Oral immunization of mice with live Pneumocystis murina protects against Pneumocystis pneumonia
Samuelson, Derrick R.; de la Rua, Nicholas M.; Charles, Tysheena P.; Ruan, Sanbao; Taylor, Christopher M.; Blanchard, Eugene E.; Luo, Meng; Ramsay, Alistair J.; Shellito, Judd E.; Welsh, David A.
2016-01-01
Pneumocystis pneumonia is a major cause of morbidity and mortality in immunocompromised patients; particularly those infected with human immunodeficiency virus. In this study, we evaluated the potential of oral immunization with live Pneumocystis to elicit protection against respiratory infection with Pneumocystis murina. C57BL/6 mice vaccinated with live P. murina using a prime-boost vaccination strategy were protected from a subsequent lung challenge with P. murina at 2, 7, 14, and 28 days post infection even after CD4+ T cell depletion. Specifically, vaccinated immunocompetent mice had significantly faster clearance than unvaccinated immunocompetent mice and unvaccinated CD4-depleted mice remained persistently infected with P. murina. Vaccination also increased numbers of CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD11b+ macrophages in the lungs following respiratory infection. In addition, levels of lung, serum, and fecal P. murina-specific IgG and IgA were increased in vaccinated animals. Further, administration of serum from vaccinated mice significantly reduced Pneumocystis lung burden in infected animals compared to control serum. We also found that the diversity of the intestinal microbial community was altered by oral immunization with P. murina. Our data demonstrate for the first time that an oral vaccination strategy prevents Pneumocystis infection. PMID:26864029
Chevret, P; Denys, C; Jaeger, J J; Michaux, J; Catzeflis, F M
1993-01-01
Spiny mice of the genus Acomys traditionally have been classified as members of the Murinae, a subfamily of rodents that also includes rats and mice with which spiny mice share a complex set of morphological characters, including a unique molar pattern. The origin and evolution of this molar pattern, documented by many fossils from Southern Asia, support the hypothesis of the monophyly of Acomys and all other Murinae. This view has been challenged by immunological studies that have suggested that Acomys is as distantly related to mice (Mus) as are other subfamilies (e.g., hamsters: Cricetinae) of the muroid rodents. We present molecular evidence derived from DNA.DNA hybridization data that indicate that the spiny mouse Acomys and two African genera of Murinae, Uranomys and Lophuromys, constitute a monophyletic clade, a view that was recently suggested on the basis of dental characters. However, our DNA.DNA hybridization data also indicate that the spiny mice (Acomys) are more closely related to gerbils (Gerbillinae) than to the true mice and rats (Murinae) with which they have been classified. Because Acomys and the brush-furred mice Uranomys and Lophuromys share no derived morphological characters with the Gerbillinae, their murine morphology must have evolved by convergence, including the molar pattern previously considered to support the monophyly of the Murinae. PMID:8475093
2008-01-01
Background Within the subfamily Murinae, African murines represent 25% of species biodiversity, making this group ideal for detailed studies of the patterns and timing of diversification of the African endemic fauna and its relationships with Asia. Here we report the results of phylogenetic analyses of the endemic African murines through a broad sampling of murine diversity from all their distribution area, based on the mitochondrial cytochrome b gene and the two nuclear gene fragments (IRBP exon 1 and GHR). Results A combined analysis of one mitochondrial and two nuclear gene sequences consistently identified and robustly supported ten primary lineages within Murinae. We propose to formalize a new tribal arrangement within the Murinae that reflects this phylogeny. The diverse African murine assemblage includes members of five of the ten tribes and clearly derives from multiple faunal exchanges between Africa and Eurasia. Molecular dating analyses using a relaxed Bayesian molecular clock put the first colonization of Africa around 11 Mya, which is consistent with the fossil record. The main period of African murine diversification occurred later following disruption of the migration route between Africa and Asia about 7–9 Mya. A second period of interchange, dating to around 5–6.5 Mya, saw the arrival in Africa of Mus (leading to the speciose endemic Nannomys), and explains the appearance of several distinctive African lineages in the late Miocene and Pliocene fossil record of Eurasia. Conclusion Our molecular survey of Murinae, which includes the most complete sampling so far of African taxa, indicates that there were at least four separate radiations within the African region, as well as several phases of dispersal between Asia and Africa during the last 12 My. We also reconstruct the phylogenetic structure of the Murinae, and propose a new classification at tribal level for this traditionally problematic group. PMID:18616808
Cushion, Melanie T; Ashbaugh, Alan; Hendrix, Keeley; Linke, Michael J; Tisdale, Nikeya; Sayson, Steven G; Porollo, Aleksey
2018-05-01
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis -specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis , and BG may be needed to facilitate progression through the life cycle via sexual replication. Copyright © 2018 Cushion et al.
Sesterhenn, Thomas M.; Collins, Margaret S.; Welge, Jeffrey A.
2014-01-01
ABSTRACT In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. PMID:25370490
Ruan, Sanbao; Cai, Yang; Ramsay, Alistair J.; Welsh, David A.; Norris, Karen; Shellito, Judd E.
2016-01-01
Rationale Pneumocystis pneumonia is a major cause of morbidity and mortality in HIV-infected subjects, cancer patients undergoing chemotherapy and solid organ transplant recipients. No vaccine is currently available. By chemical labeling coupled with proteomic approach, we have identified a putative surface protein (SPD1, Broad Institute gene accession number PNEG_01848) derived from single suspended P. murina cysts. SPD1 was expressed in an insect cell line and tested for vaccine development. Methods Mice were immunized with SPD1 plus adjuvant MF-59 by subcutaneous injection. Three weeks after the last immunization, CD4+ cells were depleted with anti-CD4 antibody GK1.5. The mice were then challenged with 2 × 105 Pneumocystis organisms. Mice were sacrificed at 4 and 6 weeks after PC challenge. Spleen/lung cells and serum were harvested. B cells and memory B cells were assessed via flow cytometry. Specific Pneumocystis IgG antibody was measured by ELISA before and after challenge. Infection burden was measured as real-time PCR for P. murina rRNA. Results Normal mice infected with Pneumocystis mounted a serum IgG antibody response to SPD1. Serum from rhesus macaques exposed to Pneumocystis showed a similar serum IgG response to purified SPD1. SPD1 immunization increased B cell and memory B cell absolute cell counts in CD4-depleted Balb/c mice post Pneumocystis challenge in spleen and lung. Immunization with SPD1 significantly increased specific Pneumocystis IgG antibody production before and after challenge. Mice immunized with SPD1 showed significantly decreased P. murina copy number compared with mice that did not receive SPD1 at 6 weeks after challenge. Conclusion Immunization with SPD1 provides protective efficacy against P. murina infection. SPD1 protection against Pneumocystis challenge is associated with enhanced memory B cell production and higher anti–Pneumocystis IgG antibody production. SPD1 is a potential vaccine candidate to prevent or treat pulmonary infection with Pneumocystis. PMID:28012778
Steppan, Scott; Adkins, Ronald; Anderson, Joel
2004-08-01
The muroid rodents are the largest superfamily of mammals, containing nearly one third of all mammal species. We report on a phylogenetic study comprising 53 genera sequenced for four nuclear genes, GHR, BRCA1, RAG1, and c-myc, totaling up to 6400 nucleotides. Most relationships among the subfamilies are resolved. All four genes yield nearly identical phylogenies, differing only in five key regions, four of which may represent particularly rapid radiations. Support is very strong for a fundamental division of the mole rats of the subfamilies Spalacinae and Rhizomyinae from all other muroids. Among the other "core" muroids, a rapid radiation led to at least four distinct lineages: Asian Calomyscus, an African clade of at least four endemic subfamilies, including the diverse Nesomyinae of Madagascar, a hamster clade with maximum diversity in the New World, and an Old World clade including gerbils and the diverse Old World mice and rats (Murinae). The Deomyinae, recently removed from the Murinae, is well supported as the sister group to the gerbils (Gerbillinae). Four key regions appear to represent rapid radiations and, despite a large amount of sequence data, remain poorly resolved: the base of the "core" muroids, among the five cricetid (hamster) subfamilies, within a large clade of Sigmodontinae endemic to South America, and among major geographic lineages of Old World Murinae. Because of the detailed taxon sampling within the Murinae, we are able to refine the fossil calibration of a rate-smoothed molecular clock and apply this clock to date key events in muroid evolution. We calculate rate differences among the gene regions and relate those differences to relative contribution of each gene to the support for various nodes. The among-gene variance in support is greatest for the shortest branches. We present a revised classification for this largest but most unsettled mammalian superfamily.
Hasegawa, H; Syafruddin
1994-08-01
Cyclodontostomum purvisi Adams, 1933 (Nematoda: Strongyloidea: Chabertiidae) was collected from the ceca of Maxomys whiteheadi, Leopoldamys sabanus, and Niviventer cremoniventer of East Kalimantan and Eropeplus canus, Paruromys dominator, and Rattus hoffmanni (Rodentia: Muridae: Murinae) in South Sulawesi, Indonesia. Kalimantan and Sulawesi are new localities for this nematode, and each of the Sulawesian rats are new hosts. Presence of the external corona radiata consisting of 8 bifid elements was confirmed in Cyclodontostomum. Ancistronema coronatum Smales, 1992 is synonymized with C. purvisi. The cephalic end of Kalimantan specimens tilted dorsally more strongly than C. purvisi from Sulawesi. Cyclodontostomum purvisi seems to have a wide host range in the Murinae, being distributed widely in the area from India to Australia.
Two new species of Trichuris (Nematoda: Trichuridae) collected from endemic murines of Indonesia.
Hasegawa, Hideo; Dewi, Kartika
2017-04-12
Two new species of the genus Trichuris (Nematoda: Trichuridae) parasitic in the old endemic murids of Indonesia are described: T. musseri sp. nov. from Echiothrix centrosa (Murinae: Rattini) in Sulawesi and T. mallomyos sp. nov. from Mallomys rothschildi (Murinae: Hydromyini) in Papua Indonesia. Both species are characterized by having a gradually tapered and sharply pointed distal end of the spicule, being readily distinguished from most of the congeners known from murid rodents. Trichuris musseri is readily distinguished from T. mallomyos by having a much smaller body and large number of nuclei per subdivision of stichosome. The resemblance in spicule morphology between the two new species is of special interest because both hosts belong to different tribes and have different habitats and habits. It remains to be elucidated whether the resemblance is merely homoplasy or actually reflects close phylogenetic relationship of the parasites.
Evans, Heather M.; Bryant, Grady L.
