11. Possibility of measuring Adler angles in charged current single pion neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Sánchez, F.

    2016-05-01

    Uncertainties in modeling neutrino-nucleus interactions are a major contribution to systematic errors in long-baseline neutrino oscillation experiments. Accurate modeling of neutrino interactions requires additional experimental observables such as the Adler angles which carry information about the polarization of the Δ resonance and the interference with nonresonant single pion production. The Adler angles were measured with limited statistics in bubble chamber neutrino experiments as well as in electron-proton scattering experiments. We discuss the viability of measuring these angles in neutrino interactions with nuclei.

  12. Quasi-isochronous muon collection channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankenbrandt, Charles M.; Neuffer, David; Johnson, Rolland P.

    2015-04-26

    Intense muon beams have many potential commercial and scientific applications, ranging from low-energy investigations of the basic properties of matter using spin resonance to large energy-frontier muon colliders. However, muons originate from a tertiary process that produces a diffuse swarm. To make useful beams, the swarm must be rapidly captured and cooled before the muons decay. In this STTR project a promising new concept for the collection and cooling of muon beams to increase their intensity and reduce their emittances was investigated, namely, the use of a nearly isochronous helical cooling channel (HCC) to facilitate capture of the muons intomore » RF bunches. The muon beam can then be cooled quickly and coalesced efficiently to optimize the luminosity of a muon collider, or could provide compressed muon beams for other applications. Optimal ways to integrate such a subsystem into the rest of a muon collection and cooling system, for collider and other applications, were developed by analysis and simulation. The application of quasi-isochronous helical cooling channels (QIHCC) for RF capture of muon beams was developed. Innovative design concepts for a channel incorporating straight solenoids, a matching section, and an HCC, including RF and absorber, were developed, and its subsystems were simulated. Additionally, a procedure that uses an HCC to combine bunches for a muon collider was invented and simulated. Difficult design aspects such as matching sections between subsystems and intensity-dependent effects were addressed. The bunch recombination procedure was developed into a complete design with 3-D simulations. Bright muon beams are needed for many commercial and scientific reasons. Potential commercial applications include low-dose radiography, muon catalyzed fusion, and the use of muon beams to screen cargo containers for homeland security. Scientific uses include low energy beams for rare process searches, muon spin resonance applications, muon

  13. Hartree-Fock investigation of muon trapping in the chemical ferromagnet 4-(/p-chlorobenzylideneamino)-TEMPO

    NASA Astrophysics Data System (ADS)

    Jeong, Junho; Briere, Tina M.; Sahoo, N.; Das, T. P.; Ohira, Seiko; Nishiyama, K.; Nagamine, K.

    2000-08-01

    First-principles unrestricted Hartree-Fock theory is used to obtain the trapping sites for muon and muonium in ferromagnetic p-Cl-Ph-CHN-TEMPO (4-( p-chlorobenzylideneamino)- 2,2,6,6-tetramethylpiperidin-1-yloxyl) and the hyperfine interaction tensors for these sites. Using the calculated hyperfine interactions to fit the two experimentally observed muon spin rotation frequencies, it has been concluded that the two most likely candidates for explaining the experimental data are a muon trapped at the chlorine site and a singlet muonium state at the radical oxygen. The direction of the easy axis is also determined.

  14. Muon identification with Muon Telescope Detector at the STAR experiment

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Ma, R.; Huang, B.; Huang, X.; Ruan, L.; Todoroki, T.; Xu, Z.; Yang, C.; Yang, S.; Yang, Q.; Yang, Y.; Zha, W.

    2016-10-01

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions at √{ s }=500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ∼90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J / ψ signal is improved by a factor of 2 compared to using the basic selection.

  15. Interactions between the nucleus accumbens and auditory cortices predict music reward value.

    PubMed

    Salimpoor, Valorie N; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal; Dagher, Alain; Zatorre, Robert J

    2013-04-12

    We used functional magnetic resonance imaging to investigate neural processes when music gains reward value the first time it is heard. The degree of activity in the mesolimbic striatal regions, especially the nucleus accumbens, during music listening was the best predictor of the amount listeners were willing to spend on previously unheard music in an auction paradigm. Importantly, the auditory cortices, amygdala, and ventromedial prefrontal regions showed increased activity during listening conditions requiring valuation, but did not predict reward value, which was instead predicted by increasing functional connectivity of these regions with the nucleus accumbens as the reward value increased. Thus, aesthetic rewards arise from the interaction between mesolimbic reward circuitry and cortical networks involved in perceptual analysis and valuation.

  16. Muon contact hyperfine field in metals: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  17. Optimising the Active Muon Shield for the SHiP Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Baranov, A.; Burnaev, E.; Derkach, D.; Filatov, A.; Klyuchnikov, N.; Lantwin, O.; Ratnikov, F.; Ustyuzhanin, A.; Zaitsev, A.

    2017-12-01

    The SHiP experiment is designed to search for very weakly interacting particles beyond the Standard Model which are produced in a 400 GeV/c proton beam dump at the CERN SPS. The critical challenge for this experiment is to keep the Standard Model background level negligible. In the beam dump, around 1011 muons will be produced per second. The muon rate in the spectrometer has to be reduced by at least four orders of magnitude to avoid muoninduced backgrounds. It is demonstrated that new improved active muon shield may be used to magnetically deflect the muons out of the acceptance of the spectrometer.

  18. Nuclear medium effects in muonic neutrino interactions with energies from 0.2 to 1.5 GeV

    NASA Astrophysics Data System (ADS)

    Vargas, D.; Samana, A. R.; Velasco, F. G.; Hoyos, O. R.; Guzmán, F.; Bernal-Castillo, J. L.; Andrade-II, E.; Perez, R.; Deppman, A.; Barbero, C. A.; Mariano, A. E.

    2017-11-01

    Nuclear reactions induced by muon neutrinos with energies from 0.2 to 1.5 GeV in the Monte Carlo calculation framework in the intranuclear cascade model are studied. This study was done by comparing the available experimental data and theoretical values of total cross section, and the energy distribution of emitted lepton energy in the reaction muon neutrino nucleus, using the targets 12C, 16O, 27Al, 40Ar, 56Fe, and 208Pb. A phenomenological model of primary neutrino-nucleon interaction gives good agreement between our theoretical inclusive neutrino nucleus cross section and the available experimental data. Some interesting results on the behavior of the cross section as function of 1 p -1 n and higher contributions are also sketched. The previous results on the fraction of fake events in available experiments in 12C were expanded for the set of studied nuclei. With the increase of mass targets, the nuclear effects in the cross sections were observed and the importance of taking into account fake events in the reactions was noted.

  19. A precise measurement of 180 GeV muon energy losses in iron

    DOE PAGES

    Amaral, P.

    2001-05-28

    The energy loss spectrum of 180 GeV muons has been measured with the 5.6 m long finely segmented Module 0 of the ATLAS hadron Tile Calorimeter at the CERN SPS. The differential probability dP/dv per radiation length of a fractional energy loss v = ΔΕ μ/Ε μ has been measured in the range 0.025 ≤ v ≤ 0.97; it is compared with theoretical predictions for energy losses due to bremsstrahlung, production of electron-positron pairs, and energetic knock-on electrons. The iron elastic form factor correction Δmore » $$el\\atop{Fe}$$ = 1.63 ± 0.17 stat ± 0.23 Syst ± $$0.20\\atop{0.14}$$ theor to muon bremsstrahlung in the region of no screening of the nucleus by atomic electrons has been measured for the first time, and is compared with different theoretical predictions.« less

  20. Density tomography using cosmic ray muons: feasibility domain and field applications

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Déclais, Y.; Carbone, D.; Galichet, E.

    2010-12-01

    Muons are continuously produced when the protons forming the primary cosmic rays decay during their interactions with the molecules of the upper atmosphere. Both their short cross-section and their long life-time make the muons able to cross hectometers and even kilometers of rock before disintegrating. The flux of muons crossing a geological volume strongly depends on the quantity of matter encountered along their trajectories and, depending on both its size and its density, the geological object appears more or less opaque to muons. By measuring the muon flux emerging from the studied object and correcting for its geometry, the density structure can be deduced. The primary information obtained is the density averaged along muons trajectories and, to recover the 3D density distribution. The detector has to be moved around the target to acquire multi-angle images of the density structure. The inverse problem to be solved shares common features with seismic travel-time tomography and X-ray medical scans, but it also has specificities like Poissonian statistics, low signal-to-noise ratio and scattering which are discussed. Muon telescopes have been designed to sustain installations in harsh conditions such as might be encountered on volcanoes. Data acquired in open sky at various latitude and altitude allow to adjust the incoming muon flux model and to observe its temporal variations. The muon interactions with matter and the underground flux are constrained with data sets acquired inside the underground laboratory of the Mont Terri. The data analysis and the telescope model development are detailed. A model of the muon flux across a volcano is confronted to first measurements on La Soufrière de Guadeloupe volcano. The model takes into account a priori informations and solving kernels are computed to deduce the spatial resolution in order to define the elements size of the model heterogeneities. The spatio-temporal resolution of the method is in relation with the

  1. Measurement of the multiple-muon charge ratio in the MINOS Far Detector

    DOE PAGES

    Adamson, P.; Anghel, I.; Aurisano, A.; ...

    2016-03-30

    The charge ratio, R μ = N μ+/N μ-, for cosmogenic multiple-muon events observed at an underground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be R μ = 1.104±0.006(stat)more » $$+0.009\\atop{-0.010}$$(syst). As a result, this measurement complements previous determinations of single-muon and multiple-muon charge ratios at underground sites and serves to constrain models of cosmic-ray interactions at TeV energies.« less

  2. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  3. Muon identification with Muon Telescope Detector at the STAR experiment

    DOE PAGES

    Huang, T. C.; Ma, R.; Huang, B.; ...

    2016-07-15

    The Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identification performance for the MTD using proton-proton collisions atmore » $$\\sqrt{s}$$ = 500 GeV with various methods. Here, the result using the Likelihood Ratio method shows that the muon identification efficiency can reach up to ~ 90% for muons with transverse momenta greater than 3 GeV/c and the significance of the J/ψ signal is improved by a factor of 2 compared to using the basic selection.« less

  4. Measurement of the Muon Production Depths at the Pierre Auger Observatory

    DOE PAGES

    Collica, Laura

    2016-09-08

    The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore is sensitive to the muon content of air showers. We present here a method which allows us to estimate the muon production depths by exploiting the measurement of the muon arrival times at the ground recorded with the Surface Detector of the Pierre Auger Observatory. The analysis is performed in a large range of zenith angles, thanks to the capability of estimating and subtracting the electromagnetic component, and for energies betweenmore » $$10^{19.2}$$ and $$10^{20}$$ eV.« less

  5. Review of possible applications of cosmic muon tomography

    NASA Astrophysics Data System (ADS)

    Checchia, P.

    2016-12-01

    Muon radiographic methods can be used to explore inaccessible volumes profiting of the property of muons to penetrate thick materials. An extension of the muon radiographic methods, the muon scattering tomography, was proposed for the first time in 2003 and it is based on the measurement of the multiple Coulomb scattering of muons crossing the volume under investigation. In this talk, the principles of tomographic image reconstruction are first outlined and then the experimental setup and the most adequate detectors are described. A review of the possible applications of this technique is reported, with specific reference to security in transports and monitoring of industrial processes. The technique can also be used to provide precise measurements of the properties of various materials. The experimental challenge related to this activity is discussed.

  6. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  7. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, M.; Kajita, T.; Kasahara, K.

    2007-02-15

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using othermore » interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied.« less

  8. Muon tomography of rock density using Micromegas-TPC telescope

    NASA Astrophysics Data System (ADS)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  9. Muon background studies for shallow depth Double - Chooz near detector

    NASA Astrophysics Data System (ADS)

    Gómez, H.

    2015-08-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  10. The Muon Portal Project: A large-area tracking detector for muon tomography

    NASA Astrophysics Data System (ADS)

    Riggi, F.

    2016-05-01

    The Muon Portal Project [1] is a joint initiative between research and industrial partners, aimed at the construction of a real size detector protoype to search for hidden high-Z fissile materials inside containers by the muon scattering technique. The detector is based on a set of 48 detection modules (1 m × 3 m), so as to provide four X-Y detection planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction of the full size detector has already started and will be completed in a few months.

  11. Probing the evolution of the EAS muon content in the atmosphere with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2017-10-01

    The evolution of the muon content of very high energy air showers (EAS) in the atmosphere is investigated with data of the KASCADE-Grande observatory. For this purpose, the muon attenuation length in the atmosphere is obtained to Λμ = 1256 ± 85-232+229 (syst) g/cm2 from the experimental data for shower energies between 1016.3 and 1017.0 eV. Comparison of this quantity with predictions of the high-energy hadronic interaction models QGSJET-II-02, SIBYLL 2.1, QGSJET-II-04 and EPOS-LHC reveals that the attenuation of the muon content of measured EAS in the atmosphere is lower than predicted. Deviations are, however, less significant with the post-LHC models. The presence of such deviations seems to be related to a difference between the simulated and the measured zenith angle evolutions of the lateral muon density distributions of EAS, which also causes a discrepancy between the measured absorption lengths of the density of shower muons and the predicted ones at large distances from the EAS core. The studied deficiencies show that all four considered hadronic interaction models fail to describe consistently the zenith angle evolution of the muon content of EAS in the aforesaid energy regime.

  12. Muon Catalyzed Fusion in Solid Hydrogen

    NASA Astrophysics Data System (ADS)

    Marshall, Glen

    1998-04-01

    The mass, lifetime, and leptonic nature of the negative muon allow it to induce repeated fusion reactions between nuclei of hydrogen isotopes. The processes by which this takes place encompass nuclear as well as atomic and molecular interactions, both normal and exotic, with energy scales from meV to MeV. It has taken several decades to disentangle the important aspects and understand quantitatively what limitations exist on efficient catalysis of fusion. The two major limitations are the rates at which muonic molecular ions can be formed, and the small but critical probability that the muon becomes attached to a charged fusion product in the process known as sticking. Extensive theoretical work has resulted in a detailed understanding of both, and experimental efforts have contributed significant insight. There are unique experimental advantages to using solid hydrogen in the form of inhomogeneous layered targets. Non-thermalized muonic hydrogen atoms allow us to explore resonant molecular ion formation processes near eV kinetic energies. Isotopically specific layers make it possible to separate competing and confusing interactions. Unambiguous charged fusion product detection is simplified and complements the more conventional detection of fusion neutrons. Experiments with negative muons in solid hydrogen can help to understand the limitations of both the molecular ion formation rate and the sticking probability. The processes of importance will be described, followed by a discussion of recent results and possibilities for the future.

  13. Muon g-2 Reconstruction and Analysis Framework for the Muon Anomalous Precession Frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, Kim Siang

    The Muon g-2 experiment at Fermilab, with the aim to measure the muon anomalous magnetic moment to an unprecedented level of 140~ppb, has started beam and detector commissioning in Summer 2017. To deal with incoming data projected to be around tens of petabytes, a robust data reconstruction and analysis chain based on Fermilab's \\textit{art} event-processing framework is developed. Herein, I report the current status of the framework, together with its novel features such as multi-threaded algorithms for online data quality monitor (DQM) and fast-turnaround operation (nearline). Performance of the framework during the commissioning run is also discussed.

  14. Studies on Muon Induction Acceleration and an Objective Lens Design for Transmission Muon Microscope

    NASA Astrophysics Data System (ADS)

    Artikova, Sayyora; Yoshida, Mitsuhiro; Naito, Fujio

    Muon acceleration will be accomplished by a set of induction cells, where each increases the energy of the muon beam by an increment of up to 30 kV. The cells are arranged in a linear way resulting in total accelerating voltage of 300 kV. Acceleration time in the linac is about hundred nanoseconds. Induction field calculation is based on an electrostatic approximation. Beam dynamics in the induction accelerator is investigated and final beam focusing on specimen is realized by designing a pole piece lens.

  15. Characterization of the atmospheric muon flux in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fahey, S.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fuchs, T.; Glagla, M.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jero, K.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Saba, S. M.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Seckel, D.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vanheule, S.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yáñez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2016-05-01

    Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.

  16. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  17. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partyka, Kinga Anna

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be bothmore » illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.« less

  18. Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian

    2017-01-01

    The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.

  19. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less

  20. Evidence for anomalous prompt photons in deep inelastic muon scattering at 200 GeV

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S. C.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Ingelman, G.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Muont, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration

    1989-02-01

    The inclusive yield of photons has been measured from deep inelastic interactions of 200 GeV muons on hydrogen. After subtracting the contributions from hadron electromagnetic decays and Bethe-Heitler muon bremsstrahlung, residual photons are observed at low pT and low z at a mean level of 0.15±0.06 per interaction. The quark Compton scattering process is unable to explain the data, thus indicating an anomalous photon production.

  1. Muon Tomography for Geological Repositories.

    NASA Astrophysics Data System (ADS)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  2. Low energy atmospheric muon neutrinos in MACRO

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.

    2000-04-01

    We present the measurement of two event samples induced by atmospheric νμ of average energy Eoverlineν~4 GeV. In the first sample, a neutrino interacts inside the MACRO detector producing an upward-going muon leaving the apparatus. The ratio of the number of observed to expected events is 0.57+/-0.05stat+/-0.06syst+/-0.14theor with an angular distribution similar to that expected from the Bartol atmospheric neutrino flux. The second is a mixed sample of internally produced downward-going muons and externally produced upward-going muons stopping inside the detector. These two subsamples are selected by topological criteria; the lack of timing information makes it impossible to distinguish stopping from downgoing muons. The ratio of the number of observed to expected events is 0.71+/-0.05stat+/-0.07syst+/-0.18theor. The observed deficits in each subsample is in agreement with neutrino oscillations, although the significance is reduced by the large theoretical errors. However, the ratio of the two samples causes a large cancellation of theoretical and of some systematic errors. With the ratio, we rule out the no-oscillation hypothesis at 95% c.l. Furthermore, the ratio tests the pathlength dependence of possible oscillations. The data of both samples and their ratio favor maximal mixing and Δm2~10-3-10-2 eV2. These parameters are in agreement with our results from upward throughgoing muons, induced by νμ of much higher energies.

  3. Muon Accelerator Program (MAP) | Homepage

    Science.gov Websites

    collider and neutrino factory Scientists around the world are developing the technologies necessary for a factory or a muon collider. Read more: Neutrino factory Muon collider Developing a muon source One of the developing and testing RF cavities and magnets for a muon beamline. The facility allows scientists to test

  4. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  5. The Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  6. Plastid-Nucleus Distance Alters the Behavior of Stromules

    PubMed Central

    Erickson, Jessica L.; Kantek, Matthias; Schattat, Martin H.

    2017-01-01

    Plastids send “retrograde” signals to the nucleus to deliver information regarding their physiological status. One open question concerning this signal transfer is how the signal bridges the cytoplasm. Based on individual reports of plastid derived tubular membrane extensions connecting to nuclei, these so-called stromules have been suggested to function as communication routes between plastids and nuclei in response to biotic stress. However, based on the data currently available it is unclear whether interactions between stromules and nuclei are truly intentional or observed as a result of an inflated stromule frequency throughout the cell, and are thus a random event. The source of this uncertainty stems from missing information regarding the relative distribution of all plastids and stromules within a given cell. A comprehensive analysis of the upper epidermis of Arabidopsis thaliana rosette leaves was performed via a combination of still images and time-lapse movies of stromule formation in the context of the whole cell. This analysis could definitively confirm that stromule formation is not evenly distributed. Stromules are significantly more frequent within 8 μm of the nucleus, and approximately 90% of said stromules formed facing the nucleus. Time-lapse movies revealed that this enrichment of stromules is achieved via a 10-fold higher frequency of stromule initiation events within this 8 μm zone compared to the cell periphery. Following the movement of plastids and nuclei it became evident that movement and formation of stromules is correlated to nucleus movement. Observations suggest that stromules “connecting” to the nucleus are not necessarily the result of plastids sensing the nucleus and reaching out toward it, but are rather pulled out of the surface of nucleus associated plastids during opposing movement of these two organelles. This finding does not exclude the possibility that stromules could be transferring signals to the nucleus

  7. Muons and neutrinos

    NASA Technical Reports Server (NTRS)

    Stanev, T.

    1986-01-01

    The first generation of large and precise detectors, some initially dedicated to search for nucleon decay has accumulated significant statistics on neutrinos and high-energy muons. A second generation of even better and bigger detectors are already in operation or in advanced construction stage. The present set of experimental data on muon groups and neutrinos is qualitatively better than several years ago and the expectations for the following years are high. Composition studies with underground muon groups, neutrino detection, and expected extraterrestrial neutrino fluxes are discussed.

  8. Constraints on muon-specific dark forces

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; McKeen, David; Pospelov, Maxim

    2014-10-01

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on e-p scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier—in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the g-2 of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity-violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon g-2. However, we also observe that in the absence of a consistent standard model embedding high-energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by (E/mV)2, with E a characteristic energy scale and mV the mass of the mediator. In particular, leptonic W decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  9. Quarkonium-nucleus bound states from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, S.  R.; Chang, E.; Cohen, S.  D.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  10. Delivering the world's most intense muon beam

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Edmonds, A.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Tran, N. H.; Truong, N. M.; Wing, M.; Yamamoto, A.; Yoshida, M.

    2017-03-01

    A new muon beam line, the muon science innovative channel, was set up at the Research Center for Nuclear Physics, Osaka University, in Osaka, Japan, using the 392 MeV proton beam impinging on a target. The production of an intense muon beam relies on the efficient capture of pions, which subsequently decay to muons, using a novel superconducting solenoid magnet system. After the pion-capture solenoid, the first 36° of the curved muon transport line was commissioned and the muon flux was measured. In order to detect muons, a target of either copper or magnesium was placed to stop muons at the end of the muon beam line. Two stations of plastic scintillators located upstream and downstream from the muon target were used to reconstruct the decay spectrum of muons. In a complementary method to detect negatively charged muons, the x-ray spectrum yielded by muonic atoms in the target was measured in a germanium detector. Measurements, at a proton beam current of 6 pA, yielded (10.4 ±2.7 )×1 05 muons per watt of proton beam power (μ+ and μ-), far in excess of other facilities. At full beam power (400 W), this implies a rate of muons of (4.2 ±1.1 )×1 08 muons s-1 , among the highest in the world. The number of μ- measured was about a factor of 10 lower, again by far the most efficient muon beam produced. The setup is a prototype for future experiments requiring a high-intensity muon beam, such as a muon collider or neutrino factory, or the search for rare muon decays which would be a signature for phenomena beyond the Standard Model of particle physics. Such a muon beam can also be used in other branches of physics, nuclear and condensed matter, as well as other areas of scientific research.

  11. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katori, Teppei

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v μ → v e appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v μ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10more » -38 cm 2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). v e appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.« less

  12. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less

  13. Calculation of intensity of high energy muon groups observed deep underground

    NASA Technical Reports Server (NTRS)

    Vavilov, Y. N.; Dedenko, L. G.

    1985-01-01

    The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.

  14. Charm production by muons and its role in scale-noninvariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gollin, G D

    1981-01-01

    Interactions of 209 GeV muons in the Multimuon Spectrometer at Fermilab have yielded more than 8 x 10/sup 4/ events with two muons in the final state. After reconstruction and cuts, the data contain 20,072 events with (81 +- 10)% attributed to the diffractive production of charmed states decaying to muons. The cross section for diffractive charm muoproduction is 6.9(+1.9,-1.4) nb where the error includes systematic uncertainties. Extrapolated to Q/sup 2/ = 0 with sigma(Q/sup 2/) = sigma(0)(1 + Q/sup 2//..lambda../sup 2/)/sup -2/, the effective cross section for 178 (100) GeV photons is 750(+180,-130) (560(+200,-120)) nb and the parameter ..lambda..more » is 3.3 +- 0.2 (2.9 +- 0.2) GeV/c. The ..nu.. dependence of the cross section is similar to that of the photon-gluon-fusion model. A first determination of the structure function for diffractive charm production indicates that charm accounts for approximately 1/3 of the scale-noninvariance observed in inclusive muon-nucleon scattering at low Bjorken x. Okubo-Zweig-Iizuka selection rules and unitarity allow the muon data to set a 90%-confidence lower limit on the psi N total cross section of 0.9 mb.« less

  15. The low energy muon beam profile monitor for the muon g-2/EDM experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Razuvaev, G. P.; Bae, S.; Choi, H.; Choi, S.; Ko, H. S.; Kim, B.; Kitamura, R.; Mibe, T.; Otani, M.

    2017-09-01

    The muon g-2/EDM experiment at J-PARC aims to measure the muon anomalous magnetic moment and electric dipole moment with high precision by utilising an ultracold muon beam. The current muon g-2 discrepancy between the Standard Model prediction and the experimental value is about 3.5 standard deviations. This experiment requires a development of the muon LINAC to accelerate thermal muons to the 300 MeV/c momentum. Detectors for beam diagnostics play a key role in such an experiment. The beam profile monitoring system has been designed to measure the profile of the low energy muon beam. It was tested during two beam tests in 2016 at the MLF D2 line at J-PARC. The detector was used with positive muons, Mu-(μ+ e- e-), p and H-, e- and UV light. The system overview and preliminary results are given. Special attention is paid to the spatial resolution of the beam profile monitor and online monitor software used during data taking.

  16. PANDA Muon System Prototype

    NASA Astrophysics Data System (ADS)

    Abazov, Victor; Alexeev, Gennady; Alexeev, Maxim; Frolov, Vladimir; Golovanov, Georgy; Kutuzov, Sergey; Piskun, Alexei; Samartsev, Alexander; Tokmenin, Valeri; Verkheev, Alexander; Vertogradov, Leonid; Zhuravlev, Nikolai

    2018-04-01

    The PANDA Experiment will be one of the key experiments at the Facility for Antiproton and Ion Research (FAIR) which is under construction now in the territory of the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. PANDA is aimed to study hadron spectroscopy and various topics of the weak and strong forces. Muon System is chosen as the most suitable technology for detecting the muons. The Prototype of the PANDA Muon System is installed on the test beam line T9 at the Proton Synchrotron (PS) at CERN. Status of the PANDA Muon System prototype is presented with few preliminary results.

  17. Evidence from the Soudan 1 experiment for underground muons associated with Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Ayres, D. S. E.

    1986-01-01

    The Soudan 1 experiment has yielded evidence for an average underground muon flux of approximately 7 x 10 to the minus 11th power/sq cm/s which points back to the X-ray binary Cygnus X-3, and which exhibits the 4.8 h periodicity observed for other radiation from this source. Underground muon events which seem to be associated with Cygnus X-3 also show evidence for longer time variability of the flux. Such underground muons cannot be explained by any conventional models of the propagation and interaction of cosmic rays.

  18. Utilisation de dispositifs a transfert de charge pour la detection de muons cosmiques dans un contexte de tomographie

    NASA Astrophysics Data System (ADS)

    Marion-Ouellet, Laurence Olivier

    Faced with the threat of nuclear terrorism, many countries have purchased radioactive material detectors to protect their borders. These systems usually detect gamma, beta or alpha ray emissions coming from uranium, radium, cesium or other radioactive material. However, the radioactive source can be concealed by thick lead shielding and radiation absorbing material. With enough shielding, an individual wishing to smuggle illicit nuclear material could cross borders without alerting the authorities. To address this risk, several laboratories worldwide are working on muon tomography technology. This technique aims to detect shielded nuclear material by measuring the deflection of a cosmic muon after crossing the cargo of interest. Since this deviation is a function of the Z number of atoms (the number of protons inside the nucleus), it is possible to determine the contents of the cargo. To calculate the angular deviation, we must first measure the position of the muon on four succeding horizontal planes (two pre-cargo, two after). This task is traditionally assigned to wire chambers or scintillators detectors but could also be fulfilled by CCD detectors (Charge-Coupled Devices). This work specifically addresses the use of CCDs for muon tomography. This thesis' objective is to determine the feasibility of using a commercial CCD based muon detector. To answer this question, numerical simulations have been performed using the software Geant4. This work allows us to obtain the theoretical energy deposition of muons of various kinetic energies into a silicon wafer representing a CCD chip. These results are then compared to numerical values derived from the theory presented in the literature to verify their validity. The muons' energy is varied from 50 MeV to 1 TeV and silicium thicknesses of 300 and 775 mum are studied. The results obtained indicate that a muon of 4 GeV (most probable cosmic muon energy) should deposit 106 and 281 keV for an average thickness of 300 and

  19. Search for hidden high-Z materials inside containers with the Muon Portal Project

    NASA Astrophysics Data System (ADS)

    La Rocca, P.; Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Belluomo, F.; Belluso, M.; Billotta, S.; Blancato, A. A.; Bonanno, D.; Bonanno, G.; Costa, A.; Fallica, G.; Garozzo, S.; Indelicato, V.; Leonora, E.; Longhitano, F.; Longo, S.; Lo Presti, D.; Massimino, P.; Petta, C.; Pistagna, C.; Pugliatti, C.; Puglisi, M.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Russo, G. V.; Santagati, G.; Valvo, G.; Vitello, F.; Zaia, A.; Zappalà, G.

    2014-01-01

    The Muon Portal is a recently born project that plans to build a large area muon detector for a noninvasive inspection of shipping containers in the ports, searching for the presence of potential fissile (U, Pu) threats. The technique employed by the project is the well-known muon tomography, based on cosmic muon scattering from high-Z materials. The design and operational parameters of the muon portal under construction will be described in this paper, together with preliminary simulation and test results.

