Science.gov

Sample records for murine experimental autoimmune

  1. Redundancy between Cysteine Cathepsins in Murine Experimental Autoimmune Encephalomyelitis.

    PubMed

    Allan, Euan Ramsay Orr; Yates, Robin Michael

    2015-01-01

    The cysteine cathepsins B, S, and L are functionally linked to antigen processing, and hence to autoimmune disorders such as multiple sclerosis. Stemming from several studies that demonstrate that mice can be protected from experimental autoimmune encephalomyelitis (EAE) through the pharmacologic inhibition of cysteine cathepsins, it has been suggested that targeting these enzymes in multiple sclerosis may be of therapeutic benefit. Utilizing mice deficient in cysteine cathepsins both individually and in combination, we found that the myelin-associated antigen myelin oligodendrocyte glycoprotein (MOG) was efficiently processed and presented by macrophages to CD4+ T cells in the individual absence of cathepsin B, S or L. Similarly, mice deficient in cathepsin B or S were susceptible to MOG-induced EAE and displayed clinical progression and immune infiltration into the CNS, similar to their wild-type counterparts. Owing to a previously described CD4+ T cell deficiency in mice deficient in cathepsin L, such mice were protected from EAE. When multiple cysteine cathepsins were simultaneously inhibited via genetic deletion of both cathepsins B and S, or by a cathepsin inhibitor (LHVS), MHC-II surface expression, MOG antigen presentation and EAE were attenuated or prevented. This study demonstrates the functional redundancy between cathepsin B, S and L in EAE, and suggests that the inhibition of multiple cysteine cathepsins may be needed to modulate autoimmune disorders such as multiple sclerosis.

  2. Bidirectional Estrogen-Like Effects of Genistein on Murine Experimental Autoimmune Ovarian Disease.

    PubMed

    Ding, Qiao; Wang, Yuxiao; Li, Na; Zhu, Kexue; Hu, Jielun; Wang, Sunan; Zhu, Fan; Nie, Shaoping

    2016-11-08

    This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD.

  3. Bidirectional Estrogen-Like Effects of Genistein on Murine Experimental Autoimmune Ovarian Disease

    PubMed Central

    Ding, Qiao; Wang, Yuxiao; Li, Na; Zhu, Kexue; Hu, Jielun; Wang, Sunan; Zhu, Fan; Nie, Shaoping

    2016-01-01

    This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD. PMID:27834809

  4. Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Semon, Julie A.; Zhang, Xiujuan; Pandey, Amitabh C.; Alandete, Sandra M.; Maness, Catherine; Zhang, Shijia; Scruggs, Brittni A.; Strong, Amy L.; Sharkey, Steven A.; Beuttler, Marc M.; Gimble, Jeffrey M.

    2013-01-01

    Administration of adipose-derived stromal/stem cells (ASCs) represents a promising therapeutic approach for autoimmune diseases since they have been shown to have immunomodulatory properties. The uncultured, nonexpanded counterpart of ASCs, the stromal vascular fraction (SVF), is composed of a heterogeneous mixture of cells. Although administration of ex vivo culture-expanded ASCs has been used to study immunomodulatory mechanisms in multiple models of autoimmune diseases, less is known about SVF-based therapy. The ability of murine SVF cells to treat myelin oligodendrocyte glycoprotein35–55-induced experimental autoimmune encephalitis (EAE) was compared with that of culture-expanded ASCs in C57Bl/6J mice. A total of 1 × 106 SVF cells or ASCs were administered intraperitoneally concomitantly with the induction of disease. The data indicate that intraperitoneal administration of ASCs significantly ameliorated the severity of disease course. They also demonstrate, for the first time, that the SVF effectively inhibited disease severity and was statistically more effective than ASCs. Both cell therapies also demonstrated a reduction in tissue damage, a decrease in inflammatory infiltrates, and a reduction in sera levels of interferon-γ and interleukin-12. Based on these data, SVF cells effectively inhibited EAE disease progression more than culture-expanded ASCs. PMID:23981726

  5. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    PubMed

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  6. Prevention of murine experimental autoimmune orchitis by recombinant human interleukin-6.

    PubMed

    Li, Lu; Itoh, Masahiro; Ablake, Maila; Macrì, Battesimo; Bendtzen, Klaus; Nicoletti, Ferdinando

    2002-02-01

    We studied the effect of exogenously administered recombinant human interleukin (IL)-6 on the development of experimental autoimmune orchitis (EAO) in C3H/Hej mice. IL-6 significantly reduced histological signs of EAO and appearance of delayed type hypersensitivity against the immunizing testicular germinal cells. The effect was seen even though the cytokine was administered for only 6 consecutive days and 2 weeks after immunization.

  7. Notch signalling suppresses regulatory T-cell function in murine experimental autoimmune uveitis.

    PubMed

    Rong, Hua; Shen, Hongjie; Xu, Yueli; Yang, Hai

    2016-12-01

    Autoimmune uveitis is an intraocular inflammatory disorder in developed countries. Understanding the mechanisms underlying the development and modulation of immune reaction in uveitic eyes is critical for designing therapeutic interventions. Here we investigated the role of Notch signalling in regulatory T-cell (Treg cell) function during experimental autoimmune uveitis (EAU). Using the Foxp3-GFP reporter mouse strain, the significance of Notch signalling for the function of infiltrating Treg cells was characterized in an EAU model. We found that infiltrating Treg cells substantially expressed Notch-1, Notch-2, JAG1 and DLL1 in uveitic eyes. Activation of Notch signalling, represented by expression of HES1 and HES5, was enhanced in infiltrating Treg cells. Treatment with JAG1 and DLL1 down-regulated Foxp3 expression and immunosuppressive activity of isolated infiltrating Treg cells in vitro, whereas neutralizing antibodies against JAG1 and DLL1 diminished Notch ligand-mediated negative effects on Treg cells. To investigate the significance of Notch signalling for Treg cell function in vivo, lentivirus-derived Notch short hairpin RNAs were transduced into in vitro expanded Treg cells before adoptive transfer of Treg cells into EAU mice. Transfer of Notch-1-deficient Treg cells remarkably reduced pro-inflammatory cytokine production and inflammatory cell infiltration in uveitic eyes. Taken together, Notch signalling negatively modulates the immunosuppressive function of infiltrating Treg cells in mouse EAU.

  8. Accumulation of protein carbonyls within cerebellar astrocytes in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Zheng, Jianzheng; Bizzozero, Oscar A.

    2010-01-01

    Recent work from our laboratory has implicated protein carbonylation in the pathophysiology of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The present study was designed to determine the changes in protein carbonylation during the disease progression, and to identify the target cells and modified proteins in the cerebellum of EAE animals, prepared by active immunization of C57/BL6 mice with MOG35-55 peptide. In this model, protein carbonylation was maximal at the peak of the disease (acute phase) to decrease thereafter (chronic phase). Double immunofluorescence microscopy of affected cerebella showed that carbonyls accumulate in white matter astrocytes, and to a lesser extent in microglia/macrophages, both in the acute and chronic phase. Surprisingly, T cells, oligodendrocytes and neurons were barely stained. By 2D-oxyblot and mass spectrometry, β-actin, β-tubulin, GFAP and HSC-71 were identified as the major targets of carbonylation throughout disease. Using a pull-down/western blot method we found a significant increase in the proportion of carbonylated β-actin, β-tubulin and GFAP in the chronic phase but not in the acute phase. These results suggest that as disease progresses from the inflammatory to the neurodegenerative phase there may be an inappropriate removal of oxidized cytoskeletal proteins. Additionally, the extensive accumulation of carbonylated GFAP in the chronic phase of EAE may be responsible for the abnormal shape of astrocytes observed at this stage. PMID:20857508

  9. Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Liao, Wenbin; Pham, Victor; Liu, Linan; Riazifar, Milad; Pone, Egest J; Zhang, Shirley Xian; Ma, Fengxia; Lu, Mengrou; Walsh, Craig M.; Zhao, Weian

    2015-01-01

    Systemic administration of mesenchymal stem cells (MSCs) affords the potential to ameliorate the symptoms of Multiple Sclerosis (MS) in both preclinical and clinical studies. However, the efficacy of MSC-based therapy for MS likely depends on the number of cells that home to inflamed tissues and on the controlled production of paracrine and immunomodulatory factors. Previously, we reported that engineered MSCs expressing P-selectin glycoprotein ligand-1 (PSGL-1) and Sialyl-Lewisx (SLeX) via mRNA transfection facilitated the targeted delivery of anti-inflammatory cytokine interleukin-10 (IL-10) to inflamed ear. Here, we evaluated whether targeted delivery of MSCs with triple PSGL1/SLeX/IL-10 engineering improves therapeutic outcomes in mouse experimental autoimmune encephalomyelitis (EAE), a murine model for human MS. We found PSGL-1/SLeX mRNA transfection significantly enhanced MSC homing to the inflamed spinal cord. This is consistent with results from in vitro flow chamber assays in which PSGL-1/SleX mRNA transfection significantly increased the percentage of rolling and adherent cells on activated brain microvascular endothelial cells, which mimic the inflamed endothelium of blood brain/spinal cord barrier in EAE. In addition, IL-10-transfected MSCs show significant inhibitory activity on the proliferation of CD4+ T lymphocytes from EAE mice. In vivo treatment with MSCs engineered with PSGL-1/SLeX/IL-10 in EAE mice exhibited a superior therapeutic function over native (unmodified) MSCs, evidenced by significantly improved myelination and decreased lymphocytes infiltration into the white matter of the spinal cord. Our strategy of targeted delivery of performance-enhanced MSCs could potentially be utilized to increase the effectiveness of MSC-based therapy for MS and other central nervous system (CNS) disorders. PMID:26584349

  10. Caput epididymitis but not orchitis was induced by vasectomy in a murine model of experimental autoimmune orchitis.

    PubMed

    Qu, Ning; Terayama, Hayato; Naito, Munekazu; Ogawa, Yuki; Hirai, Shuichi; Kitaoka, Miyuki; Yi, Shuang-Qin; Itoh, Masahiro

    2008-06-01

    Immunization of mice with viable syngeneic testicular germ cells (TGC) alone can induce autoimmune responses against autoantigens of both round and elongating spermatids, resulting in the development of experimental autoimmune orchitis (EAO). Histological lesions in this EAO model without an adjuvant are characterized by lymphocytic infiltration into the testes, spermatogenic disturbance, and a complete lack of epididymitis. In this study, we investigated the effects of vasectomy (Vx) on TGC-induced EAO expecting that Vx augments the severity of testicular inflammation in A/J mice. The results showed that mice receiving Vx alone exhibited no significant inflammatory cell response in either the testes or epididymides, and mice receiving shamVx+TGC immunization had EAO with no epididymitis. In sharp contrast, no EAO was found in the testes of any mice receiving Vx+TGC immunization. Instead, caput epididymitis involving CD4+T cells, CD8+T cells, B cells, and macrophages were induced in them with striking elevation of the tissue levels of both IL6 and IL10 mRNA. Furthermore, serum autoantibodies induced by shamVx+TGC immunization were reactive with both round (immature) and elongating (mature) spermatids; however, those induced by Vx+TGC immunization were specific to acrosomes of mature spermatids and spermatozoa. These unexpected results indicate that Vx may induce the mode by which autoreactive lymphocytes gain access to TGC autoantigens in the epididymides, leading to autoimmune responses against the autoantigens of mature rather than immature spermatids.

  11. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis.

    PubMed

    Crawford, G L; Boldison, J; Copland, D A; Adamson, P; Gale, D; Brandt, M; Nicholson, L B; Dick, A D

    2015-01-01

    Macrophage activation is, in part, regulated via hydrolysis of oxidised low density lipoproteins by Lipoprotein-Associated phospholipase A2 (Lp-PLA2), resulting in increased macrophage migration, pro-inflammatory cytokine release and chemokine expression. In uveitis, tissue damage is mediated as a result of macrophage activation; hence inhibition of Lp-PLA2 may limit macrophage activation and protect the tissue. Utilising Lp-PLA2 gene-deficient (KO) mice and a pharmacological inhibitor of Lp-PLA2 (SB-435495) we aimed to determine the effect of Lp-PLA2 suppression in mediating retinal protection in a model of autoimmune retinal inflammation, experimental autoimmune uveoretinitis (EAU). Following immunisation with RBP-3 (IRBP) 1-20 or 161-180 peptides, clinical disease was monitored and severity assessed, infiltrating leukocytes were enumerated by flow cytometry and tissue destruction quantified by histology. Despite ablation of Lp-PLA2 enzyme activity in Lp-PLA2 KO mice or wild-type mice treated with SB-435495, the number of infiltrating CD45+ cells in the retina was equivalent to control EAU animals, and there was no reduction in disease severity. Thus, despite the reported beneficial effects of therapeutic Lp-PLA2 depletion in a variety of vascular inflammatory conditions, we were unable to attenuate disease, show delayed disease onset or prevent progression of EAU in Lp-PLA2 KO mice. Although EAU exhibits inflammatory vasculopathy there is no overt defect in lipid metabolism and given the lack of effect following Lp-PLA2 suppression, these data support the hypothesis that sub-acute autoimmune inflammatory disease progresses independently of Lp-PLA2 activity.

  12. A murine model of experimental autoimmune lens-induced uveitis using Klebsiella O3 lipopolysaccharide as a potent immunological adjuvant.

    PubMed Central

    Yokochi, T.; Fujii, Y.; Nakashima, I.; Asai, J.; Kiuchi, M.; Kojima, K.; Kato, N.

    1993-01-01

    Experimental autoimmune uveitis and finally panophthalmitis could be produced in mice by repeated immunization of syngeneic eyeball extract mixed with Klebsiella O3 lipopolysaccharide (KO3 LPS) as a powerful immunological adjuvant. No ocular lesions were produced in mice given eyeball extract emulsified in complete Freund's adjuvant (CFA), KO3 LPS alone or eyeball extract alone. Histopathological changes in the ocular lesions at the early stage after the second or tertiary immunization were characterized by infiltration with inflammatory cells in the ciliary body and iris. The iridocyclitis was followed by extensive infiltration of polymorphonuclear leucocytes (PMN) into the cornea, lens and the surrounding tissues after repeated immunization. Finally, these areas were replaced by granulomatous tissues infiltrated with mononuclear cells. On the other hand, the structure of the retina and sclera was partially preserved. Those mice exhibited production of autoantibodies and development of the delayed-type hypersensitivity (DTH) to syngeneic eyeball extract. Moreover, ocular lesions could be produced in normal recipient mice by transfer of sensitized lymphocytes from hyperimmunized mice. Therefore, it was suggested that the ocular lesions produced by repeated immunization with the mixture of eyeball extract and KO3 LPS were due to the autoimmune mechanism. This might be useful to model immunological phenomena in the pathogenesis of human phacoantigenic uveitis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8292555

  13. Essential pathogenic role for endogenous interferon-gamma (IFN-gamma) during disease onset phase of murine experimental autoimmune orchitis. I. In vivo studies.

    PubMed

    Itoh, M; Yano, A; Xie, Q; Iwahashi, K; Takeuchi, Y; Meroni, P L; Nicoletti, F

    1998-03-01

    We previously found that immunization of CH3/He male mice with syngeneic testicular germ cells (TGC) without the aid of any adjuvants was sufficient to induce DTH to TGC and experimental autoimmune orchitis (EAO). To evaluate the role of endogenous IFN-gamma in this model, C3H/He mice immunized subcutaneously with TGC on days 0 and 14 received a single injection of anti-murine IFN-gamma MoAb on day 15, 20 or 25. On day 45, DTH to TGC was tested, testis specimens were collected for histological examination, and blood samples collected for IFN-gamma measurement. The results showed that whilst MoAb treatment on day 15 or 25 did not influence DTH responses, EAO development, and appearance of IFN-gamma in the circulation, treatment on day 20 significantly suppressed all of them. Thus, a single injection with anti-IFN-gamma MoAb may successfully down-regulate testicular autoimmunity, provided that the treatment is given at an optimal time point during disease development.

  14. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  15. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    SciTech Connect

    Flynn, J.C.; Kong, Y.C. )

    1991-09-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT.

  16. Mechanisms for inducing nasal mucosal tolerance in experimental autoimmune uveoretinitis.

    PubMed

    Calder, Claudia J; Nicholson, Lindsay B; Dick, Andrew D

    2006-02-01

    Delivering soluble (auto) antigenic peptides via the naso-respiratory route induces tolerance to that peptide and suppression of experimental models of autoimmune disease. In the normal lung, respiratory tract dendritic cells (RTDCs) efficiently endocytose soluble antigens, migrate to regional lymph nodes and present peptide to T cells that subsequently become tolerant. This article describes protocols for inducing tolerance via the naso-respiratory tract in experimental autoimmune uveoretinitis (EAU); for the isolation of RTDCs to facilitate definition of, and conditions for, maturation and activation of cells; and to test RTDC ability to induce tolerance in murine EAU when adoptively transferred.