2016-01-01
The cell wall β-glucans of Pneumocystis cysts have been shown to stimulate immune responses in lung epithelial cells, dendritic cells, and alveolar macrophages. Little is known about how the trophic life forms, which do not have a fungal cell wall, interact with these innate immune cells. Here we report differences in the responses of both neonatal and adult mice to the trophic and cystic life cycle stages of Pneumocystis murina. The adult and neonatal immune responses to infection with Pneumocystis murina trophic forms were less robust than the responses to infection with a physiologically normal mixture of cysts and trophic forms. Cysts promoted the recruitment of nonresident innate immune cells and T and B cells into the lungs. Cysts, but not trophic forms, stimulated increased concentrations of the cytokine gamma interferon (IFN-γ) in the alveolar spaces and an increase in the percentage of CD4+ T cells that produce IFN-γ. In vitro, bone marrow-derived dendritic cells (BMDCs) stimulated with cysts produced the proinflammatory cytokines interleukin 1β (IL-1β) and IL-6. In contrast, trophic forms suppressed antigen presentation to CD4+ T cells, as well as the β-glucan-, lipoteichoic acid (LTA)-, and lipopolysaccharide (LPS)-induced production of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) by BMDCs. The negative effects of trophic forms were not due to ligation of mannose receptor. Our results indicate that optimal innate and adaptive immune responses to Pneumocystis species are dependent on stimulation with the cyst life cycle stage. Conversely, trophic forms suppress β-glucan-induced proinflammatory responses in vitro, suggesting that the trophic forms dampen cyst-induced inflammation in vivo. PMID:27572330
NASA Astrophysics Data System (ADS)
Charles, Cyril; Jaeger, Jean-Jacques; Michaux, Jacques; Viriot, Laurent
2007-01-01
Observations of dental microwear are used to analyse the correlation between changes in molar tooth crown morphology and the direction of masticatory movement during the evolution of Myodonta (Rodentia, Mammalia). The studied sample includes 36 specimens representing both superfamilies of Myodonta (Muroidea and Dipodoidea) spanning 16 dipodoid and 9 muroid species. Microscopic scratches on occlusal surfaces resulting from contact between opposite teeth during mastication are analysed. Using these features, we determine the direction of masticatory movements. Microwear patterns display diverse orientations among Dipodoidea: oblique in Sicistinae, Euchoreutinae and Zapodinae, propalinal in Dipodinae and intermediary in Allactaginae. Similarly, Muroidea exhibit the following orientations: oblique in Cricetinae and propalinal in Arvicolinae, Cricetomyinae, Gerbillinae and Murinae. These various chewing types illustrate different evolutionary grades within the superfamilies. Acquisition of the antero-posterior masticatory movement in Dipodoidea is related to flattening of the molar occlusal surface. However, in some muroid subfamilies, this direction of mastication is associated with low-crowned and cuspidate molars (Cricetomyinae, Murinae).
Volobouev, V T; Ducroz, J F; Aniskin, V M; Britton-Davidian, J; Castiglia, R; Dobigny, G; Granjon, L; Lombard, M; Corti, M; Sicard, B; Capanna, E
2002-01-01
A chromosome study of unstriped grass rats of the genus Arvicanthis (Rodentia, Murinae) in western and central Africa is presented. The observations extend the data available to 242 specimens from 59 localities. All individuals karyotyped belong to four karyotypic forms, or cytotypes, earlier described as ANI-1, ANI-2, ANI-3, and ANI-4 and are presumed to correspond to four distinct species. In order to provide diagnostic characters for these western and one central African Arvicanthis species, we standardized the chromosomal data available and developed a G- and C-banded chromosome nomenclature that allows easy species identification. Each form is characterized by a distinct geographical distribution, roughly following the biogeographical domains of western Africa, although their precise limits remain to be assessed. The sole area of sympatry detected is the region of the inner delta of the Niger River, where both ANI-1 and ANI-3 can be found. It is proposed that the three western African species ANI-1, ANI-3, and ANI-4 be renamed as A. niloticus, A. ansorgei, and A. rufinus, respectively. Copyright 2002 S. Karger AG, Basel
Castel, Guillaume; Razzauti, Maria; Jousselin, Emmanuelle; Kergoat, Gael J.; Cosson, Jean-François
2014-01-01
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space. PMID:24618811
Ribas, Alexis; López, Sergi; Makundi, Rhodes H; Leirs, Herwig; de Bellocq, Joëlle Goüy
2013-10-01
During a survey of the helminth community of several rodent species in the Morogoro region (Tanzania), Trichuris whipworms (Nematoda: Trichuridae) were found in the ceca of the Natal multimammate mouse, Mastomys natalensis and a gerbil, Gerbilliscus vicinus (both Rodentia: Muridae). The taxonomic literature regarding Trichuris from African native rodents describes 10 species, but includes few metric and morphologic characters that discriminate between some of the pairs. The whipworms we sampled in Tanzanian Natal multimammate mice and gerbils were morphologically identified, respectively, as Trichuris mastomysi Verster, 1960 and Trichuris carlieri Gedoelst, 1916 sensu lato, but with characters that overlap or partially overlap with the cosmopolitan Murinae whipworm, Trichuris muris , already reported from several rodents in Africa. To clarify our identification, we sequenced the ITS-1, 5.8S, and ITS-2 ribosomal DNA region of the worms' nuclear genome. The genetic analyses clearly distinguish the whipworms we found in M. natalensis from those found in the gerbil, and both of these from T. muris whipworm reference sequences. The overlap of morphological characters between rodent whipworms suggests that reports of T. muris from rodent species not closely related to Murinae in other parts of Africa should be treated with caution.
Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents.
Michaux, J; Reyes, A; Catzeflis, F
2001-11-01
Phylogenetic relationships between 32 species of rodents representing 14 subfamilies of Muridae and four subfamilies of Dipodidae were studied using sequences of the nuclear protein-coding genes Lecithin Cholesterol Acyl Transferase (LCAT) and von Willebrand Factor (vWF). An examination of some evolutionary properties of each data matrix indicates that the two genes are rather complementary, with lower rates of nonsynonymous substitutions for LCAT. Both markers exhibit a wide range of GC3 percentages (55%-89%), with several taxa above 70% GC3 for vWF, which indicates that those exonic regions might belong to the richest class of isochores. The primary sequence data apparently harbor few saturations, except for transitions on third codon positions for vWF, as indicated by comparisons of observed and expected pairwise values of substitutions. Phylogenetic trees based on 1,962 nucleotidic sites from the two genes indicate that the 14 Muridae subfamilies are organized into five major lineages. An early isolation leads to the clade uniting the fossorial Spalacinae and semifossorial Rhizomyinae with a strong robustness. The second lineage includes a series of African taxa representing nesomyines, dendromurines, cricetomyines, and the sole living member of mystromyines. The third one comprises only the mouselike hamster CALOMYSCUS: The fourth clade represents the cricetines, myospalacines, sigmodontines, and arvicolines, whereas the fifth one comprises four "traditional" subfamilies (Gerbillinae, Murinae, Otomyinae, and Acomyinae). Within these groups, we confirm the monophyly of almost all studied subfamilies, namely, Spalacinae, Rhizomyinae, Nesomyinae, Cricetomyinae, Arvicolinae, Sigmodontinae, Cricetinae, Gerbillinae, Acomyinae, and Murinae. Finally, we present evidence that the sister group of Acomyinae is Gerbillinae, and we confirm a nested position of Myospalacinae within Cricetinae and Otomyinae within Murinae. From a biogeographical point of view, the five main lineages spread and radiated from Asia with different degrees of success: the first three groups are now represented by a limited number of species and genera localized in some regions, whereas the last two groups radiated in a large variety of species and genera dispersed all over the world.
Lobo, Maria Luísa; Esteves, Francisco; de Sousa, Bruno; Cardoso, Fernando; Cushion, Melanie T.; Antunes, Francisco; Matos, Olga
2013-01-01
Pneumocystis pneumonia (PcP) is a major cause of mortality and morbidity in immunocompromised patients. There are limited alternative therapeutic choices to trimethoprim-sulfamethoxazole (TMP-SMX) which is the standard first line therapy/prophylaxis for PcP. The efficacy of low doses of caspofungin and caspofungin in association with TMP-SMX standard-prophylactic dose was evaluated in an experimental model of Pneumocystis. Susceptibility of Pneumocystis spp. to low doses of caspofungin and caspofungin/TMP-SMX was evaluated in Balb/c immunosuppressed mice, infected intranasally with P. murina. Caspofungin was administered once daily at 0.1 mg/kg, 0.05 mg/kg, and 0.001 mg/kg and TMP-SMX was administered by oral gavage (12.25 mg/62.5 mg/day), for 21 days. Efficacy was calculated based on the reduction in organism burden determined through quantitative fluorescent-based real-time PCR (qPCR). Serum β-1,3-D-glucan was measured as an additional marker of infection. The present data showed that caspofungin demonstrated anti-Pneumomocystis effect. However, the doses administrated were too low to achieve Pneumocystis eradication, which suggests that echinocandin treatment should not be administrated as mono-therapy. After 21 days of treatment, P. murina was not detected in the lungs of mice with either TMP-SMX or caspofungin/TMP-SMX. The results showed that, even at the lowest concentrations tested, the efficacy of caspofungin in association with TMP-SMX was higher than the efficacy of either drug used alone. The administration of caspofungin/TMP-SMX was at least 1.4 times more effective against P. murina infection than TMP-SMX used alone. The most promising result was achieved with the combination of caspofungin 0.05 mg/kg/day with TMP-SMX 12.5 mg–62.5 mg/day, which reduced the parasite burden to undetectable levels immediately at the 14th day of treatment, showing a highly marked anti-Pneumomocystis effect. These data suggest that the administration of low doses of caspofungin in combination with low doses of TMP-SMX may provide an improved treatment protocol for Pneumocystis infection clearance. PMID:23940606
Lobo, Maria Luísa; Esteves, Francisco; de Sousa, Bruno; Cardoso, Fernando; Cushion, Melanie T; Antunes, Francisco; Matos, Olga
2013-01-01
Pneumocystis pneumonia (PcP) is a major cause of mortality and morbidity in immunocompromised patients. There are limited alternative therapeutic choices to trimethoprim-sulfamethoxazole (TMP-SMX) which is the standard first line therapy/prophylaxis for PcP. The efficacy of low doses of caspofungin and caspofungin in association with TMP-SMX standard-prophylactic dose was evaluated in an experimental model of Pneumocystis. Susceptibility of Pneumocystis spp. to low doses of caspofungin and caspofungin/TMP-SMX was evaluated in Balb/c immunosuppressed mice, infected intranasally with P. murina. Caspofungin was administered once daily at 0.1 mg/kg, 0.05 mg/kg, and 0.001 mg/kg and TMP-SMX was administered by oral gavage (12.25 mg/62.5 mg/day), for 21 days. Efficacy was calculated based on the reduction in organism burden determined through quantitative fluorescent-based real-time PCR (qPCR). Serum β-1,3-D-glucan was measured as an additional marker of infection. The present data showed that caspofungin demonstrated anti-Pneumomocystis effect. However, the doses administrated were too low to achieve Pneumocystis eradication, which suggests that echinocandin treatment should not be administrated as mono-therapy. After 21 days of treatment, P. murina was not detected in the lungs of mice with either TMP-SMX or caspofungin/TMP-SMX. The results showed that, even at the lowest concentrations tested, the efficacy of caspofungin in association with TMP-SMX was higher than the efficacy of either drug used alone. The administration of caspofungin/TMP-SMX was at least 1.4 times more effective against P. murina infection than TMP-SMX used alone. The most promising result was achieved with the combination of caspofungin 0.05 mg/kg/day with TMP-SMX 12.5 mg-62.5 mg/day, which reduced the parasite burden to undetectable levels immediately at the 14(th) day of treatment, showing a highly marked anti-Pneumomocystis effect. These data suggest that the administration of low doses of caspofungin in combination with low doses of TMP-SMX may provide an improved treatment protocol for Pneumocystis infection clearance.