  20. Frontiers of muon spectroscopy—25 years of muon science at ISIS

    NASA Astrophysics Data System (ADS)

    Cottrell, Stephen

    2013-12-01

    The ISIS muon source developed with support from the European Community (EC) and groups at Grenoble, Parma, Uppsala and Munich in the late 1980s, with a single instrument providing many scientists with their first opportunity to explore the unique capabilities of muon spectroscopy. The timing was opportune, as the muon technique was making an important contribution to the study of the then recently discovered cuprate high T c superconductors. The ISIS user community developed rapidly over subsequent years, with the technique finding a broad range of applications in condensed matter physics, materials science and chemistry. The single instrument was hugely oversubscribed, and the importance of the technique was recognized in 1993 with a further grant from the EC to develop the triple beamline facility that is currently available at ISIS. During 2009 the suite of spectrometers available at the facility received a major upgrade, with the Science and Technology Facilities Council funding the development of a 5 T high field instrument that has enabled entirely new applications of muon spectroscopy to be explored. The facility continues to flourish, with a strong user community exploiting the technique to support research across an increasingly broad range of subject areas. Condensed matter science continues to be a major area of interest, with applications including semiconductors and dielectrics, superconductors, magnetism, interstitial diffusion and charge transport. Recently, however, molecular science and radical chemistry have become prominent in the ISIS programme, applications where the availability of high magnetic fields is frequently vital to the success of the experiments. For ISIS, 23 March 2012 marked a significant milestone, it being 25 years since muons were first produced at the facility for research in condensed matter and molecular science. To celebrate, the ISIS muon group organized a science symposium with the theme 'Frontiers of Muon Spectroscopy

  1. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    DOE PAGES

    Adams, D.; Adey, D.; Alekou, A.; ...

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 π mm-rad horizontally and 0.6-1.0 π mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  2. Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca; White, Larz

    2010-11-01

    The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.

  3. Muon Colliders: The Next Frontier

    ScienceCinema

    Tourun, Yagmur

    2017-12-22

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  4. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source.

    PubMed

    Yokoyama, K; Lord, J S; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J

    2016-12-01

    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

  5. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Lord, J. S.; Murahari, P.; Wang, K.; Dunstan, D. J.; Waller, S. P.; McPhail, D. J.; Hillier, A. D.; Henson, J.; Harper, M. R.; Heathcote, P.; Drew, A. J.

    2016-12-01

    A high power pulsed laser system has been installed on the high magnetic field muon spectrometer (HiFi) at the International Science Information Service pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high magnetic field, which opens new applications of muon spin spectroscopy. In this report we give an overview of the principle of the HiFi laser system and describe the newly developed techniques and devices that enable precisely controlled photoexcitation of samples in the muon instrument. A demonstration experiment illustrates the potential of this unique combination of the photoexcited system and avoided level crossing technique.

  6. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

    2014-08-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

  7. Muon Trigger for Mobile Phones

    NASA Astrophysics Data System (ADS)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  8. Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory

    DOE PAGES

    Yeh, M.; Chan, Y. L.; Chen, X. C.; ...

    2016-04-07

    In this study, we have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of a gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be I μ = (5.7±0.6)×10 –6 cm –2 s –1 sr –1. The yield of muon-induced neutrons in the liquid scintillator was determined to be Y n = (1.19 ± 0.08(stat) ± 0.21(syst)) × 10 –4 neutrons/(μ•g•cm –2). A fit tomore » the recently measured neutron yields at different depths gave a mean muon energy dependence of < E μ > 0.76±0.03 for liquid-scintillator targets.« less

  9. Muons in the Cathedral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guardincerri, Elena

    2017-08-17

    Muon-imaging technology — far better at penetrating materials than x-rays — makes it ideal for peering into thick, dense objects. While muon-imaging technology was developed for national security purposes, such as searching cargo shipments for nuclear materials, it could also be useful for determining what is inside any structure. Now, scientists at Los Alamos are using muons to look inside a nearly 600-year-old Italian church in hopes of preserving it for centuries to come.

  10. Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Goloubkov, D.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Meyer, M.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Ryazhskaya, O.; Sato, O.; Sato, Y.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zaitsev, Y.; Zemskova, S.; Zghiche, A.

    2016-07-01

    The OPERA long-baseline neutrino-oscillation experiment has observed the direct appearance of ντ in the CNGS νμ beam. Two large muon magnetic spectrometers are used to identify muons produced in the τ leptonic decay and in νμ CC interactions by measuring their charge and momentum. Besides the kinematic analysis of the τ decays, background resulting from the decay of charmed particles produced in νμ CC interactions is reduced by efficiently identifying the muon track. A new method for the charge sign determination has been applied, via a weighted angular matching of the straight track-segments reconstructed in the different parts of the dipole magnets. Results obtained for Monte Carlo and real data are presented. Comparison with a method where no matching is used shows a significant reduction of up to 40% of the fraction of wrongly determined charges.

  11. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    NASA Astrophysics Data System (ADS)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  12. Weakly interacting massive particle-nucleus elastic scattering response

    NASA Astrophysics Data System (ADS)

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2014-06-01

    Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon scattering was recently developed in Galilean-invariant effective field theory. Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments. Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar electroweak nuclear operators such as angular momentum l⃗(i) and the spin-orbit coupling σ⃗(i).l⃗(i). Conclusions: To unambiguously interpret experiments and to extract all of the available information on the particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help interested readers implement such an analysis.

  13. Multiplicity of Charged Particles in Pion - Nucleus Interactions in an Emulsion at 200-GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzon, Z.V.; Gaitinov, A.Sh.; Eremenko, L.E.

    1977-01-01

    The experimental data on multiplicities of charged secondaries produced in pion-nucleus interactions in an emulsion at 200 Gev/c and correlations bet6ween them are presented and discussed. Parameters of multiplicity distributions are compared with the relevant ones at lower energies and with data from pA-interactions at 200 Gev/c. The multiplicity of heavily ionizing particles in {Pi}{sup -}A-interactions weakly depend on the incident energy. The KNO scaling is observed being the same for incident protons and pions.

  14. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  15. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  16. Matrix metalloproteinase 3 promotes cellular anti-dengue virus response via interaction with transcription factor NFκB in cell nucleus.

    PubMed

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation.

  17. Muon g-2

    Science.gov Websites

    Related Links A Key Contribution from Brookhaven Laboratory The Big Move Muon Department Facebook g-2 on is filled with an invisible sea of virtual particles that -in accordance with the laws of quantum presence and nature of these virtual particles with particle beams traveling in a magnetic field. The Muon

  18. J-PARC Muon Facility, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Koda, Akihiro; Strasser, Patrick; Kojima, Kenji M.; Fujimori, Hiroshi; Makimura, Shunsuke; Ikedo, Yutaka; Kobayashi, Yasushi; Nakamura, Jumpei; Oishi, Yu; Takeshita, Soshi; Adachi, Taihei; Datt Pant, Amba; Okabe, Hirotaka; Matoba, Shiro; Tampo, Motobobu; Hiraishi, Masatoshi; Hamada, Koji; Doiuchi, Shougo; Higemoto, Wataru; Ito, Takashi U.; Kadono, Ryosuke

    At J-PARC MUSE (Muon Science Establishment), one graphite target was installed in the proton beam line on the way to the neutron source, from which four sets of the secondary lines were designed to be extracted and extended into two experimental halls (toward the west wing, one decay-surface muon channel (D-Line) and the axial focusing muon channel (U-Line), and towards the east wing one surface muon channel (S-Line) and one fundamental muon channel (H-Line). MUSE has been suffering from many troubles such as the giant earthquake, fire, twice water leakage from the neutron target. Although the proton beam intensity was restricted lower than 200 kW, we have been having a rather stable operation at the MUSE since February, 2016. In this paper, the latest situation on the MUSE is reported.

  19. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac

    2003-08-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less

  20. A novel muon detector for borehole density tomography

    NASA Astrophysics Data System (ADS)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; Rowe, Charlotte; Guardincerri, Elena; Durham, J. Matthew; Morris, Christopher L.; Poulson, Daniel C.; Plaud-Ramos, Kenie; Morley, Deborah J.; Bacon, Jeffrey D.; Bynes, James; Cercillieux, Julien; Ketter, Chris; Le, Khanh; Mostafanezhad, Isar; Varner, Gary; Flygare, Joshua; Lintereur, Azaree T.

    2017-04-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in density - a proxy for fluid migration - at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.

  1. The muon component in extensive air showers and new p+C data in fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurer, C.; Bluemer, J.; Engel, R.

    2007-03-19

    One of the most promising approaches to determine the energy spectrum and composition of the cosmic rays with energies above 1015 eV is the measurement of the number of electrons and muons produced in extensive air showers (EAS). Therefore simulation of air showers using electromagnetic and hadronic interaction models are necessary. These simulations show uncertainties which come mainly from hadronic interaction models. One aim of this work is to specify the low energy hadronic interactions which are important for the muon production in EAS. Therefore we simulate extensive air showers with a modified version of the simulation package CORSIKA. Inmore » particular we investigate in detail the energy and the phase space regions of secondary particle production, which are most important for muon production. This phase space region is covered by fixed target experiments at CERN. In the second part of this work we present preliminary momentum spectra of secondary {pi}+ and {pi}- in p+C collisions at 12 GeV/c measured with the HARP spectrometer at the PS accelerator at CERN. In addition we use the new p+C NA49 data at 158 GeV/c to check the reliability of hadronic interaction models for muon production in EAS. Finally, possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.« less

  2. The g - 2 muon anomaly in di-muon production with the torsion in LHC

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.

    2016-06-01

    It was considered within the framework of the conformal gauge gravitational theory CGTG coupling of the standard model fermions to the axial torsion and preliminary discusses the impact of extra dimensions, in particular, in a five-dimensional space-time with Randall-Sundrum metric, where the fifth dimension is compactified on an S1/Z 2 orbifold, which as it turns out is conformally to the fifth dimension flat Euclidean space with permanent trace of torsion, with a compactification radius R in terms of the radius of a CGTG gravitational screening, through torsion in a process Z → μ+μ- and LHC data. In general, have come to the correct set of the conformal calibration curvature the Faddeev-Popov diagram technique type, that follows directly from dynamics. This leads to the effect of restrictions on neutral spin currents of gauge fields by helicity and the Regge’s form theory. The diagrams reveals the fact of opening of the fine spacetime structure in a process pp → γ/Z/T → μ+μ- with a center-of-mass energy of 14TeV, indicated by dotted lines and texture columns, as a result of p-p collision on 1.3 ṡ 10-18cm scales from geometric shell gauge bosons of the SM continued by the heavy axial torsion resonance, and even by emerging from the inside into the outside of the ultra-light (freely-frozen in muon’s spin) axial torsion. We then evaluate the contribution of the torsion to the muon anomaly to derive new constraints on the torsion parameters. It was obtained that on the πN scattering through the exchange of axial torsion accounting, the nucleon anomalous magnetic moment in the eikonal phase leads to additive additives which is responsible for the spin-flip in the scattering process, the scattering amplitude is classical and characterized by a strong the torsion coupling ηT≅1. So the scattering of particles, occurs as on the Coulomb center with the charge fT This is the base model which is the g-2 muon anomaly. The muon anomaly contribution due to

  3. Modular detector for deep underwater registration of muons and muon groups

    NASA Technical Reports Server (NTRS)

    Demianov, A. I.; Sarycheva, L. I.; Sinyov, N. B.; Varadanyan, I. N.; Yershov, A. A.

    1985-01-01

    Registration and identification of muons and muon groups penetrating into the ocean depth, can be performed using a modular multilayer detector with high resolution bidimensional readout - deep underwater calorimeter (project NADIR). Laboratory testing of a prototype sensor cell with liquid scintillator in light-tight casing, testifies to the practicability of the full-scale experiment within reasonable expences.

  4. Muon reconstruction with a geometrical model in JUNO

    NASA Astrophysics Data System (ADS)

    Genster, C.; Schever, M.; Ludhova, L.; Soiron, M.; Stahl, A.; Wiebusch, C.

    2018-03-01

    The Jiangmen Neutrino Underground Observatory (JUNO) is a 20 kton liquid scintillator detector currently under construction near Kaiping in China. The physics program focuses on the determination of the neutrino mass hierarchy with reactor anti-neutrinos. For this purpose, JUNO is located 650 m underground with a distance of 53 km to two nuclear power plants. As a result, it is exposed to a muon flux that requires a precise muon reconstruction to make a veto of cosmogenic backgrounds viable. Established muon tracking algorithms use time residuals to a track hypothesis. We developed an alternative muon tracking algorithm that utilizes the geometrical shape of the fastest light. It models the full shape of the first, direct light produced along the muon track. From the intersection with the spherical PMT array, the track parameters are extracted with a likelihood fit. The algorithm finds a selection of PMTs based on their first hit times and charges. Subsequently, it fits on timing information only. On a sample of through-going muons with a full simulation of readout electronics, we report a spatial resolution of 20 cm of distance from the detector's center and an angular resolution of 1.6o over the whole detector. Additionally, a dead time estimation is performed to measure the impact of the muon veto. Including the step of waveform reconstruction on top of the track reconstruction, a loss in exposure of only 4% can be achieved compared to the case of a perfect tracking algorithm. When including only the PMT time resolution, but no further electronics simulation and waveform reconstruction, the exposure loss is only 1%.

  5. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less

  6. Investigation of humidity using the muon component of cosmic rays

    NASA Astrophysics Data System (ADS)

    Oskomov, V.; Sedov, A.; Saduyev, N.; Kalikulov, O.; Kenzhina, I.; Naurzbayeva, A.; Alimgazinova, N.; Zhumabaev, A.; Shinbulatov, S.; Erezhep, N.

    2017-12-01

    Determination of humidity is one of the most important types of hydrometeorological and glaciological observations performed in agriculture, hydropower and water supply. The work is devoted to the development of physical basis of moisture determination method, based on attenuation of the flux of cosmic-ray muons. The relationship between the intensity of muons registered in the underground room of the Tien Shan mountain research station (Almaty) and relative humidity was studied. The results of studies show that the values of the normalized mutual correlation function between the rows of muon intensity and relative humidity vary from 0.3 to 0.7, depending on the coincidence scheme. The data obtained from the muon telescope located at the the Tien Shan mountain research station was used in the work.

  7. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere Using Six Years of IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Icecube Collaboration

    2016-12-01

    The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 {TeV} and 7.8 {PeV} a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6σ significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 {TeV} neutrino energy of ({0.90}-0.27+0.30)× {10}-18 {{GeV}}-1 {{cm}}-2 {{{s}}}-1 {{sr}}-1 and a hard spectral index of γ =2.13+/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5+/- 1.2) {PeV} which implies a probability of less than 0.005 % for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 {TeV} no correlation with known γ-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.

  8. Dynamic interaction between actin and nesprin2 maintain the cell nucleus in a prestressed state

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Shivashankar, G. V.

    2016-12-01

    Mechanical coupling between the nucleus and the cytoskeleton is indispensable for direct force transduction from the extra cellular matrix (ECM) to the chromatin. Although this physical coupling has been shown to be crucial for nuclear positioning and its function, the quantification of nuclear-cytoskeleton interaction has been lacking. In this paper, using various quantitative fluorescence spectroscopy techniques, we investigate the nature of this connection. High-resolution 3D imaging shows that nesprin2G forms short linear structures along actin stress fibers (ASFs) in the apical region of the nucleus. Fluorescence recovery after photobleaching (FRAP) revealed that the alignment of nesprin2G becomes heterogeneous when cell shape is engineered from elongated rectangular shape to square using micropatterned substrates. Further, fluorescence cross-correlation spectroscopy (FCCS) revealed that actin interacts transiently with outer nuclear membrane protein nesprin2G with a time scale of 12 ms. In addition, fluorescence resonance energy transfer (FRET) experiments show that the apical ASFs and nesprin2G are in close physical proximity. This interaction is spatially heterogeneous with high FRET along the ASFs. Lastly, we show that the disruption of actin to nuclear connection by over-expression of Dominant Negative Klarsicht, ANC-1, Syne Homology (DNKASH) leads to an increase in nuclear height. These results not only reveal the characteristics of actin-nesprin2G interaction and its significance in regulating nuclear morphology, but also validate the utility of quantitative fluorescence techniques in deciphering physical connections that are essential for mechanotransduction.

  9. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see amore » direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.« less

  10. Clockwork graviton contributions to muon g -2

    NASA Astrophysics Data System (ADS)

    Hong, Deog Ki; Kim, Du Hwan; Shin, Chang Sub

    2018-02-01

    The clockwork mechanism for gravity introduces a tower of massive graviton modes, clockwork gravitons, with a very compressed mass spectrum, whose interaction strengths are much stronger than those of massless gravitons. In this work, we compute the lowest order contributions of the clockwork gravitons to the anomalous magnetic moment, g -2 , of muon in the context of an extra dimensional model with a five-dimensional Planck mass, M5. We find that the total contributions are rather insensitive to the detailed model parameters and are determined mostly by the value of M5. To account for the current muon g -2 anomaly, M5 should be around 0.2 TeV, and the size of the extra dimension has to be quite large, l5≳10-7 m . For M5≳1 TeV , the clockwork graviton contributions are too small to explain the current muon g -2 anomaly. We also compare the clockwork graviton contributions with other extra dimensional models such as Randall-Sundrum models or large extra dimensional models. We find that the leading contributions in the small curvature limit are universal, but the cutoff-independent subleading contributions vary for different background geometries and the clockwork geometry gives the smallest subleading contributions.

  11. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  12. Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus.

    PubMed

    Soldatova, Irina; Prilepskaja, Terezie; Abrahamyan, Levon; Forstová, Jitka; Huérfano, Sandra

    2018-03-31

    The mechanism used by mouse polyomavirus (MPyV) overcomes the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.

  13. Observation of Top Quark Production in Proton-Nucleus Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of √ sNN = 8.16 TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174 nb -1. The significance of the tt¯ signal against the background-only hypothesis is above 5 standard deviations. In conclusion, the measured cross section is σ tt¯ = 45 ± 8 nb, consistent with predictions from perturbativemore » quantum chromodynamics.« less

  14. Observation of Top Quark Production in Proton-Nucleus Collisions

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-12-14

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of √ sNN = 8.16 TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174 nb -1. The significance of the tt¯ signal against the background-only hypothesis is above 5 standard deviations. In conclusion, the measured cross section is σ tt¯ = 45 ± 8 nb, consistent with predictions from perturbativemore » quantum chromodynamics.« less

  15. Observation of Top Quark Production in Proton-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2017-12-01

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of √{sN N }=8.16 TeV . The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174 nb-1 . The significance of the t t ¯ signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σt t ¯=45 ±8 nb , consistent with predictions from perturbative quantum chromodynamics.

  16. Observation of Top Quark Production in Proton-Nucleus Collisions.

    PubMed

    Sirunyan, A M; Tumasyan, A; Adam, W; Ambrogi, F; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Escalante Del Valle, A; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Grossmann, J; Hrubec, J; Jeitler, M; König, A; Krammer, N; Krätschmer, I; Liko, D; Madlener, T; Mikulec, I; Pree, E; Rad, N; Rohringer, H; Schieck, J; Schöfbeck, R; Spanring, M; Spitzbart, D; Waltenberger, W; Wittmann, J; Wulz, C-E; Zarucki, M; Chekhovsky, V; Mossolov, V; Suarez Gonzalez, J; De Wolf, E A; Di Croce, D; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Abu Zeid, S; Blekman, F; D'Hondt, J; De Bruyn, I; De Clercq, J; Deroover, K; Flouris, G; Lontkovskyi, D; Lowette, S; Marchesini, I; Moortgat, S; Moreels, L; Python, Q; Skovpen, K; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Beghin, D; Bilin, B; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Dorney, B; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Kalsi, A K; Lenzi, T; Luetic, J; Maerschalk, T; Marinov, A; Seva, T; Starling, E; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Cornelis, T; Dobur, D; Fagot, A; Gul, M; Khvastunov, I; Poyraz, D; Roskas, C; Salva, S; Tytgat, M; Verbeke, W; Zaganidis, N; Bakhshiansohi, H; Bondu, O; Brochet, S; Bruno, G; Caputo, C; Caudron, A; David, P; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Piotrzkowski, K; Quertenmont, L; Saggio, A; Vidal Marono, M; Wertz, S; Zobec, J; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Coelho, E; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Melo De Almeida, M; Mora Herrera, C; Mundim, L; Nogima, H; Sanchez Rosas, L J; Santoro, A; Sznajder, A; Thiel, M; Tonelli Manganote, E J; Torres Da Silva De Araujo, F; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Tomei, T R Fernandez Perez; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Misheva, M; Rodozov, M; Shopova, M; Sultanov, G; Dimitrov, A; Litov, L; Pavlov, B; Petkov, P; Fang, W; Gao, X; Yuan, L; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Jiang, C H; Leggat, D; Liao, H; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Yazgan, E; Zhang, H; Zhang, S; Zhao, J; Ban, Y; Chen, G; Li, J; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Zhang, F; Wang, Y; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; González Hernández, C F; Ruiz Alvarez, J D; Segura Delgado, M A; Courbon, B; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Starodumov, A; Susa, T; Ather, M W; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Assran, Y; Elgammal, S; Mahrous, A; Dewanjee, R K; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Kirschenmann, H; Pekkanen, J; Voutilainen, M; Havukainen, J; Heikkilä, J K; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Laurila, S; Lehti, S; Lindén, T; Luukka, P; Siikonen, H; Tuominen, E; Tuominiemi, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Faure, J L; Ferri, F; Ganjour, S; Ghosh, S; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Leloup, C; Locci, E; Machet, M; Malcles, J; Negro, G; Rander, J; Rosowsky, A; Sahin, M Ö; Titov, M; Abdulsalam, A; Amendola, C; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Charlot, C; Granier de Cassagnac, R; Jo, M; Lisniak, S; Lobanov, A; Martin Blanco, J; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Salerno, R; Sauvan, J B; Sirois, Y; Stahl Leiton, A G; Strebler, T; Yilmaz, Y; Zabi, A; Zghiche, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Jansová, M; Le Bihan, A-C; Tonon, N; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Finco, L; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sordini, V; Vander Donckt, M; Viret, S; Toriashvili, T; Bagaturia, I; Autermann, C; Feld, L; Kiesel, M K; Klein, K; Lipinski, M; Preuten, M; Schomakers, C; Schulz, J; Teroerde, M; Zhukov, V; Albert, A; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Teyssier, D; Thüer, S; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bermúdez Martínez, A; Bin Anuar, A A; Borras, K; Botta, V; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Grados Luyando, J M; Grohsjean, A; Gunnellini, P; Guthoff, M; Harb, A; Hauk, J; Hempel, M; Jung, H; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Lenz, T; Leonard, J; Lipka, K; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Raspereza, A; Savitskyi, M; Saxena, P; Shevchenko, R; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wen, Y; Wichmann, K; Wissing, C; Zenaiev, O; Aggleton, R; Bein, S; Blobel, V; Centis Vignali, M; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hinzmann, A; Hoffmann, M; Karavdina, A; Klanner, R; Kogler, R; Kovalchuk, N; Kurz, S; Lapsien, T; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Sonneveld, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baselga, M; Baur, S; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Faltermann, N; Freund, B; Friese, R; Giffels, M; Harrendorf, M A; Hartmann, F; Heindl, S M; Husemann, U; Kassel, F; Kudella, S; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Karathanasis, G; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Kousouris, K; Evangelou, I; Foudas, C; Gianneios, P; Katsoulis, P; Kokkas, P; Mallios, S; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Triantis, F A; Tsitsonis, D; Csanad, M; Filipovic, N; Pasztor, G; Surányi, O; Veres, G I; Bencze, G; Hajdu, C; Horvath, D; Hunyadi, Á; Sikler, F; Veszpremi, V; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Komaragiri, J R; Bahinipati, S; Bhowmik, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Dhingra, N; Kaur, A; Kaur, M; Kaur, S; Kumar, R; Kumari, P; Mehta, A; Singh, J B; Walia, G; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A; Chauhan, S; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, R; Bhardwaj, R; Bhattacharya, R; Bhattacharya, S; Bhawandeep, U; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Mahakud, B; Mitra, S; Mohanty, G B; Sur, N; Sutar, B; Banerjee, S; Bhattacharya, S; Chatterjee, S; Das, P; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Errico, F; Fiore, L; Iaselli, G; Lezki, S; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Borgonovi, L; Braibant-Giacomelli, S; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Chatterjee, K; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Russo, L; Sguazzoni, G; Strom, D; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Ravera, F; Robutti, E; Tosi, S; Benaglia, A; Beschi, A; Brianza, L; Brivio, F; Ciriolo, V; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pauwels, K; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Fienga, F; Iorio, A O M; Khan, W A; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pozzobon, N; Ronchese, P; Rossin, R; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Ressegotti, M; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Cecchi, C; Ciangottini, D; Fanò, L; Leonardi, R; Manoni, E; Mantovani, G; Mariani, V; Menichelli, M; Rossi, A; Santocchia, A; Spiga, D; Androsov, K; Azzurri, P; Bagliesi, G; Boccali, T; Borrello, L; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fedi, G; Giannini, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Manca, E; Mandorli, G; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Daci, N; Del Re, D; Di Marco, E; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, J; Lee, S; Lee, S W; Moon, C S; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Moon, D H; Oh, G; Brochero Cifuentes, J A; Goh, J; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Kim, J S; Lee, H; Lee, K; Nam, K; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Kim, H; Kim, J H; Lee, J S H; Park, I C; Choi, Y; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Reyes-Almanza, R; Ramirez-Sanchez, G; Duran-Osuna, M C; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Rabadan-Trejo, R I; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Eysermans, J; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Pyskir, A; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Galinhas, B; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Seixas, J; Strong, G; Toldaiev, O; Vadruccio, D; Varela, J; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sosnov, D; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Stepennov, A; Toms, M; Vlasov, E; Zhokin, A; Aushev, T; Bylinkin, A; Chistov, R; Danilov, M; Parygin, P; Philippov, D; Polikarpov, S; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Godizov, A; Kachanov, V; Kalinin, A; Konstantinov, D; Mandrik, P; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Bachiller, I; Barrio Luna, M; Cerrada, M; Colino, N; De La Cruz, B; Delgado Peris, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Moran, D; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Álvarez Fernández, A; Albajar, C; de Trocóniz, J F; Missiroli, M; Cuevas, J; Erice, C; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Vischia, P; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chazin Quero, B; Curras, E; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Martinez Ruiz Del Arbol, P; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Akgun, B; Auffray, E; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Bianco, M; Bloch, P; Bocci, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; Chapon, E; Chen, Y; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Deelen, N; Dobson, M; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Everaerts, P; Fallavollita, F; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gilbert, A; Gill, K; Glege, F; Gulhan, D; Harris, P; Hegeman, J; Innocente, V; Jafari, A; Janot, P; Karacheban, O; Kieseler, J; Knünz, V; Kornmayer, A; Kortelainen, M J; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Mulders, M; Neugebauer, H; Ngadiuba, J; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Rabady, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Selvaggi, M; Sharma, A; Silva, P; Sphicas, P; Stakia, A; Steggemann, J; Stoye, M; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Verweij, M; Zeuner, W D; Bertl, W; Caminada, L; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Wiederkehr, S A; Backhaus, M; Bäni, L; Berger, P; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Dorfer, C; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Klijnsma, T; Lustermann, W; Mangano, B; Marionneau, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Reichmann, M; Sanz Becerra, D A; Schönenberger, M; Shchutska, L; Tavolaro, V R; Theofilatos, K; Vesterbacka Olsson, M L; Wallny, R; Zhu, D H; Aarrestad, T K; Amsler, C; Canelli, M F; De Cosa, A; Del Burgo, R; Donato, S; Galloni, C; Hreus, T; Kilminster, B; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Schweiger, K; Seitz, C; Takahashi, Y; Zucchetta, A; Candelise, V; Chang, Y H; Cheng, K Y; Doan, T H; Jain, Sh; Khurana, R; Kuo, C M; Lin, W; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chao, Y; Chen, K F; Chen, P H; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Paganis, E; Psallidas, A; Steen, A; Tsai, J F; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Bat, A; Boran, F; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Tok, U G; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Karapinar, G; Ocalan, K; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Tekten, S; Yetkin, E A; Agaras, M N; Atay, S; Cakir, A; Cankocak, K; Köseoglu, I; Grynyov, B; Levchuk, L; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Davignon, O; Flacher, H; Goldstein, J; Heath, G P; Heath, H F; Kreczko, L; Newbold, D M; Paramesvaran, S; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Linacre, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Auzinger, G; Bainbridge, R; Borg, J; Breeze, S; Buchmuller, O; Bundock, A; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Elwood, A; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Matsushita, T; Nash, J; Nikitenko, A; Palladino, V; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Scott, E; Seez, C; Shtipliyski, A; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wardle, N; Winterbottom, D; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Reid, I D; Teodorescu, L; Zahid, S; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Smith, C; Bartek, R; Dominguez, A; Buccilli, A; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Cutts, D; Garabedian, A; Hadley, M; Hakala, J; Heintz, U; Hogan, J M; Kwok, K H M; Laird, E; Landsberg, G; Lee, J; Mao, Z; Narain, M; Pazzini, J; Piperov, S; Sagir, S; Syarif, R; Yu, D; Band, R; Brainerd, C; Burns, D; Calderon De La Barca Sanchez, M; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Shi, M; Smith, J; Stolp, D; Tos, K; Tripathi, M; Wang, Z; Bachtis, M; Bravo, C; Cousins, R; Dasgupta, A; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Regnard, S; Saltzberg, D; Schnaible, C; Valuev, V; Bouvier, E; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Karapostoli, G; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Si, W; Wang, L; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cittolin, S; Derdzinski, M; Gerosa, R; Gilbert, D; Hashemi, B; Holzner, A; Klein, D; Kole, G; Krutelyov, V; Letts, J; Masciovecchio, M; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Tadel, M; Vartak, A; Wasserbaech, S; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; Gouskos, L; Heller, R; Incandela, J; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Bornheim, A; Lawhorn, J M; Newman, H B; Nguyen, T Q; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhang, Z; Zhu, R Y; Andrews, M B; Ferguson, T; Mudholkar, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Leontsinis, S; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Patterson, J R; Quach, D; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Abdullin, S; Albrow, M; Alyari, M; Apollinari, G; Apresyan, A; Apyan, A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Canepa, A; Cerati, G B; Cheung, H W K; Chlebana, F; Cremonesi, M; Duarte, J; Elvira, V D; Freeman, J; Gecse, Z; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lincoln, D; Lipton, R; Liu, M; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Schneider, B; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strait, J; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Field, R D; Furic, I K; Gleyzer, S V; Joshi, B M; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Shi, K; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Joshi, Y R; Linn, S; Markowitz, P; Rodriguez, J L; Ackert, A; Adams, T; Askew, A; Hagopian, S; Hagopian, V; Johnson, K F; Kolberg, T; Martinez, G; Perry, T; Prosper, H; Saha, A; Santra, A; Sharma, V; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Cavanaugh, R; Chen, X; Evdokimov, O; Gerber, C E; Hangal, D A; Hofman, D J; Jung, K; Kamin, J; Sandoval Gonzalez, I D; Tonjes, M B; Trauger, H; Varelas, N; Wang, H; Wu, Z; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Roskes, J; Sarica, U; Swartz, M; Xiao, M; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Castle, J; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Rogan, C; Royon, C; Sanders, S; Schmitz, E; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Rebassoo, F; Wright, D; Baden, A; Baron, O; Belloni, A; Eno, S C; Feng, Y; Ferraioli, C; Hadley, N J; Jabeen, S; Jeng, G Y; Kellogg, R G; Kunkle, J; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonwar, S C; Abercrombie, D; Allen, B; Azzolini, V; Barbieri, R; Baty, A; Bi, R; Brandt, S; Busza, W; Cali, I A; D'Alfonso, M; Demiragli, Z; Gomez Ceballos, G; Goncharov, M; Hsu, D; Hu, M; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Tatar, K; Velicanu, D; Wang, J; Wang, T W; Wyslouch, B; Benvenuti, A C; Chatterjee, R M; Evans, A; Hansen, P; Hiltbrand, J; Kalafut, S; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Turkewitz, J; Wadud, M A; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Claes, D R; Fangmeier, C; Golf, F; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Dolen, J; Godshalk, A; Harrington, C; Iashvili, I; Nguyen, D; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Freer, C; Hortiangtham, A; Massironi, A; Morse, D M; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wamorkar, T; Wang, B; Wisecarver, A; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Mucia, N; Odell, N; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Bucci, R; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Li, W; Loukas, N; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Siddireddy, P; Smith, G; Taroni, S; Wayne, M; Wightman, A; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Ji, W; Liu, B; Luo, W; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Higginbotham, S; Kalogeropoulos, A; Lange, D; Luo, J; Marlow, D; Mei, K; Ojalvo, I; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Malik, S; Norberg, S; Barker, A; Barnes, V E; Das, S; Folgueras, S; Gutay, L; Jones, M; Jung, A W; Khatiwada, A; Miller, D H; Neumeister, N; Peng, C C; Qiu, H; Schulte, J F; Sun, J; Wang, F; Xiao, R; Xie, W; Cheng, T; Parashar, N; Stupak, J; Chen, Z; Ecklund, K M; Freed, S; Geurts, F J M; Guilbaud, M; Kilpatrick, M; Li, W; Michlin, B; Padley, B P; Roberts, J; Rorie, J; Shi, W; Tu, Z; Zabel, J; Zhang, A; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Ciesielski, R; Goulianos, K; Mesropian, C; Agapitos, A; Chou, J P; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Montalvo, R; Nash, K; Osherson, M; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Damgov, J; De Guio, F; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Mengke, T; Muthumuni, S; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Padeken, K; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Hirosky, R; Joyce, M; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Wang, Y; Wolfe, E; Xia, F; Harr, R; Karchin, P E; Poudyal, N; Sturdy, J; Thapa, P; Zaleski, S; Brodski, M; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Hussain, U; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N