  17. Experimental Autoimmune Encephalomyelitis in Marmosets.

    PubMed

    Jagessar, S Anwar; Dijkman, Karin; Dunham, Jordon; 't Hart, Bert A; Kap, Yolanda S

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e., investigating the pathogenic mechanisms involved in MS, and applied research, testing the efficacy of new potential drugs.In this chapter, we will describe a method to induce EAE in the marmoset. In addition, we will explain the most common immunological techniques involved in the marmoset EAE research, namely isolation of mononuclear cells (MNC) from peripheral blood and lymphoid tissue, assaying T cell proliferation by thymidine incorporation, MNC phenotyping by flow cytometry, antibody measurement by ELISA, generation of B cell lines and antigen-specific T cell lines, and assaying cytotoxic T cells.

  18. BCMA deficiency exacerbates lymphoproliferation and autoimmunity in murine lupus1

    PubMed Central

    Jiang, Chao; Loo, William M.; Greenley, Erin J.; Tung, Kenneth S.; Erickson, Loren D.

    2011-01-01

    Systemic lupus erythematosus (SLE) and its preclinical lupus-prone mouse models are autoimmune disorders involving the production of pathogenic autoantibodies. Genetic predisposition to SLE results in B cell hyperactivity, survival of self-reactive B cells, and differentiation to autoantibody-secreting plasma cells (PC). These corrupt B cell responses are, in part, controlled by excess levels of the cytokine B cell activation factor from the TNF family (BAFF) that normally maintains B cell homeostasis and self-tolerance through limited production. B cell maturation antigen (BCMA) is a receptor for BAFF that, under nonautoimmune conditions, is important for sustaining enduring antibody protection by mediating survival of long-lived PCs, but is not required for B cell maturation and homeostasis. Through analysis of two different lupus-prone mouse models deficient in BCMA, we identify BCMA as an important factor in regulating peripheral B cell expansion, differentiation, and survival. We demonstrate that a BCMA deficiency combined with the lpr mutation or the murine lupus susceptibility locus Nba2 cause dramatic B cell and PC lymphoproliferation, accelerated autoantibody production, and early lethality. This study unexpectedly reveals that BCMA works to control B cell homeostasis and self-tolerance in systemic autoimmunity. PMID:21536804

  19. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS).

    PubMed

    Teachey, David T; Obzut, Dana A; Axsom, Kelly; Choi, John K; Goldsmith, Kelly C; Hall, Junior; Hulitt, Jessica; Manno, Catherine S; Maris, John M; Rhodin, Nicholas; Sullivan, Kathleen E; Brown, Valerie I; Grupp, Stephan A

    2006-09-15

    Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of abnormal lymphocyte survival caused by defective Fas-mediated apoptosis, leading to lymphadenopathy, hepatosplenomegaly, and an increased number of double-negative T cells (DNTs). Treatment options for patients with ALPS are limited. Rapamycin has been shown to induce apoptosis in normal and malignant lymphocytes. Since ALPS is caused by defective lymphocyte apoptosis, we hypothesized that rapamycin would be effective in treating ALPS. We tested this hypothesis using rapamycin in murine models of ALPS. We followed treatment response with serial assessment of DNTs by flow cytometry in blood and lymphoid tissue, by serial monitoring of lymph node and spleen size with ultrasonography, and by enzyme-linked immunosorbent assay (ELISA) for anti-double-stranded DNA (dsDNA) antibodies. Three-dimensional ultrasound measurements in the mice correlated to actual tissue measurements at death (r = .9648). We found a dramatic and statistically significant decrease in DNTs, lymphadenopathy, splenomegaly, and autoantibodies after only 4 weeks when comparing rapamycin-treated mice with controls. Rapamycin induced apoptosis through the intrinsic mitochondrial pathway. We compared rapamycin to mycophenolate mofetil, a second-line agent used to treat ALPS, and found rapamycin's control of lymphoproliferation was superior. We conclude that rapamycin is an effective treatment for murine ALPS and should be explored as treatment for affected humans.

  20. Galectin-8 Ameliorates Murine Autoimmune Ocular Pathology and Promotes a Regulatory T Cell Response

    PubMed Central

    Sampson, James F.; Hasegawa, Eiichi; Mulki, Lama; Suryawanshi, Amol; Jiang, Shuhong; Chen, Wei-Sheng; Rabinovich, Gabriel A.; Connor, Kip M.; Panjwani, Noorjahan

    2015-01-01

    Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders. PMID:26126176

  1. Forced-exercise attenuates experimental autoimmune neuritis.

    PubMed

    Calik, Michael W; Shankarappa, Sahadev A; Stubbs, Evan B

    2012-07-01

    Physical inactivity in combination with a sedentary lifestyle is strongly associated with an increased risk of development of inflammatory-mediated diseases, including autoimmune disorders. Recent studies suggest that anti-inflammatory effects of physical exercise may be of therapeutic value in some affected individuals. In this study, we determined the effects of forced-exercise (treadmill running) on the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain-Barré syndrome. Adult male Lewis rats were subjected to sedentary (control) or forced-exercise (1.2 km per day, 5 days a week) for three weeks prior to induction of EAN. P2 (53-78)-immunized sedentary control rats developed a monophasic course of EAN beginning on post-injection day 12.33 ± 0.59 (n = 18) and reaching peak severity on day 15.83 ± 0.35 (n = 18). At near peak of disease, ankle- and sciatic notch-evoked compound muscle action potential (CMAP) amplitudes in sedentary control rats were reduced (~50%) while motor nerve conduction velocity (MNCV) was slowed (~30%) compared with pre-induction evoked responses. In marked contrast, rats undergoing forced-exercise exhibited a significantly less severe clinical course of EAN beginning on post-injection day 12.63 ± 0.53 (n = 16) and reaching peaking severity on day 14.69 ± 0.73 (n = 16). At near peak of disease, ankle- and sciatic-notch-evoked CMAP amplitudes in forced-exercised rats were preserved while EAN-associated slowing of MNCV was modestly attenuated by exercise. Three weeks of forced-exercise reduced by 46% total plasma corticosterone content while elevating the levels of corticosteroid binding globulin. We conclude from this study that forced-exercise administered prior to and during development of EAN affords a novel measure of protection against autoimmune-associated deficits in peripheral nerve evoked responses independent of steroid-induced immune suppression.

  2. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis.

    PubMed

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi; Iimura, Akira; Hayashi, Shogo; Takahashi, Kodo; Stivala, Franca; Bendtzen, Klaus; Nicoletti, Ferdinando

    2003-04-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo.

  3. Innate immunity drives xenobiotic-induced murine autoimmune cholangitis

    PubMed Central

    Chang, C-H; Chen, Y-C; Yu, Y-H; Tao, M-H; Leung, P S C; Ansari, A A; Gershwin, M E; Chuang, Y-H

    2014-01-01

    Although primary biliary cirrhosis (PBC) is considered a model autoimmune disease, it has not responded therapeutically to traditional immunosuppressive agents. In addition, PBC may recur following liver transplantation, despite the absence of major histocompatibility complex (MHC) matching, in sharp contrast to the well-known paradigm of MHC restriction. We have suggested previously that invariant natural killer T (iNK T) cells are critical to the initiation of PBC. In this study we have taken advantage of our ability to induce autoimmune cholangitis with 2-octynoic acid, a common component of cosmetics, conjugated to bovine serum albumin (2-OA–BSA), and studied the natural history of pathology in mice genetically deleted for CD4 or CD8 following immunization with 2-OA–BSA in the presence or absence of α-galactosylceramide (α-GalCer). In particular, we address whether autoimmune cholangitis can be induced in the absence of traditional CD4 and CD8 responses. We report herein that CD4 and CD8 knock-out mice immunized with 2-OA–BSA/PBS or 2-OA–BSA/α-GalCer develop anti-mitochondrial antibodies (AMAs), portal infiltrates and fibrosis. Indeed, our data suggest that the innate immunity is critical for immunopathology and that the pathology is exacerbated in the presence of α-GalCer. In conclusion, these data provide not only an explanation for the recurrence of PBC following liver transplantation in the absence of MHC compatibility, but also suggest that effective therapies for PBC must include blocking of both innate and adaptive pathways. PMID:24547942

  4. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

    PubMed Central

    Arima, Yasunobu; Kamimura, Daisuke; Atsumi, Toru; Harada, Masaya; Kawamoto, Tadafumi; Nishikawa, Naoki; Stofkova, Andrea; Ohki, Takuto; Higuchi, Kotaro; Morimoto, Yuji; Wieghofer, Peter; Okada, Yuka; Mori, Yuki; Sakoda, Saburo; Saika, Shizuya; Yoshioka, Yoshichika; Komuro, Issei; Yamashita, Toshihide; Hirano, Toshio; Prinz, Marco; Murakami, Masaaki

    2015-01-01

    Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.08733.001 PMID:26193120

  5. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  6. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  7. Lack of Galanin 3 Receptor Aggravates Murine Autoimmune Arthritis.

    PubMed

    Botz, Bálint; Kemény, Ágnes; Brunner, Susanne M; Locker, Felix; Csepregi, Janka; Mócsai, Attila; Pintér, Erika; McDougall, Jason J; Kofler, Barbara; Helyes, Zsuzsanna

    2016-06-01

    Neurogenic inflammation mediated by peptidergic sensory nerves has a crucial impact on the pathogenesis of various joint diseases. Galanin is a regulatory sensory neuropeptide, which has been shown to attenuate neurogenic inflammation, modulate neutrophil activation, and be involved in the development of adjuvant arthritis, but our current understanding about its targets and physiological importance is incomplete. Among the receptors of galanin (GAL1-3), GAL3 has been found to be the most abundantly expressed in the vasculature and on the surface of some immune cells. However, since there are minimal in vivo data on the role of GAL3 in joint diseases, we analyzed its involvement in different inflammatory mechanisms of the K/BxN serum transfer-model of autoimmune arthritis employing GAL 3 gene-deficient mice. After arthritis induction, GAL3 knockouts demonstrated increased clinical disease severity and earlier hindlimb edema than wild types. Vascular hyperpermeability determined by in vivo fluorescence imaging was also elevated compared to the wild-type controls. However, neutrophil accumulation detected by in vivo luminescence imaging or arthritic mechanical hyperalgesia was not altered by the lack of the GAL3 receptor. Our findings suggest that GAL3 has anti-inflammatory properties in joints by inhibiting vascular hyperpermeability and consequent edema formation.

  8. Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis.

    PubMed

    Reyes, José L; Espinoza-Jiménez, Arlett F; González, Marisol I; Verdin, Leticia; Terrazas, Luis I

    2011-01-01

    Helminth infections induce strong immunoregulation that can modulate subsequent pathogenic challenges. Taenia crassiceps causes a chronic infection that induces a Th2-biased response and modulates the host cellular immune response, including reduced lymphoproliferation in response to mitogens, impaired antigen presentation and the recruitment of suppressive alternatively activated macrophages (AAMФ). In this study, we aimed to evaluate the ability of T. crassiceps to reduce the severity of experimental autoimmune encephalomyelitis (EAE). Only 50% of T. crassiceps-infected mice displayed EAE symptoms, which were significantly less severe than uninfected mice. This effect was associated with both decreased MOG-specific splenocyte proliferation and IL-17 production and limited leukocyte infiltration into the spinal cord. Infection with T. crassiceps induced an anti-inflammatory cytokine microenvironment, including decreased TNF-α production and high MOG-specific production of IL-4 and IL-10. While the mRNA expression of TNF-α and iNOS was lower in the brain of T. crassiceps-infected mice with EAE, markers for AAMФ were highly expressed. Furthermore, in these mice, there was reduced entry of CD3(+)Foxp3(-) cells into the brain. The T. crassiceps-induced immune regulation decreased EAE severity by dampening T cell activation, proliferation and migration to the CNS.

  9. Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis.

    PubMed

    Tanaka, H; Yang, G-X; Iwakoshi, N; Knechtle, S J; Kawata, K; Tsuneyama, K; Leung, P; Coppel, R L; Ansari, A A; Joh, T; Bowlus, C; Gershwin, M E

    2013-12-01

    While there have been significant advances in our understanding of the autoimmune responses and the molecular nature of the target autoantigens in primary biliary cirrhosis (PBC), unfortunately these data have yet to be translated into new therapeutic agents. We have taken advantage of a unique murine model of autoimmune cholangitis in which mice expressing a dominant negative form of transforming growth factor β receptor II (dnTGFβRII), under the control of the CD4 promoter, develop an intense autoimmune cholangitis associated with serological features similar to human PBC. CD40-CD40 ligand (CD40L) is a major receptor-ligand pair that provides key signals between cells of the adaptive immune system, prompting us to determine the therapeutic potential of treating autoimmune cholangitis with anti-CD40L antibody (anti-CD40L; MR-1). Four-week-old dnTGFβRII mice were injected intraperitoneally with either anti-CD40L or control immunoglobulin (Ig)G at days 0, 2, 4 and 7 and then weekly until 12 or 24 weeks of age and monitored for the progress of serological and histological features of PBC, including rigorous definition of liver cellular infiltrates and cytokine production. Administration of anti-CD40L reduced liver inflammation significantly to 12 weeks of age. In addition, anti-CD40L initially lowered the levels of anti-mitochondrial autoantibodies (AMA), but these reductions were not sustained. These data indicate that anti-CD40L delays autoimmune cholangitis, but the effect wanes over time. Further dissection of the mechanisms involved, and defining the events that lead to the reduction in therapeutic effectiveness will be critical to determining whether such efforts can be applied to PBC.

  10. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  11. B cell maturation antigen deficiency exacerbates lymphoproliferation and autoimmunity in murine lupus.

    PubMed

    Jiang, Chao; Loo, William M; Greenley, Erin J; Tung, Kenneth S; Erickson, Loren D

    2011-06-01

    Systemic lupus erythematosus and its preclinical lupus-prone mouse models are autoimmune disorders involving the production of pathogenic autoantibodies. Genetic predisposition to systemic lupus erythematosus results in B cell hyperactivity, survival of self-reactive B cells, and differentiation to autoantibody-secreting plasma cells (PCs). These corrupt B cell responses are, in part, controlled by excess levels of the cytokine BAFF that normally maintains B cell homeostasis and self-tolerance through limited production. B cell maturation Ag (BCMA) is a receptor for BAFF that, under nonautoimmune conditions, is important for sustaining enduring Ab protection by mediating survival of long-lived PCs but is not required for B cell maturation and homeostasis. Through analysis of two different lupus-prone mouse models deficient in BCMA, we identify BCMA as an important factor in regulating peripheral B cell expansion, differentiation, and survival. We demonstrate that a BCMA deficiency combined with the lpr mutation or the murine lupus susceptibility locus Nba2 causes dramatic B cell and PC lymphoproliferation, accelerated autoantibody production, and early lethality. This study unexpectedly reveals that BCMA works to control B cell homeostasis and self-tolerance in systemic autoimmunity.

  12. Anti-inflammatory effects of luteolin on experimental autoimmune thyroiditis in mice

    PubMed Central

    Xia, Nan; Chen, Gang; Liu, Min; Ye, Xiaozhen; Pan, Yahui; Ge, Jiuyu; Mao, Yanting; Wang, Hongwei; Wang, Jian; Xie, Sijing

    2016-01-01

    Hashimoto's thyroiditis (HT) is the most common organ-specific autoimmune disease and is believed to be a predominately T cell-mediated autoimmunity. Signal transducer and activator of transcription (STAT)3 is a crucial transcription factor of T cell-mediated immunity, with key roles in the proliferation and migration of T helper (Th) cells, differentiation of Th cells into Th17 cells, and the balance between Treg cells and Th17 cells. Flavonoid luteolin has been shown to markedly inhibit Tyr705 activation/phosphorylation of STAT3 and exert anti-inflammatory effects in multiple sclerosis. In the present study, the effect of luteolin on experimental autoimmune thyroiditis (EAT) was analyzed in C57BL/6 mice. Hematoxylin and eosin examination showed that luteolin attenuated lymphocytic infiltration and follicle destruction in thyroid glands. Immunohistochemistry results demonstrated that luteolin significantly reduced the phosphorylation of STAT3 within the thyroid. An in vitro study was carried out in a RAW264.7 macrophage cell line. Western blot findings demonstrated that luteolin significantly inhibited interferon-γ-induced increases in cyclooxygenase 2, phosphorylated STAT1 and phosphorylated STAT3 expression levels and the secretion of the proinflammatory cytokine tumor necrosis factor-α in supernatants. The present findings indicated that luteolin may exert potent anti-inflammatory effects on murine EAT, which may provide a novel therapeutic medication strategy for the early intervention of HT. PMID:28101184

  13. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  14. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  15. Immunological potential of cytotoxic T lymphocyte antigen 4 immunoglobulin in murine autoimmune cholangitis.