Zucker, Marc R; Harvey, Michael G; Oswald, Jessica A; Cuervo, Andrés; Derryberry, Elizabeth; Brumfield, Robb T
2016-08-01
Simultaneous examination of evolutionary history in island forms and closely related mainland relatives can provide reciprocal insight into the evolution of island and mainland faunas. The Cocos Flycatcher (Nesotriccus ridgwayi) is a small tyrant flycatcher (Tyrannidae) endemic to Cocos Island, an oceanic island in the eastern Pacific Ocean. We first established its close relationship to the mainland species Mouse-colored Tyrannulet (Phaeomyias murina) using a phylogeny from genome-wide ultraconserved elements and exons. We then used mitochondrial DNA to explore the relationships between Nesotriccus and Phaeomyias populations from across its distribution in Central and South America. We found that Nesotriccus is nested within the Phaeomyias evolutionary tree, and that Phaeomyias represents a complex of at least four evolutionarily distinct species that differ in plumage, voice, and habitat association. Nesotriccus underwent a population bottleneck subsequent to its divergence from Central American and northern South American Phaeomyias populations in the middle Pleistocene. The 46 UCE loci containing alleles that are fixed between the two species are widely distributed across the genome, which suggests that selective or neutral processes responsible for divergence have occurred genome-wide. Overall, our simultaneous examination of Phaeomyias and Nesotriccus revealed divergent levels of genetic diversity and evolutionary histories between island and mainland forms. Copyright © 2016 Elsevier Inc. All rights reserved.
Silva, Carlos Eduardo Faresin e; de Andrade, Rodrigo Amaral; de Souza, Érica Martinha Silva; Eler, Eduardo Schmidt; da Silva, Maria Nazareth Ferreira; Feldberg, Eliana
2017-01-01
Abstract We investigated the karyotype of 18 didelphid species captured at 13 localities in the Brazilian Amazon, after conventional staining, C-banding, Ag-NOR and fluorescent in situ hybridization (FISH) using the 18S rDNA probe. Variations were found in the X chromosome, heterochromatin distribution and the 18S rDNA sequence. The main variation observed was in the position of the centromere in the X chromosome of Caluromys philander Linnaeus, 1758 and Marmosa murina Linnaeus, 1758. For both species, the X chromosome showed a geographical segregation in the pattern of variation between eastern and western Brazil, with a possible contact area in the central Amazon. C-banding on the X chromosome revealed two patterns for the species of Marmosops Matschie, 1916, apparently without geographic or specific relationships. The nucleolus organizer region (NOR) of all species was confirmed with the 18S rDNA probe, except on the Y chromosome of Monodelphis touan Shaw, 1800. The distribution of this marker varied only in the genus Marmosa Gray, 1821 [M. murina Thomas, 1905 and M. demerarae Thomas, 1905]. Considering that simple NORs are seen as a plesiomorphic character, we conclude that the species Marmosa spp. and Didelphis marsupialis Linnaeus, 1758 evolved independently to the multiple condition. By increasing the sample, using chromosomal banding, and FISH, we verified that marsupials present intra- and interspecific chromosomal variations, which suggests the occurrence of frequent chromosomal rearrangements in the evolution of this group. This observation contrasts with the chromosomal conservatism expected for didelphids. PMID:29114362
Evans, Heather M.; Simpson, Andrew; Shen, Shu; Stromberg, Arnold J.; Pickett, Carol L.
2017-01-01
ABSTRACT The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells. PMID:28694293
Dietary Ecology of Murinae (Muridae, Rodentia): A Geometric Morphometric Approach
Gómez Cano, Ana Rosa; Hernández Fernández, Manuel; Álvarez-Sierra, M. Ángeles
2013-01-01
Murine rodents represent a highly diverse group, which displays great ecological versatility. In the present paper we analyse the relationship between dental morphology, on one hand, using geometric morphometrics based upon the outline of first upper molar and the dietary preference of extant murine genera, on the other. This ecomorphological study of extant murine rodents demonstrates that dietary groups can be distinguished with the use of a quantitative geometric morphometric approach based on first upper molar outline. A discriminant analysis of the geometric morphometric variables of the first upper molars enables us to infer the dietary preferences of extinct murine genera from the Iberian Peninsula. Most of the extinct genera were omnivore; only Stephanomys showed a pattern of dental morphology alike that of the herbivore genera. PMID:24236090
2013-01-01
Background In vertebrates, it has been repeatedly demonstrated that genes encoding proteins involved in pathogen-recognition by adaptive immunity (e.g. MHC) are subject to intensive diversifying selection. On the other hand, the role and the type of selection processes shaping the evolution of innate-immunity genes are currently far less clear. In this study we analysed the natural variation and the evolutionary processes acting on two genes involved in the innate-immunity recognition of Microbe-Associated Molecular Patterns (MAMPs). Results We sequenced genes encoding Toll-like receptor 4 (Tlr4) and 7 (Tlr7), two of the key bacterial- and viral-sensing receptors of innate immunity, across 23 species within the subfamily Murinae. Although we have shown that the phylogeny of both Tlr genes is largely congruent with the phylogeny of rodents based on a comparably sized non-immune sequence dataset, we also identified several potentially important discrepancies. The sequence analyses revealed that major parts of both Tlrs are evolving under strong purifying selection, likely due to functional constraints. Yet, also several signatures of positive selection have been found in both genes, with more intense signal in the bacterial-sensing Tlr4 than in the viral-sensing Tlr7. 92% and 100% of sites evolving under positive selection in Tlr4 and Tlr7, respectively, were located in the extracellular domain. Directly in the Ligand-Binding Region (LBR) of TLR4 we identified two rapidly evolving amino acid residues and one site under positive selection, all three likely involved in species-specific recognition of lipopolysaccharide of gram-negative bacteria. In contrast, all putative sites of LBRTLR7 involved in the detection of viral nucleic acids were highly conserved across rodents. Interspecific differences in the predicted 3D-structure of the LBR of both Tlrs were not related to phylogenetic history, while analyses of protein charges clearly discriminated Rattini and Murini clades. Conclusions In consequence of the constraints given by the receptor protein function purifying selection has been a dominant force in evolution of Tlrs. Nevertheless, our results show that episodic diversifying parasite-mediated selection has shaped the present species-specific variability in rodent Tlrs. The intensity of diversifying selection was higher in Tlr4 than in Tlr7, presumably due to structural properties of their ligands. PMID:24028551
Pisanu, Benoît; Lebailleux, Lise; Chapuis, Jean-Louis
2009-02-01
A lack of newly acquired species partly explains why introduced host species have poor specific parasite diversity. The intestinal helminth community from two native Murid host species, wood mice Apodemus sylvaticus [Murinae] (n=40), bank voles Clethrionomys glareolus [Arvicolinae] (n=42), and an introduced Sciurid, the Siberian chipmunk Tamias sibiricus (n=42), dominant in the rodent communities, was studied from three woody areas in the Ile-de-France region. Native gastrointestinal helminth fauna from mice and voles was formed by 12 taxa: ten nematodes, Aonchotheca murissylvatici, Aonchotheca annulosa, Aspiculuris tetraptera, Eucoleus sp., Heligmosomoides glareoli, Heligmosomoides polygyrus, Mastophorus muris, Syphacia frederici, Syphacia stroma, Trichuris muris, a Cestode and a Trematode. Two helminth taxa were imported by chipmunks from eastern Asia: Brevistriata skrjabini and Strongyloides callosciureus. Only A. annulosa was transferred to chipmunks from the native small rodent community. None of the 82 native murids harbored chipmunk helminths. The developmental ability of helminth according to host phylogenetic relatedness was the main driving force explaining the species composition of the helminth community between these sympatric native and introduced hosts.
Jiang, Tinglei; Long, Zhenyu; Ran, Xin; Zhao, Xue; Xu, Fei; Qiu, Fuyuan; Kanwal, Jagmeet S.
2016-01-01
ABSTRACT Bats vocalize extensively within different social contexts. The type and extent of information conveyed via their vocalizations and their perceptual significance, however, remains controversial and difficult to assess. Greater tube-nosed bats, Murina leucogaster, emit calls consisting of long rectangular broadband noise burst (rBNBl) syllables during aggression between males. To experimentally test the behavioral impact of these sounds for feeding, we deployed an approach and place-preference paradigm. Two food trays were placed on opposite sides and within different acoustic microenvironments, created by sound playback, within a specially constructed tent. Specifically, we tested whether the presence of rBNBl sounds at a food source effectively deters the approach of male bats in comparison to echolocation sounds and white noise. In each case, contrary to our expectation, males preferred to feed at a location where rBNBl sounds were present. We propose that the species-specific rBNBl provides contextual information, not present within non-communicative sounds, to facilitate approach towards a food source. PMID:27815241
Pagès, Marie; Chevret, Pascale; Gros-Balthazard, Muriel; Hughes, Sandrine; Alcover, Josep Antoni; Hutterer, Rainer; Rando, Juan Carlos; Michaux, Jacques; Hänni, Catherine
2012-01-01
The lava mouse, Malpaisomys insularis, was endemic to the Eastern Canary islands and became extinct at the beginning of the 14(th) century when the Europeans reached the archipelago. Studies to determine Malpaisomys' phylogenetic affinities, based on morphological characters, remained inconclusive because morphological changes experienced by this insular rodent make phylogenetic investigations a real challenge. Over 20 years since its first description, Malpaisomys' phylogenetic position remains enigmatic. In this study, we resolved this issue using molecular characters. Mitochondrial and nuclear markers were successfully amplified from subfossils of three lava mouse samples. Molecular phylogenetic reconstructions revealed, without any ambiguity, unsuspected relationships between Malpaisomys and extant mice (genus Mus, Murinae). Moreover, through molecular dating we estimated the origin of the Malpaisomys/mouse clade at 6.9 Ma, corresponding to the maximal age at which the archipelago was colonised by the Malpaisomys ancestor via natural rafting. This study reconsiders the derived morphological characters of Malpaisomys in light of this unexpected molecular finding. To reconcile molecular and morphological data, we propose to consider Malpaisomys insularis as an insular lineage of mouse.
Parasite assemblages of Australian species of Pseudomys (Rodentia: Muridae: Murinae).
Weaver, H J; Smales, L R
2012-02-01
The parasite fauna of many Australian rodents is poorly known. The ectoparasite and helminth faunas of Pseudomys delicatulus, Pseudomys desertor, Pseudomys gracilicaudatus, and Pseudomys hermannsburgensis were determined and compared. In total, 12 species of arthropods, 2 cestodes, and 13 nematodes were found. Species richness of parasites was highest in P. hermannsburgensis and lowest in P. desertor. Despite the sampling effort, the number of parasite species discovered did not reach an asymptote for any of the host species, indicating that the full parasite fauna was not examined. Helminth species richness was highest in the insectivorous P. hermannsburgensis and lower in the obligate herbivores. The structure of parasite component communities was influenced by the social structure of the host species, not surprisingly, with the most highly social species having the highest richness of parasites. Habitat preferences also provided contrast between the helminth component communities, with heligmonellid nematodes occurring in damp woodlands and dominating the parasite fauna of P. gracilicaudatus. Oxyurid nematodes dominated the component communities of the 3 other species, all of which inhabit drier habitats.
Wright, Terry W.; Malone, Jane E.; Haidaris, Constantine G.; Harber, Martha; Sant, Andrea J.; Nayak, Jennifer L.
2016-01-01
ABSTRACT Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4+ T cells were depleted, and the mice were exposed to Pneumocystis murina. Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii. Potential orthologs of Pca1 have been identified in P. jirovecii. Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. PMID:28031260
Gros-Balthazard, Muriel; Hughes, Sandrine; Alcover, Josep Antoni; Hutterer, Rainer; Rando, Juan Carlos; Michaux, Jacques; Hänni, Catherine
2012-01-01
Background The lava mouse, Malpaisomys insularis, was endemic to the Eastern Canary islands and became extinct at the beginning of the 14th century when the Europeans reached the archipelago. Studies to determine Malpaisomys' phylogenetic affinities, based on morphological characters, remained inconclusive because morphological changes experienced by this insular rodent make phylogenetic investigations a real challenge. Over 20 years since its first description, Malpaisomys' phylogenetic position remains enigmatic. Methodology/Principal Findings In this study, we resolved this issue using molecular characters. Mitochondrial and nuclear markers were successfully amplified from subfossils of three lava mouse samples. Molecular phylogenetic reconstructions revealed, without any ambiguity, unsuspected relationships between Malpaisomys and extant mice (genus Mus, Murinae). Moreover, through molecular dating we estimated the origin of the Malpaisomys/mouse clade at 6.9 Ma, corresponding to the maximal age at which the archipelago was colonised by the Malpaisomys ancestor via natural rafting. Conclusion/Significance This study reconsiders the derived morphological characters of Malpaisomys in light of this unexpected molecular finding. To reconcile molecular and morphological data, we propose to consider Malpaisomys insularis as an insular lineage of mouse. PMID:22363563
β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia
Kutty, Geetha; Davis, A. Sally; Ferreyra, Gabriela A.; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A.