    2017-12-15

    The first observation of top quark production in proton-nucleus collisions is reported using proton-lead data collected by the CMS experiment at the CERN LHC at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=8.16  TeV. The measurement is performed using events with exactly one isolated electron or muon candidate and at least four jets. The data sample corresponds to an integrated luminosity of 174  nb^{-1}. The significance of the tt[over ¯] signal against the background-only hypothesis is above 5 standard deviations. The measured cross section is σ_{tt[over ¯]}=45±8  nb, consistent with predictions from perturbative quantum chromodynamics.

  17. A novel muon detector for borehole density tomography

    DOE PAGES

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared; ...

    2017-02-01

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable imaging of density structure to monitor small changes in densitymore » – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. Testing and measurements using a prototype detector in the laboratory and shallow underground laboratory demonstrated robust response. Lastly, a satisfactory comparison with a large drift tube-based muon detector is also presented.« less

  18. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  19. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; ...

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  20. Simulation studies of muon-produced background events deep underground and consequences for double beta decay experiments

    NASA Astrophysics Data System (ADS)

    Massarczyk, Ralph; Majorana Collaboration

    2015-10-01

    Cosmic radiation creates a significant background for low count rate experiments. The Majorana demonstrator experiment is located at the Sanford Underground Research Facility at a depth of 4850ft below the surface but it can still be penetrated by cosmic muons with initial energies above the TeV range. The interaction of muons with the rock, the shielding material in the lab and the detector itself can produce showers of secondary particles, like fast neutrons, which are able to travel through shielding material and can produce high-energy γ-rays via capture or inelastic scattering. The energy deposition of these γ rays in the detector can overlap with energy region of interest for the neutrino-less double beta decay. Recent studies for cosmic muons penetrating the Majorana demonstrator are made with the Geant4 code. The results of these simulations will be presented in this talk and an overview of the interaction of the shower particles with the detector, shielding and veto system will be given. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility. Supported by U.S. Department of Energy through the LANL/LDRD Program.

  1. Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.

    2014-11-01

    Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.

  2. Precison Muon Physics

    NASA Astrophysics Data System (ADS)

    Hertzog, David

    2013-04-01

    The worldwide, vibrant experimental program involving precision measurements with muons will be presented. Recent achievements in this field have greatly improved our knowledge of fundamental parameters: Fermi constant (lifetime), weak-nucleon pseudoscalar coupling (μp capture), Michel decay parameters, and the proton charged radius (Lamb shift). The charged-lepton-violating decay μ->eγ sets new physics limits. Updated Standard Model theory evaluations of the muon anomalous magnetic moment has increased the significance beyond 3 σ for the deviation with respect to experiment. Next-generation experiments are mounting, with ambitious sensitivity goals for the muon-to-electron search approaching 10-17 sensitivity and for a 0.14 ppm determination of g-2. The broad physics reach of these efforts involves atomic, nuclear and particle physics communities. I will select from recent work and outline the most important efforts that are in preparation.

  3. SIMULATED PERFORMANCE OF THE PRODUCTION TARGET FOR THE MUON G-2 EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, D.; Convery, M.; Morgan, J. P.

    The Muon g-2 Experiment plans to use the Fermilab Re-cycler Ring for forming the proton bunches that hit its pro-duction target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.

  4. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  5. Next Generation Muon g-2 Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzog, David W.

    2015-12-02

    I report on the progress of two new muon anomalous magnetic moment experiments, which are in advanced design and construction phases. The goal of Fermilab E989 is to reduce the experimental uncertainty ofmore » $$a_\\mu$$ from Brookhaven E821 by a factor of 4; that is, $$\\delta a_\\mu \\sim 16 \\times 10^{-11}$$, a relative uncertainty of 140~ppb. The method follows the same magic-momentum storage ring concept used at BNL, and pioneered previously at CERN, but muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or upgraded significantly. In contrast, J-PARC E34 will employ a novel approach based on injection of an ultra-cold, low-energy, muon beam injected into a small, but highly uniform magnet. Only a small magnetic focusing field is needed to maintain storage, which distinguishes it from CERN, BNL and Fermilab. E34 aims to roughly match the previous BNL precision in their Phase~1 installation.« less

  6. Applications of Cosmic Muon Tracking at Shallow Depth Underground

    NASA Astrophysics Data System (ADS)

    Oláh, L.; Barnaföldi, G. G.; Hamar, G.; Melegh, H. G.; Surányi, G.; Varga, D.

    2014-06-01

    A portable cosmic muon telescope has been developed for environmental and geophysical applications, as well as cosmic background measurements for nuclear research in underground labs by the REGARD group (Wigner RCP of the HAS and Eötvös Loránd University collaboration on gaseous detector R&D). The modular, low power consuming (5 W) Close Cathode Chamber-based tracking system has 10 mrad angular resolution with its sensitive area of 0.1 m2. The angular distribution of cosmic muons has been measured at shallow depth underground (< 70 meter-rock-equivalent) in four different remote locations. Application of cosmic muon detection for the reconstruction of underground caverns and building structures are demonstrated by the measurements.

  7. Muon simulation codes MUSIC and MUSUN for underground physics

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, V. A.

    2009-03-01

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  8. Superscaling in electron-nucleus scattering and its link to CC and NC QE neutrino-nucleus scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbaro, M. B.; Amaro, J. E.; Caballero, J. A.

    2015-05-15

    The superscaling approach (SuSA) to neutrino-nucleus scattering, based on the assumed universality of the scaling function for electromagnetic and weak interactions, is reviewed. The predictions of the SuSA model for bot CC and NC differential and total cross sections are presented and compared with the MiniBooNE data. The role of scaling violations, in particular the contribution of meson exchange currents in the two-particle two-hole sector, is explored.

  9. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Stratakis, D.; Palmer, M.

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν more » $$\\bar{e}$$) and ν $$\\bar{μ}$$) (ν μ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent« less

  10. Muon imaging of volcanoes with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  11. Using Time Evolution of the Bunch Structure to Extract the Muon Momentum Distribution in the Fermilab Muon g-2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, W.; Quinn, B.; Crnkovic, J. D.

    Beam dynamics plays an important role in achieving the unprecedented precision on measurement of the muon anomalous magnetic moment in the Fermilab Muon g-2 Experiment. It needs to find the muon momentum distribution in the storage ring in order to evaluate the electric field correction to muon anomalous precession frequency. We will show how to use time evolution of the beam bunch structure to extract the muon momentum distribution by applying a fast rotation analysis on the decay electron signals.

  12. An extensive air shower trigger station for the Muon Portal detector

    NASA Astrophysics Data System (ADS)

    Riggi, F.; Blancato, A. A.; La Rocca, P.; Riggi, S.; Santagati, G.

    2014-11-01

    The Muon Portal project ( [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m2), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup.

  13. Feasibility study of archaeological structures scanning by muon tomography

    NASA Astrophysics Data System (ADS)

    Gómez, H.; Carloganu, C.; Gibert, D.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A.

    2015-08-01

    One of the main concerns in archaeology is to find of a method to study precisely archaeological structures in the least invasive way possible to avoid damage. The requirement of preserving the structures integrity prevents, in the case of pyramids or tumuli, the study of any internal structure (halls or tombs) which are not reachable by existing corridors. One non-invasive method is the muon tomography. By placing a detector which allows to register the muon direction after the structure, it is possible to have an idea of its composition based on the attenuation of the muon flux, which depends on the material length and density that muons have crossed. This technique, alone or together with other exploration techniques as seismic tomography or electrical resistivity tomography, can provide useful information about the internal structure of the archaeological form that can not be obtained by conventional archaeological methods. In this work, the time measurement necessary to obtain a significant result about the composition of an archaeological structure is estimated. To do that, a Monte Carlo simulation framework based on the MUSIC software, properly tuned for this study, has been developed. The particular case of the Kastas Amfipoli Macedonian tumulus has been considered to perform the simulations.

  14. Helical Channel Design and Technology for Cooling of Muon Beams

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  15. The Muon Ionization Cooling Experiment User Software

    NASA Astrophysics Data System (ADS)

    Dobbs, A.; Rajaram, D.; MICE Collaboration

    2017-10-01

    The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.

  16. Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, J. S.; McKenzie, I.; Baker, P. J.

    2011-07-15

    The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

  17. Exclusive muon neutrino charged current pion-less topologies. ArgoNeuT results and future prospects in LAr TPC detectors

    DOE PAGES

    Palamara, Ornella

    2016-12-29

    Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less

  18. Muon motion in titanium hydride

    NASA Technical Reports Server (NTRS)

    Kempton, J. R.; Petzinger, K. G.; Kossler, W. J.; Schone, H. E.; Hitti, B. S.; Stronach, C. E.; Adu, N.; Lankford, W. F.; Reilly, J. J.; Seymour, E. F. W.

    1988-01-01

    Motional narrowing of the transverse-field muon spin rotation signal was observed in gamma-TiH(x) for x = 1.83, 1.97, and 1.99. An analysis of the data for TiH1.99 near room temperature indicates that the mechanism responsible for the motion of the muon out of the octahedral site is thermally activated diffusion with an attempt frequency comparable to the optical vibrations of the lattice. Monte Carlo calculations to simulate the effect of muon and proton motion upon the muon field-correlation time were used to interpret the motional narrowing in TiH1.97 near 500 K. The interpretation is dependent upon whether the Bloembergen, Purcell, and Pound (BPP) theory or an independent spin-pair relaxation model is used to obtain the vacancy jump rate from proton NMR T1 measurements. Use of BPP theory shows that the field-correction time can be obtained if the rate of motion of the muon with respect to the rate of the motion for the protons is decreased. An independent spin-pair relaxation model indicates that the field-correlation time can be obtained if the rate of motion for the nearest-neighbor protons is decreased.

  19. Fukushima Daiichi Muon Imaging

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo

    2015-10-01

    Japanese government announced cold-shutdown condition of the reactors at Fukushima Daiichi by the end of 2011, and mid- and long-term roadmap towards decommissioning has been drawn. However, little is known for the conditions of the cores because access to the reactors has been limited by the high radiation environment. The debris removal from the Unit 1 - 3 is planned to start as early as 2020, but the dismantlement is not easy without any realistic information of the damage to the cores, and the locations and amounts of the fuel debris. Soon after the disaster of Fukushima Daiichi, several teams in the US and Japan proposed to apply muon transmission or scattering imagings to provide information of the Fukushima Daiichi reactors without accessing inside the reactor building. GEANT4 modeling studies of Fukushima Daiichi Unit 1 and 2 showed clear superiority of the muon scattering method over conventional transmission method. The scattering method was demonstrated with a research reactor, Toshiba Nuclear Critical Assembly (NCA), where a fuel assembly was imaged with 3-cm resolution. The muon scattering imaging of Fukushima Daiichi was approved as a national project and is aiming at installing muon trackers to Unit 2. A proposed plan includes installation of muon trackers on the 2nd floor (operation floor) of turbine building, and in front of the reactor building. Two 7mx7m detectors were assembled at Toshiba and tested.

  20. Muon detector for the COSINE-100 experiment

    NASA Astrophysics Data System (ADS)

    Prihtiadi, H.; Adhikari, G.; Adhikari, P.; Barbosa de Souza, E.; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W.; Kang, W. G.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.

    2018-02-01

    The COSINE-100 dark matter search experiment has started taking physics data with the goal of performing an independent measurement of the annual modulation signal observed by DAMA/LIBRA. A muon detector was constructed by using plastic scintillator panels in the outermost layer of the shield surrounding the COSINE-100 detector. It detects cosmic ray muons in order to understand the impact of the muon annual modulation on dark matter analysis. Assembly and initial performance tests of each module have been performed at a ground laboratory. The installation of the detector in the Yangyang Underground Laboratory (Y2L) was completed in the summer of 2016. Using three months of data, the muon underground flux was measured to be 328 ± 1(stat.)± 10(syst.) muons/m2/day. In this report, the assembly of the muon detector and the results from the analysis are presented.

  1. Measurement of the Muon Content of Air Showers with IceTop

    NASA Astrophysics Data System (ADS)

    Gonzalez, JG; IceCube Collaboration

    2016-05-01

    IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.

  2. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  3. Design of a 6 TeV muon collider

    DOE PAGES

    Wang, M-H.; Nosochkov, Y.; Cai, Y.; ...

    2016-09-09

    Here, a preliminary design of a muon collider ring with the center of mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and themore » $$\\beta$$ functions at collision point are 1 cm in each plane. The ring linear optics, the non-linear chromaticity compensation in the Interaction Region (IR), and the additional non-linear orthogonal correcting knobs are described. Magnet specifications are based on the maximum pole-tip field of 20T in dipoles and 15T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provide a sufficiently large dynamic aperture for the momentum range of up to $$\\pm$$0.5% without considering magnet errors.« less

  4. The processed isoform of the translation termination factor eRF3 localizes to the nucleus to interact with the ARF tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Yoshifumi; Kumagai, Naomichi; Hosoda, Nao

    2014-03-14

    Highlights: • So far, eRF3 has been thought to function exclusively in the cytoplasm. • eRF3 is a nucleo-cutoplasmic shuttling protein. • eRF3 has a leptomycin-sensitive nuclear export signal (NES). • Removal of NES by proteolytic cleavage allows eRF3 to translocate to the nucleus. • The processed eRF3 (p-eRF3) interacts with a nuclear tumor suppressor ARF. - Abstract: The eukaryotic releasing factor eRF3 is a multifunctional protein that plays pivotal roles in translation termination as well as the initiation of mRNA decay. eRF3 also functions in the regulation of apoptosis; eRF3 is cleaved at Ala73 by an as yet unidentifiedmore » protease into processed isoform of eRF3 (p-eRF3), which interacts with the inhibitors of apoptosis proteins (IAPs). The binding of p-eRF3 with IAPs leads to the release of active caspases from IAPs, which promotes apoptosis. Although full-length eRF3 is localized exclusively in the cytoplasm, p-eRF3 localizes in the nucleus as well as the cytoplasm. We here focused on the role of p-eRF3 in the nucleus. We identified leptomycin-sensitive nuclear export signal (NES) at amino acid residues 61–71 immediately upstream of the cleavage site Ala73. Thus, the proteolytic cleavage of eRF3 into p-eRF3 leads to release an amino-terminal fragment containing NES to allow the relocalization of eRF3 into the nucleus. Consistent with this, p-eRF3 more strongly interacted with the nuclear ARF tumor suppressor than full-length eRF3. These results suggest that while p-eRF3 interacts with IAPs to promote apoptosis in the cytoplasm, p-eRF3 also has some roles in regulating cell death in the nucleus.« less

  5. Local spin structure of the α -RuCl3 honeycomb-lattice magnet observed via muon spin rotation/relaxation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Ichihiro; Hiraishi, Masatoshi; Okabe, Hirotaka; Takeshita, Soshi; Koda, Akihiro; Kojima, Kenji M.; Kadono, Ryosuke; Tanaka, Hidekazu

    2018-04-01

    We report a muon spin rotation/relaxation (μ SR ) study of single-crystalline samples of the α -RuCl3 honeycomb magnet, which is presumed to be a model compound for the Kitaev-Heisenberg interaction. It is inferred from magnetic susceptibility and specific-heat measurements that the present samples exhibit successive magnetic transitions at different critical temperatures TN with decreasing temperature, eventually falling into the TN=7 K antiferromagnetic (7 K) phase that has been observed in only single-crystalline specimens with the least stacking fault. Via μ SR measurements conducted under a zero external field, we show that such behavior originates from a phase separation induced by the honeycomb plane stacking fault, yielding multiple domains with different TN's. We also perform μ SR measurements under a transverse field in the paramagnetic phase to identify the muon site from the muon-Ru hyperfine parameters. Based on a comparison of the experimental and calculated internal fields at the muon site for the two possible spin structures inferred from neutron diffraction data, we suggest a modulated zigzag spin structure for the 7 K phase, with the amplitude of the ordered magnetic moment being significantly reduced from that expected for the orbital quenched spin-1/2 state.

  6. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m < R < 2150 m and 3.24 ± 0.40 at 2850 m < R < 3280 m. The difference in the charge density between the data and the MC is larger at the higher muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  7. An Educational MONTE CARLO Simulation/Animation Program for the Cosmic Rays Muons and a Prototype Computer-Driven Hardware Display.

    ERIC Educational Resources Information Center

    Kalkanis, G.; Sarris, M. M.

    1999-01-01

    Describes an educational software program for the study of and detection methods for the cosmic ray muons passing through several light transparent materials (i.e., water, air, etc.). Simulates muons and Cherenkov photons' paths and interactions and visualizes/animates them on the computer screen using Monte Carlo methods/techniques which employ…

  8. Wavelet analysis of particle density functions in nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Manna, S. K.; Haldar, P. K.; Mali, P.; Mukhopadhyay, A.; Singh, G.

    A continuous wavelet analysis is performed for pattern recognition of the pseudorapidity density profile of singly charged particles produced in 16O+Ag/Br and 32S+Ag/Br interactions, each at an incident energy of 200 GeV per nucleon in the laboratory system. The experiments are compared with a model prediction based on the ultra-relativistic quantum molecular dynamics (UrQMD). To eliminate the contribution coming from known source(s) of particle cluster formation like Bose-Einstein correlation (BEC), the UrQMD output is modified by “an algorithm that mimics the BEC as an after burner.” We observe that for both interactions particle clusters are found at same pseudorapidity locations at all scales. However, the cluster locations in the 16O+Ag/Br interaction are different from those found in the 32S+Ag/Br interaction. Significant differences between experiments and simulations are revealed in the wavelet pseudorapidity spectra that can be interpreted as the preferred pseudorapidity values and/or scales of the pseudorapidity interval at which clusters of particles are formed. The observed discrepancy between experiment and corresponding simulation should therefore be interpreted in terms of some kind of nontrivial dynamics of multiparticle production.

  9. Construction and performance of a silicon photomultiplier/extruded scintillator tail-catcher and muon-tracker

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Bilki, B.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Boona, S.; Chakraborty, D.; Dyshkant, A.; Hedin, D.; Lima, J. G. R.; Powell, J.; Rykalin, V.; Scurti, N.; Smith, M.; Tran, N.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Dietrich, J.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Marchesini, I.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Uozumi, S.; Dauncey, P. D.; Magnan, A.-M.; Bartsch, V.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Frey, A.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.

    2012-04-01

    A prototype module for an International Linear Collider (ILC) detector was built, installed, and tested between 2006 and 2009 at CERN and Fermilab as part of the CALICE test beam program, in order to study the possibilities of extending energy sampling behind a hadronic calorimeter and to study the possibilities of providing muon tracking. The ``tail catcher/muon tracker'' (TCMT) is composed of 320 extruded scintillator strips (dimensions 1000 × 50 × 5 mm3) packaged in 16 one-meter square planes interleaved between steel plates. The scintillator strips were read out with wavelength shifting fibers and silicon photomultipliers. The planes were arranged with alternating horizontal and vertical strip orientations. Data were collected for muons and pions in the energy range 6 GeV to 80 GeV. Utilizing data taken in 2006, this paper describes the design and construction of the TCMT, performance characteristics, and a beam-based evaluation of the ability of the TCMT to improve hadronic energy resolution in a prototype ILC detector. For a typical configuration of an ILC detector with a coil situated outside a calorimeter system with a thickness of 5.5 nuclear interaction lengths, a TCMT would improve relative energy resolution by 6-16% for pions between 20 and 80 GeV.

  10. Progress of the Charged Pion Semi-Inclusive Neutrino Charged Current Cross Section in NOvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsaris, Aristeidis

    2017-10-09

    The NOvA experiment is a long-baseline neutrino oscillation experiment designed to measure the rates of electron neutrino appearance and muon neutrino disappearance. The NOvA near detector is located at Fermilab, 800 m from the primary target and provides an excellent platform to measure and study neutrino-nucleus interactions. We present the status of the measurement of the double differential cross section with respect to muon kinematics for interactions involving charged pions in the final state,more » $$\

  11. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  12. Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids

    NASA Technical Reports Server (NTRS)

    Coleman, Max; Kudryavtsev, Vitaly A.; Spooner, Neil J.; Fung, Cora; Gluyas, John

    2013-01-01

    Muon tomography has been used to seek hidden chambers in Egyptian pyramids and image subsurface features in volcanoes. It seemed likely that it could be used to image injected, supercritical carbon dioxide as it is emplaced in porous geological structures being used for carbon sequestration, and also to check on subsequent leakage. It should work equally well in any other application where there are two fluids of different densities, such as water and oil, or carbon dioxide and heavy oil in oil reservoirs. Continuous monitoring of movement of oil and/or flood fluid during enhanced oil recovery activities for managing injection is important for economic reasons. Checking on leakage for geological carbon storage is essential both for safety and for economic purposes. Current technology (for example, repeat 3D seismic surveys) is expensive and episodic. Muons are generated by high- energy cosmic rays resulting from supernova explosions, and interact with gas molecules in the atmosphere. This innovation has produced a theoretical model of muon attenuation in the thickness of rock above and within a typical sandstone reservoir at a depth of between 1.00 and 1.25 km. Because this first simulation was focused on carbon sequestration, the innovators chose depths sufficient for the pressure there to ensure that the carbon dioxide would be supercritical. This innovation demonstrates for the first time the feasibility of using the natural cosmic-ray muon flux to generate continuous tomographic images of carbon dioxide in a storage site. The muon flux is attenuated to an extent dependent on, amongst other things, the density of the materials through which it passes. The density of supercritical carbon dioxide is only three quarters that of the brine in the reservoir that it displaces. The first realistic simulations indicate that changes as small as 0.4% in the storage site bulk density could be detected (equivalent to 7% of the porosity, in this specific case). The initial

  13. Muon imaging: Principles, technologies and applications

    NASA Astrophysics Data System (ADS)

    Procureur, S.

    2018-01-01

    During the last 15 years muon-based imaging, or muography, has experienced an impressive development and has found applications in many different fields requiring penetrating probes. Structures of very different sizes and densities can be imaged thanks to the various implementations it offers: either in absorption/transmission or in deviation modes, not to mention the muon metrology for monitoring. The goal of this paper is to give an overview of the main principles of the muography, as well as the technologies employed nowadays and its current and potential applications. Considering the amount of studies dedicated to muography and the number of projects conducted in the last decade, this review focuses on the fields which are the most representative of the muography capabilities.

  14. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  15. Measuring the energy deposited by muon bundles of inclined EAS in the NEVOD-DECOR experiment

    NASA Astrophysics Data System (ADS)

    Kokoulin, R. P.; Bogdanov, A. G.; Barbashina, N. S.; Dushkin, L. I.; Kindin, V. V.; Kompaniets, K. G.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Trinchero, G.; Khomyakov, V. A.; Khokhlov, S. S.; Chernov, D. V.; Shutenko, V. V.; Yurina, E. A.; Yashin, I. I.

    2018-01-01

    As part of an in-depth investigation of the muon excess observed in ultrahigh-energy cosmic rays, one needs to measure the energy characteristics of muon component of extensive air showers (EAS). The mean muon energy can be estimated from the energy deposited in the detector by the muon bundles. In the NEVOD-DECOR experiment, the local muon density and the shower-arrival direction are measured with a track-coordinate detector, and the deposited energy is measured in the Cherenkov calorimeter. The results of the measurements carried out in 17400 h of detector operation are compared with those of the simulation based on the CORSIKA package.

  16. Candidate muon-probe sites in oxide superconductors

    NASA Astrophysics Data System (ADS)

    Dawson, W. K.; Tibbs, K.; Weathersby, S. P.; Boekema, C.; Chan, K.-C. B.

    1988-11-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa2Cu3O(x) (x equal to about 7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation data of these exciting oxides, and are compared to H-oxide and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites.

  17. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    NASA Astrophysics Data System (ADS)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  18. Slit identification for a uranium slab using a binary classifier based on cosmic-ray muon scattering

    NASA Astrophysics Data System (ADS)

    Xiao, S.; He, W.; Chen, Y.; Dang, X.; Wu, L.; Shuai, M.

    2017-12-01

    Traditional muon tomographic method has been fraught with difficulty when it is applied to identify some defective high-Z objects or other complicated structures, since it usually gets into trouble when attempting to produce a precise three-dimensional image for such objects. In this paper, we present a binary classifier based on cosmic-ray muon scattering to identify the slit potentially located in a uranium slab. The superiority of this classifier is established by steering clear of the stubborn imaging procedure necessary for the conventional methods. Simulation results demonstrate its capability to spot a horizontal or vertical slit with a reasonable exposure time. The minimum width of a spotted slit is on the level of millimeters or even sub-millimeters. Therefore, this technique will be prospective in terms of monitoring the long-term status of nuclear storage and facilities in real life.

