Centromere Transcription: Means and Motive.
Duda, Zachary; Trusiak, Sarah; O'Neill, Rachel
2017-01-01
The chromosome biology field at large has benefited from studies of the cell cycle components, protein cascades and genomic landscape that are required for centromere identity, assembly and stable transgenerational inheritance. Research over the past 20 years has challenged the classical descriptions of a centromere as a stable, unmutable, and transcriptionally silent chromosome component. Instead, based on studies from a broad range of eukaryotic species, including yeast, fungi, plants, and animals, the centromere has been redefined as one of the more dynamic areas of the eukaryotic genome, requiring coordination of protein complex assembly, chromatin assembly, and transcriptional activity in a cell cycle specific manner. What has emerged from more recent studies is the realization that the transcription of specific types of nucleic acids is a key process in defining centromere integrity and function. To illustrate the transcriptional landscape of centromeres across eukaryotes, we focus this review on how transcripts interact with centromere proteins, when in the cell cycle centromeric transcription occurs, and what types of sequences are being transcribed. Utilizing data from broadly different organisms, a picture emerges that places centromeric transcription as an integral component of centromere function.
RNA as a structural and regulatory component of the centromere.
Gent, Jonathan I; Dawe, R Kelly
2012-01-01
Despite many challenges, great progress has been made in identifying kinetochore proteins and understanding their overall functions relative to spindles and centromeric DNA. In contrast, less is known about the specialized centromeric chromatin environment and how it may be involved in regulating the assembly of kinetochore proteins. Multiple independent lines of evidence have implicated transcription and the resulting RNA as an important part of this process. Here, we summarize recent literature demonstrating the roles of centromeric RNA in regulating kinetochore assembly and maintenance. We also review literature suggesting that the process of centromeric transcription may be as important as the resulting RNA and that such transcription may be involved in recruiting the centromeric histone variant CENH3.
Transcription and ncRNAs: at the cent(rome)re of kinetochore assembly and maintenance.
Scott, Kristin C
2013-12-01
Centromeres are sites of chromosomal spindle attachment during mitosis and meiosis. Centromeres are defined, in part, by a distinct chromatin landscape in which histone H3 is replaced by the conserved histone H3 variant, CENP-A. Sequences competent for centromere formation and function vary among organisms and are typically composed of repetitive DNA. It is unclear how such diverse genomic signals are integrated with the epigenetic mechanisms that govern CENP-A incorporation at a single locus on each chromosome. Recent work highlights the intriguing possibility that the transcriptional properties of centromeric core DNA contribute to centromere identity and maintenance through cell division. Moreover, core-derived noncoding RNAs (ncRNAs) have emerged as active participants in the regulation and control of centromere activity in plants and mammals. This paper reviews the transcriptional properties of eukaryotic centromeres and discusses the known roles of core-derived ncRNAs in chromatin integrity, kinetochore assembly, and centromere activity.
De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.
Guo, Xiang; Su, Handong; Shi, Qinghua; Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu
2016-04-01
Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation.
De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids
Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu
2016-01-01
Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation. PMID:27110907
Silence of the centromeres--not.
Cooke, Howard J
2004-07-01
Centromeres are a conundrum; although many proteins associated with centomeres are conserved from yeast to humans, the underlying DNA sequence is not. A proposed solution to this problem is that an epigenetic, largely heterochromatic, state be imposed by these proteins. Recent analysis of a human neocentromere and the complete sequence of a rice centromere suggest that this epigenetic state can enable transcription of at least some genes within a centromere.
Transcription of tandemly repetitive DNA: functional roles.
Biscotti, Maria Assunta; Canapa, Adriana; Forconi, Mariko; Olmo, Ettore; Barucca, Marco
2015-09-01
A considerable fraction of the eukaryotic genome is made up of satellite DNA constituted of tandemly repeated sequences. These elements are mainly located at centromeres, pericentromeres, and telomeres and are major components of constitutive heterochromatin. Although originally satellite DNA was thought silent and inert, an increasing number of studies are providing evidence on its transcriptional activity supporting, on the contrary, an unexpected dynamicity. This review summarizes the multiple structural roles of satellite noncoding RNAs at chromosome level. Indeed, satellite noncoding RNAs play a role in the establishment of a heterochromatic state at centromere and telomere. These highly condensed structures are indispensable to preserve chromosome integrity and genome stability, preventing recombination events, and ensuring the correct chromosome pairing and segregation. Moreover, these RNA molecules seem to be involved also in maintaining centromere identity and in elongation, capping, and replication of telomere. Finally, the abnormal variation of centromeric and pericentromeric DNA transcription across major eukaryotic lineages in stress condition and disease has evidenced the critical role that these transcripts may play and the potentially dire consequences for the organism.
Structural features of the rice chromosome 4 centromere.
Zhang, Yu; Huang, Yuchen; Zhang, Lei; Li, Ying; Lu, Tingting; Lu, Yiqi; Feng, Qi; Zhao, Qiang; Cheng, Zhukuan; Xue, Yongbiao; Wing, Rod A; Han, Bin
2004-01-01
A complete sequence of a chromosome centromere is necessary for fully understanding centromere function. We reported the sequence structures of the first complete rice chromosome centromere through sequencing a large insert bacterial artificial chromosome clone-based contig, which covered the rice chromosome 4 centromere. Complete sequencing of the 124-kb rice chromosome 4 centromere revealed that it consisted of 18 tracts of 379 tandemly arrayed repeats known as CentO and a total of 19 centromeric retroelements (CRs) but no unique sequences were detected. Four tracts, composed of 65 CentO repeats, were located in the opposite orientation, and 18 CentO tracts were flanked by 19 retroelements. The CRs were classified into four types, and the type I retroelements appeared to be more specific to rice centromeres. The preferential insert of the CRs among CentO repeats indicated that the centromere-specific retroelements may contribute to centromere expansion during evolution. The presence of three intact retrotransposons in the centromere suggests that they may be responsible for functional centromere initiation through a transcription-mediated mechanism.
Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana.
Simon, Lauriane; Voisin, Maxime; Tatout, Christophe; Probst, Aline V
2015-01-01
The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.
Bergmann, Jan H; Jakubsche, Julia N; Martins, Nuno M; Kagansky, Alexander; Nakano, Megumi; Kimura, Hiroshi; Kelly, David A; Turner, Bryan M; Masumoto, Hiroshi; Larionov, Vladimir; Earnshaw, William C
2012-01-15
Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated 'centrochromatin', despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity--kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.
Maize centromeres expand and adopt a uniform size in the genetic background of oat
Wang, Kai; Wu, Yufeng; Zhang, Wenli; Dawe, R. Kelly; Jiang, Jiming
2014-01-01
Most existing centromeres may have originated as neocentromeres that activated de novo from noncentromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of nine chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Two isolates of maize chromosome 3 proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9, and 10) were retained in the same area in both species. In all cases, the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (∼3.6 Mb) than the average centromere size in maize (∼1.8 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. These results provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene-poor regions. Our results suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations. PMID:24100079
Maize centromeres expand and adopt a uniform size in the genetic background of oat.
Wang, Kai; Wu, Yufeng; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming
2014-01-01
Most existing centromeres may have originated as neocentromeres that activated de novo from noncentromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of nine chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Two isolates of maize chromosome 3 proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9, and 10) were retained in the same area in both species. In all cases, the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (∼3.6 Mb) than the average centromere size in maize (∼1.8 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. These results provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene-poor regions. Our results suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations.
Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin.
Su, Handong; Liu, Yalin; Liu, Yong-Xin; Lv, Zhenling; Li, Hongyao; Xie, Shaojun; Gao, Zhi; Pang, Junling; Wang, Xiu-Jie; Lai, Jinsheng; Birchler, James A; Han, Fangpu
2016-12-01
The inheritance and function of centromeres are not strictly dependent on any specific DNA sequence, but involve an epigenetic component in most species. CENH3, a centromere histone H3 variant, is one of the best-described epigenetic factors in centromere identity, but the chromatin features required during centromere formation have not yet been revealed. We previously identified two de novo centromeres on Zea mays (maize) minichromosomes derived from euchromatic sites with high-density gene distributions but low-density transposon distributions. The distribution of gene location and gene expression in these sites indicates that transcriptionally active regions can initiate de novo centromere formation, and CENH3 seeding shows a preference for gene-free regions or regions with no gene expression. The locations of the expressed genes detected were at relatively hypomethylated loci, and the altered gene expression resulted from de novo centromere formation, but not from the additional copy of the minichromosome. The initial overall DNA methylation level of the two de novo regions was at a low level, but increased substantially to that of native centromeres after centromere formation. These results illustrate the dynamic chromatin changes during euchromatin-originated de novo centromere formation, which provides insight into the mechanism of de novo centromere formation and regulation of subsequent consequences. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Zhu, Zhixuan; Gui, Songtao; Jin, Jing; Yi, Rong; Wu, Zhihua; Qian, Qian; Ding, Yi
2016-09-01
Centromeres on eukaryotic chromosomes consist of large arrays of DNA repeats that undergo very rapid evolution. Nelumbo nucifera Gaertn. (sacred lotus) is a phylogenetic relict and an aquatic perennial basal eudicot. Studies concerning the centromeres of this basal eudicot species could provide ancient evolutionary perspectives. In this study, we characterized the centromeric marker protein NnCenH3 (sacred lotus centromere-specific histone H3 variant), and used a chromatin immunoprecipitation (ChIP)-based technique to recover the NnCenH3 nucleosome-associated sequences of sacred lotus. The properties of the centromere-binding protein and DNA sequences revealed notable divergence between sacred lotus and other flowering plants, including the following factors: (i) an NnCenH3 alternative splicing variant comprising only a partial centromere-targeting domain, (ii) active genes with low transcription levels in the NnCenH3 nucleosomal regions, and (iii) the prevalence of the Ty1/copia class of long terminal repeat (LTR) retrotransposons in the centromeres of sacred lotus chromosomes. In addition, the dynamic natures of the centromeric region showed that some of the centromeric repeat DNA sequences originated from telomeric repeats, and a pair of centromeres on the dicentric chromosome 1 was inactive in the metaphase cells of sacred lotus. Our characterization of the properties of centromeric DNA structure within the sacred lotus genome describes a centromeric profile in ancient basal eudicots and might provide evidence of the origins and evolution of centromeres. Furthermore, the identification of centromeric DNA sequences is of great significance for the assembly of the sacred lotus genome. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Euchromatic subdomains in rice centromeres are associated with genes and transcription.
Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming
2011-11-01
The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.
Sandmann, Michael; Talbert, Paul; Demidov, Dmitri; Kuhlmann, Markus; Rutten, Twan; Conrad, Udo; Lermontova, Inna
2017-01-01
KINETOCHORE NULL2 (KNL2) is involved in recognition of centromeres and in centromeric localization of the centromere-specific histone cenH3. Our study revealed a cenH3 nucleosome binding CENPC-k motif at the C terminus of Arabidopsis thaliana KNL2, which is conserved among a wide spectrum of eukaryotes. Centromeric localization of KNL2 is abolished by deletion of the CENPC-k motif and by mutating single conserved amino acids, but can be restored by insertion of the corresponding motif of Arabidopsis CENP-C. We showed by electrophoretic mobility shift assay that the C terminus of KNL2 binds DNA sequence-independently and interacts with the centromeric transcripts in vitro. Chromatin immunoprecipitation with anti-KNL2 antibodies indicated that in vivo KNL2 is preferentially associated with the centromeric repeat pAL1 Complete deletion of the CENPC-k motif did not influence its ability to interact with DNA in vitro. Therefore, we suggest that KNL2 recognizes centromeric nucleosomes, similar to CENP-C, via the CENPC-k motif and binds adjoining DNA. © 2017 American Society of Plant Biologists. All rights reserved.
Point mutation impairs centromeric CENH3 loading and induces haploid plants.
Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas
2015-09-08
The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest.
Point mutation impairs centromeric CENH3 loading and induces haploid plants
Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas
2015-01-01
The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called “CENP-A”) is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923–937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252
Stc1: A Critical Link between RNAi and Chromatin Modification Required for Heterochromatin Integrity
Bayne, Elizabeth H.; White, Sharon A.; Kagansky, Alexander; Bijos, Dominika A.; Sanchez-Pulido, Luis; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Ponting, Chris P.; Rappsilber, Juri; Allshire, Robin C.
2010-01-01
Summary In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification. PMID:20211136
Centromeric chromatin and its dynamics in plants.
Lermontova, Inna; Sandmann, Michael; Mascher, Martin; Schmit, Anne-Catherine; Chabouté, Marie-Edith
2015-07-01
Centromeres are chromatin structures that are required for proper separation of chromosomes during mitosis and meiosis. The centromere is composed of centromeric DNA, often enriched in satellite repeats, and kinetochore complex proteins. To date, over 100 kinetochore components have been identified in various eukaryotes. Kinetochore assembly begins with incorporation of centromeric histone H3 variant CENH3 into centromeric nucleosomes. Protein components of the kinetochore are either present at centromeres throughout the cell cycle or localize to centromeres transiently, prior to attachment of microtubules to each kinetochore in prometaphase of mitotic cells. This is the case for the spindle assembly checkpoint (SAC) proteins in animal cells. The SAC complex ensures equal separation of chromosomes between daughter nuclei by preventing anaphase onset before metaphase is complete, i.e. the sister kinetochores of all chromosomes are attached to spindle fibers from opposite poles. In this review, we focus on the organization of centromeric DNA and the kinetochore assembly in plants. We summarize recent advances regarding loading of CENH3 into the centromere, and the subcellular localization and protein-protein interactions of Arabidopsis thaliana proteins involved in kinetochore assembly and function. We describe the transcriptional activity of corresponding genes based on in silico analysis of their promoters and cell cycle-dependent expression. Additionally, barley homologs of all selected A. thaliana proteins have been identified in silico, and their sequences and domain structures are presented. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Evolutionary Story of a Satellite DNA from Phodopus sungorus (Rodentia, Cricetidae)
Paço, Ana; Adega, Filomena; Meštrović, Nevenka; Plohl, Miroslav; Chaves, Raquel
2014-01-01
With the goal to contribute for the understanding of satellite DNA evolution and its genomic involvement, in this work it was isolated and characterized the first satellite DNA (PSUcentSat) from Phodopus sungorus (Cricetidae). Physical mapping of this sequence in P. sungorus showed large PSUcentSat arrays located at the heterochromatic (peri)centromeric region of five autosomal pairs and Y-chromosome. The presence of orthologous PSUcentSat sequences in the genomes of other Cricetidae and Muridae rodents was also verified, presenting however, an interspersed chromosomal distribution. This distribution pattern suggests a PSUcentSat-scattered location in an ancestor of Muridae/Cricetidae families, that assumed afterwards, in the descendant genome of P. sungorus a restricted localization to few chromosomes in the (peri)centromeric region. We believe that after the divergence of the studied species, PSUcentSat was most probably highly amplified in the (peri)centromeric region of some chromosome pairs of this hamster by recombinational mechanisms. The bouquet chromosome configuration (prophase I) possibly displays an important role in this selective amplification, providing physical proximity of centromeric regions between chromosomes with similar size and/or morphology. This seems particularly evident for the acrocentric chromosomes of P. sungorus (including the Y-chromosome), all presenting large PSUcentSat arrays at the (peri)centromeric region. The conservation of this sequence in the studied genomes and its (peri)centromeric amplification in P. sungorus strongly suggests functional significance, possibly displaying this satellite family different functions in the different genomes. The verification of PSUcentSat transcriptional activity in normal proliferative cells suggests that its transcription is not stage-limited, as described for some other satellites. PMID:25336681
CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli.
Kipling, D; Mitchell, A R; Masumoto, H; Wilson, H E; Nicol, L; Cooke, H J
1995-01-01
Minor satellite DNA, found at Mus musculus centromeres, is not present in the genome of the Asian mouse Mus caroli. This repetitive sequence family is speculated to have a role in centromere function by providing an array of binding sites for the centromere-associated protein CENP-B. The apparent absence of CENP-B binding sites in the M. caroli genome poses a major challenge to this hypothesis. Here we describe two abundant satellite DNA sequences present at M. caroli centromeres. These satellites are organized as tandem repeat arrays, over 1 Mb in size, of either 60- or 79-bp monomers. All autosomes carry both satellites and small amounts of a sequence related to the M. musculus major satellite. The Y chromosome contains small amounts of both major satellite and the 60-bp satellite, whereas the X chromosome carries only major satellite sequences. M. caroli chromosomes segregate in M. caroli x M. musculus interspecific hybrid cell lines, indicating that the two sets of chromosomes can interact with the same mitotic spindle. Using a polyclonal CENP-B antiserum, we demonstrate that M. caroli centromeres can bind murine CENP-B in such an interspecific cell line, despite the absence of canonical 17-bp CENP-B binding sites in the M. caroli genome. Sequence analysis of the 79-bp M. caroli satellite reveals a 17-bp motif that contains all nine bases previously shown to be necessary for in vitro binding of CENP-B. This M. caroli motif binds CENP-B from HeLa cell nuclear extract in vitro, as indicated by gel mobility shift analysis. We therefore suggest that this motif also causes CENP-B to associate with M. caroli centromeres in vivo. Despite the sequence differences, M. caroli presents a third, novel mammalian centromeric sequence producing an array of binding sites for CENP-B. PMID:7623797
Blackwell, Chris; Martin, Kate A.; Greenall, Amanda; Pidoux, Alison; Allshire, Robin C.; Whitehall, Simon K.
2004-01-01
HIRA-like (Hir) proteins are evolutionarily conserved and are implicated in the assembly of repressive chromatin. In Saccharomyces cerevisiae, Hir proteins contribute to the function of centromeres. However, S. cerevisiae has point centromeres that are structurally different from the complex centromeres of metazoans. In contrast, Schizosaccharomyces pombe has complex centromeres whose domain structure is conserved with that of human centromeres. Therefore, we examined the functions of the fission yeast Hir proteins Slm9 and the previously uncharacterised protein Hip1. Deletion of hip1+ resulted in phenotypes that were similar to those described previously for slm9Δ cells: a cell cycle delay, synthetic lethality with cdc25-22, and poor recovery from nitrogen starvation. However, while it has previously been shown that Slm9 is not required for the periodic expression of histone H2A, we found that loss of Hip1 led to derepression of core histone genes expression outside of S phase. Importantly, we found that deletion of either hip1+ or slm9+ resulted in increased rates of chromosome loss, increased sensitivity to spindle damage, and reduced transcriptional silencing in the outer centromeric repeats. Thus, S. pombe Hir proteins contribute to pericentromeric heterochromatin, and our data thus suggest that Hir proteins may be required for the function of metazoan centromeres. PMID:15121850
Blackwell, Chris; Martin, Kate A; Greenall, Amanda; Pidoux, Alison; Allshire, Robin C; Whitehall, Simon K
2004-05-01
HIRA-like (Hir) proteins are evolutionarily conserved and are implicated in the assembly of repressive chromatin. In Saccharomyces cerevisiae, Hir proteins contribute to the function of centromeres. However, S. cerevisiae has point centromeres that are structurally different from the complex centromeres of metazoans. In contrast, Schizosaccharomyces pombe has complex centromeres whose domain structure is conserved with that of human centromeres. Therefore, we examined the functions of the fission yeast Hir proteins Slm9 and the previously uncharacterised protein Hip1. Deletion of hip1(+) resulted in phenotypes that were similar to those described previously for slm9 Delta cells: a cell cycle delay, synthetic lethality with cdc25-22, and poor recovery from nitrogen starvation. However, while it has previously been shown that Slm9 is not required for the periodic expression of histone H2A, we found that loss of Hip1 led to derepression of core histone genes expression outside of S phase. Importantly, we found that deletion of either hip1(+) or slm9(+) resulted in increased rates of chromosome loss, increased sensitivity to spindle damage, and reduced transcriptional silencing in the outer centromeric repeats. Thus, S. pombe Hir proteins contribute to pericentromeric heterochromatin, and our data thus suggest that Hir proteins may be required for the function of metazoan centromeres.
Wang, Guixiang; He, Qunyan; Liu, Fan; Cheng, Zhukuan; Talbert, Paul B; Jin, Weiwei
2011-08-01
CENH3 is a centromere-specific histone H3 variant and has been used as a marker to identify active centromeres and DNA sequences associated with functional centromere/kinetochore complexes. In this study, up to four distinct CENH3 (BrCENH3) cDNAs were identified in individuals of each of three diploid species of Brassica. Comparison of the BrCENH3 cDNAs implied three related gene families: BrCENH3-A in Brassica rapa (AA), BrCENH3-B in B. nigra (BB), and BrCENH3-C in B. oleracea (CC). Each family encoded a histone fold domain and N-terminal histone tails that vary in length in all three families. The BrCENH3-B cDNAs have a deletion of two exons relative to BrCENH3-A and BrCENH3-C, consistent with the more ancient divergence of the BB genome. Chromatin immunoprecipitation and immunolabeling tests with anti-BrCENH3 antibodies indicated that both centromeric tandem repeats and the centromere-specific retrotransposons of Brassica are directly associated with BrCENH3 proteins. In three allotetraploid species, we find either co-transcription of the BrCENH3 genes of the ancestral diploid species or gene suppression of the BrCENH3 from one ancestor. Although B genome centromeres are occupied by BrCENH3-B in the ancestral species B. nigra, in allotetraploids both BrCENH3-A and BrCENH3-C proteins appear to assemble at these centromeres.
The CENP-T/-W complex is a binding partner of the histone chaperone FACT
Prendergast, Lisa; Müller, Sebastian; Liu, Yiwei; Huang, Hongda; Dingli, Florent; Loew, Damarys; Vassias, Isabelle; Patel, Dinshaw J.; Sullivan, Kevin F.; Almouzni, Geneviève
2016-01-01
The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. PMID:27284163
The CENP-T/-W complex is a binding partner of the histone chaperone FACT.
Prendergast, Lisa; Müller, Sebastian; Liu, Yiwei; Huang, Hongda; Dingli, Florent; Loew, Damarys; Vassias, Isabelle; Patel, Dinshaw J; Sullivan, Kevin F; Almouzni, Geneviève
2016-06-01
The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. © 2016 Prendergast et al.; Published by Cold Spring Harbor Laboratory Press.
Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir
2014-01-01
In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468
Craig, Jeffrey M; Earle, Elizabeth; Canham, Paul; Wong, Lee H; Anderson, Melissa; Choo, K H Andy
2003-12-01
We have examined the metaphase chromosomal localization of 15 proteins that have previously been described as involved in mammalian chromatin modification and/or transcriptional modulation. Immunofluorescence data indicate that all the proteins localize to human and mouse centromeres, a neocentromere, and the active centromere of a dicentric chromosome, with six of these proteins (Sin3A, PCAF, MYST, MBD2, ORC2, P300/CBP) being demonstrated at mammalian centromeres for the first time. Most of these proteins fall into two distinct chromosomal distribution patterns: (a) kinetochore-associated proteins (Sin3A, PCAF, MYST and BAF180), which colocalize with metaphase kinetochores, but not any of the pericentric and other major heterochromatic regions; and (b) heterochromatin-associated proteins (MeCP2, MBD1, MBD2, ATRX, HP1alpha, HDAC1, HDAC2, DNMT1 and DNMT3b), which colocalize with centromeric/pericentric heterochromatin and all other major heterochromatic sites. A heterogeneous third group (c) consists of the origin recognition complex subunit ORC2 and the histone acetyltransferase P300/CBP, which associate generally with kinetochores in humans and centromeric/pericentric heterochromatin in mouse, with some minor differences in localization. These observations indicate an extensive sharing of protein components involved in chromatin modification at gene loci, centromeres and various chromosomal heterochromatic landmarks. The definition of distinct patterns of chromosomal distribution for these proteins provides a useful basis for the further investigation of the broad-ranging roles of these proteins.
Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.
Lamb, Jonathan C; Yu, Weichang; Han, Fangpu; Birchler, James A
2007-04-01
Recent evidence indicates that heterochromatin in plants is composed of heterogeneous sequences, which are usually composed of transposable elements or tandem repeat arrays. These arrays are associated with chromatin modifications that produce a closed configuration that limits transcription. Centromere sequences in plants are usually composed of tandem repeat arrays that are homogenized across the genome. Analysis of such arrays in closely related taxa suggests a rapid turnover of the repeat unit that is typical of a particular species. In addition, two lines of evidence for an epigenetic component of centromere specification have been reported, namely an example of a neocentromere formed over sequences without the typical repeat array and examples of centromere inactivation. Although the telomere repeat unit is quite prevalent in the plant kingdom, unusual repeats have been found in some families. Recently, it was demonstrated that the introduction of telomere sequences into plants cells causes truncation of the chromosomes, and that this technique can be used to produce artificial chromosome platforms.
The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.
Martín-García, Bárbara; Martín-González, Alejandro; Carrasco, Carolina; Hernández-Arriaga, Ana M; Ruíz-Quero, Rubén; Díaz-Orejas, Ramón; Aicart-Ramos, Clara; Moreno-Herrero, Fernando; Oliva, María A
2018-05-14
In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.
Belagal, Praveen; Normand, Christophe; Shukla, Ashutosh; Wang, Renjie; Léger-Silvestre, Isabelle; Dez, Christophe; Bhargava, Purnima; Gadal, Olivier
2016-01-01
The association of RNA polymerase III (Pol III)–transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III–transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements—centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III–transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III–transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III–dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III–transcribed genes required active transcription. We conclude that the association of Pol III–transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. PMID:27559135
ENWRIGHT, JOHN F.; KAWECKI-CROOK, MARGARET A.; VOSS, TY C.; SCHAUFELE, FRED; DAY, RICHARD N.
2010-01-01
The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, in cluding CCAAT/enhancer binding protein α (C/ EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity. PMID:12554749
Mohibi, Shakur; Srivastava, Shashank; Wang-France, Jun; Mirza, Sameer; Zhao, Xiangshan; Band, Hamid; Band, Vimla
2015-11-20
ADA3 (alteration/deficiency in activation 3) is a conserved component of several transcriptional co-activator and histone acetyltransferase (HAT) complexes. Recently, we generated Ada3 knock-out mice and demonstrated that deletion of Ada3 leads to early embryonic lethality. The use of Ada3(FL/FL) mouse embryonic fibroblasts with deletion of Ada3 using adenovirus Cre showed a critical role of ADA3 in cell cycle progression through mitosis. Here, we demonstrate an association of ADA3 with the higher order repeat region of the α-satellite region on human X chromosome centromeres that is consistent with its role in mitosis. Given the role of centromere proteins (CENPs) in mitosis, we next analyzed whether ADA3 associates with the centromere through CENPs. Both an in vivo proximity ligation assay and immunofluorescence studies confirmed the association of ADA3 with CENP-B protein, a highly conserved centromeric protein that binds to the 17-bp DNA sequences on α-satellite DNA. Deletional analysis showed that ADA3 directly associates with CENP-B through its N terminus, and a CENP-B binding-deficient mutant of ADA3 was incompetent in cell proliferation rescue. Notably, knockdown of ADA3 decreased binding of CENP-B onto the centromeres, suggesting that ADA3 is required for the loading of CENP-B onto the centromeres. Finally, we show that deletion of Ada3 from Ada3(FL/FL) mouse embryonic fibroblasts exhibited various chromosome segregation defects. Taken together, we demonstrate a novel ADA3 interaction with CENP-B-centromere that may account for its previously known function in mitosis. This study, together with its known function in maintaining genomic stability and its mislocalization in cancers, suggests an important role of ADA3 in mitosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M.
2015-01-01
A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition. PMID:25926359
Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors.
Hernández-Saavedra, Diego; Strakovsky, Rita S; Ostrosky-Wegman, Patricia; Pan, Yuan-Xiang
2017-11-01
The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy. © 2017 American Society for Nutrition.
Mirabella, M; Servidei, S; Broccolini, A; Gandolfi, N; Ricci, E; Neri, G; Tonali, P; Brahe, C
1999-04-01
Spinal muscular atrophy (SMA) is caused by homozygous absence of the telomeric copy of the survival motor neuron (SMNt) gene. SMNt and its homologous centromeric copy (SMNc) encode the SMN protein, which is markedly reduced in SMA I patients. We have performed SMN transcript and protein studies on spinal cord sections of an SMA I patient using in situ hybridization and immunofluorescence. While the amount of protein was negligible, the level of transcripts was comparable with that of controls. These findings suggest that the reduced protein level is not caused by a deficient transcription of the SMNc gene.
Belagal, Praveen; Normand, Christophe; Shukla, Ashutosh; Wang, Renjie; Léger-Silvestre, Isabelle; Dez, Christophe; Bhargava, Purnima; Gadal, Olivier
2016-10-15
The association of RNA polymerase III (Pol III)-transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III-transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements-centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III-transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III-transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III-dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III-transcribed genes required active transcription. We conclude that the association of Pol III-transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. © 2016 Belagal et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J.; Fox, Catherine A.
2016-01-01
The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid partitioning and suggest underlying biological roles shared by such elements. PMID:26865697
De La Fuente, Rabindranath; Viveiros, Maria M; Wigglesworth, Karen; Eppig, John J
2004-08-01
ATRX is a centromeric heterochromatin binding protein belonging to the SNF2 family of helicase/ATPases with chromatin remodeling activity. Mutations in the human ATRX gene result in X-linked alpha-thalassaemia with mental retardation (ATRX) syndrome and correlate with changes in methylation of repetitive DNA sequences. We show here that ATRX also functions to regulate key stages of meiosis in mouse oocytes. At the germinal vesicle (GV) stage, ATRX was found associated with the perinucleolar heterochromatin rim in transcriptionally quiescent oocytes. Phosphorylation of ATRX during meiotic maturation is dependent upon calcium calmodulin kinase (CamKII) activity. Meiotic resumption also coincides with deacetylation of histone H4 at lysine 5 (H4K5 Ac) while ATRX and histone H3 methylated on lysine 9 (H3K9) remained bound to the centromeres and interstitial regions of condensing chromosomes, respectively. Inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) disrupted ATRX binding to the centromeres of hyperacetylated chromosomes resulting in abnormal chromosome alignments at metaphase II (MII). Similarly, while selective ablation of ATRX by antibody microinjection and RNA interference (RNAi) had no effect on the progression of meiosis, it had severe consequences for the alignment of chromosomes on the metaphase II spindle. These results suggest that genome-wide epigenetic modifications such as global histone deacetylation are essential for the binding of ATRX to centromeric heterochromatin. Moreover, centromeric ATRX is required for correct chromosome alignment and organization of a bipolar meiotic metaphase II spindle.
Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.
Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla
2014-04-01
Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.
Histone phosphorylation: its role during cell cycle and centromere identity in plants.
Zhang, B; Dong, Q; Su, H; Birchler, J A; Han, F
2014-01-01
As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs. © 2014 S. Karger AG, Basel.
Characterization of murine SIRT3 transcript variants and corresponding protein products
USDA-ARS?s Scientific Manuscript database
SIRT3 is one of the seven mammalian sirtuin homologs of the yeast SIR2 gene. SIRT3 possesses NAD(+)-dependent protein deacetylase activity. Recent studies indicate that the murine SIRT3 gene expresses different transcript variants, resulting in three possible SIRT3 protein isoforms with various leng...
Mapping of the bcl-2 oncogene on mouse chromosome 1.
Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F
1988-01-01
Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.
Global effects of the CSR-1 RNA interference pathway on transcriptional landscape
Cecere, Germano; Hoersch, Sebastian; O’Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla
2014-01-01
Argonaute proteins and their small RNA co-factors short interfering RNAs (siRNAs) are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) antisense to germline transcripts and associates with chromatin in a siRNA-dependent manner. However, its role in gene expression regulation remains controversial. Here, we used a genome-wide profiling of nascent RNA transcripts to demonstrate that the CSR-1 RNAi pathway promotes sense-oriented Pol II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. Based on these findings, we propose that the CSR-1 pathway has a role in maintaining the directionality of active transcription thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887
Guo, Hongtao; Mi, Zhiyong; Kuo, Paul C.
2008-01-01
The local structural properties and spatial conformations of chromosomes are intimately associated with gene expression. The spatial associations of critical genomic elements in inducible nitric-oxide synthase (iNOS) transcription have not been previously examined. In this regard, the murine iNOS promoter contains 2 NF-κB binding sites (nt –86 and nt –972) that are essential for maximal transactivation of iNOS by LPS. Although AP-1 is commonly listed as an essential transcription factor for LPS-mediated iNOS transactivation, the relationship between AP-1 and NF-κB in this setting is not well studied. In this study using a model of LPS-stimulated ANA-1 murine macrophages, we demonstrate that short range DNA looping occurs at the iNOS promoter. This looping requires the presence of AP-1, c-Jun, NF-κB p65, and p300-associated acetyltransferase activity. The distal AP-1 binding site interacts via p300 with the proximal NF-κB binding site to create this DNA loop to participate in iNOS transcription. Other geographically distant AP-1 and NF-κB sites are certainly occupied, but selected sites are critical for iNOS transcription and the formation of the c-Jun, p65, and p300 transcriptional complex. In this “simplified” model of murine iNOS promoter, numerous transcription factors recognize and bind to various response elements, but these locales do not equally contribute to iNOS gene transcription. PMID:18596035
Fujinaga, Koh; Irwin, Dan; Taube, Ran; Zhang, Fan; Geyer, Matthias; Peterlin, B. Matija
2002-01-01
The transcriptional elongation of human immunodeficiency virus type 1 (HIV-1) is mediated by the virally encoded transactivator Tat and its cellular cofactor, positive transcription elongation factor b (P-TEFb). The human cyclin T1 (hCycT1) subunit of P-TEFb forms a stable complex with Tat and the transactivation response element (TAR) RNA located at the 5′ end of all viral transcripts. Previous studies have demonstrated that hCycT1 binds Tat in a Zn2+-dependent manner via the cysteine at position 261, which is a tyrosine in murine cyclin T1. In the present study, we mutated all other cysteines and histidines that could be involved in this Zn2+-dependent interaction. Because all of these mutant proteins except hCycT1(C261Y) activated viral transcription in murine cells, no other cysteine or histidine in hCycT1 is responsible for this interaction. Next, we fused the N-terminal 280 residues in hCycT1 with Tat. Not only the full-length chimera but also the mutant hCycT1 with an N-terminal deletion to position 249, which retained the Tat-TAR recognition motif, activated HIV-1 transcription in murine cells. This minimal hybrid mutant hCycT1-Tat protein bound TAR RNA as well as human and murine P-TEFb in vitro. We conclude that this minimal chimera not only reproduces the high-affinity binding among P-TEFb, Tat, and TAR but also will be invaluable for determining the three-dimensional structure of this RNA-protein complex. PMID:12438619
Dynamic epigenetic states of maize centromeres
Liu, Yalin; Su, Handong; Zhang, Jing; Liu, Yang; Han, Fangpu; Birchler, James A.
2015-01-01
The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Non-disjunction of the supernumerary B chromosome centromere is independent of centromere function, but centromere pairing during early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis. PMID:26579154
Dynamic epigenetic states of maize centromeres.
Liu, Yalin; Su, Handong; Zhang, Jing; Liu, Yang; Han, Fangpu; Birchler, James A
2015-01-01
The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Non-disjunction of the supernumerary B chromosome centromere is independent of centromere function, but centromere pairing during early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.
Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis.
Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J; Considine, Robert V; Sethi, Jaswinder K; Vidal-Puig, Antonio; O'Rahilly, Stephen
2004-03-19
Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2-4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation.
Recent advances in plant centromere biology.
Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu
2015-03-01
The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.
Wolfgruber, Thomas K; Sharma, Anupma; Schneider, Kevin L; Albert, Patrice S; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A; Jiang, Jiming; Dawe, R Kelly; Presting, Gernot G
2009-11-01
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.
Albert, Patrice S.; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A.; Jiang, Jiming; Dawe, R. Kelly; Presting, Gernot G.
2009-01-01
We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3. PMID:19956743
Murine mesenchymal and embryonic stem cells express a similar Hox gene profile.
Phinney, Donald G; Gray, Andrew J; Hill, Katy; Pandey, Amitabh
2005-12-30
Using degenerate oligonucleotide primers targeting the homeobox domain, we amplified by PCR and sequenced 723 clones from five murine cell populations and lines derived from embryonic mesoderm and adult bone marrow. Transcripts from all four vertebrate Hox clusters were expressed by the different populations. Hierarchical clustering of the data revealed that mesenchymal stem cells (MSCs) and the embryonic stem (ES) cell line D3 shared a similar Hox expression profile. These populations exclusively expressed Hoxb2, Hoxb5, Hoxb7, and Hoxc4, transcripts regulating self-renewal and differentiation of other stem cells. Additionally, Hoxa7 transcript quantified by real-time PCR strongly correlated (r2=0.89) with the number of Hoxa7 clones identified by sequencing, validating that data from the PCR screen reflects differences in Hox mRNA abundance between populations. This is the first study to catalogue Hox transcripts in murine MSCs and by comparative analyses identify specific Hox genes that may contribute to their stem cell character.
[Advances in research of the structure and function of plant centromeres].
She, Chao-Wen; Song, Yun-Chun
2006-12-01
Centromeres are the chromosomal domains necessary for faithful chromosome segregation and transmission during mitosis and meiosis in eukaryotes. In the last decade, centromeres in some plant species including Arabidopsis, rice and maize have been deeply studied at molecular level. Centromeric DNAs evolve rapidly and are little conserved among various plants, but the types of centromeric DNA sequences and their organization patterns within centromeres are basically similar in plants. Plant centromeres are usually composed of clusters of tandemly arrayed satellite repeats that are interspersed with centromere-specific retrotransposons. In contrast to centromeric DNA, structural and transient centromeric/kinetochoric proteins are conserved among eukaryotes including plants. As the cases in other eukaryotes, the presence of CENH3 (centromeric histone H3)-containing nucleosomes is the fundamental feature of plant functional centromeres, and CENH3 plays critical roles in the identity and maintenance of plant centromeric chromatin.
Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize.
Liu, Yalin; Su, Handong; Pang, Junling; Gao, Zhi; Wang, Xiu-Jie; Birchler, James A; Han, Fangpu
2015-03-17
The ability of centromeres to alternate between active and inactive states indicates significant epigenetic aspects controlling centromere assembly and function. In maize (Zea mays), misdivision of the B chromosome centromere on a translocation with the short arm of chromosome 9 (TB-9Sb) can produce many variants with varying centromere sizes and centromeric DNA sequences. In such derivatives of TB-9Sb, we found a de novo centromere on chromosome derivative 3-3, which has no canonical centromeric repeat sequences. This centromere is derived from a 288-kb region on the short arm of chromosome 9, and is 19 megabases (Mb) removed from the translocation breakpoint of chromosome 9 in TB-9Sb. The functional B centromere in progenitor telo2-2 is deleted from derivative 3-3, but some B-repeat sequences remain. The de novo centromere of derivative 3-3 becomes inactive in three further derivatives with new centromeres being formed elsewhere on each chromosome. Our results suggest that de novo centromere initiation is quite common and can persist on chromosomal fragments without a canonical centromere. However, we hypothesize that when de novo centromeres are initiated in opposition to a larger normal centromere, they are cleared from the chromosome by inactivation, thus maintaining karyotype integrity.
Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize
Liu, Yalin; Su, Handong; Pang, Junling; Gao, Zhi; Wang, Xiu-Jie; Birchler, James A.; Han, Fangpu
2015-01-01
The ability of centromeres to alternate between active and inactive states indicates significant epigenetic aspects controlling centromere assembly and function. In maize (Zea mays), misdivision of the B chromosome centromere on a translocation with the short arm of chromosome 9 (TB-9Sb) can produce many variants with varying centromere sizes and centromeric DNA sequences. In such derivatives of TB-9Sb, we found a de novo centromere on chromosome derivative 3-3, which has no canonical centromeric repeat sequences. This centromere is derived from a 288-kb region on the short arm of chromosome 9, and is 19 megabases (Mb) removed from the translocation breakpoint of chromosome 9 in TB-9Sb. The functional B centromere in progenitor telo2-2 is deleted from derivative 3-3, but some B-repeat sequences remain. The de novo centromere of derivative 3-3 becomes inactive in three further derivatives with new centromeres being formed elsewhere on each chromosome. Our results suggest that de novo centromere initiation is quite common and can persist on chromosomal fragments without a canonical centromere. However, we hypothesize that when de novo centromeres are initiated in opposition to a larger normal centromere, they are cleared from the chromosome by inactivation, thus maintaining karyotype integrity. PMID:25733907
Zhang, Wenli; Friebe, Bernd; Gill, Bikram S; Jiang, Jiming
2010-10-01
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinshaw, Stephen M.; Makrantoni, Vasso; Kerr, Alastair
The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2NIPBL/Scc4Mau2 (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surfacemore » of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.« less
Role of the POZ Zinc Finger Transcription Factor FBI-1 in Human and Murine Adipogenesis
Laudes, Matthias; Christodoulides, Constantinos; Sewter, Ciaran; Rochford, Justin J.; Considine, Robert V.; Sethi, Jaswinder K.; Vidal-Puig, Antonio; O’Rahilly, Stephen
2015-01-01
Poxvirus zinc finger (POZ) zinc finger domain transcription factors have been shown to play a role in the control of growth arrest and differentiation in several types of mesenchymal cells but not, as yet, adipocytes. We found that a POZ domain protein, factor that binds to inducer of short transcripts-1 (FBI-1), was induced during both murine and human preadipocyte differentiation with maximal expression levels seen at days 2–4. FBI-1 mRNA was expressed in human adipose tissue with the highest levels found in samples from morbidly obese subjects. Murine cell lines constitutively expressing FBI-1 showed evidence for accelerated adipogenesis with earlier induction of markers of differentiation and enhanced lipid accumulation, suggesting that FBI-1 may be an active participant in the differentiation process. Consistent with the properties of this family of proteins in other cell systems, 3T3L1 cells stably overexpressing FBI-1 showed reduced DNA synthesis and reduced expression of cyclin A, cyclin-dependent kinase 2, and p107, proteins known to be involved in the regulation of mitotic clonal expansion. In addition, FBI-1 reduced the transcriptional activity of the cyclin A promoter. Thus, FBI-1, a POZ zinc finger transcription factor, is induced during the early phases of human and murine preadipocyte differentiation where it may contribute to adipogenesis through influencing the switch from cellular proliferation to terminal differentiation. PMID:14701838
Generation of a Maize B Centromere Minimal Map Containing the Central Core Domain.
Ellis, Nathanael A; Douglas, Ryan N; Jackson, Caroline E; Birchler, James A; Dawe, R Kelly
2015-10-28
The maize B centromere has been used as a model for centromere epigenetics and as the basis for building artificial chromosomes. However, there are no sequence resources for this important centromere. Here we used transposon display for the centromere-specific retroelement CRM2 to identify a collection of 40 sequence tags that flank CRM2 insertion points on the B chromosome. These were confirmed to lie within the centromere by assaying deletion breakpoints from centromere misdivision derivatives (intracentromere breakages caused by centromere fission). Markers were grouped together on the basis of their association with other markers in the misdivision series and assembled into a pseudocontig containing 10.1 kb of sequence. To identify sequences that interact directly with centromere proteins, we carried out chromatin immunoprecipitation using antibodies to centromeric histone H3 (CENH3), a defining feature of functional centromeric sequences. The CENH3 chromatin immunoprecipitation map was interpreted relative to the known transmission rates of centromere misdivision derivatives to identify a centromere core domain spanning 33 markers. A subset of seven markers was mapped in additional B centromere misdivision derivatives with the use of unique primer pairs. A derivative previously shown to have no canonical centromere sequences (Telo3-3) lacks these core markers. Our results provide a molecular map of the B chromosome centromere and identify key sequences within the map that interact directly with centromeric histone H3. Copyright © 2015 Ellis et al.
Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin
Kapoor, Shivali; Zhu, Lisha; Froyd, Cara; Liu, Tao; Rusche, Laura N.
2015-01-01
Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 4–4.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin. PMID:26371315
Zhang, Bing; Lv, Zhenling; Pang, Junling; Liu, Yalin; Guo, Xiang; Fu, Shulan; Li, Jun; Dong, Qianhua; Wu, Hua-Jun; Gao, Zhi; Wang, Xiu-Jie; Han, Fangpu
2013-06-01
The maize (Zea mays) B centromere is composed of B centromere-specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere.
Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
Gong, Zhiyun; Wu, Yufeng; Koblízková, Andrea; Torres, Giovana A; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C Robin; Macas, Jirí; Jiang, Jiming
2012-09-01
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains.
Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W
Gong, Zhiyun; Wu, Yufeng; Koblížková, Andrea; Torres, Giovana A.; Wang, Kai; Iovene, Marina; Neumann, Pavel; Zhang, Wenli; Novák, Petr; Buell, C. Robin; Macas, Jiří; Jiang, Jiming
2012-01-01
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats. By contrast, most newly formed centromeres (neocentromeres) do not contain satellite repeats and instead include DNA sequences representative of the genome. An unknown question in centromere evolution is how satellite repeat-based centromeres evolve from neocentromeres. We conducted a genome-wide characterization of sequences associated with CENH3 nucleosomes in potato (Solanum tuberosum). Five potato centromeres (Cen4, Cen6, Cen10, Cen11, and Cen12) consisted primarily of single- or low-copy DNA sequences. No satellite repeats were identified in these five centromeres. At least one transcribed gene was associated with CENH3 nucleosomes. Thus, these five centromeres structurally resemble neocentromeres. By contrast, six potato centromeres (Cen1, Cen2, Cen3, Cen5, Cen7, and Cen8) contained megabase-sized satellite repeat arrays that are unique to individual centromeres. The satellite repeat arrays likely span the entire functional cores of these six centromeres. At least four of the centromeric repeats were amplified from retrotransposon-related sequences and were not detected in Solanum species closely related to potato. The presence of two distinct types of centromeres, coupled with the boom-and-bust cycles of centromeric satellite repeats in Solanum species, suggests that repeat-based centromeres can rapidly evolve from neocentromeres by de novo amplification and insertion of satellite repeats in the CENH3 domains. PMID:22968715
Ragoczy, Tobias; Bender, M.A.; Telling, Agnes; Byron, Rachel; Groudine, Mark
2006-01-01
We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine β-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the β-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, βmajor-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in βmajor-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the β-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the β-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation. PMID:16705039
Atypical centromeres in plants—what they can tell us
Cuacos, Maria; H. Franklin, F. Chris; Heckmann, Stefan
2015-01-01
The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display “atypical” centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation. PMID:26579160
Atypical centromeres in plants-what they can tell us.
Cuacos, Maria; H Franklin, F Chris; Heckmann, Stefan
2015-01-01
The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display "atypical" centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.
Marques, André; Ribeiro, Tiago; Neumann, Pavel; Macas, Jiří; Novák, Petr; Schubert, Veit; Pellino, Marco; Fuchs, Jörg; Ma, Wei; Kuhlmann, Markus; Brandt, Ronny; Vanzela, André L L; Beseda, Tomáš; Šimková, Hana; Pedrosa-Harand, Andrea; Houben, Andreas
2015-11-03
Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.
Lamb, J C; Yu, W; Han, F; Birchler, J A
2008-01-01
Plant centromeres are generally composed of tandem arrays of simple repeats that are typical of a particular species, but that evolve rapidly. Centromere specific retroelements are also present. These arrays associate with a centromere specific variant of histone H3 that anchors the site of the kinetochore. Although such DNA arrays are typical of the centromere, the specification of centromere activity has an epigenetic component as shown by the fact that centromeres are formed in the absence of such repeats and that centromeres in dicentric chromosomes regularly undergo inactivation.
Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David
2015-01-01
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301
Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David
2015-06-02
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.
Evolution of long centromeres in fire ants.
Huang, Yu-Ching; Lee, Chih-Chi; Kao, Chia-Yi; Chang, Ni-Chen; Lin, Chung-Chi; Shoemaker, DeWayne; Wang, John
2016-09-15
Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.
Changing partners: moving from non-homologous to homologous centromere pairing in meiosis
Stewart, Mara N.; Dawson, Dean S.
2010-01-01
Reports of centromere pairing in early meiotic cells have appeared sporadically over the past thirty years. Recent experiments demonstrate that early centromere pairing occurs between non-homologous centromeres. As meiosis proceeds, centromeres change partners, becoming arranged in homologous pairs. Investigations of these later centromere pairs indicate that paired homologous centromeres are actively associated rather than positioned passively, side-by-side. Meiotic centromere pairing has been observed in organisms as diverse as mice, wheat and yeast, indicating that non-homologous centromere pairing in early meiosis and active homologous centromere pairing in later meiosis might be themes in meiotic chromosome behavior. Moreover, such pairing could have previously unrecognized roles in mediating chromosome organization or architecture that impact meiotic segregation fidelity. PMID:18804891
Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quina, Ana Sofia; Instituto Gulbenkian de Ciencia, 2781-901 Oeiras; Parreira, Leonor
2005-07-01
Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters uponmore » activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.« less
Unhavaithaya, Yingdee; Orr-Weaver, Terry L
2013-12-03
Meiotic chromosome segregation involves pairing and segregation of homologous chromosomes in the first division and segregation of sister chromatids in the second division. Although it is known that the centromere and kinetochore are responsible for chromosome movement in meiosis as in mitosis, potential specialized meiotic functions are being uncovered. Centromere pairing early in meiosis I, even between nonhomologous chromosomes, and clustering of centromeres can promote proper homolog associations in meiosis I in yeast, plants, and Drosophila. It was not known, however, whether centromere proteins are required for this clustering. We exploited Drosophila mutants for the centromere proteins centromere protein-C (CENP-C) and chromosome alignment 1 (CAL1) to demonstrate that a functional centromere is needed for centromere clustering and pairing. The cenp-C and cal1 mutations result in C-terminal truncations, removing the domains through which these two proteins interact. The mutants show striking genetic interactions, failing to complement as double heterozygotes, resulting in disrupted centromere clustering and meiotic nondisjunction. The cluster of meiotic centromeres localizes to the nucleolus, and this association requires centromere function. In Drosophila, synaptonemal complex (SC) formation can initiate from the centromere, and the SC is retained at the centromere after it disassembles from the chromosome arms. Although functional CENP-C and CAL1 are dispensable for assembly of the SC, they are required for subsequent retention of the SC at the centromere. These results show that integral centromere proteins are required for nuclear position and intercentromere associations in meiosis.
Birchler, James A; Gao, Zhi; Han, Fangpu
2009-02-01
The structural and functional aspects of two specific centromeres, one drawn from the animal kingdom (Drosophila) and the other from the plant kingdom (maize), are compared. Both cases illustrate an epigenetic component to centromere specification. The observations of neocentromeres in Drosophila and inactive centromeres in maize constitute one line of evidence for this hypothesis. Another common feature is the divisibility of centromere function with reduced stability as the size decreases. The systems differ in that Drosophila has no common sequence repeat at all centromeres, whereas maize has a 150-bp unit present in tandem arrays together with a centromere-specific transposon, centromere retrotransposon maize, present at all primary constrictions. Aspects of centromere structure known only from one or the other system might be common to both, namely, the presence of centromere RNAs in the kinetochore as found in maize and the organization of the centromeric histone 3 in tetrameric nucleosomes.
Dicentric chromosome formation and epigenetics of centromere formation in plants.
Fu, Shulan; Gao, Zhi; Birchler, James; Han, Fangpu
2012-03-20
Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation. Copyright © 2012. Published by Elsevier Ltd.
Zhang, Bing; Lv, Zhenling; Pang, Junling; Liu, Yalin; Guo, Xiang; Fu, Shulan; Li, Jun; Dong, Qianhua; Wu, Hua-Jun; Gao, Zhi; Wang, Xiu-Jie; Han, Fangpu
2013-01-01
The maize (Zea mays) B centromere is composed of B centromere–specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis. Anti-CENH3 chromatin immunoprecipitation sequencing revealed that a 723-kb region from the short arm of chromosome 9 (9S) was involved in the formation of the new centromere. The 723-kb region, which is gene poor and enriched for transposons, contains two abundant DNA motifs. Genes in the new centromere region are still transcribed. The original 723-kb region showed a higher DNA methylation level compared with native centromeres but was not significantly changed when it was involved in new centromere formation. Our results indicate that functional centromeres may be formed without the known centromere-specific sequences, yet the maintenance of a high DNA methylation level seems to be crucial for the proper function of a new centromere. PMID:23771890
Plant centromeres: structure and control.
Richards, E J; Dawe, R K
1998-04-01
Recent work has led to a better understanding of the molecular components of plant centromeres. Conservation of at least some centromere protein constituents between plant and non-plant systems has been demonstrated. The identity and organization of plant centromeric DNA sequences are also beginning to yield to analysis. While there is little primary DNA sequence conservation among the characterized plant centromeres and their non-plant counterparts, some parallels in centromere genomic organisation can be seen across species. Finally, the emerging idea that centromere activity is controlled epigenetically finds support in an examination of the plant centromere literature.
The cotton centromere contains a Ty3-gypsy-like LTR retroelement.
Luo, Song; Mach, Jennifer; Abramson, Bradley; Ramirez, Rolando; Schurr, Robert; Barone, Pierluigi; Copenhaver, Gregory; Folkerts, Otto
2012-01-01
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.
The Cotton Centromere Contains a Ty3-gypsy-like LTR Retroelement
Luo, Song; Mach, Jennifer; Abramson, Bradley; Ramirez, Rolando; Schurr, Robert; Barone, Pierluigi; Copenhaver, Gregory; Folkerts, Otto
2012-01-01
The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum) we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG) that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species. PMID:22536361
Centromeres Drive a Hard Bargain
Rosin, Leah F.; Mellone, Barbara G.
2017-01-01
Centromeres are essential chromosomal structures that mediate the accurate distribution of genetic material during meiotic and mitotic cell divisions. In most organisms, centromeres are epigenetically specified and propagated by nucleosomes containing the centromere-specific H3 variant, CENP-A. Although centromeres perform a critical and conserved function, CENP-A and the underlying centromeric DNA are rapidly evolving. This paradox has been explained by the centromere drive hypothesis, which proposes that CENP-A is undergoing an evolutionary tug-of-war with selfish centromeric DNA. Here, we review our current understanding of CENP-A evolution in relation to centromere drive and discuss classical and recent advances, including new evidence implicating CENP-A chaperones in this conflict. PMID:28069312
Histone H3 Variants in Trichomonas vaginalis
Zubáčová, Zuzana; Hostomská, Jitka
2012-01-01
The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G1 phase and G2 phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle. PMID:22408228
Maize centromeres: structure, function, epigenetics.
Birchler, James A; Han, Fangpu
2009-01-01
The ability of centromeres to organize the kinetochore has an epigenetic component in that DNA sequence alone does not necessarily serve as the determinant of activity. The centromeres of maize have been well characterized with regard to the sequence repeats present at all primary constrictions. The supernumerary B chromosome centromere contains an additional specific repeat that is represented in the active core and that allows it to be studied against the background of the other centromeres. The foundational proteins of the kinetochore have been characterized, and an RNA component has been defined. Numerous examples of inactive centromeres have been characterized for both A and B chromosomal centromeres indicating the ease with which plant centromeres become inactive. Under some circumstances, inactive centromeres can exhibit reactivation at their formerly inactive sites. This observation suggests that a DNA-based topological component also operates for centromere identity.
Kouznetsova, Anna; Scherthan, Harry; Höög, Christer; Dawson, Dean S.; Pezza, Roberto J.
2012-01-01
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes. PMID:22761579
An overview of plant centromeres.
Wang, Guixiang; Zhang, Xueyong; Jin, Weiwei
2009-09-01
The centromere is a defining region that mediates chromosome attachment to kinetochore microtubules and proper segregation of the sister chromatids. Intriguingly, satellite DNA and centromeric retrotransposon as major DNA constituents of centromere showed baffling diversification and species-specific. However, the key kinetochore proteins are conserved in both plants and animals, particularly the centromere-specific histone H3-like protein (CENH3) in all functional centromeres. Recent studies have highlighted the importance of epigenetic mechanisms in the establishment and maintenance of centromere identity. Here, we review the progress and compendium of research on plant centromere in the light of recent data.
Radiation Fibrosis of the Vocal Fold: From Man to Mouse
Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.
2013-01-01
Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...
2017-07-18
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Neocentromeres: A Place for Everything and Everything in Its Place
Scott, Kristin C.; Sullivan, Beth A.
2014-01-01
Centromeres are essential for chromosome inheritance and genome stability. Centromeric proteins, including the centromeric histone CENP-A, define the site of centromeric chromatin and kinetochore assembly. In many organisms, centromeres are located in or near regions of repetitive DNA. However, some atypical centromeres spontaneously form on unique sequences. These neocentromeres, or new centromeres, were first identified in humans, but have since been described in other organisms. Neocentromeres are functionally and structurally similar to endogenous centromeres, but lack the added complication of underlying repetitive sequences. Here, we discuss recent studies in chicken and fungal systems where genomic engineering can promote neocentromere formation. These studies reveal key genomic and epigenetic factors that support de novo centromere formation in eukaryotes. PMID:24342629
Diversity in Requirement of Genetic and Epigenetic Factors for Centromere Function in Fungi ▿
Roy, Babhrubahan; Sanyal, Kaustuv
2011-01-01
A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species. PMID:21908596
Gent, Jonathan I; Wang, Na; Dawe, R Kelly
2017-06-21
Paradoxically, centromeres are known both for their characteristic repeat sequences (satellite DNA) and for being epigenetically defined. Maize (Zea mays mays) is an attractive model for studying centromere positioning because many of its large (~2 Mb) centromeres are not dominated by satellite DNA. These centromeres, which we call complex centromeres, allow for both assembly into reference genomes and for mapping short reads from ChIP-seq with antibodies to centromeric histone H3 (cenH3). We found frequent complex centromeres in maize and its wild relatives Z. mays parviglumis, Z. mays mexicana, and particularly Z. mays huehuetenangensis. Analysis of individual plants reveals minor variation in the positions of complex centromeres among siblings. However, such positional shifts are stochastic and not heritable, consistent with prior findings that centromere positioning is stable at the population level. Centromeres are also stable in multiple F1 hybrid contexts. Analysis of repeats in Z. mays and other species (Zea diploperennis, Zea luxurians, and Tripsacum dactyloides) reveals tenfold differences in abundance of the major satellite CentC, but similar high levels of sequence polymorphism in individual CentC copies. Deviation from the CentC consensus has little or no effect on binding of cenH3. These data indicate that complex centromeres are neither a peculiarity of cultivation nor inbreeding in Z. mays. While extensive arrays of CentC may be the norm for other Zea and Tripsacum species, these data also reveal that a wide diversity of DNA sequences and multiple types of genetic elements in and near centromeres support centromere function and constrain centromere positions.
Evidence for a high mutation rate at rapidly evolving yeast centromeres.
Bensasson, Douda
2011-07-18
Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.
Evidence for a high mutation rate at rapidly evolving yeast centromeres
2011-01-01
Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380
Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture.
Batzenschlager, Morgane; Lermontova, Inna; Schubert, Veit; Fuchs, Jörg; Berr, Alexandre; Koini, Maria A; Houlné, Guy; Herzog, Etienne; Rutten, Twan; Alioua, Abdelmalek; Fransz, Paul; Schmit, Anne-Catherine; Chabouté, Marie-Edith
2015-07-14
Centromeres play a pivotal role in maintaining genome integrity by facilitating the recruitment of kinetochore and sister-chromatid cohesion proteins, both required for correct chromosome segregation. Centromeres are epigenetically specified by the presence of the histone H3 variant (CENH3). In this study, we investigate the role of the highly conserved γ-tubulin complex protein 3-interacting proteins (GIPs) in Arabidopsis centromere regulation. We show that GIPs form a complex with CENH3 in cycling cells. GIP depletion in the gip1gip2 knockdown mutant leads to a decreased CENH3 level at centromeres, despite a higher level of Mis18BP1/KNL2 present at both centromeric and ectopic sites. We thus postulate that GIPs are required to ensure CENH3 deposition and/or maintenance at centromeres. In addition, the recruitment at the centromere of other proteins such as the CENP-C kinetochore component and the cohesin subunit SMC3 is impaired in gip1gip2. These defects in centromere architecture result in aneuploidy due to severely altered centromeric cohesion. Altogether, we ascribe a central function to GIPs for the proper recruitment and/or stabilization of centromeric proteins essential in the specification of the centromere identity, as well as for centromeric cohesion in somatic cells.
Plant centromere organization: a dynamic structure with conserved functions.
Ma, Jianxin; Wing, Rod A; Bennetzen, Jeffrey L; Jackson, Scott A
2007-03-01
Although the structural features of centromeres from most multicellular eukaryotes remain to be characterized, recent analyses of the complete sequences of two centromeric regions of rice, together with data from Arabidopsis thaliana and maize, have illuminated the considerable size variation and sequence divergence of plant centromeres. Despite the severe suppression of meiotic chromosomal exchange in centromeric and pericentromeric regions of rice, the centromere core shows high rates of unequal homologous recombination in the absence of chromosomal exchange, resulting in frequent and extensive DNA rearrangement. Not only is the sequence of centromeric tandem and non-tandem repeats highly variable but also the copy number, spacing, order and orientation, providing ample natural variation as the basis for selection of superior centromere performance. This review article focuses on the structural and evolutionary dynamics of plant centromere organization and the potential molecular mechanisms responsible for the rapid changes of centromeric components.
Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat.
Nagaki, Kiyotaka; Tanaka, Keisuke; Yamaji, Naoki; Kobayashi, Hisato; Murata, Minoru
2015-01-01
The kinetochore is a protein complex including kinetochore-specific proteins that plays a role in chromatid segregation during mitosis and meiosis. The complex associates with centromeric DNA sequences that are usually species-specific. In plant species, tandem repeats including satellite DNA sequences and retrotransposons have been reported as centromeric DNA sequences. In this study on sunflowers, a cDNA-encoding centromere-specific histone H3 (CENH3) was isolated from a cDNA pool from a seedling, and an antibody was raised against a peptide synthesized from the deduced cDNA. The antibody specifically recognized the sunflower CENH3 (HaCENH3) and showed centromeric signals by immunostaining and immunohistochemical staining analysis. The antibody was also applied in chromatin immunoprecipitation (ChIP)-Seq to isolate centromeric DNA sequences and two different types of repetitive DNA sequences were identified. One was a long interspersed nuclear element (LINE)-like sequence, which showed centromere-specific signals on almost all chromosomes in sunflowers. This is the first report of a centromeric LINE sequence, suggesting possible centromere targeting ability. Another type of identified repetitive DNA was a tandem repeat sequence with a 187-bp unit that was found only on a pair of chromosomes. The HaCENH3 content of the tandem repeats was estimated to be much higher than that of the LINE, which implies centromere evolution from LINE-based centromeres to more stable tandem-repeat-based centromeres. In addition, the epigenetic status of the sunflower centromeres was investigated by immunohistochemical staining and ChIP, and it was found that centromeres were heterochromatic.
Zhang, Jing; Pawlowski, Wojciech P.; Han, Fangpu
2013-01-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species. PMID:24143803
Zhang, Jing; Pawlowski, Wojciech P; Han, Fangpu
2013-10-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize structural maintenance of chromosomes6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.
Qi, L L; Wu, J J; Friebe, B; Qian, C; Gu, Y Q; Fu, D L; Gill, B S
2013-08-01
Brachypodium distachyon is a wild annual grass belonging to the Pooideae, more closely related to wheat, barley, and forage grasses than rice and maize. As an experimental model, the completed genome sequence of B. distachyon provides a unique opportunity to study centromere evolution during the speciation of grasses. Centromeric satellite sequences have been identified in B. distachyon, but little is known about centromeric retrotransposons in this species. In the present study, bacterial artificial chromosome (BAC)-fluorescence in situ hybridization was conducted in maize, rice, barley, wheat, and rye using B. distachyon (Bd) centromere-specific BAC clones. Eight Bd centromeric BAC clones gave no detectable fluorescence in situ hybridization (FISH) signals on the chromosomes of rice and maize, and three of them also did not yield any FISH signals in barley, wheat, and rye. In addition, four of five Triticeae centromeric BAC clones did not hybridize to the B. distachyon centromeres, implying certain unique features of Brachypodium centromeres. Analysis of Brachypodium centromeric BAC sequences identified a long terminal repeat (LTR)-centromere retrotransposon of B. distachyon (CRBd1). This element was found in high copy number accounting for 1.6 % of the B. distachyon genome, and is enriched in Brachypodium centromeric regions. CRBd1 accumulated in active centromeres, but was lost from inactive ones. The LTR of CRBd1 appears to be specific to B. distachyon centromeres. These results reveal different evolutionary events of this retrotransposon family across grass species.
Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus
Magnani, Elisa; Bertoni, Livia; Attolini, Carmen; Khoriauli, Lela; Raimondi, Elena; Giulotto, Elena
2010-01-01
In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs. PMID:20169180
Koo, Dal-Hoe; Han, Fangpu; Birchler, James A; Jiang, Jiming
2011-06-01
Centromeres are determined by poorly understood epigenetic mechanisms. Centromeres can be activated or inactivated without changing the underlying DNA sequences. However, virtually nothing is known about the epigenetic transition of a centromere from an active to an inactive state because of the lack of examples of the same centromere exhibiting alternative forms and being distinguishable from other centromeres. The centromere of the supernumerary B chromosome of maize provides such an opportunity because its functional core can be cytologically tracked, and an inactive version of the centromere is available. We developed a DNA fiber-based technique that can be used to assess the levels of cytosine methylation associated with repetitive DNA sequences. We report that DNA sequences in the normal B centromere exhibit hypomethylation. This methylation pattern is not affected by the genetic background or structural rearrangement of the B chromosome, but is slightly changed when the B chromosome is transferred to oat as an addition chromosome. In contrast, an inactive version of this same centromere exhibits hypermethylation, indicating that the inactive centromere was modified into a different epigenetic state at the DNA level.
A unique chromatin complex occupies young α-satellite arrays of human centromeres
Henikoff, Jorja G.; Thakur, Jitendra; Kasinathan, Sivakanthan; Henikoff, Steven
2015-01-01
The intractability of homogeneous α-satellite arrays has impeded understanding of human centromeres. Artificial centromeres are produced from higher-order repeats (HORs) present at centromere edges, although the exact sequences and chromatin conformations of centromere cores remain unknown. We use high-resolution chromatin immunoprecipitation (ChIP) of centromere components followed by clustering of sequence data as an unbiased approach to identify functional centromere sequences. We find that specific dimeric α-satellite units shared by multiple individuals dominate functional human centromeres. We identify two recently homogenized α-satellite dimers that are occupied by precisely positioned CENP-A (cenH3) nucleosomes with two ~100–base pair (bp) DNA wraps in tandem separated by a CENP-B/CENP-C–containing linker, whereas pericentromeric HORs show diffuse positioning. Precise positioning is largely maintained, whereas abundance decreases exponentially with divergence, which suggests that young α-satellite dimers with paired ~100-bp particles mediate evolution of functional human centromeres. Our unbiased strategy for identifying functional centromeric sequences should be generally applicable to tandem repeat arrays that dominate the centromeres of most eukaryotes. PMID:25927077
Centromere Size and Its Relationship to Haploid Formation in Plants.
Wang, Na; Dawe, R Kelly
2018-03-05
Wide species crosses often result in uniparental genome elimination and visible failures in centromere function. Crosses involving lines with mutated forms of the CENH3 histone variant that organizes the centromere/kinetochore interface have been shown to have similar effects, inducing haploids at high frequencies. Here, we propose a simple centromere size model that endeavors to explain both observations. It is based on the idea of a quantitative centromere architecture where each centromere in an individual is the same size, and the average size is dictated by a natural equilibrium between bound and unbound CENH3 (and its chaperones or binding proteins). While centromere size is determined by the cellular milieu, centromere positions are heritable and defined by the interactions of a small set of proteins that bind to both DNA and CENH3. Lines with defective or mutated CENH3 have a lower loading capacity and support smaller centromeres. In cases where a line with small or defective centromeres is crossed to a line with larger or normal centromeres, the smaller/defective centromeres are selectively degraded or not maintained, resulting in chromosome loss from the small-centromere parent. The model is testable and generalizable, and helps to explain the counterintuitive observation that inducer lines do not induce haploids when crossed to themselves. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Katsumata, Kazuhiro; Hirayasu, Ami; Miyoshi, Junpei; Nishi, Eriko; Ichikawa, Kento; Tateho, Kazuki; Wakuda, Airi; Matsuhara, Hirotada; Yamamoto, Ayumu
2016-01-01
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions. PMID:27611693
The epigenetic basis for centromere identity.
Panchenko, Tanya; Black, Ben E
2009-01-01
The centromere serves as the control locus for chromosome segregation at mitosis and meiosis. In most eukaryotes, including mammals, the location of the centromere is epigenetically defined. The contribution of both genetic and epigenetic determinants to centromere function is the subject of current investigation in diverse eukaryotes. Here we highlight key findings from several organisms that have shaped the current view of centromeres, with special attention to experiments that have elucidated the epigenetic nature of their specification. Recent insights into the histone H3 variant, CENP-A, which assembles into centromeric nucleosomes that serve as the epigenetic mark to perpetuate centromere identity, have added important mechanistic understanding of how centromere identity is initially established and subsequently maintained in every cell cycle.
Inactivation of a centromere during the formation of a translocation in maize.
Gao, Zhi; Fu, Shulan; Dong, Qianhua; Han, Fangpu; Birchler, James A
2011-08-01
Fluorescence in situ hybridization analysis of a reciprocal translocation in maize between chromosomes 1 and 5 that has been used extensively in maize genetics revealed the presence of an inactive centromere at or near the breakpoints of the two chromosomes. This centromere contains both the satellite repeat, CentC, and the centromeric retrotransposon family, CRM, that are typical of centromere regions in maize. This site does not exhibit any of the tested biochemical features of active centromeres such as association with CENP-C and phosphorylation of serine-10 on histone H3. The most likely scenario for this chromosome arrangement is that a centromere was included in the repair process that formed the translocation but became inactive and has been inherited in this state for several decades. The documentation of an inactive A chromosome centromere in maize extends the evidence for an epigenetic component to centromere function in plants. This case provides an experimental example of how karyotype evolution might proceed via changes in centromere inactivation.
Centromeres and kinetochores of Brassicaceae.
Lermontova, Inna; Sandmann, Michael; Demidov, Dmitri
2014-06-01
The centromere-the primary constriction of monocentric chromosomes-is essential for correct segregation of chromosomes during mitosis and meiosis. Centromeric DNA varies between different organisms in sequence composition and extension. The main components of centromeric and pericentromeric DNA of Brassicaceae species are centromeric satellite repeats. Centromeric DNA initiates assembly of the kinetochore, the large protein complex where the spindle fibers attach during nuclear division to pull sister chromatids apart. Kinetochore assembly is initiated by incorporation of the centromeric histone H3 cenH3 into centromeric nucleosomes. The spindle assembly checkpoint acts during mitosis and meiosis at centromeres and maintains genome stability by preventing chromosome segregation before all kinetochores are correctly attached to microtubules. The function of the spindle assembly checkpoint in plants is still poorly understood. Here, we review recent advances of studies on structure and functional importance of centromeric DNA of Brassicaceae, assembly and function of cenH3 in Arabidopsis thaliana and characterization of core SAC proteins of A. thaliana in comparison with non-plant homologues.
[Utility of chromosome banding with ALU I enzyme for identifying methylated areas in breast cancer].
Rojas-Atencio, Alicia; Yamarte, Leonard; Urdaneta, Karelis; Soto-Alvarez, Marisol; Alvarez Nava, Francisco; Cañizalez, Jenny; Quintero, Maribel; Atencio, Raquel; González, Richard
2012-12-01
Cancer is a group of disorders characterized by uncontrolled cell growth which is produced by two successive events: increased cell proliferation (tumor or neoplasia) and the invasive capacity of these cells (metastasis). DNA methylation is an epigenetic process which has been involved as an important pathogenic factor of cancer. DNA methylation participates in the regulation of gene expression, directly, by preventing the union of transcription factors, and indirectly, by promoting the "closed" structure of the chromatine. The objectives of this study were to identify hypermethyled chromosomal regions through the use of restriction Alu I endonuclease, and to relate cytogenetically these regions with tumor suppressive gene loci. Sixty peripheral blood samples of females with breast cancer were analyzed. Cell cultures were performed and cytogenetic spreads, previously digested with Alu I enzyme, were stained with Giemsa. Chromosomal centromeric and not centromeric regions were stained in 37% of cases. About 96% of stained hypermethyled chromosomal regions (1q, 2q, 6q) were linked with methylated genes associated with breast cancer. In addition, centromeric regions in chromosomes 3, 4, 8, 13, 14, 15 and 17, usually unstained, were found positive to digestion with Alu I enzime and Giemsa staining. We suggest the importance of this technique for the global visualization of the genome which can find methylated genes related to breast cancer, and thus lead to a specific therapy, and therefore a better therapeutic response.
Structure and evolution of plant centromeres.
Nagaki, Kiyotaka; Walling, Jason; Hirsch, Cory; Jiang, Jiming; Murata, Minoru
2009-01-01
Investigations of centromeric DNA and proteins and centromere structures in plants have lagged behind those conducted with yeasts and animals; however, many attractive results have been obtained from plants during this decade. In particular, intensive investigations have been conducted in Arabidopsis and Gramineae species. We will review our understanding of centromeric components, centromere structures, and the evolution of these attributes of centromeres among plants using data mainly from Arabidopsis and Gramineae species.
Han, Yonghua; Wang, Guixiang; Liu, Zhao; Liu, Jinhua; Yue, Wei; Song, Rentao; Zhang, Xueyong; Jin, Weiwei
2010-02-01
Knowledge about the composition and structure of centromeres is critical for understanding how centromeres perform their functional roles. Here, we report the sequences of one centromere-associated bacterial artificial chromosome clone from a Coix lacryma-jobi library. Two Ty3/gypsy-class retrotransposons, centromeric retrotransposon of C. lacryma-jobi (CRC) and peri-centromeric retrotransposon of C. lacryma-jobi, and a (peri)centromere-specific tandem repeat with a unit length of 153 bp were identified. The CRC is highly homologous to centromere-specific retrotransposons reported in grass species. An 80-bp DNA region in the 153-bp satellite repeat was found to be conserved to centromeric satellite repeats from maize, rice, and pearl millet. Fluorescence in situ hybridization showed that the three repetitive sequences were located in (peri-)centromeric regions of both C. lacryma-jobi and Coix aquatica. However, the 153-bp satellite repeat was only detected on 20 out of the 30 chromosomes in C. aquatica. Immunostaining with an antibody against rice CENH3 indicates that the 153-bp satellite repeat and CRC might be both the major components for functional centromeres, but not all the 153-bp satellite repeats or CRC sequences are associated with CENH3. The evolution of centromeric repeats of C. lacryma-jobi during the polyploidization was discussed.
Total centromere size and genome size are strongly correlated in ten grass species.
Zhang, Han; Dawe, R Kelly
2012-05-01
It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.
Kikuchi, Shinji; Tanaka, Hiroyuki; Wako, Toshiyuki; Tsujimoto, Hisashi
2007-10-01
In the nuclei of some interspecific hybrid and allopolyploid plant species, each genome occupies a separate spatial domain. To analyze this phenomenon, we studied localization of the centromeres in the nuclei of a hybrid between Torenia fournieri and T. baillonii during mitosis and meiosis using three-dimensional fluorescence in situ hybridization (3D-FISH) probed with species-specific centromere repeats. Centromeres of each genome were located separately in undifferentiated cells but not differentiated cells, suggesting that cell division might be the possible force causing centromere separation. However, no remarkable difference of dividing distance was detected between chromatids with different centromeres in anaphase and telophase, indicating that tension of the spindle fiber attached to each chromatid is not the cause of centromere separation in Torenia. In differentiated cells, centromeres in both genomes were not often observed for the expected chromosome number, indicating centromere association. In addition, association of centromeres from the same genome was observed at a higher frequency than between different genomes. This finding suggests that centromeres within one genome are spatially separated from those within the other. This close position may increase possibility of association between centromeres of the same genome. In meiotic prophase, all centromeres irrespective of the genome were associated in a certain portion of the nucleus. Since centromere association in the interspecific hybrid and amphiploid was tighter than that in the diploid parents, it is possible that this phenomenon may be involved in sorting and pairing of homologous chromosomes.
Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.
Koren, Amnon; Tsai, Hung-Ji; Tirosh, Itay; Burrack, Laura S; Barkai, Naama; Berman, Judith
2010-08-19
Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.
2014-01-01
Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810
Kanesaki, Yu; Imamura, Sousuke; Matsuzaki, Motomichi; Tanaka, Kan
2015-05-08
To investigate the evolution of centromere architecture in plant cells, it is important to identify centromere regions of primitive algae, such as Cyanidioschyzon merolae. In a previous genome project, in silico analysis predicted an AT-rich region in each chromosome as putative centromere regions. Here, we identified a centromere position in each chromosome by ChIP-on-chip analysis using an anti-CENP-A antibody. The identified centromeres were of the regional type, about 2-3 kb in length and contained no consensus or repeat elements. Centromeres in primitive eukaryotic plant cells may have originated from these regional type centromeres. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Stable Patterns of CENH3 Occupancy Through Maize Lineages Containing Genetically Similar Centromeres
Gent, Jonathan I.; Wang, Kai; Jiang, Jiming; Dawe, R. Kelly
2015-01-01
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift. PMID:26063660
Gene Expression and Chromatin Modifications Associated with Maize Centromeres.
Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I; Zhang, Wenli; Dawe, R Kelly; Jiang, Jiming
2015-11-12
Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. Copyright © 2016 Zhao et al.
Gene Expression and Chromatin Modifications Associated with Maize Centromeres
Zhao, Hainan; Zhu, Xiaobiao; Wang, Kai; Gent, Jonathan I.; Zhang, Wenli; Dawe, R. Kelly; Jiang, Jiming
2015-01-01
Centromeres are defined by the presence of CENH3, a variant of histone H3. Centromeres in most plant species contain exclusively highly repetitive DNA sequences, which has hindered research on structure and function of centromeric chromatin. Several maize centromeres have been nearly completely sequenced, providing a sequence-based platform for genomic and epigenomic research of plant centromeres. Here we report a high resolution map of CENH3 nucleosomes in the maize genome. Although CENH3 nucleosomes are spaced ∼190 bp on average, CENH3 nucleosomes that occupied CentC, a 156-bp centromeric satellite repeat, showed clear positioning aligning with CentC monomers. Maize centromeres contain alternating CENH3-enriched and CENH3-depleted subdomains, which account for 87% and 13% of the centromeres, respectively. A number of annotated genes were identified in the centromeres, including 11 active genes that were located exclusively in CENH3-depleted subdomains. The euchromatic histone modification marks, including H3K4me3, H3K36me3 and H3K9ac, detected in maize centromeres were associated mainly with the active genes. Interestingly, maize centromeres also have lower levels of the heterochromatin histone modification mark H3K27me2 relative to pericentromeric regions. We conclude that neither H3K27me2 nor the three euchromatic histone modifications are likely to serve as functionally important epigenetic marks of centromere identity in maize. PMID:26564952
Centromere structure and function analysis in wheat-rye translocation lines.
Wang, Jing; Liu, Yalin; Su, Handong; Guo, Xianrui; Han, Fangpu
2017-07-01
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno-FISH, chromatin immunoprecipitation (ChIP)-qPCR and RT-PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat-derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere-specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group-1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Nagaki, Kiyotaka; Shibata, Fukashi; Kanatani, Asaka; Kashihara, Kazunari; Murata, Minoru
2012-04-01
The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity. Production of the antibodies is time-consuming and costly, and it is not easy to produce ChIP-grade antibodies. In this study, we applied a HaloTag7-based chromatin affinity purification system to isolate centromeric DNA sequences in tobacco. This system required no specific antibody, and made it possible to apply a highly stringent wash to remove contaminated DNA. As a result, we succeeded in isolating five tandem repetitive DNA sequences in addition to the centromeric retrotransposons that were previously identified by ChIP. Three of the tandem repeats were centromere-specific sequences located on different chromosomes. These results confirm the validity of the HaloTag7-based chromatin affinity purification system as an alternative method to ChIP for isolating unknown centromeric DNA sequences. The discovery of more than two chromosome-specific centromeric DNA sequences indicates the mosaic structure of tobacco centromeres. © Springer-Verlag 2011
Structure, Function, and Evolution of Rice Centromeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiming
2010-02-04
The centromere is the most characteristic landmark of eukaryotic chromosomes. Centromeres function as the site for kinetochore assembly and spindle attachment, allowing for the faithful pairing and segregation of sister chromatids during cell division. Characterization of centromeric DNA is not only essential to understand the structure and organization of plant genomes, but it is also a critical step in the development of plant artificial chromosomes. The centromeres of most model eukaryotic species, consist predominantly of long arrays of satellite DNA. Determining the precise DNA boundary of a centromere has proven to be a difficult task in multicellular eukaryotes. We havemore » successfully cloned and sequenced the centromere of rice chromosome 8 (Cen8), representing the first fully sequenced centromere from any multicellular eukaryotes. The functional core of Cen8 spans ~800 kb of DNA, which was determined by chromatin immunoprecipitation (ChIP) using an antibody against the rice centromere-specific H3 histone. We discovered 16 actively transcribed genes distributed throughout the Cen8 region. In addition to Cen8, we have characterized eight additional rice centromeres using the next generation sequencing technology. We discovered four subfamilies of the CRR retrotransposon that is highly enriched in rice centromeres. CRR elements are constitutively transcribed and different CRR subfamilies are differentially processed by RNAi. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric chromatin.« less
Ma, Jianxin; Jackson, Scott A
2006-02-01
The abundance of repetitive DNA varies greatly across centromeres within an individual or between different organisms. To shed light on the molecular mechanisms of centromere repeat proliferation, we performed structural analysis of LTR-retrotransposons, mostly centromere retrotransposons of rice (CRRs), and phylogenetic analysis of CentO satellite repeats harbored in the core region of the rice chromosome 4 centromere (CEN4). The data obtained demonstrate that the CRRs in the centromeric region we investigated have been enriched more significantly by recent rounds of segmental duplication than by original integration of active elements, suggesting that segmental duplication is an important process for CRR accumulation in the centromeric region. Our results also indicate that segmental duplication of large arrays of satellite repeats is primarily responsible for the amplification of satellite repeats, contributing to rapid reshuffling of CentO satellites. Intercentromere satellite homogenization was revealed by genome-wide comparison of CentO satellite monomers. However, a 10-bp duplication present in nearly half of the CEN4 monomers was found to be completely absent in rice centromere 8 (CEN8), suggesting that CEN4 and CEN8 may represent two different stages in the evolution of rice centromeres. These observations, obtained from the only complex eukaryotic centromeres to have been completely sequenced thus far, depict the evolutionary dynamics of rice centromeres with respect to the nature, timing, and process of centromeric repeat amplification.
Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka
2011-11-01
The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms. The components of the functional centromere in legumes are poorly known. The genus Astragalus is a member of the legumes and bears the largest numbers of species among angiosperms. Therefore, we studied the components of centromeres in Astragalus sinicus. We identified the CenH3 homolog of A. sinicus, AsCenH3 that is the most compact in size among higher eukaryotes. A CENH3-based assay revealed the functional centromeric DNA sequences from A. sinicus, called CentAs. The CentAs repeat is localized in A. sinicus centromeres, and comprises an AT-rich tandem repeat with a monomer size of 20 nucleotides.
de Castro Nunes, Renata; Orozco-Arias, Simon; Crouzillat, Dominique; Mueller, Lukas A.; Strickler, Suzy R.; Descombes, Patrick; Fournier, Coralie; Moine, Deborah; de Kochko, Alexandre; Yuyama, Priscila M.; Vanzela, André L. L.; Guyot, Romain
2018-01-01
Centromeric regions of plants are generally composed of large array of satellites from a specific lineage of Gypsy LTR-retrotransposons, called Centromeric Retrotransposons. Repeated sequences interact with a specific H3 histone, playing a crucial function on kinetochore formation. To study the structure and composition of centromeric regions in the genus Coffea, we annotated and classified Centromeric Retrotransposons sequences from the allotetraploid C. arabica genome and its two diploid ancestors: Coffea canephora and C. eugenioides. Ten distinct CRC (Centromeric Retrotransposons in Coffea) families were found. The sequence mapping and FISH experiments of CRC Reverse Transcriptase domains in C. canephora, C. eugenioides, and C. arabica clearly indicate a strong and specific targeting mainly onto proximal chromosome regions, which can be associated also with heterochromatin. PacBio genome sequence analyses of putative centromeric regions on C. arabica and C. canephora chromosomes showed an exceptional density of one family of CRC elements, and the complete absence of satellite arrays, contrasting with usual structure of plant centromeres. Altogether, our data suggest a specific centromere organization in Coffea, contrasting with other plant genomes. PMID:29497436
The Centromere: Chromatin Foundation for the Kinetochore Machinery
Fukagawa, Tatsuo; Earnshaw, William C.
2014-01-01
Since discovery of the centromere-specific histone H3 variant CENP-A, centromeres have come to be defined as chromatin structures that establish the assembly site for the complex kinetochore machinery. In most organisms, centromere activity is defined epigenetically, rather than by specific DNA sequences. In this review, we describe selected classic work and recent progress in studies of centromeric chromatin with a focus on vertebrates. We consider possible roles for repetitive DNA sequences found at most centromeres, chromatin factors and modifications that assemble and activate CENP-A chromatin for kinetochore assembly, plus the use of artificial chromosomes and kinetochores to study centromere function. PMID:25203206
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Gent, Jonathan I; Wang, Kai; Jiang, Jiming; Dawe, R Kelly
2015-08-01
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift. Copyright © 2015 by the Genetics Society of America.
Kang, Jungseog; Chaudhary, Jaideep; Dong, Hui; Kim, Soonjoung; Brautigam, Chad A.; Yu, Hongtao
2011-01-01
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1–INCENP and HP1–Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres. PMID:21346195
Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis
Obeso, David; Pezza, Roberto J; Dawson, Dean
2013-01-01
Observations from a wide range of organisms show the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program – sometimes referred to as centromere coupling, and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes. PMID:24126501
Sanei, Maryam; Pickering, Richard; Kumke, Katrin; Nasuda, Shuhei; Houben, Andreas
2011-08-16
Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the early development of Hordeum vulgare × Hordeum bulbosum embryos. The following conclusions regarding the role of the centromere-specific histone H3 variant (CENH3) in the process of chromosome elimination were drawn: (i) centromere inactivity of H. bulbosum chromosomes triggers the mitosis-dependent process of uniparental chromosome elimination in unstable H. vulgare × H. bulbosum hybrids; (ii) centromeric loss of CENH3 protein rather than uniparental silencing of CENH3 genes causes centromere inactivity; (iii) in stable species combinations, cross-species incorporation of CENH3 occurs despite centromere-sequence differences, and not all CENH3 variants get incorporated into centromeres if multiple CENH3s are present in species combinations; and (iv) diploid barley species encode two CENH3 variants, the proteins of which are intermingled within centromeres throughout mitosis and meiosis.
Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis.
Obeso, David; Pezza, Roberto J; Dawson, Dean
2014-03-01
Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.
Sequences Associated with Centromere Competency in the Human Genome
Hayden, Karen E.; Strome, Erin D.; Merrett, Stephanie L.; Lee, Hye-Ran; Rudd, M. Katharine
2013-01-01
Centromeres, the sites of spindle attachment during mitosis and meiosis, are located in specific positions in the human genome, normally coincident with diverse subsets of alpha satellite DNA. While there is strong evidence supporting the association of some subfamilies of alpha satellite with centromere function, the basis for establishing whether a given alpha satellite sequence is or is not designated a functional centromere is unknown, and attempts to understand the role of particular sequence features in establishing centromere identity have been limited by the near identity and repetitive nature of satellite sequences. Utilizing a broadly applicable experimental approach to test sequence competency for centromere specification, we have carried out a genomic and epigenetic functional analysis of endogenous human centromere sequences available in the current human genome assembly. The data support a model in which functionally competent sequences confer an opportunity for centromere specification, integrating genomic and epigenetic signals and promoting the concept of context-dependent centromere inheritance. PMID:23230266
The quantitative architecture of centromeric chromatin
Bodor, Dani L; Mata, João F; Sergeev, Mikhail; David, Ana Filipa; Salimian, Kevan J; Panchenko, Tanya; Cleveland, Don W; Black, Ben E; Shah, Jagesh V; Jansen, Lars ET
2014-01-01
The centromere, responsible for chromosome segregation during mitosis, is epigenetically defined by CENP-A containing chromatin. The amount of centromeric CENP-A has direct implications for both the architecture and epigenetic inheritance of centromeres. Using complementary strategies, we determined that typical human centromeres contain ∼400 molecules of CENP-A, which is controlled by a mass-action mechanism. This number, despite representing only ∼4% of all centromeric nucleosomes, forms a ∼50-fold enrichment to the overall genome. In addition, although pre-assembled CENP-A is randomly segregated during cell division, this amount of CENP-A is sufficient to prevent stochastic loss of centromere function and identity. Finally, we produced a statistical map of CENP-A occupancy at a human neocentromere and identified nucleosome positions that feature CENP-A in a majority of cells. In summary, we present a quantitative view of the centromere that provides a mechanistic framework for both robust epigenetic inheritance of centromeres and the paucity of neocentromere formation. DOI: http://dx.doi.org/10.7554/eLife.02137.001 PMID:25027692
Birth, evolution, and transmission of satellite-free mammalian centromeric domains.
Nergadze, Solomon G; Piras, Francesca M; Gamba, Riccardo; Corbo, Marco; Cerutti, Federico; McCarter, Joseph G W; Cappelletti, Eleonora; Gozzo, Francesco; Harman, Rebecca M; Antczak, Douglas F; Miller, Donald; Scharfe, Maren; Pavesi, Giulio; Raimondi, Elena; Sullivan, Kevin F; Giulotto, Elena
2018-06-01
Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Equus caballus Chromosome 11. Here, we investigated the satellite-free centromeres of Equus asinus by using ChIP-seq with anti-CENPA antibodies. We identified an extraordinarily high number of centromeres lacking satellite DNA (16 of 31). All of them lay in LINE- and AT-rich regions. A subset of these centromeres is associated with DNA amplification. The location of CENPA binding domains can vary in different individuals, giving rise to epialleles. The analysis of epiallele transmission in hybrids (three mules and one hinny) showed that centromeric domains are inherited as Mendelian traits, but their position can slide in one generation. Conversely, centromere location is stable during mitotic propagation of cultured cells. Our results demonstrate that the presence of more than half of centromeres void of satellite DNA is compatible with genome stability and species survival. The presence of amplified DNA at some centromeres suggests that these arrays may represent an intermediate stage toward satellite DNA formation during evolution. The fact that CENPA binding domains can move within relatively restricted regions (a few hundred kilobases) suggests that the centromeric function is physically limited by epigenetic boundaries. © 2018 Nergadze et al.; Published by Cold Spring Harbor Laboratory Press.
Cech, Jennifer N; Peichel, Catherine L
2015-12-01
Centromere sequences exist as gaps in many genome assemblies due to their repetitive nature. Here we take an unbiased approach utilizing centromere protein A (CENP-A) chomatin immunoprecipitation followed by high-throughput sequencing to identify the centromeric repeat sequence in the threespine stickleback fish (Gasterosteus aculeatus). A 186-bp, AT-rich repeat was validated as centromeric using both fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on interphase nuclei and metaphase spreads. This repeat hybridizes strongly to the centromere on all chromosomes, with the exception of weak hybridization to the Y chromosome. Together, our work provides the first validated sequence information for the threespine stickleback centromere.
Anniversary of the discovery/isolation of the yeast centromere by Clarke and Carbon.
Bloom, Kerry
2015-05-01
The first centromere was isolated 35 years ago by Louise Clarke and John Carbon from budding yeast. They embarked on their journey with rudimentary molecular tools (by today's standards) and little knowledge of the structure of a chromosome, much less the nature of a centromere. Their discovery opened up a new field, as centromeres have now been isolated from fungi and numerous plants and animals, including mammals. Budding yeast and several other fungi have small centromeres with short, well-defined sequences, known as point centromeres, whereas regional centromeres span several kilobases up to megabases and do not seem to have DNA sequence specificity. Centromeres are at the heart of artificial chromosomes, and we have seen the birth of synthetic centromeres in budding and fission yeast and mammals. The diversity in centromeres throughout phylogeny belie conserved functions that are only beginning to be understood. © 2015 Bloom. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Centromeres: long intergenic spaces with adaptive features.
Kanizay, Lisa; Dawe, R Kelly
2009-08-01
Centromeres are composed of inner kinetochore proteins, which are largely conserved across species, and repetitive DNA, which shows comparatively little sequence conservation. Due to this fundamental paradox the formation and maintenance of centromeres remains largely a mystery. However, it has become increasingly clear that a long-standing balance between epigenetic and genetic control governs the interactions of centromeric DNA and inner kinetochore proteins. The comparison of classical neocentromeres in plants, which are entirely genetic in their mode of operation, and clinical neocentromeres, which are sequence-independent, illustrates the conflict between genetics and epigenetics in regions that control their own transmission to progeny. Tandem repeat arrays present in centromeres may have an origin in meiotic drive or other selfish patterns of evolution, as is the case for the CENP-B box and CENP-B protein in human. In grasses retrotransposons have invaded centromeres to the point of complete domination, consequently breaking genetic regulation at these centromeres. The accumulation of tandem repeats and transposons causes centromeres to expand in size, effectively pushing genes to the sides and opening the centromere to ever fewer constraints on the DNA sequence. On genetic maps centromeres appear as long intergenic spaces that evolve rapidly and apparently without regard to host fitness.
Sepsi, Adél; Higgins, James D; Heslop-Harrison, John S Pat; Schwarzacher, Trude
2017-01-01
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
SIRT6 deacetylates H3K18Ac at pericentric chromatin to prevent mitotic errors and cell senescence
Tasselli, Luisa; Xi, Yuanxin; Zheng, Wei; Tennen, Ruth I.; Odrowaz, Zaneta; Simeoni, Federica; Li, Wei; Chua, Katrin F.
2018-01-01
Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing is observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover a pivotal role of the human SIRT6 enzyme in pericentric transcriptional silencing, and show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, histone H3 lysine K18 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, RNAi-depletion of these transcripts rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and H3K18Ac regulation at heterochromatin, and demonstrate the pathogenic role of de-regulated pericentric transcription in aging- and cancer- related cellular dysfunction. PMID:27043296
Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei
2016-03-01
One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
TERRA Promotes Telomere Shortening through Exonuclease 1–Mediated Resection of Chromosome Ends
Pfeiffer, Verena; Lingner, Joachim
2012-01-01
The long noncoding telomeric repeat containing RNA (TERRA) is expressed at chromosome ends. TERRA upregulation upon experimental manipulation or in ICF (immunodeficiency, centromeric instability, facial anomalies) patients correlates with short telomeres. To study the mechanism of telomere length control by TERRA in Saccharomyces cerevisiae, we mapped the transcriptional start site of TERRA at telomere 1L and inserted a doxycycline regulatable promoter upstream. Induction of TERRA transcription led to telomere shortening of 1L but not of other chromosome ends. TERRA interacts with the Exo1-inhibiting Ku70/80 complex, and deletion of EXO1 but not MRE11 fully suppressed the TERRA–mediated short telomere phenotype in presence and absence of telomerase. Thus TERRA transcription facilitates the 5′-3′ nuclease activity of Exo1 at chromosome ends, providing a means to regulate the telomere shortening rate. Thereby, telomere transcription can regulate cellular lifespan through modulation of chromosome end processing activities. PMID:22719262
Advanced Glycated End-Products Affect HIF-Transcriptional Activity in Renal Cells
Bondeva, Tzvetanka; Heinzig, Juliane; Ruhe, Carola
2013-01-01
Advanced glycated end-products (AGEs) are ligands of the receptor for AGEs and increase in diabetic disease. MAPK organizer 1 (Morg1) via its binding partner prolyl-hydroxylase domain (PHD)-3 presumably plays a role in the regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α transcriptional activation. The purpose of this study was to analyze the influence of AGEs on Morg1 expression and its correlation to PHD3 activity and HIF-transcriptional activity in various renal cell types. The addition of glycated BSA (AGE-BSA) significantly up-regulated Morg1 mRNA levels in murine mesangial cells and down-regulated it in murine proximal tubular cells and differentiated podocytes. These effects were reversible when the cells were preincubated with a receptor for α-AGE antibody. AGE-BSA treatment induced a relocalization of the Morg1 cellular distribution compared with nonglycated control-BSA. Analysis of PHD3 activity demonstrated an elevated PHD3 enzymatic activity in murine mesangial cells but an inhibition in murine proximal tubular cells and podocytes after the addition of AGE-BSA. HIF-transcriptional activity was also affected by AGE-BSA treatment. Reporter gene assays and EMSAs showed that AGEs regulate HIF- transcriptional activity under nonhypoxic conditions in a cell type-specific manner. In proximal tubular cells, AGE-BSA stimulation elevated mainly HIF-1α transcriptional activity and to a lesser extent HIF-2α. We also detected an increased expression of the HIF-1α and the HIF-2α proteins in kidneys from Morg1 heterozygous (HZ) placebo mice compared with the Morg1 wild-type (WT) placebo-treated mice, and the HIF-1α protein expression in the Morg1 HZ streptozotocin-treated mice was significantly higher than the WT streptozotocin-treated mice. Analysis of isolated mesangial cells from Morg1 HZ (±) and WT mice showed an inhibited PHD3 activity and an increased HIF-transcriptional activity in cells with only one Morg1 allele. These findings are important for a better understanding of the molecular mechanisms of diabetic nephropathy. PMID:24030251
Centromere retention and loss during the descent of maize from a tetraploid ancestor.
Wang, Hao; Bennetzen, Jeffrey L
2012-12-18
Although centromere function is highly conserved in eukaryotes, centromere sequences are highly variable. Only a few centromeres have been sequenced in higher eukaryotes because of their repetitive nature, thus hindering study of their structure and evolution. Conserved single-copy sequences in pericentromeres (CSCPs) of sorghum and maize were found to be diagnostic characteristics of adjacent centromeres. By analyzing comparative map data and CSCP sequences of sorghum, maize, and rice, the major evolutionary events related to centromere dynamics were discovered for the maize lineage after its divergence from a common ancestor with sorghum. (i) Remnants of ancient CSCP regions were found for the 10 lost ancestral centromeres, indicating that two ancient homeologous chromosome pairs did not contribute any centromeres to the current maize genome, whereas two other pairs contributed both of their centromeres. (ii) Five cases of long-distance, intrachromosome movement of CSCPs were detected in the retained centromeres, with inversion the major process involved. (iii) The 12 major chromosomal rearrangements that led to maize chromosome number reduction from 20 to 10 were uncovered. (iv) In addition to whole chromosome insertion near (but not always into) other centromeres, translocation and fusion were found to be important mechanisms underlying grass chromosome number reduction. (v) Comparison of chromosome structures confirms the polyploid event that led to the tetraploid ancestor of modern maize.
Deposition, turnover, and release of CENH3 at Arabidopsis centromeres.
Lermontova, Inna; Rutten, Twan; Schubert, Ingo
2011-12-01
The kinetochore is a complex multiprotein structure located at centromeres and required for the proper segregation of chromosomes during mitosis and meiosis. An important role in kinetochore assembly and function plays the centromeric histone H3 variant (CENH3). Cell cycle stage of CENH3 deposition to centromeres varies between different organisms. We confirmed by in vivo studies that deposition of Arabidopsis CENH3 takes place at centromeres during G2 and demonstrated that additionally a low turnover of CENH3 occurs along the cell cycle, apparently for replacement of damaged protein. Furthermore, enhanced yellow fluorescent protein (EYFP)-CENH3 of photobleached chromocenters is not replaced by EYFP-CENH3 molecules from unbleached centromeres of the same nucleus, indicating a stable incorporation of CENH3 into centromeric nucleosomes. In differentiated endopolyploid nuclei however, the amount of CENH3 at centromeres declines with age.
Inbreeding drives maize centromere evolution.
Schneider, Kevin L; Xie, Zidian; Wolfgruber, Thomas K; Presting, Gernot G
2016-02-23
Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000-95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems.
Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence
2017-01-01
During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana. We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays, although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. PMID:28223399
Li, Yinjia; Zuo, Sheng; Zhang, Zhiliang; Li, Zhanjie; Han, Jinlei; Chu, Zhaoqing; Hasterok, Robert; Wang, Kai
2018-03-01
Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Folco, H. Diego; Campbell, Christopher S.; May, Karen M.; Espinoza, Celso A.; Oegema, Karen; Hardwick, Kevin G.; Grewal, Shiv I. S.; Desai, Arshad
2014-01-01
Summary In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. While the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail did not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling, but nevertheless elevated chromosome loss. N-Tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN. PMID:25619765
Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv
2016-01-01
The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548
Taddei, Angela; Schober, Heiko; Gasser, Susan M.
2010-01-01
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704
Yu, Hong-Guo; Koshland, Douglas
2007-03-26
Homologue segregation during the first meiotic division requires the proper spatial regulation of sister chromatid cohesion and its dissolution along chromosome arms, but its protection at centromeric regions. This protection requires the conserved MEI-S332/Sgo1 proteins that localize to centromeric regions and also recruit the PP2A phosphatase by binding its regulatory subunit, Rts1. Centromeric Rts1/PP2A then locally prevents cohesion dissolution possibly by dephosphorylating the protein complex cohesin. We show that Aurora B kinase in Saccharomyces cerevisiae (Ipl1) is also essential for the protection of meiotic centromeric cohesion. Coupled with a previous study in Drosophila melanogaster, this meiotic function of Aurora B kinase appears to be conserved among eukaryotes. Furthermore, we show that Sgo1 recruits Ipl1 to centromeric regions. In the absence of Ipl1, Rts1 can initially bind to centromeric regions but disappears from these regions after anaphase I onset. We suggest that centromeric Ipl1 ensures the continued centromeric presence of active Rts1/PP2A, which in turn locally protects cohesin and cohesion.
Heterochromatic siRNAs and DDM1 Independently Silence Aberrant 5S rDNA Transcripts in Arabidopsis
Blevins, Todd; Pontes, Olga; Pikaard, Craig S.; Meins, Frederick
2009-01-01
5S ribosomal RNA gene repeats are arranged in heterochromatic arrays (5S rDNA) situated near the centromeres of Arabidopsis chromosomes. The chromatin remodeling factor DDM1 is known to maintain 5S rDNA methylation patterns while silencing transcription through 5S rDNA intergenic spacers (IGS). We mapped small-interfering RNAs (siRNA) to a composite 5S rDNA repeat, revealing a high density of siRNAs matching silenced IGS transcripts. IGS transcript repression requires proteins of the heterochromatic siRNA pathway, including RNA polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Using molecular and cytogenetic approaches, we show that the DDM1 and siRNA-dependent silencing effects are genetically independent. DDM1 suppresses production of the siRNAs, however, thereby limiting RNA-directed DNA methylation at 5S rDNA repeats. We conclude that DDM1 and siRNA-dependent silencing are overlapping processes that both repress aberrant 5S rDNA transcription and contribute to the heterochromatic state of 5S rDNA arrays. PMID:19529764
Transcriptional activation of short interspersed elements by DNA-damaging agents.
Rudin, C M; Thompson, C B
2001-01-01
Short interspersed elements (SINEs), typified by the human Alu repeat, are RNA polymerase III (pol III)-transcribed sequences that replicate within the genome through an RNA intermediate. Replication of SINEs has been extensive in mammalian evolution: an estimated 5% of the human genome consists of Alu repeats. The mechanisms regulating transcription, reverse transcription, and reinsertion of SINE elements in genomic DNA are poorly understood. Here we report that expression of murine SINE transcripts of both the B1 and B2 classes is strongly upregulated after prolonged exposure to cisplatin, etoposide, or gamma radiation. A similar induction of Alu transcripts in human cells occurs under these conditions. This induction is not due to a general upregulation of pol III activity in either species. Genotoxic treatment of murine cells containing an exogenous human Alu element induced Alu transcription. Concomitant with the increased expression of SINEs, an increase in cellular reverse transcriptase was observed after exposure to these same DNA-damaging agents. These findings suggest that genomic damage may be an important activator of SINEs, and that SINE mobility may contribute to secondary malignancy after exposure to DNA-damaging chemotherapy.
Basler, Tina; Jeckstadt, Sabine; Valentin-Weigand, Peter; Goethe, Ralph
2006-03-01
Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic enteritis in ruminants. In addition, MAP is presently the most favored pathogen linked to Crohn's disease. In this study, we were interested in dissecting the molecular mechanisms of macrophage activation or deactivation after infection with MAP. By subtractive hybridization of cDNAs, we identified the immune-responsive gene 1 (IRG1), which was expressed substantially higher in lipopolysaccharide (LPS)-stimulated than in MAP-infected murine macrophage cell lines. A nuclear run-on transcription assay revealed that the IRG1 gene was activated transcriptionally in LPS-stimulated and MAP-infected macrophages with higher expression in LPS-stimulated cells. Analysis of post-transcriptional regulation demonstrated that IRG1 mRNA stability was increased in LPS-stimulated but not in MAP-infected macrophages. Furthermore, IRG1 gene expression of macrophages infected with the nonpathogenic Mycobacterium smegmatis differed from those of LPS-stimulated and MAP-infected macrophages. At 2 h postinfection, M. smegmatis-induced IRG1 gene expression was as low as in MAP-infected, and 8 h postinfection, it increased nearly to the level in LPS-stimulated macrophages. Transient transfection experiments revealed similar IRG1 promoter activities in MAP- and M. smegmatis-infected cells. Northern analysis demonstrated increased IRG1 mRNA stability in M. smegmatis-infected macrophages. IRG1 mRNA stabilization was p38 mitogen-activated protein kinase-independent. Inhibition of protein synthesis revealed that constitutively expressed factors seemed to be responsible for IRG1 mRNA destabilization. Thus, our data demonstrate that transcriptional and post-transcriptional mechanisms are responsible for a differential IRG1 gene expression in murine macrophages treated with LPS, MAP, and M. smegmatis.
Yi, Chuandeng; Zhang, Wenli; Dai, Xibin; Li, Xing; Gong, Zhiyun; Zhou, Yong; Liang, Guohua; Gu, Minghong
2013-12-01
The centromere is a key chromosomal component for sister chromatid cohesion and is the site for kinetochore assembly and spindle fiber attachment, allowing each sister chromatid to faithfully segregate to each daughter cell during cell division. It is not clear what types of sequences act as functional centromeres and how centromere sequences are organized in Oryza brachyantha, an FF genome species. In this study, we found that the three classes of centromere-specific CentO-F satellites (CentO-F1, CentO-F2, and CentOF3) in O. brachyantha share no homology with the CentO satellites in Oryza sativa. The three classes of CentO-F satellites are all located within the chromosomal regions to which the spindle fibers attach and are characterized by megabase tandem arrays that are flanked by centromere-specific retrotransposons, CRR-F, in the O. brachyantha centromeres. Although these CentO-F satellites are quantitatively variable among 12 O. brachyantha centromeres, immunostaining with an antibody specific to CENH3 indicates that they are colocated with CENH3 in functional centromere regions. Our results demonstrate that the three classes of CentO-F satellites may be the major components of functional centromeres in O. brachyantha.
Melters, Daniël P; Bradnam, Keith R; Young, Hugh A; Telis, Natalie; May, Michael R; Ruby, J Graham; Sebra, Robert; Peluso, Paul; Eid, John; Rank, David; Garcia, José Fernando; DeRisi, Joseph L; Smith, Timothy; Tobias, Christian; Ross-Ibarra, Jeffrey; Korf, Ian; Chan, Simon W L
2013-01-30
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.
2013-01-01
Background Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data. Results Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution. Conclusions While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes. PMID:23363705
A two-step mechanism for epigenetic specification of centromere identity and function
Fachinetti, Daniele; Folco, H. Diego; Nechemia-Arbely, Yael; Valente, Luis P.; Nguyen, Kristen; Wong, Alex J.; Zhu, Quan; Holland, Andrew J.; Desai, Arshad; Jansen, Lars E.T.; Cleveland, Don W.
2015-01-01
Summary The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either CENP-A’s amino- or carboxy-terminal tails for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively. PMID:23873148
A two-step mechanism for epigenetic specification of centromere identity and function.
Fachinetti, Daniele; Folco, H Diego; Nechemia-Arbely, Yael; Valente, Luis P; Nguyen, Kristen; Wong, Alex J; Zhu, Quan; Holland, Andrew J; Desai, Arshad; Jansen, Lars E T; Cleveland, Don W
2013-09-01
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
Inbreeding drives maize centromere evolution
Schneider, Kevin L.; Xie, Zidian; Wolfgruber, Thomas K.; Presting, Gernot G.
2016-01-01
Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000–95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems. PMID:26858403
Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence.
Maheshwari, Shamoni; Ishii, Takayoshi; Brown, C Titus; Houben, Andreas; Comai, Luca
2017-03-01
During cell division, spindle fibers attach to chromosomes at centromeres. The DNA sequence at regional centromeres is fast evolving with no conserved genetic signature for centromere identity. Instead CENH3, a centromere-specific histone H3 variant, is the epigenetic signature that specifies centromere location across both plant and animal kingdoms. Paradoxically, CENH3 is also adaptively evolving. An ongoing question is whether CENH3 evolution is driven by a functional relationship with the underlying DNA sequence. Here, we demonstrate that despite extensive protein sequence divergence, CENH3 histones from distant species assemble centromeres on the same underlying DNA sequence. We first characterized the organization and diversity of centromere repeats in wild-type Arabidopsis thaliana We show that A. thaliana CENH3-containing nucleosomes exhibit a strong preference for a unique subset of centromeric repeats. These sequences are largely missing from the genome assemblies and represent the youngest and most homogeneous class of repeats. Next, we tested the evolutionary specificity of this interaction in a background in which the native A. thaliana CENH3 is replaced with CENH3s from distant species. Strikingly, we find that CENH3 from Lepidium oleraceum and Zea mays , although specifying epigenetically weaker centromeres that result in genome elimination upon outcrossing, show a binding pattern on A. thaliana centromere repeats that is indistinguishable from the native CENH3. Our results demonstrate positional stability of a highly diverged CENH3 on independently evolved repeats, suggesting that the sequence specificity of centromeres is determined by a mechanism independent of CENH3. © 2017 Maheshwari et al.; Published by Cold Spring Harbor Laboratory Press.
Aldrup-MacDonald, Megan E.; Kuo, Molly E.; Sullivan, Lori L.; Chew, Kimberline
2016-01-01
Alpha satellite is a tandemly organized type of repetitive DNA that comprises 5% of the genome and is found at all human centromeres. A defined number of 171-bp monomers are organized into chromosome-specific higher-order repeats (HORs) that are reiterated thousands of times. At least half of all human chromosomes have two or more distinct HOR alpha satellite arrays within their centromere regions. We previously showed that the two alpha satellite arrays of Homo sapiens Chromosome 17 (HSA17), D17Z1 and D17Z1-B, behave as centromeric epialleles, that is, the centromere, defined by chromatin containing the centromeric histone variant CENPA and recruitment of other centromere proteins, can form at either D17Z1 or D17Z1-B. Some individuals in the human population are functional heterozygotes in that D17Z1 is the active centromere on one homolog and D17Z1-B is active on the other. In this study, we aimed to understand the molecular basis for how centromere location is determined on HSA17. Specifically, we focused on D17Z1 genomic variation as a driver of epiallele formation. We found that D17Z1 arrays that are predominantly composed of HOR size and sequence variants were functionally less competent. They either recruited decreased amounts of the centromere-specific histone variant CENPA and the HSA17 was mitotically unstable, or alternatively, the centromere was assembled at D17Z1-B and the HSA17 was stable. Our study demonstrates that genomic variation within highly repetitive, noncoding DNA of human centromere regions has a pronounced impact on genome stability and basic chromosomal function. PMID:27510565
Pervasive Transcription of a Herpesvirus Genome Generates Functionally Important RNAs
Canny, Susan P.; Reese, Tiffany A.; Johnson, L. Steven; Zhang, Xin; Kambal, Amal; Duan, Erning; Liu, Catherine Y.; Virgin, Herbert W.
2014-01-01
ABSTRACT Pervasive transcription is observed in a wide range of organisms, including humans, mice, and viruses, but the functional significance of the resulting transcripts remains uncertain. Current genetic approaches are often limited by their emphasis on protein-coding open reading frames (ORFs). We previously identified extensive pervasive transcription from the murine gammaherpesvirus 68 (MHV68) genome outside known ORFs and antisense to known genes (termed expressed genomic regions [EGRs]). Similar antisense transcripts have been identified in many other herpesviruses, including Kaposi’s sarcoma-associated herpesvirus and human and murine cytomegalovirus. Despite their prevalence, whether these RNAs have any functional importance in the viral life cycle is unknown, and one interpretation is that these are merely “noise” generated by functionally unimportant transcriptional events. To determine whether pervasive transcription of a herpesvirus genome generates RNA molecules that are functionally important, we used a strand-specific functional approach to target transcripts from thirteen EGRs in MHV68. We found that targeting transcripts from six EGRs reduced viral protein expression, proving that pervasive transcription can generate functionally important RNAs. We characterized transcripts emanating from EGRs 26 and 27 in detail using several methods, including RNA sequencing, and identified several novel polyadenylated transcripts that were enriched in the nuclei of infected cells. These data provide the first evidence of the functional importance of regions of pervasive transcription emanating from MHV68 EGRs. Therefore, studies utilizing mutation of a herpesvirus genome must account for possible effects on RNAs generated by pervasive transcription. PMID:24618256
Ke, Yuwen; Huh, Jae-Wan; Warrington, Ross; Li, Bing; Wu, Nan; Leng, Mei; Zhang, Junmei; Ball, Haydn L; Li, Bing; Yu, Hongtao
2011-01-01
Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution. PMID:21743438
Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish
Cech, Jennifer N.; Peichel, Catherine L.
2016-01-01
Having one and only one centromere per chromosome is essential for proper chromosome segregation during both mitosis and meiosis. Chromosomes containing two centromeres are known as dicentric and often mis-segregate during cell division, resulting in aneuploidy or chromosome breakage. Dicentric chromosome can be stabilized by centromere inactivation, a process which re-establishes monocentric chromosomes. However, little is known about this process in naturally occurring dicentric chromosomes. Using a combination of fluorescence in situ hybridization (FISH) and immunoflourescence combined with FISH (IF-FISH) on metaphase chromosome spreads, we demonstrate that centromere inactivation has evolved on a neo-Y chromosome fusion in the Japan Sea threespine stickleback fish (Gasterosteus nipponicus). We found that the centromere derived from the ancestral Y chromosome has been inactivated. Our data further suggest that there have been genetic changes to this centromere in the two million years since the formation of the neo-Y chromosome, but it remains unclear whether these genetic changes are a cause or consequence of centromere inactivation. PMID:27553478
Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins
Niikura, Yohei; Kitagawa, Katsumi
2016-01-01
"Centromeres" and "kinetochores" refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.1-4 Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells. PMID:26967065
Beck, Emily A; Llopart, Ana
2015-11-25
Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.
Non-B-Form DNA Is Enriched at Centromeres
Henikoff, Steven
2018-01-01
Abstract Animal and plant centromeres are embedded in repetitive “satellite” DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification. PMID:29365169
Comai, Luca; Maheshwari, Shamoni; Marimuthu, Mohan P A
2017-04-01
Plant centromeres, which are determined epigenetically by centromeric histone 3 (CENH3) have revealed surprising structural diversity, ranging from the canonical monocentric seen in vertebrates, to polycentric, and holocentric. Normally stable, centromeres can change position over evolutionary times or upon genomic stress, such as when chromosomes are broken. At the DNA level, centromeres can be based on single copy DNA or more commonly on repeats. Rapid evolution of centromeric sequences and of CENH3 protein remains a mystery, as evidence of co-adaptation is lacking. Epigenetic differences between parents can trigger uniparental centromere failure and genome elimination, contributing to postzygotic hybridization barriers.. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chabouté, Marie-Edith; Berr, Alexandre
2016-01-01
Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm.
Hoeijmakers, Wieteke A M; Flueck, Christian; Françoijs, Kees-Jan; Smits, Arne H; Wetzel, Johanna; Volz, Jennifer C; Cowman, Alan F; Voss, Till; Stunnenberg, Hendrik G; Bártfai, Richárd
2012-09-01
Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen. © 2012 Blackwell Publishing Ltd.
Centromeres of filamentous fungi.
Smith, Kristina M; Galazka, Jonathan M; Phatale, Pallavi A; Connolly, Lanelle R; Freitag, Michael
2012-07-01
How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years, the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived "point centromeres" of the budding yeast Saccharomyces cerevisiae and its close relatives are counter-examples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared among various groups of organisms. For that reason, it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes, and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use.
Behavior of centromeres in univalents and centric misdivision in wheat.
Lukaszewski, A J
2010-07-01
Centromeres are responsible for the proper behavior of chromosomes in cell divisions. In meiosis the process is more complicated than in mitosis, as each chromosome in a bivalent has 2 sister centromeres and their behavior has to be strictly coordinated. Here, the behavior of sister centromeres in univalents in wheat is examined, showing that by metaphase I they often lose their coordination. This loss accelerates with the progression of anaphase I, leading to stable bipolar attachment and frequent separation of sister chromatids or to misdivision. Depending on the orientation of a univalent and its sister centromeres, misdivision may occur across the centromere region or across the pericentric chromatin. Chromosome fragments consisting of only the centromere region did not survive to the next generation. Midget chromosomes composed of the centromeres and parts of the pericentric chromatin did survive, but their transmission rates were low and appeared related to the amount of pericentric chromatin, probably because only the pericentric chromatin provides sister chromatid cohesion. As the cohesion of sister chromatids appears to be a function of the proximity to the kinetochore region, the definition of the centromere need not include pericentric regions. Copyright 2010 S. Karger AG, Basel.
Ito, Hidetaka; Miura, Asuka; Takashima, Kazuya; Kakutani, Tetsuji
2007-01-01
Despite the conserved roles and conserved protein machineries of centromeres, their nucleotide sequences can be highly diverse even among related species. The diversity reflects rapid evolution, but the underlying mechanism is largely unknown. One approach to monitor rapid evolution is examination of intra-specific variation. Here we report variant centromeric satellites of Arabidopsis thaliana found through survey of 103 natural accessions (ecotypes). Among them, a cluster of variant centromeric satellites was detected in one ecotype, Cape Verde Islands (Cvi). Recombinant inbred mapping revealed that the variant satellites are distributed in centromeric region of the chromosome 5 (CEN5) of this ecotype. This apparently recent variant accumulation is associated with large deletion of a pericentromeric region and the expansion of satellite region. The variant satellite was bound to HTR12 (centromeric variant histone H3), although expansion of the satellite was not associated with comparable increase in the HTR12 binding. The results suggest that variant satellites with centromere function can rapidly accumulate in one centromere, supporting the model that the satellite repeats in the array are homogenized by occasional unequal crossing-over, which has a potential to generate an expansion of local sequence variants within a centromere cluster.
Essential roles for Cdx in murine primitive hematopoiesis.
Brooke-Bisschop, Travis; Savory, Joanne G A; Foley, Tanya; Ringuette, Randy; Lohnes, David
2017-02-15
The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl. Copyright © 2017 Elsevier Inc. All rights reserved.
Ribeiro, Tiago; Marques, André; Novák, Petr; Schubert, Veit; Vanzela, André L L; Macas, Jiri; Houben, Andreas; Pedrosa-Harand, Andrea
2017-03-01
Satellite DNA repeats (or satDNA) are fast-evolving sequences usually associated with condensed heterochromatin. To test whether the chromosomal organisation of centromeric and non-centromeric satDNA differs in species with holocentric chromosomes, we identified and characterised the major satDNA families in the holocentric Cyperaceae species Rhynchospora ciliata (2n = 10), R. globosa (2n = 50) and R. tenuis (2n = 2x = 4 and 2n = 4x = 8). While conserved centromeric repeats (present in R. ciliata and R. tenuis) revealed linear signals at both chromatids, non-centromeric, species-specific satDNAs formed distinct clusters along the chromosomes. Colocalisation of both repeat types resulted in a ladder-like hybridisation pattern at mitotic chromosomes. In interphase, the centromeric satDNA was dispersed while non-centromeric satDNA clustered and partly colocalised to chromocentres. Despite the banding-like hybridisation patterns of the clustered satDNA, the identification of chromosome pairs was impaired due to the irregular hybridisation patterns of the homologues in R. tenuis and R. ciliata. These differences are probably caused by restricted or impaired meiotic recombination as reported for R. tenuis, or alternatively by complex chromosome rearrangements or unequal condensation of homologous metaphase chromosomes. Thus, holocentricity influences the chromosomal organisation leading to differences in the distribution patterns and condensation dynamics of centromeric and non-centromeric satDNA.
Identification of the centromere-specific histone H3 variant in Lotus japonicus.
Tek, Ahmet L; Kashihara, Kazunari; Murata, Minoru; Nagaki, Kiyotaka
2014-03-15
The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L. japonicus homolog of the centromere-specific histone H3 gene (LjCenH3) encoding a 159-amino acid protein. Using an Agrobacterium-based transformation system, LjCenH3 tagged with a green fluorescent protein was transferred into L. japonicus cells. The centromeric position of LjCENH3 protein was revealed on L. japonicus metaphase chromosomes by an immunofluorescence assay. The identification of LjCenH3 as a critical centromere landmark could pave the way for a better understanding of centromere structure in this model and other agriculturally important legume species. Published by Elsevier B.V.
Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L
2010-10-01
Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.
USDA-ARS?s Scientific Manuscript database
Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres comprise of megabase-scale arrays of tandem repeats. The true prevalence of centromere tandem repeats, and whether they exhibit conserved seque...
Catez, Frédéric; Picard, Christel; Held, Kathrin; Gross, Sylvain; Rousseau, Antoine; Theil, Diethilde; Sawtell, Nancy; Labetoulle, Marc; Lomonte, Patrick
2012-01-01
Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1) latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT) transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.). Latent HSV-1 genomes display two major patterns, called “Single” and “Multiple”, which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs) as viral DNA-containing PML-NBs (DCP-NBs). 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i.), infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. “Single” and “Multiple” patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the “Multiple” pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including PML-NBs and centromeres are functionally involved in the control of HSV-1 latency, and represent a key level of host/virus interaction. PMID:22912575
Ma, Li; Chen, Zhi; Song, Guang-tai; Fan, Ming-wen; Zhang, Qi; Wang, Zhi-feng
2003-11-01
To observe the expression of homeobox gene Msx-1, Msx-2 and Dlx-2 during murine mandibular first molar development. The murine heads or mandibles on embryonic days 11-18 (E11-18) and postnatal day 1-3 (P1-3) were removed, fixed and embedded, 5 micro m serial sections were cut in the coronal plane. Msx-1, Msx-2 and Dlx-2 RNA probes were synthesized by in vitro transcription and labeled with digoxigenin. Msx-1, Msx-2 and Dlx-2 mRNA expression was observed after in situ hybridization. During molar development Msx-1 transcripts appeared only in mesenchymal cells, not in epithelial cells. Msx-2 and Dlx-2 both expressed in the epithelial and mesenchymal cells. At the initiation stage of the molar development Msx-2 and Dlx-2 had similar expression. At the bud stage (E13-14) Msx-2 mRNA signaling was intensive in the enamel organ and slight in the dental mesenchyme; Dlx-2 signaling was stronger in the dental papilla. At cap stage (E15-16) Msx-2 showed prominent mRNA signaling in enamel knot and Dlx-2 was maximal in the dental papilla. At the late bell stage (P2-3) Msx-2 transcripts were observed in odontoblasts but not labeled in ameloblasts, and Dlx-2 transcripts appeared in ameloblasts but no labeling was seen in odontoblasts. Msx-1, Msx-2 and Dlx-2 are expressed in various patterns during murine mandibular first molar development, suggesting they possibly play a role in the interaction between the epithelium and mesenchyme during the molar development.
Restructuring of Holocentric Centromeres During Meiosis in the Plant Rhynchospora pubera
Marques, André; Schubert, Veit; Houben, Andreas; Pedrosa-Harand, Andrea
2016-01-01
Centromeres are responsible for the correct segregation of chromosomes during mitosis and meiosis. Holocentric chromosomes, characterized by multiple centromere units along each chromatid, have particular adaptations to ensure regular disjunction during meiosis. Here we show by detecting CENH3, CENP-C, tubulin, and centromeric repeats that holocentromeres may be organized differently in mitosis and meiosis of Rhynchospora pubera. Contrasting to the mitotic linear holocentromere organization, meiotic centromeres show several clusters of centromere units (cluster-holocentromeres) during meiosis I. They accumulate along the poleward surface of bivalents where spindle fibers perpendicularly attach. During meiosis II, the cluster-holocentromeres are mostly present in the midregion of each chromatid. A linear holocentromere organization is restored after meiosis during pollen mitosis. Thus, a not yet described case of a cluster-holocentromere organization, showing a clear centromere restructuration between mitosis and meiosis, was identified in a holocentric organism. PMID:27489000
Restructuring of Holocentric Centromeres During Meiosis in the Plant Rhynchospora pubera.
Marques, André; Schubert, Veit; Houben, Andreas; Pedrosa-Harand, Andrea
2016-10-01
Centromeres are responsible for the correct segregation of chromosomes during mitosis and meiosis. Holocentric chromosomes, characterized by multiple centromere units along each chromatid, have particular adaptations to ensure regular disjunction during meiosis. Here we show by detecting CENH3, CENP-C, tubulin, and centromeric repeats that holocentromeres may be organized differently in mitosis and meiosis of Rhynchospora pubera Contrasting to the mitotic linear holocentromere organization, meiotic centromeres show several clusters of centromere units (cluster-holocentromeres) during meiosis I. They accumulate along the poleward surface of bivalents where spindle fibers perpendicularly attach. During meiosis II, the cluster-holocentromeres are mostly present in the midregion of each chromatid. A linear holocentromere organization is restored after meiosis during pollen mitosis. Thus, a not yet described case of a cluster-holocentromere organization, showing a clear centromere restructuration between mitosis and meiosis, was identified in a holocentric organism. Copyright © 2016 by the Genetics Society of America.
Centromeric Heterochromatin: The Primordial Segregation Machine
Bloom, Kerry S.
2014-01-01
Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topo-isomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation. PMID:25251850
Chromatin Ring Formation at Plant Centromeres.
Schubert, Veit; Ruban, Alevtina; Houben, Andreas
2016-01-01
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.
Chromatin Ring Formation at Plant Centromeres
Schubert, Veit; Ruban, Alevtina; Houben, Andreas
2016-01-01
We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution) was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants. PMID:26913037
Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence.
Benko, Sabina; Fantes, Judy A; Amiel, Jeanne; Kleinjan, Dirk-Jan; Thomas, Sophie; Ramsay, Jacqueline; Jamshidi, Negar; Essafi, Abdelkader; Heaney, Simon; Gordon, Christopher T; McBride, David; Golzio, Christelle; Fisher, Malcolm; Perry, Paul; Abadie, Véronique; Ayuso, Carmen; Holder-Espinasse, Muriel; Kilpatrick, Nicky; Lees, Melissa M; Picard, Arnaud; Temple, I Karen; Thomas, Paul; Vazquez, Marie-Paule; Vekemans, Michel; Roest Crollius, Hugues; Hastie, Nicholas D; Munnich, Arnold; Etchevers, Heather C; Pelet, Anna; Farlie, Peter G; Fitzpatrick, David R; Lyonnet, Stanislas
2009-03-01
Pierre Robin sequence (PRS) is an important subgroup of cleft palate. We report several lines of evidence for the existence of a 17q24 locus underlying PRS, including linkage analysis results, a clustering of translocation breakpoints 1.06-1.23 Mb upstream of SOX9, and microdeletions both approximately 1.5 Mb centromeric and approximately 1.5 Mb telomeric of SOX9. We have also identified a heterozygous point mutation in an evolutionarily conserved region of DNA with in vitro and in vivo features of a developmental enhancer. This enhancer is centromeric to the breakpoint cluster and maps within one of the microdeletion regions. The mutation abrogates the in vitro enhancer function and alters binding of the transcription factor MSX1 as compared to the wild-type sequence. In the developing mouse mandible, the 3-Mb region bounded by the microdeletions shows a regionally specific chromatin decompaction in cells expressing Sox9. Some cases of PRS may thus result from developmental misexpression of SOX9 due to disruption of very-long-range cis-regulatory elements.
Fujimoto, Satoru; Sugano, Shigeo S.; Kuwata, Keiko; Osakabe, Keishi; Matsunaga, Sachihiro
2016-01-01
Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in sub-nuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms. PMID:27811079
Jaramillo-Lambert, Aimee; Hao, Jing; Xiao, Haijie; Li, Yongming; Han, Zhiyong; Zhu, Wenge
2013-01-01
The centromere is an epigenetically designated chromatin domain that is essential for the accurate segregation of chromosomes during mitosis. The incorporation of centromere protein A (CENP-A) into chromatin is fundamental in defining the centromeric loci. Newly synthesized CENP-A is loaded at centromeres in early G1 phase by the CENP-A-specific histone chaperone Holliday junction recognition protein (HJURP) coupled with other chromatin assembly factors. However, it is unknown whether there are additional HJURP-interacting factor(s) involving in this process. Here we identify acidic nucleoplasmic DNA-binding protein 1 (And-1) as a new factor that is required for the assembly of CENP-A nucleosomes. And-1 interacts with both CENP-A and HJURP in a prenucleosomal complex, and the association of And-1 with CENP-A is increased during the cell cycle transition from mitosis to G1 phase. And-1 down-regulation significantly compromises chromosome congression and the deposition of HJURP-CENP-A complexes at centromeres. Consistently, overexpression of And-1 enhances the assembly of CENP-A at centromeres. We conclude that And-1 is an important factor that functions together with HJURP to facilitate the cell cycle-specific recruitment of CENP-A to centromeres. PMID:23184928
Centromere pairing – tethering partner chromosomes in meiosis I
Kurdzo, Emily L; Dawson, Dean S
2015-01-01
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans. PMID:25817724
Identification and characterization of functional centromeres of the common bean.