    PubMed

    Tanaka, H; Yang, G-X; Tomiyama, T; Tsuneyama, K; Zhang, W; Leung, P S C; Coppel, R L; Joh, T; Nadler, S G; Ansari, A A; Bowlus, C; Gershwin, M E

    2015-06-01

    Cytotoxic T lymphocyte antigen 4 (CTLA-4) immunoglobulin (Ig) is an important regulator of T cell activation and a fusion protein directed at CD80 and CD86; it blocks co-stimulatory signalling and T cell activation. We have taken advantage of a murine model of human primary biliary cirrhosis (PBC), mice expressing a transforming growth factor (TGF)-β receptor II dominant negative (dnTGF-βRII) transgene to address the potential therapeutic efficacy of CTLA-4 Ig. To mimic patients with PBC at different stages or duration of disease, we treated mice with either CTLA-4 Ig or control IgG three times weekly from 3 to 12 or 24 weeks of age, or from 12 to 24 weeks of age. CTLA-4 Ig treatment from 3 weeks of age significantly reduced liver inflammation to 12 weeks of age. Treatment initiated at 12 weeks of age also ameliorated the autoimmune cholangitis at 24 weeks of age. However, in mice treated at 3 weeks of age, suppression of liver inflammation was not sustained and colitis was aggravated when treatment was extended to 24 weeks of age. Our data indicate that, in dnTGF-βRII mice, CTLA-4 Ig treatment has short-term beneficial effects on autoimmune cholangitis, but the effect varies according to duration of treatment and the time in which therapy was initiated. Further dissection of the events that lead to the reduction in therapeutic effectiveness of CTLA-4 Ig will be critical to determining whether such efforts can be applied to human PBC.

  16. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Clark, Matthew P; Leaman, Douglas W; Hazelhurst, Lori A; Hwang, Eun S; Quinn, Anthony

    2016-02-01

    Previously we showed that BBR3378, a novel analog of the anticancer drug mitoxantrone, had the ability to ameliorate ascending paralysis in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis, without the drug-induced cardiotoxicity or lymphopenia associated with mitoxantrone therapy. Chemotherapeutic drugs like mitoxantrone, a topoisomerase inhibitor, are thought to provide protection in inflammatory autoimmune diseases like EAE by inducing apoptosis in rapidly proliferating autoreactive lymphocytes. Here, we show that while BR3378 blocked cell division, T cells were still able to respond to antigenic stimulation and upregulate surface molecules indicative of activation. However, in contrast to mitoxantrone, BBR3378 inhibited the production of the proinflammatory cytokine IFN-γ both in recently activated T cell blasts and established Th1 effectors, while sparing the activities of IL-13-producing Th2 cells. IFN-γ is known to be regulated by the transcription factor T-bet. In addition to IFN-γ, in vitro and in vivo exposure to BBR3378 suppressed the expression of other T-bet regulated proteins, including CXCR3 and IL-2Rβ. Microarray analysis revealed BBR3378-induced suppression of additional T-bet regulated genes, suggesting that the drug might disrupt global Th1 programming. Importantly, BBR3378 antagonized ongoing Th1 autoimmune responses in vivo, modulated clinical disease and CNS inflammation in acute and relapsing forms of EAE. Therefore, BBR3378 may be a unique inhibitor of T-bet regulated genes and may have potential as a therapeutic intervention in human autoimmune disease.

  17. Deletion of the G2A receptor fails to attenuate experimental autoimmune encephalomyelitis

    PubMed Central

    Osmers, Inga; Smith, Sherry S.; Parks, Brian W.; Yu, Shaohua; Srivastava, Roshni; Wohler, Jillian E.; Barnum, Scott R.; Kabarowski, Janusz H.S.

    2009-01-01

    Lysophosphatidylcholine (LPC) is a chemotactic lysolipid produced during inflammation by the hydrolytic action of phospholipase A2 enzymes. LPC stimulates chemotaxis of T cells in vitro through activation of the G protein-coupled receptor, G2A. This has led to the proposition that G2A contributes to the recruitment of T cells to sites of inflammation and thus promotes chronic inflammatory autoimmune diseases associated with the generation and subsequent tissue infiltration of auto-antigen-specific effector T cells. However, one study suggests that G2A may negatively regulate T cell proliferative responses to antigen receptor engagement and thereby attenuates autoimmunity by reducing the generation of autoreactive T cells. To address the relative contribution of these G2A-mediated effects to the pathophysiology of T cell-mediated autoimmune disease, we examined the impact of G2A inactivation on the onset and severity of murine experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). Wild type (G2A+/+) and G2A-deficient (G2A-/-) C57BL/6J mice exhibited a similar incidence and onset of disease following immunization with MOG35-55 peptide. Disease severity was only moderately reduced in G2A-/- mice. Similar numbers of MOG35-55 specific T cells were generated in secondary lymphoid organs of MOG35-55-immunized G2A+/+ and G2A-/- mice. Comparable numbers of T cells were detected in spinal cords of G2A+/+ and G2A-/- mice. We conclude that the proposed anti-proliferative and chemotactic functions of G2A are not manifested in vivo and therefore therapeutic targeting of G2A is unlikely to be beneficial in the treatment of MS. PMID:19135725

  18. Tolerance induction in experimental autoimmune encephalomyelitis using non-myeloablative hematopoietic gene therapy with autoantigen.

    PubMed

    Eixarch, Herena; Espejo, Carmen; Gómez, Alba; Mansilla, María José; Castillo, Mireia; Mildner, Alexander; Vidal, Francisco; Gimeno, Ramón; Prinz, Marco; Montalban, Xavier; Barquinero, Jordi

    2009-05-01

    Experimental autoimmune encephalomyelitis (EAE) constitutes a paradigm of antigen (Ag)-specific T cell driven autoimmune diseases. In this study, we transferred bone marrow cells (BMCs) expressing an autoantigen (autoAg), the peptide 40-55 of the myelin oligodendrocytic glycoprotein (MOG(40-55)), to induce preventive and therapeutic immune tolerance in a murine EAE model. Transfer of BMC expressing MOG(40-55) (IiMOG-BMC) into partially myeloablated mice resulted in molecular chimerism and in robust protection from the experimental disease. In addition, in mice with established EAE, transfer of transduced BMC with or without partial myeloablation reduced the clinical and histopathological severity of the disease. In these experiments, improvement was observed even in the absence of engraftment of the transduced hematopoietic cells, probably rejected due to the previous immunization with the autoAg. Splenocytes from mice transplanted with IiMOG-BMC produced significantly higher amounts of interleukin (IL)-5 and IL-10 upon autoAg challenge than those of control animals, suggesting the participation of regulatory cells. Altogether, these results suggest that different tolerogenic mechanisms may be mediating the preventive and the therapeutic effects. In conclusion, this study demonstrates that a cell therapy using BMC expressing an autoAg can induce Ag-specific tolerance and ameliorate established EAE even in a nonmyeloablative setting.

  19. Tolerance Induction in Experimental Autoimmune Encephalomyelitis Using Non-myeloablative Hematopoietic Gene Therapy With Autoantigen

    PubMed Central

    Eixarch, Herena; Espejo, Carmen; Gómez, Alba; Mansilla, María José; Castillo, Mireia; Mildner, Alexander; Vidal, Francisco; Gimeno, Ramón; Prinz, Marco; Montalban, Xavier; Barquinero, Jordi

    2009-01-01

    Experimental autoimmune encephalomyelitis (EAE) constitutes a paradigm of antigen (Ag)-specific T cell driven autoimmune diseases. In this study, we transferred bone marrow cells (BMCs) expressing an autoantigen (autoAg), the peptide 40–55 of the myelin oligodendrocytic glycoprotein (MOG40–55), to induce preventive and therapeutic immune tolerance in a murine EAE model. Transfer of BMC expressing MOG40–55 (IiMOG-BMC) into partially myeloablated mice resulted in molecular chimerism and in robust protection from the experimental disease. In addition, in mice with established EAE, transfer of transduced BMC with or without partial myeloablation reduced the clinical and histopathological severity of the disease. In these experiments, improvement was observed even in the absence of engraftment of the transduced hematopoietic cells, probably rejected due to the previous immunization with the autoAg. Splenocytes from mice transplanted with IiMOG-BMC produced significantly higher amounts of interleukin (IL)-5 and IL-10 upon autoAg challenge than those of control animals, suggesting the participation of regulatory cells. Altogether, these results suggest that different tolerogenic mechanisms may be mediating the preventive and the therapeutic effects. In conclusion, this study demonstrates that a cell therapy using BMC expressing an autoAg can induce Ag-specific tolerance and ameliorate established EAE even in a nonmyeloablative setting. PMID:19277013

  20. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis.

    PubMed

    Pryor, William M; Freeman, Kimberly G; Larson, Rebecca D; Edwards, Gaylen L; White, Lesley J

    2015-05-01

    Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, resulting in accumulated loss of cognitive, sensory, and motor function. This study evaluates the neuropathological effects of voluntary exercise in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Two groups of C57BL/6J mice were injected with an emulsion containing myelin oligodendrocyte glycoprotein and then randomized to housing with a running wheel or a locked wheel. Exercising EAE mice exhibited a less severe neurological disease score and later onset of disease compared with sedentary EAE animals. Immune cell infiltration and demyelination in the ventral white matter tracts of the lumbar spinal cord were significantly reduced in the EAE exercise group compared with sedentary EAE animals. Neurofilament immunolabeling in the ventral pyramidal and extrapyramidal motor tracts displayed a more random distribution of axons and an apparent loss of smaller diameter axons, with a greater loss of fluorescence immunolabeling in the sedentary EAE animals. In lamina IX gray matter regions of the lumbar spinal cord, sedentary animals with EAE displayed a greater loss of α-motor neurons compared with EAE animals exposed to exercise. These findings provide evidence that voluntary exercise results in reduced and attenuated disability, reductions in autoimmune cell infiltration, and preservation of axons and motor neurons in the lumbar spinal cord of mice with EAE.

  1. Experimental autoimmune orchitis as a model of immunological male infertility.

    PubMed

    Naito, Munekazu; Terayama, Hayato; Hirai, Shuichi; Qu, Ning; Lustig, Livia; Itoh, Masahiro

    2012-12-01

    Clinically, 60-75% of male infertility cases are categorized as idiopathic spermatogenic disturbance. In previous studies of this condition, lymphocytic infiltration and immune deposits were present in several testis biopsy specimens, indicating that inflammatory or immunological factors contribute to the occurrence of the lesions. However, there is currently little evidence regarding immunological infertility in men. Previously, we established an immunological infertility model, experimental autoimmune orchitis (EAO), that can be induced in mice by two subcutaneous injections of viable syngeneic testicular germ cells without the use of any adjuvant. In this EAO model, lymphocytes surround the tubuli recti and then induce spermatogenic disturbance. In addition, after the active inflammation stage of this model, the seminiferous epithelium is damaged irreversibly, resembling the histopathology of human male idiopathic spermatogenic disturbance. In the majority of patients with testicular autoimmunity, there is a chronic and asymptomatic development of the inflammatory reaction. Therefore, this disease is very difficult to diagnose at the ongoing stage, and it is possible that the histopathology of idiopathic spermatogenic disturbance in the clinic is reported at the post-active inflammation stage of autoimmune orchitis. In this review, the histopathology of EAO before and after inflammation is discussed, comparing it with human orchitis.

  2. Effector mechanisms of the autoimmune syndrome in the murine model of Autoimmune Polyglandular Syndrome Type 1§

    PubMed Central

    DeVoss, Jason J.; Shum, Anthony K.; Johannes, Kellsey P.A.; Lu, Wen; Krawisz, Anna K.; Wang, Peter; Yang, Ting; LeClair, Norbert P.; Austin, Cecilia; Strauss, Erich C.; Anderson, Mark S.

    2008-01-01

    Mutations in the Autoimmune regulator (Aire) gene result in a clinical phenomenon known as Autoimmune Polyglandular Syndrome Type I (APS1), which classically manifests as a triad of adrenal insufficiency, hypoparathyroidism, and chronic mucocutaneous infections. In addition to this triad, a number of other autoimmune diseases have been observed in APS1 patients including Sjögren's syndrome, vitiligo, alopecia, uveitis, and others. Aire-deficient mice, the animal model for APS1, have highlighted the role of the thymus in the disease process and demonstrated a failure in central tolerance in aire-deficient mice. However, autoantibodies have been observed against multiple organs in both mice and humans, making it unclear what the specific role of B and T cells are in the pathogenesis of disease. Utilizing the aire-deficient mouse as a preclinical model for APS1, we have investigated the relative contribution of specific lymphocyte populations, with the goal of identifying the cell populations which may be targeted for rational therapeutic design. Here we show that T cells are indispensable to the breakdown of self-tolerance, in contrast to B cells which play a more limited role in autoimmunity. Th1 polarized CD4+ T cells, in particular, are major contributors to the autoimmune response. With this knowledge, we go on to utilize therapies targeted at T cells to investigate their ability to modulate disease in vivo. Depletion of CD4+ T cells using a neutralizing antibody ameliorated the disease process. Thus, therapies targeted specifically at the CD4+ T cell subset may help control autoimmune disease in patients with APS1. PMID:18768863

  3. AAV-IL-22 Modifies Liver Chemokine Activity and Ameliorates Portal Inflammation in Murine Autoimmune Cholangitis

    PubMed Central

    Hsueh, Yu-Hsin; Chang, Yun-Ning; Loh, Chia-En; Gershwin, M. Eric; Chuang, Ya-Hui

    2015-01-01

    There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC. PMID:26537567

  4. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome.

    PubMed

    Roman, Kenny; Done, Joseph D; Schaeffer, Anthony J; Murphy, Stephen F; Thumbikat, Praveen

    2014-07-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine EAP. Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia led to extracellular signal-regulated kinase (ERK)1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS.

  5. Opsin-induced experimental autoimmune retinitis in rats.

    PubMed

    Broekhuyse, R M; Winkens, H J; Kuhlmann, E D; van Vugt, A H

    1984-12-01

    Experimental autoimmune retinitis has been induced in Lewis rats by injection of opsin in mycobacterial adjuvant and Hemophilus pertussis adjuvant. Clinical, histopathological and immunological parameters of the disease are reported. Two types of opsin were prepared from purified bovine retina outer segments, one type in Triton X-100 and the other in lithium dodecyl sulfate. Both preparations were free from S-antigen. Dodecyl sulfate-denaturated-opsin displayed lower antigenicity and pathogenicity than Triton-opsin. Triton-opsin (250 micrograms) induced moderate to severe non-granulomatous uveitis (predominantly retinitis) in 70% of the Lewis rats at the end of the second week after injection. The photoreceptor cell layer was destructed within a few days. This group displayed high responses to opsin in the lymphocyte transformation test. In view of observed histological features, the possible early involvement of vasoactive factors is discussed. Low opsin doses (50 or 100 micrograms) seldomly induced severe retinitis, while the incidence of mild pathology was low. Lewis rats appeared to be more susceptible for the development of experimental autoimmune retinitis than Wistar rats.

  6. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis

    PubMed Central

    Lund, Maria E.; Greer, Judith; Dixit, Aakanksha; Alvarado, Raquel; McCauley-Winter, Padraig; To, Joyce; Tanaka, Akane; Hutchinson, Andrew T.; Robinson, Mark W.; Simpson, Ann M.; O’Brien, Bronwyn A.; Dalton, John P.; Donnelly, Sheila

    2016-01-01

    Helminth parasites secrete molecules that potently modulate the immune responses of their hosts and, therefore, have potential for the treatment of immune-mediated human diseases. FhHDM-1, a 68-mer peptide secreted by the helminth parasite Fasciola hepatica, ameliorated disease in two different murine models of autoimmunity, type 1 diabetes and relapsing-remitting immune-mediated demyelination. Unexpectedly, FhHDM-1 treatment did not affect the proliferation of auto-antigen specific T cells or their production of cytokines. However, in both conditions, the reduction in clinical symptoms was associated with the absence of immune cell infiltrates in the target organ (islets and the brain tissue). Furthermore, after parenteral administration, the FhHDM-1 peptide interacted with macrophages and reduced their capacity to secrete pro-inflammatory cytokines, such as TNF and IL-6. We propose this inhibition of innate pro-inflammatory immune responses, which are central to the initiation of autoimmunity in both diseases, prevented the trafficking of autoreactive lymphocytes from the periphery to the site of autoimmunity (as opposed to directly modulating their function per se), and thus prevented tissue destruction. The ability of FhHDM-1 to modulate macrophage function, combined with its efficacy in disease prevention in multiple models, suggests that FhHDM-1 has considerable potential as a treatment for autoimmune diseases. PMID:27883079

  7. Inhibition of experimental autoimmune orchitis by fossil diatoms

    NASA Astrophysics Data System (ADS)

    Bustuoabad, Oscar D.; Meiss, Roberto P.; Molinolo, Alfredo R.; Mayer, Alejandro M. S.

    1985-06-01

    Experimental autoimmune orchitis (EAO) induced in Swiss mice could be reduced by means of the utilization of micronized frustules of fossil diatoms (DS) containing 54% of SiO2. Experimental mice were sensitized with testicular Antigen (Ag) in Complete Freund’s Adjuvant (CFA) inoculated twice, on day 0 and day 21. 100 μg of DS suspension was inoculated into sensitized mice 10 times, once every 4 days, subcutaneously, starting on day 7 after the first Ag inoculation. Mice receiving the DS treatment showed a diminution of the delayed hypersensitivity reaction, lower antibody titer and decreased incidence of testicular injury as well as reduced grade and extension of the lesions. Possible explanation of these results would suggest alteration of monocyte and/or macrophage normal behaviour as well as alteration of antibody synthesis by different mechanisms.