  19. A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Mahon, D. F.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2013-12-01

    Cosmic-ray muons are highly penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. A prototype scintillating-fibre detector has been developed for this application, consisting of two tracking modules above and below the volume to be assayed. Each module comprises two orthogonal planes of 2 mm fibres. The modular configuration allows the reconstruction of the initial and scattered muon trajectories which enable the container content, with respect to atomic number Z, to be determined. Fibre signals are read out by Hamamatsu H8500 MAPMTs with two fibres coupled to each pixel via dedicated pairing schemes developed to avoid space point ambiguities and retain the high spatial resolution of the fibres. A likelihood-based image reconstruction algorithm was developed and tested using a GEANT4 simulation of the prototype system. Images reconstructed from this simulation are presented in comparison with experimental results taken with test objects. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  20. Cosmic ray muons for spent nuclear fuel monitoring

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  1. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry

    PubMed Central

    Castro, Daniel C.; Cole, Shannon L.; Berridge, Kent C.

    2015-01-01

    The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards. PMID:26124708

  2. High pressure research using muons at the Paul Scherrer Institute

    NASA Astrophysics Data System (ADS)

    Khasanov, R.; Guguchia, Z.; Maisuradze, A.; Andreica, D.; Elender, M.; Raselli, A.; Shermadini, Z.; Goko, T.; Knecht, F.; Morenzoni, E.; Amato, A.

    2016-04-01

    Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (μSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform μSR experiments under pressure, introduce the high pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the μSR technique with pressure.

  3. MESTRN: A Deterministic Meson-Muon Transport Code for Space Radiation

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Norbury, John W.; Norman, Ryan B.; Wilson, John W.; Singleterry, Robert C., Jr.; Tripathi, Ram K.

    2004-01-01

    A safe and efficient exploration of space requires an understanding of space radiations, so that human life and sensitive equipment can be protected. On the way to these sensitive sites, the radiation fields are modified in both quality and quantity. Many of these modifications are thought to be due to the production of pions and muons in the interactions between the radiation and intervening matter. A method used to predict the effects of the presence of these particles on the transport of radiation through materials is developed. This method was then used to develop software, which was used to calculate the fluxes of pions and muons after the transport of a cosmic ray spectrum through aluminum and water. Software descriptions are given in the appendices.

  4. R&D Toward a Neutrino Factory and Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  5. Noninvasive Reactor Imaging Using Cosmic-Ray Muons

    NASA Astrophysics Data System (ADS)

    Miyadera, H.; Fujita, K.; Karino, Y.; Kume, N.; Nakayama, K.; Sano, Y.; Sugita, T.; Yoshioka, K.; Morris, C. L.; Bacon, J. D.; Borozdin, K. N.; Perry, J. O.; Mizokami, S.; Otsuka, Y.; Yamada, D.

    2015-10-01

    Cosmic-ray-muon imaging is proposed to assess the damages to the Fukushima Daiichi reactors. Simulation studies showed capability of muon imaging to reveal the core conditions.The muon-imaging technique was demonstrated at Toshiba Nuclear Critical Assembly, where the uranium-dioxide fuel assembly was imaged with 3-cm spatial resolution after 1 month of measurement.

  6. Energy spectrum of cascade showers induced by cosmic ray muons in the range from 50 GeV to 5 TeV

    NASA Technical Reports Server (NTRS)

    Ashitkov, V. D.; Kirina, T. M.; Klimakov, A. P.; Kokoulin, R. P.; Petrukhin, A. A.; Yumatov, V. I.

    1985-01-01

    The energy spectrum of cascade showers induced by electromagnetic interactions of high energy muons of horizontal cosmic ray flux in iron absorber was measured. The total observation time exceeded 22,000 hours. Both the energy spectrum and angular distributions of cascade showers are fairly described in terms of the usual muon generation processes, with a single power index of the parent meson spectrum over the muon energy range from 150 GeV to 5 TeV.

  7. Accelerator performance analysis of the Fermilab Muon Campus

    DOE PAGES

    Stratakis, Diktys; Convery, Mary E.; Johnstone, Carol; ...

    2017-11-21

    Fermilab is dedicated to hosting world-class experiments in search of new physics that will operate in the coming years. The Muon g-2 Experiment is one such experiment that will determine with unprecedented precision the muon anomalous magnetic moment, which offers an important test of the Standard Model. We describe in this study the accelerator facility that will deliver a muon beam to this experiment. We first present the lattice design that allows for efficient capture, transport, and delivery of polarized muon beams. We then numerically examine its performance by simulating pion production in the target, muon collection by the downstreammore » beam line optics, as well as transport of muon polarization. Lastly, we finally establish the conditions required for the safe removal of unwanted secondary particles that minimizes contamination of the final beam.« less

  8. First muon acceleration using a radio-frequency accelerator

    NASA Astrophysics Data System (ADS)

    Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.

    2018-05-01

    Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.

  9. The cosmic ray muon tomography facility based on large scale MRPC detectors

    NASA Astrophysics Data System (ADS)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  10. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, Ilona; Al-Rawi, Marco; Mingot, Jose-Manuel

    2011-04-22

    Highlights: {yields} HSP70, Ku70 and 80 as well as importin 8 are novel interactors of c-Jun. {yields} Nuclear accumulation of c-Jun does not require its functions as a transcription factor. {yields} Nuclear accumulation of c-Jun does not require the interaction with its kinase JNK. {yields} Nuclear accumulation of JNK is regulated by interaction with c-Jun. -- Abstract: In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis ormore » changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling

  11. Sensitivity of EAS measurements to the energy spectrum of muons

    NASA Astrophysics Data System (ADS)

    Espadanal, J.; Cazon, L.; Conceição, R.

    2017-01-01

    We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.

  12. Development of a Portable Muon Witness System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.

    2011-01-01

    Since understanding and quantifying cosmic ray induced radioactive backgrounds in copper and germanium are important to the MAJORANA DEMONSTRATOR, methods are needed for monitoring the levels of such backgrounds produced in materials being transported and processed for the experiment. This report focuses on work conducted at Pacific Northwest National Laboratory to develop a muon witness system as a one way of monitoring induced activities. The operational goal of this apparatus is to characterize cosmic ray exposure of materials. The cosmic ray flux at the Earth’s surface is composed of several types of particles, including neutrons, muons, gamma rays and protons.more » These particles induce nuclear reactions, generating isotopes that contribute to the radiological background. Underground, the main mechanism of activation is by muon produced spallation neutrons since the hadron component of cosmic rays is removed at depths greater than a few tens of meters. This is a sub-dominant contributor above ground, but muons become predominant in underground experiments. For low-background experiments cosmogenic production of certain isotopes, such as 68Ge and 60Co, must be accounted for in the background budgets. Muons act as minimum ionizing particles, depositing a fixed amount of energy per unit length in a material, and have a very high penetrating power. Using muon flux measurements as a “witness” for the hadron flux, the cosmogenic induced activity can be quantified by correlating the measured muon flux and known hadronic production rates. A publicly available coincident muon cosmic ray detector design, the Berkeley Lab Cosmic Ray Detector (BLCRD), assembled by Juniata College, is evaluated in this work. The performance of the prototype is characterized by assessing its muon flux measurements. This evaluation is done by comparing data taken in identical scenarios with other cosmic ray telescopes. The prototype is made of two plastic scintillator paddles with

  13. A projective reconstruction method of underground or hidden structures using atmospheric muon absorption data

    NASA Astrophysics Data System (ADS)

    Bonechi, L.; D'Alessandro, R.; Mori, N.; Viliani, L.

    2015-02-01

    Muon absorption radiography is an imaging technique based on the analysis of the attenuation of the cosmic-ray muon flux after traversing an object under examination. While this technique is now reaching maturity in the field of volcanology for the imaging of the innermost parts of the volcanic cones, its applicability to other fields of research has not yet been proved. In this paper we present a study concerning the application of the muon absorption radiography technique to the field of archaeology, and we propose a method for the search of underground cavities and structures hidden a few metres deep in the soil (patent [1]). An original geometric treatment of the reconstructed muon tracks, based on the comparison of the measured flux with a reference simulated flux, and the preliminary results of specific simulations are discussed in details.

  14. THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mendonça, R. R. S.; Braga, C. R.; Echer, E.

    2016-10-20

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticedmore » that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.« less

  15. Measuring the Spin Correlation of Nuclear Muon Capture in HELIUM-3.

    NASA Astrophysics Data System (ADS)

    McCracken, Dorothy Jill

    1996-06-01

    We have completed the first measurement of the spin correlation of nuclear muon capture in ^3 He: mu^- + ^3He to nu _{mu} + ^3 H. From this spin correlation, we can extract the induced pseudoscalar form factor, F_{ rm p}, of the weak charged nuclear current. This form factor is not well known experimentally. If nuclear muon capture were a purely leptonic weak interaction, the current would have no pseudoscalar coupling, and therefore F_{rm p} arises from QCD contributions. Since ^3He is a fairly well understood system, a precise measurement of F_{rm p} could provide a direct test of the theories which describe QCD at low energies. This experiment was performed at TRIUMF in Vancouver, BC, using a muon beam. We stopped unpolarized muons in a laser polarized target filled with ^3 He and Rb vapor. The muons were captured into atomic orbitals, forming muonic ^3He which was then polarized via collisions with the optically pumped Rb vapor. When polarized muons undergo nuclear capture in ^3He, the total capture rate is proportional to (1 + {rm A_ {v}P_{v}cos} theta) where theta is the angle between the muon polarization and the triton recoil direction, P_{rm v} is the muon vector polarization and A_ {rm v} is the vector analyzing power. The partially conserved axial current hypothesis (PCAC) predicts that A_{rm v} = 0.524 +/- 0.006 Our measurement of A_{rm v} is in agreement with this prediction: A_{rm v } = 0.604 +/- 0.093 (stat.) _sp{-.142}{+.112}(syst.). This thesis will describe the design, construction, and operation of the device which simultaneously served as a polarized target and a gridded ion chamber. The ion chamber apparatus enabled us to identify recoil tritons as well as determine their direction of motion. The directional information was obtained by fitting the shapes of the pulses generated by the tritons. In addition, this thesis will describe in detail the analysis of these pulses which resulted in a measurement of the raw forward/backward asymmetry of

  16. A Detector Scenario for a Muon Cooling Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    McDonald, Kirk T.; Lu, Changguo; Prebys, Eric J.

    1998-04-01

    As a verification of the concept of ionization cooling of a muon beam, the Muon Collider Collaboration is planning an experiment to cool the 6-dimensional normalized emittance by a factor of two. We have designed a detector system to measure the 6-dimensional emittance before and after the cooling apparatus. To avoid the cost associated with preparation of a muon beam bunched at 800 MHz, the nominal frequency of the RF in the muon cooler, we propose to use an unbunched muon beam. Muons will be measured in the detector individually, and a subset chosen corresponding to an ideal input bunch. The muons are remeasured after the cooling apparatus and the output bunch emittance calculated to show the expected reduction in phase-space volume. The technique of tracing individual muons will reproduce all effects encountered by a bunch except for space-charge.

  17. Streamlined calibrations of the ATLAS precision muon chambers for initial LHC running

    NASA Astrophysics Data System (ADS)

    Amram, N.; Ball, R.; Benhammou, Y.; Ben Moshe, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Etzion, E.; Ferretti, C.; Gregory, J.; Haider, S.; Hindes, J.; Levin, D. S.; Manilow, E.; Thun, R.; Wilson, A.; Weaverdyck, C.; Wu, Y.; Yang, H.; Zhou, B.; Zimmermann, S.

    2012-04-01

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p=3% at 100 GeV and 10% at 1 TeV. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  18. Helical muon beam cooling channel engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experimentsmore » that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb 3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb 3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb 3Sn solenoid as originally planned. Instead, a complementary project was approved

  19. Law of Conservation of Muons

    DOE R&D Accomplishments Database

    Feinberg, G.; Weinberg, S.

    1961-02-01

    A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)

  20. On the Feasibility of a Pulsed 14 TeV C.M.E. Muon Collider in the LHC Tunnel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiltsev, Vladimir; Neuffer, D.

    We discuss the technical feasibility, key machine pa-rameters and major challenges of a 14 TeV c.m.e. muon-muon collider in the LHC tunnel [1]. The luminosity of the collider is evaluated for three alternative muon sources – the PS synchrotron, one of a type developed by the US Muon Accelerator Program (MAP) and a low-emittance option based on resonant μ-pair production.

  1. Imaging a vertical shaft from a tunnel using muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Dorsey, D. J.; Schwellenbach, D.; Green, A.; Smalley, D.

    2015-12-01

    We use muon technology to image a vertical shaft from a tunnel. The density of the materials through which cosmic ray muons pass influences the flux of muons because muons are more attenuated by higher density material. Additionally, muons can travel several kilometers allowing measurements through deep rock. Density maps are generated from muon flux measurements to locate subsurface features like tunnel structures and ore bodies. Additionally, muon data can be jointly inverted with other data such as gravity and seismic to produce higher quality earth models than produced from a single method. We collected several weeks of data in a tunnel to image a vertical shaft. The minimum length of rock between the vertical shaft and the detector is 120 meters and the diameter of the vertical shaft is 4.6 meters. The rock the muons traveled through consists of Tertiary age volcanic tuff and steeply dipping, small-displacement faults. Results will be presented for muon flux in the tunnel and Monte-Carlo simulations of this experiment. Simulations from both GEANT4 (Geometry And Tracking version 4) and MCNP6 (Monte-Carlo N-Particle version 6) models will be compared. The tunnel overburden from muon measurements is also estimated and compared with actual the overburden. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Identification of Upward-going Muons for Dark Matter Searches at the NOvA Experiment

    NASA Astrophysics Data System (ADS)

    Xiao, Liting

    2014-03-01

    We search for energetic neutrinos that could originate from dark matter particles annihilating in the core of the Sun using the newly built NOvA Far Detector at Fermilab. Only upward-going muons produced via charged-current interactions are selected as signal in order to eliminate backgrounds from cosmic ray muons, which dominate the downward-going flux. We investigate several algorithms so as to develop an effective way of reconstructing the directionality of cosmic tracks at the trigger level. These studies are a crucial part of understanding how NOvA may compete with other experiments that are performing similar searches. In order to be competitive NOvA must be capable of rejecting backgrounds from downward-going cosmic rays with very high efficiency while accepting most upward-going muons. Acknowledgements: The Jefferson Trust, Fermilab, UVA Department of Physics.

  3. imaging volcanos with gravity and muon tomography measurements

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; Deroussi, Sébastien; Dufour, Fabrice; de Bremond d'Ars, Jean; Ianigro, Jean-Christophe; Gardien, Serge; Girerd, Claude

    2015-04-01

    Both muon tomography and gravimetry are geohysical methods that provide information on the density structure of the Earth's subsurface. Muon tomography measures the natural flux of cosmic muons and its attenuation produced by the screening effect of the rock mass to image. Gravimetry generally consists in measurements of the vertical component of the local gravity field. Both methods are linearly linked to density, but their spatial sensitivity is very different. Muon tomography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes while gravimetry measurements are linked to density by a 3-dimensional integral encompassing the whole studied domain. We show that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. Examples taken from field experiments performed on La Soufrière of Guadeloupe volcano are discussed.

  4. Separation of the electromagnetic and the muon component in EAS by their arrival times

    NASA Astrophysics Data System (ADS)

    Brüggemann, M.; Apel, W.D.; Arteaga, J.C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P.L.; Gils, H.J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J.R.; Huege, T.; Isar, P.G.; Kampert, K.-H.; Kickelbick, D.; Klages, H.O.; Kolotaev, Y.; Luczak, P.; Mathes, H.J.; Mayer, H.J.; Meurer, C.; Milke, J.; Mitrica, B.; Morales, A.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The KASCADE-Grande experiment at Forschungszentrum Karlsruhe, Germany, measures extensive air showers initiated by primary particles with energies between 100 TeV and 1 EeV. Detector pulses digitized by a Flash-ADC based data acquisition system were unfolded to study the arrival times of secondary particles separately for the electromagnetic and the muonic shower component. Muons arrive on average earlier at ground level than electrons. A cut on the particle arrival time has been determined as a function of the distance to the shower core for the separation of electrons and muons. This cut is intended to be used for the determination of the muon content of air showers in experiments without dedicated muon detectors but with time resolving detector electronics. The muon content is essential for the reconstruction of the cosmic ray energy spectrum separated into individual elemental groups.

  5. The Muon g - 2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Mott, James; Muon g - 2 experiment

    2017-06-01

    The Muon g - 2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 ppb, reducing the experimental uncertainty by a factor of 4 compared to the previous measurement at BNL (E821). The measurement technique adopts the storage ring concept used for E821, with magic-momentum muons stored in a highly uniform 1.45 T magnetic dipole field. The spin precession frequency is extracted from an analysis of the modulation of the rate of higher-energy positrons from muon decays, detected by 24 calorimeters and 3 straw tracking detectors. Compared to the E821 experiment, muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or significantly upgraded. Herein, I report on the status of the experiment as of Sept. 2016, presenting the magnetic field uniformity results after the completion of the first round of shimming and outlining the construction progress of the main detector systems.

  6. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Martins, V. Barbosa; Brogueira, P.; Carolino, N.; Cazon, L.; Cerda, M.; Cernicchiaro, G.; Colalillo, R.; Conceição, R.; Cunha, O.; de Almeida, R. M.; de Souza, V.; Diogo, F.; Dobrigkeit, C.; Espadanal, J.; Espirito-Santo, C.; Ferreira, M.; Ferreira, P.; Fonte, P.; Giaccari, U.; Gonçalves, P.; Guarino, F.; Lippmann, O. C.; Lopes, L.; Luz, R.; Maurizio, D.; Marujo, F.; Mazur, P.; Mendes, L.; Pereira, A.; Pimenta, Mario; Prado, R. R.; R̆ídký, J.; Sarmento, R.; Scarso, C.; Shellard, R.; Souza, J.; Tomé, B.; Trávníc̆ek, P.; Vícha, J.; Wolters, H.; Zas, E.

    2018-04-01

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  7. Muon simulations for Super-Kamiokande, KamLAND, and CHOOZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Alfred; Horton-Smith, Glenn; Kudryavtsev, Vitaly A.

    2006-09-01

    Muon backgrounds at Super-Kamiokande, KamLAND, and CHOOZ are calculated using MUSIC. A modified version of the Gaisser sea-level muon distribution and a well-tested Monte Carlo integration method are introduced. Average muon energy, flux, and rate are tabulated. Plots of average energy and angular distributions are given. Implications for muon tracker design in future experiments are discussed.

  8. A Prototype Large Area Detector Module for Muon Scattering Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, C.A.; Boakes, J.; Burns, J.

    Abstract-Shielded special nuclear materials (SNM) are of concern as some fissile isotopes have low gamma and neutron emission rates. These materials are also easily shielded to the point where their passive emissions are comparable to background. Consequently, shielded SNM is very challenging for passive radiation detection portals which scan cargo containers. One potential solution for this is to utilise the natural cosmic ray muon background and examine how these muons scatter from materials inside the container volume, terms; the muon scattering tomography (MST) technique measures the three-dimensional localised scattering at all points within a cargo container, providing a degree ofmore » material discrimination. There is the additional benefit that the MST signal increases with the presence of more high density shielding materials, in contrast to passive radiation detection. Simulations and calculations suggest that the effectiveness of the technique is sensitive to the tracking accuracy amongst other parameters, motivating the need to develop practical detector systems that are capable of tracking cosmic ray muons. To this end, we have constructed and tested a 2 m by 2 m demonstration module based on gaseous drift chambers and triggered by a large area scintillator-based detector, which is readout by wavelength shifting fibres. We discuss its design, construction, characterisation and operational challenges. (authors)« less

  9. The CMS muon system: status and upgrades for LHC Run-2 and performance of muon reconstruction with 13 TeV data

    NASA Astrophysics Data System (ADS)

    Battilana, C.

    2017-01-01

    The CMS muon system has played a key role for many physics results obtained from the LHC Run-1 and Run-2 data. During the Long Shutdown (2013-2014), as well as during the last year-end technical stop (2015-2016), significant consolidation and upgrades have been carried out on the muon detectors and on the L1 muon trigger. The algorithms for muon reconstruction and identification have also been improved for both the High-Level Trigger and the offline reconstruction. Results of the performance of muon detectors, reconstruction and trigger, obtained using data collected at 13 TeV centre-of-mass energy during the 2015 and 2016 LHC runs, will be presented. Comparison of simulation with experimental data will also be discussed where relevant. The system's state of the art performance will be shown, and the improvements foreseen to achieve excellent overall quality of muon reconstruction in CMS, in the conditions expected during the high-luminosity phase of Run-2, will be described.

  10. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect ofmore » the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.« less

  11. Muon Accelerator Program (MAP) | Neutrino Factory | Research Goals

    Science.gov Websites

    ; Committees Research Goals Research & Development Design & Simulation Technology Development Systems Demonstrations Activities MASS Muon Cooling MuCool Test Area MICE Experiment MERIT Muon Collider Research Goals Why Muons at the Energy Frontier? How does it work? Graphics Animation Neutrino Factory Research Goals

  12. Precision Experiments with Ultraslow Muons

    NASA Astrophysics Data System (ADS)

    Mills, Allen P.

    A source of ~105 ultraslow muons (USM) per second (~0.2 eV energy spread and 40 mm source diameter) reported by Miyake et al., and the demonstration of 100 K thermal muonium in vacuum by Antognini, et al., suggest possibilities for substantial improvements in the experimental precisions of the muonium 1S-2S interval and the muon g-2 measurements.

  13. Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code

    NASA Astrophysics Data System (ADS)

    Abe, Shin-ichiro; Sato, Tatsuhiko

    2016-06-01

    Feasibility of nuclear transmutation of fission products in high-level radioactive waste by negative muon capture reaction is investigated using the Particle and Heave Ion Transport code System (PHITS). It is found that about 80 % of stopped negative muons contribute to transmute target nuclide into stable or short-lived nuclide in the case of 135Cs, which is one of the most important nuclide in the transmutation. The simulation result also indicates that the position of transmutation is controllable by changing the energy of incident negative muon. Based on our simulation, it takes approximately 8.5 × 108years to transmute 500 g of 135Cs by negative muon beam with the highest intensity currently available.

  14. Imaging CO2 reservoirs using muons borehole detectors

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Bonal, N.; Lintereur, A.; Mellors, R. J.; Paulsson, B. N. P.; Rowe, C. A.; Varner, G. S.; Kouzes, R.; Flygare, J.; Mostafanezhad, I.; Yamaoka, J. A. K.; Guardincerri, E.; Chapline, G.

    2016-12-01

    Monitoring of the post-injection fate of CO2 in subsurface reservoirs is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We present a method of 4D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Although muon flux rapidly decreases with depth, preliminary analyses indicate that the muon technique is sufficiently sensitive to effectively map density variations caused by fluid displacement at depths consistent with proposed CO2reservoirs. The intensity of the muon flux is, to first order, inversely proportional to the density times the path length, with resolution increasing with measurement time. The primary technical challenge preventing deployment of this technology in subsurface locations is the lack of miniaturized muon-tracking detectors both capable of fitting in standard boreholes and that will be able to resist the harsh underground conditions (temperature, pressure, corrosion) for long periods of time. Such a detector with these capabilities has been developed through a collaboration supported by the U.S. Department of Energy. A prototype has been tested in underground laboratories during 2016. In particular, we will present results from a series of tests performed in a tunnel comparing efficiencies, and angular and position resolution to measurements collected at the same locations by large instruments developed by Los Alamos and Sandia National Laboratories. We will also present the results of simulations of muon detection for various CO2 reservoir situations and muon detector configurations. Finally, to improve imaging of 3D subsurface structures, a combination of seismic data, gravity data, and muons can be used. Because seismic waves, gravity anomalies, and muons are all sensitive to density, the combination of two or three of these measurements promises to be a powerful way to improve spatial

  15. Toward a muon-specific electronic structure theory: effective electronic Hartree-Fock equations for muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-02-07

    An effective set of Hartree-Fock (HF) equations are derived for electrons of muonic systems, i.e., molecules containing a positively charged muon, conceiving the muon as a quantum oscillator, which are completely equivalent to the usual two-component HF equations used to derive stationary states of the muonic molecules. In these effective equations, a non-Coulombic potential is added to the orthodox coulomb and exchange potential energy terms, which describes the interaction of the muon and the electrons effectively and is optimized during the self-consistent field cycles. While in the two-component HF equations a muon is treated as a quantum particle, in the effective HF equations it is absorbed into the effective potential and practically transformed into an effective potential field experienced by electrons. The explicit form of the effective potential depends on the nature of muon's vibrations and is derivable from the basis set used to expand the muonic spatial orbital. The resulting effective Hartree-Fock equations are implemented computationally and used successfully, as a proof of concept, in a series of muonic molecules containing all atoms from the second and third rows of the Periodic Table. To solve the algebraic version of the equations muon-specific Gaussian basis sets are designed for both muon and surrounding electrons and it is demonstrated that the optimized exponents are quite distinct from those derived for the hydrogen isotopes. The developed effective HF theory is quite general and in principle can be used for any muonic system while it is the starting point for a general effective electronic structure theory that incorporates various types of quantum correlations into the muonic systems beyond the HF equations.

  16. Buried plastic scintillator muon telescope

    NASA Astrophysics Data System (ADS)

    Sanchez, F.; Medina-Tanco, G.A.; D'Olivo, J.C.; Paic, G.; Patino Salazar, M.E.; Nahmad-Achar, E.; Valdes Galicia, J.F.; Sandoval, A.; Alfaro Molina, R.; Salazar Ibarguen, H.; Diozcora Vargas Trevino, M.A.; Vergara Limon, S.; Villasenor, L.M.

    Muon telescopes can have several applications, ranging from astrophysical to solar-terrestrial interaction studies, and fundamental particle physics. We show the design parameters, characterization and end-to-end simulations of a detector composed by a set of three parallel dual-layer scintillator planes, buried at fix depths ranging from 0.30 m to 3 m. Each layer is 4 m2 and is composed by 50 rectangular pixels of 4cm x 2 m, oriented at a 90 deg angle with respect to its companion layer. The scintillators are MINOS extruded polystyrene strips with two Bicron wavelength shifting fibers mounted on machined grooves. Scintillation light is collected by multi-anode PMTs of 64 pixels, accommodating two fibers per pixel. The front-end electronics has a time resolution of 7.5 nsec. Any strip signal above threshold opens a GPS-tagged 2 micro-seconds data collection window. All data, including signal and background, are saved to hard disk. Separation of extensive air shower signals from secondary cosmic-ray background muons and electrons is done offline using the GPS-tagged threefold coincidence signal from surface water cerenkov detectors located nearby in a triangular array. Cosmic-ray showers above 6 PeV are selected. The data acquisition system is designed to keep both, background and signals from extensive air showers for a detailed offline data.

  17. Limits on dark matter WIMPs using upward-going muons in the MACRO detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Aramo, C.; Auriemma, G.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, E.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Castellano, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Benedictis, L.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Guarnaccia, P.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Huang, Y.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lari, T.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta Neri, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Mazzotta, C.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicoló, D.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Rastelli, A.; Reynoldson, J.; Ronga, F.; Sanzgiri, A.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra-Lugaresi, P.; Severi, M.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Ugolotti, D.; Vakili, M.; Walter, C. W.; Webb, R.

    1999-10-01

    We perform an indirect search for weakly interacting massive particles (WIMPs) using the MACRO detector to look for neutrino-induced upward-going muons resulting from the annihilation of WIMPs trapped in the Sun and Earth. The search is conducted in various angular cones centered on the Sun and Earth to accommodate a range of WIMP masses. No significant excess over the background from atmospheric neutrinos is seen. We set experimental flux limits on the upward-going muon fluxes from the Sun and the Earth. These limits are used to constrain neutralino particle parameters from supersymmetric theory, including those suggested by recent results from DAMA-NaI.