Iwata, Aiko; Tek, Ahmet L; Richard, Manon M S; Abernathy, Brian; Fonsêca, Artur; Schmutz, Jeremy; Chen, Nicolas W G; Thareau, Vincent; Magdelenat, Ghislaine; Li, Yupeng; Murata, Minoru; Pedrosa-Harand, Andrea; Geffroy, Valérie; Nagaki, Kiyotaka; Jackson, Scott A
2013-10-01
In higher eukaryotes, centromeres are typically composed of megabase-sized arrays of satellite repeats that evolve rapidly and homogenize within a species' genome. Despite the importance of centromeres, our knowledge is limited to a few model species. We conducted a comprehensive analysis of common bean (Phaseolus vulgaris) centromeric satellite DNA using genomic data, fluorescence in situ hybridization (FISH), immunofluorescence and chromatin immunoprecipitation (ChIP). Two unrelated centromere-specific satellite repeats, CentPv1 and CentPv2, and the common bean centromere-specific histone H3 (PvCENH3) were identified. FISH showed that CentPv1 and CentPv2 are predominantly located at subsets of eight and three centromeres, respectively. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of CentPv1 and CentPv2 at centromeres. Genomic analysis revealed several interesting features of CentPv1 and CentPv2: (i) CentPv1 is organized into an higher-order repeat structure, named Nazca, of 528 bp, whereas CentPv2 is composed of tandemly organized monomers; (ii) CentPv1 and CentPv2 have undergone chromosome-specific homogenization; and (iii) CentPv1 and CentPv2 are not likely to be commingled in the genome. These findings suggest that two distinct sets of centromere sequences have evolved independently within the common bean genome, and provide insight into centromere satellite evolution. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Chmátal, Lukáš; Gabriel, Sofia I; Mitsainas, George P; Martínez-Vargas, Jessica; Ventura, Jacint; Searle, Jeremy B; Schultz, Richard M; Lampson, Michael A
2014-10-06
Mammalian karyotypes (number and structure of chromosomes) can vary dramatically over short evolutionary time frames. There are examples of massive karyotype conversion, from mostly telocentric (centromere terminal) to mostly metacentric (centromere internal), in 10(2)-10(5) years. These changes typically reflect rapid fixation of Robertsonian (Rb) fusions, a common chromosomal rearrangement that joins two telocentric chromosomes at their centromeres to create one metacentric. Fixation of Rb fusions can be explained by meiotic drive: biased chromosome segregation during female meiosis in violation of Mendel's first law. However, there is no mechanistic explanation of why fusions would preferentially segregate to the egg in some populations, leading to fixation and karyotype change, while other populations preferentially eliminate the fusions and maintain a telocentric karyotype. Here we show, using both laboratory models and wild mice, that differences in centromere strength predict the direction of drive. Stronger centromeres, manifested by increased kinetochore protein levels and altered interactions with spindle microtubules, are preferentially retained in the egg. We find that fusions preferentially segregate to the polar body in laboratory mouse strains when the fusion centromeres are weaker than those of telocentrics. Conversely, fusion centromeres are stronger relative to telocentrics in natural house mouse populations that have changed karyotype by accumulating metacentric fusions. Our findings suggest that natural variation in centromere strength explains how the direction of drive can switch between populations. They also provide a cell biological basis of centromere drive and karyotype evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seligmann, Hervé
2015-09-01
During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Heix, J; Zomerdijk, J C; Ravanpay, A; Tjian, R; Grummt, I
1997-03-04
Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP-TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein-protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP-TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription.
Evolutionary history and positional shift of a rice centromere.
Ma, Jianxin; Wing, Rod A; Bennetzen, Jeffrey L; Jackson, Scott A
2007-10-01
Rice centromere 8 was previously proposed to be an "immature" centromere that recently arose from a genic region. Our comparative genomics analysis indicates that Cen8 was formed at its current location at least 7-9 million years ago and was physically shifted by a more recent inversion of a segment spanning centromeric and pericentromeric regions.
Birchler, James A; Presting, Gernot G
2012-04-01
The centromeres of most eukaryotic organisms consist of highly repetitive arrays that are similar across nonhomologous chromosomes. These sequences evolve rapidly, thus posing a mystery as to how such arrays can be homogenized. Recent work in species in which centromere-enriched retrotransposons occur indicates that these elements preferentially insert into the centromeric regions. In two different Arabidopsis species, a related element was recognized in which the specificity for such targeting was altered. These observations provide a partial explanation for how homogenization of centromere DNA sequences occurs.
Epigenetic aspects of centromere function in plants.
Birchler, James A; Gao, Zhi; Sharma, Anupma; Presting, Gernot G; Han, Fangpu
2011-04-01
Centromeres were once thought to be boring structures on the chromosome involved with transmission through mitosis and meiosis. Recent data from a wide spectrum of organisms reveal an epigenetic component to centromere specification in that they can become inactive easily or form over unique DNA as neocentromeres. However, the constancy of centromere repeats at primary constrictions in most species, the fact that these repeats are transcribed and incorporated into the kinetochore, and the phenomenon of reactivation of formerly inactive centromeres at the same chromosomal sites suggests some type of role of DNA sequence or configuration in establishing the site of kinetochores. Here we present evidence for epigenetic and structural aspects involved with centromere activity in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Using Arabidopsis to understand centromere function: progress and prospects.
Copenhaver, Gregory P
2003-01-01
Arabidopsis thaliana has emerged in recent years as a leading model for understanding the structure and function of higher eukaryotic centromeres. Arabidopsis centromeres, like those of virtually all higher eukaryotes, encompass large DNA domains consisting of a complex combination of unique, dispersed middle repetitive and highly repetitive DNA. For this reason, they have required creative analysis using molecular, genetic, cytological and genomic techniques. This synergy of approaches, reinforced by rapid progress in understanding how proteins interact with the centromere DNA to form a complete functional unit, has made Arabidopsis one the best understood centromere systems. Yet major problems remain to be solved: gaining a complete structural definition of the centromere has been surprisingly difficult, and developing synthetic mini-chromosomes in plants has been even more challenging.
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-03-15
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.
Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I
1995-01-01
Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715
Raychaudhuri, Nitika; Dubruille, Raphaelle; Orsi, Guillermo A; Bagheri, Homayoun C; Loppin, Benjamin; Lehner, Christian F
2012-01-01
In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.
Raychaudhuri, Nitika; Dubruille, Raphaelle; Orsi, Guillermo A.; Bagheri, Homayoun C.; Loppin, Benjamin; Lehner, Christian F.
2012-01-01
In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3), named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses. PMID:23300376
Pohl, Thomas J; Brewer, Bonita J; Raghuraman, M K
2012-01-01
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.
Pohl, Thomas J.; Brewer, Bonita J.; Raghuraman, M. K.
2012-01-01
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation. PMID:22589733
El Yakoubi, Warif; Buffin, Eulalie; Cladière, Damien; Gryaznova, Yulia; Berenguer, Inés; Touati, Sandra A; Gómez, Rocío; Suja, José A; van Deursen, Jan M; Wassmann, Katja
2017-09-25
A key feature of meiosis is the step-wise removal of cohesin, the protein complex holding sister chromatids together, first from arms in meiosis I and then from the centromere region in meiosis II. Centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage, in order to maintain sister chromatids together until their separation in meiosis II. Failures in step-wise cohesin removal result in aneuploid gametes, preventing the generation of healthy embryos. Here, we report that kinase activities of Bub1 and Mps1 are required for Sgo2 localisation to the centromere region. Mps1 inhibitor-treated oocytes are defective in centromeric cohesin protection, whereas oocytes devoid of Bub1 kinase activity, which cannot phosphorylate H2A at T121, are not perturbed in cohesin protection as long as Mps1 is functional. Mps1 and Bub1 kinase activities localise Sgo2 in meiosis I preferentially to the centromere and pericentromere respectively, indicating that Sgo2 at the centromere is required for protection.In meiosis I centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage ensuring that sister chromatids are kept together until their separation in meiosis II. Here the authors demonstrate that Bub1 and Mps1 kinase activities are required for Sgo2 localisation to the centromere region.
Ren, Bingbing; Tan, Hwei Ling; Nguyen, Thi Thuy Trang; Sayed, Ahmed Mahmoud Mohammed; Li, Ying; Mok, Yu-Keung; Yang, Henry; Chen, Ee Sin
2018-01-09
Heterochromatin silencing is critical for genomic integrity and cell survival. It is orchestrated by chromodomain (CD)-containing proteins that bind to methylated histone H3 lysine 9 (H3K9me), a hallmark of heterochromatin. Here, we show that phosphorylation of tyrosine 41 (H3Y41p)-a novel histone H3 modification-participates in the regulation of heterochromatin in fission yeast. We show that a loss-of-function mutant of H3Y41 can suppress heterochromatin de-silencing in the centromere and subtelomere repeat regions, suggesting a de-silencing role for H3Y41p on heterochromatin. Furthermore, we show both in vitro and in vivo that H3Y41p differentially regulates two CD-containing proteins without the change in the level of H3K9 methylation: it promotes the binding of Chp1 to histone H3 and the exclusion of Swi6. H3Y41p is preferentially enriched on centromeric heterochromatin during M- to early S phase, which coincides with the localization switch of Swi6/Chp1. The loss-of-function H3Y41 mutant could suppress the hypersensitivity of the RNAi mutants towards hydroxyurea (HU), which arrests replication in S phase. Overall, we describe H3Y41p as a novel histone modification that differentially regulates heterochromatin silencing in fission yeast via the binding of CD-containing proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Centromeres of filamentous fungi
Smith, Kristina M.; Galazka, Jonathan M.; Phatale, Pallavi A.; Connolly, Lanelle R.; Freitag, Michael
2012-01-01
How centromeres are assembled and maintained remains one of the fundamental questions in cell biology. Over the past 20 years the idea of centromeres as precise genetic loci has been replaced by the realization that it is predominantly the protein complement that defines centromere localization and function. Thus, placement and maintenance of centromeres are excellent examples of epigenetic phenomena in the strict sense. In contrast, the highly derived “point centromeres” of the budding yeast Saccharomyces cerevisiae and its close relatives are counterexamples for this general principle of centromere maintenance. While we have learned much in the past decade, it remains unclear if mechanisms for epigenetic centromere placement and maintenance are shared amongst various groups of organisms. For that reason it seems prudent to examine species from many different phylogenetic groups with the aim to extract comparative information that will yield a more complete picture of cell division in all eukaryotes. This review addresses what has been learned by studying the centromeres of filamentous fungi, a large, heterogeneous group of organisms that includes important plant, animal and human pathogens, saprobes and symbionts that fulfill essential roles in the biosphere, as well as a growing number of taxa that have become indispensable for industrial use. PMID:22752455
RNAi and heterochromatin repress centromeric meiotic recombination
Ellermeier, Chad; Higuchi, Emily C.; Phadnis, Naina; Holm, Laerke; Geelhood, Jennifer L.; Thon, Genevieve; Smith, Gerald R.
2010-01-01
During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed specifically in and around the centromeres of chromosomes, apparently because rare centromeric (or pericentromeric) recombination events, when they do occur, can disrupt proper segregation and lead to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination. Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis. PMID:20421495
Centromere-Like Regions in the Budding Yeast Genome
Lefrançois, Philippe; Auerbach, Raymond K.; Yellman, Christopher M.; Roeder, G. Shirleen; Snyder, Michael
2013-01-01
Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. PMID:23349633
α satellite DNA variation and function of the human centromere
Sullivan, Lori L.; Chew, Kimberline
2017-01-01
ABSTRACT Genomic variation is a source of functional diversity that is typically studied in genic and non-coding regulatory regions. However, the extent of variation within noncoding portions of the human genome, particularly highly repetitive regions, and the functional consequences are not well understood. Satellite DNA, including α satellite DNA found at human centromeres, comprises up to 10% of the genome, but is difficult to study because its repetitive nature hinders contiguous sequence assemblies. We recently described variation within α satellite DNA that affects centromere function. On human chromosome 17 (HSA17), we showed that size and sequence polymorphisms within primary array D17Z1 are associated with chromosome aneuploidy and defective centromere architecture. However, HSA17 can counteract this instability by assembling the centromere at a second, “backup” array lacking variation. Here, we discuss our findings in a broader context of human centromere assembly, and highlight areas of future study to uncover links between genomic and epigenetic features of human centromeres. PMID:28406740
Replication, checkpoint suppression and structure of centromeric DNA
Romeo, Francesco; Costanzo, Vincenzo
2016-01-01
ABSTRACT Human centromeres contain large amounts of repetitive DNA sequences known as α satellite DNA, which can be difficult to replicate and whose functional role is unclear. Recently, we have characterized protein composition, structural organization and checkpoint response to stalled replication forks of centromeric chromatin reconstituted in Xenopus laevis egg extract. We showed that centromeric DNA has high affinity for SMC2-4 subunits of condensins and for CENP-A, it is enriched for DNA repair factors and suppresses the ATR checkpoint to ensure its efficient replication. We also showed that centromeric chromatin forms condensins enriched and topologically constrained DNA loops, which likely contribute to the overall structure of the centromere. These findings have important implications on how chromosomes are organized and genome stability is maintained in mammalian cells. PMID:27893298
Flexibility of centromere and kinetochore structures
Burrack, Laura S.; Berman, Judith
2012-01-01
Centromeres, and the kinetochores that assemble on them, are essential for accurate chromosome segregation. Diverse centromere organization patterns and kinetochore structures have evolved in eukaryotes ranging from yeast to humans. In addition, centromere DNA and kinetochore position can vary even within individual cells. This flexibility manifests in several ways: centromere DNA sequences evolve rapidly, kinetochore positions shift in response to altered chromosome structure, and kinetochore complex numbers change in response to fluctuations in kinetochore protein levels. Despite their differences, all of these diverse structures promote efficient chromosome segregation. This robustness is inherent to chromosome segregation mechanisms and balances genome stability with adaptability. In this review, we explore the mechanisms and consequences of centromere and kinetochore flexibility as well as the benefits and limitations of different experimental model systems for studying them. PMID:22445183
The Molecular Underpinnings of Centromere Identity and Maintenance
Sekulic, Nikolina; Black, Ben E.
2012-01-01
Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments indicate that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes—before and after assembly into nucleosomes—provide models to explain underlying molecular mechanisms at the centromere. PMID:22410197
The Past, Present, and Future of Human Centromere Genomics
Aldrup-MacDonald, Megan E.; Sullivan, Beth A.
2014-01-01
The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function. PMID:24683489
[Structural and functional organization of centromeres in plant chromosomes].
Silkova, O G; Loginova, D B
2014-12-01
The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.
Zedek, František; Bureš, Petr
2016-12-01
The centromere drive theory explains diversity of eukaryotic centromeres as a consequence of the recurrent conflict between centromeric repeats and centromeric histone H3 (CenH3), in which selfish centromeres exploit meiotic asymmetry and CenH3 evolves adaptively to counterbalance deleterious consequences of driving centromeres. Accordingly, adaptively evolving CenH3 has so far been observed only in eukaryotes with asymmetric meiosis. However, if such evolution is a consequence of centromere drive, it should depend not only on meiotic asymmetry but also on monocentric or holokinetic chromosomal structure. Selective pressures acting on CenH3 have never been investigated in organisms with holokinetic meiosis despite the fact that holokinetic chromosomes have been hypothesized to suppress centromere drive. Therefore, the present study evaluates selective pressures acting on the CenH3 gene in holokinetic organisms for the first time, specifically in the representatives of the plant genus Luzula (Juncaceae), in which the kinetochore formation is not co-localized with any type of centromeric repeat. PCR, cloning and sequencing, and database searches were used to obtain coding CenH3 sequences from Luzula species. Codon substitution models were employed to infer selective regimes acting on CenH3 in Luzula KEY RESULTS: In addition to the two previously published CenH3 sequences from L. nivea, 16 new CenH3 sequences have been isolated from 12 Luzula species. Two CenH3 isoforms in Luzula that originated by a duplication event prior to the divergence of analysed species were found. No signs of positive selection acting on CenH3 in Luzula were detected. Instead, evidence was found that selection on CenH3 of Luzula might have been relaxed. The results indicate that holokinetism itself may suppress centromere drive and, therefore, holokinetic chromosomes might have evolved as a defence against centromere drive. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plant-specific multisubunit RNA polymerase in gene silencing.
Lahmy, Sylvie; Bies-Etheve, Natacha; Lagrange, Thierry
2010-01-01
In recent years, a major breakthrough in the study of epigenetic silencing in eukaryotes came with the discovery that the RNA-interference pathway (RNAi) is generally implicated in heterochromatin assembly and gene silencing. An important and paradoxical feature of the RNAi-mediated heterochromatin pathways is their requirement for some form of transcription. In fission yeast, Schizosaccharomyces pombe, centromeric siRNAs have been shown to derive from chromatin-bound nascent transcripts produced by RNA polymerase II (PolII) at the site of heterochromatin formation. Likewise, chromatin-bound nascent transcripts generated by a PolII-related DNA-dependent RNA polymerase, known as PolIVb/PolV, have recently been implicated in RNA-directed DNA methylation (RdDM), the prominent RNAi-mediated chromatin pathway in plants. In this review we discuss recent work on the plant-specific PolII variant enzymes and discuss the mechanistic convergences that have been observed in the role of these enzymes in their respective siRNA-mediated heterochromatin formation pathways.
Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario
2017-07-01
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schonberg, S.A.; Quarles, C.; Tifft, C.
1994-09-01
The precise nature of the functional human centromeric sequences remains a matter of some controversy. Evidence has accumulated over the past several years that directly implicates alphoid repeats as a critical component. We report a child with dysmorphic features consistent with the recently described small ring X syndrome, with a constitutional karyotype that addresses this issue. At 5 1/2 months, the patient was a small, hypotonic, delayed female with brachycephaly, a broad forehead, prominent nasal root, synophorous, small mouth, and cup-shaped ears with prominent lobules, as well as microcornea, and pendular nystagmus. Hand abnormalities included single palmar creases and shortmore » tapered fingers. In addition to mosaicism for a small ring chromosome derived from the proximal short arm of the X, the proband has, in all cells, a monocentric isochromosome for the long arm of the X. The karyotype is interpreted as 46,X,iso(Xq)/47,X,iso(Xq),r(Xp11cen). We present routine karyotypic and FISH analysis of the rearranged X chromosomes. We propose that the only mechanism consistent with this karyotype is that of a two-break rearrangement with one break bisecting a centromere in such a way as to retain functional centromeric activity in each of the separated regions. The second break, proximal in the short arm, allows for ring chromosome formation with the bisected centromere. The iso(Xq) arises by the classical mechanism of post-replication sister-reunion. The formation of two functional centromeres by a single break through the {open_quotes}parental{close_quotes} centromere indicates that the functional activity must be in a repeated component of the centromeric DNA and argues strongly against the requirement for any single gene in cis orientation.« less
Mps1 promotes rapid centromere accumulation of Aurora B.
van der Waal, Maike S; Saurin, Adrian T; Vromans, Martijn J M; Vleugel, Mathijs; Wurzenberger, Claudia; Gerlich, Daniel W; Medema, René H; Kops, Geert J P L; Lens, Susanne M A
2012-09-01
Aurora B localization to mitotic centromeres, which is required for proper chromosome alignment during mitosis, relies on Haspin-dependent histone H3 phosphorylation and on Bub1-dependent histone H2A phosphorylation--which interacts with Borealin through a Shugoshin (Sgo) intermediate. We demonstrate that Mps1 stimulates the latter recruitment axis. Mps1 activity enhances H2A-T120ph and is critical for Sgo1 recruitment to centromeres, thereby promoting Aurora B centromere recruitment in early mitosis. Importantly, chromosome biorientation defects caused by Mps1 inhibition are improved by restoring Aurora B centromere recruitment. As Mps1 kinetochore localization reciprocally depends on Aurora B, we propose that this Aurora B-Mps1 recruitment circuitry cooperates with the Aurora B-Haspin feedback loop to ensure rapid centromere accumulation of Aurora B at the onset of mitosis.
Sequence of Centromere Separation: Role of Centromeric Heterochromatin
Vig, Baldev K.
1982-01-01
The late metaphase-early anaphase cells from various tissues of male Mus musculus, M. poschiavinus, M. spretus, M. castaneus, female and male Bos taurus (cattle) and female Myopus schisticolor (wood lemming) were analyzed for centromeres that showed separation into two daughter centromeres and those that did not show such separation. In all strains and species of mouse the Y chromosome is the first one to separate, as is the X or Y in the cattle. These sex chromosomes are devoid of constitutive heterochromatin, whereas all autosomes in these species carry detectable quantities. In cattle, the late replicating X chromosome appears to separate later than the active X. In the wood lemming the three pairs of autosomes with the least amount of centromeric constitutive heterochromatin separate first. These are followed by the separation of seven pairs of autosomes carrying medium amounts of constitutive heterochromatin. Five pairs of autosomes with the largest amounts of constitutive heterochromatin are the last in the sequence of separation. The sex chromosomes with medium amounts of constitutive heterochromatin around the centromere, and a very large amount of distal heterochromatin, separate among the very late ones but are not the last. These observations assign a specific role to centromeric constitutive heterochromatin and also indicate that nonproximal heterochromatin does not exert control over the sequence in which the centromeres in the genome separate. It appears that qualitative differences among various types of constitutive heterochromatin are as important as quantitative differences in controlling the separation of centromeres. PMID:6764903
mosR, A Novel Transcriptional Regulator of Hypoxia and Virulence in Mycobacterium tuberculosis
USDA-ARS?s Scientific Manuscript database
Chronic tuberculosis represents a high-risk burden for one third of the world population. Previous microarray analysis of murine tuberculosis identified a novel transcriptional regulator encoded by rv0348 that could control the establishment of the chronic phase of tuberculosis. Disruption of the ...
Ioannou, Dimitrios; Millan, Nicole M; Jordan, Elizabeth; Tempest, Helen G
2017-01-31
The organization of chromosomes in sperm nuclei has been proposed to possess a unique "hairpin-loop" arrangement, which is hypothesized to aid in the ordered exodus of the paternal genome following fertilization. This study simultaneously assessed the 3D and 2D radial and longitudinal organization of telomeres, centromeres, and investigated whether chromosomes formed the same centromere clusters in sperm cells. Reproducible radial and longitudinal non-random organization was observed for all investigated loci using both 3D and 2D approaches in multiple subjects. We report novel findings, with telomeres and centromeres being localized throughout the nucleus but demonstrating roughly a 1:1 distribution in the nuclear periphery and the intermediate regions with <15% occupying the nuclear interior. Telomeres and centromeres were observed to aggregate in sperm nuclei, forming an average of 20 and 7 clusters, respectively. Reproducible longitudinal organization demonstrated preferential localization of telomeres and centromeres in the mid region of the sperm cell. Preliminary evidence is also provided to support the hypothesis that specific chromosomes preferentially form the same centromere clusters. The more segmental distribution of telomeres and centromeres as described in this study could more readily accommodate and facilitate the sequential exodus of paternal chromosomes following fertilization.
Ioannou, Dimitrios; Millan, Nicole M.; Jordan, Elizabeth; Tempest, Helen G.
2017-01-01
The organization of chromosomes in sperm nuclei has been proposed to possess a unique “hairpin-loop” arrangement, which is hypothesized to aid in the ordered exodus of the paternal genome following fertilization. This study simultaneously assessed the 3D and 2D radial and longitudinal organization of telomeres, centromeres, and investigated whether chromosomes formed the same centromere clusters in sperm cells. Reproducible radial and longitudinal non-random organization was observed for all investigated loci using both 3D and 2D approaches in multiple subjects. We report novel findings, with telomeres and centromeres being localized throughout the nucleus but demonstrating roughly a 1:1 distribution in the nuclear periphery and the intermediate regions with <15% occupying the nuclear interior. Telomeres and centromeres were observed to aggregate in sperm nuclei, forming an average of 20 and 7 clusters, respectively. Reproducible longitudinal organization demonstrated preferential localization of telomeres and centromeres in the mid region of the sperm cell. Preliminary evidence is also provided to support the hypothesis that specific chromosomes preferentially form the same centromere clusters. The more segmental distribution of telomeres and centromeres as described in this study could more readily accommodate and facilitate the sequential exodus of paternal chromosomes following fertilization. PMID:28139771
Holokinetic drive: centromere drive in chromosomes without centromeres.
Bureš, Petr; Zedek, František
2014-08-01
Similar to how the model of centromere drive explains the size and complexity of centromeres in monocentrics (organisms with localized centromeres), our model of holokinetic drive is consistent with the divergent evolution of chromosomal size and number in holocentrics (organisms with nonlocalized centromeres) exhibiting holokinetic meiosis (holokinetics). Holokinetic drive is proposed to facilitate chromosomal fission and/or repetitive DNA removal (or any segmental deletion) when smaller homologous chromosomes are preferentially inherited or chromosomal fusion and/or repetitive DNA proliferation (or any segmental duplication) when larger homologs are preferred. The hypothesis of holokinetic drive is supported primarily by the negative correlation between chromosome number and genome size that is documented in holokinetic lineages. The supporting value of two older cross-experiments on holokinetic structural heterozygotes (the rush Luzula elegans and butterflies of the genus Antheraea) that indicate the presence of size-preferential homolog transmission via female meiosis for holokinetic drive is discussed, along with the further potential consequences of holokinetic drive in comparison with centromere drive. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe
Gaither, Terilyn L.; Merrett, Stephanie L.; Pun, Matthew J.; Scott, Kristin C.
2014-01-01
Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-ACnp1 protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression
Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo
2016-01-01
Half of human genome is made of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using Bacterial Artificial Chromosomes (BACs) in Xenopus laevis egg extract. Using this approach we characterized chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication dependent enrichment of a network of DNA repair factors among which the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to inability of single stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of Topoisomerase I dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications on our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions. PMID:27111843
Eot-Houllier, Grégory; Magnaghi-Jaulin, Laura; Fulcrand, Géraldine; Moyroud, François-Xavier; Monier, Solange; Jaulin, Christian
2018-05-14
Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as "cohesion fatigue." We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss. Consistent with this observation, p-CENP-AS7 is detected at the inner centromere where it forms a discrete domain. The depletion or inhibition of Aurora A phenocopies the expression of CENP-AS7A and we show that Aurora A is recruited to centromeres in a Bub1-dependent manner. We propose that Aurora A-dependent phosphorylation of CENP-A at the inner centromere protects chromosomes against tension-induced cohesion fatigue until the last kinetochore is attached to spindle microtubules.
ERIC Educational Resources Information Center
Erickson, John
1983-01-01
Focusing on the centromere (kinetochore), discusses what term should be used to represent this cellular component. Also discusses centromere/kinetochore replication, structure of the kinetochore, and the nature of the binding material that holds until anaphase of mitosis and meiosis. (JN)
Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects.
Drinnenberg, Ines A; deYoung, Dakota; Henikoff, Steven; Malik, Harmit Singh
2014-09-23
Faithful chromosome segregation in all eukaryotes relies on centromeres, the chromosomal sites that recruit kinetochore proteins and mediate spindle attachment during cell division. The centromeric histone H3 variant, CenH3, is the defining chromatin component of centromeres in most eukaryotes, including animals, fungi, plants, and protists. In this study, using detailed genomic and transcriptome analyses, we show that CenH3 was lost independently in at least four lineages of insects. Each of these lineages represents an independent transition from monocentricity (centromeric determinants localized to a single chromosomal region) to holocentricity (centromeric determinants extended over the entire chromosomal length) as ancient as 300 million years ago. Holocentric insects therefore contain a CenH3-independent centromere, different from almost all the other eukaryotes. We propose that ancient transitions to holocentricity in insects obviated the need to maintain CenH3, which is otherwise essential in most eukaryotes, including other holocentrics.
Repression of harmful meiotic recombination in centromeric regions
Nambiar, Mridula; Smith, Gerald R.
2016-01-01
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others. PMID:26849908
NASA Technical Reports Server (NTRS)
Murashov, A. K.; Wolgemuth, D. J.
1996-01-01
The expression of hsp70.2, an hsp70 gene family member, originally characterized by its high levels of expression in germ cells in the adult mouse testis, was detected in several other reproductive tissues, including epididymis, prostate, and seminal vesicles, as well as in extraembryonic tissues of mid-gestation fetuses. In addition, hybridization with RNA probes transcribed in the sense orientation surprisingly indicated the presence of slightly larger "antisense" transcripts in several tissues. The levels of antisense transcripts varied among the tissues, with the highest signal detected in the prostate and no signal being detectable in the testis. Consistent with these results, in situ hybridization analysis clearly localized the sense-orientation transcripts to pachytene spermatocytes, while no antisense-orientation transcripts were observed in adjacent sections of the same tubules. Our findings have thus shown that although hsp70.2 was expressed abundantly and in a highly stage-specific manner in the male germ line, it was also expressed in other murine tissues. Furthermore, we have made the surprising observation of antisense transcription of the hsp70.2 gene in several mouse tissues, revealing another level of complexity in the regulation and function of heat shock proteins.
Heix, Jutta; Zomerdijk, Joost C. B. M.; Ravanpay, Ali; Tjian, Robert; Grummt, Ingrid
1997-01-01
Promoter selectivity for all three classes of eukaryotic RNA polymerases is brought about by multimeric protein complexes containing TATA box binding protein (TBP) and specific TBP-associated factors (TAFs). Unlike class II- and III-specific TBP–TAF complexes, the corresponding murine and human class I-specific transcription initiation factor TIF-IB/SL1 exhibits a pronounced selectivity for its homologous promoter. As a first step toward understanding the molecular basis of species-specific promoter recognition, we cloned the cDNAs encoding the three mouse pol I-specific TBP-associated factors (TAFIs) and compared the amino acid sequences of the murine TAFIs with their human counterparts. The four subunits from either species can form stable chimeric complexes that contain stoichiometric amounts of TBP and TAFIs, demonstrating that differences in the primary structure of human and mouse TAFIs do not dramatically alter the network of protein–protein contacts responsible for assembly of the multimeric complex. Thus, primate vs. rodent promoter selectivity mediated by the TBP–TAFI complex is likely to be the result of cumulative subtle differences between individual subunits that lead to species-specific properties of RNA polymerase I transcription. PMID:9050847
Nath, Rahul; Mant, Christine A; Kell, Barbara; Cason, John; Bible, Jon M
2006-01-01
Background Human papillomavirus type 16 (HPV-16) E5 protein co-operates with epidermal growth factor to stimulate mitogenesis of murine fibroblasts. Currently, little is known about which viral amino acids are involved in this process. Using sequence variants of HPV-16 E5 we have investigated their effects upon E5 transcription, cell-cycling and cell-growth of murine fibroblasts. Results We demonstrate that: (i) introduction of Thr64 into the reference E5 sequence of HPV-16 abrogates mitogenic activity: both were poorly transcribed in NIH-3T3 cells; (ii) substitution of Leu44Val65 or, Thr37Leu44Val65 into the HPV-16 E5 reference backbone resulted in high transcription in NIH-3T3 cells, enhanced cell-cycle progression and high cell-growth; and, (iii) inclusion of Tyr8 into the Leu44Val65 backbone inhibited E5 induced cell-growth and repression of p21 expression, despite high transcription levels. Conclusion The effects of HPV-16 E5 variants upon mitosis help to explain why Leu44Val65 HPV-16 E5 variants are most prevalent in 'wild' pathogenic viral populations in the UK. PMID:16899131
High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events
Wolfgruber, Thomas K.; Nakashima, Megan M.; Schneider, Kevin L.; Sharma, Anupma; Xie, Zidian; Albert, Patrice S.; Xu, Ronghui; Bilinski, Paul; Dawe, R. Kelly; Ross-Ibarra, Jeffrey; Birchler, James A.; Presting, Gernot G.
2016-01-01
The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10−6 and 5 × 10−5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500
Structure and Stability of Telocentric Chromosomes in Wheat
Koo, Dal-Hoe; Sehgal, Sunish K.; Friebe, Bernd; Gill, Bikram S.
2015-01-01
In most eukaryotes, centromeres assemble at a single location per chromosome. Naturally occurring telocentric chromosomes (telosomes) with a terminal centromere are rare but do exist. Telosomes arise through misdivision of centromeres in normal chromosomes, and their cytological stability depends on the structure of their kinetochores. The instability of telosomes may be attributed to the relative centromere size and the degree of completeness of their kinetochore. Here we test this hypothesis by analyzing the cytogenetic structure of wheat telosomes. We used a population of 80 telosomes arising from the misdivision of the 21 chromosomes of wheat that have shown stable inheritance over many generations. We analyzed centromere size by probing with the centromere-specific histone H3 variant, CENH3. Comparing the signal intensity for CENH3 between the intact chromosome and derived telosomes showed that the telosomes had approximately half the signal intensity compared to that of normal chromosomes. Immunofluorescence of CENH3 in a wheat stock with 28 telosomes revealed that none of the telosomes received a complete CENH3 domain. Some of the telosomes lacked centromere specific retrotransposons of wheat in the CENH3 domain, indicating that the stability of telosomes depends on the presence of CENH3 chromatin and not on the presence of CRW repeats. In addition to providing evidence for centromere shift, we also observed chromosomal aberrations including inversions and deletions in the short arm telosomes of double ditelosomic 1D and 6D stocks. The role of centromere-flanking, pericentromeric heterochromatin in mitosis is discussed with respect to genome/chromosome integrity. PMID:26381743
Centromere reference models for human chromosomes X and Y satellite arrays
Miga, Karen H.; Newton, Yulia; Jain, Miten; Altemose, Nicolas; Willard, Huntington F.; Kent, W. James
2014-01-01
The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes. PMID:24501022
Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick
2015-03-08
Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance < 5cM from a centromere represented 47% of the genome and 23% of the genic sequences. The centromere positions of the nine citrus chromosomes were genetically mapped. Their physical locations, inferred from the genetic ones, were consistent with the sequence constitution and recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but also maintains multi-trait associations. Identification of the centromere positions will allow the development of simple methods to analyse unreduced gamete formation mechanisms in a large range of genotypes and further modelling of genetic inheritance in sexual polyploidisation breeding schemes.
Moraes, Izabel C R; Lermontova, Inna; Schubert, Ingo
2011-02-01
The centromere is an essential chromosomal component assembling the kinetochore for chromosome attachment to the spindle microtubules and for directing the chromosome segregation during nuclear division. Kinetochore assembly requires deposition of the centromeric histone H3 variant (CENH3) into centromeric nucleosomes. CENH3 has a variable N-terminal and a more conserved C-terminal part, including the loop1 region of the histone fold domain, which is considered to be critical for centromere targeting. To investigate the structural requirements for centromere targeting, constructs for EYFP-tagged CENH3 of A. lyrata, A. arenosa, Capsella bursa-pastoris, Zea mays and Luzula nivea (the latter with holocentric chromosomes) were transformed into A. thaliana. Except for LnCENH3, all recombinant CENH3 proteins targeted A. thaliana centromeres, but the more distantly related the heterologous protein is, the lower is the efficiency of targeting. Alignment of CENH3 sequences revealed that the tested species share only three amino acids at loop1 region: threonine2, arginine12 and alanine15. These three amino acids were substituted by asparagine, proline and valine encoding sequences within a recombinant EYFP-AtCENH3 construct via PCR mutagenesis prior to transformation of A. thaliana. After transformation, immunostaining of root tip nuclei with anti-GFP antibodies yielded only diffuse signals, indicating that the original three amino acids are necessary but not sufficient for targeting A. thaliana centromeres.
De novo centromere formation on a chromosome fragment in maize.
Fu, Shulan; Lv, Zhenling; Gao, Zhi; Wu, Huajun; Pang, Junling; Zhang, Bing; Dong, Qianhua; Guo, Xiang; Wang, Xiu-Jie; Birchler, James A; Han, Fangpu
2013-04-09
The centromere is the part of the chromosome that organizes the kinetochore, which mediates chromosome movement during mitosis and meiosis. A small fragment from chromosome 3, named Duplication 3a (Dp3a), was described from UV-irradiated materials by Stadler and Roman in the 1940s [Stadler LJ, Roman H (1948) Genetics 33(3):273-303]. The genetic behavior of Dp3a is reminiscent of a ring chromosome, but fluoresecent in situ hybridization detected telomeres at both ends, suggesting a linear structure. This small chromosome has no detectable canonical centromeric sequences, but contains a site with protein features of functional centromeres such as CENH3, the centromere specific H3 histone variant, and CENP-C, a foundational kinetochore protein, suggesting the de novo formation of a centromere on the chromatin fragment. To examine the sequences associated with CENH3, chromatin immunoprecipitation was carried out with anti-CENH3 antibodies using material from young seedlings with and without the Dp3a chromosome. A novel peak was detected from the ChIP-Sequencing reads of the Dp3a sample. The peak spanned 350 kb within the long arm of chromosome 3 covering 22 genes. Collectively, these results define the behavior and molecular features of de novo centromere formation in the Dp3a chromosome, which may shed light on the initiation of new centromere sites during evolution.
The architecture of chicken chromosome territories changes during differentiation
Stadler, Sonja; Schnapp, Verena; Mayer, Robert; Stein, Stefan; Cremer, Christoph; Bonifer, Constanze; Cremer, Thomas; Dietzel, Steffen
2004-01-01
Background Between cell divisions the chromatin fiber of each chromosome is restricted to a subvolume of the interphase cell nucleus called chromosome territory. The internal organization of these chromosome territories is still largely unknown. Results We compared the large-scale chromatin structure of chromosome territories between several hematopoietic chicken cell types at various differentiation stages. Chromosome territories were labeled by fluorescence in situ hybridization in structurally preserved nuclei, recorded by confocal microscopy and evaluated visually and by quantitative image analysis. Chromosome territories in multipotent myeloid precursor cells appeared homogeneously stained and compact. The inactive lysozyme gene as well as the centromere of the lysozyme gene harboring chromosome located to the interior of the chromosome territory. In further differentiated cell types such as myeloblasts, macrophages and erythroblasts chromosome territories appeared increasingly diffuse, disaggregating to separable substructures. The lysozyme gene, which is gradually activated during the differentiation to activated macrophages, as well as the centromere were relocated increasingly to more external positions. Conclusions Our results reveal a cell type specific constitution of chromosome territories. The data suggest that a repositioning of chromosomal loci during differentiation may be a consequence of general changes in chromosome territory morphology, not necessarily related to transcriptional changes. PMID:15555075
Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K; Bindics, János; Slusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L; Tamaru, Hisashi
2014-11-11
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.
Mérai, Zsuzsanna; Chumak, Nina; García-Aguilar, Marcelina; Hsieh, Tzung-Fu; Nishimura, Toshiro; Schoft, Vera K.; Bindics, János; Ślusarz, Lucyna; Arnoux, Stéphanie; Opravil, Susanne; Mechtler, Karl; Zilberman, Daniel; Fischer, Robert L.; Tamaru, Hisashi
2014-01-01
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48ANPL4 complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction. PMID:25344531
Yan, Rihui; McKee, Bruce D.
2013-01-01
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores. PMID:23874232
Yan, Rihui; McKee, Bruce D
2013-01-01
Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.
Wisniewski, Jan; Hajj, Bassam; Chen, Jiji; Mizuguchi, Gaku; Xiao, Hua; Wei, Debbie; Dahan, Maxime; Wu, Carl
2014-01-01
The budding yeast centromere contains Cse4, a specialized histone H3 variant. Fluorescence pulse-chase analysis of an internally tagged Cse4 reveals that it is replaced with newly synthesized molecules in S phase, remaining stably associated with centromeres thereafter. In contrast, C-terminally-tagged Cse4 is functionally impaired, showing slow cell growth, cell lethality at elevated temperatures, and extra-centromeric nuclear accumulation. Recent studies using such strains gave conflicting findings regarding the centromeric abundance and cell cycle dynamics of Cse4. Our findings indicate that internally tagged Cse4 is a better reporter of the biology of this histone variant. Furthermore, the size of centromeric Cse4 clusters was precisely mapped with a new 3D-PALM method, revealing substantial compaction during anaphase. Cse4-specific chaperone Scm3 displays steady-state, stoichiometric co-localization with Cse4 at centromeres throughout the cell cycle, while undergoing exchange with a nuclear pool. These findings suggest that a stable Cse4 nucleosome is maintained by dynamic chaperone-in-residence Scm3. DOI: http://dx.doi.org/10.7554/eLife.02203.001 PMID:24844245
Lermontova, Inna; Kuhlmann, Markus; Friedel, Swetlana; Rutten, Twan; Heckmann, Stefan; Sandmann, Michael; Demidov, Dmitri; Schubert, Veit; Schubert, Ingo
2013-09-01
The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.
Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.
Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo
2016-06-01
Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.
Cheng, Benson Yee Hin; Zhi, Jizu; Santana, Alexis; Khan, Sohail; Salinas, Eduardo; Forrest, J. Craig; Zheng, Yueting; Jaggi, Shirin; Leatherwood, Janet
2012-01-01
We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5′ rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection. PMID:22318145
Liu, Zhihui; Lam, Norris; Thiele, Carol J
2015-09-29
The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs.
Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří
2015-01-01
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. PMID:25771197
Qiao, Huanyu; Chen, Jefferson K.; Reynolds, April; Höög, Christer; Paddy, Michael; Hunter, Neil
2012-01-01
The intimate synapsis of homologous chromosome pairs (homologs) by synaptonemal complexes (SCs) is an essential feature of meiosis. In many organisms, synapsis and homologous recombination are interdependent: recombination promotes SC formation and SCs are required for crossing-over. Moreover, several studies indicate that initiation of SC assembly occurs at sites where crossovers will subsequently form. However, recent analyses in budding yeast and fruit fly imply a special role for centromeres in the initiation of SC formation. In addition, in budding yeast, persistent SC–dependent centromere-association facilitates the disjunction of chromosomes that have failed to become connected by crossovers. Here, we examine the interplay between SCs, recombination, and centromeres in a mammal. In mouse spermatocytes, centromeres do not serve as SC initiation sites and are invariably the last regions to synapse. However, centromeres are refractory to de-synapsis during diplonema and remain associated by short SC fragments. Since SC–dependent centromere association is lost before diakinesis, a direct role in homolog segregation seems unlikely. However, post–SC disassembly, we find evidence of inter-centromeric connections that could play a more direct role in promoting homolog biorientation and disjunction. A second class of persistent SC fragments is shown to be crossover-dependent. Super-resolution structured-illumination microscopy (SIM) reveals that these structures initially connect separate homolog axes and progressively diminish as chiasmata form. Thus, DNA crossing-over (which occurs during pachynema) and axis remodeling appear to be temporally distinct aspects of chiasma formation. SIM analysis of the synapsis and crossover-defective mutant Sycp1−/− implies that SCs prevent unregulated fusion of homolog axes. We propose that SC fragments retained during diplonema stabilize nascent bivalents and help orchestrate local chromosome reorganization that promotes centromere and chiasma function. PMID:22761591
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis
Mason, Annaliese S.; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E.; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A. P.; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N.
2016-01-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. PMID:26614742
Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.
Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N
2016-02-01
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.