  8. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP)

    PubMed Central

    Murphy, Stephen F.; Schaeffer, Anthony J.; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90–95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17’s role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS. PMID:25933188

  9. Alterations in the thymopoiesis in experimental autoimmune myasthenia gravis.

    PubMed

    Kosec, Dusko; Vidić-Danković, Biljana; Isaković, Katarina; Leposavić, Gordana

    2005-04-01

    Experimental autoimmune myasthenia gravis (EAGM) was induced in female AO rats, by a single immunization with Torpedo acetylcholine receptor (AChR). Animals injected with saline served as controls. The study showed substantial changes in EAMG rats in the thymopoiesis, causing an increase in the relative proportion of mature CD8+ and, particularly, CD4+ (possibly autoreactive) single positive (SP) cells expressing TCRalphabeta at high level (TCRalphabeta(high)), as well as in that of mature double negative (DN) TCRalphabeta(high) cells, which are believed to be the immunoregulatory cells that augment autoantibody (autoAb) production. These results indicate that an augmented production of autoreactive CD4+ cells, on one side, and an increase of the immunoregulatory T cells that augment autoAb production, on the other side (reflecting, most likely, an increased entry of activated autoreactive CD4+ T cells from the periphery into the thymus), may have a significant role in the sustention of immune response in EAMG, and may suggest a putative mechanism underlying the sustention of autoimmune response in acquired MG.

  10. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis.

    PubMed

    Xin, Junping; Feinstein, Douglas L; Hejna, Matthew J; Lorens, Stanley A; McGuire, Susan O

    2012-06-13

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients.

  11. Translational utility of experimental autoimmune encephalomyelitis: recent developments

    PubMed Central

    Guerreiro-Cacais, Andre Ortlieb; Laaksonen, Hannes; Flytzani, Sevasti; N’diaye, Marie; Olsson, Tomas; Jagodic, Maja

    2015-01-01

    Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future. PMID:26622189

  12. Maturation-Resistant Dendritic Cells Ameliorate Experimental Autoimmune Uveoretinitis

    PubMed Central

    Oh, Keunhee; Kim, Yon Su

    2011-01-01

    Background Endogenous uveitis is a chronic inflammatory eye disease of human, which frequently leads to blindness. Experimental autoimmune uveoretinitis (EAU) is an animal disease model of human endogenous uveitis and can be induced in susceptible animals by immunization with retinal antigens. EAU resembles the key immunological characteristics of human disease in that both are CD4+ T-cell mediated diseases. Dendritic cells (DCs) are specialized antigen-presenting cells that are uniquely capable of activating naïve T cells. Regulation of immune responses through modulation of DCs has thus been tried extensively. Recently our group reported that donor strain-derived immature DC pretreatment successfully controlled the adverse immune response during allogeneic transplantation. Methods EAU was induced by immunization with human interphotoreceptor retinoid-binding protein (IRBP) peptide1-20. Dendritic cells were differentiated from bone marrow in the presence of recombinant GM-CSF. Results In this study, we used paraformaldehyde-fixed bone marrow-derived DCs to maintain them in an immature state. Pretreatment with fixed immature DCs, but not fixed mature DCs, ameliorated the disease progression of EAU by inhibiting uveitogenic CD4+ T cell activation and differentiation. Conclusion Application of iBMDC prepared according to the protocol of this study would provide an important treatment modality for the autoimmune diseases and transplantation rejection. PMID:22346781

  13. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    SciTech Connect

    Pestronk, A.; Drachman, D.B.; Teoh, R.; Adams, R.N.

    1983-08-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used to repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.

  14. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Barclay, William; Shinohara, Mari L

    2017-03-01

    The aptly named inflammasomes are powerful signaling complexes that sense inflammatory signals under a myriad of conditions, including those from infections and endogenous sources. The inflammasomes promote inflammation by maturation and release of the pro-inflammatory cytokines, IL-1β and IL-18. Several inflammasomes have been identified so far, but this review focuses mainly on the NLRP3 inflammasome. By still ill-defined activation mechanisms, a sensor molecule, NLRP3 (NACHT, LRR and PYD domains-containing protein 3), responds to danger signals and rapidly recruits ASC (apoptosis-associated speck-like protein containing a CARD) and pro-caspase-1 to form a large oligomeric signaling platform-the inflammasome. Involvement of the NLRP3 inflammasome in infections, metabolic disorders, autoinflammation, and autoimmunity, underscores its position as a central player in sensing microbial and damage signals and coordinating pro-inflammatory immune responses. Indeed, evidence in patients with multiple sclerosis (MS) suggests inflammasome activation occurs during disease. Experiments with the mouse model of MS, experimental autoimmune encephalomyelitis (EAE), specifically describe the NLRP3 inflammasome as critical and necessary to disease development. This review discusses recent studies in EAE and MS which describe associations of inflammasome activation with promotion of T cell pathogenicity, infiltration of cells into the central nervous system (CNS) and direct neurodegeneration during EAE and MS.

  15. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases.

  16. Gold- and silver-induced murine autoimmunity--requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity.

    PubMed

    Havarinasab, S; Pollard, K M; Hultman, P

    2009-03-01

    Treatment with gold in the form of aurothiomaleate, silver or mercury (Hg) in genetically susceptible mouse strains (H-2(s)) induces a systemic autoimmune condition characterized by anti-nuclear antibodies targeting the 34-kDa nucleolar protein fibrillarin, as well as lymphoproliferation and systemic immune-complex (IC) deposits. In this study we have examined the effect of single-gene deletions for interferon (IFN)-gamma, interleukin (IL)-4, IL-6 or CD28 in B10.S (H-2(s)) mice on heavy metal-induced autoimmunity. Targeting of the genes for IFN-gamma, IL-6 or CD28 abrogated the development of both anti-fibrillarin antibodies (AFA) and IC deposits using a modest dose of Hg (130 microg Hg/kg body weight/day). Deletion of IL-4 severely reduced the IgG1 AFA induced by all three metals, left the total IgG AFA response intact, but abrogated the Hg-induced systemic IC deposits. In conclusion, intact IFN-gamma and CD28 genes are necessary for induction of AFA with all three metals and systemic IC deposits using Hg, while lack of IL-4 distinctly skews the metal-induced AFA response towards T helper type 1. In a previous study using a higher dose of Hg (415 microg Hg/kg body weight/day), IC deposits were preserved in IL-4(-/-) and IL-6(-/-) mice, and also AFA in the latter mice. Therefore, the attenuated autoimmunity following loss of IL-4 and IL-6 is dose-dependent, as higher doses of Hg are able to override the attenuation observed using lower doses.

  17. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen

    2014-01-01

    Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885

  18. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Thamilarasan, Madhan; Koczan, Dirk; Hecker, Michael; Paap, Brigitte; Zettl, Uwe K

    2012-01-01

    MicroRNA (miRNA) are small non-coding RNA molecules about 21-25 nucleotides long. They control gene regulation by translational repression and cleavage. Several studies have shown that many miRNA are associated with the etiology of different diseases. Recent developments in diverse miRNA profiling platforms like microarray and quantitative real-time PCR may enable the identification of specific miRNA as novel diagnostic and predictive markers for various diseases. MiRNAs could even be used as therapeutic drug targets. Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system. Dysregulated immune system processes result in demyelination of neurons and consequently, electrical impulses that travel along the nerves are disrupted resulting in the impairment of organs. In the past three years, there has been an increased interest in establishing miRNA-based biomarkers for MS. So far, there are six studies on miRNA expression in MS patients in which first miRNAs were discovered as potential disease markers. For instance, one study showed that blood levels of miR-145 can discriminate MS patients from healthy controls, and another showed that active lesions in the brain are characterized by a strong up-regulation of miR-155. Studies on experimental autoimmune encephalomyelitis (EAE), the animal model of MS, further support the significance of miRNA as e.g. mice with miR-155 deletion are highly resistant to EAE. Such investigations help to understand the molecular processes involved in the disease. The identification of miRNA markers that are associated with type of MS, individual disease activity or clinical progression under treatment may open new avenues for early diagnosis and optimized therapy of MS.

  19. Treatment of passively transferred experimental autoimmune myasthenia gravis using papain

    PubMed Central

    Poulas, K; Tsouloufis, T; Tzartos, S J

    2000-01-01

    Antibody-mediated acetylcholine receptor (AChR) loss at the neuromuscular junction, the main cause of the symptoms of myasthenia gravis, is induced by bivalent or multivalent antibodies. Passive transfer of experimental autoimmune myasthenia gravis (EAMG) can be induced very efficiently in rats by administration of intact MoAbs directed against the main immunogenic region (MIR) of the AChR, but not by their monovalent Fab fragments. We tested whether papain, which has been used therapeutically in autoimmune and other diseases, is capable of preventing EAMG by in vivo cleavage of the circulating anti-AChR antibodies into Fab fragments. EAMG was induced in 4-week-old female Lewis rats by i.p. injection of anti-MIR mAb35. A total of 0·75 mg of papain was given as one or three injections 3–7 h after MoAb injection. The mAb35 + papain-treated animals developed mild weakness during the first 30 h and subsequently recovered, while all animals that received only mAb35 developed severe myasthenic symptoms and died within 24–30 h. Animals treated only with papain showed no apparent side effects for up to 2 months. Serum anti-AChR levels in mAb35 + papain-treated rats decreased within a few hours, whereas in non-papain-treated rats they remained high for at least 30 h. Muscle AChR in mAb35 + papain-treated animals was partially protected from antibody-mediated degradation. These results show that treatment of rats with papain can prevent passively transferred EAMG without any apparent harm to the animals, and suggest a potential therapeutic use for proteolytic enzymes in myasthenia gravis. PMID:10792389

  20. Cyclosporin a. Inhibition of experimental autoimmune uveitis in Lewis rats.

    PubMed Central

    Nussenblatt, R B; Rodrigues, M M; Wacker, W B; Cevario, S J; Salinas-Carmona, M C; Gery, I

    1981-01-01

    Cyclosporin A (CS-A), a selective inhibitor of T lymphocytes, is reported here to prevent S antigen (S-Ag) induced uveitis in Lewis rats. The S-Ag, found in all mammalian retinas, is uveitogenic under experimental conditions and patients with certain uveitic entities demonstrate cell mediated responses to this antigen. Daily treatment with CS-A (10 mg/kg) begun on the same day as S-Ag immunization totally inhibited the development of the uveitis in this experimental autoimmune model. Moreover a greater CS-A dose (40 mg/kg) efficiently prevented the disease process when therapy was started 7 d after S-Ag immunization. Anti-S-Ag antibody titers were observed to be similar in rats either protected or not protected with CS-A. Our data support strongly the need for T cell participation in this disease model. Since ocular inflammatory disease is an important cause of visual impairment, the data further suggest that CS-A may be useful in the treatment of patients with intractable uveitis. Images PMID:7204576

  1. The injury-induced myokine insulin-like 6 is protective in experimental autoimmune myositis

    PubMed Central

    2014-01-01

    Background The idiopathic inflammatory myopathies represent a group of autoimmune diseases that are characterized by lymphocyte infiltration of muscle and muscle weakness. Insulin-like 6 (Insl6) is a poorly characterized member of the insulin-like/relaxin family of secreted proteins, whose expression is upregulated upon acute muscle injury. Methods In this study, we employed Insl6 gain or loss of function mice to investigate the role of Insl6 in a T cell-mediated model of experimental autoimmune myositis (EAM). EAM models in rodents have involved immunization with human myosin-binding protein C with complete Freund’s adjuvant (CFA) emulsions and pertussis toxin. Results Insl6-deficiency in mice led to a worsened myositis phenotype including increased infiltration of CD4 and CD8 T cells and the elevated expression of inflammatory cytokines. Insl6-deficient mice show significant motor function impairment when tested with treadmill or Rotarod devices. Conversely, muscle-specific overexpression of Insl6 protected against the development of myositis as indicated by reduced lymphocyte infiltration in muscle, diminished inflammatory cytokine expression and improved motor function. The improvement in myositis by Insl6 could also be demonstrated by acute hydrodynamic delivery of a plasmid encoding murine Insl6. In cultured cells, Insl6 inhibits Jurkat cell proliferation and activation in response to phytohemagglutinin/phorbol 12-myristate 13-acetate stimulation. Insl6 transcript expression in muscle was reduced in a cohort of dermatomyositis and polymyositis patients. Conclusions These data suggest that Insl6 may have utility for the treatment of myositis, a condition for which few treatment options exist. PMID:25161767

  2. Analysis of neurogenesis during experimental autoimmune encephalomyelitis reveals pitfalls of bioluminescence imaging.

    PubMed

    Ayzenberg, Ilya; Schlevogt, Sibylle; Metzdorf, Judith; Stahlke, Sarah; Pedreitturia, Xiomara; Hunfeld, Anika; Couillard-Despres, Sebastien; Kleiter, Ingo

    2015-01-01

    Bioluminescence imaging is a sensitive approach for longitudinal neuroimaging. Transgenic mice expressing luciferase under the promoter of doublecortin (DCX-luc), a specific marker of neuronal progenitor cells (NPC), allow monitoring of neurogenesis in living mice. Since the extent and time course of neurogenesis during autoimmune brain inflammation are controversial, we investigated neurogenesis in MOG-peptide induced experimental allergic encephalomyelitis (EAE) using DCX-luc reporter mice. We observed a marked, 2- to 4-fold increase of the bioluminescence signal intensity 10 days after EAE induction and a gradual decline 1-2 weeks thereafter. In contrast, immunostaining for DCX revealed no differences between EAE and control mice 2 and 4 weeks after immunization in zones of adult murine neurogenesis such as the dentate gyrus. Ex vivo bioluminescence imaging showed similar luciferase expression in brain homogenates of EAE and control animals. Apart from complete immunization including MOG-peptide also incomplete immunization with complete Freund´s adjuvant and pertussis toxin resulted in a rapid increase of the in vivo bioluminescence signal. Blood-brain barrier (BBB) leakage was demonstrated 10 days after both complete and incomplete immunization and might explain the increased bioluminescence signal in vivo. We conclude, that acute autoimmune inflammation in EAE does not alter neurogenesis, at least at the stage of DCX-expressing NPC. Effects of immunization on the BBB integrity must be considered when luciferase is used as a reporter within the CNS during the active stage of EAE. Models with stable CNS-restricted luciferase expression could serve as technically convenient way to evaluate BBB integrity in a longitudinal manner.

  3. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  4. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.

    PubMed

    Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar

    2016-03-01

    The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system.

  5. Control of Experimental Autoimmune Encephalomyelitis by T Cells Responding to Activated T Cells

    NASA Astrophysics Data System (ADS)

    Lohse, Ansgar W.; Mor, Felix; Karin, Nathan; Cohen, Irun R.

    1989-05-01

    T cell vaccination against experimental autoimmune disease is herein shown to be mediated in part by anti-ergotypic T cells, T cells that recognize and respond to the state of activation of other T cells. The anti-ergotypic response thus combines with the previously shown anti-idiotypic T cell response to regulate autoimmunity.