  18. Statistical study of muons counts rates in differents directions, observed at the Brazilian Southern Space Observatory

    NASA Astrophysics Data System (ADS)

    Grams, Guilherme; Schuch, Nelson Jorge; Braga, Carlos Roberto; Purushottam Kane, Rajaram; Echer, Ezequiel; Ronan Coelho Stekel, Tardelli

    Cosmic ray are charged particles, at the most time protons, that reach the earth's magne-tosphere from interplanetary space with velocities greater than the solar wind. When these impinge the atmosphere, they interact with atmosphere constituents and decay into sub-particles forming an atmospheric shower. The muons are the sub-particles which normally maintain the originated direction of the primary cosmic ray. A multi-directional muon detec-tor (MMD) was installed in 2001 and upgraded in 2005, through an international cooperation between Brazil, Japan and USA, and operated since then at the Southern Space Observatory -SSO/CRS/CCR/INPE -MCT, (29,4° S, 53,8° W, 480m a.s.l.), São Martinho da Serra, RS, a Brazil. The main objetive of this work is to present a statistical analysis of the intensity of muons, with energy between 50 and 170 GeV, in differents directions, measured by the SSO's multi-directional muon detector. The analysis was performed with data from 2006 and 2007 collected by the SSO's MMD. The MMD consists of two layers of 4x7 detectors with a total observation area of 28 m2 . The counting of muons in each directional channel is made by a coincidence of pulses pair, one from a detector in the upper layer and the other from a detector in the lower layer. The SSO's MMD is equipped with 119 directional channels for muon count rate measurement and is capable of detecting muons incident with zenithal angle between 0° and 75,53° . A statistical analysis was made with the MMD muon count rate for all the di-rectional channels. The average and the standard deviation of the muon count rate in each directional component were calculated. The results show lower cont rate for the channels with larger zenith, and higher cont rate with smaller zenith, as expected from the production and propagation of muons in the atmosphere. It is also possible to identify the Stormer cone. The SSO's MMD is also a detector component of the Global Muon Detector Network (GMDN

  19. Birth of an intense pulsed muon source, J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Strasser, Patrick; Makimura, Shunsuke; Koda, Akihiro; Fujimori, Hiroshi; Nakahara, Kazutaka; Kadono, Ryosuke; Kato, Mineo; Takeshita, Soshi; Nishiyama, Kusuo; Higemoto, Wataru; Ishida, Katsuhiko; Matsuzaki, Teiichiro; Matsuda, Yasuyuki; Nagamine, Kanetada

    2009-04-01

    The muon science facility (MUSE), along with neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC (Japan Proton Accelerator Research Complex) project, which was approved for construction between 2001 and 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008. For Phase 1, we are planning to install one superconducting decay/surface channel with a modest-acceptance (about 40 mSr) pion injector, with an estimated surface muon (μ+) rate of 3×107/s and a beam size of 25 mm diameter, and a corresponding decay muon (μ+/μ-) rate of 106/s for 60 MeV/ c (up to 107/s for 120 MeV/ c) with a beam size of 50 mm diameter. These intensities correspond to more than 10-times what is available at the RIKEN/RAL muon facility, which currently possess the most intense pulsed muon beams in the world. In addition to Phase 1, we are planning to install, a surface muon channel with a modest-acceptance (about 50 mSr), mainly for experiments related to material sciences, and a super-omega muon channel with a large acceptance of 400 mSr. In the case of the super-omega muon channel, the goal is to extract 4×108 surface muons/s for the generation of ultra-slow muons and 1×107 negative cloud muons/s with a momentum of 30-60 MeV/ c. One of the important goals for this beamline is to generate intense ultra-slow muons at MUSE, utilizing an intense pulsed VUV laser system. 104-106 ultra-slow muons/s are expected, which will allow for an extension of μSR into the area of thin film and surface science. At this symposium, the current status of J-PARC MUSE will be reported.

  20. Studies of the performance of the ATLAS detector using cosmic-ray muons

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-03-29

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been usedmore » through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.« less

  1. Studies of the performance of the ATLAS detector using cosmic-ray muons

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Silva, J.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dotti, A.; Dova, M. T.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Yildiz, H. Duran; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jež, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; King, B. T.; King, M.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuze, M.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tani, K.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2011-03-01

    Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response.

  2. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  3. The Muon g $-$ 2 experiment at Fermilab

    DOE PAGES

    Mott, James

    2017-06-21

    Here, the Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 ppb, reducing the experimental uncertainty by a factor of 4 compared to the previous measurement at BNL (E821). The measurement technique adopts the storage ring concept used for E821, with magic-momentum muons stored in a highly uniform 1.45 T magnetic dipole field. The spin precession frequency is extracted from an analysis of the modulation of the rate of higher-energy positrons from muon decays, detected by 24 calorimeters and 3 straw tracking detectors. Compared to the E821 experiment, muon beammore » preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or significantly upgraded. Herein, I report on the status of the experiment as of Sept. 2016, presenting the magnetic field uniformity results after the completion of the first round of shimming and outlining the construction progress of the main detector systems.« less

  4. The Muon g $-$ 2 experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mott, James

    Here, the Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 ppb, reducing the experimental uncertainty by a factor of 4 compared to the previous measurement at BNL (E821). The measurement technique adopts the storage ring concept used for E821, with magic-momentum muons stored in a highly uniform 1.45 T magnetic dipole field. The spin precession frequency is extracted from an analysis of the modulation of the rate of higher-energy positrons from muon decays, detected by 24 calorimeters and 3 straw tracking detectors. Compared to the E821 experiment, muon beammore » preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or significantly upgraded. Herein, I report on the status of the experiment as of Sept. 2016, presenting the magnetic field uniformity results after the completion of the first round of shimming and outlining the construction progress of the main detector systems.« less

  5. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; Andringa, S.; Assis, P.

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  6. MARTA: a high-energy cosmic-ray detector concept for high-accuracy muon measurement

    DOE PAGES

    Abreu, P.; Andringa, S.; Assis, P.; ...

    2018-04-24

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. Here, the combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  7. Measurement of Reconstructed Charged Particle Multiplicities of Neutrino Interactions in MicroBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Aleena

    2017-09-25

    Here, we compare the observed charged particle multiplicity distributions in the MicroBooNE liquid argon time projection chamber from neutrino interactions in a restricted final state phase space to predictions of this distribution from several GENIE models. The measurement uses a data sample consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2015-2016 with the Fermilab Booster Neutrino Beam (BNB), which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction andmore » uses a data-driven technique to determine the contribution to each multiplicity bin from neutrino interactions and cosmic-induced backgrounds. The restricted phase space employed makes the measurement most sensitive to the higher-energy charged particles expected from primary neutrino-argon collisions and less sensitive to lower energy protons expected to be produced in final state interactions of collision products with the target argon nucleus.« less

  8. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  9. Imaging Fukushima Daiichi reactors with muons

    NASA Astrophysics Data System (ADS)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.; Lukić, Zarija; Masuda, Koji; Milner, Edward C.; Morris, Christopher L.; Perry, John O.

    2013-05-01

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  10. Inverse Flux versus Pressure of Muons from Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Buitrago, D.; Armendariz, R.

    2017-12-01

    When an incoming cosmic ray proton or atom collides with particles in earth's atmosphere a shower of secondary muons is created. Cosmic ray muon flux was measured at the Queensborough Community College using a QuarkNet detector consisting of three stacked scintillator muon counters and a three-fold coincidence trigger. Data was recorded during a three-day period during a severe weather storm that occurred from March 13-17, 2017. A computer program was created in Python to read the muon flux rate and atmospheric pressure sensor readings from the detector's data acquisition board. The program converts the data from hexadecimal to decimal, re-bins the data in a more suitable format, creates and overlays plots of muon flux with atmospheric pressure. Results thus far show a strong correlation between muon flux and atmospheric pressure. More data analysis will be done to verify the above conclusion.

  11. Nucleus Ruber of Actinopterygians.

    PubMed

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  12. Issues in Acceleration of A Muon Beam for a Neutrino Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Delayen; D. Douglas; L. Harwood

    2001-06-01

    We have developed a concept for acceleration of a large phase-space, pulsed muon beam from 190 MeV to 50 GeV as part of a collaborative study of the feasibility of a neutrino factory based on in-flight decay of muons. The muon beam's initial energy spread was {approximately}20% and each bunch has the physical size of a soccer ball. Production of the muons will be quite expensive, so prevention of loss due to scraping or decay is critical. The former drives the system to large apertures and the latter calls for high real-estate-average gradients. The solution to be presented utilizes amore » 3 GeV linac to capture the beam, a 4-pass recirculating linac to get the beam to 10 GeV, and then a 5-pass linac to get the beam to 50 GeV. Throughout the system, longitudinal dynamics issues far outweighed transverse dynamics issues. This paper focuses on the issues surrounding the choice of superconducting rf structures over copper structures.« less

  13. Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.

    2016-07-15

    Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.

  14. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE PAGES

    Sirunyan, Albert M; et al.

    2018-06-19

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.« less

  15. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.« less

  16. A Prototype Scintillating-Fibre Tracker for the Cosmic-ray Muon Tomography of Legacy Nuclear Waste Containers

    NASA Astrophysics Data System (ADS)

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnston, J. R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-03-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm-2 min-1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from GEANT4 simulations. These results verify the simulation and show discrimination between the low, medium and high-Z materials imaged.

  17. Statistical reconstruction for cosmic ray muon tomography.

    PubMed

    Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J

    2007-08-01

    Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.

  18. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  19. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  20. Imaging Fukushima Daiichi reactors with muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyadera, Haruo; Borozdin, Konstantin N.; Greene, Steve J.

    2013-05-15

    A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi tomore » make this determination in the near future.« less

  1. The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; hide

    1985-01-01

    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.

  2. Density imaging of volcanos with atmospheric muons

    NASA Astrophysics Data System (ADS)

    Fehr, Felix; Tomuvol Collaboration

    2012-07-01

    Their long range in matter renders high-energy atmospheric muons a unique probe for geophysical explorations, permitting the cartography of density distributions which can reveal spatial and possibly also temporal variations in extended geological structures. A Collaboration between volcanologists and (astro-)particle physicists, TOMUVOL, was formed in 2009 to study tomographic muon imaging of volcanos with high-resolution tracking detectors. Here we discuss preparatory work towards muon tomography as well as the first flux measurements taken at the Puy de Dôme, an inactive lava dome volcano in the Massif Central.

  3. Front-end electronics for the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Garozzo, S.; Marano, D.; Bonanno, G.; Grillo, A.; Romeo, G.; Timpanaro, M. C.; Lo Presti, D.; Riggi, F.; Russo, V.; Bonanno, D.; La Rocca, P.; Longhitano, F.; Bongiovanni, D. G.; Fallica, G.; Valvo, G.

    2016-10-01

    The Muon Portal Project was born as a joint initiative between Italian research and industrial partners, aimed at the construction of a real-size working detector prototype to inspect the content of traveling containers by means of secondary cosmic-ray muon radiation and recognize potentially dangerous hidden materials. The tomographic image is obtained by reconstructing the incoming and outgoing muon trajectories when crossing the inspected volume, employing two tracker planes located above and below the container under inspection. In this paper, the design and development of the front-end electronics of the Muon Portal detector is presented, with particular emphasis being devoted to the photo-sensor devices detecting the scintillation light and to the read-out circuitry which is in charge of processing and digitizing the analog pulse signals. In addition, the remote control system, mechanical housing, and thermal cooling system of all structural blocks of the Muon Portal tracker are also discussed, demonstrating the effectiveness and functionality of the adopted design.

  4. The hadronic interaction model EPOS

    NASA Astrophysics Data System (ADS)

    Werner, Klaus

    2008-01-01

    EPOS is a sophisticated multiple scattering approach based on partons and Pomerons (parton ladders), with special emphasis on high parton densities. The latter aspect, particularly important in proton-nucleus or nucleus-nucleus collisions, is taken care of via an effective treatment of Pomeron-Pomeron interactions, referred to as parton ladder splitting. In addition, collective effects are introduced after separating the high density central core from the peripheral corona. EPOS is the successor of the NEXUS model.

  5. Computational prediction of muon stopping sites using ab initio random structure searching (AIRSS)

    NASA Astrophysics Data System (ADS)

    Liborio, Leandro; Sturniolo, Simone; Jochym, Dominik

    2018-04-01

    The stopping site of the muon in a muon-spin relaxation experiment is in general unknown. There are some techniques that can be used to guess the muon stopping site, but they often rely on approximations and are not generally applicable to all cases. In this work, we propose a purely theoretical method to predict muon stopping sites in crystalline materials from first principles. The method is based on a combination of ab initio calculations, random structure searching, and machine learning, and it has successfully predicted the MuT and MuBC stopping sites of muonium in Si, diamond, and Ge, as well as the muonium stopping site in LiF, without any recourse to experimental results. The method makes use of Soprano, a Python library developed to aid ab initio computational crystallography, that was publicly released and contains all the software tools necessary to reproduce our analysis.

  6. Beam dynamics design of the muon linac high-beta section

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.

    2017-07-01

    A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.

  7. Muon reactivation in muon-catalyzed D-T fusion

    NASA Astrophysics Data System (ADS)

    Rafelski, H. E.; Müller, B.; Rafelski, J.; Trautmann, D.; Viollier, R. D.

    We comprehensively reanalyze and search for the density dependence of the effective muon alpha sticking fraction ωsff observed experimentally in muon catalyzed deuterium-tritium fusion. In our work particular emphasis has been put on the density dependent dense hydrogen stopping power. The main technical details and improvements in this work are: The (αμ) + 2s and 2p states are treated independently and are assigned individual reaction rates. The essential muonic excitation rates have been recalculated taking into account finite nuclear mass effects. The stopping power for a charged projectile in liquid heavy hydrogen is modified to account for dynamic screening effects and a density dependent effective ionization potential. It is shown that the medium dependent stopping power for the (αμ) + ion is the crucial factor controlling the density dependence of the effective sticking fraction. It is also pointed out that the muonic helium K α X-ray yield and the sticking fraction at high density can not be simultaneously brought into agreement with the experimental results without invoking novel mechanisms suppressing Stark mixing in the (Heμ) L-shell.

  8. Commissioning of the first chambers of the CMS GE1/1 muon station

    NASA Astrophysics Data System (ADS)

    Ressegotti, Martina; CMS Muon Group

    2017-12-01

    The upgrades of the LHC planned in the next years will increase the instantaneous luminosity up to 5 × 1034 cm -2 s -1 after Long Shutdown 3, a value about five times higher than the nominal one for which the CMS experiment was designed. The resulting larger rate of interactions will produce a higher pileup environment that will challenge the trigger system of the CMS experiment in its original configuration, in particular in the endcap region. As part of the upgrade program of the CMS muon endcaps, additional muon detectors based on Gas Electron Multiplier (GEM) technology will be installed, in order to be able to sustain a physics program during high-luminosity operation without performance losses. The installation of the GE1/1 station is scheduled for Long Shutdown 2 in 2019-2020 already a demonstrator composed of five superchambers has been installed during the Extended Year-End Technical Stop at the beginning of 2017. Its goal is to test the system’s operational conditions and also to demonstrate the integration of the GE1/1 chambers into the CMS online system. The status of the installation and commissioning of the GE1/1 demonstrator is presented.

  9. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  10. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, S.; Furuno, K.; Gando, Y.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, themore » neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.« less

  11. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    NASA Astrophysics Data System (ADS)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  12. A novel muon detector for borehole density tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonneville, Alain; Kouzes, Richard T.; Yamaoka, Jared

    Muons can be used to image the density of materials through which they pass, including geological structures. Subsurface applications of the technology include tracking fluid migration during injection or production, with increasing concern regarding such timely issues as induced seismicity or chemical leakage into aquifers. Geological carbon storage, natural gas storage, enhanced oil recovery, compressed air storage, aquifer storage and recovery, waste water storage and oil and gas production are examples of application areas. It is thus crucial to monitor in quasi-real time the behavior of these fluids, and several monitoring techniques can be used. Among them, those that trackmore » density changes in the subsurface are the most relevant. Current density monitoring options include gravimetric data collection and active or passive seismic surveys. One alternative, or complement, to these methods is the development of a muon detector that is sufficiently compact and robust for deployment in a borehole. Such a muon detector can enable tomographic imaging of density structure to monitor small changes in density – a proxy for fluid migration – at depths up to 1500 m. Such a detector has been developed, and Monte Carlo modeling methods applied to simulate the anticipated detector response. The robustness of the detector design comes primarily from the use of polystyrene scintillating rods arrayed in alternating layers to provide a coordinate scheme. Testing and measurements using a prototype detector in the laboratory and shallow underground facilities demonstrated robust response. A satisfactory comparison with a large drift tube-based muon detector is also presented.« less

  13. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    DOE PAGES

    Adam, J.

    2016-01-19

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more thanmore » 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less

  14. First Images from the Cript Muon Tomography System

    NASA Astrophysics Data System (ADS)

    Armitage, J.; Botte, J.; Boudjemline, K.; Erlandson, A.; Robichaud, A.; Bueno, J.; Bryman, D.; Gazit, R.; Hydomako, R.; Liu, Z.; Anghel, V.; Golovko, V. V.; Jewett, C.; Jonkmans, G.; Thompson, M.; Charles, E.; Gallant, G.; Drouin, P.-L.; Waller, D.; Stocki, T. J.; Cousins, T.; Noel, S.

    2014-02-01

    The CRIPT Cosmic Ray Imaging and Passive Tomography system began data taking in September 2012. CRIPT is a “proof of principle” muon tomography system originally proposed to inspect cargo in shipping containers and to determine the presence of special nuclear materials. CRIPT uses 4 layers of 2 m x 2 m scintillation counter trackers, each layer measuring two coordinates. Two layers are used to track the incoming muon and two for the outgoing muon allowing the trajectories of the muon to be determined. The target volume is divided into voxels, and a Point of Closest Approach algorithm is used to determine the number of scattering events in each voxel, producing a 3D image. The system has been tested with various targets of depleted uranium, lead bricks, and tungsten rods. Data on the positional resolution has been taken and the intrinsic resolution is unfolded with the help of a simulation using GEANT4. The next steps include incorporation of data from the spectrometer section, which will assist in determining the muon's momentum and improve the determination of the density of the target.

  15. The Probability of Muon Sticking and X-Ray Yields in the Muon Catalyzed Fusion Cycle in a Deuterium and Tritium Mixture

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Motevalli, S. M.

    2008-03-01

    The muon catalyzed fusion cycle in mixtures of deuterium and tritium is of particular interest due to the observation of high fusion yields. In the D-T mixture, the most serious limitation to the efficiency of the fusion chain is the probability of muon sticking to the alpha -particle produced in the nuclear reaction. An accurate kinetic treatment has been applied to the muonic helium atoms formed by a muon sticking to the alpha -particles. In this work accurate rates for collisions of alpha mu + ions with hydrogen atoms have been used for calculation of muon stripping probability and the intensities of X-ray transitions by solving a set of coupled differential equations numerically. Our calculated results are in good agreement with experimental data available in literature.

  16. Proceedings of the International Workshop on Low Energy Muon Science: LEMS`93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, M.

    1994-01-01

    This report contains papers on research with low energy muons. Topics cover fundamental electroweak physics; muonic atoms and molecules, and muon catalyzed fusion; muon spin research; and muon facilities. These papers have been indexed and cataloged separately.

  17. History of Weak Interactions

    DOE R&D Accomplishments Database

    Lee, T. D.

    1970-07-01

    While the phenomenon of beta-decay was discovered near the end of the last century, the notion that the weak interaction forms a separate field of physical forces evolved rather gradually. This became clear only after the experimental discoveries of other weak reactions such as muon-decay, muon-capture, etc., and the theoretical observation that all these reactions can be described by approximately the same coupling constant, thus giving rise to the notion of a universal weak interaction. Only then did one slowly recognize that the weak interaction force forms an independent field, perhaps on the same footing as the gravitational force, the electromagnetic force, and the strong nuclear and sub-nuclear forces.

  18. Search for the sidereal and solar diurnal modulations in the total MACRO muon data set

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-02-01

    We have analyzed 44.3M single muons collected by MACRO from 1991 through 2000 in 2145 live days of operation. We have searched for the solar diurnal, apparent sidereal, and pseudosidereal modulation of the underground muon rate by computing hourly deviations of the muon rate from 6 month averages. We find evidence for statistically significant modulations with the solar diurnal and the sidereal periods. The amplitudes of these modulations are <0.1%, and are at the limit of the detector statistics. The pseudosidereal modulation is not statistically significant. The solar diurnal modulation is due to the daily atmospheric temperature variations at 20 km, the altitude of primary cosmic ray interactions with the atmosphere; MACRO is the deepest experiment to report this result. The sidereal modulation is in addition to the expected Compton-Getting modulation due to solar system motion relative to the local standard of rest; it represents motion of the solar system with respect to the galactic cosmic rays toward the galactic plane.

  19. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2017-07-01

    We present an all-sky search for muon neutrinos produced during the prompt γ-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  20. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    PubMed

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  1. Production of neutrinos and neutrino-like particles in proton-nucleus interactions. [400 GeV, cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dishaw, J.P.

    1979-03-01

    An experimental search was performed to look for the direct production of neutrinos or neutrino-like particles, i.e., neutral particles which interact weakly with hadrons, in proton-nucleus interactions at 400 GeV incident proton energy. Possible sources of such particles include the semi-leptonic decay of new heavy particles such as charm, and the direct production of a light neutral Higgs particle such as the axion. The production of these particles has been inferred in this experiment by energy nonconservation in the collision of a proton with an iron nucleus. The total visible energy of the interaction was measured using a sampling ionizationmore » calorimeter. After correcting for beam intensity effects and cutting the data to eliminate systematic effects in the measurement, the final resolution of the calorimeter was 3.51% and increased with decreasing incident beam energy with a square root dependence on the beam energy. Energy nonconservation in the data is manifest as a non-Gaussian distribution on the low side of the calorimeter measured energy. Model calculations yield the fraction of events expected in this non-Gaussian behavior for the various sources of neutrinos or neutrino-like particles. A maximum likelihood fit to the data with the theoretical fraction of events expected yields the 95% confidence level production cross section upper limit values. The upper limits for general production of neutrino-like particles for various parameterizations of the production cross section are presented. The following specific upper limits have been established: charm particle production < 670 ..mu..barns, supersymmetric particle production carrying an additional quantum number R < 33 ..mu..barns (mass of 1 GeV), 8 ..mu..barns (mass of 3 GeV); axion production < 10/sup -3/ times the ..pi../sup 0/ production cross section. 144 references.« less

  2. Status of the New Surface Muon Beamline at J-PARC MUSE

    NASA Astrophysics Data System (ADS)

    Strasser, P.; Koda, A.; Kojima, K. M.; Ito, T. U.; Fujimori, H.; Irie, Y.; Aoki, M.; Nakatsugawa, Y.; Higemoto, W.; Hiraishi, M.; Li, H.; Okabe, H.; Takeshita, S.; Shimomura, K.; Kawamura, N.; Kadono, R.; Miyake, Y.

    A new surface muon beamline (S-line) dedicated to condensed matter physics experiments is being constructed at the Muon Science Facility (MUSE) located in the Materials and Life Science Facility (MLF) building at J-PARC. This beamline designed to provide high-intensity surface muons with a momentum of 28 MeV/c will comprise four beam legs and four experimental areas that will share the double-pulsed muon beam. The key feature is a new kicker system comprising two electric kickers to deliver the muon beam to the four experimental areas ensuring an optimum and seamless sharing of the double-pulsed muon beam. At present, only one experimental area (S1) has been completed and is now open to the user program since February 2017. An overview of the different aspects of this new surface muon beamline and the present status of the beam commissioning are presented.

  3. Perspective of Muon Production Target at J-PARC MLF MUSE

    NASA Astrophysics Data System (ADS)

    Makimura, Shunsuke; Matoba, Shiro; Kawamura, Naritoshi; Matsuzawa, Yukihiro; Tabe, Masato; Aoyagi, Hiroyuki; Kondo, Hiroto; Kobayashi, Yasuo; Fujimori, Hiroshi; Ikedo, Yutaka; Kadono, Ryosuke; Koda, Akihiro; Kojima, Kenji M.; Miyake, Yasuhiro; Nakamura, Jumpei G.; Oishi, Yu; Okabe, Hirotaka; Shimomura, Koichiro; Strasser, Patrick

    A pulsed muon beam with unprecedented intensity will be generated by a 3-GeV 333-microA proton beam on a muon target made of 20-mm thick isotropic graphite at J-PARC MLF MUSE (Muon Science Establishment). The first muon beam was successfully generated on September 26th, 2008. Gradually upgrading the beam intensity, continuous 300-kW proton beam has been operated by a fixed target method without replacements till June of 2014. However, the lifetime of the fixed target was anticipated to be less than 1 year by the proton-irradiation damage of the graphite through 1-MW beam operation. To extend the lifetime, a muon rotating target, in which the radiation damage is distributed to a wider area, was installed in September of 2014, and continuous and stable operation has been successfully performed. Because the muon target becomes highly radioactive by the proton irradiation, the maintenance is conducted by remote handling in the Hot cell. In September of 2015, a scraper No. 1 to collimate the proton beam scattered by the target was replaced for further high-power beam operation. Recently, new developments on monitoring and maintenance of the muon target for higher power operation are in progress. In this article, perspective of muon production target at J-PARC MLF MUSE will be described.

  4. A totally active scintillator calorimeter for the Muon Ionization Cooling Experiment (MICE). Design and construction

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, Ruslan

    2013-12-01

    The Electron-Muon Ranger (EMR) is a totally active scintillator detector to be installed in the muon beam of the Muon Ionization Cooling Experiment (MICE) [1] - the main R&D project for the future neutrino factory. It is aimed at measuring the properties of the low energy beam composed of muons, electrons and pions, performing the identification particle by particle. The EMR is made of 48 stacked layers alternately measuring the X- and the Y-coordinate. Each layer consists of 59 triangular scintillator bars. It is shown that the granularity of the detector permits to identify tracks and to measure particle ranges and shower shapes. The read-out is based on FPGA custom made electronics and commercially available modules. Currently it is being built at the University of Geneva.

  5. Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux

    NASA Astrophysics Data System (ADS)

    Yushkov, A. V.; Lagutin, A. A.

    2008-12-01

    It is shown that the primary proton spectrum, reconstructed from sea-level and underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS 3.97, and SIBYLL 2.1 interaction models, demonstrates not only model-dependent intensity, but also a model-dependent form. For correct reproduction of muon spectrum shape the primary proton flux should have a nonconstant power index for all considered models, except SIBYLL 2.1, with break at energies around 10 15 TeV and a value of exponent before break close to that obtained in the ATIC-2 experiment. To validate the presence of this break, understanding of inclusive spectra behavior in the fragmentation region in p-air collisions should be improved, but we show that is impossible to do on the basis of the existing experimental data on primary nuclei, atmospheric muon, and hadron fluxes.

  6. Organosilicon compounds meet subatomic physics: Muon spin resonance.

    PubMed

    West, Robert; Percival, Paul W

    2010-10-21

    Silylenes, germylenes and silenes react with muonium atoms, produced from muons generated at a particle accelerator. The resulting radicals can be studied by muon spin resonance spectroscopy, providing unique information about their structure and reactivity.

  7. An infrared jet in Centaurus A (NGC 5128): Evidence for interaction between the active nucleus and the interstellar medium

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Harvey, P. M.; Tollestrup, E. V.; Mcgregor, P. J.; Hyland, A. R.

    1990-01-01

    In the present study, higher resolution near infrared images of the visually-obscured central region of Centaurus A were obtained in order to investigate the effects of the active nucleus on the surrounding galaxy. Researchers present J(1.25 microns), H(1.65 microns), and K(2.2 microns) images of the central 40 seconds of the galaxy, taken with the Univ. of Texas InSb array camera on the Anglo Australian 3.9 meter telescope. These images reveal a jet extending approx. 10 arcseconds to the northeast of the nucleus at the same position angle as the x ray and radio jets. The infrared jet is most prominent at the shortest wavelength (1.25 microns), where its brightness surpasses that of the nucleus. The blue appearance of the infrared jet is remarkable considering the heavy obscuration that is evident at visual wavelengths. The amount of reddening in the vicinity of the jet is determined from the measured colors of the stellar core of the galaxy, and this value is used to generate an extinction-corrected energy distribution. In contrast to previously studied optical and infrared jets in active nuclei, the short-wavelength prominence of the Cen A jet indicates that it cannot be attributed to synchrotron emission from a beam of relativistic electrons. The remaining viable mechanisms involve an interaction between the interstellar medium and the active nucleus: the infrared radiation from the jet may be due to emission from interstellar gas that has been entrained and heated by the flow of relativistic particles from the nucleus; alternatively, luminous blue stars may have been created by compression of interstellar material by the relativistic plasma. To investigate these proposed mechanisms, near-infrared spectroscopic studies of Cen A are in progress to look for collisionally excited molecular hydrogen emission lines and recombination lines from ionized gas.

  8. Neutrino mass implications for muon decay parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erwin, Rebecca J.; Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-02-01

    We use the scale of neutrino mass and naturalness considerations to obtain model-independent expectations for the magnitude of possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of dimension four and dimension six effective operators that are invariant under the gauge symmetry of the standard model and that contribute to both muon decay and neutrino mass. We show that - in the absence of fine tuning - the most stringent neutrino-mass naturalness bounds on chirality-changing vector operators relevant to muon decay arise from one-loop operatormore » mixing. The bounds we obtain on their contributions to the Michel parameters are 2 orders of magnitude stronger than bounds previously obtained in the literature. In addition, we analyze the implications of one-loop matching considerations and find that the expectations for the size of various scalar and tensor contributions to the Michel parameters are considerably smaller than derived from previous estimates of two-loop operator mixing. We also show, however, that there exist gauge-invariant operators that generate scalar and tensor contributions to muon decay but whose flavor structure allows them to evade neutrino-mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon-decay experiments.« less

  9. A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Darijani, Reza; Negarestani, Ali; Rezaie, Mohammad Reza; Fatemi, Syed Jalil; Akhond, Ahmad

    2016-08-01

    Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/c3, respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.

  10. Lateral distributions of EAS muons (Eμ > 800 MeV) measured with the KASCADE-Grande Muon Tracking Detector in the primary energy range 1016 -1017 eV

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2015-05-01

    The KASCADE-Grande large area (128 m2) Muon Tracking Detector has been built with the aim to identify muons ( Eμthr = 800 MeV) in Extensive Air Showers by track measurements under 18 r.l. shielding. This detector provides high-accuracy angular information (approx. 0.3 °) for muons up to 700 m distance from the shower core. In this work we present the lateral density distributions of muons in EAS measured with the Muon Tracking Detector of the KASCADE-Grande experiment. The density is calculated by counting muon tracks in a muon-to-shower-axis distance range from 100 m to 610 m from showers with reconstructed energy of 1016 -1017 eV and zenith angle θ < 18 ° . In the distance range covered by the experiment, these distributions are well described by functions phenomenologically determined already in the fifties (of the last century) by Greisen. They are compared also with the distributions obtained with the KASCADE scintillator array (Eμthr = 230 MeV) and with distributions obtained using simulated showers.