Sau, Soumitra; Sutradhar, Sabyasachi; Paul, Raja; Sinha, Pratima
2014-01-01
In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components. Previously it has been shown that the absence of non-essential kinetochore proteins of the Ctf19 complex weakens kinetochore-microtubule interaction, but whether this compromised interaction affects centromere/kinetochore positioning inside the nucleus is unknown. We found that in G1 and in late anaphase, SPB-centromere proximity was disturbed in mutant cells lacking Ctf19 complex members,Chl4p and/or Ctf19p, whose centromeres lay further away from their SPBs than those of the wild-type cells. We unequivocally show that the SPB-centromere proximity and distances are not dependent on physical interactions between SPB and kinetochore components, but involve microtubule-dependent forces only. Further insight on the positional difference between wild-type and mutant kinetochores was gained by generating computational models governed by (1) independently regulated, but constant kinetochore microtubule (kMT) dynamics, (2) poleward tension on kinetochore and the antagonistic polar ejection force and (3) length and force dependent kMT dynamics. Numerical data obtained from the third model concurs with experimental results and suggests that the absence of Chl4p and/or Ctf19p increases the penetration depth of a growing kMT inside the kinetochore and increases the rescue frequency of a depolymerizing kMT. Both the processes result in increased distance between SPB and centromere. PMID:25003500
Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses.
Khayal, Layal Abo; Grünhagen, Johannes; Provazník, Ivo; Mundlos, Stefan; Kornak, Uwe; Robinson, Peter N; Ott, Claus-Eric
2018-04-11
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology. Copyright © 2018 Elsevier Inc. All rights reserved.
Human centromere genomics: now it's personal.
Hayden, Karen E
2012-07-01
Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.
De novo generation of plant centromeres at tandem repeats.
Teo, Chee How; Lermontova, Inna; Houben, Andreas; Mette, Michael Florian; Schubert, Ingo
2013-06-01
Artificial minichromosomes are highly desirable tools for basic research, breeding, and biotechnology purposes. We present an option to generate plant artificial minichromosomes via de novo engineering of plant centromeres in Arabidopsis thaliana by targeting kinetochore proteins to tandem repeat arrays at non-centromeric positions. We employed the bacterial lactose repressor/lactose operator system to guide derivatives of the centromeric histone H3 variant cenH3 to LacO operator sequences. Tethering of cenH3 to non-centromeric loci led to de novo assembly of kinetochore proteins and to dicentric carrier chromosomes which potentially form anaphase bridges. This approach will be further developed and may contribute to generating minichromosomes from preselected genomic regions, potentially even in a diploid background.
What is behind "centromere repositioning"?
Schubert, Ingo
2018-06-01
An increasing number of observations suggest an evolutionary switch of centromere position on monocentric eukaryotic chromosomes which otherwise display a conserved sequence of genes and markers. Such observations are particularly frequent for primates and equidae (for review see Heredity 108:59-67, 2012) but occur also in marsupials (J Hered 96:217-224, 2005) and in plants (Chromosome Res 25:299-311, 2017 and references therein). The actual mechanism(s) behind remained unclear in many cases (Proc Natl Acad Sci USA 101:6542-6547, 2004; Trends Genet 30:66-74, 2014). The same is true for de novo centromere formation on chromosomes lacking an active centromere. This article focuses on recent reports on centromere repositioning and possible mechanisms behind and addresses open questions.
Stumpff, Jason; Wagenbach, Michael; Franck, Andrew; Asbury, Charles L.; Wordeman, Linda
2012-01-01
Summary Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics. PMID:22595673
Widespread Gene Conversion in Centromere Cores
Shi, Jinghua; Wolf, Sarah E.; Burke, John M.; Presting, Gernot G.; Ross-Ibarra, Jeffrey; Dawe, R. Kelly
2010-01-01
Centromeres are the most dynamic regions of the genome, yet they are typified by little or no crossing over, making it difficult to explain the origin of this diversity. To address this question, we developed a novel CENH3 ChIP display method that maps kinetochore footprints over transposon-rich areas of centromere cores. A high level of polymorphism made it possible to map a total of 238 within-centromere markers using maize recombinant inbred lines. Over half of the markers were shown to interact directly with kinetochores (CENH3) by chromatin immunoprecipitation. Although classical crossing over is fully suppressed across CENH3 domains, two gene conversion events (i.e., non-crossover marker exchanges) were identified in a mapping population. A population genetic analysis of 53 diverse inbreds suggests that historical gene conversion is widespread in maize centromeres, occurring at a rate >1×10−5/marker/generation. We conclude that gene conversion accelerates centromere evolution by facilitating sequence exchange among chromosomes. PMID:20231874
A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation.
Kabeche, Lilian; Nguyen, Hai Dang; Buisson, Rémi; Zou, Lee
2018-01-05
The ataxia telangiectasia mutated and Rad3-related (ATR) kinase is crucial for DNA damage and replication stress responses. Here, we describe an unexpected role of ATR in mitosis. Acute inhibition or degradation of ATR in mitosis induces whole-chromosome missegregation. The effect of ATR ablation is not due to altered cyclin-dependent kinase 1 (CDK1) activity, DNA damage responses, or unscheduled DNA synthesis but to loss of an ATR function at centromeres. In mitosis, ATR localizes to centromeres through Aurora A-regulated association with centromere protein F (CENP-F), allowing ATR to engage replication protein A (RPA)-coated centromeric R loops. As ATR is activated at centromeres, it stimulates Aurora B through Chk1, preventing formation of lagging chromosomes. Thus, a mitosis-specific and R loop-driven ATR pathway acts at centromeres to promote faithful chromosome segregation, revealing functions of R loops and ATR in suppressing chromosome instability. Copyright © 2018, American Association for the Advancement of Science.
Schnapp, A; Schnapp, G; Erny, B; Grummt, I
1993-11-01
Alterations in the rate of cell proliferation are accompanied by changes in the transcription of rRNA genes. In mammals, this growth-dependent regulation of transcription of genes coding for rRNA (rDNA) is due to reduction of the amount or activity of an essential transcription factor, called TIF-IA. Extracts prepared from quiescent cells lack this factor activity and, therefore, are transcriptionally inactive. We have purified TIF-IA from exponentially growing cells and have shown that it is a polypeptide with a molecular mass of 75 kDa which exists as a monomer in solution. Using a reconstituted transcription system consisting of purified transcription factors, we demonstrate that TIF-IA is a bona fide transcription initiation factor which interacts with RNA polymerase I. Preinitiation complexes can be assembled in the absence of TIF-IA, but formation of the first phosphodiester bonds of nascent rRNA is precluded. After initiation, TIF-IA is liberated from the initiation complex and facilitates transcription from templates bearing preinitiation complexes which lack TIF-IA. Despite the pronounced species specificity of class I gene transcription, this growth-dependent factor has been identified not only in mouse but also in human cells. Murine TIF-IA complements extracts from both growth-inhibited mouse and human cells. The analogous human activity appears to be similar or identical to that of TIF-IA. Therefore, despite the fact that the RNA polymerase transcription system has evolved sufficiently rapidly that an rDNA promoter from one species will not function in another species, the basic mechanisms that adapt ribosome synthesis to cell proliferation have been conserved.
Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA.
López-estraño, C; Schvartzman, J B; Krimer, D B; Hernández, P
1998-03-27
We investigated the replication of the region where transcription terminates in mouse rDNA. It contains a replication fork barrier (RFB) that behaves in a polar manner, arresting only replication forks moving in the direction opposite to transcription. This RFB consists of several closely spaced fork arrest sites that co-localize with the transcription terminator elements, known as Sal boxes. Sal boxes are the target for mTTF-I (murine transcription termination factor I). These results suggest that both termination of rRNA transcription and replication fork arrest may share cis-acting as well as trans-acting factors. Copyright 1998 Academic Press Limited.
Tran, Stella; Wang, Ying; Lamba, Pankaj; Zhou, Xiang; Boehm, Ulrich; Bernard, Daniel J.
2013-01-01
Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LβT2, by 5’ rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5’ flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LβT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5’ untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone. PMID:24098544
Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.
Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W
2013-04-01
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.
Doss, C George Priya; Chakrabarty, Chiranjib; Debajyoti, C; Debottam, S
2014-11-01
Certain mysteries pointing toward their recruitment pathways, cell cycle regulation mechanisms, spindle checkpoint assembly, and chromosome segregation process are considered the centre of attraction in cancer research. In modern times, with the established databases, ranges of computational platforms have provided a platform to examine almost all the physiological and biochemical evidences in disease-associated phenotypes. Using existing computational methods, we have utilized the amino acid residues to understand the similarity within the evolutionary variance of different associated centromere proteins. This study related to sequence similarity, protein-protein networking, co-expression analysis, and evolutionary trajectory of centromere proteins will speed up the understanding about centromere biology and will create a road map for upcoming researchers who are initiating their work of clinical sequencing using centromere proteins.
CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model
Zedek, František; Bureš, Petr
2016-01-01
The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive. PMID:27629066
Rudd, M. Katharine; Mays, Robert W.; Schwartz, Stuart; Willard, Huntington F.
2003-01-01
Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes. PMID:14560014
Rudd, M Katharine; Mays, Robert W; Schwartz, Stuart; Willard, Huntington F
2003-11-01
Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.
Woo, Hye Ryun; Dittmer, Travis A.; Richards, Eric J.
2008-01-01
Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing. PMID:18704160
Masroori, Nasser; Merindol, Natacha; Berthoux, Lionel
2016-03-22
The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-β treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has implications for the development of murine models of HIV-1.
Adaptive evolution of centromere proteins in plants and animals.
Talbert, Paul B; Bryson, Terri D; Henikoff, Steven
2004-01-01
Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.
Adaptive evolution of centromere proteins in plants and animals
Talbert, Paul B; Bryson, Terri D; Henikoff, Steven
2004-01-01
Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C), that is characterized by a single 24 amino-acid motif (CENPC motif). Results Whereas we find no evidence that mammalian CenH3 (CENP-A) has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p) is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi. PMID:15345035
RNAi Functions in Adaptive Reprogramming of the Genome | Center for Cancer Research
The regulation of transcribing DNA into RNA, including the production, processing, and degradation of RNA transcripts, affects the expression and the regulation of the genome in ways that are just beginning to be unraveled. A surprising discovery in recent years is that the vast majority of the genome is transcribed to yield an abundance of RNA transcripts. Many transcripts are regulated by the exosome, a multi-protein complex that degrades RNAs, and may also be targeted, under certain conditions, by the RNA interference (RNAi) pathway. These RNA degrading activities can recruit factors to silence certain regions of the genome by condensing the DNA into tightly-packed heterochromatin. For some chromosomal regions, such as centromeres and telomeres, which lie at the center and ends of chromosomes, respectively, silencing must be stably enforced through each cell generation. For other regions, silencing mechanisms must be easily reversible to activate gene expression in response to changing environmental or developmental conditions. Thus, the regulation of gene silencing is key to maintaining the integrity of the genome and proper cellular expression patterns, which, when disrupted can underlie many diseases, including cancer.
Silar, Philippe; Barreau, Christian; Debuchy, Robert; Kicka, Sébastien; Turcq, Béatrice; Sainsard-Chanet, Annie; Sellem, Carole H; Billault, Alain; Cattolico, Laurence; Duprat, Simone; Weissenbach, Jean
2003-08-01
A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.
Nagaki, Kiyotaka; Kashihara, Kazunari; Murata, Minoru
2005-07-01
Although holocentric species are scattered throughout the plant and animal kingdoms, only holocentric chromosomes of the nematode worm Caenorhabditis elegans have been analyzed with centromeric protein markers. In an effort to determine the holocentric structure in plants, we investigated the snowy woodrush Luzula nivea. From the young roots, a cDNA encoding a putative centromere-specific histone H3 (LnCENH3) was successfully isolated based on sequence similarity among plant CENH3s. The deduced amino acid sequence was then used to raise an anti-LnCENH3 antibody. Immunostaining clearly revealed the diffuse centromere-like structure that appears in the linear shape at prophase to telophase. Furthermore, it was shown that the amount of LnCENH3 decreased significantly at interphase. The polar side positioning on each chromatid at metaphase to anaphase also confirmed that LnCENH3 represents one of the centromere-specific proteins in L. nivea. These data from L. nivea are compared with those from C. elegans, and common features of holocentric chromosomes are discussed.
Zhang, Tao; Talbert, Paul B; Zhang, Wenli; Wu, Yufeng; Yang, Zujun; Henikoff, Jorja G; Henikoff, Steven; Jiang, Jiming
2013-12-10
Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.
Ainsztein, Alexandra M.; Kandels-Lewis, Stefanie E.; Mackay, Alastair M.; Earnshaw, William C.
1998-01-01
The inner centromere protein (INCENP) has a modular organization, with domains required for chromosomal and cytoskeletal functions concentrated near the amino and carboxyl termini, respectively. In this study we have identified an autonomous centromere- and midbody-targeting module in the amino-terminal 68 amino acids of INCENP. Within this module, we have identified two evolutionarily conserved amino acid sequence motifs: a 13–amino acid motif that is required for targeting to centromeres and transfer to the spindle, and an 11–amino acid motif that is required for transfer to the spindle by molecules that have targeted previously to the centromere. To begin to understand the mechanisms of INCENP function in mitosis, we have performed a yeast two-hybrid screen for interacting proteins. These and subsequent in vitro binding experiments identify a physical interaction between INCENP and heterochromatin protein HP1Hsα. Surprisingly, this interaction does not appear to be involved in targeting INCENP to the centromeric heterochromatin, but may instead have a role in its transfer from the chromosomes to the anaphase spindle. PMID:9864353
Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D
2010-02-08
Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.
Neocentromeres and epigenetically inherited features of centromeres
Burrack, Laura S.; Berman, Judith
2012-01-01
Neocentromeres are ectopic sites where new functional kinetochores assemble and permit chromosome segregation. Neocentromeres usually form following genomic alterations that remove or disrupt centromere function. The ability to form neocentromeres is conserved in eukaryotes ranging from fungi to mammals. Neocentromeres that rescue chromosome fragments in cells with gross chromosomal rearrangements are found in several types of human cancers, and in patients with developmental disabilities. In this review, we discuss the importance of neocentromeres to human health and evaluate recently developed model systems to study neocentromere formation, maintenance, and function in chromosome segregation. Additionally, studies of neocentromeres provide insight into native centromeres; analysis of neocentromeres found in human clinical samples and induced in model organisms distinguishes features of centromeres that are dependent on centromere DNA from features that are epigenetically inherited together with the formation of a functional kinetochore. PMID:22723125
The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus.
Padeken, Jan; Mendiburo, María José; Chlamydas, Sarantis; Schwarz, Hans-Jürgen; Kremmer, Elisabeth; Heun, Patrick
2013-04-25
Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability. Copyright © 2013 Elsevier Inc. All rights reserved.
Neumann, Pavel; Pavlíková, Zuzana; Koblížková, Andrea; Fuková, Iva; Jedličková, Veronika; Novák, Petr; Macas, Jiří
2015-07-01
In most eukaryotes, centromere is determined by the presence of the centromere-specific histone variant CenH3. Two types of chromosome morphology are generally recognized with respect to centromere organization. Monocentric chromosomes possess a single CenH3-containing domain in primary constriction, whereas holocentric chromosomes lack the primary constriction and display dispersed distribution of CenH3. Recently, metapolycentric chromosomes have been reported in Pisum sativum, representing an intermediate type of centromere organization characterized by multiple CenH3-containing domains distributed across large parts of chromosomes that still form a single constriction. In this work, we show that this type of centromere is also found in other Pisum and closely related Lathyrus species, whereas Vicia and Lens genera, which belong to the same legume tribe Fabeae, possess only monocentric chromosomes. We observed extensive variability in the size of primary constriction and the arrangement of CenH3 domains both between and within individual Pisum and Lathyrus species, with no obvious correlation to genome or chromosome size. Search for CenH3 gene sequences revealed two paralogous variants, CenH3-1 and CenH3-2, which originated from a duplication event in the common ancestor of Fabeae species. The CenH3-1 gene was subsequently lost or silenced in the lineage leading to Vicia and Lens, whereas both genes are retained in Pisum and Lathyrus. Both of these genes appear to have evolved under purifying selection and produce functional CenH3 proteins which are fully colocalized. The findings described here provide the first evidence for a highly dynamic centromere structure within a group of closely related species, challenging previous concepts of centromere evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael
2016-01-01
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699
Histone modifications associated with both A and B chromosomes of maize.
Jin, Weiwei; Lamb, Jonathan C; Zhang, Wenli; Kolano, Bozena; Birchler, James A; Jiang, Jiming
2008-01-01
We report the distribution of several histone modifications along the arms and in centromeric regions of somatic chromosomes of maize, including the supernumerary B chromosome. Acetylated H3 and H4 as well as H3K4me2, modifications associated with euchromatin, were enriched in the distal parts of the A chromosomes, but were progressively depleted toward the centromeres of the A chromosomes and were depleted in the heterochromatic portions of the B chromosome. Classical histone modifications associated with heterochromatin, including H3K9me2, H3K27me1 and H3K27me2, were distributed throughout both A and B chromosomes. However, H3K27me2 showed a reduced level on the B chromosome compared with the A chromosomes and was not associated with some classes of constitutive heterochromatin. We monitored the presence of each histone modification in the centromeric regions using a YFP-tagged centromere-specific histone, CENH3. We observed the presence of H3K9me2 and absence of H3K4me2 in the centromeric regions of both A and B chromosomes of maize, which is in contrast to the presence of H3K4me2 and absence of H3K9me2 in animal centromeres. These results show a diversity of epigenetic modifications associated with centromeric chromatin in different eukaryotes.
Biphasic Incorporation of Centromeric Histone CENP-A in Fission Yeast
Takayama, Yuko; Sato, Hiroshi; Saitoh, Shigeaki; Ogiyama, Yuki; Masuda, Fumie
2008-01-01
CENP-A is a centromere-specific histone H3 variant that is essential for kinetochore formation. Here, we report that the fission yeast Schizosaccharomyces pombe has at least two distinct CENP-A deposition phases across the cell cycle: S and G2. The S phase deposition requires Ams2 GATA factor, which promotes histone gene activation. In Δams2, CENP-A fails to retain during S, but it reaccumulates onto centromeres via the G2 deposition pathway, which is down-regulated by Hip1, a homologue of HIRA histone chaperon. Reducing the length of G2 in Δams2 results in failure of CENP-A accumulation, leading to chromosome missegregation. N-terminal green fluorescent protein-tagging reduces the centromeric association of CENP-A, causing cell death in Δams2 but not in wild-type cells, suggesting that the N-terminal tail of CENP-A may play a pivotal role in the formation of centromeric nucleosomes at G2. These observations imply that CENP-A is normally localized to centromeres in S phase in an Ams2-dependent manner and that the G2 pathway may salvage CENP-A assembly to promote genome stability. The flexibility of CENP-A incorporation during the cell cycle may account for the plasticity of kinetochore formation when the authentic centromere is damaged. PMID:18077559
Wang, Linsheng; Zeng, Zixian; Zhang, Wenli; Jiang, Jiming
2014-02-01
We report discoveries of different haplotypes associated with the centromeres of three potato chromosomes, including haplotypes composed of long arrays of satellite repeats and haplotypes lacking the same repeats. These results are in favor of the hypothesis that satellite repeat-based centromeres may originate from neocentromeres that lack repeats.
Subchromosomal karyotype evolution in Equidae.
Musilova, P; Kubickova, S; Vahala, J; Rubes, J
2013-04-01
Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere-telomere occur almost exclusively in the karyotype of Hartmann's zebra and are characteristic of this species' evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.
A Perikinetochoric Ring Defined by MCAK and Aurora-B as a Novel Centromere Domain
Parra, María Teresa; Gómez, Rocío; Viera, Alberto; Page, Jesús; Calvente, Adela; Wordeman, Linda; Rufas, Julio S; Suja, José A
2006-01-01
Mitotic Centromere-Associated Kinesin (MCAK) is a member of the kinesin-13 subfamily of kinesin-related proteins. In mitosis, this microtubule-depolymerising kinesin seems to be implicated in chromosome segregation and in the correction of improper kinetochore-microtubule interactions, and its activity is regulated by the Aurora-B kinase. However, there are no published data on its behaviour and function during mammalian meiosis. We have analysed by immunofluorescence in squashed mouse spermatocytes, the distribution and possible function of MCAK, together with Aurora-B, during both meiotic divisions. Our results demonstrate that MCAK and Aurora-B colocalise at the inner domain of metaphase I centromeres. Thus, MCAK shows a “cone”-like three-dimensional distribution beneath and surrounding the closely associated sister kinetochores. During the second meiotic division, MCAK and Aurora-B also colocalise at the inner centromere domain as a band that joins sister kinetochores, but only during prometaphase II in unattached chromosomes. During chromosome congression to the metaphase II plate, MCAK relocalises and appears as a ring below each sister kinetochore. Aurora-B also relocalises to appear as a ring surrounding and beneath kinetochores but during late metaphase II. Our results demonstrate that the redistribution of MCAK at prometaphase II/metaphase II centromeres depends on tension across the centromere and/or on the interaction of microtubules with kinetochores. We propose that the perikinetochoric rings of MCAK and Aurora-B define a novel transient centromere domain at least in mouse chromosomes during meiosis. We discuss the possible functions of MCAK at the inner centromere domain and at the perikinetochoric ring during both meiotic divisions. PMID:16741559
Hoischen, Christian; Yavas, Sibel; Wohland, Thorsten; Diekmann, Stephan
2018-01-01
Kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. Here, we measured the co-migration between protein pairs of the constitutive centromere associated network (CCAN) and hMis12 complexes by fluorescence cross-correlation spectroscopy (FCCS) in the nucleoplasm outside centromeres in living human interphase cells. FCCS is a method that can tell if in living cells two differently fluorescently labelled molecules migrate independently, or co-migrate and thus are part of one and the same soluble complex. We also determined the apparent dissociation constants (Kd) of the hetero-dimers CENP-T/W and CENP-S/X. We measured co-migration between CENP-K and CENP-T as well as between CENP-M and CENP-T but not between CENP-T/W and CENP-S/X. Furthermore, CENP-C co-migrated with CENP-H, and CENP-K with CENP-N as well as with CENP-L. Thus, in the nucleoplasm outside centromeres, a large fraction of the CENP-H/I/K/M proteins interact with CENP-C, CENP-N/L and CENP-T/W but not with CENP-S/X. Our FCCS analysis of the Mis12 complex showed that hMis12, Nsl1, Dsn1 and Nnf1 also form a complex outside centromeres of which at least hMis12 associated with the CENP-C/H/I/K/M/T/W/N/L complex.
Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F
2016-04-01
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.
Blattner, Ariane C.; McKee, Bruce D.; Lehner, Christian F.
2016-01-01
Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase. PMID:27120695
Pillet, Flavien; Passot, Fanny Marie; Pasta, Franck; Anton Leberre, Véronique; Bouet, Jean-Yves
2017-01-01
Bacterial centromeres-also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA-the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres.
The Ins and Outs of Aurora B Inner Centromere Localization
Hindriksen, Sanne; Lens, Susanne M. A.; Hadders, Michael A.
2017-01-01
Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function. PMID:29312936
Centromere pairing precedes meiotic chromosome pairing in plants.
Zhang, Jing; Han, Fangpu
2017-11-01
Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing, synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation, and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.
Khadake, Jyoti; Heggestad, Arnold D.; Ma, Xiaojie; Johnstone, Karen A.; Resnick, James L.; Yang, Thomas P.
2013-01-01
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1. PMID:23390487
Müller, Miriam; Persson, Anja Bondke; Krueger, Katharina; Kirschner, Karin M; Scholz, Holger
2017-07-01
Insulin-like growth factor (IGF) binding proteins (IGFBPs) constitute a family of six secreted proteins that regulate the signaling of insulin-like growth factors (IGFs). IGFBP5 is the most conserved family member in vertebrates and the major IGF binding protein in bone. IGFBP5 is required for normal development of the musculoskeletal system, and various types of cancer frequently express high levels of IGFP5. Here we identify the gene encoding IGFBP5 as a novel downstream target of the Wilms tumor protein WT1. IGFBP5 and WT1 are expressed in an overlapping pattern in the condensing metanephric mesenchyme of embryonic murine kidneys. Down-regulation of WT1 by transfection with antisense vivo-morpholino significantly decreased Igfbp5 transcripts in murine embryonic kidney explants. Likewise, silencing of Wt1 in a mouse mesonephros-derived cell line reduced Igfbp5 mRNA levels by approximately 80%. Conversely, induction of the WT1(-KTS) isoform, whose role as transcriptional regulator has been firmly established, significantly increased IGFBP5 mRNA and protein levels in osteosarcoma cells. IGFBP5 expression was not significantly changed by WT1(+KTS) protein, which exhibits lower DNA binding affinity than the WT1(-KTS) isoform and has a presumed role in post-transcriptional gene regulation. Luciferase reporter constructs harboring 0.8 and 1.6 kilobases of the murine Igfbp5 promoter, respectively, were stimulated approximately 5-fold by co-transfection of WT1(-KTS). The WT1(+KTS) variant had no significant effect on IGFBP5 promoter activity. Binding of WT1(-KTS), but not of WT1(+KTS) protein, to the IGFBP5 promoter in human osteosarcoma cells was proven by chromatin immunoprecipitation (ChIP) and confirmed by electrophoretic mobility shift assay. These findings demonstrate that WT1 activates transcription of the IGFBP5 gene with possible implications for kidney development and bone (patho)physiology. Copyright © 2017 Elsevier B.V. All rights reserved.
Kitajima, Masaaki; Oka, Tomoichiro; Tohya, Yukinobu; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko
2009-09-01
A broadly reactive nested RT-PCR assay to detect MNV was developed and subsequently used to investigate the prevalence of MNV in laboratory mice in Japan. MNV were detected in 8 (22%) of 37 murine stool specimens by second-round PCR, although no positive band was obtained from any specimen by first-round PCR. Genetic analysis of the second round PCR products showed that MNV sequences detected in this study were closely matched (97.2 approximately 99.1%) to that of MNV-3 (DQ223042). This is the first report demonstrating the prevalence of MNV in Japan.
Chromatin assembly: Journey to the CENter of the chromosome
Chen, Chin-Chi
2016-01-01
All eukaryotic genomes are packaged into basic units of DNA wrapped around histone proteins called nucleosomes. The ability of histones to specify a variety of epigenetic states at defined chromatin domains is essential for cell survival. The most distinctive type of chromatin is found at centromeres, which are marked by the centromere-specific histone H3 variant CENP-A. Many of the factors that regulate CENP-A chromatin have been identified; however, our understanding of the mechanisms of centromeric nucleosome assembly, maintenance, and reorganization remains limited. This review discusses recent insights into these processes and draws parallels between centromeric and noncentromeric chromatin assembly mechanisms. PMID:27377247
Dunleavy, Elaine M.; Pidoux, Alison L.; Monet, Marie; Bonilla, Carolina; Richardson, William; Hamilton, Georgina L.; Ekwall, Karl; McLaughlin, Paul J.; Allshire, Robin C.
2007-01-01
Summary A defining feature of centromeres is the presence of the histone H3 variant CENP-ACnp1. It is not known how CENP-ACnp1 is specifically delivered to, and assembled into, centromeric chromatin. Through a screen for factors involved in kinetochore integrity in fission yeast, we identified Sim3. Sim3 is homologous to known histone binding proteins NASPHuman and N1/N2Xenopus and aligns with Hif1S. cerevisiae, defining the SHNi-TPR family. Sim3 is distributed throughout the nucleoplasm, yet it associates with CENP-ACnp1 and also binds H3. Cells defective in Sim3 function have reduced levels of CENP-ACnp1 at centromeres (and increased H3) and display chromosome segregation defects. Sim3 is required to allow newly synthesized CENP-ACnp1 to accumulate at centromeres in S and G2 phase-arrested cells in a replication-independent mechanism. We propose that one function of Sim3 is to act as an escort that hands off CENP-ACnp1 to chromatin assembly factors, allowing its incorporation into centromeric chromatin. PMID:18158900
Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres
Tanno, Yuji; Kitajima, Tomoya S.; Honda, Takashi; Ando, Yasuto; Ishiguro, Kei-ichiro; Watanabe, Yoshinori
2010-01-01
Shugoshin (Sgo) is a conserved centromeric protein. Mammalian Sgo1 collaborates with protein phosphatase 2A (PP2A) to protect mitotic cohesin from the prophase dissociation pathway. Although another shugoshin-like protein, Sgo2, is required for the centromeric protection of cohesion in germ cells, its precise molecular function remains largely elusive. We demonstrate that hSgo2 plays a dual role in chromosome congression and centromeric protection of cohesion in HeLa cells, while the latter function is exposed only in perturbed mitosis. These functions partly overlap with those of Aurora B, a kinase setting faithful chromosome segregation. Accordingly, we identified the phosphorylation of hSgo2 by Aurora B at the N-terminal coiled-coil region and the middle region, and showed that these phosphorylations separately promote binding of hSgo2 to PP2A and MCAK, factors required for centromeric protection and chromosome congression, respectively. Furthermore, these phosphorylations are essential for localizing PP2A and MCAK to centromeres. This mechanism seems applicable to germ cells as well. Thus, our study identifies Sgo2 as a hitherto unknown crucial cellular substrate of Aurora B in mammalian cells. PMID:20889715
The structure of (CENP-A-H4) 2 reveals physical features that mark centromeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekulic, Nikolina; Bassett, Emily A; Rogers, Danielle J
2010-09-20
Centromeres are specified epigenetically, and the histone H3 variant CENP-A is assembled into the chromatin of all active centromeres. Divergence from H3 raises the possibility that CENP-A generates unique chromatin features to mark physically centromere location. Here we report the crystal structure of a subnucleosomal heterotetramer, human (CENP-A-H4) 2, that reveals three distinguishing properties encoded by the residues that comprise the CENP-A targeting domain (CATD; ref. 2): (1) a CENP-A-CENP-A interface that is substantially rotated relative to the H3-H3 interface; (2) a protruding loop L1 of the opposite charge as that on H3; and (3) strong hydrophobic contacts that rigidifymore » the CENP-A-H4 interface. Residues involved in the CENP-A-CENP-A rotation are required for efficient incorporation into centromeric chromatin, indicating specificity for an unconventional nucleosome shape. DNA topological analysis indicates that CENP-A-containing nucleosomes are octameric with conventional left-handed DNA wrapping, in contrast to other recent proposals. Our results indicate that CENP-A marks centromere location by restructuring the nucleosome from within its folded histone core.« less
Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions
Leblon, G.; Zickler, D.; Lebilcot, S.
1986-01-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.—Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.—Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms. PMID:17246312
Leblon, G; Zickler, D; Lebilcot, S
1986-02-01
In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.
Production of Viable Gametes without Meiosis in Maize Deficient for an ARGONAUTE Protein[W
Singh, Manjit; Goel, Shalendra; Meeley, Robert B.; Dantec, Christelle; Parrinello, Hugues; Michaud, Caroline; Leblanc, Olivier; Grimanelli, Daniel
2011-01-01
Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize. PMID:21325139
Williams, Warren P; Tamburic, Lillian; Astell, Caroline R
2004-10-01
Minute virus of mice (MVM), an autonomous parvovirus, has served as a model for understanding parvovirus infection including host cell response to infection. In this paper, we report the effect of MVM infection on host cell gene expression in mouse fibroblast cells (LA9 cells), analyzed by differential display. Somewhat surprisingly, our data reveal that few cellular protein-coding genes appear to be up- or downregulated and identify the murine B1 and B2 short interspersed element (SINE) transcripts as being increased upon MVM infection. Primer extension assays confirm the effect of MVM infection on SINE expression and demonstrate that both SINEs are upregulated in a roughly linear fashion throughout MVM infection. They also demonstrate that the SINE response was due to RNA polymerase III transcription and not contaminating DNA or RNA polymerase II transcription. Furthermore, expression of MVM NS1, the major nonstructural protein, by transient transfection also leads to an increase in both murine SINEs. We believe this is the first time that the B1 and B2 SINEs have been shown to be altered by viral infection and the first time parvovirus infection has been shown to increase SINE expression. The increase in SINE transcripts caused by MVM infection does not appear to be due to an increase in either of the basal transcription factors TFIIIC110 or 220, in contrast to that which has been shown for other viruses.
Cogoi, Susanna; Paramasivam, Manikandan; Membrino, Alexandro; Yokoyama, Kazunari K.; Xodo, Luigi E.
2010-01-01
The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G → T or G → A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element. PMID:20457603
Transcription map of Xq27: candidates for several X-linked diseases.
Zucchi, I; Jones, J; Affer, M; Montagna, C; Redolfi, E; Susani, L; Vezzoni, P; Parvari, R; Schlessinger, D; Whyte, M P; Mumm, S
1999-04-15
Human Xq27 contains candidate regions for several disorders, yet is predicted to be a gene-poor cytogenetic band. We have developed a transcription map for the entire cytogenetic band to facilitate the identification of the relatively small number of expected candidate genes. Two approaches were taken to identify genes: (1) a group of 64 unique STSs that were generated during the physical mapping of the region were used in RT-PCR with RNA from human adult and fetal brain and (2) ESTs that have been broadly mapped to this region of the chromosome were finely mapped using a high-resolution yeast artificial chromosome contig. This combined approach identified four distinct regions of transcriptional activity within the Xq27 band. Among them is a region at the centromeric boundary that contains candidate regions for several rare developmental disorders (X-linked recessive hypoparathyroidism, thoracoabdominal syndrome, albinism-deafness syndrome, and Borjeson-Forssman-Lehman syndrome). Two transcriptionally active regions were identified in the center of Xq27 and include candidate regions for X-linked mental retardation syndrome 6, X-linked progressive cone dystrophy, X-linked retinitis pigmentosa 24, and a prostate cancer susceptibility locus. The fourth region of transcriptional activity encompasses the FMR1 (FRAXA) and FMR2 (FRAXE) genes. The analysis thus suggests clustered transcription in Xq27 and provides candidates for several heritable disorders for which the causative genes have not yet been found. Copyright 1999 Academic Press.
Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast.
Chen, Miao; Gartenberg, Marc R
2014-05-01
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC-tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs.
Coordination of tRNA transcription with export at nuclear pore complexes in budding yeast
Chen, Miao; Gartenberg, Marc R.
2014-01-01
tRNAs are encoded by RNA polymerase III-transcribed genes that reside at seemingly random intervals along the chromosomes of budding yeast. Existing evidence suggests that the genes congregate together at the nucleolus and/or centromeres. In this study, we re-examined spatial and temporal aspects of tRNA gene (tDNA) expression. We show that tDNA transcription fluctuates during cell cycle progression. In M phase, when tRNA synthesis peaks, tDNAs localize at nuclear pore complexes (NPCs). Docking of a tDNA requires the DNA sequence of the contacted gene, nucleoporins Nup60 and Nup2, and cohesin. Characterization of mutants that block NPC localization revealed that docking is a consequence of elevated tDNA transcription. NPC–tDNA contact falters in the absence of the principal exportin of nascent tRNA, Los1, and genetic assays indicate that gating of tDNAs at NPCs favors cytoplasmic accumulation of functional tRNA. Collectively, the data suggest that tDNAs associate with NPCs to coordinate RNA polymerase III transcription with the nuclear export of pre-tRNA. The M-phase specificity of NPC contact reflects a regulatory mechanism that may have evolved, in part, to avoid collisions between DNA replication forks and transcribing RNA polymerase III machinery at NPCs. PMID:24788517
Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd
2017-09-15
Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisin, E.R.; Murray, A.R.; Sargent, L.
The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in themore » lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.« less
Analytical workflow profiling gene expression in murine macrophages
Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.
2015-01-01
Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305
Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis
Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua
2016-01-01
Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124
NASA Technical Reports Server (NTRS)
Pelzer, T.; Lyons, G. E.; Kim, S.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)
1996-01-01
The cellular function(s) of the SNO protein remain undefined. To gain a better understanding of possible developmental roles of this cellular proto-oncogene, we have cloned two murine sno cDNAs and have investigated their expression patterns in embryonic and postnatal tissues. A single major transcript of 7.5 kb is detected in multiple tissues by Northern blot. However, reverse transcriptase polymerase chain reaction (RT-PCR) and RNAse protection assays revealed a novel splice variant in every tissue examined. Two isoforms, termed sno N and sno-dE3 (dE3, deletion within exon 3), were identified. The sno-dE3 isoform employs a novel 5' splice site located within the coding region of the third exon and deletes potential kinase recognition motifs. Transcripts of both sno isoforms accumulate ubiquitously but are most abundant in the developing central nervous system. The in situ hybridization patterns of sno expression during murine development suggest potential roles in tissues with a high degree of cellular proliferation. Expression in terminally differentiated tissues such as muscle and neurons indicates that SNO may have multiple functional activities.
Accessing the genomic effects of naked nanoceria in murine neuronal cells.
Lee, Tin-Lap; Raitano, Joan M; Rennert, Owen M; Chan, Siu-Wai; Chan, Wai-Yee
2012-07-01
Cerium oxide nanoparticles (nanoceria) are engineered nanoparticles whose versatility is due to their unique redox properties. We and others have demonstrated that naked nanoceria can act as antioxidants to protect cells against oxidative damage. Although the redox properties may be beneficial, the genome-wide effects of nanoceria on gene transcription and associated biological processes remain elusive. Here we applied a functional genomic approach to examine the genome-wide effects of nanoceria on global gene transcription and cellular functions in mouse neuronal cells. Importantly, we demonstrated that nanoceria induced chemical- and size-specific changes in the murine neuronal cell transcriptome. The nanoceria contributed more than 83% of the population of uniquely altered genes and were associated with a unique spectrum of genes related to neurological disease, cell cycle control, and growth. These observations suggest that an in-depth assessment of potential health effects of naked nanoceria and other naked nanoparticles is both necessary and imminent. Cerium oxide nanoparticles are important antioxidants, with potential applications in neurodegenerative conditions. This team of investigators demonstrated the genomic effects of nanoceria, showing that it induced chemical- and size-specific changes in the murine neuronal cell transcriptome. Published by Elsevier Inc.
2008-01-01
oncogenic properties of the transcription factor SOX4 and to determine its role in murine prostate development. Our lab has previously shown SOX4...mRNA and protein to be overexpressed in prostate cancer, and this expression is correlated with increasing Gleason score. Other labs have shown SOX4...D. Lieb, Genome Biol 6, R97 (2005). 2. M. van Beest et al., J Biol Chem 275, 27266 (Sep 1, 2000). 3. M. van de Wetering, M. Oosterwegel, K. van
Recombination patterns reveal information about centromere location on linkage maps.
Limborg, Morten T; McKinney, Garrett J; Seeb, Lisa W; Seeb, James E
2016-05-01
Linkage mapping is often used to identify genes associated with phenotypic traits and for aiding genome assemblies. Still, many emerging maps do not locate centromeres - an essential component of the genomic landscape. Here, we demonstrate that for genomes with strong chiasma interference, approximate centromere placement is possible by phasing the same data used to generate linkage maps. Assuming one obligate crossover per chromosome arm, information about centromere location can be revealed by tracking the accumulated recombination frequency along linkage groups, similar to half-tetrad analyses. We validate the method on a linkage map for sockeye salmon (Oncorhynchus nerka) with known centromeric regions. Further tests suggest that the method will work well in other salmonids and other eukaryotes. However, the method performed weakly when applied to a male linkage map (rainbow trout; O. mykiss) characterized by low and unevenly distributed recombination - a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations, our method should work well for high-density maps in species with strong recombination interference and will enrich many existing and future mapping resources. © 2015 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.
CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly
Shono, Nobuaki; Ohzeki, Jun-ichirou; Otake, Koichiro; Martins, Nuno M. C.; Nagase, Takahiro; Kimura, Hiroshi; Larionov, Vladimir; Earnshaw, William C.; Masumoto, Hiroshi
2015-01-01
ABSTRACT Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoidtetO). We also obtained cell lines bearing the alphoidtetO array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly. PMID:26527398
Liu, Xing; Song, Zhenwei; Huo, Yuda; Zhang, Jiahai; Zhu, Tongge; Wang, Jianyu; Zhao, Xuannv; Aikhionbare, Felix; Zhang, Jiancun; Duan, Hequan; Wu, Jihui; Dou, Zhen; Shi, Yunyu; Yao, Xuebiao
2014-01-01
Accurate mitosis requires the chromosomal passenger protein complex (CPC) containing Aurora B kinase, borealin, INCENP, and survivin, which orchestrates chromosome dynamics. However, the chromatin factors that specify the CPC to the centromere remain elusive. Here we show that borealin interacts directly with heterochromatin protein 1α (HP1α) and that this interaction is mediated by an evolutionarily conserved PXVXL motif in the C-terminal borealin with the chromo shadow domain of HP1α. This borealin-HP1α interaction recruits the CPC to the centromere and governs an activation of Aurora B kinase judged by phosphorylation of Ser-7 in CENP-A, a substrate of Aurora B. Consistently, modulation of the motif PXVXL leads to defects in CPC centromere targeting and aberrant Aurora B activity. On the other hand, the localization of the CPC in the midzone is independent of the borealin-HP1α interaction, demonstrating the spatial requirement of HP1α in CPC localization to the centromere. These findings reveal a previously unrecognized but direct link between HP1α and CPC localization in the centromere and illustrate the critical role of borealin-HP1α interaction in orchestrating an accurate cell division. PMID:24917673
Diversity and evolution of centromere repeats in the maize genome.
Bilinski, Paul; Distor, Kevin; Gutierrez-Lopez, Jose; Mendoza, Gabriela Mendoza; Shi, Jinghua; Dawe, R Kelly; Ross-Ibarra, Jeffrey
2015-03-01
Centromere repeats are found in most eukaryotes and play a critical role in kinetochore formation. Though centromere repeats exhibit considerable diversity both within and among species, little is understood about the mechanisms that drive centromere repeat evolution. Here, we use maize as a model to investigate how a complex history involving polyploidy, fractionation, and recent domestication has impacted the diversity of the maize centromeric repeat CentC. We first validate the existence of long tandem arrays of repeats in maize and other taxa in the genus Zea. Although we find considerable sequence diversity among CentC copies genome-wide, genetic similarity among repeats is highest within these arrays, suggesting that tandem duplications are the primary mechanism for the generation of new copies. Nonetheless, clustering analyses identify similar sequences among distant repeats, and simulations suggest that this pattern may be due to homoplasious mutation. Although the two ancestral subgenomes of maize have contributed nearly equal numbers of centromeres, our analysis shows that the majority of all CentC repeats derive from one of the parental genomes, with an even stronger bias when examining the largest assembled contiguous clusters. Finally, by comparing maize with its wild progenitor teosinte, we find that the abundance of CentC likely decreased after domestication, while the pericentromeric repeat Cent4 has drastically increased.
DNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA
Du, Yaqing; Topp, Christopher N.; Dawe, R. Kelly
2010-01-01
Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigenetically). It has been found that RNA transcribed from centromeres remains bound within the kinetochore region, and this local population of RNA is thought to be part of the epigenetic marking system. Here we carried out a genetic and biochemical study of maize CENPC, a key inner kinetochore protein. We show that DNA binding is conferred by a localized region 122 amino acids long, and that the DNA-binding reaction is exquisitely sensitive to single-stranded RNA. Long, single-stranded nucleic acids strongly promote the binding of CENPC to DNA, and the types of RNAs that stabilize DNA binding match in size and character the RNAs present on kinetochores in vivo. Removal or replacement of the binding module with HIV integrase binding domain causes a partial delocalization of CENPC in vivo. The data suggest that centromeric RNA helps to recruit CENPC to the inner kinetochore by altering its DNA binding characteristics. PMID:20140237
Wanner, Gerhard; Schroeder-Reiter, Elizabeth; Ma, Wei; Houben, Andreas; Schubert, Veit
2015-12-01
The spatial distribution of the three centromere-associated proteins α-tubulin, CENH3, and phosphorylated histone H2A (at threonine 120, H2AThr120ph) was analysed by indirect immunodetection at monocentric cereal chromosomes and at the holocentric chromosomes of Luzula elegans by super-resolution light microscopy and scanning electron microscopy (SEM). Using structured illumination microscopy (SIM) as the super-resolution technique on squashed specimens and SEM on uncoated isolated specimens, the three-dimensional (3D) distribution of the proteins was visualized at the centromeres. Technical aspects of 3D SEM are explained in detail. We show that CENH3 forms curved "pads" mainly around the lateral centromeric region in the primary constriction of metacentric chromosomes. H2AThr120ph is present in both the primary constriction and in the pericentromere. α-tubulin-labeled microtubule bundles attach to CENH3-containing chromatin structures, either in single bundles with a V-shaped attachment to the centromere or in split bundles to bordering pericentromeric flanks. In holocentric L. elegans chromosomes, H2AThr120ph is located predominantly in the centromeric groove of each chromatid as proven by subsequent FIB/FESEM ablation and 3D reconstruction. α-tubulin localizes to the edges of the groove. In both holocentric and monocentric chromosomes, no additional intermediate structures between microtubules and the centromere were observed. We established models of the distribution of CENH3, H2AThr120ph and the attachment sites of microtubules for metacentric and holocentric plant chromosomes.
Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg
2015-12-01
Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
A comparative study of retrotransposons in the centromeric regions of A and B chromosomes of maize.
Theuri, J; Phelps-Durr, T; Mathews, S; Birchler, J
2005-01-01
Bacterial Artificial Chromosomes (BACs) derived from the B chromosome, based on homology with the B specific sequence, were subcloned and sequenced. Analysis of DNA sequence data indicated the presence of 23 common retroelements, as well as novel sequences of B chromosome origin. Generally, where the same retrotransposon type was observed in both A and B chromosomes, there were more copies per unit of sequence in the B centromeric region (the major site of B repeat) than in the A centromere, except for Huck-1. Based on previous estimates of the age of the major burst of transposition into the maize genome, the oldest retrotransposons (Ji-6 and Tekay, approximately 5.0 and 5.2 million years ago, respectively) were found in the B centromere region only, while the next two oldest (Huck-1 and Opie-1) were found in both the A and B sequences. Phylogenetic analysis of Opie retroelements from both A and B centromeres indicated that some of the B Opie centromeric sequences share a more recent common ancestor with A Opie retroelements than they do with other B Opie centromeric sequences. These results imply that the supernumerary maize B chromosome has coexisted with the A chromosomes during that period of transposition. They also support the hypothesis that the B chromosome had its origins from A chromosome elements, or that alternative origins, such as being donated to the maize genome in a wide species cross, preceded six million years ago, because the spectrum of retrotransposons in the two chromosomes is quite similar.
Tissue-specific expression of human CD4 in transgenic mice.
Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C
1993-01-01
The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453
Perturbation of nuclear architecture by long-distance chromosome interactions.
Dernburg, A F; Broman, K W; Fung, J C; Marshall, W F; Philips, J; Agard, D A; Sedat, J W
1996-05-31
Position-effect variegation (PEV) describes the stochastic transcriptional silencing of a gene positioned adjacent to heterochromatin. Using FISH, we have tested whether variegated expression of the eye-color gene brown in Drosophila is influenced by its nuclear localization. In embryonic nuclei, a heterochromatic insertion at the brown locus is always spatially isolated from other heterochromatin. However, during larval development this insertion physically associates with other heterochromatic regions on the same chromosome in a stochastic manner. These observations indicate that the brown gene is silenced by specific contact with centromeric heterochromatin. Moreover, they provide direct evidence for long-range chromosome interactions and their impact on three-dimensional nuclear architecture, while providing a cohesive explanation for the phenomenon of PEV.
Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor.
Do, Hyun-Jin; Song, Hyuk; Yang, Heung-Mo; Kim, Dong-Ku; Kim, Nam-Hyung; Kim, Jin-Hoi; Cha, Kwang-Yul; Chung, Hyung-Min; Kim, Jae-Hwan
2006-03-20
We investigated nuclear localization signal (NLS) determinants within the AT-hook and ETS DNA-binding domains of murine Elf3 (mElf3), a member of the subfamily of epithelium-specific ETS transcription factors. Deletion mutants containing the AT-hook, ETS domain or both localized strictly in the nucleus, suggesting that these individual domains contain independent NLS motif(s). Within the AT-hook domain, four basic residues (244KRKR247) were critical for strong NLS activity, and two potent bipartite NLS motifs (236-252 and 249-267) were sufficient for nuclear import of mElf3, although less efficient than the full domain. In addition, one stretch of basic residues (318KKK320) within the ETS domain appears to be essential for mElf3 nuclear localization. Taken together, mElf3 contains multiple NLS motifs, which may function cooperatively to effect efficient nuclear transport.
Kim, Tae-Hyung; Chiera, Shannon L.; Linder, Keith E.; Trempus, Carol S.; Smart, Robert C.; Horowitz, Jonathan M.
2010-01-01
Sp proteins are evolutionarily-conserved transcription factors required for the expression of a wide variety of genes that are critical for development and cell-cycle progression. De-regulated expression of certain Sp proteins is associated with the formation of a variety of human tumors, however direct evidence that any given Sp protein is oncogenic has been lacking. Here we report that Sp2 protein abundance in mice increases in concert with the progression of carcinogen-induced murine squamous cell carcinomas. Transgenic mice specifically overexpressing murine Sp2 in epidermal basal keratinocytes were highly susceptible to wound- and carcinogen-induced papillomagenesis. Transgenic animals that were homozygous rather than hemizygous for the Sp2 transgene exhibited a striking arrest in the epidermal differentiation program, perishing within two weeks of birth. Our results directly support the likelihood that Sp2 overexpression occurring in various human cancers has significant functional impact. PMID:20959487
Sharma, Sanjai; Murai, Fukashi; Miyanohara, Atsushi; Friedmann, Theodore
1997-01-01
Retrovirus packaging cell lines expressing the Moloney murine leukemia virus gag and pol genes but lacking virus envelope genes produce virus-like particles constitutively, whether or not they express a transcript from an integrated retroviral provirus. In the absence of a proviral transcript, the assembled particles contain processed gag and reverse transcriptase, and particles made by cells expressing an integrated lacZ provirus also contain viral RNA. The virus-like particles from both cell types are enveloped and are secreted/budded into the extracellular space but are noninfectious. Their physicochemical properties are similar to those of mature retroviral particles. The noninfectious gag pol RNA particles can readily be made infectious by the addition of lipofection reagents to produce preparations with titers of up to 105 colony-forming units per ml. PMID:9380714
Form and function of topologically associating genomic domains in budding yeast.
Eser, Umut; Chandler-Brown, Devon; Ay, Ferhat; Straight, Aaron F; Duan, Zhijun; Noble, William Stafford; Skotheim, Jan M
2017-04-11
The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.
Longo, Mark S; Carone, Dawn M; Green, Eric D; O'Neill, Michael J; O'Neill, Rachel J
2009-01-01
Background Large-scale genome rearrangements brought about by chromosome breaks underlie numerous inherited diseases, initiate or promote many cancers and are also associated with karyotype diversification during species evolution. Recent research has shown that these breakpoints are nonrandomly distributed throughout the mammalian genome and many, termed "evolutionary breakpoints" (EB), are specific genomic locations that are "reused" during karyotypic evolution. When the phylogenetic trajectory of orthologous chromosome segments is considered, many of these EB are coincident with ancient centromere activity as well as new centromere formation. While EB have been characterized as repeat-rich regions, it has not been determined whether specific sequences have been retained during evolution that would indicate previous centromere activity or a propensity for new centromere formation. Likewise, the conservation of specific sequence motifs or classes at EBs among divergent mammalian taxa has not been determined. Results To define conserved sequence features of EBs associated with centromere evolution, we performed comparative sequence analysis of more than 4.8 Mb within the tammar wallaby, Macropus eugenii, derived from centromeric regions (CEN), euchromatic regions (EU), and an evolutionary breakpoint (EB) that has undergone convergent breakpoint reuse and past centromere activity in marsupials. We found a dramatic enrichment for long interspersed nucleotide elements (LINE1s) and endogenous retroviruses (ERVs) and a depletion of short interspersed nucleotide elements (SINEs) shared between CEN and EBs. We analyzed the orthologous human EB (14q32.33), known to be associated with translocations in many cancers including multiple myelomas and plasma cell leukemias, and found a conserved distribution of similar repetitive elements. Conclusion Our data indicate that EBs tracked within the class Mammalia harbor sequence features retained since the divergence of marsupials and eutherians that may have predisposed these genomic regions to large-scale chromosomal instability. PMID:19630942
Pillet, Flavien; Passot, Fanny Marie
2017-01-01
Bacterial centromeres–also called parS, are cis-acting DNA sequences which, together with the proteins ParA and ParB, are involved in the segregation of chromosomes and plasmids. The specific binding of ParB to parS nucleates the assembly of a large ParB/DNA complex from which ParA—the motor protein, segregates the sister replicons. Closely related families of partition systems, called Bsr, were identified on the chromosomes and large plasmids of the multi-chromosomal bacterium Burkholderia cenocepacia and other species from the order Burkholeriales. The centromeres of the Bsr partition families are 16 bp palindromes, displaying similar base compositions, notably a central CG dinucleotide. Despite centromeres bind the cognate ParB with a narrow specificity, weak ParB-parS non cognate interactions were nevertheless detected between few Bsr partition systems of replicons not belonging to the same genome. These observations suggested that Bsr partition systems could have a common ancestry but that evolution mostly erased the possibilities of cross-reactions between them, in particular to prevent replicon incompatibility. To detect novel similarities between Bsr partition systems, we have analyzed the binding of six Bsr parS sequences and a wide collection of modified derivatives, to their cognate ParB. The study was carried out by Surface Plasmon Resonance imaging (SPRi) mulitplex analysis enabling a systematic survey of each nucleotide position within the centromere. We found that in each parS some positions could be changed while maintaining binding to ParB. Each centromere displays its own pattern of changes, but some positions are shared more or less widely. In addition from these changes we could speculate evolutionary links between these centromeres. PMID:28562673
Thakur, Jitendra; Sanyal, Kaustuv
2012-01-01
Unlike most eukaryotes, a kinetochore is fully assembled early in the cell cycle in budding yeasts Saccharomyces cerevisiae and Candida albicans. These kinetochores are clustered together throughout the cell cycle. Kinetochore assembly on point centromeres of S. cerevisiae is considered to be a step-wise process that initiates with binding of inner kinetochore proteins on specific centromere DNA sequence motifs. In contrast, kinetochore formation in C. albicans, that carries regional centromeres of 3–5 kb long, has been shown to be a sequence independent but an epigenetically regulated event. In this study, we investigated the process of kinetochore assembly/disassembly in C. albicans. Localization dependence of various kinetochore proteins studied by confocal microscopy and chromatin immunoprecipitation (ChIP) assays revealed that assembly of a kinetochore is a highly coordinated and interdependent event. Partial depletion of an essential kinetochore protein affects integrity of the kinetochore cluster. Further protein depletion results in complete collapse of the kinetochore architecture. In addition, GFP-tagged kinetochore proteins confirmed similar time-dependent disintegration upon gradual depletion of an outer kinetochore protein (Dam1). The loss of integrity of a kinetochore formed on centromeric chromatin was demonstrated by reduced binding of CENP-A and CENP-C at the centromeres. Most strikingly, Western blot analysis revealed that gradual depletion of any of these essential kinetochore proteins results in concomitant reduction in cellular protein levels of CENP-A. We further demonstrated that centromere bound CENP-A is protected from the proteosomal mediated degradation. Based on these results, we propose that a coordinated interdependent circuitry of several evolutionarily conserved essential kinetochore proteins ensures integrity of a kinetochore formed on the foundation of CENP-A containing centromeric chromatin. PMID:22536162
Grassberger, M; Baumruker, T; Enz, A; Hiestand, P; Hultsch, T; Kalthoff, F; Schuler, W; Schulz, M; Werner, F J; Winiski, A; Wolff, B; Zenke, G
1999-08-01
SDZ ASM 981, a novel ascomycin macrolactam derivative, has high anti-inflammatory activity in animal models of allergic contact dermatitis and shows clinical efficacy in atopic dermatitis, allergic contact dermatitis and psoriasis, after topical application. Here we report on the in vitro activities of this promising new drug. SDZ ASM 981 inhibits the proliferation of human T cells after antigen-specific or non-specific stimulation. It downregulates the production of Th1 [interleukin (IL)-2, interferon-gamma] and Th2 (IL-4, IL-10) type cytokines after antigen-specific stimulation of a human T-helper cell clone isolated from the skin of an atopic dermatitis patient. SDZ ASM 981 inhibits the phorbol myristate acetate/phytohaemagglutinin-stimulated transcription of a reporter gene coupled to the human IL-2 promoter in the human T-cell line Jurkat and the IgE/antigen-mediated transcription of a reporter gene coupled to the human tumour necrosis factor (TNF)-alpha promoter in the murine mast-cell line CPII. It does not, however, affect the human TNF-alpha promoter controlled transcription of a reporter gene in a murine dendritic cell line (DC18 RGA) after stimulation via the FcgammaRIII receptor. SDZ ASM 981 also prevents the release of preformed pro-inflammatory mediators from mast cells, as shown in the murine cell line CPII after stimulation with IgE/antigen. In summary, these results demonstrate that SDZ ASM 981 is a specific inhibitor of the production of pro-inflammatory cytokines from T cells and mast cells in vitro.
Thamotharan, Shanthie; Raychaudhuri, Nupur; Tomi, Masatoshi; Shin, Bo-Chul
2013-01-01
We have shown in vitro a hypoxia-induced time-dependent increase in facilitative glucose transporter isoform 3 (GLUT3) expression in N2A murine neuroblasts. This increase in GLUT3 expression is partially reliant on a transcriptional increase noted in actinomycin D and cycloheximide pretreatment experiments. Transient transfection assays in N2A neuroblasts using murine glut3-luciferase reporter constructs mapped the hypoxia-induced enhancer activities to −857- to −573-bp and −203- to −177-bp regions. Hypoxia-exposed N2A nuclear extracts demonstrated an increase in HIF-1α and p-Creb binding to HRE (−828 to −824 bp) and AP-1 (−187 to −180 bp) cis-elements, respectively, in electromobility shift and supershift assays, which was confirmed by chromatin immunoprecipitation assays. In addition, the interaction of CBP with Creb and HIF-1α and CREST with CBP in hypoxia was detected by coimmunoprecipitation. Furthermore, small interference (si)RNA targeting Creb in these cells decreased endogenous Creb concentrations that reduced by twofold hypoxia-induced glut3 gene transcription. Thus, in N2A neuroblasts, phosphorylated HIF-1α and Creb mediated the hypoxia-induced increase in glut3 transcription. Coactivation by the Ca++-dependent CREST and CBP proteins may enhance cross-talk between p-Creb-AP-1 and HIF-1α/HRE of the glut3 gene. Collectively, these processes can facilitate an adaptive response to hypoxic energy depletion targeted at enhancing glucose transport and minimizing injury while fueling the proliferative potential of neuroblasts. PMID:23321477
Identification of distal silencing elements in the murine interferon-A11 gene promoter.
Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G
1996-08-01
The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.
Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E
2003-11-01
Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.
Flutter, Barry; Nestle, Frank O
2013-10-17
Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.
The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA
Takeuchi, Kozo; Nishino, Tatsuya; Mayanagi, Kouta; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Hori, Tetsuya; Kurumizaka, Hitoshi; Fukagawa, Tatsuo
2014-01-01
The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP–A. In addition to CENP–A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP–T–W–S–X complex. However, it is unclear how the CENP–T–W–S–X complex associates with centromere chromatin. Here, we demonstrate that the CENP–T–W–S–X complex binds preferentially to ∼100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP–T–W–S–X complex primarily binds to DNA as a (CENP–T–W–S–X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP–T–W–S–X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP–T or CENP–W, but not CENP–S or CENP–X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP–T–W–S–X complex. In summary, our work reveals the structural features and properties of the CENP–T–W–S–X complex for its localization to centromeres. PMID:24234442
APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast.
Jonak, Katarzyna; Zagoriy, Ievgeniia; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang
2017-06-18
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/C Cdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
APC/C-Cdc20 mediates deprotection of centromeric cohesin at meiosis II in yeast
Jonak, Katarzyna; Oz, Tugce; Graf, Peter; Rojas, Julie; Mengoli, Valentina; Zachariae, Wolfgang
2017-01-01
ABSTRACT Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to “deprotect” Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/CCdc20 removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes. PMID:28514186
Gao, Dongying; Jiang, Ning; Wing, Rod A.; Jiang, Jiming; Jackson, Scott A.
2015-01-01
Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8) from the African cultivated rice (O. glaberrima) and two subspecies of the Asian cultivated rice (O. sativa), indica and japonica. We detected much higher transposon contents (>69%) in centromere regions than in the whole genomes of O. sativa ssp. japonica and O. glaberrima (~35%). We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP) data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions. PMID:25904926
Gao, Dongying; Jiang, Ning; Wing, Rod A; Jiang, Jiming; Jackson, Scott A
2015-01-01
Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8) from the African cultivated rice (O. glaberrima) and two subspecies of the Asian cultivated rice (O. sativa), indica and japonica. We detected much higher transposon contents (>69%) in centromere regions than in the whole genomes of O. sativa ssp. japonica and O. glaberrima (~35%). We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP) data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions.
Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J
2009-12-01
Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.
Dicentric chromosomes: unique models to study centromere function and inactivation.
Stimpson, Kaitlin M; Matheny, Justyne E; Sullivan, Beth A
2012-07-01
Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.
Dicentric chromosomes: unique models to study centromere function and inactivation
Stimpson, Kaitlin M.; Matheny, Justyne E.
2013-01-01
Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well under-stood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation. PMID:22801777
Pietrowski, D; Graw, J
1997-10-01
In a previous report we demonstrated the in vitro interaction of alpha-crystallin with an element downstream of the transcriptional initiation site (DOTIS) of the murine gamma E-crystallin promoter (Pietrowski et al., 1994, Gene 144, 171-178). The aim of the present study was to investigate the influence of phosphorylation on this particular interaction. We could demonstrate that the autophosphorylation of alpha-crystallin leads to a complete loss of interaction with the DOTIS element, however, PKA-dependent phosphorylation of alpha-crystallin is without effect on the interaction. It is hypothesized that the autophosphorylation of alpha-crystallin might be involved in regulatory mechanisms of the murine gamma D/E/F-crystallin gene expression.
A Three-Dimensional Model of the Yeast Genome
NASA Astrophysics Data System (ADS)
Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
Conserved Locus-Specific Silencing Functions of Schizosaccharomyces pombe sir2+
Freeman-Cook, Lisa L.; Gómez, Eliana B.; Spedale, Erik J.; Marlett, John; Forsburg, Susan L.; Pillus, Lorraine; Laurenson, Patricia
2005-01-01
In Schizosaccharomyces pombe, three genes, sir2+, hst2+, and hst4+, encode members of the Sir2 family of conserved NAD+-dependent protein deacetylases. The S. pombe sir2+ gene encodes a nuclear protein that is not essential for viability or for resistance to treatment with UV or a microtubule-destabilizing agent. However, sir2+ is essential for full transcriptional silencing of centromeres, telomeres, and the cryptic mating-type loci. Chromatin immunoprecipitation results suggest that the Sir2 protein acts directly at these chromosomal regions. Enrichment of Sir2p at silenced regions does not require the HP1 homolog Swi6p; instead, Swi6-GFP localization to telomeres depends in part on Sir2p. The phenotype of sir2 swi6 double mutants supports a model whereby Sir2p functions prior to Swi6p at telomeres and the silent mating-type loci. However, Sir2p does not appear to be essential for the localization of Swi6p to centromeric foci. Cross-complementation experiments showed that the Saccharomyces cerevisiae SIR2 gene can function in place of S. pombe sir2+, suggesting overlapping deacetylation substrates in both species. These results also suggest that, despite differences in most of the other molecules required, the two distantly related yeast species share a mechanism for targeting Sir2p homologs to silent chromatin. PMID:15545655
An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.
Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A
1996-06-01
Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.
Wells, Elizabeth; Kambhampati, Madhuri; Damsker, Jesse M; Gordish-Dressman, Heather; Yadavilli, Sridevi; Becher, Oren J; Gittens, Jamila; Stampar, Mojca; Packer, Roger J; Nazarian, Javad
2017-02-07
Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D
2016-11-03
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.
2016-01-01
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111
Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío
2017-09-01
Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Ji Eun; Lee, Min Hee; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin-Hong
2013-12-01
Ionizing radiation causes various epigenetic changes, as well as a variety of DNA lesions such as strand breaks, cross-links, oxidative damages, etc., in genomes. However, radiation-induced epigenetic changes have rarely been substantiated in plant genomes. The current study investigates whether DNA methylation of Arabidopsis thaliana genome is altered by gamma rays. We found that genomic DNA methylation decreased in wild-type plants with increasing doses of gamma rays (5, 50 and 200 Gy). Irradiation with 200 Gy significantly increased the expression of transcriptionally inactive centromeric 180-bp (CEN) and transcriptionally silent information (TSI) repeats. This increase suggested that there was a substantial release of transcriptional gene silencing by gamma rays, probably by induction of DNA hypomethylation. High expression of the DNA demethylase ROS1 and low expression of the DNA methyltransferase CMT3 supported this hypothesis. Moreover, Southern blot analysis following digestion of genomic DNA with methylation-sensitive enzymes revealed that the DNA hypomethylation occured preferentially at CHG or CHH sites rather than CG sites, depending on the radiation dose. Unlike CEN and TSI repeats, the number of Ta3, AtSN1 and FWA repeats decreased in transcription but increased in non-CG methylation. In addition, the cmt3-11 mutant showed neither DNA hypomethylation nor transcriptional activation of silenced repeats upon gamma irradiation. Furthermore, profiles of genome-wide transcriptomes in response to gamma rays differed between the wild-type and cmt3-11 mutant. These results suggest that gamma irradiation induced DNA hypomethylation preferentially at non-CG sites of transcriptionally inactive repeats in a locus-specific manner, which depends on CMT3 activity.
Eberhard, D; Tora, L; Egly, J M; Grummt, I
1993-09-11
TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity.
Eberhard, D; Tora, L; Egly, J M; Grummt, I
1993-01-01
TIF-IB is a transcription factor which interacts with the mouse ribosomal gene promoter and nucleates the formation of an initiation complex containing RNA polymerase I (Pol I). We have purified this factor to near homogeneity and demonstrate that TIF-IB is a large complex (< 200 kDa) which contains several polypeptides. One of the subunits present in this protein complex is the TATA-binding protein (TBP) as revealed by copurification of TIF-IB activity and TBP over different chromatographic steps including immunoaffinity purification. In addition to TBP, three tightly associated proteins (TAFs-I) with apparent molecular weights of 95, 68, and 48 kDa are contained in this multimeric complex. This subunit composition is similar--but not identical--to the analogous human factor SL1. Depletion of TBP from TIF-IB-containing fractions by immunoprecipitation eliminates TIF-IB activity. Neither TBP alone nor fractions containing other TBP complexes are capable of substituting for TIF-IB activity. Therefore, TIF-IB is a unique complex with Pol I-specific TAFs distinct from other TBP-containing complexes. The identification of TBP as an integral part of the murine rDNA promoter-specific transcription initiation factor extends the previously noted similarity of transcriptional initiation by the three nuclear RNA polymerases and underscores the importance of TAFs in determining promoter specificity. Images PMID:8414971
Alternative splicing of the tyrosinase gene transcript in normal human melanocytes and lymphocytes.
Fryer, J P; Oetting, W S; Brott, M J; King, R A
2001-11-01
We have identified and isolated ectopically expressed tyrosinase transcripts in normal human melanocytes and lymphocytes and in a human melanoma (MNT-1) cell line to establish a baseline for the expression pattern of this gene in normal tissue. Tyrosinase mRNA from human lymphoblastoid cell lines was reverse transcribed and amplified using specific "nested" primers. This amplification yielded eight identifiable transcripts; five that resulted from alternative splicing patterns arising from the utilization of normal and alternative splice sequences. Identical splicing patterns were found in transcripts from human primary melanocytes in culture and a melanoma cell line, indicating that lymphoblastoid cell lines provide an accurate reflection of transcript processing in melanocytes. Similar splicing patterns have also been found with murine melanocyte tyrosinase transcripts. Our results demonstrate that alternative splicing of human tyrosinase gene transcript produces a number of predictable and identifiable transcripts, and that human lymphoblastoid cell lines provide a source of ectopically expressed transcripts that can be used to study the biology of tyrosinase gene expression in humans.
Mach, Jennifer M [Chicago, IL; Zieler, Helge [Del Mar, CA; Jin, RongGuan [Chesterfield, MO; Keith, Kevin [Three Forks, MT; Copenhaver, Gregory P [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2011-08-02
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach,; Jennifer M. , Zieler; Helge, Jin [Del Mar, CA; RongGuan, Keith [Chesterfield, MO; Kevin, Copenhaver [Three Forks, MT; Gregory P. , Preuss; Daphne, [Chicago, IL
2011-11-22
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Keith, Kevin; Copenhaver, Gregory; Preuss, Daphne
2006-10-10
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach, Jennifer [Chicago, IL; Zieler, Helge [Chicago, IL; Jin, James [Chicago, IL; Keith, Kevin [Chicago, IL; Copenhaver, Gregory [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2006-06-26
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Mach, Jennifer [Chicago, IL; Zieler, Helge [Chicago, IL; Jin, RongGuan [Chicago, IL; Keith, Kevin [Chicago, IL; Copenhaver, Gregory [Chapel Hill, NC; Preuss, Daphne [Chicago, IL
2007-06-05
The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.
Loginova, D B; Silkova, O G
2014-08-01
The regulation of chromosomal behavior in meiosis in partly fertile wheat-rye amphihaploids was studied using the centromere specific probes pAWRC1 and Ae. tauschii pAet6-09. Comparative analysis of the probe localization patterns in mitosis, normal meiosis in wheat Triticum aestivum L. and rye Secale cereale L., and meiosis in amphihaploids was performed. The differences in the structure of centromeres in monopolar- and bipolar- oriented chromosomes were revealed. Single dense hybridization signals were observed in the diplotene and the metaphase of the first meiotic division, while hybridization signals appeared as stretched bands with diffuse structure located across the centromere region in mitosis and the second round of meiotic division. Based upon the obtained data, we used the corresponding centromere-specific probes as a tool for the analysis of chromosomal behavior in meiosis in amphihaploids. In meiocytes with three types of chromosome behavior (reductional, equational plus reductional, and equational), dense point-like hybridization signals for the pAet6-09 probe were observed for univalents with the reductional division type and stretched bands with diffuse structure for those with the equational division type. Thus, pAet6-09 probe localization patterns suggest some structural and functional specificities of centromeres in the meiosis in wheat-rye amphihaploids that reflect special regulation of chromosomal behavior during equational division. Meiocytes with true mitotic division were also observed in anthers predominantly containing meiocytes with chromosomes undergoing equational division.
Nogueira, Cristina; Kashevsky, Helena; Pinto, Belinda; Clarke, Astrid; Orr-Weaver, Terry L.
2014-01-01
The Shugoshin (Sgo) protein family helps to ensure proper chromosome segregation by protecting cohesion at the centromere by preventing cleavage of the cohesin complex. Some Sgo proteins also influence other aspects of kinetochore-microtubule attachments. Although many Sgo members require Aurora B kinase to localize to the centromere, factors controlling delocalization are poorly understood and diverse. Moreover, it is not clear how Sgo function is inactivated and whether this is distinct from delocalization. We investigated these questions in Drosophila melanogaster, an organism with superb chromosome cytology to monitor Sgo localization and quantitative assays to test its function in sister-chromatid segregation in meiosis. Previous research showed that in mitosis in cell culture, phosphorylation of the Drosophila Sgo, MEI-S332, by Aurora B promotes centromere localization, whereas Polo phosphorylation promotes delocalization. These studies also suggested that MEI-S332 can be inactivated independently of delocalization, a conclusion supported here by localization and function studies in meiosis. Phosphoresistant and phosphomimetic mutants for the Aurora B and Polo phosphorylation sites were examined for effects on MEI-S332 localization and chromosome segregation in meiosis. Strikingly, MEI-S332 with a phosphomimetic mutation in the Aurora B phosphorylation site prematurely dissociates from the centromeres in meiosis I. Despite the absence of MEI-S332 on meiosis II centromeres in male meiosis, sister chromatids segregate normally, demonstrating that detectable levels of this Sgo are not essential for chromosome congression, kinetochore biorientation, or spindle assembly. PMID:25081981
Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster
Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.
2014-01-01
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162
Da Ines, Olivier; Abe, Kiyomi; Goubely, Chantal; Gallego, Maria Eugenia; White, Charles I.
2012-01-01
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains. PMID:22532804
Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne
2013-01-01
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132
Centromeres Cluster De Novo at the Beginning of Meiosis in Brachypodium distachyon
Wen, Ruoyu; Moore, Graham; Shaw, Peter J.
2012-01-01
In most eukaryotes that have been studied, the telomeres cluster into a bouquet early in meiosis, and in wheat and its relatives and in Arabidopsis the centromeres pair at the same time. In Arabidopsis, the telomeres do not cluster as a typical telomere bouquet on the nuclear membrane but are associated with the nucleolus both somatically and at the onset of meiosis. We therefore assessed whether Brachypodium distachyon, a monocot species related to cereals and whose genome is approximately twice the size of Arabidopsis thaliana, also exhibited an atypical telomere bouquet and centromere pairing. In order to investigate the occurrence of a bouquet and centromere pairing in B distachyon, we first had to establish protocols for studying meiosis in this species. This enabled us to visualize chromosome behaviour in meiocytes derived from young B distachyon spikelets in three-dimensions by fluorescent in situ hybridization (FISH), and accurately to stage meiosis based on chromatin morphology in relation to spikelet size and the timing of sample collection. Surprisingly, this study revealed that the centromeres clustered as a single site at the same time as the telomeres also formed a bouquet or single cluster. PMID:22970287
Finch, K A; Fonseka, K G L; Abogrein, A; Ioannou, D; Handyside, A H; Thornhill, A R; Hickson, N; Griffin, D K
2008-06-01
Many genetic defects with a chromosomal basis affect male reproduction via a range of different mechanisms. Chromosome position is a well-known marker of nuclear organization, and alterations in standard patterns can lead to disease phenotypes such as cancer, laminopathies and epilepsy. It has been demonstrated that normal mammalian sperm adopt a pattern with the centromeres aligning towards the nuclear centre. The purpose of this study was to test the hypothesis that altered chromosome position in the sperm head is associated with male infertility. The average nuclear positions of fluorescence in-situ hybridization signals for three centromeric probes (for chromosomes X, Y and 18) were compared in normoozoospermic men and in men with compromised semen parameters. In controls, the centromeres of chromosomes X, Y and 18 all occupied a central nuclear location. In infertile men the sex chromosomes appeared more likely to be distributed in a pattern not distinguishable from a random model. Our findings cast doubt on the reliability of centromeric probes for aneuploidy screening. The analysis of chromosome position in sperm heads should be further investigated for the screening of infertile men.
de Sotero-Caio, Cibele Gomes; Cabral-de-Mello, Diogo Cavalcanti; Calixto, Merilane da Silva; Valente, Guilherme Targino; Martins, Cesar; Loreto, Vilma; de Souza, Maria José; Santos, Neide
2017-10-01
Despite their ubiquitous incidence, little is known about the chromosomal distribution of long interspersed elements (LINEs) in mammalian genomes. Phyllostomid bats, characterized by lineages with distinct trends of chromosomal evolution coupled with remarkable ecological and taxonomic diversity, represent good models to understand how these repetitive sequences contribute to the evolution of genome architecture and its link to lineage diversification. To test the hypothesis that LINE-1 sequences were important modifiers of bat genome architecture, we characterized the distribution of LINE-1-derived sequences on genomes of 13 phyllostomid species within a phylogenetic framework. We found massive accumulation of LINE-1 elements in the centromeres of most species: a rare phenomenon on mammalian genomes. We hypothesize that expansion of these elements has occurred early in the radiation of phyllostomids and recurred episodically. LINE-1 expansions on centromeric heterochromatin probably spurred chromosomal change before the radiation of phyllostomids into the extant 11 subfamilies and contributed to the high degree of karyotypic variation observed among different lineages. Understanding centromere architecture in a variety of taxa promises to explain how lineage-specific changes on centromere structure can contribute to karyotypic diversity while not disrupting functional constraints for proper cell division.
A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae.
Pohl, Thomas J; Kolor, Katherine; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2013-11-06
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time.
Sahoo, Trilochan; del Gaudio, Daniela; German, Jennifer R; Shinawi, Marwan; Peters, Sarika U; Person, Richard E; Garnica, Adolfo; Cheung, Sau Wai; Beaudet, Arthur L
2008-06-01
Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.
A Novel Subgenomic Murine Leukemia Virus RNA Transcript Results from Alternative Splicing
Déjardin, Jérôme; Bompard-Maréchal, Guillaume; Audit, Muriel; Hope, Thomas J.; Sitbon, Marc; Mougel, Marylène
2000-01-01
Here we show the existence of a novel subgenomic 4.4-kb RNA in cells infected with the prototypic replication-competent Friend or Moloney murine leukemia viruses (MuLV). This RNA derives by splicing from an alternative donor site (SD′) within the capsid-coding region to the canonical envelope splice acceptor site. The position and the sequence of SD′ was highly conserved among mammalian type C and D oncoviruses. Point mutations used to inactivate SD′ without changing the capsid-coding ability affected viral RNA splicing and reduced viral replication in infected cells. PMID:10729146
Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.
Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner
2016-01-01
The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.
Changes in the level of perforin and its transcript during effector and target cell interactions.
Kim, K K; Blakely, A; Zhou, Z; Davis, J; Clark, W; Kwon, B S
1993-05-01
Perforin is a cytoplasmic granule protein expressed in cytotoxic lymphocytes, and is capable of lysing target cells. This protein is induced as cytotoxic T cells are activated, and the mRNA expression is modulated by various stimulators. These observations suggest possible changes in the level of perforin transcripts and protein when killer lymphocytes meet specific target cells leading to target cell death. To address this question, we examined three murine T-cell clones and primary human NK cells in perforin expression. When the cytotoxic lymphocytes were exposed to sensitive targets, perforin mRNA disappeared within 5 to 30 min and appeared within an hour thereafter. Among the murine T cell clones, L3 and OE4 showed two phases of mRNA decrease while human NK cells and the third murine T cell clone, AB.1, showed only one phase of mRNA loss during a 240 min period. The data indicate that when cytotoxic lymphocytes receive signals from a sensitive target, the cells rapidly degrade previously accumulated perforin mRNA and synthesize new transcripts. Interestingly, heat shock protein 70 mRNA was induced as the perforin mRNA levels recovered, while P55 Il-2 receptor mRNA was downregulated within 5 min after exposure to targets. The perforin protein level also rapidly decreased immediately after the interaction with the target, followed by a recovery, and then another decrease as seen in primary human NK cells, OE4 and L3 cells. However, in the AB.1 clone, no change in perforin content was detectable, despite the loss of perforin mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Stennard, Fiona A; Costa, Mauro W; Lai, Donna; Biben, Christine; Furtado, Milena B; Solloway, Mark J; McCulley, David J; Leimena, Christiana; Preis, Jost I; Dunwoodie, Sally L; Elliott, David E; Prall, Owen W J; Black, Brian L; Fatkin, Diane; Harvey, Richard P
2005-05-01
The genetic hierarchies guiding lineage specification and morphogenesis of the mammalian embryonic heart are poorly understood. We now show by gene targeting that murine T-box transcription factor Tbx20 plays a central role in these pathways, and has important activities in both cardiac development and adult function. Loss of Tbx20 results in death of embryos at mid-gestation with grossly abnormal heart morphogenesis. Underlying these disturbances was a severely compromised cardiac transcriptional program, defects in the molecular pre-pattern, reduced expansion of cardiac progenitors and a block to chamber differentiation. Notably, Tbx20-null embryos showed ectopic activation of Tbx2 across the whole heart myogenic field. Tbx2 encodes a transcriptional repressor normally expressed in non-chamber myocardium, and in the atrioventricular canal it has been proposed to inhibit chamber-specific gene expression through competition with positive factor Tbx5. Our data demonstrate a repressive activity for Tbx20 and place it upstream of Tbx2 in the cardiac genetic program. Thus, hierarchical, repressive interactions between Tbx20 and other T-box genes and factors underlie the primary lineage split into chamber and non-chamber myocardium in the forming heart, an early event upon which all subsequent morphogenesis depends. Additional roles for Tbx20 in adult heart integrity and contractile function were revealed by in-vivo cardiac functional analysis of Tbx20 heterozygous mutant mice. These data suggest that mutations in human cardiac transcription factor genes, possibly including TBX20, underlie both congenital heart disease and adult cardiomyopathies.
Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana.
Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W L
2011-06-01
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.
Somatic association of telocentric chromosomes carrying homologous centromeres in common wheat.
Mello-Sampayo, T
1973-01-01
Measurements of distances between telocentric chromosomes, either homologous or representing the opposite arms of a metacentric chromosome (complementary telocentrics), were made at metaphase in root tip cells of common wheat carrying two homologous pairs of complementary telocentrics of chromosome 1 B or 6 B (double ditelosomic 1 B or 6 B). The aim was to elucidate the relative locations of the telocentric chromosomes within the cell. The data obtained strongly suggest that all four telocentrics of chromosome 1 B or 6 B are spacially and simultaneously co-associated. In plants carrying two complementary (6 B (S) and 6 B (L)) and a non-related (5 B (L)) telocentric, only the complementary chromosomes were found to be somatically associated. It is thought, therefore, that the somatic association of chromosomes may involve more than two chromosomes in the same association and, since complementary telocentrics are as much associated as homologous, that the homology between centromeres (probably the only homologous region that exists between complementary telocentrics) is a very important condition for somatic association of chromosomes. The spacial arrangement of chromosomes was studied at anaphase and prophase and the polar orientation of chromosomes at prophase was found to resemble anaphase orientation. This was taken as good evidence for the maintenance of the chromosome arrangement - the Rabl orientation - and of the peripheral location of the centromere and its association with the nuclear membrane. Within this general arrangement homologous telocentric chromosomes were frequently seen to have their centromeres associated or directed towards each other. The role of the centromere in somatic association as a spindle fibre attachment and chromosome binder is discussed. It is suggested that for non-homologous chromosomes to become associated in root tips, the only requirement needed should be the homology of centromeres such as exists between complementary telocentrics, or, as a possible alternative, common repeated sequences of DNA molecules around the centromere region.
Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana
Ravi, Maruthachalam; Shibata, Fukashi; Ramahi, Joseph S.; Nagaki, Kiyotaka; Chen, Changbin; Murata, Minoru; Chan, Simon W. L.
2011-01-01
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior. PMID:21695238
CENP-C directs a structural transition of the CENP-A nucleosome mainly through sliding of DNA gyres
Sekulic, Nikolina; Sennett, Michael A.; Lee, Tae-Hee; Black, Ben E.
2016-01-01
The histone H3 variant, CENP-A, is incorporated into nucleosomes that mark centromere location. We recently reported that CENP-A confers an altered nucleosome shape relative to its counterparts containing conventional H3. Using a single molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we now find that the nucleosome shape change that CENP-A directs is dominated by lateral passing of the two DNA gyres (gyre sliding). A non-histone centromere protein, CENP-C, binds to and reshapes the nucleosome, sliding the DNA gyres back to positions similar to those in canonical nucleosomes containing conventional histone H3. The model we generate to explain the CENP-A nucleosome transition provides an example of a shape change imposed by external binding proteins, and has important implications for understanding the epigenetic basis for the faithful inheritance of centromere location on the chromosome. PMID:26878239
Marques, André; Pedrosa-Harand, Andrea
2016-09-01
The centromere is the chromosomal site of kinetochore assembly and is responsible for the correct chromosome segregation during mitosis and meiosis in eukaryotes. Contrary to monocentrics, holocentric chromosomes lack a primary constriction, what is attributed to a kinetochore activity along almost the entire chromosome length during mitosis. This extended centromere structure imposes a problem during meiosis, since sister holocentromeres are not co-oriented during first meiotic division. Thus, regardless of the relatively conserved somatic chromosome structure of holocentrics, during meiosis holocentric chromosomes show different adaptations to deal with this condition. Recent findings in holocentrics have brought back the discussion of the great centromere plasticity of eukaryotes, from the typical CENH3-based holocentromeres to CENH3-less holocentric organisms. Here, we summarize recent and former findings about centromere/kinetochore adaptations shown by holocentric organisms during mitosis and meiosis and discuss how these adaptations are related to the type of meiosis found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, S.J.
1988-11-01
The author infected different human leukemic cell lines with an amphotropic retrovirus vector (designated PA317/N2) which confers G418 resistance and contains the Moloney murine leukemia virus long terminal repeat. In retrovirus-infected G418-resistant HL-60 cells, induction of granulocyte differentiation by retinoic acid was invariably accompanied by a marked increase (5- to 10-fold) in the transcriptional activity of the integrated retroviral long terminal repeat.
Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation
Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.
2010-01-01
Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255
Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores.
Kang, Young H; Park, Chi Hoon; Kim, Tae-Sung; Soung, Nak-Kyun; Bang, Jeong K; Kim, Bo Y; Park, Jung-Eun; Lee, Kyung S
2011-06-03
Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres.
Mammalian Polo-like Kinase 1-dependent Regulation of the PBIP1-CENP-Q Complex at Kinetochores*
Kang, Young H.; Park, Chi Hoon; Kim, Tae-Sung; Soung, Nak-Kyun; Bang, Jeong K.; Kim, Bo Y.; Park, Jung-Eun; Lee, Kyung S.