  6. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  7. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Basler, Michael; Mundt, Sarah; Muchamuel, Tony; Moll, Carlo; Jiang, Jing; Groettrup, Marcus; Kirk, Christopher J

    2014-01-01

    Multiple sclerosis (MS) is a chronic demyelinating immune mediated disease of the central nervous system. The immunoproteasome is a distinct class of proteasomes found predominantly in monocytes and lymphocytes. Recently, we demonstrated a novel function of immunoproteasomes in cytokine production and T cell differentiation. In this study, we investigated the therapeutic efficacy of an inhibitor of the immunoproteasome (ONX 0914) in two different mouse models of MS. ONX 0914 attenuated disease progression after active and passive induction of experimental autoimmune encephalomyelitis (EAE), both in MOG35–55 and PLP139–151-induced EAE. Isolation of lymphocytes from the brain or spinal cord revealed a strong reduction of cytokine-producing CD4+ cells in ONX 0914 treated mice. Additionally, ONX 0914 treatment prevented disease exacerbation in a relapsing-remitting model. An analysis of draining lymph nodes after induction of EAE revealed that the differentiation to Th17 or Th1 cells was strongly impaired in ONX 0914 treated mice. These results implicate the immunoproteasome in the development of EAE and suggest that immunoproteasome inhibitors are promising drugs for the treatment of MS. PMID:24399752

  8. Induction of experimental autoimmune uveoretinitis by T-cell lines.

    PubMed Central

    Rozenszajn, L A; Muellenberg-Coulombre, C; Gery, I; el-Saied, M; Kuwabara, T; Mochizuki, M; Lando, Z; Nussenblatt, R B

    1986-01-01

    Experimental autoimmune uveoretinitis was induced in genetically susceptible Lewis rats by passive transfer of T-lymphocyte cell lines from long-term cultures primed against soluble retinal antigen (S-Ag). A continuous T-cell line was established from non-adherent lymph node cells of S-Ag-immunized Lewis rats. The lymphoid cells were propagated in vitro by serially restimulating them with S-Ag in the presence of irradiated syngeneic spleen cells and expanding them in IL-2-containing media. The cell lines exhibited markers specific for T lymphocytes and the majority had the helper phenotype. When naïve rats were inoculated intravenously with anti S-Ag T-cell lines re-exposed to the antigen prior to injection, they developed uveoretinitis with both clinical and histological characteristics in half the time required by S-Ag to induce the disease by active immunization. The rats exhibited a delayed hypersensitivity skin reaction towards S-Ag. Images Figure 2 Figure 3 PMID:3485569

  9. Morphometric analysis of T lymphocyte compartmentation in experimental autoimmune uveoretinitis.

    PubMed Central

    Brown, E C; Kasp, E; Dumonde, D C

    1989-01-01

    Experimental autoimmune uveoretinitis (EAU) in the Lewis rat is characterized by extensive infiltration of inflammatory cells into all compartments of the eye, only some of which become irreversibly damaged. The apparent differences in the pathogenic impact of inflammatory cells within different ocular compartments may suggest that different mechanisms underlie cellular infiltration and selective tissue destruction. In order to investigate the importance of T lymphocyte infiltration, we carried out a precise topographical and temporal analysis of T cell infiltration into five compartments of the eye using an improved method for the fixation of ocular tissue. Our study showed that T cell infiltration began in the ciliary body and was most numerous and sustained in this area during EAU. The peak of T cell infiltration into the retina was comparatively delayed and was of lesser magnitude. Analysis of T cell subsets revealed a tendency for the helper phenotype to predominant during the course of disease in all ocular compartments except the retina where both helper and cytotoxic/suppressor T cells were equally represented at the height of inflammation. We suggest that the pathogenetic impact of autoreactive lymphocytes in EAU depends on the accessibility of relevant tissue antigen and on local microenvironmental features of lymphocytic traffic within different ocular compartments. Images Fig. 1 Fig. 2 PMID:2805411

  10. Adrenomedullin protects from experimental autoimmune encephalomyelitis at multiple levels

    PubMed Central

    Pedreño, Marta; Morell, Maria; Robledo, Gema; Souza-Moreira, Luciana; Forte-Lago, Irene; Caro, Marta; O’Valle, Francisco; Ganea, Doina; Gonzalez-Rey, Elena

    2014-01-01

    Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis. PMID:24321213

  11. Th1-mediated experimental autoimmune encephalomyelitis is CXCR3 independent.

    PubMed

    Lalor, Stephen J; Segal, Benjamin M

    2013-11-01

    Drugs that block leukocyte trafficking ameliorate multiple sclerosis (MS). Occurrences of opportunistic infection, however, highlight the need for novel drugs that modulate more restricted subsets of T cells. In this context, chemokines and their receptors are attractive therapeutic targets. CXCR3, a Th1-associated chemokine receptor, is preferentially expressed on T cells that accumulate in MS lesions and central nervous system (CNS) infiltrates of mice with experimental autoimmune encephalomyelitis (EAE). Surprisingly, mice genetically deficient in either CXCR3 or CXCL10 succumb to EAE following active immunization with myelin antigens. EAE is mediated by a heterogeneous population of T cells in myelin-immunized mice. Hence, disease might develop in the absence of CXCR3 secondary to the compensatory action of encephalitogenic CCR6(+) Th17 cells. However, in the current study, we show for the first time that blockade or genetic deficiency of either CXCR3 or of its primary ligand has no impact on clinical EAE induced by the adoptive transfer of highly polarized Th1 effector cells. Our data illustrate the fact that, although highly targeted immunotherapies might have more favorable side effect profiles, they are also more likely to be rendered ineffective by inherent redundancies in chemokine and cytokine networks that arise at sites of neuroinflammation.

  12. Regulation of experimental autoimmune encephalomyelitis by TPL-2 kinase

    PubMed Central

    Tsakiri, Niki; Kierdorf, Katrin; Brender, Christine; Ben-Addi, Abduelhakem; Veldhoen, Marc; Tsichlis, Philip N.; Stockinger, Brigitta; O’Garra, Anne; Prinz, Marco; Kollias, George; Ley, Steven C.

    2014-01-01

    TPL-2 expression is required for efficient polarization of naïve T cells to Th1 effector cells in vitro, and for Th1-mediated immune responses. In the present study, we investigated the potential role of TPL-2 in Th17 cells. TPL-2 was found to be dispensable for Th17 cell differentiation in vitro, and for the initial priming of Th17 cells in experimental autoimmune encephalomyelitis (EAE), a Th17 cell-mediated disease model for multiple sclerosis. Nevertheless, TPL-2-deficient mice were protected from EAE, which correlated with reduced immune cell infiltration, demyelination and axonal damage in the CNS. Adoptive transfer experiments demonstrated that there was no T cell-intrinsic function for TPL-2 in EAE, and that TPL-2 signaling was not required in radiation-sensitive hematopoietic cells. Rather, TPL-2 signaling in radiation-resistant stromal cells promoted the effector phase of the disease. Importantly, using a newly generated mouse strain expressing a kinase-inactive form of TPL-2, we demonstrated that stimulation of EAE was dependent on TPL-2’s catalytic activity, and not its adaptor function to stabilize the associated ubiquitin-binding protein ABIN-2. Our data therefore raise the possibility that small molecule inhibitors of TPL-2 may be beneficial in multiple sclerosis therapy. PMID:24639351

  13. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Gu, Sun Mi; Park, Mi Hee; Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-03-29

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.

  14. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice

    PubMed Central

    Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5−/−) mice. CCR5−/− and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5−/− mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5−/− mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5−/− mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5−/− mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS. PMID:26985768

  15. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  16. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice.

    PubMed

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B; Mounayar, Marwan; Sackstein, Robert

    2015-05-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here, we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in nonobese diabetic (NOD) mice. Although murine MSCs natively do not express the E-selectin-binding determinant sialyl Lewis(x) (sLe(x) ), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLe(x) display uniquely on cell surface CD44 thereby creating hematopoietic cell E-/L-selectin ligand (HCELL), the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL(+) MSCs showed threefold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL(-) ) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays; however, although engraftment was temporary for both HCELL(+) and HCELL(-) MSCs, administration of HCELL(+) MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL(-) MSCs. Notably, exofucosylation of MSCs generated from CD44(-/-) mice induced prominent membrane expression of sLe(x) , but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. Stem Cells

  17. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    PubMed Central

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  18. Time course of gene expression in rat experimental autoimmune myocarditis.

    PubMed

    Hanawa, Haruo; Abe, Satoru; Hayashi, Manabu; Yoshida, Tsuyoshi; Yoshida, Kaori; Shiono, Takaaki; Fuse, Koichi; Ito, Masahiro; Tachikawa, Hitoshi; Kashimura, Takeshi; Okura, Yuji; Kato, Kiminori; Kodama, Makoto; Maruyama, Seitaro; Yamamoto, Tadashi; Aizawa, Yoshifusa

    2002-12-01

    Genetic responses that characterize experimental autoimmune myocarditis (EAM) have not yet been determined. To investigate gene expression in the myocardium of EAM, absolute copy numbers of 44 mRNA species [calcium-handling proteins, contractile proteins, natriuretic peptides (NPs), cytokines, chemokines, growth factors, renin-angiotensin-aldosterone (RAA) system, endothelins (ETs) and extracellular matrix] in synthesized cDNA from a fixed quantity of total heart RNA were assessed using real-time reverse-transcriptase PCR at days 0, 14, 21 and 28 after immunization. alpha-Cardiac myosin showed a 26.3-fold decrease and beta-cardiac myosin a 3.75-fold increase at day 14. Atrial NP and brain NP increased 47.7- and 6.35-fold at days 21 and 14 respectively. Angiotensin II type 1 receptor, angiotensin-converting enzyme and ET1 increased 22.3-fold at day 21, 6.30-fold at day 21 and 16.8-fold at day 14 respectively. Aldosterone receptor decreased 2.15-fold at day 14, but aldosterone synthetase was detected only at days 14 and 21. Interleukin (IL)-2, IL-10, interferon-gamma and monocyte chemo-attractant protein-1 increased 9.08-fold at day 14, 398-fold at day 21, 43.1-fold at day 14 and 142-fold at day 14 respectively. Collagen type 3, collagen type 1 and fibronectin increased 34.6-, 1.74- and 44.4-fold respectively at day 21. Interestingly, osteopontin showed a 4540-fold increase and it was the highest mRNA of all at day 14. An isoform of cardiac myosin and NP are dramatically changed in EAM. RAA system and ET expressions are changed differently during the EAM time course. Cytokine, chemokine and extracellular matrix greatly increase and, in particular, large numbers of osteopontin mRNA are expressed in early EAM.

  19. Congenic autoimmune murine models of central nervous system disease in connective tissue disorders.

    PubMed

    Alexander, E L; Murphy, E D; Roths, J B; Alexander, G E

    1983-08-01

    Congenic mice of the MRL/Mp strain spontaneously develop an autoimmune connective tissue disease that shares immunological and histopathological features with systemic lupus erythematosus, rheumatoid arthritis, and Sjögren's syndrome. The autoimmune disorder in these mice is accelerated markedly by the recessive gene lpr. By 6 months of age, MRL/Mp-lpr/lpr mice developed prominent mononuclear cell infiltrates restricted to the choroid plexus and meninges, whereas congeneric MRL/Mp- +/+ mice (which lack the lpr gene) showed delayed but widespread inflammatory infiltrates involving cerebral vessels and meninges, with sparing of the choroid plexus. These distinctive patterns of cerebral inflammation, which are comparable in many respects to those seen in human connective tissue disease, provide some of the first animal models of relevant central nervous system histopathological processes associated with underlying connective tissue disease.

  20. Nitric oxide synthase in experimental autoimmune myocarditis dysfunction.

    PubMed

    Goren, N; Leiros, C P; Sterin-Borda, L; Borda, E

    1998-11-01

    This study reports the expression of inducible nitric oxide synthase (NOS) in heart from autoimmune myocarditis mice associated with an alteration in their contractile behavior. By mean of the production of [U-14C]citrulline from [U-14C]arginine and immunoblot assay, the expression of iNOS was demonstrated in autoimmune atria that was normally absent. The iNOS activity decreased with administration of dexamethasone and in mice treated with monoclonal anti-interferon-gamma antibody (anti-IFN-gamma mAb). The inhibitors of protein kinase C activity (staurosporine) but not calcium/calmodulin (trifluoperazine) attenuated the iNOS activity. Moreover, autoimmune atria presented contractile alterations (lower values of dF/dt than control). The in vivo treatment with inhibitors of NOS activity or anti-IFN-gamma mAb or dexamethasone improved the contractile activity of autoimmune atria with no change in the contractility of normal atria. The results suggest that the infiltrative cells in myocarditis heart have a potential role in cardiac dysfunction by production of IFN-gamma and subsequent expression of iNOS, that in turn alter the contractile behavior of the heart. The data indicate that cytokines induced activation of L-arginine nitric oxide pathway in myocarditis atria leading to contractile dysfunction.

  1. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes

    PubMed Central

    Jalili, Reza B.; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T.; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L.; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory / regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes. PMID:26765526

  2. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    PubMed

    Jalili, Reza B; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes.

  3. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis.

    PubMed Central

    Wuthrich, R. P.; Jevnikar, A. M.; Takei, F.; Glimcher, L. H.; Kelley, V. E.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is a cell-surface protein regulating interactions among immune cells. To determine whether altered expression of ICAM-1 occurs in autoimmune lupus nephritis, we studied ICAM-1 expression in kidneys of normal and autoimmune MRL-lpr and (NZBX NZW)F1 (NZB/W) mice. By immunoperoxidase staining, ICAM-1 is constitutively expressed at low levels in proximal tubules (PT), endothelium and interstitial cells in normal C3H/FeJ mice. In nephritic MRL-lpr and NZB/W kidneys, staining for ICAM-1 is increased in the PT, particularly in the brush border, and is prominent in the glomerular mesangium and the endothelium of large vessels. By Western blot analysis, ICAM-1 is not detected in the urine of normal BALB/c and C3H/FeJ or autoimmune MRL-lpr. By Northern blot analysis, nephritic MRL-lpr and NZB/W have a two- to fivefold increase in steady state levels of ICAM-1 transcripts in the kidney as compared with normal or prenephritic mice. This is paralleled by an increase in MHC class II transcripts. In cultured PT cells, ICAM-1 is expressed at basal levels in PT and is increased by the cytokines interferon-gamma, IL-1 alpha, and TNF-alpha. Thus cytokine-mediated upregulation of ICAM-1 in lupus nephritis may promote interaction of immune cells with renal tissue. The predominant apical expression of ICAM-1 opposite to the basolateral Ia expression suggests a novel role for this adhesion molecule in PT. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:1968316

  4. Treatment of experimental autoimmune uveoretinitis with different natural compounds

    PubMed Central

    LI, MAN; CHEN, XIAOMING; LIU, JUANJUAN; WANG, DONGMEI; GAN, LU; LV, XIN; QIAO, YU

    2016-01-01

    Uveitis is an important eye disease that potentially causes loss of sight. Although extensive studies have been conducted on uveitis, the exact pathogenesis remains to be determined. The effects of treatment with natural compounds on an experimental autoimmune uveoretinitis (EAU) rat model were examined in the present study. A total of 25 rats were divided into 5 groups: Alkaloids (n=5), saponins (n=5), flavonoids (n=5), phenols (n=5), and the normal saline group (n=5). The rats in each group were treated with an intraperitoneal injection of proper alkaloids (berberine hydrochloride), saponins (steroidal saponins), flavonoids (baicalein), or phenols (chlorogenic acid) or physiological saline, respectively. The rats' aqueous humour and crystalline lens was then observed under the slit lamp periodically, looking for signs of inflammation. After 2 weeks, the rats were sacrificed and the degree of pathological changes on their eyeballs under different treatment methods were determined using an optical microscope. The expression of the interleukin (IL)-17 gene in the ocular tissues of the rats was assessed via RT-PCR and western blot analysis. Apoptosis on the rats' retinal tissues was detected using flow cytometry. The results showed that rats injected with phenols (chlorogenic acid) had serious ocular vascular dilatation, iris hemorrhage and purulent exudation; those injected with alkaloids (berberine hydrochloride) and flavonoids (baicalein) had a more mild form of inflammation; and those administered saponins (steroidal saponins) had only mild inflammation signs. Following detection of IL-17 mRNA and protein expression levels in the ocular tissues of rats of the five groups, it was found that their expression was lowest in the saponin-treated group and the other differences in expression were all statistically significant (P<0.05). A comparison with other groups revealed that cell apoptosis in the eyes of rats in the saponin group was the most prominent, reflecting

  5. In vitro studies implicate an imbalanced activation of dendritic cells in the pathogenesis of murine autoimmune pancreatitis

    PubMed Central

    Borufka, Luise; Volmer, Erik; Müller, Sarah; Engelmann, Robby; Nizze, Horst; Ibrahim, Saleh; Jaster, Robert

    2016-01-01

    Objectives MRL/MpJ mice spontaneously develop an autoimmune pancreatitis (AIP) and are widely used as a model to study the genetic, molecular and immunological basis of the disease. Here, we have addressed the question whether distinctive features of their dendritic cells (DCs) may predispose MRL/MpJ mice to the chronic inflammation. Methods Pancreatic lesions were analyzed employing histological methods. Cohorts of young (healthy) MRL/MpJ mice, adult (sick) individuals, and AIP-resistant CAST/EiJ mice were used to establish cultures of bone marrow (BM)-derived conventional DCs (cDCs). The cells were subsequently characterized regarding the expression profile of CD markers and selected genes, proliferative activity as well as cytokine secretion. Results In pancreatic lesions, large numbers of cells expressing the murine DC marker CD11c were detected in close spatial proximity to CD3+ cells. A high percentage of BM-derived cDCs from adult MRL/MpJ mice expressed typical markers of DC maturation (such as CD83) already prior to a treatment with lipopolysaccharide (LPS). After LPS-stimulation, cDC cultures of both MRL/MpJ mouse cohorts contained more mature cells, proliferated at a higher rate and secreted less interleukin-10 (but also less pro-inflammatory cytokines) than cultures of CAST/EiJ mice. Compared with corresponding cultures of the control strain, LPS-free cultured cDCs from MRL/MpJ mice expressed less mRNA of the inhibitory receptor triggering receptor expressed on myeloid cells 2 (trem2). Conclusions BM-derived cDCs from AIP-prone MRL/MpJ mice display functional features that are compatible with the hypothesis of an imbalanced DC activation in the context of murine AIP. PMID:27356751

  6. Changes in Soluble CD18 in Murine Autoimmune Arthritis and Rheumatoid Arthritis Reflect Disease Establishment and Treatment Response

    PubMed Central

    Kragstrup, Tue Wenzel; Jalilian, Babak; Keller, Kresten Krarup; Zhang, Xianwei; Laustsen, Julie Kristine; Stengaard-Pedersen, Kristian; Hetland, Merete Lund; Hørslev-Petersen, Kim; Junker, Peter; Østergaard, Mikkel; Hauge, Ellen-Margrethe; Hvid, Malene; Vorup-Jensen, Thomas; Deleuran, Bent

    2016-01-01

    Introduction In rheumatoid arthritis (RA) immune activation and presence of autoantibodies may precede clinical onset of disease, and joint destruction can progress despite remission. However, the underlying temporal changes of such immune system abnormalities in the inflammatory response during treat-to-target strategies remain poorly understood. We have previously reported low levels of the soluble form of CD18 (sCD18) in plasma from patients with chronic RA and spondyloarthritis. Here, we study the changes of sCD18 before and during treatment of early RA and following arthritis induction in murine models of rheumatoid arthritis. Methods The level of sCD18 was analyzed with a time-resolved immunoflourometric assay in 1) plasma from early treatment naïve RA patients during a treat-to-target strategy (the OPERA cohort), 2) plasma from chronic RA patients, 3) serum from SKG and CIA mice following arthritis induction, and 4) supernatants from synovial fluid mononuclear cells (SFMCs) and peripheral blood mononuclear cells (PBMCs) from 6 RA patients cultured with TNFα or adalimumab. Results Plasma levels of sCD18 were decreased in chronic RA patients compared with early RA patients and in early RA patients compared with healthy controls. After 12 months of treatment the levels in early RA patients were similar to healthy controls. This normalization of plasma sCD18 levels was more pronounced in patients with very early disease who achieved an early ACR response. Plasma sCD18 levels were associated with radiographic progression. Correspondingly, the serum level of sCD18 was decreased in SKG mice 6 weeks after arthritis induction compared with healthy littermates. The sCD18 levels in both SKG and CIA mice exhibited a biphasic course after arthritis induction with an initial increase above baseline followed by a decline. Shedding of CD18 from RA SFMC and RA PBMC cultures was increased by TNFα and decreased by adalimumab. Conclusions The plasma sCD18 levels were altered

  7. Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis.