  11. Production of muons for fusion catalysis using a migma configuration

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Moir, Ralph W.

    1988-08-01

    Muon-catalyzed fusion requires a very efficient means of producing muons. We describe a muon-producing magnetic-mirror scheme with triton migma that may be more energy efficient than any heretofore proposed. If one could catalyze 200 fusions per muon and employ a uranium blanket that would multiply the neutron energy by a factor of 10, one might produce electricity with an overall plant efficiency (ratio of electric energy produced to nuclear energy released) approaching 30%. The self-colliding arrangement of triton orbits will result in many π-'s being produced near the axis of the magnetic mirror. The pions quickly decay into muons, which are transported into a small (few cm diameter) reactor chamber producing approximately 1 MW/m2 neutron flux on the chamber walls.

  12. Detection of back-to-back proton pairs in charged-current neutrino interactions with the ArgoNeuT detector in the NuMI low energy beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; Asaadi, J.

    2014-07-01

    Short range nucleon-nucleon correlations in nuclei (NN SRC) carry important information on nuclear structure and dynamics. NN SRC have been extensively probed through two-nucleon knock- out reactions in both pion and electron scattering experiments. We report here on the detection of two-nucleon knock-out events from neutrino interactions and discuss their topological features as possibly involving NN SRC content in the target argon nuclei. The ArgoNeuT detector in the Main Injector neutrino beam at Fermilab has recorded a sample of 30 fully reconstructed charged current events where the leading muon is accompanied by a pair of protons at the interaction vertex,more » 19 of which have both protons above the Fermi momentum of the Ar nucleus. Out of these 19 events, four are found with the two protons in a strictly back-to-back high momenta configuration directly observed in the final state and can be associated to nucleon Resonance pionless mechanisms involving a pre-existing short range correlated np pair in the nucleus. Another fraction (four events) of the remaining 15 events have a reconstructed back-to-back configuration of a np pair in the initial state, a signature compatible with one-body Quasi Elastic interaction on a neutron in a SRC pair. The detection of these two subsamples of the collected (mu- + 2p) events suggests that mechanisms directly involving nucleon-nucleon SRC pairs in the nucleus are active and can be efficiently explored in neutrino-argon interactions with the LAr TPC technology.« less

  13. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    NASA Astrophysics Data System (ADS)

    Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration

    1983-07-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.

  14. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  15. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containingmore » more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less

  16. Inspection of Alpine glaciers with cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Nishiyama, Ryuichi; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Lechmann, Alessandro; Mair, David; Scampoli, Paola; Schlunegger, Fritz; Vladymyrov, Mykhailo

    2016-04-01

    Radiography using cosmic-ray muons represents a challenging method for probing the bedrock topography beneath Alpine glaciers. We present the current status of our feasibility study at Eiger glacier, situated on the western flank of the Eiger in the Jungfrau region, Central Swiss Alps. The muon radiography is a technique that has been recently developed to investigate the internal density profiles of geoscientific targets. It is based on the measurement of the absorption of the cosmic-ray muons inside a material. Because the energy spectrum of cosmic-ray muons and the energy dependence of muon range have been studied well during the past years, the attenuation of the muon flux can be used to derive the column density, i.e. the density integrated along the muon trajectories, of geoscientific targets. This technique has recently been applied for non-invasive inspection of volcanoes, nuclear reactors, seismic faults, caves and etc. The greatest advantage of the method in the field of glacier studies is that it yields a unique solution of the density underneath a glacier without any assumption of physical properties inside the target. Large density contrasts, as expected between glacier ice (˜ 1.0g/cm3) and bedrock (˜ 2.5g/cm3), would allow us to elucidate the shape of the bedrock in high resolution. Accordingly, this technology will provide for the first time information on the bedrock surface beneath a steep and non-accessible Alpine glacier, in a complementary way with respect to other exploration methods (drilling, ground penetrating radar, seismic survey, gravity explorations and etc.). Our first aim is to demonstrate the feasibility of the method through a case study at the Eiger glacier, situated in the Central Swiss Alps. The Eiger glacier straddles the western flank of the Eiger between 3700 and 2300 m above sea level (a.s.l.). The glacier has shortened by about 150 m during the past 30 years in response to the ongoing global warming, causing a concern for

  17. The Muon g-2 Experiment Overview and Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzbauer, J. L.

    The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 strawmore » tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.« less

  18. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.

    PubMed

    Michnick, S W; Shakhnovich, E

    1998-01-01

    Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.

  19. Image characterization metrics for muon tomography

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  20. Anatomy of a lava dome using muon radiography and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lenat, J.

    2011-12-01

    For the TOMUVOL Collaboration Previous works (e.g. Tanaka et al., 2008) have demonstrated the capacity of muon radiography techniques to image the internal structure of volcanoes. The method is based on the attenuation of the flux of high energy atmospheric muons through a volcanic edifice, which is measured by a muon telescope installed at some distance from the volcano. The telescope is composed of three parallel matrices of detectors in order to record the angle of incidence of the muons. The aperture of the telescope and its resolution are determined by the distance between the matrices, their surface and their segmentation. TOMUVOL is a project, involving astroparticle and particle physicists and volcanologists, aimed at developing muon tomography of volcanoes. The ultimate goal is to construct autonomous, portable, remote controlled muon telescopes to study and monitor active volcanoes. A first experiment has been carried out on a large, 11000-year-old, trachytic dome, the Puy de Dôme, located in the French Central Massif. The telescope system is derived from particle physics experiments. The sensors are glass resistive plate chambers. The telescope has two 1 m2 and one 1/6 m2 planes. It is located 2 km away from the summit of Puy de Dôme (elevation 1465 m), at 868 m in elevation, Signals have been accumulated during several months. A high resolution LiDAR digital terrain model has been used in computing a density model of the dome, averaged along the path of the muons through the dome. In parallel, an electrical resistivity section of the dome has been obtained using a long (2.2 km) line of electrodes. The internal structure of the dome is thus described with two physical parameters (density and resistivity). This allows us to analyse jointly the results of the two types of measurements. At the time of writing, a new muon radiography campaign is being carried out from a different viewpoint. This is the first step towards a tomographic image of the volcano

  1. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  2. Ultra slow muon microscopy by laser resonant ionization at J-PARC, MUSE

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Ikedo, Y.; Shimomura, K.; Strasser, P.; Kawamura, N.; Nishiyama, K.; Koda, A.; Fujimori, H.; Makimura, S.; Nakamura, J.; Nagatomo, T.; Kadono, R.; Torikai, E.; Iwasaki, M.; Wada, S.; Saito, N.; Okamura, K.; Yokoyama, K.; Ito, T.; Higemoto, W.

    2013-04-01

    As one of the principal muon beam line at the J-PARC muon facility (MUSE), we are now constructing a Muon beam line (U-Line), which consists of a large acceptance solenoid made of mineral insulation cables (MIC), a superconducting curved transport solenoid and superconducting axial focusing magnets. There, we can extract 2 × 108/s surface muons towards a hot tungsten target. At the U-Line, we are now establishing a new type of muon microscopy; a new technique with use of the intense ultra-slow muon source generated by resonant ionization of thermal Muonium (designated as Mu; consisting of a μ + and an e - ) atoms generated from the surface of the tungsten target. In this contribution, the latest status of the Ultra Slow Muon Microscopy project, fully funded, is reported.

  3. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  4. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  5. Detecting special nuclear material using muon-induced neutron emission

    NASA Astrophysics Data System (ADS)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius, Joseph, II; Hecht, Adam; Milner, Edward C.; Miyadera, Haruo; Morris, Christopher L.; Perry, John; Poulson, Daniel

    2015-07-01

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  6. Scintillation light from cosmic-ray muons in liquid argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittington, Denver Wade; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay timemore » constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.« less

  7. a Search for Nucleon Decay with Multiple Muon Decays

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas James

    A search was made for nucleon decays which result in multiple delayed muon decays using the HPW (Harvard -Purdue-Wisconsin) water Cerenkov detector. The HPW detector consists of 680 metric tons of purified water instrumented with 704 five-inch photomultiplier tubes. The phototubes are situated on a volume array with a lattice spacing of approximately one meter, and the inside walls of the detector are lined with mirrors. This combination of mirrors and a volume array of phototubes gives the HPW detector a low trigger energy threshold and a high muon decay detection efficiency. The detector is surrounded by wire chambers to provide an active shield, and is located at a depth of 1500 meters-of-water-equivalent in the Silver King Mine in Park City, Utah. The entire HPW data set, consisting of 17.2 million events collec- ted during 282 live days between May 1983 and October 1984, was analyzed. No contained events with multiple muon decays were found in a 180 ton fiducial volume. This is consistent with the background rate from neutrino interactions, which is expected to be 0.7 (+OR-) 0.2 events. The calculated lower lifetime limit for the decay mode p (--->) (mu)('+)(mu)('+)(mu)('-) is: (tau)/B.R. = 1 x 10('31) years (90% C.L.). Limits are calculated for ten other proton decay modes and five bound neutron decay modes, most of which are around 4 x 10('30) years (90% C.L.). No previous studies have reported results from direct searches for eight of these modes.

  8. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  9. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  10. Measuring the Muon Neutrino Charged Current Cross Section on Water using the Near Detector of T2K

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi

    2012-10-01

    The Near Detector of the T2K Long Baseline Neutrino Oscillation Experiment comprises of several sub-detectors working together to study neutrino interactions. The neutrinos are provided by a powerful off-axis, accelerator generated neutrino beam located at the J-PARC facility in Tokai, Japan. The first sub-detector in the path of travelling neutrinos, the Pi-Zero Detector (P0D), is made of layers of scintillating plastic, lead, brass and bags of water. The next sub-detector, the Tracker, consists of alternating Time Projection Chambers (TPC) and Fine Grained scintillator Detectors (FGD). We outline the procedure for extracting a muon neutrino charged current cross section on water-only by selecting muons originating in the P0D and travelling through the Tracker. We compare data collected while the P0D water bags are filled with water against data from P0D water bags filled with air. A detailed detector simulation utilizing NEUT and GENIE neutrino interaction generators is used in conjunction with a Bayesian Unfolding scheme to correct for detector effects in the data. The end result is a model-independent double differential neutrino cross section as a function of muon momentum and direction.

  11. Where to place the positive muon in the Periodic Table?

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

  12. Earth Versus Neutrinos: Measuring the Total Muon-Neutrino-to-Nucleon Cross Section at Ultra-High Energies through Differential Earth Absorption of Muon Neutrinos from Cosmic Rays Using the IceCube Detector

    NASA Astrophysics Data System (ADS)

    Miarecki, Sandra Christine

    The IceCube Neutrino Detector at the South Pole was constructed to measure the flux of high-energy neutrinos and to try to identify their cosmic sources. In addition to these astrophysical neutrinos, IceCube also detects the neutrinos that result from cosmic ray interactions with the atmosphere. These atmospheric neutrinos can be used to measure the total muon neutrino-to-nucleon cross section by measuring neutrino absorption in the Earth. The measurement involves isolating a sample of 10,784 Earth-transiting muons detected by IceCube in its 79-string configuration. The cross-section is determined using a two-dimensional fit in measured muon energy and zenith angle and is presented as a multiple of the Standard Model expectation as calculated by Cooper-Sarkar, Mertsch, and Sarkar in 2011. A multiple of 1.0 would indicate agreement with the Standard Model. The results of this analysis find the multiple to be 1.30 (+0.21 -0.19 statistical) (+0.40 -0.44 systematic) for the neutrino energy range of 6.3 to 980 TeV, which is in agreement with the Standard Model expectation.

  13. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    DOE PAGES

    Bogacz, S. A.

    2018-02-01

    In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less

  14. Scattering calculations and confining interactions

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Maung, Khin M.

    1993-01-01

    Most of the research work performed under this grant were concerned with strong interaction processes ranging from kaon-nucleon interaction to proton-nucleus scattering calculations. Research performed under this grant can be categorized into three groups: (1) parametrization of fundamental interactions, (2) development of formal theory, and (3) calculations based upon the first two. Parametrizations of certain fundamental interactions, such as kaon-nucleon interaction, for example, were necessary because kaon-nucleon scattering amplitude was needed to perform kaon-nucleus scattering calculations. It was possible to calculate kaon-nucleon amplitudes from the first principle, but it was unnecessary for the purpose of the project. Similar work was also done for example for anti-protons and anti-nuclei. Formal developments to some extent were also pursued so that consistent calculations can be done.

  15. Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $$\\sqrt{s}=$$ 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013-2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energymore » $$\\sqrt{s}=$$ 13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously.« less

  16. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  17. Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions

    DTIC Science & Technology

    2001-08-01

    25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The

  18. Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, S.; Earl, M.; Kearns, E.

    2004-10-15

    We present the results of indirect searches for Weakly Interacting Massive Particles (WIMPs), with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons. The search is performed by looking for an excess of high energy muon neutrinos from WIMP annihilations in the Sun, the core of the Earth, and the Galactic Center, as compared to the number expected from the atmospheric neutrino background. No statistically significant excess was seen. We calculate the flux limits in various angular cones around each of the above celestial objects. We obtain conservative model-independent upper limits on the WIMP-nucleon crossmore » section as a function of WIMP mass, and compare these results with the corresponding results from direct dark matter detection experiments.« less

  19. Muon Physics at Run-I and its upgrade plan

    NASA Astrophysics Data System (ADS)

    Benekos, Nektarios Chr.

    2015-05-01

    The Large Hadron Collider (LHC) and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb-1 expected for LHC running to 3000 fb-1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  20. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  1. Muon (g-2) Technical Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grange, J.

    The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and nowmore » relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.« less

  2. Muon spin rotation studies

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The bulk of the muon spin rotation research work centered around the development of the muon spin rotation facility at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory (BNL). The collimation system was both designed and fabricated at Virginia State University. This improved collimation system, plus improvements in detectors and electronics enabled the acquisition of spectra free of background out to 15 microseconds. There were two runs at Brookhaven in 1984, one run was devoted primarily to beam development and the other run allowed several successful experiments to be performed. The effect of uniaxial strain on an Fe(Si) crystal at elevated temperature (360K) was measured and the results are incorporated herein. A complete analysis of Fe pulling data taken earlier is included.

  3. Development and Testing of Scintillating Detectors for the Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Martinez, Benjamin; Diamond, Edward; Sblendorio, Alec; Gray, Frederick

    2016-09-01

    The precise value of the muon's anomalous magnetic moment that was measured at Brookhaven National Laboratory E821 differed by more than three standard deviations from predictions of the Standard Model. The Muon g-2 Experiment at Fermilab will attain a more precise measurement by a factor of three by observing the muon spin precession frequency in a magnetic field. This improved measurement could lead to evidence of physics beyond the Standard Model. A thin-scintillator entrance (T0) counter prototype is being tested for possible use in the experiment to determine the intensity and temporal profile of the beam as it is injected into the muon storage ring. The counter is also being evaluated to determine whether it can monitor undesired particles that arrive after the main beam pulse. The unique design of the entrance counter uses a silicon photomultiplier to read the light output from a scintillator. The progress of the design of the T0 entrance counter along with the results of light output tests from a beta source and the SLAC high-energy electron beam are the primary foci of this presentation. The status of scintillating fiber harp beam monitor detectors that will also be used in the g-2 Experiment to detect the position and width of the muon beam will also be presented. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1505887.

  4. New Measurement of the Flux of Atmospheric Muons

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; de Marzo, C.; Grimani, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Bravar, U.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Golden, R. L.; Stochaj, S. J.

    1999-06-01

    We report a new measurement of the momentum spectra of both positive and negative muons as a function of atmospheric depth in the momentum range 0.3-2 and 0.3-40 GeV/c, respectively. The measured flux values have been compared with the spectra obtained from simulations, which were carried out to interpret the atmospheric neutrino data. We find that our data disagree with the results from the simulations. The ratio of the flux of muons derived from simulations to that measured is at largest 1.8 and varies with atmospheric depth and muon momentum.

  5. Muon reconstruction in the Daya Bay water pools

    DOE PAGES

    Hackenburg, R. W.

    2017-08-12

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs’ timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Dayamore » Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, we describe an algorithm which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs’ charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs’ timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5° in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.« less

  6. Muon reconstruction in the Daya Bay water pools

    NASA Astrophysics Data System (ADS)

    Hackenburg, R. W.

    2017-11-01

    Muon reconstruction in the Daya Bay water pools would serve to verify the simulated muon fluxes and offer the possibility of studying cosmic muons in general. This reconstruction is, however, complicated by many optical obstacles and the small coverage of photomultiplier tubes (PMTs) as compared to other large water Cherenkov detectors. The PMTs' timing information is useful only in the case of direct, unreflected Cherenkov light. This requires PMTs to be added and removed as an hypothesized muon trajectory is iteratively improved, to account for the changing effects of obstacles and direction of light. Therefore, muon reconstruction in the Daya Bay water pools does not lend itself to a general fitting procedure employing smoothly varying functions with continuous derivatives. Here, an algorithm is described which overcomes these complications. It employs the method of Least Mean Squares to determine an hypothesized trajectory from the PMTs' charge-weighted positions. This initially hypothesized trajectory is then iteratively refined using the PMTs' timing information. Reconstructions with simulated data reproduce the simulated trajectory to within about 5°in direction and about 45 cm in position at the pool surface, with a bias that tends to pull tracks away from the vertical by about 3°.

  7. Muon trackers for imaging a nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kume, N.; Miyadera, H.; Morris, C. L.

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  8. Muon trackers for imaging a nuclear reactor

    DOE PAGES

    Kume, N.; Miyadera, H.; Morris, C. L.; ...

    2016-09-21

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. Furthermore, the system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m 2 area. In each muon tracker there consists 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when themore » core is imaged from outside the reactor building.« less

  9. Muon polarization in the MEG experiment: predictions and measurements

    DOE PAGES

    Baldini, A. M.; Bao, Y.; Baracchini, E.; ...

    2016-04-22

    The MEG experiment makes use of one of the world’s most intense low energy muon beams, in order to search for the lepton flavour violating process μ +→e +γ. We determined the residual beam polarization at the thin stopping target, by measuring the asymmetry of the angular distribution of Michel decay positrons as a function of energy. The initial muon beam polarization at the production is predicted to be P μ=-1 by the Standard Model (SM) with massless neutrinos. We estimated our residual muon polarization to be P μ= -0.86 ± 0.02 (stat)more » $$+0.05\\atop{-0.06}$$ (syst) at the stopping target, which is consistent with the SM predictions when the depolarizing effects occurring during the muon production, propagation and moderation in the target are taken into account. The knowledge of beam polarization is of fundamental importance in order to model the background of our μ +→e +γ search induced by the muon radiative decay: μ +→e +$$\\bar{v}$$ μν eγ.« less

  10. Measurement of double-differential muon neutrino charged-current interactions on C8 H8 without pions in the final state using the T2K off-axis beam

    NASA Astrophysics Data System (ADS)

    Abe, K.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Berardi, V.; Berkman, S.; Bhadra, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buizza Avanzini, M.; Calland, R. G.; Cao, S.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P. F.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K. E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S. G.; Giganti, C.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D. R.; Haegel, L.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z. J.; Litchfield, R. P.; Li, X.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Mezzetto, M.; Mijakowski, P.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Patel, N. D.; Pavin, M.; Payne, D.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J. T.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L. F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Wilson, J. R.; Wilson, R. J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2016-06-01

    We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734 ×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cos θμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ =(0.417 ±0.047 (syst ) ±0.005 (stat ) )×10-38 cm2 nucleon-1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cos θμ>0.6 and pμ>200 MeV ) is σ =(0.202 ±0.036 (syst ) ±0.003 (stat ) )×10-38 cm2 nucleon-1 .

  11. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  12. Industrial radiography with cosmic-ray muons: A progress report

    NASA Astrophysics Data System (ADS)

    Gilboy, W. B.; Jenneson, P. M.; Simons, S. J. R.; Stanley, S. J.; Rhodes, D.

    2007-09-01

    Cosmic-ray produced muons arrive at the surface of the earth with enormous energies ranging up to 1012 GeV. There have been sporadic attempts to exploit their extreme penetration through matter to probe the internal structures of very large objects, including an Egyptian pyramid and a volcano but their very low intensity per unit area ( ≈1 cm-2 per min) generally restricts the practicably attainable spatial resolution to large dimensions. Nevertheless the more intense low energy region of the muon spectrum has recently been shown to be capable of detecting high-Z objects with dimensions of the order of 10 cm hidden inside large transport containers in measurement times of minutes. These various developments have encouraged further studies of potential industrial uses of cosmic-ray muons in industrial applications. In order to gain maximum benefit from the low muon flux large area detectors are required and plastic scintillators offer useful advantages in size, cost and simplicity. Scintillator slabs up to 1 m2 square and 76.2 mm thick are undergoing testing for applications in the nuclear industry. The most direct approach employs photomultiplier tubes at each corner to measure the relative sizes of muon induced pulses to determine the location of each muon track passing through the scintillator. The performance of this technique is reported and its imaging potential is assessed.

  13. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    PubMed

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Developing the Muon Facilities at ISIS

    NASA Astrophysics Data System (ADS)

    Hillier, A. D.; Aramini, M.; Baker, P. J.; Berlie, A.; Biswas, P. K.; Cottrell, S. P.; Ishida, K.; Loe, T.; Lord, J. S.; Pooley, D. E.; Pratt, F. L.; Rhodes, N. J.; da Silva Afonso, R. J.; Telling, M. T. F.; Yokoyama, K.

    For the last 30 years, muon experiments at ISIS have been making a significant contribution to a number of scientific fields. However, as a community of researchers, we are always aiming to improve and extend the instruments' capabilities. In this paper, we will review key developments at the ISIS muon facility, the primary beamline upgrade and recent technique developments, before taking a forward look to new projects, such as: the upgrade for MuSR, e-learning, detector development and sample environment.

  15. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  16. Contralateral Effects and Binaural Interactions in Dorsal Cochlear Nucleus

    PubMed Central

    2005-01-01

    The dorsal cochlear nucleus (DCN) receives afferent input from the auditory nerve and is thus usually thought of as a monaural nucleus, but it also receives inputs from the contralateral cochlear nucleus as well as descending projections from binaural nuclei. Evidence suggests that some of these commissural and efferent projections are excitatory, whereas others are inhibitory. The goals of this study were to investigate the nature and effects of these inputs in the DCN by measuring DCN principal cell (type IV unit) responses to a variety of contralateral monaural and binaural stimuli. As expected, the results of contralateral stimulation demonstrate a mixture of excitatory and inhibitory influences, although inhibitory effects predominate. Most type IV units are weakly, if at all, inhibited by tones but are strongly inhibited by broadband noise (BBN). The inhibition evoked by BBN is also low threshold and short latency. This inhibition is abolished and excitation is revealed when strychnine, a glycine-receptor antagonist, is applied to the DCN; application of bicuculline, a GABAA-receptor antagonist, has similar effects but does not block the onset of inhibition. Manipulations of discrete fiber bundles suggest that the inhibitory, but not excitatory, inputs to DCN principal cells enter the DCN via its output pathway, and that the short latency inhibition is carried by commissural axons. Consistent with their respective monaural effects, responses to binaural tones as a function of interaural level difference are essentially the same as responses to ipsilateral tones, whereas binaural BBN responses decrease with increasing contralateral level. In comparison to monaural responses, binaural responses to virtual space stimuli show enhanced sensitivity to the elevation of a sound source in ipsilateral space but reduced sensitivity in contralateral space. These results show that the contralateral inputs to the DCN are functionally relevant in natural listening

  17. The performance of the Muon Veto of the G erda experiment

    NASA Astrophysics Data System (ADS)

    Freund, K.; Falkenstein, R.; Grabmayr, P.; Hegai, A.; Jochum, J.; Knapp, M.; Lubsandorzhiev, B.; Ritter, F.; Schmitt, C.; Schütz, A.-K.; Jitnikov, I.; Shevchik, E.; Shirchenko, M.; Zinatulina, D.

    2016-05-01

    Low background experiments need a suppression of cosmogenically induced events. The Gerda experiment located at Lngs is searching for the 0ν β β decay of ^{76}Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the water tank surrounding the Gerda cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of \\varepsilon _\\upmu d=(99.935± 0.015) % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of \\varepsilon _{\\upmu r}=(99.2_{-0.4}^{+0.3}) % was found. Without veto condition the muons by themselves would cause a background index of {BI}_{μ }=(3.16 ± 0.85)× 10^{-3} cts/(keV\\cdot kg\\cdot year) at Q_{β β }.

  18. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE PAGES

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 10 19 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array atmore » an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 10 7 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln N µ/d ln E of muons with increasing energy between 4 × 10 18 eV and 5 × 10 19 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  19. Commissioning of the ATLAS Muon Spectrometer with cosmic rays

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Martin, T. Fonseca; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martini, A.; Martyniuk, A. C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Garcia, R. Murillo; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Oliver, J.; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J. P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M. S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D. A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X. H.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tuggle, J. M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Della Porta, G. Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions.

  20. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and reviewmore » how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from

  1. The Global Muon Detector Network -GMDN and the space situational awareness

    NASA Astrophysics Data System (ADS)

    Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank

    Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the

  2. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Zaitsev, A. A.

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsionsmore » with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.« less

  3. The measurement of Bethe-Heitler bremstrahlung in muon-hydrogen interactions at 200 GeV

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Hinssieux, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1984-12-01

    Using a lead glass detector installed in the EMC forward spectrometer radiative photons have been measured in 200 GeV muon-hydrogen collisions. The results are compared with the standard QED one photon emission theory of Mo and Tsai and also with the more recent predictions of a multiphoton emission theory of Chahine. We conclude that there is no evidence for any deviation from the standard theory, in terms of the yield and angular distribution of photons with fractional energy, z>0.7.

  4. Role of the Muon in Semiconductor Research

    NASA Astrophysics Data System (ADS)

    Mengyan, Rick (P. W.)

    Muons are used in semiconductor research as an experimentally accessible analog to the isolated Hydrogen (H) impurity - a complex that is very difficult (or impossible) to study by other means. Hydrogen impurities of any concentration can modify the electrical, optical or magnetic properties of the host. For instance, H can be incorporated to remove electrically active levels from the energy gap (i.e. passivation) while some can form isolated centers that tend to be responsible for the trap and release of charge carriers and participate in site and charge-state dynamics which certainly affect the electrical properties of the host. Therefore, it can be quite useful to characterize these impurities in semiconducting materials that are of interest for use in devices. A muon has the same charge and spin as a proton but a mass that is nine times lighter. When implanted in a target material, a positively charged muon can behave as a light proton or bind with an electron to form a complex known as Muonium (Mu) with properties that are very similar to that of ionic or neutral H, respectively. A result of these similarities and direct non-destructive implantation is that Mu provides a direct measure of local electronic structure, thermal stability and charge-state transitions of these impurity centers. Since any material can be subjected to muon implantation and it is the muons themselves that mimic the H impurity centers, these measurements do not depend (at all) on the host's solubility of hydrogen nor do they require some minimum concentration; unlike many other techniques, such as EPR, ENDOR, NMR, or IR vibrational spectroscopy. Here we summarize major contributions muons have made to the field of semiconductor research followed by a few case studies to demonstrate the technique and detailed knowledge of the physical and electronic structures as well as dynamics (e.g.: charge-state and site transitions; local motion; long-range diffusion) of Mu/H that can be obtained.

  5. Human-brain ferritin studied by muon spin rotation: a pilot study

    NASA Astrophysics Data System (ADS)

    Bossoni, Lucia; Grand Moursel, Laure; Bulk, Marjolein; Simon, Brecht G.; Webb, Andrew; van der Weerd, Louise; Huber, Martina; Carretta, Pietro; Lascialfari, Alessandro; Oosterkamp, Tjerk H.

    2017-10-01

    Muon spin rotation is employed to investigate the spin dynamics of ferritin proteins isolated from the brain of an Alzheimer’s disease (AD) patient and of a healthy control, using a sample of horse-spleen ferritin as a reference. A model based on the Néel theory of superparamagnetism is developed in order to interpret the spin relaxation rate of the muons stopped by the core of the protein. Using this model, our preliminary observations show that ferritins from the healthy control are filled with a mineral compatible with ferrihydrite, while ferritins from the AD patient contain a crystalline phase with a larger magnetocrystalline anisotropy, possibly compatible with magnetite or maghemite.