2016-01-01
β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis. In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. PMID:27324243
Tesini, Brenda L; Wright, Terry W; Malone, Jane E; Haidaris, Constantine G; Harber, Martha; Sant, Andrea J; Nayak, Jennifer L; Gigliotti, Francis
2017-04-01
Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4 + T cells were depleted, and the mice were exposed to Pneumocystis murina Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii Potential orthologs of Pca1 have been identified in P. jirovecii Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation. Copyright © 2017 American Society for Microbiology.
Argot, C
2001-01-01
An attempt to determine the locomotor activities of Mayulestes ferox (Borhyaenoidea) and Pucadelphys andinus (Didelphoidea) from the early Paleocene site of Tiupampa (Bolivia) is presented. The functional anatomy of the forelimbs of these South American marsupials is compared to that of some living didelphids: Caluromys philander, Micoureus demerarae, Marmosa murina, Didelphis marsupialis, Monodelphis brevicaudata and Metachirus nudicaudatus. Deductions from bone morphology to myology and locomotor behavior in the fossils are inferred from the comparisons with living forms. Some features of the postcranial skeleton, indicative of arboreal adaptations, are found in the extinct marsupials: anteriorly projected acromion, hemispherical head of the humerus, extended humeral lateral epicondylar ridge, medially protruding humeral entepicondyle, proximal ulnar posterior convexity, and deep flexor fossa on the medial side of the ulna. But other features are related to a more terrestrial pattern: the well-developed tubercles of the humeral head, the elongated olecranon process of the ulna, and the oval shape of the radial head. Mayulestes had clear arboreal abilities, but, as a predaceous mammal, probably hunted on the ground. Pucadelphys was less specialized, close to the living Monodelphis, a terrestrial insectivorous form with some skeletal features related to arboreal locomotion that are probably plesiomorphic for marsupials. Copyright 2001 Wiley-Liss, Inc.
Ecological study of hantavirus infection in wild rodents in an endemic area in Brazil.
Oliveira, Renata Carvalho; Gentile, Rosana; Guterres, Alexandro; Fernandes, Jorlan; Teixeira, Bernardo Rodrigues; Vaz, Vanderson; Valdez, Fernanda Pedone; Vicente, Luciana Helena Bassan; da Costa-Neto, Sócrates Fraga; Bonvicino, Cibele; D'Andrea, Paulo Sergio; Lemos, Elba R S
2014-03-01
A 3-year ecological study of small mammals was carried out in an endemic area for hantavirus pulmonary syndrome in the state of Santa Catarina in Southern Brazil. A total of 994 rodents of 14 different species corresponding to the subfamilies of Sigmodontinae, Murinae, Eumysopinae, and Caviinae were captured during 2004-2006. Oligoryzomys nigripes and Akodon montensis were the most abundant species and showed a clear seasonal pattern with higher population sizes during the winter. Rodent population outbreaks, associated within bamboo mast seeding events, were detected predominantly in areas where hantavirus pulmonary syndrome cases were notified in the state. Antibody reactivity to Hantavirus was detected in five sigmodontine species: O. nigripes (39/435), A. montensis (15/318), Akodon paranaensis (4/37), Thaptomys nigrita (1/86) and Sooretamys angouya (1/12). The highest hantavirus antibody prevalence occurred during the period of highest population size in A. montensis. For O. nigripes, hantavirus prevalence was higher in late spring, when reproduction was more frequent. Co-circulation of Juquitiba (JUQV) and Jabora (JABV) viruses was observed - JABV in A. paranaensis and A. montensis; JUQV in O. nigripes and T. nigrita. JABV occurrence was associated to gender and population size of the rodent while JUQV was related to gender, season, temperature, and locality. Copyright © 2013 Elsevier B.V. All rights reserved.
Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus.
Zhang, Yong-Zhen
2014-07-17
Hantaviruses are among the most important zoonotic pathogens of humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). From the period 1964-2006 almost all hantaviruses had been identified in rodents, with the exception of Thottapalayam virus (TPMV) isolated from shrews sampled in India. As a consequence, rodents were considered as the natural reservoir hosts. However, over the past seven years, most of the newly found hantavirus genotypes have been from either shrews or moles. Remarkably, in recent years divergent hantaviruses have also been identified in bats sampled from both Africa and Asia. All these data indicate that hantaviruses have a broad range of natural reservoir hosts. Phylogenetic analyses of the available sequences of hantaviruses suggest that hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and shrews), before emerging in rodent species. Although rodent hantaviruses cluster according to whether their hosts are members of the Murinae and Cricetidae, the phylogenetic histories of the viruses are not always congruent with those of their hosts, indicating that cross-species transmission events have occurred at all taxonomic levels. In sum, both cross-species transmission and co-divergence have produced the high genetic diversity of hantaviruses described to date. Copyright © 2014. Published by Elsevier B.V.
Yamada, Kazuhiko; Kamimura, Eikichi; Kondo, Mariko; Tsuchiya, Kimiyuki; Nishida-Umehara, Chizuko; Matsuda, Yoichi
2006-02-01
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.
Anti-CD20 Antibody Therapy and Susceptibility to Pneumocystis Pneumonia
Elsegeiny, Waleed; Eddens, Taylor; Chen, Kong
2015-01-01
Anti-CD20 antibody therapy has been a useful medication for managing non-Hodgkin's lymphoma as well as autoimmune diseases characterized by autoantibody generation. CD20 is expressed during most developmental stages of B lymphocytes; thus, CD20 depletion leads to B-lymphocyte deficiency. As the drug has become more widely used, there has been an increase in the number of case reports of patients developing Pneumocystis pneumonia. The role of anti-CD20 in Pneumocystis jirovecii infection is under debate due to the fact that most patients receiving it are on a regimen of multiple immunosuppressive medications. To address the specific role of CD20 depletion in host immunity against Pneumocystis, we examined a murine anti-CD20 depleting antibody. We demonstrated that anti-CD20 alone is permissive for Pneumocystis infection and that anti-CD20 impairs components of type II immunity, such as production of interleukin-4 (IL-4), IL-5, and IL-13 by whole-lung cells, in response to Pneumocystis murina. We also demonstrated that CD4+ T cells from mice treated with anti-CD20 during Pneumocystis infection are incapable of mounting a protective immune response when transferred into Rag1−/− mice. Thus, CD20+ cells are critical for generating protective CD4+ T-cell immune responses against this organism. PMID:25733518
Hayashimoto, Nobuhito; Morita, Hanako; Ishida, Tomoko; Uchida, Ritsuki; Tanaka, Mai; Ozawa, Midori; Yasuda, Masahiko; Itoh, Toshio
2015-01-01
Information regarding the prevalence of infectious agents in mice in pet shops in Japan is scarce. This information is particularly useful for minimizing the risk of potential transmission of infections to laboratory mice. Therefore, we surveyed infectious agents in mice from pet shops in Kanagawa and Tokyo, Japan. The survey was conducted in 28 mice from 5 pet shops to screen for 47 items (17 viruses, 22 bacteria and fungi, 10 parasites) using culture tests, serology, PCR, and microscopy. The most common viral agent detected was murine norovirus (17 mice; 60.7%), followed by Theiler's murine encephalomyelitis virus (13 mice; 46.4%), and mouse hepatitis virus (12 mice; 42.8%). The most common agent amongst the bacteria and fungi was Pasteurella pneumotropica (10 mice; 35.7%), followed by Helicobacter ganmani and Pneumocystis murina (8 mice; 28.5%, for both). Tritrichomonas muris was the most common parasite (19 mice; 67.8%), followed by Spironucleus muris (13 mice; 46.4%), Aspiculuris tetraptera, and Syphacia obvelata (8 mice each; 28.5%). Remarkably, a zoonotic agent, Hymenolepis nana, was found in 7 mice (25%). Given these results, we suggest that the workers in laboratory animal facilities should recognize again the potential risks of mice outside of the laboratory animal facilities as an infectious source, and avoid keeping mice as pets or as feed for carnivorous reptiles as much as possible for risk management.
White-nose syndrome detected in bats over an extensive area of Russia.
Kovacova, Veronika; Zukal, Jan; Bandouchova, Hana; Botvinkin, Alexander D; Harazim, Markéta; Martínková, Natália; Orlov, Oleg L; Piacek, Vladimir; Shumkina, Alexandra P; Tiunov, Mikhail P; Pikula, Jiri
2018-06-18
Spatiotemporal distribution patterns are important infectious disease epidemiological characteristics that improve our understanding of wild animal population health. The skin infection caused by the fungus Pseudogymnoascus destructans emerged as a panzootic disease in bats of the northern hemisphere. However, the infection status of bats over an extensive geographic area of the Russian Federation has remained understudied. We examined bats at the geographic limits of bat hibernation in the Palearctic temperate zone and found bats with white-nose syndrome (WNS) on the European slopes of the Ural Mountains through the Western Siberian Plain, Central Siberia and on to the Far East. We identified the diagnostic symptoms of WNS based on histopathology in the Northern Ural region at 11° (about 1200 km) higher latitude than the current northern limit in the Nearctic. While body surface temperature differed between regions, bats at all study sites hibernated in very cold conditions averaging 3.6 °C. Each region also differed in P. destructans fungal load and the number of UV fluorescent skin lesions indicating skin damage intensity. Myotis bombinus, M. gracilis and Murina hilgendorfi were newly confirmed with histopathological symptoms of WNS. Prevalence of UV-documented WNS ranged between 16 and 76% in species of relevant sample size. To conclude, the bat pathogen P. destructans is widely present in Russian hibernacula but infection remains at low intensity, despite the high exposure rate.
Mohebali, Mehdi; Zarei, Zabiholah; Khanaliha, Khadijeh; Kia, Eshrat Beigom; Motavalli-Haghi, Afsaneh; Davoodi, Jaber; Rezaeian, Tahereh; Tarighi, Fathemeh; Rezaeian, Mostafa
2017-01-01
Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, C ricetulus migratorius . This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117), M. musculus (n=63) and C. migratorius (n=24) were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively. About 121(59.3%) of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%), Trichomonas muris 55(27.0%), Chilomastix betencourtti 17 (8.3%), Giardia muris 19(9.3%), Eimeria spp. 46(22.5%) , Isospora spp. 4(2%) and Cryptosporidium spp. 1(0.5%) were found from the collected rodents. Microsporidian spores were identified in 63 (31%) out of the 204 collected rodents using aniline blue staining method. Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans.