    PubMed

    Schiffmann, Susanne; Ferreiros, Nerea; Birod, Kerstin; Eberle, Max; Schreiber, Yannick; Pfeilschifter, Waltraud; Ziemann, Ulf; Pierre, Sandra; Scholich, Klaus; Grösch, Sabine; Geisslinger, Gerd

    2012-06-01

    Ceramides are mediators of apoptosis and inflammatory processes. In an animal model of multiple sclerosis (MS), the experimental autoimmune encephalomyelitis (EAE) model, we observed a significant elevation of C(16:0)-Cer in the lumbar spinal cord of EAE mice. This was caused by a transiently increased expression of ceramide synthase (CerS) 6 in monocytes/macrophages and astroglia. Notably, this corresponds to the clinical finding that C(16:0)-Cer levels were increased 1.9-fold in cerebrospinal fluid of MS patients. NO and TNF-α secreted by IFN-γ-activated macrophages play an essential role in the development of MS. In murine peritoneal and mouse-derived RAW 264.7 macrophages, IFN-γ-mediated expression of inducible NO synthase (iNOS)/TNF-α and NO/TNF-α release depends on upregulation of CerS6/C(16:0)-Cer. Downregulation of CerS6 by RNA interference or endogenous upregulation of C(16:0)-Cer mediated by palmitic acid in RAW 264.7 macrophages led to a significant reduction or increase in NO/TNF-α release, respectively. EAE/IFN-γ knockout mice showed a significant delay in disease onset accompanied by a significantly less pronounced increase in CerS6/C(16:0)-Cer, iNOS, and TNF-α compared with EAE/wild-type mice. Treatment of EAE mice with l-cycloserine prevented the increase in C(16:0)-Cer and iNOS/TNF-α expression and caused a remission of the disease. In conclusion, CerS6 plays a critical role in the onset of MS, most likely by regulating NO and TNF-α synthesis. CerS6 may represent a new target for the inhibition of inflammatory processes promoting MS development.

  8. Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis.

    PubMed

    Zagon, Ian S; Rahn, Kristen A; Turel, Anthony P; McLaughlin, Patricia J

    2009-11-01

    Preclinical investigations utilizing murine experimental auto-immune encephalomyelitis (EAE), as well as clinical observations in patients with multiple sclerosis (MS), may suggest alteration of endogenous opioid systems in MS. In this study we used the opioid antagonist naltrexone (NTX) to invoke a continuous (High Dose NTX, HDN) or intermittent (Low Dose NTX, LDN) opioid receptor blockade in order to elucidate the role of native opioid peptides in EAE. A mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced EAE was employed in conjunction with daily treatment of LDN (0.1 mg/kg, NTX), HDN (10 mg/kg NTX), or vehicle (saline). No differences in neurological status (incidence, severity, disease index), or neuropathological assessment (activated astrocytes, demyelination, neuronal injury), were noted between MOG-induced mice receiving HDN or vehicle. Over 33% of the MOG-treated animals receiving LDN did not exhibit behavioral signs of disease, and the severity and disease index of the LDN-treated mice were markedly reduced from cohorts injected with vehicle. Although all LDN animals demonstrated neuropathological signs of EAE, LDN-treated mice without behavioral signs of disease had markedly lower levels of activated astrocytes and demyelination than LDN- or vehicle-treated animals with disease. These results imply that endogenous opioids, evoked by treatment with LDN and acting in the rebound period from drug exposure, are inhibitory to the onset and progression of EAE, and suggest that clinical studies of LDN are merited in MS and possibly in other autoimmune disorders.

  9. Mesenchymal stem cells in the treatment of inflammatory and autoimmune diseases in experimental animal models

    PubMed Central

    Klinker, Matthew W; Wei, Cheng-Hong

    2015-01-01

    Multipotent mesenchymal stromal cells [also known as mesenchymal stem cells (MSCs)] are currently being studied as a cell-based treatment for inflammatory disorders. Experimental animal models of human immune-mediated diseases have been instrumental in establishing their immunosuppressive properties. In this review, we summarize recent studies examining the effectiveness of MSCs as immunotherapy in several widely-studied animal models, including type 1 diabetes, experimental autoimmune arthritis, experimental autoimmune encephalomyelitis, inflammatory bowel disease, graft-vs-host disease, and systemic lupus erythematosus. In addition, we discuss mechanisms identified by which MSCs mediate immune suppression in specific disease models, and potential sources of functional variability of MSCs between studies. PMID:25914763

  10. Experimental model of autoimmune orchitis with abdominal placement of donor's testes, epididymides, and vasa deferentia in recipient mice.

    PubMed

    Terayama, Hayato; Itoh, Masahiro; Naito, Munekazu; Hirai, Shuichi; Qu, Ning; Kuerban, Maimaiti; Musha, Muhetaerjiang

    2011-08-01

    Haploid germ cells (spermatids and spermatozoa) develop in the testis after immune tolerance has been established. Therefore, they contain various autoimmunogenic antigens, but the testis is known to be an immunologically privileged organ. In particular, the blood-testis barrier formed by Sertoli cells protects autoimmunogenic haploid germ cells from attack by the autoimmune system. Experimental autoimmune orchitis (EAO), a breakdown of the testicular immune privilege leading to immunological male infertility, has been ordinarily induced in mice by immunization twice with testicular antigens+complete Freund's adjuvant (CFA)+Bordetella pertussis (BP). We previously found that two subcutaneous injections of viable syngeneic testicular germ cells induced murine EAO without the use of CFA+BP. In both EAO models, the lesions are characterized by spermatogenic disturbance with lymphocytic inflammation, and a second immunization with testicular antigens is critical for the disease induction. In the present study, we found that only one placement of a syngeneic donor's testes, epididymides and vasa deferentia (TEV) into the abdominal cavity or subcutaneous space was sufficient to induce EAO on the recipient's testes in mice. It was also noted that the placement of TEV induced only orchitis without epididymo-vasitis, while the serum autoantibodies were reactive with haploid germ cells existing throughout the TEV. Furthermore, the TEV placed in the abdominal cavity rather than the subcutaneous space was effective in inducing severe EAO, and the A/J strain was most susceptible to the TEV-induced EAO among the three strains examined. The model of EAO induced by the placement of the donor's TEV into the abdominal cavity in A/J mice will be helpful for the further analyses of testicular autoimmunity.

  11. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development

    PubMed Central

    Kavrochorianou, Nadia; Evangelidou, Maria; Markogiannaki, Melina; Tovey, Michael; Thyphronitis, George; Haralambous, Sylva

    2016-01-01

    Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2–ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6+ CD4+ T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4+ T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis. PMID:26232452

  12. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia.

    PubMed

    Yamada, Kazunori; Ito, Kiyoaki; Furukawa, Jun-Ichi; Nakata, Junichiro; Alvarez, Montserrat; Verbeek, J Sjef; Shinohara, Yasuro; Izui, Shozo

    2013-12-01

    Murine immune effector cells express three different stimulatory FcγRs (FcγRI, FcγRIII and FcγRIV) and one inhibitory receptor, FcγRIIB. Competitive engagement of stimulatory and inhibitory FcγRs has been shown to be critical for the development of immune complex-mediated inflammatory disorders. Because of the previous demonstration that FcγRIIB was unable to inhibit FcγRIII-mediated autoimmune hemolytic anemia induced by 105-2H IgG1 anti-RBC mAb, we reevaluated the regulatory role of FcγRIIB on the development of anemia using two additional IgG1 anti-RBC mAbs (34-3C and 3H5G1) and different 34-3C IgG subclass-switch variants. We were able to induce a more severe anemia in FcγRIIB-deficient mice than in FcγRIIB-sufficient mice after injection of 34-3C and 3H5G1 IgG1, but not 105-2H IgG1. Structural analysis of N-linked oligosaccharides attached to the CH2 domain revealed that 105-2H was poorly galactosylated as compared with the other mAbs, while the extent of sialylation was comparable between all mAbs. In addition, we observed that a more galactosylated 105-2H variant provoked more severe anemia in FcγRIIB-deficient mice than FcγRIIB-sufficient mice. In contrast, the development of anemia induced by three non-IgG1 subclass variants of the 34-3C mAb was not down-regulated by FcγRIIB, although they were more galactosylated than its IgG1 variant. These data indicate that FcγRIIB-mediated inhibition of autoimmune hemolytic anemia is restricted to the IgG1 subclass and that galactosylation, but not sialylation, of IgG1 (but not other IgG subclasses) is critical for the interaction with FcγR, thereby determining the pathogenic potential of IgG1 autoantibodies.

  13. Dose and Hg species determine the T-helper cell activation in murine autoimmunity.

    PubMed

    Havarinasab, Said; Björn, Erik; Ekstrand, Jimmy; Hultman, Per

    2007-01-05

    Inorganic mercury (mercuric chloride--HgCl(2)) induces in mice an autoimmune syndrome (HgIA) with T cell-dependent polyclonal B cell activation and hypergammaglobulinemia, dose- and H-2-dependent production of autoantibodies targeting the 34 kDa nucleolar protein fibrillarin (AFA), and systemic immune-complex deposits. The organic mercury species methylmercury (MeHg) and ethylmercury (EtHg--in the form of thimerosal) induce AFA, while the other manifestations of HgIA seen after treatment with HgCl(2) are present to varying extent. Since these organic Hg species are converted to the autoimmunogen Hg(2+) in the body, their primary autoimmunogen potential is uncertain and the subject of this study. A moderate dose of HgCl(2) (8 mg/L drinking water--internal dose 148 micro gHg/kg body weight [bw]/day) caused the fastest AFA response, while the induction was delayed after higher (25 mg/L) and lower (1.5 and 3 mg/L) doses. The lowest dose of HgCl(2) inducing AFA was 1.5 mg/L drinking water which corresponded to a renal Hg(2+) concentration of 0.53 micro g/g. Using a dose of 8 mg HgCl(2)/L this threshold concentration was reached within 24 h, and a consistent AFA response developed after 8-10 days. The time lag for the immunological part of the reaction leading to a consistent AFA response was therefore 7-9 days. A dose of thimerosal close to the threshold dose for induction of AFA (2 mg/L drinking water--internal dose 118 micro gHg/kg bw per day), caused a renal Hg(2+) concentration of 1.8 micro g/g. The autoimmunogen effect of EtHg might therefore be entirely due to Hg(2+) formed from EtHg in the body. The effect of organic and inorganic Hg species on T-helper type 1 and type 2 cells during induction of AFA was assessed as the presence and titre of AFA of the IgG1 and IgG2a isotype, respectively. EtHg induced a persistent Th1-skewed response irrespectively of the dose and time used. A low daily dose of HgCl(2) (1.5-3 mg/L) caused a Th1-skewed AFA response, while a

  14. Cellular basis of the genetic susceptibility of murine experimental allergic encephalomyelitis

    SciTech Connect

    Binder, T.A.; Greiner, D.L.; Goldschneider, I.

    1986-03-01

    Murine experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease that resembles human multiple sclerosis. The authors have investigated the cellular basis of the genetic predisposition and resistance of inbred strains of mice to EAE using an adoptive transfer system between two H-2 compatible, Thy 1 antigen disparate strains of mice. Genetically EAE susceptible SJL/J strain mice (H-2/sup s/, Thy 1.2) and resistant B10.S Thy 1.1 (H-2/sub s/, Thy 1.1) strain mice were lethally irradiated (700R) and reconstituted with 5-10 x 10/sup 6/ bone marrow cells from either SJL/J or congenic B10.S (Thy 1.1 or Thy 1.2) donors. After 30-45 days, more than 95% of the thymocytes and 75% of the peripheral T cells in the chimeras were of donor origin. These lymphohemopoietic chimeras were then sensitized in their hind footpads with porcine myelin basic protein in complete Freund's adjuvant containing M. tuberculosis H/sub 37/RA, followed at 24 and 72 hours by i.v. injection of B. pertussis. Clinical signs of EAE developed in unirradiated SJL/J, but not B10.S, controls, and in irradiated B10.S and SJL/J recipients of SJL/J, but not B10.S, bone marrow. These results indicate that bone marrow cells can transfer the predisposition to EAE from genetically susceptible to genetically resistant mouse strains. The cellular component in the bone marrow that is responsible for the transfer of the genetic susceptibility to EAE is under investigation.

  15. Dual Roles of IFN-γ and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine

    PubMed Central

    Syu, Bi-Jhen; Loh, Chia-En; Hsueh, Yu-Hsin; Gershwin, M. Eric; Chuang, Ya-Hui

    2016-01-01

    Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease with a long natural history. The pathogenesis of PBC is thought to be orchestrated by Th1 and/or Th17. In this study, we investigated the role of CD4+ helper T subsets and their cytokines on PBC using our previous established murine model of 2-OA-OVA immunization. We prepared adeno-associated virus (AAV)-IFN-γ and AAV-IL-4 and studied their individual influences on the natural history of autoimmune cholangitis in this model. Administration of IFN-γ significantly promotes recruitment and lymphocyte activation in the earliest phases of autoimmune cholangitis but subsequently leads to downregulation of chronic inflammation through induction of the immunosuppressive molecule IL-30. In contrast, the administration of IL-4 does not alter the initiation of autoimmune cholangitis, but does contribute to the exacerbation of chronic liver inflammation and fibrosis. Thus Th1 cells and IFN-γ are the dominant contributors in the initiation phase of this model but clearly may have different effects as the disease progress. In conclusion, better understanding of the mechanisms by which helper T cells function in the natural history of cholangitis is essential and illustrates that precision medicine may be needed for patients with PBC at various stages of their disease process. PMID:27721424

  16. Treatment with N-acetyl-seryl-aspartyl-lysyl-proline prevents experimental autoimmune myocarditis in rats

    PubMed Central

    Nakagawa, Pablo; Liu, Yunhe; Liao, Tang-Dong; Chen, Xiaojuan; González, Germán E.; Bobbitt, Kevin R.; Smolarek, Derek; Peterson, Ed L.; Kedl, Ross; Yang, Xiao-Ping; Rhaleb, Nour-Eddine

    2012-01-01

    Myocarditis is commonly associated with cardiotropic infections and has been linked to development of autoimmunity. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases; however, its effect on autoimmune-mediated cardiac diseases remains unknown. We studied the effects of Ac-SDKP in experimental autoimmune myocarditis (EAM), a model of T cell-mediated autoimmune disease. This study was conducted to test the hypothesis that Ac-SDKP prevents autoimmune myocardial injury by modulating the immune responses. Lewis rats were immunized with porcine cardiac myosin and treated with Ac-SDKP or vehicle. In EAM, Ac-SDKP prevented both systolic and diastolic cardiac dysfunction, remodeling as shown by hypertrophy and fibrosis, and cell-mediated immune responses without affecting myosin-specific autoantibodies or antigen-specific T cell responses. In addition, Ac-SDKP reduced cardiac infiltration by macrophages, dendritic cells, and T cells, pro-inflammatory cytokines [interleukin (IL)-1α, tumor necrosis factor-α, IL-2, IL-17] and chemokines (cytokine-induced neutrophil chemoattractant-1, interferon-γ-induced protein 10), cell adhesion molecules (intercellular adhesion molecule-1, L-selectin), and matrix metalloproteinases (MMP). Ac-SDKP prevents autoimmune cardiac dysfunction and remodeling without reducing the production of autoantibodies or T cell responses to cardiac myosin. The protective effects of Ac-SDKP in autoimmune myocardial injury are most likely mediated by inhibition of 1) innate and adaptive immune cell infiltration and 2) expression of proinflammatory mediators such as cytokines, chemokines, adhesion molecules, and MMPs. PMID:22923621

  17. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)

    PubMed Central

    Klaren, Rachel E.; Motl, Robert W.; Woods, Jeffrey A.; Miller, Stephen D.