2011-01-01
Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres. PMID:21454580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Larionov, Ph D
A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that canmore » be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii) critical role of CENP-B binding site in do novo kinetochore formation was demonstrated; iii) role of gamma-satellite DNA in functional centromere was elucidated; iv) new generation of HAC with a conditional centromere was constructed for the study of epigenetic control of kinetochore function and for gene expression studies. These studies de novo kinetochore formation may thus provide both a fundamental knowledge and new points of intervention for therapy.« less
Darroudi, F; Meijers, C M; Hadjidekova, V; Natarajan, A T
1996-09-01
In human hepatoma (Hep G2) cells and peripheral blood lymphocytes (HPBL) the cytokinesis-blocked micronuclei (MN) and fluorescent in situ hybridization (FISH) assays were applied to study aneugenic and clastogenic potentials of X-rays, directly and indirectly acting chemicals. Induction of MN was studied in vitro following treatment with X-rays, directly acting chemicals, such as methylmeth-anesulphonate (MMS), colchicine (COL), vincristine sulphate (VCS) and vinblastine sulphate (VBS), and indirectly acting agents, such as cyclophosphamide (CP), hexamethylphosphoramide (HMPA), 2-acetylaminofluorene (2-AAF) and 4-acetylaminofluorene (4-AAF). Depending on the presence of the fluorescent signal in the MN following FISH with a human DNA centromeric probe, MN in the binucleated Hep G2 cells and lymphocytes were scored as centromere-positive or centromere-negative, representing an aneugenic and clastogenic event respectively. In the controls approximately 50% of spontaneously occurring MN were centromere-positive. Treatment of human hepatoma cells and HPBL (in vitro) with potent aneugens such as COL, VCS and VBS increased the number of MN in a dose-dependent manner; of these 75-93% were centromere-positive. X-irradiation induced MN in a dose-related manner in binucleated Hep G2 cells and HPBL, of which 33-40% were centromere-positive, which demonstrates the significant aneugenic potentials of X-rays. Strong clastogenic activity was observed with MMS and frequency of centromere-positive MN was low: approximately 20 and 30% for HPBL and Hep G2 cells respectively. In Hep G2 cells significant aneugenic activity was found with indirectly acting promutagens/procarcinogens such as HMPA and 2-AAF, in contrast to CP, which came out as a potent clastogen. The non-carcinogen 4-AAF was not able to induce an increase in the frequency of MN in Hep G2 cells. All indirectly acting chemicals tested came out negative when HPBL were used as targets for DNA damage. The results presented correlate positively with data from in vivo assays and indicate that the Hep G2 cell system is a suitable bioactivation system (in vitro) for evaluating the clastogenic and aneugenic potentials of chemicals which require exogenous metabolic activations in order to exert their mutagenic potential.
He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei
2015-04-18
Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Da-min; Lu, Pei-Hua, E-mail: lphty1_1@163.com; Zhang, Ke
In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 throughmore » lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.« less
Chan, Baca; Gonçalves Magalhães, Vladimir; Lemmermann, Niels A W; Juranić Lisnić, Vanda; Stempel, Markus; Bussey, Kendra A; Reimer, Elisa; Podlech, Jürgen; Lienenklaus, Stefan; Reddehase, Matthias J; Jonjić, Stipan; Brinkmann, Melanie M
2017-05-01
The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.
Centromere synteny among Brachypodium, wheat, and rice
USDA-ARS?s Scientific Manuscript database
Rice, wheat and Brachypodium are plant genetic models with variable genome complexity and basic chromosome numbers, representing two subfamilies of the Poaceae. Centromeres are prominent chromosome landmarks, but their fate during this convoluted chromosome evolution has been more difficult to deter...
Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen
2002-05-24
Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.
Cleveland, J L; Dean, M; Rosenberg, N; Wang, J Y; Rapp, U R
1989-01-01
Retroviral expression vectors carrying the tyrosine kinase oncogenes abl, fms, src, and trk abrogate the requirements of murine myeloid FDC-P1 cells for interleukin-3 (IL-3). Factor-independent clones constitutively express c-myc in the absence of IL-3, whereas in parental cultures c-myc transcription requires the presence of the ligand. To directly test the effect of a tyrosine kinase oncogene on c-myc expression, retroviral constructs containing three different temperature-sensitive mutants of v-abl were introduced into myeloid IL-3-dependent FDC-P1 and 32D cells. At the permissive temperature, clones expressing temperature-sensitive abl behaved like wild-type abl-containing cells in their growth properties and expressed c-myc constitutively. Temperature shift experiments demonstrated that both IL-3 abrogation and the regulation of c-myc expression correlated with the presence of functional v-abl. Induction of c-myc expression by reactivation of temperature-sensitive v-abl mimicked c-myc induction by IL-3 in that it did not require protein synthesis and occurred at the level of transcription, with effects on both initiation and a transcription elongation block. However, v-abl-regulated FDC-P1 cell growth differed from IL-3-regulated growth in that c-fos and junB, which are normally induced by IL-3, were not induced by activation of v-abl. Images PMID:2555703
Agui, T; Xin, X; Cai, Y; Shim, G; Muramatsu, Y; Yamada, T; Fujiwara, H; Matsumoto, K
1995-09-01
The regulation of the gene expression of the atrial natriuretic peptide receptor (ANPR) subtypes, ANPR-A, ANPR-B, and ANPR-C, was investigated in a murine thymic stromal cell line, MRL 104.8a. When MRL 104.8a cells were cultured with transforming growth factor (TGF)-beta1, [125I]ANP binding sites increased with increasing dose of TGF-beta1. These binding sites were identified as ANPR-C by a displacement experiment with ANPR-C-specific ligand, C-ANF, and by the affinity cross-linking of the [125I]ANP binding sites with a chemical cross-linker to determine the molecular weight of the ANPR. This augmentation of the ANPR-C expression was elucidated to occur at the transcriptional level by Northern blot experiment, comparison of the relative amounts of mRNA by reverse transcription (RT)-PCR, and in vitro nuclear transcription assay. Conversely, the expression of the ANP biological receptors, ANPR-A and ANPR-B, was shown to be down-regulated by TGF-beta1. These data suggest that TGF-beta1 regulates the gene expression of ANPRs in the thymic stromal cells and that ANP and TGF-beta1 might affect the thymic stromal cell functions.
Tabaczewski, P; Shirwan, H; Lewis, K; Stroynowski, I
1994-01-01
Class Ib Qa-2 molecules are expressed in tissue culture cells as approximately 40-kDa membrane-bound, glycophosphatidylinositol-linked antigens and as approximately 39-kDa soluble polypeptides. Recently, alternative splicing events which delete exon 5 from a portion of Qa-2 transcripts were demonstrated to give rise to truncated secreted Qa-2 molecules in transfected cell lines. To determine whether this mechanism operates in vivo and to find out whether Qa-2 can be detected in soluble form in circulation, murine blood samples were analyzed. Critical to these experiments was preparation of an anti-peptide antiserum against an epitope encoded by a junction of exon 4 and exon 6. We find that supernatants of splenocytes cultured in vitro as well as serum or plasma contain two forms of soluble Qa-2 molecules. One form corresponds to a secreted molecule translated from transcripts from which exon 5 has been deleted; the other is derived from membrane-bound antigens or their precursors. The levels of both soluble forms of Qa-2 are inducible upon stimulation of the immune system, suggesting an immunoregulatory role for these molecules or for the mechanism leading to the reduction of cell-associated Qa-2 antigens in vivo. Images PMID:8127900
Organisation of the plant genome in chromosomes.
Heslop-Harrison, J S Pat; Schwarzacher, Trude
2011-04-01
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Identification and dynamics of two classes of aurora-like kinases in Arabidopsis and other plants.
Demidov, Dmitri; Van Damme, Daniël; Geelen, Danny; Blattner, Frank R; Houben, Andreas
2005-03-01
Aurora-like kinases play key roles in chromosome segregation and cytokinesis in yeast, plant, and animal systems. Here, we characterize three Arabidopsis thaliana protein kinases, designated AtAurora1, AtAurora2, and AtAurora3, which share high amino acid identities with the Ser/Thr kinase domain of yeast Ipl1 and animal Auroras. Structure and expression of AtAurora1 and AtAurora2 suggest that these genes arose by a recent gene duplication, whereas the diversification of plant alpha and beta Aurora kinases predates the origin of land plants. The transcripts and proteins of all three kinases are most abundant in tissues containing dividing cells. Intracellular localization of green fluorescent protein-tagged AtAuroras revealed an AtAurora-type specific association mainly with dynamic mitotic structures, such as microtubule spindles and centromeres, and with the emerging cell plate of dividing tobacco (Nicotiana tabacum) BY-2 cells. Immunolabeling using AtAurora antibodies yielded specific signals at the centromeres that are coincident with histone H3 that is phosphorylated at Ser position10 during mitosis. An in vitro kinase assay demonstrated that AtAurora1 preferentially phosphorylates histone H3 at Ser 10 but not at Ser 28 or Thr 3, 11, and 32. The phylogenetic analysis of available Aurora sequences from different eukaryotic origins suggests that, although a plant Aurora gene has been duplicated early in the evolution of plants, the paralogs nevertheless maintained a role in cell cycle-related signal transduction pathways.
DDM1 represses noncoding RNA expression and RNA-directed DNA methylation in heterochromatin.
Tan, Feng; Lu, Yue; Jiang, Wei; Zhao, Yu; Wu, Tian; Zhang, Ruoyu; Zhou, Dao-Xiu
2018-05-24
Cytosine methylation of DNA, which occurs at CG, CHG, and CHH (H=A, C, or T) sequences in plants, is a hallmark for epigenetic repression of repetitive sequences. The chromatin remodeling factor DECREASE IN DNA METHYLATION1 (DDM1) is essential for DNA methylation, especially at CG and CHG sequences. However, its potential role in RNA-directed DNA methylation (RdDM) and in chromatin function is not completely understood in rice (Oryza sativa). In this work, we used high-throughput approaches to study the function of rice DDM1 (OsDDM1) in RdDM and the expression of non-coding RNA (ncRNA). We show that loss of function of OsDDM1 results in ectopic CHH methylation of transposable elements and repeats. The ectopic CHH methylation was dependent on rice DOMAINS REARRANGED METHYLTRANSFERASE2 (OsDRM2), a DNA methyltransferase involved in RdDM. Mutations in OsDDM1 lead to decreases of histone H3K9me2 and increases in the levels of heterochromatic small RNA (sRNA) and long noncoding RNA (lncRNA). In particular, OsDDM1 was found to be essential to repress transcription of the two repetitive sequences, Centromeric Retrotransposons of Rice1 (CRR1) and the dominant centromeric CentO repeats. These results suggest that OsDDM1 antagonizes RdDM at heterochromatin and represses tissue-specific expression of ncRNA from repetitive sequences in the rice genome. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Hasselbalch, Hans C
2014-02-01
A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3
Zhou, Zheng; Feng, Hanqiao; Zhou, Bing-Rui; Ghirlando, Rodolfo; Hu, Kaifeng; Zwolak, Adam; Miller Jenkins, Lisa M.; Xiao, Hua; Tjandra, Nico; Wu, Carl; Bai, Yawen
2011-01-01
The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A2. A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH33, 4. The structural basis of this specification is of outstanding interest. Yeast Scm3 and human HJURP are conserved nonhistone proteins that interact physically with the (CenH3-H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5, 6, 7, 8, 9, 10, 11, 12, 13. Here we have elucidated the structural basis for recognition of budding yeast CenH3 (Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 complexed with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved N-terminus and a shorter α-helix at the C-terminus of Scm3-CBD wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3-CBD induces major conformational changes and sterically occludes DNA binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome. PMID:21412236
Matsubara, Kazumi; Uno, Yoshinobu; Srikulnath, Kornsorn; Seki, Risako; Nishida, Chizuko; Matsuda, Yoichi
2015-12-01
Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake (Protobothrops flavoviridis, Crotalinae, Viperidae) and Burmese python (Python bivittatus, Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus. The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus, respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor, suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.
Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice.
Ma, Jianxin; Bennetzen, Jeffrey L
2006-01-10
Centromeres have many unusual biological properties, including kinetochore attachment and severe repression of local meiotic recombination. These properties are partly an outcome, partly a cause, of unusual DNA structure in the centromeric region. Although several plant and animal genomes have been sequenced, most centromere sequences have not been completed or analyzed in depth. To shed light on the unique organization, variability, and evolution of centromeric DNA, detailed analysis of a 1.97-Mb sequence that includes centromere 8 (CEN8) of japonica rice was undertaken. Thirty-three long-terminal repeat (LTR)-retrotransposon families (including 11 previously unknown) were identified in the CEN8 region, totaling 245 elements and fragments that account for 67% of the region. The ratio of solo LTRs to intact elements in the CEN8 region is approximately 0.9:1, compared with approximately 2.2:1 in noncentromeric regions of rice. However, the ratio of solo LTRs to intact elements in the core of the CEN8 region ( approximately 2.5:1) is higher than in any other region investigated in rice, suggesting a hotspot for unequal recombination. Comparison of the CEN8 region of japonica and its orthologous segments from indica rice indicated that approximately 15% of the intact retrotransposons and solo LTRs were inserted into CEN8 after the divergence of japonica and indica from a common ancestor, compared with approximately 50% for previously studied euchromatic regions. Frequent DNA rearrangements were observed in the CEN8 region, including a 212-kb subregion that was found to be composed of three rearranged tandem repeats. Phylogenetic analysis also revealed recent segmental duplication and extensive rearrangement and reshuffling of the CentO satellite repeats.
Wu, Jianzhong; Fujisawa, Masaki; Tian, Zhixi; Yamagata, Harumi; Kamiya, Kozue; Shibata, Michie; Hosokawa, Satomi; Ito, Yukiyo; Hamada, Masao; Katagiri, Satoshi; Kurita, Kanako; Yamamoto, Mayu; Kikuta, Ari; Machita, Kayo; Karasawa, Wataru; Kanamori, Hiroyuki; Namiki, Nobukazu; Mizuno, Hiroshi; Ma, Jianxin; Sasaki, Takuji; Matsumoto, Takashi
2009-12-01
Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.
Chromatin preferences of the perichromosomal layer constituent pKi-67.
Traut, Walther; Endl, Elmar; Garagna, Silvia; Scholzen, Thomas; Schwinger, Eberhard; Gerdes, Johannes; Winking, Heinz
2002-01-01
The proliferation-associated nuclear protein pKi-67 relocates from the nucleolus to the chromosome surface during the G2/M transition of the cell cycle and contributes to the formation of the 'perichromosomal layer'. We investigated the in-vivo binding preferences of pKi-67 for various chromatin blocks of the mitotic chromosomes from the human and two mouse species, Mus musculus and M. caroli. All chromosomes were decorated with pKi-67 but displayed a gap of pKi-67 decoration in the centromere and NOR regions. pKi-67 distribution in a rearranged mouse chromosome showed that the formation of the centromeric gap was controlled by the specific chromatin in that region. While most chromatin served as a substrate for direct or indirect binding of pKi-67, we identified three types of chromatin that bound less or no pKi-67. These were: (1) the centromeric heterochromatin defined by the alpha satellite DNA in the human, by the mouse minor satellite in M. musculus and the 60- and 79-bp satellites in M. caroli; (2) the pericentromeric heterochromatin in M. musculus defined by the mouse major satellite, and (3) NORs in the human and in M. musculus defined by rDNA repeats. In contrast, the conspicuous blocks of pericentromeric heterochromatin in human chromosomes 1, 9 and 16 containing the 5-bp satellite showed intense pKi-67 decoration. The centromeric gap may have a biological significance for the proper attachment of the chromosomes to the mitotic spindle. In this context, our results suggest a new role for centromeric heterochromatin: the control of the centromeric gap in the perichromosomal layer.
Shrestha, Roshan L.; Ahn, Grace S.; Staples, Mae I.; Sathyan, Kizhakke M.; Karpova, Tatiana S.; Foltz, Daniel R.; Basrai, Munira A.
2017-01-01
Chromosomal instability (CIN) is a hallmark of many cancers and a major contributor to tumorigenesis. Centromere and kinetochore associated proteins such as the evolutionarily conserved centromeric histone H3 variant CENP-A, associate with centromeric DNA for centromere function and chromosomal stability. Stringent regulation of cellular CENP-A levels prevents its mislocalization in yeast and flies to maintain genome stability. CENP-A overexpression and mislocalization are observed in several cancers and reported to be associated with increased invasiveness and poor prognosis. We examined whether there is a direct relationship between mislocalization of overexpressed CENP-A and CIN using HeLa and chromosomally stable diploid RPE1 cell lines as model systems. Our results show that mislocalization of overexpressed CENP-A to chromosome arms leads to chromosome congression defects, lagging chromosomes, micronuclei formation and a delay in mitotic exit. CENP-A overexpressing cells showed altered localization of centromere and kinetochore associated proteins such as CENP-C, CENP-T and Nuf2 leading to weakened native kinetochores as shown by reduced interkinetochore distance and CIN. Importantly, our results show that mislocalization of CENP-A to chromosome arms is one of the major contributors for CIN as depletion of histone chaperone DAXX prevents CENP-A mislocalization and rescues the reduced interkinetochore distance and CIN phenotype in CENP-A overexpressing cells. In summary, our results establish that CENP-A overexpression and mislocalization result in a CIN phenotype in human cells. This study provides insights into how overexpression of CENP-A may contribute to CIN in cancers and underscore the importance of understanding the pathways that prevent CENP-A mislocalization for genome stability. PMID:28596481
Thrombopoietin inhibits murine mast cell differentiation
Martelli, Fabrizio; Ghinassi, Barbara; Lorenzini, Rodolfo; Vannucchi, Alessandro M; Rana, Rosa Alba; Nishikawa, Mitsuo; Partamian, Sandra; Migliaccio, Giovanni; Migliaccio, Anna Rita
2009-01-01
We have recently shown that Mpl, the thrombopoietin receptor, is expressed on murine mast cells and on their precursors and that targeted deletion of the Mpl gene increases mast cell differentiation in mice. Here we report that treatment of mice with thrombopoietin, or addition of this growth factor to bone marrow-derived mast cell cultures, severely hampers the generation of mature cells from their precursors by inducing apoptosis. Analysis of the expression profiling of mast cells obtained in the presence of thrombopoietin suggests that thrombopoietin induces apoptosis of mast cells by reducing expression of the transcription factor Mitf and its target anti-apoptotic gene Bcl2. PMID:18276801
A high resolution radiation hybrid map of wheat chromosome 4A
USDA-ARS?s Scientific Manuscript database
Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequenc...
The kinetochore prevents centromere-proximal crossover recombination during meiosis
Vincenten, Nadine; Kuhl, Lisa-Marie; Lam, Isabel; Oke, Ashwini; Kerr, Alastair RW; Hochwagen, Andreas; Fung, Jennifer; Keeney, Scott; Vader, Gerben; Marston, Adèle L
2015-01-01
During meiosis, crossover recombination is essential to link homologous chromosomes and drive faithful chromosome segregation. Crossover recombination is non-random across the genome, and centromere-proximal crossovers are associated with an increased risk of aneuploidy, including Trisomy 21 in humans. Here, we identify the conserved Ctf19/CCAN kinetochore sub-complex as a major factor that minimizes potentially deleterious centromere-proximal crossovers in budding yeast. We uncover multi-layered suppression of pericentromeric recombination by the Ctf19 complex, operating across distinct chromosomal distances. The Ctf19 complex prevents meiotic DNA break formation, the initiating event of recombination, proximal to the centromere. The Ctf19 complex independently drives the enrichment of cohesin throughout the broader pericentromere to suppress crossovers, but not DNA breaks. This non-canonical role of the kinetochore in defining a chromosome domain that is refractory to crossovers adds a new layer of functionality by which the kinetochore prevents the incidence of chromosome segregation errors that generate aneuploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10850.001 PMID:26653857
Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation
Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori
2015-01-01
Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135
Neocentromeres: role in human disease, evolution, and centromere study.
Amor, David J; Choo, K H Andy
2002-10-01
The centromere is essential for the proper segregation and inheritance of genetic information. Neocentromeres are ectopic centromeres that originate occasionally from noncentromeric regions of chromosomes. Despite the complete absence of normal centromeric alpha-satellite DNA, human neocentromeres are able to form a primary constriction and assemble a functional kinetochore. Since the discovery and characterization of the first case of a human neocentromere in our laboratory a decade ago, 60 examples of constitutional human neocentromeres distributed widely across the genome have been described. Typically, these are located on marker chromosomes that have been detected in children with developmental delay or congenital abnormalities. Neocentromeres have also been detected in at least two types of human cancer and have been experimentally induced in Drosophila. Current evidence from human and fly studies indicates that neocentromere activity is acquired epigenetically rather than by any alteration to the DNA sequence. Since human neocentromere formation is generally detrimental to the individual, its biological value must lie beyond the individual level, such as in karyotype evolution and speciation.
Steel, L F; Telly, D L; Leonard, J; Rice, B A; Monks, B; Sawicki, J A
1996-10-01
Murine c-mos transcripts isolated from testes have 5'-untranslated regions (5'UTRs) of approximately 300 nucleotides with a series of four overlapping open reading frames (ORFs) upstream of the AUG codon that initiates the Mos ORF. Ovarian c-mos transcripts have shorter 5'UTRs (70-80 nucleotides) and contain only 1-2 of the upstream ORFs (uORFs). To test whether these 5'UTRs affect translational efficiency, we have constructed plasmids for the expression of chimeric transcripts with a mos-derived 5'UTR fused to the Escherichia coli beta-galactosidase coding region. Translational efficiency has been evaluated by measuring beta-galactosidase activity NIH3T3 cells transiently transfected with these plasmids and with plasmids where various mutations have been introduced into the 5'UTR. We show that the 5'UTR characteristic of testis-specific c-mos mRNA strongly represses translation relative to the translation of transcripts that contain a 5'UTR derived from beta-globin mRNA, and this is mainly due to the four uORFs. Each of the four upstream AUG triplets can be recognized as a start site for translation, and no single uAUG dominates the repressive effect. The uORFs repress translation by a mechanism that is not affected by the amino acid sequence in the COOH-terminal region of the uORF-encoded peptides. The very short uORF (AUGUGA) present in ovary-specific transcripts does not repress translation. Staining of testis sections from transgenic mice carrying chimeric beta-galactosidase transgene constructs, which contain a mos 5'UTR with or without the uATGs, suggests that the uORFs can dramatically change the pattern of expression in spermatogenic cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den
Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main generalmore » mechanism for coronaviruses to prevent IFN induction.« less
A DNA Sequence Element That Advances Replication Origin Activation Time in Saccharomyces cerevisiae
Pohl, Thomas J.; Kolor, Katherine; Fangman, Walton L.; Brewer, Bonita J.; Raghuraman, M. K.
2013-01-01
Eukaryotic origins of DNA replication undergo activation at various times in S-phase, allowing the genome to be duplicated in a temporally staggered fashion. In the budding yeast Saccharomyces cerevisiae, the activation times of individual origins are not intrinsic to those origins but are instead governed by surrounding sequences. Currently, there are two examples of DNA sequences that are known to advance origin activation time, centromeres and forkhead transcription factor binding sites. By combining deletion and linker scanning mutational analysis with two-dimensional gel electrophoresis to measure fork direction in the context of a two-origin plasmid, we have identified and characterized a 19- to 23-bp and a larger 584-bp DNA sequence that are capable of advancing origin activation time. PMID:24022751
Live visualization of genomic loci with BiFC-TALE
Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao
2017-01-01
Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP. PMID:28074901
Live visualization of genomic loci with BiFC-TALE.
Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao
2017-01-11
Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.
Rapid Gynogenetic Mapping of Xenopus tropicalis Mutations to Chromosomes
Khokha, Mustafa K.; Krylov, Vladimir; Reilly, Michael J.; Gall, Joseph G.; Bhattacharya, Dipankan; Cheung, Chung Yan J.; Kaufman, Sarah; Lam, Dang Khoa; Macha, Jaroslav; Ngo, Catherine; Prakash, Neha; Schmidt, Philip; Tlapakova, Tereza; Trivedi, Toral; Tumova, Lucie; Abu-Daya, Anita; Geach, Timothy; Vendrell, Elisenda; Ironfield, Holly; Sinzelle, Ludivine; Sater, Amy K.; Wells, Dan E.; Harland, Richard M.; Zimmerman, Lyle B.
2010-01-01
Pilot forward genetic screens in Xenopus tropicalis have isolated over 60 recessive mutations (Grammer et al., 2005; Noramly et al., 2005; Goda et al., 2006). Here we present a simple method for mapping mutations to chromosomes using gynogenesis and centromeric markers. When coupled with available genomic resources, gross mapping facilitates evaluation of candidate genes as well as higher resolution linkage studies. Using gynogenesis, we have mapped the genetic locations of the 10 X. tropicalis centromeres, and performed Fluorescence In Situ Hybridization to validate these locations cytologically. We demonstrate the use of this very small set of centromeric markers to map mutations efficiently to specific chromosomes. PMID:19441086
Haploid plants produced by centromere-mediated genome elimination.
Ravi, Maruthachalam; Chan, Simon W L
2010-03-25
Production of haploid plants that inherit chromosomes from only one parent can greatly accelerate plant breeding. Haploids generated from a heterozygous individual and converted to diploid create instant homozygous lines, bypassing generations of inbreeding. Two methods are generally used to produce haploids. First, cultured gametophyte cells may be regenerated into haploid plants, but many species and genotypes are recalcitrant to this process. Second, haploids can be induced from rare interspecific crosses, in which one parental genome is eliminated after fertilization. The molecular basis for genome elimination is not understood, but one theory posits that centromeres from the two parent species interact unequally with the mitotic spindle, causing selective chromosome loss. Here we show that haploid Arabidopsis thaliana plants can be easily generated through seeds by manipulating a single centromere protein, the centromere-specific histone CENH3 (called CENP-A in human). When cenh3 null mutants expressing altered CENH3 proteins are crossed to wild type, chromosomes from the mutant are eliminated, producing haploid progeny. Haploids are spontaneously converted into fertile diploids through meiotic non-reduction, allowing their genotype to be perpetuated. Maternal and paternal haploids can be generated through reciprocal crosses. We have also exploited centromere-mediated genome elimination to convert a natural tetraploid Arabidopsis into a diploid, reducing its ploidy to simplify breeding. As CENH3 is universal in eukaryotes, our method may be extended to produce haploids in any plant species.
Kawagoshi, Taiki; Nishida, Chizuko; Ota, Hidetoshi; Kumazawa, Yoshinori; Endo, Hideki; Matsuda, Yoichi
2008-01-01
Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30-42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG)( n ) sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.
Familial 18 centromere variant resulting in difficulties in interpreting prenatal interphase FISH.
Bourthoumieu, S; Esclaire, F; Terro, F; Brosset, P; Fiorenza, M; Aubard, V; Beguet, M; Yardin, C
2010-08-01
We report here on a familial case of centromeric heteromorphism of chromosome 18 detected by prenatal interphase fluorescence in situ hybridization (FISH) analysis transmitted by the mother to her fetus, and resulting in complete loss of one 18 signal. The prenatal diagnosis was performed by interphase FISH (AneuVysion probe set, and LSI DiGeorge 22q11.2 kit) because of the presence of an isolated fetal cardiac abnormality, and was first difficult to interpret: only one centromeric 18 signal was detectable on prenatal interphase nuclei, along with one signal for the Y and one for the X chromosome. The LSI DiGeorge 22q11.2 kit also showed the absence of one TUPLE 1 signal on all examined nuclei. In fact, the FISH performed on maternal buccal smear displayed the same absence of one chromosome 18 centromeric signal, combined with the presence of two TUPLE1 signals. All these results led to the diagnosis of an isolated 22q11.2 fetal microdeletion that was confirmed on metaphases spreads. This case illustrates once again that the locus specific (LSI) probes are more effective than the alpha centromeric probes for interphase analysis. The development of high-quality LSI probes for chromosomes 18, X and Y could avoid the misinterpretation of prenatal interphase FISH leading to numerous additional and expensive investigations. Copyright 2010 Elsevier Masson SAS. All rights reserved.
CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers
Thakur, Jitendra; Henikoff, Steven
2016-01-01
Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein–protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers. PMID:27384170
Domain architectures of the Scm3p protein provide insights into centromere function and evolution.
Aravind, L; Iyer, Lakshminarayan M; Wu, Carl
2007-10-15
Recently, Scm3p has been shown to be a nonhistone component of centromeric chromatin that binds stoichiometrically to CenH3-H4 histones, and to be required for the assembly of kinetochores in Saccharomyces cerevisiae. Scm3p is conserved across fungi, and displays a remarkable variation in protein size, ranging from approximately 200 amino acids in S. cerevisiae to approximately 1300 amino acids in Neurospora crassa. This is primarily due a variable C-terminal segment that is linked to a conserved N-terminal, CenH3-interacting domain. We have discovered that the extended C-terminal region of Scm3p is strikingly characterized by lineage-specific fusions of single or multiple predicted DNA-binding domains different versions of the MYB and C2H2 zinc finger domains, AT-hooks, and a novel cysteine-rich metal-chelating cluster that are absent from the small versions of Scm3. Instead, S. cerevisiae point centromeres are recognized by components of the CBF3 DNA binding complex, which are conserved amongst close relatives of budding yeast, but are correspondingly absent from more distant fungi that possess regional centromeres. Hence, the C-terminal DNA binding motifs found in large Scm3p proteins may, along with CenH3, serve as a key epigenetic signal by recognizing and accommodating the lineage-specific diversity of centromere DNA in course of evolution.
Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation
Giglia-Mari, Giuseppina; Mourgues, Sophie; Nonnekens, Julie; Andrieux, Lise O.; de Wit, Jan; Miquel, Catherine; Wijgers, Nils; Maas, Alex; Fousteri, Maria; Hoeijmakers, Jan H. J.; Vermeulen, Wim
2009-01-01
Studies based on cell-free systems and on in vitro–cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue. To allow analysis of transcription initiation dynamics directly into living mammalian tissues, we created a knock-in mouse model expressing fluorescently tagged TFIIH. Surprisingly and in contrast to what has been observed in cultured and proliferating cells, postmitotic murine cells embedded in their tissue exhibit a strong and long-lasting transcription-dependent immobilization of TFIIH. This immobilization is both differentiation driven and development dependent. Furthermore, although very statically bound, TFIIH can be remobilized to respond to new transcriptional needs. This divergent spatiotemporal transcriptional organization in different cells of the soma revisits the generally accepted highly dynamic concept of the kinetic framework of transcription and shows how basic processes, such as transcription, can be organized in a fundamentally different fashion in intact organisms as previously deduced from in vitro studies. PMID:19841728
P-selectin expressed by a human SELP transgene is atherogenic in apolipoprotein E-deficient mice
Zhang, Nan; Liu, Zhenghui; Yao, Longbiao; Mehta-D’souza, Padmaja; McEver, Rodger P.
2016-01-01
Objective During inflammation, P-selectin expressed on activated endothelial cells and platelets mediates rolling adhesion of leukocytes. Atherosclerosis-prone mice crossed with P-selectin-deficient (Selp−/−) mice develop smaller lesions. Cytokines such as tumor necrosis factor-α increase Selp transcripts and augment atherosclerosis in mice. However, they decrease SELP transcripts in humans, challenging assumptions that human P-selectin is atherogenic. We used mice expressing a human SELP transgene to examine the atherogenic role of P-selectin. Approach and results We crossed apolipoprotein E-deficient (Apoe−/−) mice with Selp−/− mice and/or transgenic mice expressing the entire human SELP gene (TgSELP+/−). Aortas developed larger, macrophage-rich atheromas in Apoe−/−Selp−/−TgSELP+/− mice than in Apoe−/−Selp−/− mice after 8 or 16 weeks on a Western diet. Confocal microscopy of Apoe−/−Selp−/−TgSELP+/− aortas revealed staining for human P-selectin in endothelial cells overlying atheromas, but not in lesional macrophages. We also observed staining for human P-selectin in aortic endothelial cells of 3–4-week-old Apoe−/−Selp−/−TgSELP+/− weanlings before atheromas developed. Furthermore, human SELP transcripts were ~3-fold higher in aortas of Apoe−/−Selp+/−TgSELP+/− weanlings than in Selp+/−TgSELP+/− weanlings, whereas murine Selp and Sele transcripts were equivalent in weanlings of both genotypes. Human SELP transcripts in aortas of Apoe−/−Selp+/−TgSELP+/− mice remained nearly constant during 16 weeks on a Western diet, whereas murine Selp and Sele transcripts progressively increased. Bone marrow transplantation in Apoe−/−Selp−/− and Apoe−/−Selp−/−TgSELP+/− mice demonstrated that both platelets and endothelial cells must express human P-selectin to promote atherogenesis. Conclusions P-selectin expressed by human SELP is atherogenic in Apoe−/− mice, suggesting that P-selectin contributes to atherogenesis in humans. PMID:27102967
Lopez, M; Oettgen, P; Akbarali, Y; Dendorfer, U; Libermann, T A
1994-05-01
The ets gene family encodes a group of proteins which function as transcription factors under physiological conditions and, if aberrantly expressed, can cause cellular transformation. We have recently identified two regulatory elements in the murine immunoglobulin heavy-chain (IgH) enhancer, pi and microB, which exhibit striking similarity to binding sites for ets-related proteins. To identify ets-related transcriptional regulators expressed in pre-B lymphocytes that may interact with either the pi or the microB site, we have used a PCR approach with degenerate oligonucleotides encoding conserved sequences in all members of the ets family. We have cloned the gene for a new ets-related transcription factor, ERP (ets-related protein), from the murine pre-B cell line BASC 6C2 and from mouse lung tissue. The ERP protein contains a region of high homology with the ETS DNA-binding domain common to all members of the ets transcription factor/oncoprotein family. Three additional smaller regions show homology to the ELK-1 and SAP-1 genes, a subgroup of the ets gene family that interacts with the serum response factor. Full-length ERP expresses only negligible DNA-binding activity by itself. Removal of the carboxy terminus enables ERP to interact with a variety of ets-binding sites including the E74 site, the IgH enhancer pi site, and the lck promoter ets site, suggesting a carboxy-terminal negative regulatory domain. At least three ERP-related transcripts are expressed in a variety of tissues. However, within the B-cell lineage, ERP is highly expressed primarily at early stages of B-lymphocyte development, and expression declines drastically upon B-cell maturation, correlating with the enhancer activity of the IgH pi site. These data suggest that ERP might play a role in B-cell development and in IgH gene regulation.
van de Werken, C; Avo Santos, M; Laven, J S E; Eleveld, C; Fauser, B C J M; Lens, S M A; Baart, E B
2015-10-01
Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin, but phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote. Human cleavage stage embryos show high levels of chromosomal instability. What causes this high error rate is unknown, as mechanisms used to ensure proper chromosome segregation in mammalian embryos are poorly described. In this study, we investigated the pathways regulating CPC targeting to the inner centromere in human embryos. We characterized the distribution of the CPC in relation to activity of its two main centromeric targeting pathways: the Bub1-H2ApT120-Sgo-CPC and Haspin-H3pT3-CPC pathways. The study was conducted between May 2012 and March 2014 on human surplus embryos resulting from in vitro fertilization treatment and donated for research. In zygotes, nuclear envelope breakdown was monitored by time-lapse imaging to allow timed incubations with specific inhibitors to arrest at prometaphase and metaphase, and to interfere with Haspin and Aurora B/C kinase activity. Functionality of the targeting pathways was assessed through characterization of histone phosphorylation dynamics by immunofluorescent analysis, combined with gene expression by RT-qPCR and immunofluorescent localization of key pathway proteins. Immunofluorescent analysis of the CPC subunit Inner Centromere Protein revealed the pool of stably bound CPC proteins was not strictly confined to the inner centromere of prometaphase chromosomes in human zygotes, as observed in later stages of preimplantation development and somatic cells. Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal phosphorylation dynamics of histone H2A at T120 (H2ApT120) by Bub1 kinase and subsequent recruitment of Shugoshin. However, phosphorylation of histone H3 at threonine 3 (H3pT3) by Haspin kinase failed to show the expected centromeric enrichment on metaphase chromosomes in the zygote, but not at later stages. Inhibition of Haspin revealed this activity to be essential for proper mitotic checkpoint complex activation in human zygotes, thus demonstrating an active mitotic checkpoint under normal conditions. Abolishment of H3pT3 during zygotic prometaphase further shows that centromeric H2ApT120 alone is not sufficient for proper shugoshin and CPC localization. As the removal of H3pT3 from the chromosome arms during prometaphase normally contributes to further centromeric enrichment of the CPC in somatic cells, CPC targeting may be less accurate in human zygotes. Owing to ethical limitations, tripronuclear zygotes were used in functional experiments. Although these represent the best available models, it is unknown if they are completely representative for dipronuclear zygotes. In addition, further research is needed to determine to what extent the differences we observed in H3T3 phosphorylation dynamics and CPC localization affect chromosome attachment. In the zygote, paternal and maternal chromosomes coming from two separate pronuclei, and with contrasting epigenetic signatures, need to be aligned on a single metaphase plate. Our results suggest that adaptations in mechanisms regulating CPC targeting exist in the human zygote, to ensure symmetric recruitment despite the epigenetic asymmetry between maternal and paternal chromosomes. This adaptation may come at a price regarding chromosome segregation fidelity. This study was funded by the Portuguese Fundação para a Ciência e Tecnologia and the Netherlands Organization for Scientific Research. The authors have no conflicts of interest to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
In vivo regulation of gene transcription by alpha- and gamma-Tocopherol in murine T lymphocytes
USDA-ARS?s Scientific Manuscript database
Of the 8 different analogues (alpha-, beta-, gamma-, delta-tocopherols and tocotrienols) designated as vitamin E, alpha-tocopherol (a-T) has been mostly studied, together with gamma-tocopherol (g-T) which is abundant in the US diet. We compared the effect of dietary supplementation with adequate or ...
Air pollution is associated with acute and chronic adverse human health effects related to atherosclerotic pathologies. MMP9 has a crucial role in the progression and ultimate degradation of vascular lesions and polymorphisms of MMP9 are highly associated with increased incidenc...
Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten
2014-01-01
Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885
Evidence for Phex haploinsufficiency in murine X-linked hypophosphatemia.
Wang, L; Du, L; Ecarot, B
1999-04-01
Mutations in the PHEX gene (phosphate-regulating gene with homology to endopeptidases on the X-chromosome) are responsible for X-linked hypophosphatemia (HYP). We previously reported the full-length coding sequence of murine Phex cDNA and provided evidence of Phex expression in bone and tooth. Here, we report the cloning of the entire 3.5-kb 3'UTR of the Phex gene, yielding a total of 6248 bp for the Phex transcript. Southern blot and RT-PCR analyses revealed that the 3' end of the coding sequence and the 3'UTR of the Phex gene, spanning exons 16 to 22, are deleted in Hyp, the mouse model for HYP. Northern blot analysis of bone revealed lack of expression of stable Phex mRNA from the mutant allele and expression of Phex transcripts from the wild-type allele in Hyp heterozygous females. Expression of the Phex protein in heterozygotes was confirmed by Western analysis with antibodies raised against a COOH-terminal peptide of the mouse Phex protein. Taken together, these results indicate that the dominant pattern of Hyp inheritance in mice is due to Phex haploinsufficiency.
Cao, Hui-Hui; Chu, Jian-Hong; Kwan, Hiu-Yee; Su, Tao; Yu, Hua; Cheng, Chi-Yan; Fu, Xiu-Qiong; Guo, Hui; Li, Ting; Tse, Anfernee Kai-Wing; Chou, Gui-Xin; Mo, Huan-Biao; Yu, Zhi-Ling
2016-01-01
Signal transducer and activator of transcription 3 (STAT3) signaling is constantly activated in human melanoma, and promotes melanoma metastasis. The dietary flavonoid apigenin is a bioactive compound that possesses low toxicity and exerts anti-metastatic activity in melanoma. However, the anti-metastasis mechanism of apigenin has not been fully elucidated. In the present study, we showed that apigenin suppressed murine melanoma B16F10 cell lung metastasis in mice, and inhibited cell migration and invasion in human and murine melanoma cells. Further study indicated that apigenin effectively suppressed STAT3 phosphorylation, decreased STAT3 nuclear localization and inhibited STAT3 transcriptional activity. Apigenin also down-regulated STAT3 target genes MMP-2, MMP-9, VEGF and Twist1, which are involved in cell migration and invasion. More importantly, overexpression of STAT3 or Twist1 partially reversed apigenin-impaired cell migration and invasion. Our data not only reveal a novel anti-metastasis mechanism of apigenin but also support the notion that STAT3 is an attractive and promising target for melanoma treatment. PMID:26911838
Aldosterone alters the chromatin structure of the murine endothelin-1 gene.
Welch, Amanda K; Jeanette Lynch, I; Gumz, Michelle L; Cain, Brian D; Wingo, Charles S
2016-08-15
Aldosterone increases sodium reabsorption in the renal collecting duct and systemic blood pressure. Paradoxically, aldosterone also induces transcription of the endothelin-1 (Edn1) gene to increase protein (ET-1) levels, which inhibits sodium reabsorption. Here we investigated changes in the chromatin structure of the Edn1 gene of collecting duct cell lines in response to aldosterone treatment. The Edn1 gene has a CpG island that encompasses the transcription start site and four sites in the 5' regulatory region previously linked to transcriptional regulation. The chromatin structure of the Edn1 gene was investigated using a quantitative PCR-based DNaseI hypersensitivity assay in murine hepatocyte (AML12), renal cortical collecting duct (mpkCCDC14), outer medullary collecting duct1 (OMCD1), and inner medullary collecting duct-3 (IMCD-3) cell lines. The CpG island was uniformly accessible. One calcium-responsive NFAT element remained at low chromatin accessibility in all cell lines under all conditions tested. However, the second calcium responsive NFAT element located at -1563bp upstream became markedly more accessible in IMCD-3 cells exposed to aldosterone. Importantly, one established aldosterone hormone response element HRE at -671bp relative to the transcription start site was highly accessible, and another HRE (-551bp) became more accessible in aldosterone-treated IMCD-3 and OMCD1 cells. The evidence supports a model in which aldosterone activation of the mineralocorticoid receptor (MR) results in the MR-hormone complex binding at HRE at -671bp to open chromatin structure around other regulatory elements in the Edn1 gene. Published by Elsevier Inc.
Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E
1996-05-31
Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.
Takarada, Takeshi; Kou, Miki; Hida, Miho; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Kuramoto, Nobuyuki; Hinoi, Eiichi; Yoneda, Yukio
2016-05-01
This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs. © 2016 Wiley Periodicals, Inc.
Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.
2015-01-01
The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10–30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo. PMID:26602160
Specific end-to-end attachment of chromosomes in Ornithogalum virens.
Ashley, T
1979-08-01
C-banding of nonhomologous chromosomes in haploid generative nuclei of Ornithogalum virens (n = 3) reveals a high degree of specificity with respect to end-to-end connexions. The centromeric end of chromosome 2 preferentially associates with the centromeric end of chromosome 3 and the telomeric end of chromosome 3 associates preferentially with the telomeric end of chromosome 1. This same association of nonhomologous chromosomes persists in prophase nuclei of diploid root tips. In addition, the telomeric ends of the 2 chromosome 2s are connected to one another as are the centromeric ends of the chromosome 1s. This results in a ring of chromosomes in which homologues lie opposite one another. Centromeric ends lie on one side of the nucleus and telomeric ends on the other. It is proposed that this specific association of chromosome ends reflects an order which was probably established at the preceding anaphase or telophase and which persists throughout interphase. The suggestion is made that the proximity of homologous ends and consequently homologous alignment may facilitate initiation of pairing at meiosis.
Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N
1986-01-01
We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence. Images PMID:3511098
Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N
1986-02-01
We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence.
Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres
Xiao, Hua; Wang, Feng; Wisniewski, Jan; Shaytan, Alexey K.; Ghirlando, Rodolfo; FitzGerald, Peter C.; Huang, Yingzi; Wei, Debbie; Li, Shipeng; Landsman, David; Panchenko, Anna R.; Wu, Carl
2017-01-01
Histone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C. Strikingly, we also discovered that AT-rich centromere DNA has an important role for Mif2 recruitment. Mif2 contacts one side of the nucleosome dyad, engaging with both Cse4 residues and AT-rich nucleosomal DNA. Both interactions are directed by a contiguous DNA- and histone-binding domain (DHBD) harboring the conserved CENP-C motif, an AT hook, and RK clusters (clusters enriched for arginine–lysine residues). Human CENP-C has two related DHBDs that bind preferentially to DNA sequences of higher AT content. Our findings suggest that a DNA composition-based mechanism together with residues characteristic for the CENP-A histone variant contribute to the specification of centromere identity. PMID:29074736
The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing
Abe, Ken-ichiro; Yamamoto, Ryoma; Franke, Vedran; Cao, Minjun; Suzuki, Yutaka; Suzuki, Masataka G; Vlahovicek, Kristian; Svoboda, Petr; Schultz, Richard M; Aoki, Fugaku
2015-01-01
Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3′ processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos. PMID:25896510
Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors.