  6. M$^3$: A New Muon Missing Momentum Experiment to Probe $$(g-2)_{\\mu}$$ and Dark Matter at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Yonatan; Krnjaic, Gordan; Tran, Nhan

    New light, weakly-coupled particles are commonly invoked to address the persistentmore » $$\\sim 4\\sigma$$ anomaly in $$(g-2)_\\mu$$ and serve as mediators between dark and visible matter. If such particles couple predominantly to heavier generations and decay invisibly, much of their best-motivated parameter space is inaccessible with existing experimental techniques. In this paper, we present a new fixed-target, missing-momentum search strategy to probe invisibly decaying particles that couple preferentially to muons. In our setup, a relativistic muon beam impinges on a thick active target. The signal consists of events in which a muon loses a large fraction of its incident momentum inside the target without initiating any detectable electromagnetic or hadronic activity in downstream veto systems. We propose a two-phase experiment, M$^3$ (Muon Missing Momentum), based at Fermilab. Phase 1 with $$\\sim 10^{10}$$ muons on target can test the remaining parameter space for which light invisibly-decaying particles can resolve the $$(g-2)_\\mu$$ anomaly, while Phase 2 with $$\\sim 10^{13}$$ muons on target can test much of the predictive parameter space over which sub-GeV dark matter achieves freeze-out via muon-philic forces, including gauged $$U(1)_{L_\\mu - L_\\tau}$$.« less

  7. Bayesian image reconstruction for improving detection performance of muon tomography.

    PubMed

    Wang, Guobao; Schultz, Larry J; Qi, Jinyi

    2009-05-01

    Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.

  8. Generating Low Beta Regions with Quadrupoles for Final Muon Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, J. G.; Cremaldi, L. M.; Hart, T. L.

    2017-05-01

    Muon beams and colliders are rich sources of new physics, if muons can be cooled. A normalized rms transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4beamline, and MAD-X to explore using a 400 MeV/c muon beam and strong focusing quadrupoles to approach a normalized transverse emittance of 100 microns and finish 6D muon cooling. The low beta regions produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittancemore » is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Work remains to be done on chromaticity correction.« less

  9. Muon Physics at the Paul Scherrer Institut (psi) and at Triumf

    NASA Astrophysics Data System (ADS)

    Walter, Hans-Kristian

    Muons can be produced abundantly at so-called pion factories. Fundamental information about todays standard model of particle physics is obtained by studying their decays. New experiments have been proposed at PSI and TRIUMF to measure the muons lifetime, the Michel parameters, describing its main decay μ+ → e+ + ve + ` vμ, as well as the decay positrons polarizations. Muon and electron number violating decays like μ+ → e+ + γ and neutrinoless muon electron conversion in nuclei μ- N → e- N are especially sensitive to new physics beyond the standard model. The moon when bound in a muonic atom or to an electron to form muonium, can also serve as a tool to investigate properties of its binding partner and the electroweak binding forces. Muonic and pionic hydrogen isotopes and Helium are mostly being studied. Finally muons can be applied to address problems in solid state and surface physics. Here cold and ultracold muons are of special interest, because of their very small phase space. Muon catalyzed fusion in addtition to offering a rich field for atomic and molecular physics could be used in technological applications like energy production (in connection with conventional breeders) or to construct a strong source of 14 MeV neutrons.

  10. Slow-muon study of quaternary solar-cell materials: Single layers and p -n junctions

    NASA Astrophysics Data System (ADS)

    Alberto, H. V.; Vilão, R. C.; Vieira, R. B. L.; Gil, J. M.; Weidinger, A.; Sousa, M. G.; Teixeira, J. P.; da Cunha, A. F.; Leitão, J. P.; Salomé, P. M. P.; Fernandes, P. A.; Törndahl, T.; Prokscha, T.; Suter, A.; Salman, Z.

    2018-02-01

    Thin films and p -n junctions for solar cells based on the absorber materials Cu (In ,G a ) Se2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu+ state at the heterojunction interface as well as at the surface of the Cu (In ,G a ) Se2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.

  11. Topics in nuclear chromodynamics: Color transparency and hadronization in the nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S.J.

    1988-03-01

    The nucleus plays two complimentary roles in quantum chromodynamics: (1) A nuclear target can be used as a control medium or background field to modify or probe quark and gluon subprocesses. Some novel examples are color transparency, the predicted transparency of the nucleus to hadrons participating in high momentum transfer exclusive reactions, and formation zone phenomena, the absence of hard, collinear, target-induced radiation by a quark or gluon interacting in a high momentum transfer inclusive reaction if its energy is large compared to a scale proportional to the length of the target. (Soft radiation and elastic initial state interactions inmore » the nucleus still occur.) Coalescence with co-moving spectators is discussed as a mechanism which can lead to increased open charm hadroproduction, but which also suppresses forward charmonium production (relative to lepton pairs) in heavy ion collisions. Also discussed are some novel features of nuclear diffractive amplitudes--high energy hadronic or electromagnetic reactions which leave the entire nucleus intact and give nonadditive contributions to the nuclear structure function at low /kappa cur//sub Bj/. (2) Conversely, the nucleus can be studied as a QCD structure. At short distances, nuclear wave functions and nuclear interactions necessarily involve hidden color, degrees of freedom orthogonal to the channels described by the usual nucleon or isobar degrees of freedom. At asymptotic momentum transfer, the deuteron form factor and distribution amplitude are rigorously calculable. One can also derive new types of testable scaling laws for exclusive nuclear amplitudes in terms of the reduced amplitude formalism.« less

  12. Commissioning of the ATLAS Muon Spectrometer with cosmic rays

    DOE PAGES

    Aad, G; Abbott, B; Abdallah, J; ...

    2010-12-01

    The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. Themore » results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton-proton collisions. © 2010 CERN for the benefit of the ATLAS collaboration.« less

  13. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grange, Joseph M.

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current andmore » future neutrino experiments.« less

  14. The design and construction of the MICE Electron-Muon Ranger

    NASA Astrophysics Data System (ADS)

    Asfandiyarov, R.; Bene, P.; Blondel, A.; Bolognini, D.; Cadoux, F.; Debieux, S.; Drielsma, F.; Giannini, G.; Graulich, J. S.; Husi, C.; Karadzhov, Y.; Lietti, D.; Masciocchi, F.; Nicola, L.; Noah Messomo, E.; Prest, M.; Rothenfusser, K.; Sandstrom, R.; Vallazza, E.; Verguilov, V.; Wisting, H.

    2016-10-01

    The Electron-Muon Ranger (EMR) is a fully-active tracking-calorimeter installed in the beam line of the Muon Ionization Cooling Experiment (MICE). The experiment will demonstrate ionization cooling, an essential technology needed for the realization of a Neutrino Factory and/or a Muon Collider. The EMR is designed to measure the properties of low energy beams composed of muons, electrons and pions, and perform the identification particle-by-particle. The detector consists of 48 orthogonal layers of 59 triangular scintillator bars. The readout is implemented using FPGA custom made electronics and commercially available modules. This article describes the construction of the detector from its design up to its commissioning with cosmic data.

  15. Muon production height studies with the air shower experiment KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Büttner, C.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Ludwig, M.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Obenland, R.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-01-01

    A large area (128 m2) muon tracking detector, located within the KASCADE experiment, has been built with the aim to identify muons (Eμ > 0.8 GeV) and their angular correlation in extensive air showers by track measurements under 18 r.l. shielding. Orientation of the muon track with respect to the shower axis is expressed in terms of the radial and tangential angles, which are the basic tools for all muon investigations with the tracking detector. By means of triangulation the muon production height is determined. Distributions of measured production heights are compared to CORSIKA shower simulations. Analysis of these heights reveals a transition from light to heavy cosmic ray primary particles with increasing shower energy in the energy region of the 'Knee' of the cosmic ray spectrum

  16. Horizontal cosmic ray muon radiography for imaging nuclear threats

    NASA Astrophysics Data System (ADS)

    Morris, Christopher L.; Bacon, Jeffrey; Borozdin, Konstantin; Fabritius, Joseph; Miyadera, Haruo; Perry, John; Sugita, Tsukasa

    2014-07-01

    Muon tomography is a technique that uses information contained in the Coulomb scattering of cosmic ray muons to generate three dimension images of volumes between tracking detectors. Advantages of this technique are the muons ability to penetrate significant overburden and the absence of any additional dose beyond the natural cosmic ray flux. Disadvantages include the long exposure times and limited resolution because of the low flux. Here we compare the times needed to image objects using both vertically and horizontally mounted tracking detectors and we develop a predictive model for other geometries.

  17. Dynamics of Galectin-3 in the Nucleus and Cytoplasm

    PubMed Central

    Haudek, Kevin C.; Spronk, Kimberly J.; Voss, Patricia G.; Patterson, Ronald J.; Wang, John L.; Arnoys, Eric J.

    2009-01-01

    This review summarizes selected studies on galectin-3 (Gal3) as an example of the dynamic behavior of a carbohydrate-binding protein in the cytoplasm and nucleus of cells. Within the 15-member galectin family of proteins, Gal3 (Mr ~30,000) is the sole representative of the chimera subclass in which a proline- and glycine-rich NH2-terminal domain is fused onto a COOH-terminal carbohydrate recognition domain responsible for binding galactose-containing glycoconjugates. The protein shuttles between the cytoplasm and nucleus on the basis of targeting signals that are recognized by importin(s) for nuclear localization and exportin-1 (CRM1) for nuclear export. Depending on the cell type, specific experimental conditions in vitro, or tissue location, Gal3 has been reported to be exclusively cytoplasmic, predominantly nuclear, or distributed between the two compartments. The nuclear versus cytoplasmic distribution of the protein must reflect, then, some balance between nuclear import and export, as well as mechanisms of cytoplasmic anchorage or binding to a nuclear component. Indeed, a number of ligands have been reported for Gal3 in the cytoplasm and in the nucleus. Most of the ligands appear to bind Gal3, however, through protein-protein interactions rather than through protein-carbohydrate recognition. In the cytoplasm, for example, Gal3 interacts with the apoptosis repressor Bcl-2 and this interaction may be involved in Gal3’s anti-apoptotic activity. In the nucleus, Gal3 is a required pre-mRNA splicing factor; the protein is incorporated into spliceosomes via its association with the U1 small nuclear ribonucleoprotein (snRNP) complex. Although the majority of these interactions occur via the carbohydrate recognition domain of Gal3 and saccharide ligands such as lactose can perturb some of these interactions, the significance of the protein’s carbohydrate-binding activity, per se, remains a challenge for future investigations. PMID:19616076

  18. Muon energy estimate through multiple scattering with the MACRO detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; de Deo, M.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lindozzi, M.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.; MACRO Collaboration

    2002-10-01

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E μ<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.

  19. Optical response of highly reflective film used in the water Cherenkov muon veto of the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Geis, Ch.; Grignon, C.; Oberlack, U.; Ramírez García, D.; Weitzel, Q.

    2017-06-01

    The XENON1T experiment is the most recent stage of the XENON Dark Matter Search, aiming for the direct detection of dark matter candidates, such as the Weakly Interacting Massive Particles (WIMPs). The projected sensitivity for the spin-independent WIMP-nucleon elastic scattering cross-section is σ ≈ 2 × 10-47 cm2 for a WIMP mass of mχ = 50 GeV/c2. To reach its projected sensitivity, the background has to be reduced by two orders of magnitude compared to its predecessor XENON100. This requires a water Cherenkov muon veto surrounding the XENON1T TPC, both to shield external backgrounds and to tag muon-induced energetic neutrons through detection of a passing muon or the secondary shower induced by a muon interacting in the surrounding rock. The muon veto is instrumented with 84 8'' PMTs with high quantum efficiency (QE) in the Cherenkov regime and the walls of the watertank are clad with the highly reflective DF2000MA foil by 3M. Here, we present a study of the reflective properties of this foil, as well as the measurement of its wavelength shifting (WLS) properties. Furthermore, we present the impact of reflectance and WLS on the detection efficiency of the muon veto, through the use of a Monte Carlo simulation carried out with the Geant4 toolkit. The measurements yield a specular reflectance of ≈100% for wavelengths larger than 400 nm, while ≈90% of the incoming light below 370 nm is absorbed by the foil. Approximately 3-7.5% of the light hitting the foil within the wavelength range 250 nm <= λ <= 390 nm is used for the WLS process. The intensity of the emission spectrum of the WLS light is slightly dependent on the absorbed wavelength and shows the shape of a rotational-vibrational fluorescence spectrum, peaking at around λ ≈ 420 nm. Adjusting the reflectance values to the measured ones in the Monte Carlo simulation originally used for the muon veto design, the veto detection efficiency remains unchanged. Including the wavelength shifting in the

  20. Feasibility of Cosmic-Ray Muon Intensity Measurements for Tunnel Detection

    DTIC Science & Technology

    1990-06-01

    BUR-’TR-3110 TECHNICAL REPORT BRL-TR-3110 mBRL I• FEASIBILITY OF COSMIC - RAY MUON INTENSITY MEASUREMENTS FOR TUNNEL DETECTION AIVARS CELIN. , JUNE...Feasibility of Cosmic - Ray Muon Intensity Measurements f or Tunnel Detection 612786H20001 4.AUTNOR(S) Aivars Celmins 7. PERORMING ORGANIZATION NAMe(S) AND... cosmic - ray muon intensity depends on the amount, of material above the point of reference and is therefore influenced by anomalies in rock density

  1. S100A4 interacts with p53 in the nucleus and promotes p53 degradation.

    PubMed

    Orre, L M; Panizza, E; Kaminskyy, V O; Vernet, E; Gräslund, T; Zhivotovsky, B; Lehtiö, J

    2013-12-05

    S100A4 is a small calcium-binding protein that is commonly overexpressed in a range of different tumor types, and it is widely accepted that S100A4 has an important role in the process of cancer metastasis. In vitro binding assays has shown that S100A4 interacts with the tumor suppressor protein p53, indicating that S100A4 may have additional roles in tumor development. In the present study, we show that endogenous S100A4 and p53 interact in complex samples, and that the interaction increases after inhibition of MDM2-dependent p53 degradation using Nutlin-3A. Further, using proximity ligation assay, we show that the interaction takes place in the cell nucleus. S100A4 knockdown experiments in two p53 wild-type cell lines, A549 and HeLa, resulted in stabilization of p53 protein, indicating that S100A4 is promoting p53 degradation. Finally, we demonstrate that S100A4 knockdown leads to p53-dependent cell cycle arrest and increased cisplatin-induced apoptosis. Thus, our data add a new layer to the oncogenic properties of S100A4 through its inhibition of p53-dependent processes.

  2. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perevalov, Denis

    2009-12-01

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for v μ → v e neutrino oscillations at Δm 2 ~ 1 eV 2 using an intense neutrino flux with an average energy E v ~ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0 x 10 21 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semiinclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral currentmore » π 0, charged current quasi-elastic (CCQE), charged current π +, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (vN → vN) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Δs, this however requires a separation of NCE proton (vp → vp) from NCE neutron (vn → vn) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Δs measurement. In this thesis MiniBooNE reports the NCE (n+p) cross-section, the measurement of the

  3. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    NASA Astrophysics Data System (ADS)

    Perevalov, Denis

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for numu → nu e neutrino oscillations at Deltam 2 ˜ 1 eV2 using an intense neutrino flux with an average energy Enu ˜ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0x1021 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semi-inclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral current pi 0, charged current quasi-elastic (CCQE), charged current pi +, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (nuN → nu N) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Deltas, this however requires a separation of NCE proton (nup → nu p) from NCE neutron (nun → nun ) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Deltas measurement. In this thesis MiniBooNE reports the NCE (n+p) cross-section, the measurement

  4. Material science and solid state physics studies with positive muon spin precession. [fe(a1) alloys

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1979-01-01

    The hyperfine field on the muon, B sub hf, at interstitial sites in dilute Fe(Al) alloys was measured for four different concentrations of Al and as a function of temperature by the muon spin rotation method. The magnitude of B sub hf, which is negative, decreases at rates ranging from 0.09 + or - 0.03% per at.% Al at 200 K to an asymptotic limit of 0.35 + or - far above 440 K. This behavior shows that sites near the Al impurity are weakly repulsive to the muon, with an interaction potential of 13 + or - 3 meV. In order to fit the temperature dependence of the hyperfine field, it is necessary to hypothesize the existence of a small concentration of unidentified defects, possibly dislocations, which are attractive to the muon. Although the Al impurity acts as a non-magnetic hole in the Fe lattice, the observed decrease in B sub hf is only 35% of the decrease in the bulk magnetization. It is concluded that B sub hf is determined mainly by the enhanced screening of conduction electrons in Fe and Fe(Al). Since the influence of the Al impurity on the neighboring Fe monents is very small, most of the change in B sub hf is therefore attributed to the increase in conduction electron polarization of the Al impurity.

  5. The muon tomography Diaphane project : recent upgrades and measurements

    NASA Astrophysics Data System (ADS)

    Jourde, Kevin; Gibert, Dominique; Marteau, Jacques; de Bremond d'Ars, Jean; Gardien, Serge; Girerd, Claude; Ianigro, Jean-Christophe; Carbone, Daniele

    2014-05-01

    Muon tomography measures the flux of cosmic muons crossing geological bodies to determine their density. Large density heterogeneities were detected on la Soufrière de Guadeloupe revealing its very active phreatic system. These measurements were made possible thanks to electronic and signal processing developments. Indeed the telescopes used to perform these measurements are exposed to noise fluxes with high intensities relative to the tiny flux of interest. A high precision clock permitted to measure upward-going particles coming from the rear of the telescope that used to mix with the volcano signal. Also the particles energy deposit inside the telescope shows that other particles than muons take part to the noise. We present data acquired on la Soufrière, mount Etna in Italy, and in the Mont Terri tunnel in Switzerland. Biases produced on density muon radiographies are quantified and correction procedures are applied.

  6. Cosmic ray muon study with the NEVOD-DECOR experiment

    NASA Astrophysics Data System (ADS)

    Saavedra San Martin, Oscar

    2017-06-01

    The experiment NEVOV-DECOR, which is desinged to study the cosmic muons at very inclined directions, is running under the collaboration of the Moscow Engineering Physics Institute, Moscow, Russia, and the Instituto Nazionale di Astrofisica and the Dipartimento di Fisica, Università di Torino, Italy. The main purpose of this experiment is to study the characteristics of the high multiplicity muons in muon bundles and their angular distributions. The result has shown the observation of the second knee at 1017 eV in the primary cosmic ray spectrum. In addition, we found that the number of high energy muons in EAS is more than 30% of what is predicted by the Monte Carlo models. This effect was found also by other experiments like Auger, but at primary cosmic ray energies higher than 1018 eV. We will present and discuss the main results of these investigations.

  7. Study of the 190Hg Nucleus: Testing the Existence of U(5) Symmetry

    NASA Astrophysics Data System (ADS)

    Jahangiri Tazekand, Z.; Mohseni, M.; Mohammadi, M. A.; Sabri, H.

    2018-06-01

    In this paper, we have considered the energy spectra, quadrupole transition probabilities, energy surface, charge radii, and quadrupole moment of the190Hg nucleus to describe the interplay between phase transitions and configuration mixing of intruder excitations. To this aim, we have used four different formalisms: (i) interacting boson model including configuration mixing, (ii) Z(5) critical symmetry, (iii) U(6)-based transitional Hamiltonian, and (iv) a transitional interacting boson model Hamiltonian in both interacting boson model (IBM)-1 and IBM-2 versions which are based on affine \\widehat{SU(1,1)} Lie algebra. Results show the advantages of configuration mixing and transitional Hamiltonians, in particular IBM-2 formalism, to reproduce the experimental counterparts when the weight of spherical symmetry increased.

  8. Mind the Gap on IceCube: Cosmic neutrino spectrum and muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Araki, T.; Kaneko, F.; Konishi, Y.; Ota, T.; Sato, J.; Shimomura, T.

    2017-09-01

    The high energy cosmic neutrino spectrum reported by the IceCube collaboration shows a gap in the energy range between 500 TeV and 1 PeV. In this presentation, we illustrate that the IceCube gap is reproduced by the neutrino interaction mediated by the new gauge boson associated with a certain combination of the lepton avour number. The gauge interaction also explains the other long-standing gap in the lepton phenomenology: the gap between theory and experiment in the muon anomalous magnetic moment.

  9. Characterizing the dynamics of hydrothermal systems with muon tomography: the case of La Soufrière de Guadeloupe

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.

    2017-12-01

    Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.

  10. Clustering analysis for muon tomography data elaboration in the Muon Portal project

    NASA Astrophysics Data System (ADS)

    Bandieramonte, M.; Antonuccio-Delogu, V.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Riggi, S.; Sciacca, E.; Vitello, F.

    2015-05-01

    Clustering analysis is one of multivariate data analysis techniques which allows to gather statistical data units into groups, in order to minimize the logical distance within each group and to maximize the one between different groups. In these proceedings, the authors present a novel approach to the muontomography data analysis based on clustering algorithms. As a case study we present the Muon Portal project that aims to build and operate a dedicated particle detector for the inspection of harbor containers to hinder the smuggling of nuclear materials. Clustering techniques, working directly on scattering points, help to detect the presence of suspicious items inside the container, acting, as it will be shown, as a filter for a preliminary analysis of the data.

  11. Shape of the primary proton spectrum in the multi-TeV region from data on the vertical muon flux

    NASA Astrophysics Data System (ADS)

    Tyumentsev, A. G.; Lagutin, A. A.; Yushkov, A. V.

    2009-12-01

    It is shown, that the primary proton spectrum, reconstructed from sea-level and underground data on the muon spectrum using the QGSJET 01, QGSJET II, NEXUS 3.97 and SIBYLL 2.1 interaction models, demonstrates not only a model-dependent intensity, but also a model-dependent form. For a correct reproduction of the muon spectrum shape the primary proton flux should have a non-constant power index for all considered models, except SIBYLL 2.1, with a break at energies around 10-15 TeV and a value of the exponent before the break close to that obtained in the ATIC-2 experiment.

  12. Geological constraints for muon tomography: The world beyond standard rock

    NASA Astrophysics Data System (ADS)

    Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Käser, Samuel; Nishiyama, Ryuichi; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz

    2017-04-01

    In present day muon tomography practice, one often encounters an experimental setup in which muons propagate several tens to a few hundreds of meters through a material to the detector. The goal of such an undertaking is usually centred on an attempt to make inferences from the measured muon flux to an anticipated subsurface structure. This can either be an underground interface geometry or a spatial material distribution. Inferences in this direction have until now mostly been done, thereby using the so called "standard rock" approximation. This includes a set of empirically determined parameters from several rocks found in the vicinity of physicist's laboratories. While this approach is reasonable to account for the effects of the tens of meters of soil/rock around a particle accelerator, we show, that for material thicknesses beyond that dimension, the elementary composition of the material (average atomic weight and atomic number) has a noticeable effect on the measured muon flux. Accordingly, the consecutive use of this approximation could potentially lead into a serious model bias, which in turn, might invalidate any tomographic inference, that base on this standard rock approximation. The parameters for standard rock are naturally close to a granitic (SiO2-rich) composition and thus can be safely used in such environments. As geophysical surveys are not restricted to any particular lithology, we investigated the effect of alternative rock compositions (carbonatic, basaltic and even ultramafic) and consequentially prefer to replace the standard rock approach with a dedicated geological investigation. Structural field data and laboratory measurements of density (He-Pycnometer) and composition (XRD) can be merged into an integrative geological model that can be used as an a priori constraint for the rock parameters of interest (density & composition) in the geophysical inversion. Modelling results show that when facing a non-granitic lithology the measured muon

  13. Muon tomography in the Mont Terri underground rock laboratory

    NASA Astrophysics Data System (ADS)

    Lesparre, N.; Gibert, D.; Marteau, J.; Carlus, B.; Nussbaum, C.

    2012-04-01

    The Mont Terri underground rock laboratory (Switzerland) was excavated in a Mesozoic shale formation constituted by Opalinus clay. This impermeable formation presents suitable properties for hosting repository sites of radioactive waste. A muon telescope has been placed in this laboratory in October 2009 to establish the feasibility of the muon tomography and to test the sensor performance in a calm environment, where we are protected from atmospheric noisy particles. However, the presence of radon in the gallery as well as charged particles issued from the decay of gamma rays may create a background noise. This noise shift and smooths the signal inducing an under estimation of the rock density. The uncorrelated background has been measured by placing the planes of detection in anti-coincidence. This estimation is preponderant and has to be combined to the theoretical feasibility evaluation to determine the best experimental set-up to observe muon flux fluctuations due to density variations. The muon densitometry experience is here exposed with the estimation of its feasibility. The data acquired from different locations inside the underground laboratory are presented. They are compared to two models representing the layer above the laboratory corresponding to a minimum and a maximum muon flux expectation depending on the values of the rock density.

  14. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing

  15. Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Press, Carly; Kotler, Julia

    2016-09-01

    In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  16. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KamLAND Collaboration; Abe, S.; Enomoto, S.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutronmore » captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.« less

  17. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  18. Muon Production Height investigated by the Air-Shower Experiment KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Doll, P.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration

    2009-12-01

    A large area (128 m2) Muon Tracking Detector (MTD), located within the KASCADE experiment, has been built with the aim to identify muons ( E>0.8 GeV) and their directions in extensive air showers by track measurements under more than 18 r.l. shielding. The orientation of the muon track with respect to the shower axis is expressed in terms of the radial- and tangential angles. By means of triangulation the muon production height H is determined. By means of H, a transition from light to heavy cosmic ray primary particles with increasing shower energy E from 1-10 PeV is observed.

  19. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    PubMed

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  20. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam

    NASA Astrophysics Data System (ADS)

    Amato, A.; Luetkens, H.; Sedlak, K.; Stoykov, A.; Scheuermann, R.; Elender, M.; Raselli, A.; Graf, D.

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  1. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    DTIC Science & Technology

    2012-03-01

    For example, synthetic zeolites could be used to separate molecular isotopes of hydrogen [12; 10] as could thermal diffusion and gas chromatography... thermal muon flux is large (see Chapter 8). Reactions which have the potential of increasing the muon-catalyzed fusion rate and reactions that could...the remainder of this document. Changes to the muon-catalyzed fusion cycle, that are expected to occur when the thermal muon flux is high, are

  2. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  3. Tests of the MICE Electron Muon Ranger frontend electronics with a small scale prototype

    NASA Astrophysics Data System (ADS)

    Bolognini, D.; Bene, P.; Blondel, A.; Cadoux, F.; Debieux, S.; Giannini, G.; Graulich, J. S.; Lietti, D.; Masciocchi, F.; Prest, M.; Rothenfusser, K.; Vallazza, E.; Wisting, H.

    2011-08-01

    The MICE experiment is being commissioned at RAL to demonstrate the feasibility of the muon ionization cooling technique for future applications such as the Neutrino Factory and the Muon Collider. The cooling will be evaluated by measuring the emittance before and after the cooling channel with two 4 T spectrometers; to distinguish muons from the background, a multi-detector particle identification system is foreseen: three Time of Flight stations, two Cherenkov counters and a calorimetric system consisting of a pre-shower layer and a fully active scintillator detector (EMR) are used to discriminate muons from pions and electrons. EMR consists of 48 planes of triangular scintillating bars coupled to WLS fibers readout by single PMTs on one side and MAPMTs on the other; each plane sensible area is 1 m 2. This article deals with a small scale prototype of the EMR detector which has been used to test the MAPMT frontend electronics based on the MAROC ASIC; the tests with cosmic rays using both an analog mode and a digital readout mode are presented. A very preliminary study on the cross talk problem is also shown.

  4. Measurements of cross-section of charge current inclusive of antineutrino scattering off nucleons using carbon, iron, lead and scintillator at MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakotondravohitra, Laza

    2015-08-18

    Neutrino physics is one of the most active fields in the domaine of high energy physics during the last century. The need of precise measurement of neutrino-nucleus interactions required by the neutrino oscillation experiments is a an exiting step. These measurements of cross-section are more than essential for neutrino oscillation experiment. Over the year, many measurements from varieties of experiments have been presented. MINERνA is one of the world leaders in measuring cross-section of neutrino and antineutrino -nucleus interactions. MINERνA is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. In order to study nuclear dependence,more » MINERνA is endowed with different types of solid nuclear targets as well are liquid targets such as helium and water. This thesis presents measurements of cross-section of antineutrino scattering off nucleons using a variety of solid nuclear targets, carbon, iron, lead and also polystyrene scintillator (CH). The data set of antineutrino used for this analysis was taken between March and July 2010 with a total of 1.60X10 20 protons on target. Charged current inclusive interactions were selected by requiring a positive muon and kinematics limitation of acceptance of the muon spectrometer are applied. The analysis requires neutrino energy between 2GeV et 20GeV and the angle of muon θ mu < 17degree . The absolute cross-section # as function of neutrino energy and the differential cross-section dσ/ dx bj measured and shown the corresponding systematics for each nuclear targets. Data results are compared with prediction of the models implemented in the neutrino events generators GENIE 2.6.2 used by the experiment.« less

  5. Search for muon antineutrino disappearance due to sterile antineutrino oscillations with the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Chen, R.; Todd, J.; Poonthottathil, N.; Sousa, A.; Evans, J.; MINOS/MINOS+ Collaboration

    2017-09-01

    Three-flavour neutrino mixing has successfully explained a wide range of neutrino oscillation data. However, results such as the electron antineutrino appearance excesses seen by LSND and MiniBooNE can be explained in terms of neutrino oscillations adding a sterile neutrino at a larger mass scale than the existing three flavour mass states. MINOS is a two-detector, long-baseline neutrino oscillation experiment that uses magnetized tracker-calorimeter detectors to measure the energy and composition of the NuMI neutrino beam. These magnetized detectors give MINOS a unique ability to be able to separate muon neutrino and antineutrino interactions. Using data taken with the NuMI beam configured in antineutrino mode, MINOS is able to search for sterile antineutrinos by looking for the disappearance of muon antineutrinos over its 734 km baseline. The sterile antineutrino signature would be seen as modulations at high energy in the charged-current muon antineutrino spectrum. We present the first MINOS results constraining 3+1 sterile antineutrino oscillations, using a combination of 3.36×1020 protons-on-target (POT) of antineutrino-enhanced beam data, and 10.56×1020 protons-on-target (POT) of neutrino-dominated beam data. These results are compared with existing constraints and future improvements to the searches are discussed.