    2015-01-01

    Exercise training has improved many outcomes in “clinical” research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying “basic” pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  18. Prevention of experimental autoimmune uveoretinitis and experimental autoimmune pinealitis in (Lewis x Brown-Norway) F1 rats by HgCl2 injections.

    PubMed Central

    Saoudi, A; Bellon, B; de Kozak, Y; Kuhn, J; Vial, M C; Thillaye, B; Druet, P

    1991-01-01

    Mercuric chloride (HgCl2) induces in Brown-Norway (BN) and (Lewis x Brown-Norway) F1 hybrid rats a transient autoimmune disease characterized by the production of various antibodies to self and non-self antigens and by a dramatic increase of serum IgE. Experimental autoimmune uveoretinitis (EAU) can be induced in Lewis (LEW) and (LEW x BN) F1 hybrid rats by a single immunization with retinal S-antigen (S-Ag). Besides uveoretinitis, animals immunized with S-Ag develop an autoimmune pinealitis (EAP). We demonstrate in this study that (LEW x BN) F1 hybrid rats, injected with HgCl2 7 days before S-Ag immunization, are quite efficiently protected against EAU and EAP. We also show that HgCl2-induced protection is neither due to a cytotoxic effect of HgCl2 nor to CD8+ T-cell dependent mechanisms nor to the HgCl2-induced increase of serum IgE concentration. The role of other hypothetical mechanisms, such as anti-S-Ag anti-idiotypic antibodies and/or HgCl2-induced unbalance between T-helper cell subsets, is discussed. Images Figure 1 Figure 2 PMID:1748484

  19. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  20. Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    PubMed Central

    Pham Van, Linh; Bardel, Emilie; Gomez Alcala, Alejandro; Jeannin, Pascale; Akira, Shizuo; Bach, Jean-François; Thieblemont, Nathalie

    2010-01-01

    Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a

  1. Suppression of Proteoglycan-Induced Autoimmune Arthritis by Myeloid-Derived Suppressor Cells Generated In Vitro from Murine Bone Marrow

    PubMed Central

    Kurkó, Júlia; Vida, András; Ocskó, Tímea; Tryniszewska, Beata; Rauch, Tibor A.; Glant, Tibor T.

    2014-01-01

    Background Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA. Methods Murine bone marrow (BM) cells were cultured for 3 days in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). The phenotype of cultured cells was analyzed using flow cytometry, microscopy, and biochemical methods. The suppressor activity of BM-MDSCs was tested upon co-culture with activated T cells. To investigate the therapeutic potential of BM-MDSCs, the cells were injected into SCID mice at the early stage of adoptively transferred PGIA, and their effects on the clinical course of arthritis and PG-specific immune responses were determined. Results BM cells cultured in the presence of GM-CSF, IL-6, and G-CSF became enriched in MDSC-like cells that showed greater phenotypic heterogeneity than MDSCs present in SF. BM-MDSCs profoundly inhibited both antigen-specific and polyclonal T-cell proliferation primarily via production of nitric oxide. Injection of BM-MDSCs into mice with PGIA ameliorated arthritis and reduced PG-specific T-cell responses and serum antibody levels. Conclusions Our in vitro enrichment strategy provides a SF-like, but controlled microenvironment for converting BM myeloid precursors into MDSCs that potently suppress both T-cell responses and the progression of arthritis in a mouse model of RA. Our results also suggest that enrichment of BM in

  2. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease.

    PubMed

    Zoja, C; Corna, D; Benedetti, G; Morigi, M; Donadelli, R; Guglielmotti, A; Pinza, M; Bertani, T; Remuzzi, G

    1998-03-01

    As an alternative to classical immunosuppressants in experimental lupus nephritis, we looked at bindarit, 2-methyl-2-[[1-phenylmethyl)-1H-indazol-3-y1]methoxy]propanoic acid, a novel molecule devoid of immunosuppressive effects, which selectively reduces chronic inflammation in rat adjuvant arthritis. Two groups of NZB/W mice (N = 55 for each group) were given bindarit, (50 mg/kg/day p.o.) or vehicle starting at 2 months of age. Mice were sacrificed at 2, 6, 8 and 10 months or used for survival studies. Bindarit delayed the onset of proteinuria (% proteinuric mice, bindarit vs. vehicle, 6 months: 0 vs. 33% and 8 months: 7% vs. 60%, P < 0.005; 10 months: 53% vs. 80%) and significantly (P < 0.05) protected from renal function impairment (serum BUN, bindarit vs. vehicle: 8 months, 30 +/- 3 vs. 127 +/- 42; 10 months, 53 +/-5 vs. 140 +/- 37 mg/dl). Appearance of anti-DNA antibodies was retarded and survival significantly (P < 0.0001) prolonged by bindarit (% survival, bindarit vs. vehicle: 8 months, 100% vs. 80%; 10 months, 87% vs. 40%; 12 months, 27% vs. 20%). Bindarit significantly limited glomerular hypercellularity, interstitial inflammation and tubular damage. Renal expression of monocyte chemoattractant protein (MCP-1) mRNA (Northern blot) markedly increased (7 - 12-fold in 8- 10-month-old mice vs. 2-month-old) during the progression of nephritis in association with mononuclear cell infiltration. Bindarit completely prevented MCP-1 up-regulation. In another series of experiments, bindarit (0.25% and 0.5% medicated diet, N = 16 for each group) when started at 4.5 months of age in NZB/W mice improved survival in respect to untreated mice (N = 17) in a dose-dependent manner (% survival: 8 months, 94% and 100%, respectively, vs. 47%; 10 months, 75% and 100% vs. 35%; 12 months, 31% and 75% vs. 12%). Survival was even more prolonged when bindarit (0.5% medicated diet) was combined with a low dose of methylprednisolone (1.5 mg/kg i.p.), which that only partially modifies

  3. MC5r and A2Ar Deficiencies During Experimental Autoimmune Uveitis Identifies Distinct T cell Polarization Programs and a Biphasic Regulatory Response.

    PubMed

    Lee, Darren J; Preble, Janine; Lee, Stacey; Foster, C Stephen; Taylor, Andrew W

    2016-11-25

    Autoantigen-specific regulatory immunity emerges in the spleen of mice recovering from experimental autoimmune uveitis (EAU), a murine model for human autoimmune uveoretinitis. This regulatory immunity provides induced tolerance to ocular autoantigen, and requires melanocortin 5 receptor (MC5r) expression on antigen presenting cells with adenosine 2 A receptor (A2Ar) expression on T cells. During EAU it is not well understood what roles MC5r and A2Ar have on promoting regulatory immunity. Cytokine profile analysis during EAU revealed MC5r and A2Ar each mediate distinct T cell responses, and are responsible for a functional regulatory immune response in the spleen. A2Ar stimulation at EAU onset did not augment this regulatory response, nor bypass the MC5r requirement to induce regulatory immunity. The importance of this pathway in human autoimmune uveitis was assayed. PBMC from uveitis patients were assayed for MC5r expression on monocytes and A2Ar on T cells, and comparison between uveitis patients and healthy controls had no significant difference. The importance for MC5r and A2Ar expression in EAU to promote the induction of protective regulatory immunity, and the expression of MC5r and A2Ar on human immune cells, suggests that it may be possible to utilize the melanocortin-adenosinergic pathways to induce protective immunity in uveitic patients.

  4. MC5r and A2Ar Deficiencies During Experimental Autoimmune Uveitis Identifies Distinct T cell Polarization Programs and a Biphasic Regulatory Response

    PubMed Central

    Lee, Darren J.; Preble, Janine; Lee, Stacey; Foster, C. Stephen; Taylor, Andrew W.

    2016-01-01

    Autoantigen-specific regulatory immunity emerges in the spleen of mice recovering from experimental autoimmune uveitis (EAU), a murine model for human autoimmune uveoretinitis. This regulatory immunity provides induced tolerance to ocular autoantigen, and requires melanocortin 5 receptor (MC5r) expression on antigen presenting cells with adenosine 2 A receptor (A2Ar) expression on T cells. During EAU it is not well understood what roles MC5r and A2Ar have on promoting regulatory immunity. Cytokine profile analysis during EAU revealed MC5r and A2Ar each mediate distinct T cell responses, and are responsible for a functional regulatory immune response in the spleen. A2Ar stimulation at EAU onset did not augment this regulatory response, nor bypass the MC5r requirement to induce regulatory immunity. The importance of this pathway in human autoimmune uveitis was assayed. PBMC from uveitis patients were assayed for MC5r expression on monocytes and A2Ar on T cells, and comparison between uveitis patients and healthy controls had no significant difference. The importance for MC5r and A2Ar expression in EAU to promote the induction of protective regulatory immunity, and the expression of MC5r and A2Ar on human immune cells, suggests that it may be possible to utilize the melanocortin-adenosinergic pathways to induce protective immunity in uveitic patients. PMID:27886238

  5. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  6. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo–orchitis in mice

    PubMed Central

    Nicolas, Nour; Michel, Vera; Bhushan, Sudhanshu; Wahle, Eva; Hayward, Susan; Ludlow, Helen; de Kretser, David M.; Loveland, Kate L.; Schuppe, Hans-Christian; Meinhardt, Andreas; Hedger, Mark P.; Fijak, Monika

    2017-01-01

    Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO. PMID:28205525

  7. Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis.

    PubMed

    Girolamo, Francesco; Coppola, Cristiana; Ribatti, Domenico; Trojano, Maria

    2014-07-22

    Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood-brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.

  8. Spleen Tyrosine Kinase Inhibition Attenuates Autoantibody Production and Reverses Experimental Autoimmune GN

    PubMed Central

    McAdoo, Stephen P.; Reynolds, John; Bhangal, Gurjeet; Smith, Jennifer; McDaid, John P.; Tanna, Anisha; Jackson, William D.; Masuda, Esteban S.; Cook, H. Terence; Pusey, Charles D.

    2014-01-01

    Spleen tyrosine kinase (SYK) has an important role in immunoreceptor signaling, and SYK inhibition has accordingly attenuated immune-mediated injury in several in vivo models. However, the effect of SYK inhibition on autoantibody production remains unclear, and SYK inhibition has not been studied in an autoimmune model of renal disease. We, therefore, studied the effect of SYK inhibition in experimental autoimmune GN, a rodent model of antiglomerular basement membrane disease. We show glomerular SYK expression and activation by immunohistochemistry in both experimental and clinical disease, and we show that treatment with fostamatinib, a small molecule kinase inhibitor selective for SYK, completely prevents the induction of experimental autoimmune GN. In established experimental disease, introduction of fostamatinib treatment led to cessation of autoantibody production, reversal of renal injury, preservation of biochemical renal function, and complete protection from lung hemorrhage. B cell ELISpot and flow cytometric analysis suggest that short-term fostamatinib treatment inhibits the generation and activity of antigen-specific B cells without affecting overall B-cell survival. Additionally, fostamatinib inhibited proinflammatory cytokine production by nephritic glomeruli ex vivo and cultured bone marrow-derived macrophages in vitro, suggesting additional therapeutic effects independent of effects on autoantibody production that are likely related to inhibited Fc receptor signaling within macrophages in diseased glomeruli. Given these encouraging results in an in vivo model that is highly applicable to human disease, we believe clinical studies targeting SYK in GN are now warranted. PMID:24700868

  9. The more the merrier? Scoring, statistics and animal welfare in experimental autoimmune encephalomyelitis.

    PubMed

    Palle, Pushpalatha; Ferreira, Filipa M; Methner, Axel; Buch, Thorsten

    2016-12-01

    Experimental autoimmune encephalomyelitis (EAE) is a frequently used animal model for the investigation of autoimmune processes in the central nervous system. As such, EAE is useful for modelling certain aspects of multiple sclerosis, a human autoimmune disease that leads to demyelination and axonal destruction. It is an important tool for investigating pathobiology, identifying drug targets and testing drug candidates. Even though EAE is routinely used in many laboratories and is often part of the routine assessment of knockouts and transgenes, scoring of the disease course has not become standardized in the community, with at least 83 published scoring variants. Varying scales with differing parameters are used and thus limit comparability of experiments. Incorrect use of statistical analysis tools to assess EAE data is commonplace. In experimental practice the clinical score is used not only as an experimental readout, but also as a parameter to determine animal welfare actions. Often overlooked factors such as the animal's ability to sense its compromised motoric abilities, drastic though transient weight loss, and also the possibility of neuropathic pain, make the assessment of severity a difficult task and pose a problem for experimental refinement.

  10. Pathogenesis of innate immunity and adaptive immunity in the mouse model of experimental autoimmune uveitis.

    PubMed

    Bi, Hong-Sheng; Liu, Zheng-Feng; Cui, Yan

    2015-05-01

    Experimental autoimmune uveitis, a well-established model for human uveitis, is similar to human uveitis in many pathological features. Studies concerning the mechanisms of experimental autoimmune uveitis would cast a light on the pathogenesis of human uveitis as well as the search for more effective therapeutic agents. The cellular components of innate immunity include natural killer cells, gamma delta T lymphocytes, antigen-presenting dendritic cells, phagocytic macrophages, and granulocytes. It is believed that T cells are central in the generation of human uveitis. It has already become clear that CD4(+) effecter cells that predominantly produce interleukin-17 (the so-called Th17 cells) may play an important role in uveitis. In addition, the occurrence and recurrence of uveitis depends on a complex interplay between the elements of innate and adaptive immunity.

  11. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  12. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Lino, Andreia C; Motrich, Ruben D; Godoy, Gloria J; Demengeot, Jocelyne; Rivero, Virginia E

    2016-09-14

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence.

  13. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    PubMed Central

    Na, Songqing; Ma, Yanfei; Zhao, Jingyong; Schmidt, Clint; Zeng, Qing Q.; Chandrasekhar, Srinivasan; Chin, William W.; Nagpal, Sunil

    2011-01-01

    Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia. PMID:21318047

  14. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice

    PubMed Central

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-01-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition. PMID:27321428

  15. Experimental infection of murine and human macrophages with Cystoisospora belli.

    PubMed

    Resende, Deisy V; Lages-Silva, Eliane; Assis, Dnieber C; Prata, Aluízio; Oliveira-Silva, Márcia B

    2009-08-01

    Extraintestinal cystoisosporosis by Cystoisospora belli has already been reported in HIV/AIDS patients, generally involving preferential invasion of mesenteric and trachaeobronchial lymph nodes, liver and spleen by unizoic cysts of this parasite, which may infect macrophages. To test this hypothesis, murine and human macrophages were exposed to sporozoites of C. belli and cultures were observed daily after contact with these cells. The parasites penetrated and multiplied by endodyogeny in both cell types and inserted themselves inside perinuclear vacuoles. After 48 h, extracellular parasites were removed from macrophage cultures and incubated in Monkey Kidney Rhesus cells (MK2) where there was intense multiplication. This is the first report of infection of macrophages by this parasite, which supports the hypothesis that these could act as C. belli host cells in extraintestinal sites.

  16. 11C-Methionine PET of Myocardial Inflammation in a Rat Model of Experimental Autoimmune Myocarditis.

    PubMed

    Maya, Yoshifumi; Werner, Rudolf A; Schütz, Claudia; Wakabayashi, Hiroshi; Samnick, Samuel; Lapa, Constantin; Zechmeister, Christina; Jahns, Roland; Jahns, Valérie; Higuchi, Takahiro

    2016-12-01

    Myocarditis represents a major cause of dilated cardiomyopathy and sudden cardiac death in younger adults. Currently, definitive diagnosis of myocarditis requires endomyocardial biopsy, which is highly invasive and has the drawback of variable sensitivity due to inherent sampling error. Therefore, reliable noninvasive methods to detect and monitor cardiac inflammation are clinically relevant. In this study, we explored the potential of radiolabeled methionine to assess myocardial inflammatory activity in a rat model of experimental autoimmune myocarditis (EAM).

  17. Passive transfer of experimental autoimmune myasthenia by lymph node cells in inbred guinea pigs

    PubMed Central

    1975-01-01

    Passive transfer of experimental autoimmune myasthenia (EAM) was performed with lymph node cells from donor guinea pigs immunized with purified acetylcholine receptor (AChR) from Torpedo californica. Recipient animals revealed the same clinical signs and electromyographic patterns as observed in actively challenged animals. These phenomena are parallel to the clinical manifestations of the human disease myasthenia gravis, in which cellular response to AChR was recently demonstrated. PMID:1165476

  18. Comparative analysis of mediastinal fat-associated lymphoid cluster development and lung cellular infiltration in murine autoimmune disease models and the corresponding normal control strains.