Tanaka, Miwa; Yamazaki, Yukari; Kanno, Yohei; Igarashi, Katsuhide; Aisaki, Ken-ichi; Kanno, Jun; Nakamura, Takuro
2014-07-01
Ewing's sarcoma is a highly malignant bone tumor found in children and adolescents, and the origin of this malignancy is not well understood. Here, we introduced a Ewing's sarcoma-associated genetic fusion of the genes encoding the RNA-binding protein EWS and the transcription factor ETS (EWS-ETS) into a fraction of cells enriched for osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ) of long bones collected from late gestational murine embryos. EWS-ETS fusions efficiently induced Ewing's sarcoma-like small round cell sarcoma formation by these cells. Analysis of the eSZ revealed a fraction of a precursor cells that express growth/differentiation factor 5 (Gdf5), the transcription factor Erg, and parathyroid hormone-like hormone (Pthlh), and selection of the Pthlh-positive fraction alone further enhanced EWS-ETS-dependent tumor induction. Genes downstream of the EWS-ETS fusion protein were quite transcriptionally active in eSZ cells, especially in regions in which the chromatin structure of the ETS-responsive locus was open. Inhibition of β-catenin, poly (ADP-ribose) polymerase 1 (PARP1), or enhancer of zeste homolog 2 (EZH2) suppressed cell growth in a murine model of Ewing's sarcoma, suggesting the utility of the current system as a preclinical model. These results indicate that eSZ cells are highly enriched in precursors to Ewing's sarcoma and provide clues to the histogenesis of Ewing's sarcoma in bone.
Znalesniak, Eva B.; Fu, Ting; Salm, Franz; Händel, Ulrike; Hoffmann, Werner
2017-01-01
The spleen plays an important role in coordinating both adaptive and innate immune responses. Here, the transcriptional response to T. gondii infection in the murine spleen was characterized concerning inflammasome sensors (two different models: seven days after oral or four weeks after intraperitoneal infection). Additionally, Tff1KO and Tff3KO mice were investigated because TFF genes are often upregulated during inflammation. The expression of the pattern-recognition receptors Nlrp3, Nlrp12, and Nlrp1a was significantly increased after infection. This increase was diminished in Tff1KO and Tff3KO mice pointing towards a positive regulation of the inflammatory response by Tff1 and Tff3. Furthermore, the transcription of Tff1 (encoding a motogenic lectin) and other secretory genes was analyzed, i.e., gastrokines (Gkn), IgG Fc binding protein (Fcgbp), and the mucin Muc2. The corresponding gene products belong to an interactome protecting mucous epithelia. Tff1 was significantly induced after infection, which might increase the motility of immune cells. In contrast, Gkn3, Fcgbp, and Muc2 were downregulated seven days after oral infection; whereas four weeks after i.p. infection only Gkn3 remained downregulated. This might be an indication that Gkn3, Fcgbp, and Muc2 are involved in the transient disruption of the splenic architecture and its reorganization, which is characteristic after T. gondii infection. PMID:28604600
Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert
2014-04-01
Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.
Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca
2016-01-01
The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans. PMID:27458452
Sagar, Seil; Morgan, Mary E; Chen, Si; Vos, Arjan P; Garssen, Johan; van Bergenhenegouwen, Jeroen; Boon, Louis; Georgiou, Niki A; Kraneveld, Aletta D; Folkerts, Gert
2014-04-16
Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.
2014-01-01
Background Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. Methods To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Results Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. Conclusion These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma. PMID:24735374
Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping
2018-07-13
Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.
NASA Astrophysics Data System (ADS)
Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping
2018-07-01
Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores’ blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.
NASA Astrophysics Data System (ADS)
Li, Qi; Qi, Mingjun; Nie, Hongtao; Kong, Lingfeng; Yu, Hong
2016-06-01
Gene-centromere mapping is an essential prerequisite for understanding the composition and structure of genomes. Half-tetrad analysis is a powerful tool for mapping genes and understanding chromosomal behavior during meiosis. The Japanese scallop ( Patinopecten yessoensis), a cold-tolerant species inhabiting the northwestern Pacific coast, is a commercially important marine bivalve in Asian countries. In this study, inheritance of 32 informative microsatellite loci was examined in 70-h D-shaped larvae of three induced meiogynogenetic diploid families of P. yessoensis for centromere mapping using half-tetrad analysis. The ratio of gynogenetic diploids was proven to be 100%, 100% and 96% in the three families, respectively. Inheritance analysis in the control crosses showed that 51 of the 53 genotypic ratios observed were in accordance with Mendelian expectations at the 5% level after Bonferroni correction. Seven of the 32 microsatellite loci showed the existence of null alleles in control crosses. The second division segregation frequency ( y) of the microsatellite loci ranged from 0.07 to 0.85 with a mean of 0.38, suggesting the existence of positive interference after a single chiasma formation in some chromosomes in the scallop. Microsatellite-centromere distances ranged from 4 cM to 42 cM under the assumption of complete interference. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards the assembly of genetic maps in the commercially important scallop species.
Drosophila Nnf1 paralogs are partially redundant for somatic and germ line kinetochore function.
Blattner, Ariane C; Aguilar-Rodríguez, José; Kränzlin, Marcella; Wagner, Andreas; Lehner, Christian F
2017-02-01
Kinetochores allow attachment of chromosomes to spindle microtubules. Moreover, they host proteins that permit correction of erroneous attachments and prevent premature anaphase onset before bi-orientation of all chromosomes in metaphase has been achieved. Kinetochores are assembled from subcomplexes. Kinetochore proteins as well as the underlying centromere proteins and the centromeric DNA sequences evolve rapidly despite their fundamental importance for faithful chromosome segregation during mitotic and meiotic divisions. During evolution of Drosophila melanogaster, several centromere proteins were lost and a recent gene duplication has resulted in two Nnf1 paralogs, Nnf1a and Nnf1b, which code for alternative forms of a Mis12 kinetochore complex component. The rapid evolutionary divergence of centromere/kinetochore constituents in animals and plants has been proposed to be driven by an intragenome conflict resulting from centromere drive during female meiosis. Thus, a female meiosis-specific paralog might be expected to evolve rapidly under positive selection. While our characterization of the D. melanogaster Nnf1 paralogs hints at some partial functional specialization of Nnf1b for meiosis, we have failed to detect evidence for positive selection in our analysis of Nnf1 sequence evolution in the Drosophilid lineage. Neither paralog is essential, even though we find some clear differences in subcellular localization and expression during development. Loss of both paralogs results in developmental lethality. We therefore conclude that the two paralogs are still in early stages of differentiation.
Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi
2004-03-01
We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.
Dunemann, Frank; Schrader, Otto; Budahn, Holger; Houben, Andreas
2014-01-01
In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR) marker, and the CENH3 locus was mapped on the carrot chromosome 9. PMID:24887084
SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma.
Hampton, T A; Conry, R M; Khazaeli, M B; Shaw, D R; Curiel, D T; LoBuglio, A F; Strong, T V
2000-03-01
Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag. Polynucleotide immunization with DNA encoding the env polypeptide resulted in strong and specific antibody responses to this self Ag in all immunized mice. Thus, SEREX offers a rapid means of identifying tumor Ags in murine cancer models.
Dubarry, Nelly; Pasta, Franck; Lane, David
2006-01-01
Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the “universal” parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation. PMID:16452432
Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H
2014-11-11
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.
USDA-ARS?s Scientific Manuscript database
The Pi-ta gene, located near the centromeric region of chromosome 12 is an effective resistance gene to Magnaporthe oryzae that causes rice blast disease. Pi-ta has been incorporated into diverse resistant rice cultivars by classical plant breeding in the southern US and worldwide. Previously, la...
Zhang, Shaqiu; Al-Maghout, Tamer; Bissinger, Rosi; Zeng, Ni; Pelzl, Lisann; Salker, Madhuri S; Cheng, Anchun; Singh, Yogesh; Lang, Florian
2017-10-27
CD4 + T cells are key elements in immune responses and inflammation. Activation of T cell receptors in CD4 + T cells triggers cytosolic Ca 2+ release with subsequent store operated Ca 2+ entry (SOCE), which is accomplished by the pore forming Ca 2+ release activated Ca 2+ (CRAC) channel Orai1 and its regulator stromal cell-interaction molecule 2 (STIM2). Green tea polyphenol epigallocatechin-3-gallate (EGCG) acts as a potent anti-inflammatory and anti-oxidant agent for various types of cells including immune cells. However, how post-transcriptional gene regulators such as miRNAs are involved in the regulation of Ca 2+ influx into murine CD4 + T cells and human Jurkat T cells through EGCG is not defined. EGCG treatment of murine CD4 + T cells significantly down-regulated the expression of STIM2 and Orai1 both at mRNA and protein levels. Furthermore, EGCG significantly decreased SOCE in both murine and human T cells. EGCG treatment increased miRNA-15b (miR-15b) abundance in both murine and human T cells. Bioinformatics analysis reveals that miR-15b, which has a STIM2 binding site, is involved in the down-regulation of SOCE. Overexpression of miR-15b significantly decreased the mRNA and protein expression of STIM2 and Orai1 in murine T cells. Treatment of Jurkat T cells with 10 μM EGCG further decreased mTOR and PTEN protein levels. EGCG decreased mitochondrial membrane potential (MMP) in both human and murine T cells. In conclusion, the observations suggest that EGCG inhibits the Ca 2+ entry into murine and human T cells, an effect accomplished at least in part by up-regulation of miR-15b.
Regulation of Plant Cellular and Organismal Development by SUMO.
Elrouby, Nabil
2017-01-01
This chapter clearly demonstrates the breadth and spectrum of the processes that SUMO regulates during plant development. The gross phenotypes observed in mutants of the SUMO conjugation and deconjugation enzymes reflect these essential roles, and detailed analyses of these mutants under different growth conditions revealed roles in biotic and abiotic stress responses, phosphate starvation, nitrate and sulphur metabolism, freezing and drought tolerance and response to excess copper. SUMO functions also intersect with those regulated by several hormones such as salicylic acid , abscisic acid , gibberellins and auxin, and detailed studies provide mechanistic clues of how sumoylation may regulate these processes. The regulation of COP1 and PhyB functions by sumoylation provides very strong evidence that SUMO is heavily involved in the regulation of light signaling in plants. At the cellular and subcellular levels, SUMO regulates meristem architecture, the switch from the mitotic cycle into the endocycle, meiosis, centromere decondensation and exit from mitosis, transcriptional control, and release from transcriptional silencing. Most of these advances in our understanding of SUMO functions during plant development emerged over the past 6-7 years, and they may only predict a prominent rise of SUMO as a major regulator of eukaryotic cellular and organismal growth and development.
Sahara, Makoto; Eroglu, Elif; Chien, Kenneth R
2018-06-01
Despite the continuous discovery of long noncoding RNAs (lncRNAs) with critical developmental roles, our knowledge of lncRNAs that control cardiac lineage commitment is still limited. In this issue, Guo et al. (2018) report a novel lncRNA-mediated multiprotein complex assembly that directly regulates the key transcriptional programs of murine cardiogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
ENDOGENOUS RETROVIRUSES MOBILIZED DURING FRIEND MURINE LEUKEMIA VIRUS INFECTION
Hansen, Ethan; Hendrick, Duncan; Malik, Frank; Evans, Leonard H.
2016-01-01
We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses. PMID:27657834
Mehta, Ameeta; Dattani, Mehul T
2008-02-01
The pituitary gland is a complex organ secreting six hormones from five different cell types. It is the end product of a carefully orchestrated pattern of expression of signalling molecules and transcription factors. Naturally occurring and transgenic murine models have demonstrated a role for many of these molecules in the aetiology of congenital hypopituitarism. These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, PITX1, PITX2, SOX2 and SOX3. The expression pattern of these transcription factors dictates the phenotype that results when the gene encoding the relevant transcription factor is mutated. The highly variable phenotype may consist of isolated hypopituitarism or more complex disorders such as septo-optic dysplasia and holoprosencephaly. However, the overall incidence of mutations in known transcription factors in patients with hypopituitarism is low, indicating that many genes remain to be identified; characterization of these will further elucidate the pathogenesis of this complex condition and also shed light on normal pituitary development and function.
Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.
2014-01-01
Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943
Larsen, Charles E.; Alford, Dennis R.; Trautwein, Michael R.; Jalloh, Yanoh K.; Tarnacki, Jennifer L.; Kunnenkeri, Sushruta K.; Fici, Dolores A.; Yunis, Edmond J.; Awdeh, Zuheir L.; Alper, Chester A.
2014-01-01
We resequenced and phased 27 kb of DNA within 580 kb of the MHC class II region in 158 population chromosomes, most of which were conserved extended haplotypes (CEHs) of European descent or contained their centromeric fragments. We determined the single nucleotide polymorphism and deletion-insertion polymorphism alleles of the dominant sequences from HLA-DQA2 to DAXX for these CEHs. Nine of 13 CEHs remained sufficiently intact to possess a dominant sequence extending at least to DAXX, 230 kb centromeric to HLA-DPB1. We identified the regions centromeric to HLA-DQB1 within which single instances of eight “common” European MHC haplotypes previously sequenced by the MHC Haplotype Project (MHP) were representative of those dominant CEH sequences. Only two MHP haplotypes had a dominant CEH sequence throughout the centromeric and extended class II region and one MHP haplotype did not represent a known European CEH anywhere in the region. We identified the centromeric recombination transition points of other MHP sequences from CEH representation to non-representation. Several CEH pairs or groups shared sequence identity in small blocks but had significantly different (although still conserved for each separate CEH) sequences in surrounding regions. These patterns partly explain strong calculated linkage disequilibrium over only short (tens to hundreds of kilobases) distances in the context of a finite number of observed megabase-length CEHs comprising half a population's haplotypes. Our results provide a clearer picture of European CEH class II allelic structure and population haplotype architecture, improved regional CEH markers, and raise questions concerning regional recombination hotspots. PMID:25299700
USDA-ARS?s Scientific Manuscript database
A microsatellite-based genome scan of a Wagyu x Limousin F2 cross population previously demonstrated QTL affecting longissimus muscle area (LMA) and fatty acid composition were present in regions near the centromere of BTA 2. In this study we used 70 SNP markers to examine the centromeric 20 megabas...
Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi
2015-12-01
Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.
Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points
Miga, Karen H.; Sekulic, Nikolina; Soni, Gautam V.; Kim, Dong Hyun; Wong, Adeline K.; Lee, Ah Young; Nguyen, Kristen; Dekker, Cees; Ren, Bing; Black, Ben E.
2017-01-01
Chromatin assembled with centromere protein A (CENP-A) is the epigenetic mark of centromere identity. Using new reference models, we now identify sites of CENP-A and histone H3.1 binding within the megabase, α-satellite repeat–containing centromeres of 23 human chromosomes. The overwhelming majority (97%) of α-satellite DNA is found to be assembled with histone H3.1–containing nucleosomes with wrapped DNA termini. In both G1 and G2 cell cycle phases, the 2–4% of α-satellite assembled with CENP-A protects DNA lengths centered on 133 bp, consistent with octameric nucleosomes with DNA unwrapping at entry and exit. CENP-A chromatin is shown to contain equimolar amounts of CENP-A and histones H2A, H2B, and H4, with no H3. Solid-state nanopore analyses show it to be nucleosomal in size. Thus, in contrast to models for hemisomes that briefly transition to octameric nucleosomes at specific cell cycle points or heterotypic nucleosomes containing both CENP-A and histone H3, human CENP-A chromatin complexes are octameric nucleosomes with two molecules of CENP-A at all cell cycle phases. PMID:28235947
Assessing Telomere Length Using Surface Enhanced Raman Scattering
NASA Astrophysics Data System (ADS)
Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping
2014-11-01
Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.
Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.
Henssen, Anton; Althoff, Kristina; Odersky, Andrea; Beckers, Anneleen; Koche, Richard; Speleman, Frank; Schäfers, Simon; Bell, Emma; Nortmeyer, Maike; Westermann, Frank; De Preter, Katleen; Florin, Alexandra; Heukamp, Lukas; Spruessel, Annika; Astrahanseff, Kathy; Lindner, Sven; Sadowski, Natalie; Schramm, Alexander; Astorgues-Xerri, Lucile; Riveiro, Maria E; Eggert, Angelika; Cvitkovic, Esteban; Schulte, Johannes H
2016-05-15
Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR. ©2015 American Association for Cancer Research.
Shields, B A; Engelman, R W; Fukaura, Y; Good, R A; Day, N K
1991-01-01
Calorie restriction suppresses mammary proviral mRNA expression and protooncogene activation in breast tumor-prone C3H/Ou mice while inhibiting tumor formation. To determine whether the beneficial effects of chronic energy-intake restriction (CEIR) can be extended to an organ site of retrovirus-induced tumorigenesis where the dynamics of growth and sexual maturity are not paramount as they are in breast tissue, calorie restriction of 40% was imposed on thymic lymphoma-prone AKR mice when 4 weeks old. Recombination between various murine leukemia virus (MuLV) mRNAs, resulting in the generation of an 8.4-kilobase genomic-length transcript with mink cytopathic focus-forming (MCF) characteristics, is considered the proximal retroviral event in AKR lymphomagenesis. Thymic expression of subgenomic MCF MuLV mRNA was uniformly suppressed among 6- and 8-week-old CEIR mice (P less than 0.02). This suppression of MuLV transcription preceded a 25% reduction in the appearance of genomic-length MCF transcripts among CEIR mice and a 28% reduction in cumulative lymphoma mortality. The latency to median tumor incidence was extended greater than 3 months by calorie restriction, and median lifespan was extended approximately 50%. Survival curves for the full-fed and CEIR dietary cohorts were found to be significantly different (P less than 0.0001), with full-fed mice experiencing a 3 times greater risk of lymphoma mortality. These findings extend the known range of pathologic states influenced by CEIR in inbred mice and show that retroviral mechanisms involved in generation of lymphoid malignancy can be significantly impaired by calorie restriction. Images PMID:1763029
Yin, Mengmeng; Yuan, Yin; Cui, Yurong; Hong, Xian; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jurgen; Xi, Jiaoya
2015-01-01
Puerarin shows a wide range of biological activities, including affecting the cardiac differentiation from murine embryonic stem (mES) cells. However, little is known about its effect and mechanism of action on the self-renewal of mES cells. This study aimed to determine the effect of puerarin on the self-renewal and pluripotency of mES cells and its underlying mechanisms. RT-PCR and real-time PCR were used to detect the transcripts of core transcription factors, specific markers for multiple lineages, REST and microRNA-21 (miR-21). Colony-forming assay was performed to estimate the self-renewal capacity of mES cells. Western blotting and wortmannin were employed to explore the role of PI3K/Akt signaling pathway in the inhibitory action of puerarin on REST transcript. Transfected mES cells with antagomir21 were used to confirm the role of miR-21 in the action of puerarin on cell self-renewal. Puerarin significantly decreased the percentage of the self-renewal colonies, and suppressed the transcripts of Oct4, Nanog, Sox2, c-Myc and REST. Besides, PECAM, NCAM and miR-21 were up-regulated both under the self-renewal conditions and at day 4 of differentiation. The PI3K inhibitor wortmannin successfully reversed the mRNA expression changes of REST, Nanog and Sox2. Transfection of antagomir21 efficiently reversed the effects of puerarin on mES cells self-renewal. Inhibition of REST-miR-21 regulatory pathway may be the key mechanism of puerarin-induced suppression of mES cells self-renewal.
Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve
2009-01-01
Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308
NASA Astrophysics Data System (ADS)
Anand, Sanjay; Hasan, Tayyaba; Maytin, Edward V.
2013-03-01
Photodynamic therapy (PDT) with aminolevulinate (ALA) is widely accepted as an effective treatment for superficial carcinomas and pre-cancers. However, PDT is still suboptimal for deeper tumors, mainly due to inadequate ALA penetration and subsequent conversion to PpIX. We are interested in improving the effectiveness of photodynamic therapy (PDT) for deep tumors, using a combination approach (cPDT) in which target protoporphyrin (PpIX) levels are significantly enhanced by differentiation caused by giving Vitamin D or methotrexate (MTX) for 3 days prior to ALAPDT. In LNCaP and MEL cells, a strong correlation between inducible differentiation and expression of C/EBP transcription factors, as well as between differentiation and mRNA levels of CPO (a key heme-synthetic enzyme), indicates the possibility of CPO transcriptional regulation by the C/EBPs. Sequence analysis of the first 1300 base pairs of the murine CPO upstream region revealed 15 consensus C/EBP binding sites. Electrophoretic Mobility Shift Assays (EMSA) proved that these sites form specific complexes that have strong, moderate or weak affinities for C/EBPs. However, in the context of the full-length CPO promoter, inactivation of any type of site (strong or weak) reduced CPO promoter activity (luciferase assay) to nearly the same extent, suggesting cooperative interactions. A comparative analysis of murine and human CPO promoters revealed possible protein-protein interactions between C/EBPs and several neighboring transcription factors such as NFkB, Sp1, AP-1, CBP/p300 and CREB (an enhanceosome complex). Overall, these results confirm that C/EBP's are important for CPO expression via complex mechanisms which upregulate PpIX and enhance the outcome of cPDT.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Patel, Monal; Predescu, Dan; Bardita, Cristina; Chen, Jiwang; Jeganathan, Niranjan; Pritchard, Melanie; DiBartolo, Salvatore; Machado, Roberto; Predescu, Sanda
2017-03-01
Murine models of pulmonary arterial hypertension (PAH) that recapitulate the plexiform and obliterative arteriopathy seen in PAH patients and help in defining the molecular mechanisms involved are missing. Herein, we investigated whether intersectin-1s (ITSN) deficiency and prolonged lung expression of an ITSN fragment with endothelial cell (EC) proliferative potential (EH ITSN ), present in the lungs of PAH animal models and human patients, induce formation of plexiform/obliterative lesions and defined the molecular mechanisms involved. ITSN-deficient mice (knockout/heterozygous and knockdown) were subjected to targeted lung delivery of EH ITSN via liposomes for 20 days. Immunohistochemistry and histological and morphometric analyses revealed a twofold increase in proliferative ECs and a 1.35-fold increase in proliferative α-smooth muscle actin-positive cells in the lungs of ITSN-deficient mice, transduced with the EH ITSN relative to wild-type littermates. Treated mice developed severe medial wall hypertrophy, intima proliferation, and various forms of obliterative and plexiform-like lesions in pulmonary arteries, similar to PAH patients. Hemodynamic measurements indicated modest increases in the right ventricular systolic pressure and right ventricle hypertrophy. Transcriptional and protein assays of lung tissue indicated p38 MAPK -dependent activation of Elk-1 transcription factor and increased expression of c-Fos gene. This unique murine model of PAH-like plexiform/obliterative arteriopathy induced via a two-hit pathophysiological mechanism without hypoxia provides novel druggable targets to ameliorate and, perhaps, reverse the EC plexiform phenotype in severe human PAH. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668
Zellmer, Sebastian; Schmidt-Heck, Wolfgang; Godoy, Patricio; Weng, Honglei; Meyer, Christoph; Lehmann, Thomas; Sparna, Titus; Schormann, Wiebke; Hammad, Seddik; Kreutz, Clemens; Timmer, Jens; von Weizsäcker, Fritz; Thürmann, Petra A; Merfort, Irmgard; Guthke, Reinhard; Dooley, Steven; Hengstler, Jan G; Gebhardt, Rolf
2010-12-01
The cellular basis of liver regeneration has been intensely investigated for many years. However, the mechanisms initiating hepatocyte "plasticity" and priming for proliferation are not yet fully clear. We investigated alterations in gene expression patterns during the first 72 hours of C57BL/6N mouse hepatocyte culture on collagen monolayers (CM), which display a high basal frequency of proliferation in the absence of cytokines. Although many metabolic genes were down-regulated, genes related to mitogen-activated protein kinase (MAPK) signaling and cell cycle were up-regulated. The latter genes showed an overrepresentation of transcription factor binding sites (TFBS) for ETF (TEA domain family member 2), E2F1 (E2F transcription factor 1), and SP-1 (Sp1 transcription factor) (P < 0.001), all depending on MAPK signaling. Time-dependent increase of ERK1/2 phosphorylation occurred during the first 48 hours (and beyond) in the absence of cytokines, accompanied by an enhanced bromodeoxyuridine labeling index of 20%. The MEK inhibitor PD98059 blunted these effects indicating MAPK signaling as major trigger for this cytokine-independent proliferative response. In line with these in vitro findings, liver tissue of mice challenged with CCl(4) displayed hepatocytes with intense p-ERK1/2 staining and nuclear SP-1 and E2F1 expression. Furthermore, differentially expressed genes in mice after partial hepatectomy contained overrepresented TFBS for ETF, E2F1, and SP-1 and displayed increased expression of E2F1. Cultivation of murine hepatocytes on CM primes cells for proliferation through cytokine-independent activation of MAPK signaling. The transcription factors ETF, E2F1, and SP-1 seem to play a pronounced role in mediating proliferation-dependent differential gene expression. Similar events, but on a shorter time-scale, occur very early after liver damage in vivo. Copyright © 2010 American Association for the Study of Liver Diseases.
Yan, Shi-Fang; Zou, Yu Shan; Gao, Yun; Zhai, Chao; Mackman, Nigel; Lee, Stephen L.; Milbrandt, Jeffrey; Pinsky, David; Kisiel, Walter; Stern, David
1998-01-01
Local hypoxemia and stasis trigger thrombosis. We have demonstrated previously that in a murine model of normobaric hypoxia pulmonary fibrin deposition is a result of expression of tissue factor, especially in oxygen-deprived mononuclear phagocytes (MPs). We now show that transcription factor early-growth-response gene product (Egr-1) is rapidly activated in hypoxia, both in vitro and in vivo, and is responsible for transcription and expression of tissue factor in hypoxic lung. MPs and HeLa cells subjected to hypoxia (pO2 ≈13 torr) had increased levels of tissue factor transcripts (≈18-fold) and an increased rate of transcription (≈15-fold), based on nuclear run-on analysis. Gel-shift analysis of nuclear extracts from hypoxic MPs and HeLa cells demonstrated increased DNA-binding activity at the serum response region (SRR; −111/+14 bp) of the tissue factor promoter at Egr-1 motifs. Using 32P-labeled Egr consensus oligonucleotide, we observed induction of DNA-binding activity in nuclear extracts from hypoxic lung and HeLa cells because of activation of Egr-1, by means of supershift analysis. Transient transfection of HeLa cells with chimeric plasmids containing wild-type or mutant SRR from the tissue factor promoter showed that intact Sp1 sites are necessary for basal promoter activity, whereas the integrity of Egr-1 sites was required for hypoxia-enhanced expression. A central role for Egr-1 in hypoxia-mediated tissue factor expression was confirmed by experiments with homozygous Egr-1 null mice; wild-type mice subjected to oxygen deprivation expressed tissue factor and showed fibrin deposition, but hypoxic homozygous Egr-1 null mice displayed neither tissue factor nor fibrin. These data delineate a novel biology for hypoxia-induced fibrin deposition, in which oxygen deprivation-induced activation of Egr-1, resulting in expression of tissue factor, has an unexpected and central role. PMID:9653181
Dissecting Embryonic Stem Cell Self-Renewal and Differentiation Commitment from Quantitative Models.
Hu, Rong; Dai, Xianhua; Dai, Zhiming; Xiang, Qian; Cai, Yanning
2016-10-01
To model quantitatively embryonic stem cell (ESC) self-renewal and differentiation by computational approaches, we developed a unified mathematical model for gene expression involved in cell fate choices. Our quantitative model comprised ESC master regulators and lineage-specific pivotal genes. It took the factors of multiple pathways as input and computed expression as a function of intrinsic transcription factors, extrinsic cues, epigenetic modifications, and antagonism between ESC master regulators and lineage-specific pivotal genes. In the model, the differential equations of expression of genes involved in cell fate choices from regulation relationship were established according to the transcription and degradation rates. We applied this model to the Murine ESC self-renewal and differentiation commitment and found that it modeled the expression patterns with good accuracy. Our model analysis revealed that Murine ESC was an attractor state in culture and differentiation was predominantly caused by antagonism between ESC master regulators and lineage-specific pivotal genes. Moreover, antagonism among lineages played a critical role in lineage reprogramming. Our results also uncovered that the ordered expression alteration of ESC master regulators over time had a central role in ESC differentiation fates. Our computational framework was generally applicable to most cell-type maintenance and lineage reprogramming.
Gerencsér, Ákos; Barta, Endre; Boa, Simon; Kastanis, Petros; Bösze, Zsuzsanna; Whitelaw, C Bruce A
2002-01-01
κ-casein plays an essential role in the formation, stabilisation and aggregation of milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. We determined the 5'-flanking sequences for the murine, rabbit and human κ-casein genes and compared them to the published ruminant sequences. The most conserved region was not the proximal promoter region but an approximately 400 bp long region centred 800 bp upstream of the TATA box. This region contained two highly conserved MGF/STAT5 sites with common spacing relative to each other. In this region, six conserved short stretches of similarity were also found which did not correspond to known transcription factor consensus sites. On the contrary to ruminant and human 5' regulatory sequences, the rabbit and murine 5'-flanking regions did not harbour any kind of repetitive elements. We generated a phylogenetic tree of the six species based on multiple alignment of the κ-casein sequences. This study identified conserved candidate transcriptional regulatory elements within the κ-casein gene promoter. PMID:11929628
Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon
2015-04-20
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.
2016-01-01
Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471
Ewing’s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors
Tanaka, Miwa; Yamazaki, Yukari; Kanno, Yohei; Igarashi, Katsuhide; Aisaki, Ken-ichi; Kanno, Jun; Nakamura, Takuro
2014-01-01
Ewing’s sarcoma is a highly malignant bone tumor found in children and adolescents, and the origin of this malignancy is not well understood. Here, we introduced a Ewing’s sarcoma–associated genetic fusion of the genes encoding the RNA-binding protein EWS and the transcription factor ETS (EWS-ETS) into a fraction of cells enriched for osteochondrogenic progenitors derived from the embryonic superficial zone (eSZ) of long bones collected from late gestational murine embryos. EWS-ETS fusions efficiently induced Ewing’s sarcoma–like small round cell sarcoma formation by these cells. Analysis of the eSZ revealed a fraction of a precursor cells that express growth/differentiation factor 5 (Gdf5), the transcription factor Erg, and parathyroid hormone-like hormone (Pthlh), and selection of the Pthlh-positive fraction alone further enhanced EWS-ETS–dependent tumor induction. Genes downstream of the EWS-ETS fusion protein were quite transcriptionally active in eSZ cells, especially in regions in which the chromatin structure of the ETS-responsive locus was open. Inhibition of β-catenin, poly (ADP-ribose) polymerase 1 (PARP1), or enhancer of zeste homolog 2 (EZH2) suppressed cell growth in a murine model of Ewing’s sarcoma, suggesting the utility of the current system as a preclinical model. These results indicate that eSZ cells are highly enriched in precursors to Ewing’s sarcoma and provide clues to the histogenesis of Ewing’s sarcoma in bone. PMID:24911143
Duan, L; Pomerantz, R J
1994-01-01
The pooled degenerate-primer polymerase chain reaction (PCR) technology is now widely used in the amplification and cloning of murine hybridoma-specific immunoglobulin gene cDNAs. The design of primers is mainly based on the highly conserved 5' terminus of immunoglobulin gene variable regions and the constant region in the 3' terminus. Of note, most murine hybridoma cell lines are derived from the Sp2/0 cell line, which is demonstrated to express endogenous aberrant kappa chains (abV kappa). This high-level endogenous abV kappa mixes with specific kappa chains in the hybridomas and interferes with the efficiency of the reverse transcriptase (RT)-PCR cloning strategy. In this report, during the cloning of murine anti-human immunodeficiency virus type I (HIV-1) hybridoma immunoglobulin cDNAs, a specific primer-PCR screening system was developed, based on the abV kappa complementarity-defining region (CDR), to eliminate abV kappa-carrying plasmids. Furthermore, an abV kappa sequence-specific derived ribozyme was developed and packaged in a retroviral expression vector system. This abV kappa ribozyme can be transduced into different murine hybridomas, and expressed intracellularly to potently eliminate endogenous abV kappa RNA. Images PMID:7816635
Steffen, Leta S; Bacher, Jeffery W; Peng, Yuanlin; Le, Phuong N; Ding, Liang-Hao; Genik, Paula C; Ray, F Andrew; Bedford, Joel S; Fallgren, Christina M; Bailey, Susan M; Ullrich, Robert L; Weil, Michael M; Story, Michael D
2013-01-01
Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.
Abnormal centromere-chromatid apposition (ACCA) and Peters' anomaly.
Wertelecki, W; Dev, V G; Superneau, D W
1985-08-01
Abnormal centromere-chromatid apposition (ACCA) was noted in a patient with Peters' anomaly. Previous reports of ACCA emphasized its association with tetraphocomelia and other congenital malformations (Roberts, SC Phocomelia, Pseudothalidomide Syndromes). This report expands the array of congenital malformations associated with ACCA and emphasizes the diagnostic importance of ocular defects for the ascertainment of additional cases of ACCA and its possible relationship with abnormal cell division.
Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T
2000-01-01
The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821
Ma, AyeAye; Margolis, Mathew S.
2013-01-01
Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in different neuronal subtypes (A5+ and KH10+) in murine trigeminal ganglia, results which correlate with restricted productive infection in these neurons in vitro. HSV-2 latency-associated transcript (LAT) contains a cis-acting regulatory element near the transcription start site that promotes productive infection in A5+ neurons and a second element in exon 1 that inhibits productive infection in KH10+ neurons. HSV-1 contains no such regulatory sequences, demonstrating different mechanisms for regulating productive HSV infection in neurons. PMID:23514893
McKee, B. D.; Habera, L.; Vrana, J. A.
1992-01-01
In Drosophila melanogaster males, X-Y meiotic chromosome pairing is mediated by the nucleolus organizers (NOs) which are located in the X heterochromatin (Xh) and near the Y centromere. Deficiencies for Xh disrupt X-Y meiotic pairing and cause high frequencies of X-Y nondisjunction. Insertion of cloned rRNA genes on an Xh(-) chromosome partially restores normal X-Y pairing and disjunction. To map the sequences within an inserted, X-linked rRNA gene responsible for stimulating X-Y pairing, partial deletions were generated by P element-mediated destabilization of the insert. Complete deletions of the rRNA transcription unit did not interfere with the ability to stimulate X-Y pairing as long as most of the intergenic spacer (IGS) remained. Within groups of deletions that lacked the entire transcription unit and differed only in length of residual IGS material, pairing ability was proportional to the dose of 240-bp intergenic spacer repeats. Deletions of the complete rRNA transcription unit or of the 28S sequences alone blocked nucleolus formation, as determined by binding of an antinucleolar antibody, yet did not interfere with pairing ability, suggesting that X-Y pairing may not be mechanistically related to nucleolus formation. A model for achiasmatic pairing in Drosophila males based upon the combined action of topoisomerase I and a strand transferase is proposed. PMID:1330825
Gualtieri, Gustavo; Conner, Joann A.; Morishige, Daryl T.; Moore, L. David; Mullet, John E.; Ozias-Akins, Peggy
2006-01-01
Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory. PMID:16415213
Gualtieri, Gustavo; Conner, Joann A; Morishige, Daryl T; Moore, L David; Mullet, John E; Ozias-Akins, Peggy
2006-03-01
Bacterial artificial chromosome (BAC) clones from apomicts Pennisetum squamulatum and buffelgrass (Cenchrus ciliaris), isolated with the apospory-specific genomic region (ASGR) marker ugt197, were assembled into contigs that were extended by chromosome walking. Gene-like sequences from contigs were identified by shotgun sequencing and BLAST searches, and used to isolate orthologous rice contigs. Additional gene-like sequences in the apomicts' contigs were identified by bioinformatics using fully sequenced BACs from orthologous rice contigs as templates, as well as by interspecies, whole-contig cross-hybridizations. Hierarchical contig orthology was rapidly assessed by constructing detailed long-range contig molecular maps showing the distribution of gene-like sequences and markers, and searching for microsyntenic patterns of sequence identity and spatial distribution within and across species contigs. We found microsynteny between P. squamulatum and buffelgrass contigs. Importantly, this approach also enabled us to isolate from within the rice (Oryza sativa) genome contig Rice A, which shows the highest microsynteny and is most orthologous to the ugt197-containing C1C buffelgrass contig. Contig Rice A belongs to the rice genome database contig 77 (according to the current September 12, 2003, rice fingerprint contig build) that maps proximal to the chromosome 11 centromere, a feature that interestingly correlates with the mapping of ASGR-linked BACs proximal to the centromere or centromere-like sequences. Thus, relatedness between these two orthologous contigs is supported both by their molecular microstructure and by their centromeric-proximal location. Our discoveries promote the use of a microsynteny-based positional-cloning approach using the rice genome as a template to aid in constructing the ASGR toward the isolation of genes underlying apospory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, D.J.; Miller, A.P.; Schwartz, S.
1996-01-01
To test the centromere misdivision model of isochromosome formation, we have defined the breakpoints of cytogenetically monocentric and dicentric Xq isochromosomes (i(Xq)) from Turner syndrome probands, using FISH with cosmids and YACs derived from a contig spanning proximal Xp. Seven different pericentromeric breakpoints were identified, with 10 of 11 of the i(Xq)s containing varying amounts of material from Xp. Only one of the eight cytogenetically monocentric i(Xq)s demonstrated a single alpha-satellite (DXZ1) signal, consistent with classical models involving centromere misdivision. The remaining seven were inconsistent with such a model and had breakpoints that spanned proximal Xp11.21: one was between DXZ1more » and the most proximal marker, ZXDA; one occurred between the duplicated genes, ZXDA and ZXDB; two were {approximately}2 Mb from DXZ1; two were adjacent to ALAS2 located 3.5 Mb from DXZ1; and the largest had a breakpoint just distal to DXS1013E, indicating the inclusion of 8 Mb of Xp DNA between centromeres. The three cytologically dicentric i(Xq)s had breakpoints distal to DXS423E in Xp11.22 and therefore contained {ge}12 Mb of DNA between centromeres. These data demonstrate that the majority of breakpoints resulting in i(Xq) formation are in band Xp11.2 and not in the centromere itself. Therefore, we hypothesize that the predominant mechanism of i(Xq) formation involves sequences in the proximal short arm that are prone to breakage and reunion events between sister chromatids or homologous X chromosomes. 39 refs., 4 figs., 2 tabs.« less
Molecular mapping of the tubby (tub) mutation on mouse chromosome 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, W.K.; Goldberg-Berman, J.; Power-Kehoe, L.
1996-03-01
Using 180 F2 progeny of a C57BL6/J x CAST/Ei tub/+F1 intersubspecific intercross, a map of 28 molecular markers (including eight genes) on chromosome 7 surrounding the tub locus was generated. Using 33 obese F2 progeny, tub was localized approximately 50-52 cM distal to the centromere on mouse chromosome 7 in the interval defined proximally by hemoglobin beta (Hbb), D7Mit38, D7Mit217, D7Mit37, D7Mit96, and D7Mit33 and distally by D7Mit 98. Using 39 obese F2 progeny from a similar intersubspecific intercross, a telomeric boundary of the interval defining tub was defined by D7Mit53; the order centromere-Hbb/tub-D7Mit53/D7Mit328/D7Mit220-parathyroid hormone (Pth)-calcitonin (Calc)-zona pellucida 2 (2p2)more » was established. By combining the data from the two crosses, the most likely gene order on mouse chromosome 7 is centromere-Hbb-tub-Pth-Calc, thus making it likely that the human homolog of tub resides on 11p15, where the gene order HBB-PTH-CALC is conserved. Assignment of the human tubby homolog to 11p15 allows selection and development of polymorphic molecular markers that can be used to examine segregation of a human homolog of tubby in pedigrees segregating for obesity. The gene sulfonylurea receptor was eliminated as a candidate gene for tubby on the basis of its map position, approximately 3.1 {plus_minus} 3.1 cM centromeric of tyrosinase and approximately 14.9 {plus_minus} 4.8 cM centromeric of Hbb. 47 refs., 2 figs., 2 tabs.« less
Fulka, Helena; Aoki, Fugaku
2016-06-01
In mammals, mature oocytes and early preimplantation embryos contain transcriptionally inactive structures termed nucleolus precursor bodies instead of the typical fibrillo-granular nucleoli. These nuclear organelles are essential and strictly of maternal origin. If they are removed from oocytes, the resulting embryos are unable to replace them and consequently fail to develop. Historically, nucleolus precursor bodies have been perceived as a passive repository site of nucleolar proteins that are required for embryos to form fully functional nucleoli. Recent results, however, contradict this long-standing dogma and show that these organelles are dispensable for nucleologenesis and ribosome biogenesis. In this article, we discuss the possible roles of nucleolus precursor bodies and propose how they might be involved in embryogenesis. Furthermore, we argue that these organelles are essential only shortly after fertilization and suggest that they might actively participate in centromeric chromatin establishment. © 2016 by the Society for the Study of Reproduction, Inc.
Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves
2017-12-08
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Functional Characterization of CENP-A Post-Translational Modifications in Chromosome Segregation
2016-09-01
our overall findings in discussion part, and finally we will explain major materials and methods we used. Results CENP-A α-amino methylation...centromere and kinetochore and accurate segregation of the genetic materials . Moreover, we established that centromere/kinetochore defects in the absence...developed. Materials and methods: Creation of CENP-A complete replacement RPE cells: RPE CENP-A knockout cell line generated by Don Cleaveland Lab7 used
Comparative mapping of human alphoid centromeric sequences in great apes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archidiacono, N.; Antonacci, R.; Marzella, R.
1994-09-01
Metaphase spreads from chimpanzees (Pan troglodytes and Pan paniscus) and gorilla (Gorilla gorilla) have been hybridized in situ with 27 alphoid DNA probes specific for the centromere of human chromosomes, to investigate the evolutionary relationship between centromeric regions of human and great apes. The results showed that most human probes do not recognize their corresponding homologs in great apes. Chromosome X is the only chromosome showing localization consistency in all the four species. Each suprachromosomal family (SCF) exhibits a distinct and peculiar evolutionary history. SCF1 (chromosomes 1, 3, 6, 7, 19, 12, 16) is very heterogeneous: some probes gave intensemore » signals, but always on non-homologous chromosomes; others did not produce any hybridization signal. All probes localized on SCF2 (chromosomes 2, 4, 8, 9, 13, 14, 15, 18, 20, 21, and 22) recognize a single chromosome: chromosome 11 (phylogenetic IX) in PTR and PPA; chromosome 4 (phylogenetic V) in GGO. SCF3 subsets (chromosomes 1, 11, 17, X) are substantially conserved in PTR and PPA, but not in GGO, with the exception restricted to chromosome X. No signals have been detected on PPA chromosomes I, III, IV, V, VI and in PTR chromosomes V, suggesting that the centromeric region of some chromsomes have probably lost homology with human alphoid sequences.« less
Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.
Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri
2016-01-01
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.