MOHEBALI, Mehdi; ZAREI, Zabiholah; Khanaliha, Khadijeh; KIA, Eshrat Beigom; MOTAVALLI-HAGHI, Afsaneh; DAVOODI, Jaber; REZAEIAN, Tahereh; TARIGHI, Fathemeh; REZAEIAN, Mostafa
2017-01-01
Background: Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, Cricetulus migratorius. Methods: This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117), M. musculus (n=63) and C. migratorius (n=24) were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively. Results: About 121(59.3%) of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%), Trichomonas muris 55(27.0%), Chilomastix betencourtti 17 (8.3%), Giardia muris 19(9.3%), Eimeria spp. 46(22.5%), Isospora spp. 4(2%) and Cryptosporidium spp. 1(0.5%) were found from the collected rodents. Microsporidian spores were identified in 63 (31%) out of the 204 collected rodents using aniline blue staining method. Conclusion: Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans. PMID:28979348
Anti-CD20 antibody therapy and susceptibility to Pneumocystis pneumonia.
Elsegeiny, Waleed; Eddens, Taylor; Chen, Kong; Kolls, Jay K
2015-05-01
Anti-CD20 antibody therapy has been a useful medication for managing non-Hodgkin's lymphoma as well as autoimmune diseases characterized by autoantibody generation. CD20 is expressed during most developmental stages of B lymphocytes; thus, CD20 depletion leads to B-lymphocyte deficiency. As the drug has become more widely used, there has been an increase in the number of case reports of patients developing Pneumocystis pneumonia. The role of anti-CD20 in Pneumocystis jirovecii infection is under debate due to the fact that most patients receiving it are on a regimen of multiple immunosuppressive medications. To address the specific role of CD20 depletion in host immunity against Pneumocystis, we examined a murine anti-CD20 depleting antibody. We demonstrated that anti-CD20 alone is permissive for Pneumocystis infection and that anti-CD20 impairs components of type II immunity, such as production of interleukin-4 (IL-4), IL-5, and IL-13 by whole-lung cells, in response to Pneumocystis murina. We also demonstrated that CD4(+) T cells from mice treated with anti-CD20 during Pneumocystis infection are incapable of mounting a protective immune response when transferred into Rag1(-/-) mice. Thus, CD20(+) cells are critical for generating protective CD4(+) T-cell immune responses against this organism. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia.
Kutty, Geetha; Davis, A Sally; Ferreyra, Gabriela A; Qiu, Ju; Huang, Da Wei; Sassi, Monica; Bishop, Lisa; Handley, Grace; Sherman, Brad; Lempicki, Richard; Kovacs, Joseph A
2016-09-01
β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Smales, L R
2014-11-28
Pieces of cestode, not indentified further, and 12 species of nematode including 1 new genus, 3 new species and 7 putative new species from the Families Chabertiidae and Heligmonellidae were collected from the digestive tracts of 16 Pogonomys loriae and 19 P. macrurous (Murinae: Hydromyini) from Papua, Indonesia and Papua New Guinea. The chabertiid Cyclodontostomum purvisi and the heligmonellid Odilia mackerrasae have been described previously from endemic murids. Hasanuddinia pogonomyos n. sp. can be distinguished from its congeners by the number of ridges in the synlophe, length of spicules and having a vagina with a dorsal diverticulum. Odilia dividua n. sp. is larger than its congeners, has a longer oesophagus, relatively shorter spicules and larger eggs. Pogonomystrongylus domaensis n. gen., n. sp. differs from all other genera in the Heligmonellidae in the characters of the synlophe, 7-10 ridges oriented sub frontally with a single left ventral ridge hypertrophied. Species richness of the nematode assemblages of P. loriae and P. macrourus are comparable to those of Abeomelomys sevia, Chiruromys vates and Coccymys rummleri when numbers of hosts examined are considered. Species composition was distinctive with 12, including the 7 putative species, of 14 species presently known only from species of Pogonomys. Similarities between the nematode fauna of endemic rodent hosts from Indonesia and Papua New Guinea were noted.
Vitamin D as Supplemental Therapy for Pneumocystis Pneumonia.
Lei, Guang-Sheng; Zhang, Chen; Zimmerman, Michelle K; Lee, Chao-Hung
2015-12-14
The combination of all-trans retinoic acid (ATRA) and primaquine (PMQ) has been shown to be effective for therapy of Pneumocystis pneumonia (PCP). Since a high concentration of ATRA has significant adverse effects, the possibility that vitamin D can be used to replace ATRA for PCP therapy was investigated. C57BL/6 mice were immunosuppressed by depleting CD4(+) cells and infected with Pneumocystis murina 1 week after initiation of immunosuppression. Three weeks after infection, the mice were treated orally for 3 weeks with vitamin D3 (VitD3) alone, PMQ alone, a combination of VitD3 and PMQ (VitD3-PMQ), or a combination of trimethoprim and sulfamethoxazole (TMP-SMX). Results showed that VitD3 (300 IU/kg/day) had a synergistic effect with PMQ (5 mg/kg/day) for therapy of PCP. Flow cytometric studies showed that this VitD3-PMQ combination recovered the CD11b(low) CD11c(high) alveolar macrophage population in mice with PCP as effectively as TMP-SMX. The VitD3-PMQ combination also reduced the massive infiltration of inflammatory cells into the lungs and the severity of lung damage. VitD3 was also shown to reduce the dose of TMP-SMX required for effective treatment of PCP. Taken together, results of this study suggest that a VitD3-PMQ combination can be used as an alternative therapy for PCP. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Prevalence and risk factors for encephalomyocarditis virus infection in Peru.
Czechowicz, Josephine; Huaman, Jose Luis; Forshey, Brett M; Morrison, Amy C; Castillo, Roger; Huaman, Alfredo; Caceda, Roxana; Eza, Dominique; Rocha, Claudio; Blair, Patrick J; Olson, James G; Kochel, Tadeusz J
2011-04-01
Although encephalomyocarditis virus (EMCV) infection has been commonly documented among domestic animals, less is known about EMCV transmission among humans. Recently, we described the isolation of EMCV from two febrile patients in Peru. To further investigate EMCV transmission in Peru, we screened febrile patients reporting to health clinics in Peru for serological evidence of recent EMCV infection. We also conducted a serological survey for EMCV-neutralizing antibodies in the city of Iquitos, located in the Amazon basin department of Loreto, Peru. Additionally, we screened serum from rodents collected from 10 departments in Peru for evidence of EMCV exposure. EMCV infection was found to be only rarely associated with acute febrile disease in Peru, accounting for <1% of febrile episodes analyzed. Despite the low acute disease burden associated with the virus, human exposure was quite common, as prevalence of EMCV-neutralizing antibodies ranged between 6.0% in the coastal city of Tumbes and >17% in cities in the tropical rainforest of northeastern Peru (Iquitos and Yurimaguas). On the basis of the serological survey conducted in Iquitos, risk factors for past infection include increased age, socioeconomic indicators such as residence construction materials and neighborhood, and swine ownership. Evidence from the rodent survey indicates that EMCV exposure is common among Murinae subfamily rodents in Peru (9.4% EMCV IgG positive), but less common among Sigmodontinae rodents (1.0% positive). Further studies are necessary to more precisely delineate the mode of EMCV transmission to humans, other potential disease manifestations, and the economic impact of EMCV transmission among swine in Peru.
Functional Characterization of Pneumocystis carinii Inositol Transporter 1
Collins, Margaret S.; Sesterhenn, Thomas; Porollo, Aleksey; Vadukoot, Anish Kizhakkekkara; Merino, Edward J.
2016-01-01
ABSTRACT Fungi in the genus Pneumocystis live in the lungs of mammals, where they can cause a fatal pneumonia (PCP [Pneumocystis pneumonia]) in hosts with compromised immune systems. The absence of a continuous in vitro culture system for any species of Pneumocystis has led to limited understanding of these fungi, especially for the discovery of new therapies. We recently reported that Pneumocystis carinii, Pneumocystis murina, and most significantly, Pneumocystis jirovecii lack both enzymes necessary for myo-inositol biosynthesis but contain genes with homologies to fungal myo-inositol transporters. Since myo-inositol is essential for eukaryotic viability, the primary transporter, ITR1, was functionally and structurally characterized in P. carinii. The predicted structure of P. carinii ITR1 (PcITR1) contained 12 transmembrane alpha-helices with intracellular C and N termini, consistent with other inositol transporters. The apparent Km was 0.94 ± 0.08 (mean ± standard deviation), suggesting that myo-inositol transport in P. carinii is likely through a low-affinity, highly selective transport system, as no other sugars or inositol stereoisomers were significant competitive inhibitors. Glucose transport was shown to use a different transport system. The myo-inositol transport was distinct from mammalian transporters, as it was not sodium dependent and was cytochalasin B resistant. Inositol transport in these fungi offers an attractive new drug target because of the reliance of the fungi on its transport, clear differences between the mammalian and fungal transporters, and the ability of the host to both synthesize and transport this critical nutrient, predicting low toxicity of potential inhibitors to the fungal transporter. PMID:27965450
NASA Astrophysics Data System (ADS)
Lee, K.; Park, J. Y.; Gwag, T.; Yoo, W.; Choi, I.
Mammalian skeletal muscle undergoes significant loss of mass and tension capacity during spaceflight or hindlimb suspension This is contrasted by observed features of hibernators in that muscle mass and contractility remain fairly unchanged during a prolonged period of dormancy In an effort of finding potential countermeasure against muscle atrophy in space microgravity we thereby investigated the biochemical properties of the pectoral muscle in a winter-hibernating bat Murina leucogaster Two-dimensional electrophoresis on overall muscle proteins and western blot analysis on heat shock proteins HSP 60 kD 70 kD and 90 kD were conducted to compare levels of myofiber proteins and the stress responsive chaperone molecules in winter-hibernation WH versus summer-active bats SA No seasonal difference was found in the ratio of muscle mass to body mass for the pectoral muscles confirming similar results in previous reports Among more than thirty proteins identified only 14 of the proteins showed significant reduction in the level for WH compared to SA The level of HSP60 and HSP90 in WH were 63 and 71 that in SA respectively P quad 0 05 whereas that of HSP70 was not different between the two groups However when the WH were forced to arouse for 40 min from hibernation the level of HSP70 increased 1 4-fold and 1 51-fold that of WH and SA respectively while the level of HSP90 increased 1 57-fold that of WH These results suggest that the levels of many key contractile and regulatory proteins were retained during
Arias, J R; Naif, R D; Miles, M A; de Souza, A A
1981-01-01
A total of 52 opossums (six species) were examined for evidence of infection with Leishmania in three different areas of forest near Manaus, Amazonas State, Brazil. No infections were detected in 27 opossums from a region of relatively undisturbed forest, including specimens of Didelphis marsupialis (18); Metachirus nudicaudatus (four); Monodelphis brevicaudata (one); Marmosa cinerea (two); M. murina (one) and M. parvidens (one). Of 15 D. marsupialis captured from a biological reserve, much disturbed by man, three were infected with L. braziliensis guyanensis: isolations were made from the skin of two of the animals, and from the viscera of the third. The isolates were biologically and biochemically indistinguishable from one isolate of L. b. guyanensis made from man and two from the sandfly vector Lutzomyia umbratilis from the same area. Two of eight D. marsupialis and both of two M. cinerea from another area of virgin forest used for army manoeuvres were infected with Leishmania mexicana amazonensis: the parasite was in all four cases isolated from normal skin. Five of nine specimens of Proechimys guyannensis, from the vicinity of Manaus, were also infected with L. m. amazonensis. A further 13 mammals (eight species) were negative for Leishmania. The importance of opossums as a reservoir of L. b. guyanensis is discussed. Although they may play only a minor role in virgin forest which is undisturbed by man, opossums (D. marsupialis) may become a significant reservoir of infection where man's activities have eliminated the major reservoir--which has yet to be incriminated.