  6. The Muon System of the Daya Bay Reactor Antineutrino Experiment

    DOE PAGES

    An, F. P.; Hackenburg, R. W.; Brown, R. E.; ...

    2014-10-05

    The Daya Bay experiment consists of functionally identical antineutrino detectors immersed in pools of ultrapure water in three well-separated underground experimental halls near two nuclear reactor complexes. These pools serve both as shields against natural, low-energy radiation, and as water Cherenkov detectors that efficiently detect cosmic muons using arrays of photomultiplier tubes. Each pool is covered by a plane of resistive plate chambers as an additional means of detecting muons. Design, construction, operation, and performance of these muon detectors are described. (auth)

  7. Parabrachial origin of calcitonin gene-related peptide-immunoreactive axons innervating Meynert's basal nucleus.

    PubMed

    Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B

    1999-06-01

    Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.

  8. Front End and HFOFO Snake for a Muon Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, D.; Alexahin, Y.

    2015-09-01

    A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and amore » $$\\phi-\\delta E$$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $$\\mu^+$$ and $$\\mu^-$$ transversely and longitudinally. The status of the design is presented and variations are discussed.« less

  9. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    NASA Astrophysics Data System (ADS)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  10. Kicker field simulation and measurement for the muon g-2 experiment at FNAL

    NASA Astrophysics Data System (ADS)

    Chang, Seung Pyo; Kim, Young Im; Choi, Jihoon; Semertzidis, Yannis; muon g-2 experiment Collaboration

    2017-01-01

    In the Muon g-2 experiment, muon beam is injected to the storage ring in a slightly tilted orbit whose center is 77 mm away from the center of the ring. The kicker is needed to send the muon beam to the central orbit. The magnetic kicker is designed for the experiment and about 0.1 Tm field integral is needed. The peak current pulse is 4200 A to make this field integral. This strong kicker pulse could make unwanted eddy current occur. This eddy current could spoil the main magnetic field of the storage ring. This could be a critical threat to the precision of experiment. The kicker field simulation has done using OPERA to estimate the effects. Also the kicker field should be measured based on Faraday effect. The measurement has tested in the lab before install the experiment area. In this presentation, the simulation and measurement results will be discussed. This work was supported by IBS-R017-D1-2016-a00.

  11. The MURAVES muon telescope: technology and expected performances

    DOE PAGES

    Saracino, Giulio; Ambrosino, Fabio; Bonechi, Lorenzo; ...

    2016-01-01

    Here, the MURAVES project aims to study the inner structure of the upper part of the Mt. Vesuvius volcano by muon radiography (muography) technique. Very high energy muons, produced by cosmic rays in the atmosphere, can penetrate large thickness of rocks. By measuring the attenuation of the muons flux trough the volcano cone is possible to obtain a 2D image of the density structure. Internal discontinuities, with a spatial resolution of about 10 m, can be, in principle, resolved. An absolute average density measurement can be provided too. The project, funded by the Italian Ministry of University, Research and Educationmore » (MIUR), is led by INGV and INFN. In this article the mechanical structure of the detectors and background suppression techniques are reported.« less

  12. Prompt neutrino production in 400 GeV proton copper interactions

    NASA Astrophysics Data System (ADS)

    Grässler, H.; Dröge, W.; Idschok, U.; Kreutzmann, H.; Nellen, B.; Wünsch, B.; Cooper-Sarkar, A. M.; Cundy, D. C.; Foeth, H.; Grant, A.; Harigel, G. G.; Klein, H.; Morrison, D. R. O.; Nikolić, M.; Pape, L.; Parker, M. A.; Schmid, P.; Wachsmuth, H.; Dris, M.; Simopoulou, E.; Vayaki, A.; Barnham, K. W. J.; Miller, D. B.; Mobayyen, M. M.; Talebzadeh, M.; Aderholz, M.; Deck, L.; Schmitz, N.; Wittek, W.; Bostock, P.; Krstić, J.; Myatt, G.; Radojicić, D.; Guy, J.; Venus, W.; Bolognese, T.; Faccini-Turluer, M. L.; Vignaud, D.; Hulth, P. O.; Hultqvist, K.; Walck, Ch.; BEBC WA66 Collaboration

    1986-08-01

    The prompt electron neutrino and muon neutrino fluxes from proton copper interactions at 400 GeV/ c proton momentum have been measured. The asymmetry between the prompt electron (anti) neutrino and the prompt muon (anti) neutrino event rates above 20 GeV is A eμ = {(N e - N μ}/{(N c + N μ) } = 0.07 ± 0.08 corresponding to an Ne/ Nμ ratio of 1.14 -0.16-0.19. The cross section weighted charge asymmetry for electrons and muons combined is A ν overlineν = 0.15 ± 0.08 . The number of overlineD decays into overlineνeandoverlineνμis (4.1 ± 0.9) × 10 -4 per incident proton. No evidence for ντ interactions was found.

  13. Helical FOFO Snake for 6D Ionization Cooling of Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexahin, Y.

    2010-03-30

    A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside the solenoids and RF cavities between them. An important feature of such a channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented which show that a 200 MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in muon colliders and neutrino factories.

  14. Future Muon Source Possibilities at the SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Travis J.; MacDougall, Prof. Gregory J.

    2017-06-01

    The workshop “Future Muon Source Possibilities at the SNS” was held September 1-2, 2016 at Oak Ridge National Laboratory. The workshop aimed to examine the technical feasibility and scientific need to construct a μSR and/or β-NMR facility at the SNS. During the course of the workshop it became evident that recently developed technology could enable the development of a world leading pulsed muon source at SNS, without impacting the neutron science missions of the SNS. The details are discussed below.

  15. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-07-01

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the /4σ level, in favour of neutrino oscillations.

  16. Interaction of serotonin and cholecystokinin in the lateral parabrachial nucleus to control sodium intake.

    PubMed

    Fratucci De Gobbi, J I; De Luca, L A; Johnson, A K; Menani, J V

    2001-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.

  17. A grey incidence algorithm to detect high-Z material using cosmic ray muons

    NASA Astrophysics Data System (ADS)

    He, W.; Xiao, S.; Shuai, M.; Chen, Y.; Lan, M.; Wei, M.; An, Q.; Lai, X.

    2017-10-01

    Muon scattering tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear materials. However, the flux of cosmic ray muons is low, in the real life application, the detection has to be done a short timescale with small numbers of muons. In this paper, we present a novel approach to detection of special nuclear material by using cosmic ray muons. We use the degree of grey incidence to distinguish typical waste fuel material, uranium, from low-Z material, medium-Z material and other high-Z materials of tungsten and lead. The result shows that using this algorithm, it is possible to detect high-Z materials with an acceptable timescale.

  18. The First CERN Muon g-2 Experiment

    NASA Astrophysics Data System (ADS)

    Garwin, Richard

    2014-03-01

    The Summary of the 16 June 1965 publication of this experiment in Il Nuovo Cimento reads, ``The anomalous part of the gyromagnetic ratio, a ≡ 1/2 (g-2) of the muon has been measured by determining the precession θ = aω0B- t for 100 MeV/c muons as a function of storage time t in a known static magnetic field of the form B = B0(1 +ay +by2 + cy3 + dy4) . The result is aexp = (1162 +/- 5) . 10-6 compared with the theoretical value ath = α/2 π + 0.76α2/π2 = 1165 . 10-6. This agreement shows that the muon obeys standard quantum electrodynamics down to distances ~ 0.1 fermi. Details are given of the methods used to store muons for ~ 103 turns in the field, and of measuring techniques and precautions necessary to achieve the final accuracy. Some of the methods of orbit analysis, magnet construction shimming and measurement, polarization analysis, and digital timing electronics may be of more general interest.'' The paper is available in full at http://www.fas.org/rlg/060065%20Nuovo%20Cimento.pdf The authors valued highly the presentation of experimental details, which will be the emphasis of this talk, recounting the motivation of choices made with the tools and technology of that era. In collaboration with G. Charpak, F. J. M. Farley, T. Mueller, J. C. Sens, and A. Zichichi.

  19. First Measurement of $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino Gallo, Jose Luis

    2012-12-01

    Understanding of themore » $$\\pi^0$$ production via anti-neutrino-nucleus charged current interaction in the neutrino energy region of 1-10 GeV is essential for neutrino oscillation experiments. In this thesis, we present a measurement of charged current $$\\pi^0$$ production from anti-muon neutrinos scattering on a polystyrene scintillator (CH) target in the MINER$$\

  20. Muon Spin Relaxation/Rotation Studies of Novel Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Luke, Graeme

    Muon spin relaxation/rotation is a powerful technique for probing magnetism in materials. As a real space probe, the muon complements neutron scattering's reciprocal space sensitivity. Muons probe magnetic fluctuations in a frequency window between inelastic neutron scattering and nuclear magnetic resonance. In this presentation I will describe our recent work on geometrically frustrated materials including the pyrochlore lattice compounds Yb2Ti

  1. First measurements of muon production rate using a novel pion capture system at MuSIC

    NASA Astrophysics Data System (ADS)

    Cook, S.; D'Arcy, R.; Fukuda, M.; Hatanaka, K.; Hino, Y.; Kuno, Y.; Lancaster, M.; Mori, Y.; Nam, T. H.; Ogitsu, T.; Sakamoto, H.; Sato, A.; Truong, N. M.; Yamamoto, A.; Yoshida, M.; Wing, M.

    2013-02-01

    The MuSIC (Muon Science Innovative Channel) beam line at RCNP (Research Centre for Nuclear Physics), Osaka will be the most intense source of muons in the world. A proton beam is incident on a target and, by using a novel capture solenoid, guides the produced pions into the beam line where they subsequently decay to muons. This increased muon flux will allow more precise measurements of cLFV (charged Lepton Flavour Violation) as well as making muon beams more economically feasible. Currently the first 36° of solenoid beam pipe have been completed and installed for testing with low proton current of 1 nA. Measurements of the total particle flux and the muon life time were made. The measurements were taken using thin plastic scintillators coupled to MPPCs (Multi-Pixel Photon Counter) that surrounded a magnesium or copper stopping target. The scintillators were used to record which particles stopped and their subsequent decay times giving a muon yield of 8.5 × 105 muons W-1proton beam or 3 × 108 muons s-1 when using the RCNP's full power (400 W).

  2. The Muon Collider as a $H/A$ factory

    DOE PAGES

    Eichten, Estia; Martin, Adam; Univ. of Notre Dame, IN

    2013-11-22

    We show that a muon collider is ideally suited for the study of heavy H/A scalars, cousins of the Higgs boson found in two-Higgs doublet models and required in supersymmetric models. The key aspects of H/A are: (1) they are narrow, yet have a width-to-mass ratio far larger than the expected muon collider beam-energy resolution, and (2) the larger muon Yukawa allows efficient s-channel production. We study in detail a representative Natural Supersymmetry model which has a 1.5 Tev H/A withmore » $$m_H$$- $$m_A$$ = 10 Gev. The large event rates at resonant peak allow the determination of the individual H and A resonance parameters (including CP) and the decays into electroweakinos provides a wealth of information unavailable to any other present or planned collider.« less

  3. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  4. A fast GPU-based Monte Carlo simulation of proton transport with detailed modeling of nonelastic interactions.

    PubMed

    Wan Chan Tseung, H; Ma, J; Beltran, C

    2015-06-01

    Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions. Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS. Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories. Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically

  5. Muons and seismic: a dynamic duo for the shallow subsurface?

    DOE PAGES

    Mellors, Robert; Chapline, George; Bonneville, Alain; ...

    2016-12-01

    This paper explores, at a preliminary level, the possibility of merging seismic data, both active and passive, with density constraints inferred from muon measurements. We focus on a theoretical analysis but note that muon experiments are ongoing to test model predictions with experimental data.

  6. Measuring the muon content of air showers with IceTop

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier G.

    2015-08-01

    IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  7. Pulsed source of ultra low-energy muons at RIKEN-RAL

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Matsuda, Yasuyuki; Iwasaki, Masahiko; Miyake, Yasuhiro; Nagamine, Kanetada; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick

    2006-03-01

    At RIKEN-RAL muon facility of the Rutherford Appleton Laboratory (UK) we have produced a pulsed LE-μ + beam with pulse duration of only 10 ns and performed μSR experiments to demonstrate the capability to measure high spin precession frequency signals. The yield of pulsed LE-μ + has been steadily improving over the past 3 years and currently rates of up to 20 μ + per second are observed at the sample position. The overall cooling efficiency from the surface muon beam is now comparable to moderating the muon beam to epithermal energies in simple van der Waals bound solids.

  8. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis.

    PubMed

    Thier, Peter; Möck, Martin

    2006-01-01

    Cerebral cortex and the cerebellum interact closely in order to facilitate spatial orientation and the generation of motor behavior, including eye movements. This interaction is based on a massive projection system that allows the exchange of signals between the two cortices. This cerebro-cerebellar communication system includes several intercalated brain stem nuclei, whose eminent role in the organization of oculomotor behavior has only recently become apparent. This review focuses on the two major nuclei of this group taking a precerebellar position, the pontine nuclei and the nucleus reticularis tegmenti pontis, both intimately involved in the visual guidance of eye movements.

  9. High field solenoids for muon cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, M.A.; Eyssa, Y.; Kenny, S.

    1999-09-08

    The proposed cooling system for the muon collider will consist of a 200 meter long line of alternating field straight solenoids interspersed with bent solenoids. The muons are cooled in all directions using a 400 mm long section liquid hydrogen at high field. The muons are accelerated in the forward direction by about 900 mm long, 805 MHz RF cavities in a gradient field that goes from 6 T to -6 T in about 300 mm. The high field section in the channel starts out at an induction of about 2 T in the hydrogen. As the muons proceed downmore » the cooling channel, the induction in the liquid hydrogen section increases to inductions as high as 30 T. The diameter of the liquid hydrogen section starts at 750 mm when the induction is 2 T. As the induction in the cooling section goes up, the diameter of the liquid hydrogen section decreases. When the high field induction is 30 T, the diameter of the liquid hydrogen section is about 80 mm. When the high field solenoid induction is below 8.5 T or 9T, niobium titanium coils are proposed for generating .the magnetic field. Above 8.5 T or 9 T to about 20 T, graded niobium tin and niobium titanium coils would be used at temperatures down to 1.8 K. Above 20 T, a graded bybrid magnet system is proposed, where the high field magnet section (above 20 T) is either a conventional water cooled coil section or a water cooled Bitter type coil. Two types of superconducting coils have been studied. They include; epoxy impregnated intrinsically stable coils, and cable in conduit conductor (CICC) coils with helium in the conduit.« less

  10. Energy spectrum of cascades generated by muons in Baksan underground scintillation telescope

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Achkasov, V. M.; Semenov, A. M.; Stenkin, Y. V.

    1985-01-01

    Spectrum of cascades generated by cosmic ray muons underground is presented. The mean zenith angle of the muon arrival is theta=35 deg the depth approx. 1000 hg/sq cm. In cascades energy range 700 GeV the measured spectrum is in agreement with the sea-level integral muon spectrum index gamma=3.0. Some decrease of this exponent has been found in the range 4000 Gev.

  11. Observation of seasonal variation of atmospheric multiple-muon events in the MINOS Near and Far Detectors

    DOE PAGES

    Adamson, P.; Bishai, M.; Diwan, M. V.; ...

    2015-06-09

    We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site, multiple-muon events with muons separated by more than 8 m exhibit a seasonal rate that peaks during the summer, similar to that of single-muon events. Conversely, the rate of multiple-muon events with muons separated by less than 5–8 m, and the rate of multiple-muon events in the smaller, shallower Near Detector, exhibit a seasonal rate modulation thatmore » peaks in the winter.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, C. E.; Aliaga, L.; Bashyal, A.

    We present double-differential measurements of antineutrino charged-current quasielastic scattering in the MINERvA detector. This study improves on a previous single-differential measurement by using updated reconstruction algorithms and interaction models and provides a complete description of observed muon kinematics in the form of a double-differential cross section with respect to muon transverse and longitudinal momentum. We also include in our signal definition, zero-meson final states arising from multinucleon interactions and from resonant pion production followed by pion absorption in the primary nucleus. We find that model agreement is considerably improved by a model tuned to MINERvA inclusive neutrino scattering data thatmore » incorporates nuclear effects such as weak nuclear screening and two-particle, two-hole enhancements.« less

  13. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, L.; Theilacker, J.; Klebaner, A.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05more » PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.« less

  14. Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, John A.; Johnstone, Carol

    This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less

  15. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  16. Tests of neutrino interaction models with the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Aleena

    2018-01-01

    I measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. I evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy ofmore » $800$ MeV, using an exposure corresponding to $$5.0\\times10^{19}$$ protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. I find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but I show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less

  17. A mobile detector for measurements of the atmospheric muon flux

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Brancus, I. M.; Margineanu, R.; Petcu, M.; Dima, M.; Sima, O.; Haungs, A.; Rebel, H.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.

    2011-04-01

    Measurements of the underground atmospheric muon flux are important in order to determine accurately the overburden in mwe (meter water equivalent) of an underground laboratory for appreciating which kind of experiments are feasible for that location. Slanic- Prohava is one of the 7 possible locations for the European large underground experiment LAGUNA (Large Apparatus studying Grand Unification and Neutrino Astrophysics). A mobile device consisting of 2 scintillator plates (≍0.9 m2, each) one above the other and measuring in coincidence, was set-up for determining the muon flux. The detector it is installed on a van which facilitates measurements on different positions at the surface or in the underground and it is in operation since autumn 2009. The measurements of muon fluxes presented in this contribution have been performed in the underground salt mine Slanic-Prahova, Romania, where IFIN-HH has built a low radiation level laboratory, and at the surface on different sites of Romania, at different elevations from 0 m a.s.l up to 655 m a.s.l. Based on our measurements we can say that Slanic site is a feasible location for LAGUNA in Unirea salt mine at a water equivalent depth of 600 mwe. The results have been compared with Monte-Carlo simulations performed with the simulation codes CORSIKA and MUSIC.

  18. Ultrastructure of cholinergic neurons in the laterodorsal tegmental nucleus of the rat: interaction with catecholamine fibers.

    PubMed

    Kubota, Y; Leung, E; Vincent, S R

    1992-01-01

    The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.

  19. Interactions between rewarding lateral hypothalamic and aversive nucleus reticularis gigantocellularis stimulation.

    PubMed

    Diotte, M; Miguelez, M; Miliaressis, E; Bielajew, C

    2000-12-05

    The interaction between rewarding and aversive consequences of brain stimulation were assessed in two studies. In the first, the frequency threshold for 300 ms trains of combined lateral hypothalamic (LH) and nucleus reticularis gigantocellularis (Gi) stimulation, in which each LH pulse was followed 2 ms later by the Gi one, was determined for one month. Compared to the threshold for trains of single LH pulses, combined LH-Gi stimulation initially increased the frequency threshold; however, this effect reversed within one session and was subsequently maintained for the duration of the study. The aversion produced by Gi stimulation, as measured by latency to escape, was abolished following a single session of LH-Gi pairs. In the second study, a subset of animals received both presentations of combined pulses, LH followed by Gi, and the reverse; the interval between pulses was varied from 0.2 to 6.4 ms. The effectiveness of combined stimulation, determined by the ratio of LH frequency thresholds to that of the LH-Gi ranged from 0 to 50% across animals but the individual effectiveness functions within animals did not vary with different intervals. In addition, the order of presentation of pulses was of no consequence. Thus, not only did exposure to LH stimulation appear to obliterate Gi aversion, but the combination of LH and Gi pulses added to the rewarding effect produced by LH stimulation alone.

  20. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  1. Development and validation of the Overlap Muon Track Finder for the CMS experiment

    NASA Astrophysics Data System (ADS)

    Dobosz, J.; Mietki, P.; Zawistowski, K.; Żarnecki, G.

    2016-09-01

    Present article is a description of the authors contribution in upgrade and analysis of performance of the Level-1 Muon Trigger of the CMS experiment. The authors are students of University of Warsaw and Gdansk University of Technology. They are collaborating with the CMS Warsaw Group. This article summarises students' work presented during the Students session during the Workshop XXXVIII-th IEEE-SPIE Joint Symposium Wilga 2016. In the first section the CMS experiment is briefly described and the importance of the trigger system is explained. There is also shown basic difference between old muon trigger strategy and the upgraded one. The second section is devoted to Overlap Muon Track Finder (OMTF). This is one of the crucial components of the Level-1 Muon Trigger. The algorithm of OMTF is described. In the third section there is discussed one of the event selection aspects - cut on the muon transverse momentum pT . Sometimes physical muon with pT bigger than a certain threshold is unnecessarily cut and physical muon with lower pT survives. To improve pT selection modified algorithm was proposed and its performance was studied. One of the features of the OMTF is that one physical muon often results in several muon candidates. The Ghost-Buster algorithm is designed to eliminate surplus candidates. In the fourth section this algorithm and its performance on different data samples are discussed. In the fifth section Local Data Acquisition System (Local DAQ) is briefly described. It supports initial system commissioning. The test done with OMTF Local DAQ are described. In the sixth section there is described development of web application used for the control and monitoring of CMS electronics. The application provides access to graphical user interface for manual control and the connection to the CMS hierarchical Run Control.

  2. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Josiah; Snopok, Pavel; Berz, Martin

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochasticmore » nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.« less

  3. Investigation of very high energy cosmic rays by means of inclined muon bundles

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.

    2018-03-01

    In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.

  4. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  5. A new study of muons in air showers by NBU air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Mukherjee, N.; Sarkar, S.; Basak, D. K.; Ghosh, B.

    1985-01-01

    The North Bengal University (NBU) air shower array has been in operation in conjunction with two muon magnetic spectrographs. The array incorporates 21 particle density sampling detectors around the magnetic spectrographs covering an area of 900 sq m. The layout of the array is based on the arrangement of detectors in a square symmetry. The array set up on the ground level is around a 10 m high magnetic spectrograph housing. This magnetic spectrograph housing limits the zenith angular acceptance of the incident showers to a few degrees. Three hundred muons in the fitted showers of size range 10 to the 4th power to 10 to the 5th power particles have so far been scanned and the momenta determined in the momentum range 2 - 440 GeV/c. More than 1500 recorded showers are now in the process of scanning and fitting. A lateral distribution of muons of energy greater than 300 MeV in the shower size range 10 to the 5th power to 7 x 10 to the 5th power has been obtained.

  6. Ab initio molecular orbital studies of the positive muon and muonium in 4-arylmethyleneamino-TEMPO derivatives

    NASA Astrophysics Data System (ADS)

    Briere, T. M.; Jeong, J.; Das, T. P.; Ohira, S.; Nagamine, K.

    2000-08-01

    The muon and muonium bonding sites of the 4-arylmethyleneamino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical crystals with aryl groups consisting of biphenyl and 4-pyridyl were studied via ab initio Hartree-Fock theory. The hyperfine fields, including both intramolecular and intermolecular interactions, were calculated at the sites of interest and compared to zero field μSR results.

  7. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  8. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  9. A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

    NASA Astrophysics Data System (ADS)

    Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans

    2011-10-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

  10. The ATLAS conditions database architecture for the Muon spectrometer

    NASA Astrophysics Data System (ADS)

    Verducci, Monica; ATLAS Muon Collaboration

    2010-04-01

    The Muon System, facing the challenge requirement of the conditions data storage, has extensively started to use the conditions database project 'COOL' as the basis for all its conditions data storage both at CERN and throughout the worldwide collaboration as decided by the ATLAS Collaboration. The management of the Muon COOL conditions database will be one of the most challenging applications for Muon System, both in terms of data volumes and rates, but also in terms of the variety of data stored. The Muon conditions database is responsible for almost all of the 'non event' data and detector quality flags storage needed for debugging of the detector operations and for performing reconstruction and analysis. The COOL database allows database applications to be written independently of the underlying database technology and ensures long term compatibility with the entire ATLAS Software. COOL implements an interval of validity database, i.e. objects stored or referenced in COOL have an associated start and end time between which they are valid, the data is stored in folders, which are themselves arranged in a hierarchical structure of folder sets. The structure is simple and mainly optimized to store and retrieve object(s) associated with a particular time. In this work, an overview of the entire Muon conditions database architecture is given, including the different sources of the data and the storage model used. In addiction the software interfaces used to access to the conditions data are described, more emphasis is given to the Offline Reconstruction framework ATHENA and the services developed to provide the conditions data to the reconstruction.

  11. Multiple-Angle Muon Radiography of a Dry Storage Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, J. Matthew; Guardincerri, Elena; Morris, Christopher

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  12. A large area cosmic muon detector located at Ohya stone mine

    NASA Technical Reports Server (NTRS)

    Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.

    1985-01-01

    The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.

  13. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korostelev, Maxim; Bailey, Ian; Herrod, Alexander

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay,more » collimation (with accurate representation of all apertures) and spin tracking.« less

  14. A new method for imaging nuclear threats using cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.

    2013-08-01

    Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  15. A new method for imaging nuclear threats using cosmic ray muons

    DOE PAGES

    Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; ...

    2013-08-29

    Muon tomography is a technique that uses cosmic ray muons to generate three-dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study beyond the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Furthermore, we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.

  16. A new MicroTCA-based waveform digitizer for the Muon g-2 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweigart, David A.

    We present the design of a newmore » $$\\mu$$TCA-based waveform digitizer, which will be deployed in the Muon g-2 experiment at Fermilab and will allow our pileup identification requirement to be met. This digitizer features five independent channels, each with 12-bit, 800-MSPS digitization and a 1-Gbit memory buffer. The data storage and readout along with configuration are handled by six Xilinx Kintex-7 FPGAs. In addition, the digitizer is equipped with a mezzanine card for analog signal conditioning prior to digitization, further widening its range of possible applications. The performance results of this design are also presented, highlighting its $$0.51 \\pm 0.13$$ mV intrinsic noise level and $< 22$ ps intrinsic timing resolution between channels. We believe that its performance, together with its flexible design, could be of interest to future experiments in search of a cost-effective waveform digitizer.« less

  17. Pulsed source of ultra low energy positive muons for near-surface μSR studies

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Matsuda, Yasuyuki; Miyake, Yasuhiro; Nagamine, Kanetada; Iwasaki, Masahiko; Ikedo, Yutaka; Shimomura, Koichiro; Strasser, Patrick; Makimura, Shunshuke

    2008-01-01

    We have produced a pulsed beam of low energy (ultra slow) polarized positive muons (LE-μ+) and performed several demonstration muon spin rotation/relaxation (μSR) experiments at ISIS RIKEN-RAL muon facility in UK. The energy of the muons implanted into a sample is tuneable between 0.1 keV and 18 keV. This allows us to use muons as local magnetic microprobes on a nanometre scale. The control over the implantation depth is from several nanometres to hundreds of nanometres depending on the sample density and muon energy. The LE-μ+ are produced by two-photon resonant laser ionization of thermal muonium atoms. Currently ∼15 LE-μ+/s with 50% spin polarization are transported to the μSR sample position, where they are focused to a small spot with a diameter of only 4 mm. The overall LE-μ+ generation efficiency of 3 × 10-5 is comparable to that obtained when moderating the muon beam to epithermal energies in simple van der Waals bound solids. In contrast to other methods of LE-μ+ generation, the implantation of the muons into the sample can be externally triggered with the duration of the LE-μ+ pulse being only 7.5 ns. This allows us to measure spin rotation frequencies of up to 40 MHz.

  18. GEANT4 simulation of a scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    NASA Astrophysics Data System (ADS)

    Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.; Zimmerman, C.

    2014-05-01

    Cosmic-ray muons are highly penetrative charged particles that are observed at the sea level with a flux of approximately one per square centimetre per minute. They interact with matter primarily through Coulomb scattering, which is exploited in the field of muon tomography to image shielded objects in a wide range of applications. In this paper, simulation studies are presented that assess the feasibility of a scintillating-fibre tracker system for use in the identification and characterisation of nuclear materials stored within industrial legacy waste containers. A system consisting of a pair of tracking modules above and a pair below the volume to be assayed is simulated within the GEANT4 framework using a range of potential fibre pitches and module separations. Each module comprises two orthogonal planes of fibres that allow the reconstruction of the initial and Coulomb-scattered muon trajectories. A likelihood-based image reconstruction algorithm has been developed that allows the container content to be determined with respect to the scattering density λ, a parameter which is related to the atomic number Z of the scattering material. Images reconstructed from this simulation are presented for a range of anticipated scenarios that highlight the expected image resolution and the potential of this system for the identification of high-Z materials within a shielded, concrete-filled container. First results from a constructed prototype system are presented in comparison with those from a detailed simulation. Excellent agreement between experimental data and simulation is observed showing clear discrimination between the different materials assayed throughout.

  19. Neutrino-nucleus cross sections for oscillation experiments

    NASA Astrophysics Data System (ADS)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  20. [Compartmentalization of the cell nucleus and spatial organization of the genome].

    PubMed

    Gavrilov, A A; Razin, S V

    2015-01-01

    The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.