García-Navas, Vicente; Westerman, Michael
2018-05-28
The progressive expansion of the Australian arid zone during the last 20 Ma appears to have spurred the diversification of several families of plants, vertebrates and invertebrates, yet such taxonomic groups appear to show limited niche radiation. Here, we test whether speciation is associated with niche conservatism (constraints on ecological divergence) or niche divergence in a tribe of marsupial mice (Sminthopsini; 23 taxa) that includes the most speciose genus of living dasyurids, the sminthopsins. To that end, we integrated phylogenetic data with ecological niche modelling, to enable us to reconstruct the evolution of climatic suitability within Sminthopsini. Niche overlap among species was low-moderate (but generally higher than expected given environmental background similarity), and the degree of phylogenetic clustering increased with aridity. Climatic niche reconstruction illustrates that there has been little apparent evolution of climatic tolerance within clades. Accordingly, climatic disparity tends to be accumulated among clades, suggesting considerable niche conservatism. Our results also indicate that evolution of climatic tolerances has been heterogeneous across different dimensions of climate (temperature vs. precipitation) and across phylogenetic clusters (Sminthopsis murina group vs. other groups). Although some results point to the existence of shifts in climatic niches during the speciation of sminthopsins, our study provides evidence for substantial phylogenetic niche conservatism in the group. We conclude that niche diversification had a low impact on the speciation of this tribe of small, but highly mobile marsupials. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Kottom, Theodore J; Hebrink, Deanne M; Jenson, Paige E; Marsolek, Paige L; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Limper, Andrew H
2018-02-01
Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2 -/- ) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2 -/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2 -/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2 -/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2 -/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.
Kimura, Yuri; Blanco, Fernando; Menéndez, Iris; Álvarez-Sierra, María A.; Hernández Fernández, Manuel
2017-01-01
Rodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars. This phenotypic “bracketing” approach is particularly useful in the study of the fossil record of small mammals, which is mostly represented by isolated teeth. As a case study, we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our results thoroughly with previous paleoecological reconstructions inferred by different methods. The resultant phenogram shows a predominance of ubiquitous genera among the Miocene taxa, and the presence of a few forest specialists in the two rodent groups (Murinae and Cricetidae), along with the absence of open environment specialists in either group of rodents. This appears to be related to the absence of enduring grassland biomes in the Iberian Peninsula during the late Miocene. High consistency between our result and previous studies suggests that this phenotypic “bracketing” approach is a very useful tool. PMID:28966888
Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Sager, Martin
2015-01-01
The impact of particular microbes on genetically engineered mice depends on the genotype and the environment. Infections resulting in clinical disease have an obvious impact on animal welfare and experimentation. In this study, we investigated the bacterial and fungal aetiology of spontaneous clinical disease of infectious origin among the genetically engineered mice from our institution in relation to their genotype. A total of 63 mice belonging to 33 different mice strains, from severe immunodeficient to wild-type, were found to display infections as the primary cause leading to their euthanasia. The necropsies revealed abscesses localized subcutaneously as well as in the kidney, preputial glands, seminal vesicles, in the uterus, umbilicus or in the lung. In addition, pneumonia, endometritis and septicaemia cases were recorded. Escherichia coli was involved in 21 of 44 (47.72%) of the lesions of bacterial origin, whereas [Pasteurella] pneumotropica was isolated from 19 of 44 (43.18%) cases. The infections with the two agents mentioned above included three cases of mixed infection with both pathogens. Staphylococcus aureus was considered responsible for five of 44 (11.36%) cases whereas Enterobacter cloacae was found to cause lesions in two of 44 (4.54%) mice. Overall, 16 of the 44 (36.36%) cases of bacterial aetiology affected genetically engineered mice without any explicit immunodeficiency or wild-type strains. The remaining 19 cases of interstitial pneumonia were caused by Pneumocystis murina. In conclusion, the susceptibility of genetically modified mice to opportunistic infections has to be regarded with precaution, regardless of the type of genetic modification performed. Beside the classical opportunists, such as [Pasteurella] pneumotropica and Staphylococcus aureus, Escherichia coli should as well be closely monitored to evaluate whether it represents an emerging pathogen in the laboratory mouse.
Smales, L R
2016-05-31
Cestodes, to be identified elsewhere, the acanthocephalan Moniliformis moniliformis and 15 species of nematode including 2 new genera, a new species and 2 putative new species from the families Heligmonellidae and Oxyuridae, as well as juveniles and a putative heligmonellid that could not be fully identified, were collected from the digestive tracts of 34 Rattus niobe (Muridae: Murinae: Rattini) from Papua, Indonesia and Papua New Guinea. The ascaridid, Toxocara mackerrasae, the chabertiid Cyclodontostomum purvisi, the heterakid Heterakis sp., the spirurids Protospirura kaindiensis and P. muricola the subulurid Subulura andersoni and the trichurids Eucoleus sp. and Trichuris muris have been reported previously from endemic Rattus spp. Syphacia (Syphacia) niobe n. sp. was distinguished from its congeners by a combination of characters including a round cephalic plate, the lack of cervical and lateral alae, a longer male tail and an attenuated female tail. Nugininema titokis n. gen., n. sp. differs from all other genera in the Heligmonellidae in the characters of the synlophe, 10-17 ridges orientated subfrontally at mid body and 2 right ventral ridges hypertrophied anteriorly. Rodentanema aenigma n. gen., n. sp. differs from all other genera in the Heligmonellidae in the characters of the synlophe 6-7 ridges at mid body not symmetrical in relation to frontal axis. Species richness of the nematode assemblage was similar to that reported for Rattus leucopus in Papua New Guinea, with about 90% of possible species found as indicated by bootstrap analysis. Species composition included 6 species unique to R. niobe and 7 species reported from at least one other species of Rattus indigenous to New Guinea, as well as juvenile worms, probably ascaridids.
Molecular mechanism underlying muscle mass retention in hibernating bats: role of periodic arousal.
Lee, Kisoo; So, Hyekyoung; Gwag, Taesik; Ju, Hyunwoo; Lee, Ju-Woon; Yamashita, Masamichi; Choi, Inho
2010-02-01
Hibernators like bats show only marginal muscle atrophy during prolonged hibernation. The current study was designed to test the hypothesis that hibernators use periodic arousal to increase protein anabolism that compensates for the continuous muscle proteolysis during disuse. To test this hypothesis, we investigated the effects of 3-month hibernation (HB) and 7-day post-arousal torpor (TP) followed by re-arousal (RA) on signaling activities in the pectoral muscles of summer-active (SA) and dormant Murina leucogaster bats. The bats did not lose muscle mass relative to body mass during the HB or TP-to-RA period. For the first 30-min following arousal, the peak amplitude and frequency of electromyographic spikes increased 3.1- and 1.4-fold, respectively, indicating massive myofiber recruitment and elevated motor signaling during shivering. Immunoblot analyses of whole-tissue lysates revealed several principal outcomes: (1) for the 3-month HB, the phosphorylation levels of Akt1 (p-Akt1) and p-mTOR decreased significantly compared to SA bats, but p-FoxO1 levels remained unaltered; (2) for the TP-to-RA period, p-Akt1 and p-FoxO1 varied little, while p-mTOR showed biphasic oscillation; (3) proteolytic signals (i.e., atrogin-1, MuRF1, Skp2 and calpain-1) remained constant during the HB and TP-to-RA period. These results suggest that the resistive properties of torpid bat muscle against atrophy might be attained primarily by relatively constant proteolysis in combination with oscillatory anabolic activity (e.g., p-mTOR) corresponding to the frequency of arousals occurring throughout hibernation. (c) 2009 Wiley-Liss, Inc.
Kottom, Theodore J.; Hebrink, Deanne M.; Jenson, Paige E.; Nandakumar, Vijayalakshmi; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Lepenies, Bernd; Limper, Andrew H.
2017-01-01
Pneumocystis pneumonia (PCP) remains a major cause of morbidity and mortality within immunocompromised patients. In this study, we examined the potential role of Mincle (Macrophage inducible C-type lectin) for host defense against Pneumocystis. Binding assays implementing soluble Mincle Carbohydrate Recognition Domain (CRD) fusion proteins demonstrated binding to intact Pneumocystis carinii (Pc) as well as to organism homogenates, and purified major surface glycoprotein/glycoprotein A derived from the organism. Additional experiments showed that rats with Pneumocystis pneumonia (PCP) expressed increased Mincle mRNA levels. Mouse macrophages over-expressing Mincle displayed increased binding to Pc life forms and enhanced protein tyrosine phosphorylation. The binding of Pc to Mincle resulted in activation of Fc receptor γ (FcRγ) mediated cell signaling. RNA silencing of Mincle in mouse macrophages resulted in decreased activation of Syk kinase after Pc challenge, critical in downstream inflammatory signaling. Mincle deficient CD-4 depleted (Mincle−/−) mice showing a significant defect in organism clearance from the lungs with higher organism burdens and altered lung cytokine responses during Pneumocystis murina (Pm) pneumonia. Interestingly, Mincle−/− did not demonstrate worsened survival during PCP compared to wild type mice, despite the markedly increased organism burdens. This may be related to increased expression of anti-inflammatory factors such as IL-1Ra during infection in the Mincle−/− mice. Of note, the Pm infected Mincle−/− mice demonstrated increased expression of known C-type lectin receptors Dectin-1, Dectin-2, and MCL compared to infected wild type mice. Taken together, these data support a significant role for Mincle in Pneumocystis modulating host defense during infection. PMID:28298521
Eosinophils contribute to early clearance of Pneumocystis murina infection
Eddens, Taylor; Elsegeiny, Waleed; Nelson, Michael P.; Horne, William; Campfield, Brian T.; Steele, Chad; Kolls, Jay K.
2015-01-01
Pneumocystis pneumonia remains a common opportunistic infection in the diverse immunosuppressed population. One clear risk factor for susceptibility to Pneumocystis is a declining CD4+ T-cell counts in the setting of HIV/AIDS or primary immunodeficiency. Non-HIV infected individuals taking immunosuppressive drug regimens targeting T-cell activation are also susceptible. Given the crucial role of CD4+ T-cells in host defense against Pneumocystis, we used RNA-sequencing of whole lung early in infection in wild type and CD4-depleted animals as an unbiased approach to examine mechanisms of fungal clearance. In wild type mice, a strong eosinophil signature was observed at day 14 post-Pneumocystis challenge and eosinophils were increased in the bronchoalveolar lavage fluid of wild type mice. Furthermore, eosinophilopoiesis-deficient Gata1tm6Sho/J mice were more susceptible to Pneumocystis infection when compared to BALB/c controls and bone marrow derived eosinophils had in vitro Pneumocystis killing activity. To drive eosinophilia in vivo, Rag1−/− mice were treated with a plasmid expressing IL-5 (pIL5) or an empty plasmid control via hydrodynamic injection. pIL5 treated mice had increased serum IL-5 and eosinophilia in the lung, as well as reduced Pneumocystis burden compared to mice treated with control plasmid. Additionally, pIL5 treatment could induce eosinophilia and reduce Pneumocystis burden in CD4-depleted C57Bl/6 and BALB/c mice, but not eosinophilopoiesis-deficient Gata1tm6Sho/J mice. Taken together, these results demonstrate that an early role of CD4+ T-cells is to recruit eosinophils to the lung and that eosinophils are a novel candidate for future therapeutic development for Pneumocystis pneumonia in the immunosuppressed population. PMID:25994969
Kottom, Theodore J.; Hebrink, Deanne M.; Jenson, Paige E.; Ramirez-Prado, Jorge H.
2017-01-01
N-acetylglucosamine (GlcNAc) serves as an essential structural sugar on the cell surface of organisms. For example, GlcNAc is a major component of bacterial peptidoglycan, it is an important building block of fungal cell walls, including a major constituent of chitin and mannoproteins, and it is also required for extracellular matrix generation by animal cells. Herein, we provide evidence for a uridine diphospho (UDP)–GlcNAc pathway in Pneumocystis species. Using an in silico search of the Pneumocystis jirovecii and P. murina (Pm) genomic databases, we determined the presence of at least four proteins implicated in the Saccharomyces cerevisiae UDP-GlcNAc biosynthetic pathway. These genes, termed GFA1, GNA1, AGM1, and UDP-GlcNAc pyrophosphorylase (UAP1), were either confirmed to be present in the Pneumocystis genomes by PCR, or, in the case of Pm uap1 (Pmuap1), functionally confirmed by direct enzymatic activity assay. Expression analysis using quantitative PCR of Pneumocystis pneumonia in mice demonstrated abundant expression of the Pm uap1 transcript. A GlcNAc-binding recombinant protein and a novel GlcNAc-binding immune detection method both verified the presence of GlcNAc in P. carinii (Pc) lysates. Studies of Pc cell wall fractions using high-performance gas chromatography/mass spectrometry documented the presence of GlcNAc glycosyl residues. Pc was shown to synthesize GlcNAc in vitro. The competitive UDP-GlcNAc substrate synthetic inhibitor, nikkomycin Z, suppressed incorporation of GlcNAc by Pc preparations. Finally, treatment of rats with Pneumocystis pneumonia using nikkomycin Z significantly reduced organism burdens. Taken together, these data support an important role for GlcNAc generation in the cell surface of Pneumocystis organisms. PMID:27632412
Kimura, Yuri; Jacobs, Louis L.; Flynn, Lawrence J.
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources. PMID:24155885
Kimura, Yuri; Jacobs, Louis L; Flynn, Lawrence J
2013-01-01
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources.
Lederer, Sabine; Lattwein, Erik; Hanke, Merle; Sonnenberg, Karen; Stoecker, Winfried; Lundkvist, Åke; Vaheri, Antti; Vapalahti, Olli; Chan, Paul K. S.; Feldmann, Heinz; Dick, Daryl; Schmidt-Chanasit, Jonas; Padula, Paula; Vial, Pablo A.; Panculescu-Gatej, Raluca; Ceianu, Cornelia; Heyman, Paul; Avšič-Županc, Tatjana; Niedrig, Matthias
2013-01-01
In order to detect serum antibodies against clinically important Old and New World hantaviruses simultaneously, multiparametric indirect immunofluorescence assays (IFAs) based on biochip mosaics were developed. Each of the mosaic substrates consisted of cells infected with one of the virus types Hantaan (HTNV), Puumala (PUUV), Seoul (SEOV), Saaremaa (SAAV), Dobrava (DOBV), Sin Nombre (SNV) or Andes (ANDV). For assay evaluation, serum IgG and IgM antibodies were analyzed using 184 laboratory-confirmed hantavirus-positive sera collected at six diagnostic centers from patients actively or previously infected with the following hantavirus serotypes: PUUV (Finland, n = 97); SEOV (China, n = 5); DOBV (Romania, n = 7); SNV (Canada, n = 23); ANDV (Argentina and Chile, n = 52). The control panel comprised 89 sera from healthy blood donors. According to the reference tests, all 184 patient samples were seropositive for hantavirus-specific IgG (n = 177; 96%) and/or IgM (n = 131; 72%), while all control samples were tested negative. In the multiparametric IFA applied in this study, 183 (99%) of the patient sera were IgG and 131 (71%) IgM positive (accordance with the reference tests: IgG, 96%; IgM, 93%). Overall IFA sensitivity for combined IgG and IgM analysis amounted to 100% for all serotypes, except for SNV (96%). Of the 89 control sera, 2 (2%) showed IgG reactivity against the HTNV substrate, but not against any other hantavirus. Due to the high cross-reactivity of hantaviral nucleocapsid proteins, endpoint titrations were conducted, allowing serotype determination in >90% of PUUV- and ANDV-infected patients. Thus, multiparametric IFA enables highly sensitive and specific serological diagnosis of hantavirus infections and can be used to differentiate PUUV and ANDV infection from infections with Murinae-borne hantaviruses (e.g. DOBV and SEOV). PMID:23593524
Pleistocene microvertebrates from fissure-fillings in Thailand
NASA Astrophysics Data System (ADS)
Chaimanee, Yaowalak; Jaeger, Jean-Jacques; Suteethorn, Varavudh
Microvertebrates (and among them specially, rodents) have contributed to the elaboration of precise biochronological time scales and to the reconstitution of Pleistocene paleoenvironments in several parts of the world (North America, Africa, Europe and Japan). They have been demonstrated to be highly sensitive to climatic changes since they are very sensitive to vegetation changes. Up to now, no data is available for Southeast Asia and very few information is available concerning the nature of climatic changes which affected that part of the tropical world during the Pleistocene. In the past few years, we have discovered several fissure fillings in Thailand yielding numerous remains of microvertebrates which have been extracted by dissolution in acetic acid solution. These deposits are the result of the feeding activity of predators, like owls or diurnal raptors, whose pellets are accumulated in caves or fissures. Eleven localities, located in Central (2), Eastern (1), Western (2) and Peninsular Thailand (6) have been investigated so far. Several rodent species, belonging to 9 genera of Murinae (rats and mice) and 9 genera of Sciuridae (squirrels) have been identified in these localities. The most important differences with the extant representatives often concern the size of the teeth of these fossil species. The meaning of these size differences is not yet clearly understood since they can be attributed either to significant time differences between localities (microevolution) or as the result of size variations related to climatic changes (clinical variations). More data will have to be collected to calibrate the temporal frame. Already, important modification of the geographic distribution of some species have been discovered which testify that during the Pleistocene, significative climatic changes have affected Southeast Asia. For example, Exilisciurus, a squirrel which is presently restricted to Borneo has been recognized in Peninsular Thailand. Also, Iomys, a flying squirrel not present in the extant fauna of Thailand, has been identified from the same locality.
Stoetzel, Emmanuelle; Marion, Lucile; Nespoulet, Roland; El Hajraoui, Mohammed Abdeljalil; Denys, Christiane
2011-01-01
The relationship between local and global climatic variations and the origin and dispersal of Homo sapiens in Africa is complex, and North Africa may have played a major role in these events. In Morocco, very few studies are specifically dedicated to small fossil vertebrates, and neither taphonomic nor palaeoecological studies have been undertaken on these taxa, particularly in archaeological contexts. The late Pleistocene to middle Holocene succession of El Harhoura 2 cave, situated in the region of Témara, yields an exceptionally rich small vertebrate assemblage. We present the results of a first systematic, taphonomic, and palaeoecological study of the small mammals from Levels 1 to 8 of El Harhoura 2. The absence of bone sorting and polishing, as well as the presence of significant traces of digestion indicate that the small mammal bones were accumulated in the cave by predators and that no water transport occurred. Other traces observed on the surface of bones consist mainly of root marks and black traces (micro-organisms or more probably manganese) which affected the majority of the material. The percentage of fragmentation is very high in all stratigraphic levels, and the post-depositional breakage (geologic and anthropogenic phenomena) obscure the original breakage patterns of bones by predators. According to the ecology of the different species present in the levels of El Harhoura 2, and by taking into account possible biases highlighted by the taphonomic analysis, we reconstruct the palaeoenvironmental evolution in the region. For quantitative reconstructions we used two indices: the Taxonomic Habitat Index (THI) and the Gerbillinae/Murinae ratio. Late Pleistocene accumulations were characterised by a succession of humid (Levels 3, 4a, 6, and 8) and arid (Levels 2?, 5, and 7) periods, with more or less open landscapes, ending in an ultimate humid and wooded period during the middle Holocene (Level 1). We discuss particular limits of our results and interpretations, due to an important lack of taxonomic, ecological, and taphonomic knowledge in North Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.
Portunoid crabs as indicators of the Red Sea fauna history and endemism
NASA Astrophysics Data System (ADS)
Spiridonov, Vassily; Türkay, Michael; Brösing, Andreas; Al-Aidaroos, Ali
2013-04-01
Peculiar environmental conditions and "turbulent" geological history make the Red Sea a laboratory of evolution and a significant area for understanding adaptation processes. To interpret the results of this basin-scale evolutionary experiment revised inventories of taxonomic diversity of particular groups of marine biota are essential. As one of the first results of the Red Sea Biodiversity Survey (RSBS) in the years 2011 - 2012 along the coast of Saudi Arabia (http://www.redseabiodiversity.org/) and examination of earlier collections and literature a revised species list is provided for the portunoid (swimming) crabs (Crustacea Decapoda Portunoidea). This superfamily is one of the most species rich and has one of the broadest habitat scopes among Brachyura in the global scale. The present assessment results in 54 shallow water species (including 2 recorded for the first time in the Red Sea during RSBS), 2 deep water species and 1 semipelagic species Charybdis smithii. Doubtful literature records of another 7 shallow water species remain unconfirmed. Among reliably recorded shallow water species 58 % belong to widespread Indo-West-Pacific (IWP) species, 13% are the species restricted to the western Indian Ocean, 11 % are endemics of the Arabian region (occurring also either in the western Gulf of Aden or along the eastern coast of the Arabian Peninsula, or in both areas) which are usually vicariant to the widespread IWP species, 11% are taxa that are similar to the species occurring elsewhere in the IWP but have morphological peculiarities and probably deserve a specific or subspecific status. Finally 4% of species (Thalamita murinae and Liocarcinus subcorrugatus) appear to be endemic for the Red Sea and show remarkable disjunctions from most closely related species. Carcinus sp. (probably C. aestuarii) is an introduced (but not established) species in the northern Red Sea. The deep water fauna of the Red Sea is unique because it lives in the warm (20.5-21.5 ° C) water and consists of species many of which (including 2 portunids) have relatively shallow living relatives in the Gulf of Aden. Furthermore this fauna is not endemic to the Red Sea per se but to the Red Sea deep water mass and may disperse with this water to the inner Gulf of Aden. The present analysis (along with the data on several other groups) indicates that the Red Sea has been and continues to be a centre of speciation probably acting also as the centre of accumulation and re-distribution of marine fauna.
Alfano, Niccolò; Michaux, Johan; Morand, Serge; Aplin, Ken; Tsangaras, Kyriakos; Löber, Ulrike; Fabre, Pierre-Henri; Fitriana, Yuli; Semiadi, Gono; Ishida, Yasuko; Helgen, Kristofer M.; Roca, Alfred L.; Eiden, Maribeth V.
2016-01-01
ABSTRACT Gibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents. IMPORTANCE Gibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa. PMID:27384662
Fabre, P-H; Herrel, A; Fitriana, Y; Meslin, L; Hautier, L
2017-09-01
Murines are well known for their generalist diet, but several of them display specializations towards a carnivorous diet such as the amphibious Indo-Pacific water-rats. Despite the fact that carnivory evolved repeatedly in this group, few studies have investigated associated changes in jaw muscle anatomy and biomechanics. Here, we describe the jaw muscles and cranial anatomy of a carnivorous water-rat, Hydromys chrysogaster. The architecture of the jaw musculature of six specimens captured both on Obi and Papua were studied and described using dissections. We identified the origin and insertions of the jaw muscles, and quantified muscle mass, fiber length, physiological cross-sectional area, and muscle vectors for each muscle. Using a biomechanical model, we estimated maximum incisor and molar bite force at different gape angles. Finally, we conducted a 2D geometric morphometric analyses to compare jaw shape, mechanical potential, and diversity in lever-arm ratios for a set of 238 specimens, representative of Australo-Papuan carnivorous and omnivorous murids. Our study reveals major changes in the muscle proportions among Hydromys and its omnivorous close relative, Melomys. Hydromys was found to have large superficial masseter and temporalis muscles as well as a reduced deep masseter and zygomatico-mandibularis, highlighting major functional divergence among omnivorous and carnivorous murines. Changes in these muscles are also accompanied by changes in jaw shape and the lines of action of the muscles. A more vertically oriented masseter, reduced masseteric muscles, as well as an elongated jaw with proodont lower incisors are key features indicative of a reduced propalinality in carnivorous Hydromys. Differences in the fiber length of the masseteric muscles were also detected between Hydromys and Melomys, which highlight potential adaptations to a wide gape in Hydromys, allowing it to prey on larger animals. Using a biomechanical model, we inferred a greater bite force in Hydromys than in Melomys, implying a functional shift between omnivory and carnivory. However, Melomys has an unexpected greater bite force at large gape compared with Hydromys. Compared with omnivorous Melomys, Hydromys have a very distinctive low mandible with a well-developed coronoid process, and a reduced angular process that projects posteriorly to the ascending rami. This jaw shape, along with our mechanical potential and jaw lever ratio estimates, suggests that Hydromys has a faster jaw closing at the incisor, with a higher bite force at the level of the molars. The narrowing of the Hydromys jaw explains this higher lever advantage at the molars, which constitutes a good compromise between a wide gape, a reduced anterior masseteric mass, and long fiber lengths. Lever arms of the superficial and deep masseter are less favourable to force output of the mandible in Hydromys but more favourable to speed. Compared with the small input lever arm defined between the condyle and the angular process, the relatively longer mandible of Hydromys increases the speed at the expense of the output force. This unique combination of morphological features of the masticatory apparatus possibly has permitted Hydromys to become a highly successful amphibious predator in the Indo-Pacific region. © 2017 Anatomical Society.
O’Hara, James E.; Cerretti, Pierfilippo
2016-01-01
Abstract The Tachinidae of the Afrotropical Region are catalogued and seven genera and eight species are newly described. There are 237 genera and 1126 species recognized, of which 101 genera and 1043 species are endemic to the region. The catalogue is based on examination of the primary literature comprising about 525 references as well as numerous name-bearing types and other specimens housed in collections. Taxa are arranged hierarchically and alphabetically under the categories of subfamily, tribe, genus, subgenus (where recognized), species, and rarely subspecies. Nomenclatural information is provided for all genus-group and species-group names, including lists of synonyms (mostly restricted to Afrotropical taxa) and name-bearing type data. Species distributions are recorded by country within the Afrotropical Region and by larger geographical divisions outside the region. Additional information is given in the form of notes, numbering about 300 in the catalogue section. Seven genera and eight species are described as new: Afrophylax Cerretti & O’Hara with type species Sturmia aureiventris Villeneuve, 1910, gen. n. (Exoristinae, Eryciini); Austrosolieria Cerretti & O’Hara with type species Austrosolieria londti Cerretti & O’Hara, gen. n. and sp. n. (South Africa) and Austrosolieria freidbergi Cerretti & O’Hara, sp. n. (Malawi) (Tachininae, Leskiini); Carceliathrix Cerretti & O’Hara with type species Phorocera crassipalpis Villeneuve, 1938, gen. n. (Exoristinae, Eryciini); Filistea Cerretti & O’Hara with type species Viviania aureofasciata Curran, 1927, gen. n. and Filistea verbekei Cerretti & O’Hara, sp. n. (Cameroon, D.R. Congo, Uganda) (Exoristinae, Blondeliini); Mesnilotrix Cerretti & O’Hara with type species Dexiotrix empiformis Mesnil, 1976, gen. n. (Dexiinae, Dexiini); Myxophryxe Cerretti & O’Hara with type species Phorocera longirostris Villeneuve, 1938, gen. n., Myxophryxe murina Cerretti & O’Hara, sp. n. (South Africa), Myxophryxe regalis Cerretti & O’Hara, sp. n. (South Africa), and Myxophryxe satanas Cerretti & O’Hara, sp. n. (South Africa) (Exoristinae, Goniini); and Stiremania Cerretti & O’Hara with type species Stiremania karoo Cerretti & O’Hara, gen. n. and sp. n. (South Africa), and Stiremania robusta Cerretti & O’Hara, sp. n. (South Africa) (Exoristinae, Goniini). Paraclara Bezzi, 1908 is transferred from the Cylindromyiini to the Hermyini, comb. n. Sarrorhina Villeneuve, 1936 is transferred from the Minthoini to the Graphogastrini, comb. n. Three genera are newly recorded from the Afrotropical Region: Madremyia Townsend, 1916 (Eryciini); Paratrixa Brauer & Bergenstamm, 1891 (Blondeliini); and Simoma Aldrich, 1926 (Goniini). Three genera previously recorded from the Afrotropical Region are no longer recognized from the region: Calozenillia Townsend, 1927 (Palaearctic, Oriental and Australasian regions); Eurysthaea Robineau-Desvoidy, 1863 (Palaearctic, Oriental and Australasian regions); and Trixa Meigen, 1824 (Palaearctic and Oriental regions). Two species are newly recorded from the Afrotropical Region: Amnonia carmelitana Kugler, 1971 (Ethiopia, Kenya); and Simoma grahami Aldrich, 1926 (Namibia). Three species previously recorded from the Afrotropical Region are no longer recognized from the region: Euthera peringueyi Bezzi, 1925 (Oriental Region); Hamaxia incongrua Walker, 1860 (Palaearctic, Oriental and Australasian regions); Leucostoma tetraptera (Meigen, 1824) (Palaearctic Region). New replacement names are proposed for five preoccupied names of Afrotropical species: Billaea rubida O’Hara & Cerretti for Phorostoma rutilans Villeneuve, 1916, preoccupied in the genus Billaea Robineau-Desvoidy, 1830 by Musca rutilans Fabricius, 1781, nom. n.; Cylindromyia braueri O’Hara & Cerretti for Ocyptera nigra Villeneuve, 1918, preoccupied in the genus Cylindromyia Meigen, 1803 by Glossidionophora nigra Bigot, 1885, nom. n.; Cylindromyia rufohumera O’Hara & Cerretti for Ocyptera scapularis Villeneuve, 1944, preoccupied in the genus Cylindromyia Meigen, 1803 by Ocyptera scapularis Loew, 1845, nom. n.; Phytomyptera longiarista O’Hara & Cerretti for Phytomyzoneura aristalis Villeneuve, 1936, preoccupied in the genus Phytomyptera Rondani, 1845 by Phasiostoma aristalis Townsend, 1915, nom. n.; and Siphona (Siphona) pretoriana O’Hara & Cerretti for Siphona laticornis Curran, 1941, preoccupied in the genus Siphona Meigen, 1803 by Actia laticornis Malloch, 1930, nom. n. New type species fixations are made under the provisions of Article 70.3.2 of the ICZN Code for two genus-group names: Lydellina Villeneuve, 1916, type species newly fixed as Lydellina villeneuvei Townsend, 1933 (valid genus name); and Sericophoromyia Austen, 1909, type species newly fixed as Tachina quadrata Wiedemann, 1830 (synonym of Winthemia Robineau-Desvoidy, 1830). Lectotypes are designated for the following nine nominal species based on examination of one or more syntypes of each: Degeeria crocea Villeneuve, 1950; Degeeria semirufa Villeneuve, 1950; Erycia brunnescens Villeneuve, 1934; Exorista oculata Villeneuve, 1910; Kiniatilla tricincta Villeneuve, 1938; Myxarchiclops caffer Villeneuve, 1916; Ocyptera linearis Villeneuve, 1936; Peristasisea luteola Villeneuve, 1934; and Phorocera crassipalpis Villeneuve, 1938. The following four genus-group names that were previously treated as junior synonyms or subgenera are recognized as valid generic names: Bogosiella Villeneuve, 1923, status revived; Dyshypostena Villeneuve, 1939, status revived; Perlucidina Mesnil, 1952, status revived; and Thelymyiops Mesnil, 1950, status n. The following six species-group names that were previously treated as junior synonyms are recognized as valid species names: Besseria fossulata Bezzi, 1908, status revived; Degeeria cinctella Villeneuve, 1950, status revived (as Medina cinctella (Villeneuve)); Nemoraea miranda intacta Villeneuve, 1916, status revived (as Nemoraea intacta Villeneuve); Succingulum exiguum Villeneuve, 1935, status revived (as Trigonospila exigua (Villeneuve)); Wagneria rufitibia abbreviata Mesnil, 1950, status n. (as Periscepsia abbreviata (Mesnil)); and Wagneria rufitibia nudinerva Mesnil, 1950, status n. (as Periscepsia nudinerva (Mesnil)). The following 25 new or revived combinations are proposed: Afrophylax aureiventris (Villeneuve, 1910), comb. n.; Blepharella orbitalis (Curran, 1927), comb. n.; Bogosiella pomeroyi Villeneuve, 1923, comb. revived; Brachychaetoides violacea (Curran, 1927), comb. n.; Carceliathrix crassipalpis (Villeneuve, 1938), comb. n.; Charitella whitmorei (Cerretti, 2012), comb. n.; Dyshypostena edwardsi (van Emden, 1960), comb. n.; Dyshypostena tarsalis Villeneuve, 1939, comb. revived; Estheria buccata (van Emden, 1947), comb. n.; Estheria surda (Curran, 1933), comb. n.; Filistea aureofasciata (Curran, 1927), comb. n.; Madremyia setinervis (Mesnil, 1968), comb. n.; Mesnilotrix empiformis (Mesnil, 1976), comb. n.; Myxophryxe longirostris (Villeneuve, 1938), comb. n.; Nealsomyia chloronitens (Mesnil, 1977), comb. n.; Nealsomyia clausa (Curran, 1940), comb. n.; Nilea longicauda (Mesnil, 1970), comb. n.; Paratrixa aethiopica Mesnil, 1952, comb. revived; Paratrixa stammeri Mesnil, 1952, comb. revived; Perlucidina africana (Jaennicke, 1867), comb. n.; Perlucidina perlucida (Karsch, 1886), comb. revived; Prolophosia retroflexa (Villeneuve, 1944), comb. n.; Sturmia profana (Karsch, 1888), comb. n.; additionally, Ceromasia rufiventris Curran, 1927 is treated as an unplaced species of Goniini, comb. n. and Hemiwinthemia stuckenbergi Verbeke, 1973 is treated as an unplaced species of Leskiini, comb. n. New or revived generic and specific synonymies are proposed for the following nine names: Afrosturmia Curran, 1927 with Blepharella Macquart, 1851, syn. n.; Archiphania van Emden, 1945 with Catharosia Rondani, 1868, syn. revived; Besseria longicornis Zeegers, 2007 with Besseria fossulata Bezzi, 1908 (current name Besseria fossulata), syn. n.; Dexiomera Curran, 1933 with Estheria Robineau-Desvoidy, 1830, syn. n.; Hemiwinthemia francoisi Verbeke, 1973 with Nemoraea capensis Schiner, 1868 (current name Smidtia capensis), syn. n.; Kinangopana van Emden, 1960 with Dyshypostena Villeneuve, 1939, syn. n.; Metadrinomyia Shima, 1980 with Charitella Mesnil, 1957, syn. n.; Phorocera majestica Curran, 1940 with Phorocera longirostris Villeneuve, 1938 (current name Myxophryxe longirostris), syn. n.; and Podomyia discalis Curran, 1939 with Antistasea fimbriata Bischof, 1904 (current name Antistasea fimbriata), syn. n. PMID:27110184