    PubMed

    Elewa, Yaser Hosny Ali; Ichii, Osamu; Kon, Yasuhiro

    2016-01-01

    We previously discovered mediastinal fat-associated lymphoid clusters (MFALCs) as novel lymphoid clusters associated with mediastinal fat tissue in healthy mice. However, no data about their morphology in immune-associated disease conditions, and their relationship with lung infiltration, is available to date. In the present study, we compared the morphological features of MFALCs in 4-month-old male murine autoimmune disease models (MRL/MpJ-lpr mice and BXSB/MpJ-Yaa mice) with those of the corresponding control strains (MRL/MpJ and BXSB/MpJ, respectively). In addition, we analysed their correlation with lung infiltration. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1 and BrdU was performed to detect T cells and B cells, macrophages, granulocytes and proliferating cells, respectively. The spleen weight to body weight ratios and anti-double-stranded DNA autoantibody titres were found to be significantly higher in the autoimmune models than in the control strains. Furthermore, the autoimmune model presented prominent MFALCs, with a significantly greater ratio of lymphoid cluster area to total mediastinal fat tissue area, and more apparent diffused cellular infiltration into the lung lobes than the other studied strains. Higher numbers of T and B cells, macrophages and proliferating cells, but fewer granulocytes, were observed in the autoimmune models than in the control strains. Interestingly, a significant positive Pearson's correlation between the size of the MFALCs and the density of CD3-, B220- and Iba1-positive cells in the lung was observed. Therefore, our data suggest a potentially important role for MFALCs in the progression of lung disease. However, further investigation is required to clarify the pathological role of MFALCs in lung disease, especially in inflammatory disorders.

  19. Chemokine receptor CXCR3 deficiency exacerbates murine autoimmune cholangitis by promoting pathogenic CD8(+) T cell activation.

    PubMed

    Ma, Hong-Di; Ma, Wen-Tao; Liu, Qing-Zhi; Zhao, Zhi-Bin; Liu, Mu-Zi-Ying; Tsuneyama, Koichi; Gao, Jin-Ming; Ridgway, William M; Ansari, Aftab A; Gershwin, M Eric; Fei, Yun-Yun; Lian, Zhe-Xiong

    2017-03-01

    CXC Chemokine Receptor 3 (CXCR3) is functionally pleiotropic and not only plays an important role in chemotaxis, but also participates in T cell differentiation and may play a critical role in inducing and maintaining immune tolerance. These observations are particularly critical for autoimmune cholangitis in which CXCR3 positive T cells are found around the portal areas of both humans and mouse models of primary biliary cholangitis (PBC). Herein, we investigated the role of CXCR3 in the pathogenesis of autoimmune cholangitis. We have taken advantage of a unique CXCR3 knockout dnTGFβRII mouse to focus on the role of CXCR3, both by direct observation of its influence on the natural course of disease, as well as through adoptive transfer studies into Rag-/- mice. We report herein that not only do CXCR3 deficient mice develop an exacerbation of autoimmune cholangitis associated with an expanded effector memory T cell number, but also selective adoptive transfer of CXCR3 deficient CD8(+) T cells induces autoimmune cholangitis. In addition, gene microarray analysis of CXCR3 deficient CD8(+) T cells reveal an intense pro-inflammatory profile. Our data suggests that the altered gene profiles induced by CXCR3 deficiency promotes autoimmune cholangitis through pathogenic CD8(+) T cells. These data have significance for human PBC and other autoimmune liver diseases in which therapeutic intervention might be directed to chemokines and/or their receptors.

  20. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis

    PubMed Central

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-01-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an amelioration at

  1. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    PubMed

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an

  2. Tert-butylhydroquinone Compromises Survival in Murine Experimental Stroke

    PubMed Central

    Sun, Jiahong; Hu, Heng; Ren, Xuefang; Simpkins, James W.

    2016-01-01

    tert-butylhydroquinone (tBHQ), an Nrf2 signaling pathway inducer that is widely used as a food additive in the U.S., prevents oxidative stress-induced cytotoxicity in neurons. This study assesses the effects of tBHQ on ischemic stroke outcomes in mice. We measured infarct size, neurological deficits, and brain volume after tBHQ treatments in murine permanent middle cerebral artery occlusion (pMCAO) model in vivo. Further, we evaluated the regulation of tBHQ on mitochondrial function in cerebrovascular endothelial cells in vitro, which is critical to the blood–brain barrier (BBB) permeability. Our results demonstrated that tBHQ increased post-stroke mortality and worsened stroke outcomes. Mitochondrial function was suppressed by tBHQ treatment of cerebrovascular endothelial cells, and this suppression was potentiated by co-treatment with lipopolysaccharide (LPS), the bacterial mimic. These data indicate that tBHQ-exacerbated stroke damage might due to the compromised BBB permeability in permanent stroke. PMID:26827673

  3. Myocardial dysfunction in an experimental model of autoimmune myocarditis: role of IFN-gamma.

    PubMed

    Pérez Leirós, C; Goren, N; Sterin-Borda, L; Borda, E S

    1997-01-01

    Experimental autoimmune myocarditis obtained in mice by immunization with heart antigens is characterized by the presence of lymphomononuclear infiltrates in atria and ventricles. Here we show the ability of soluble factors released by immune cells from mice immunized with heart antigens to decrease heart contractility in a similar way to a muscarinic agonist. These effects appear to be mediated by IFN-gamma since all of them could be blocked by an anti-IFN-gamma monoclonal antibody. Moreover, the negative inotropic effect induced by immune cell-conditioned media was blocked by atropine, confirming previous findings that IFN acts as a muscarinic agonist on isolated atria. The role of locally released cytokines and especially of IFN-gamma was also evaluated in infiltrated autoimmune myocarditis hearts; thus, the addition of monoclonal anti-IFN-gamma antibody reversed the decreased contractility characteristics of this model. We conclude that IFN released both systemically and locally by autoreactive T cells may contribute to the impaired cardiac function in this experimental model of autoimmune myocarditis.

  4. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2016-11-10

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  5. The effect of a newly synthesized indazole compound, TAS-3-124, on experimental autoimmune disease.

    PubMed

    Akabane, Hirotomo; Miyagawa, Naoki; Nii, Hiroaki; Inami, Yoshihiro; Togawa, Michinori; Tanaka, Hiroyuki; Inagaki, Naoki; Nagai, Hiroichi

    2004-08-01

    The effects of a newly synthesized compound, 6-acetoamido-1-acetyl-1-indazole (TAS-3-124), on autoimmune diseases were studied. We used animal models of collagen-induced arthritis (CIA) in mice and experimental autoimmune encephalomyelitis (EAE) in rats to evaluate the efficacy of TAS-3-124. TAS-3-124 at doses of 100 and 300 mg/kg p.o. inhibited the development of CIA, decreasing the swelling of fore- and hind-limbs and bone destruction in knee joints. This agent also suppressed the delayed type hypersensitivity reaction (DTH) against type II collagen. These effects were confirmed by histopathological examination and measurement of the expression of mRNA of proinflammatory cytokines in the knee joint. In addition, TAS-3-124 at a dose of 300 mg/kg inhibited the development of EAE and the DTH to myelin basic protein (MBP) in rats. Moreover, TAS-3-124 inhibited the production of proinflammatory cytokines including interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and IL-6 but not T cell derived cytokines in mice. These demonstrate the efficacy of TAS-3-124 against experimental autoimmune disease, probably due to the suppression of the production of proinflammatory cytokines in the pathological lesion.

  6. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-04-04

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches.

  7. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis

    PubMed Central

    Larabee, Chelsea M.; Desai, Shruti; Agasing, Agnieshka; Georgescu, Constantin; Wren, Jonathan D.; Axtell, Robert C.

    2016-01-01

    Purpose Optic neuritis, inflammation of the optic nerve, is experienced by most patients with multiple sclerosis (MS) and is typically characterized by episodes of acute, monocular vision loss. These episodes of inflammation can lead to damage or degeneration of the retinal ganglion cells (RGCs), the axons of which comprise the optic nerve. Experimental autoimmune encephalomyelitis (EAE) is a well-established model of MS in which mice are immunized to produce a neuroautoimmunity that recapitulates the cardinal hallmarks of human disease, namely, inflammation, demyelination, and neurodegeneration of the brain, spinal cord, and optic nerve. Inflammation-associated oxidative stress plays a key role in promoting spinal cord damage in EAE. However, the role of oxidative stress in optic neuritis and the associated visual deficits has not been studied. To address this gap in research, we sought to determine how a deficiency in the master antioxidant transcription factor (using nuclear factor-E2-related factor [Nrf2]-deficient mice) affects visual pathology in the EAE model. Methods EAE was induced in 8-week-old wild-type (WT) and Nrf2 knockout (KO) mice by immunization against the myelin oligodendrocyte glycoprotein (MOG) peptide antigen. Motor deficits were monitored daily, as was visual acuity using the established functional optokinetic tracking (OKT) assay. Mice were euthanized 21 days post-immunization for histological analyses. The optic nerves were paraffin-embedded and stained with hematoxylin and eosin (H&E) or immune cell type–specific antibodies to analyze inflammatory infiltrates. The retinas were flatmounted and stained with an RGC-specific antibody, and the RGCs were counted to assess neurodegeneration. T-helper (Th) cell-associated cytokines were measured in spleens with enzyme-linked immunosorbent assay (ELISA). Immune analyses of healthy, non-EAE mice were characterized with flow cytometry to assess the baseline immune cell profiles. Results Female Nrf2

  8. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody

    PubMed Central

    Bing, S J; Ha, D; Ahn, G; Cho, J; Kim, A; Park, S K; Yu, H S; Jee, Y

    2015-01-01

    Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220+ B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35–55] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease. PMID:25619397

  9. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody.

    PubMed

    Bing, S J; Ha, D; Ahn, G; Cho, J; Kim, A; Park, S K; Yu, H S; Jee, Y

    2015-06-01

    Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220(+) B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35-55 ] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease.

  10. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  11. Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model.

    PubMed

    Choi, Jae-Hyeog; Roh, Kug-Hwan; Oh, Hana; Park, Sol-Ji; Ha, Sung-Min; Kang, Mi Seon; Lee, Ji-Hyun; Jung, So Young; Song, Hyunkeun; Yang, Jae Wook; Park, SaeGwang

    2015-05-01

    Experimental autoimmune uveoretinitis (EAU) is an autoimmune disease that models human uveitis. Caffeic acid phenethyl ester (CAPE), a phenolic compound isolated from propolis, possesses anti-inflammatory and immunomodulatory properties. CAPE demonstrates therapeutic potential in several animal disease models through its ability to inhibit NF-κB activity. To evaluate these therapeutic effects in EAU, we administered CAPE in a model of EAU that develops after immunization with interphotoreceptor retinal-binding protein (IRBP) in B10.RIII and C57BL/6 mice. Importantly, we found that CAPE lessened the severity of EAU symptoms in both mouse strains. Notably, treated mice exhibited a decrease in the ocular infiltration of immune cell populations into the retina; reduced TNF-α, IL-6, and IFN-γ serum levels: and inhibited TNF-α mRNA expression in retinal tissues. Although CAPE failed to inhibit IRBP-specific T cell proliferation, it was sufficient to suppress cytokine, chemokine, and IRBP-specific antibody production. In addition, retinal tissues isolated from CAPE-treated EAU mice revealed a decrease in NF-κB p65 and phospho-IκBα. The data identify CAPE as a potential therapeutic agent for autoimmune uveitis that acts by inhibiting cellular infiltration into the retina, reducing the levels of pro-inflammatory cytokines, chemokine, and IRBP-specific antibody and blocking NF-κB pathway activation.

  12. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis.

    PubMed

    Zhang, Z Y; Zhang, Z; Schluesener, H J

    2010-08-11

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and serves as the animal model of human inflammatory demyelinating polyradiculoneuropathies. MS-275, a potent histone deacetylase inhibitor currently undergoing clinical investigations for various malignancies, has been reported to demonstrate promising anti-inflammatory activities. In our present study, MS-275 administration (3.5 mg/kg i.p.) to EAN rats once daily from the appearance of first neurological signs greatly reduced the severity and duration of EAN and attenuated local accumulation of macrophages, T cells and B cells, and demyelination of sciatic nerves. Further, significant reduction of mRNA levels of pro-inflammatory interleukin-1beta, interferon-gamma, interleukine-17, inducible nitric oxide synthase and matrix metalloproteinase-9 was observed in sciatic nerves of MS-275 treated EAN rats. In lymph nodes, MS-275 depressed pro-inflammatory cytokines as well, but increased expression of anti-inflammatory cytokine interleukine-10 and of foxhead box protein3 (Foxp3), a unique transcription factor of regulatory T cells. In addition, MS-275 treatment increased proportion of infiltrated Foxp3(+) cells and anti-inflammatory M2 macrophages in sciatic nerves of EAN rats. In summary, our data demonstrated that MS-275 could effectively suppress inflammation in EAN, through suppressing inflammatory T cells, macrophages and cytokines, and inducing anti-inflammatory immune cells and molecules, suggesting MS-275 as a potent candidate for treatment of autoimmune neuropathies.

  13. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in experimental autoimmune orchitis.

    PubMed

    Guazzone, Vanesa A; Rival, Claudia; Denduchis, Berta; Lustig, Livia

    2003-12-01

    Experimental autoimmune orchitis (EAO) is characterized by an interstitial mononuclear cell infiltrate and a severe lesion of seminiferous tubules with germ cells that undergo apoptosis and sloughing. The mechanism by which immune cells migrate and extravasate in the testicular interstitium is poorly understood. The aim of this study was to detect the variations in the expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor in the testis of rats undergoing autoimmune orchitis. EAO was induced in Sprague-Dawley adult rats by active immunization with an emulsion of testicular homogenate and complete Freund adjuvant using Bordetella pertussis as co-adjuvant. Control rats injected with saline and adjuvants and normal untreated rats were also studied. By ELISA we observed a significant increase of MCP-1 in the testicular fluid (TF) and in the conditioned medium obtained from cultures of testicular macrophages of rats with EAO compared with control groups. By immunohistochemistry, an increase in MCP-1 expression was observed in mononuclear, endothelial, Leydig and peritubular cells. MCP-1 immunoreactivity was also detected in Sertoli cell cytoplasm of rats with severe orchitis. A 2-fold increase in the number of mononuclear cells that express CCR2 was also found in rats with orchitis compared with controls. In conclusion, we demonstrated in vivo that MCP-1 is highly expressed in testicular interstitial cells suggesting that this chemokine has an important role in recruiting immune cells to the testis in rats undergoing autoimmune orchitis.

  14. Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis.

    PubMed

    Yan, Ling-Chen; Bi, En-Guang; Lou, Yang-Tong; Wu, Xiao-Dong; Liu, Zhi-Duo; Zou, Jia; Zhou, Jia; Wang, Yuan; Ma, Zhao; Lin, Guo-Mei; Sun, Shu-Hui; Bian, Chao; Chen, Ai-Zhong; Yao, Zhu-Jun; Sun, Bing

    2010-01-01

    Sinomenine (SIN) is an alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating autoimmune diseases. Due to its poor efficiency, the large-dose treatment presents some side effects and limits its further applications. In this study, we used chemical modification to improve the therapeutic effect of SIN in vitro and in vivo. A new derivative of sinomenine, named 1032, demonstrates significantly improved immunosuppressive activity over that of its parent natural compound (SIN). In an experimental autoimmune encephalomyelitis (EAE) model, 1032 significantly reduced encephalitogenic T cell responses and induced amelioration of EAE, which outcome was related to its selective inhibitory effect on the production of IL-17. By contrast, SIN treatment only led to a moderate alleviation of EAE severity and the expression level of IL-17 was not significantly reduced. Furthermore, 1032 exhibited suppression of Th17, but not Treg, cell differentiation, a result probably related to its inhibitory effect on IkappaB-alpha degradation as well as on IL-6 and TNF-alpha secretion in BMDCs. We speculate that 1032 as a novel anti-inflammatory agent may target DC to block IL-6 production, which in turn would terminate Th17 cell development. Thus, SIN derivative 1032 presents considerable potential in new drug development for treating autoimmune and inflammatory disease.

  15. Targeting Non-classical Myelin Epitopes to Treat Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wang, Xiaohua; Zhang, Jintao; Baylink, David J.; Li, Chih-Huang; Watts, Douglas M.; Xu, Yi; Qin, Xuezhong; Walter, Michael H.; Tang, Xiaolei

    2016-01-01

    Qa-1 epitopes, the peptides that bind to non-classical major histocompatibility complex Ib Qa-1 molecules and are recognized by Qa-1-restricted CD8+ regulatory T (Treg) cells, have been identified in pathogenic autoimmune cells that attack myelin sheath in experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis [MS]). Additionally, immunization with such epitopes ameliorates the EAE. However, identification of such epitopes requires knowledge of the pathogenic autoimmune cells which are largely unknown in MS patients. Hence, we asked whether the CD8+ Treg cells could directly target the myelin sheath to ameliorate EAE. To address this question, we analyzed Qa-1 epitopes in myelin oligodendrocyte glycoprotein (MOG that is a protein in myelin sheath). Here, we report identification of a MOG-specific Qa-1 epitope. Immunization with this epitope suppressed ongoing EAE, which was abrogated by CD8+ T cell depletion. Additionally, the epitope immunization activated the epitope-specific CD8+ T cells which specifically accumulated in the CNS-draining cervical lymph nodes. Finally, CD8+ T cells primed by the epitope immunization transferred EAE suppression. Hence, this study reveals a novel regulatory mechanism mediated by the CD8+ Treg cells. We propose that immunization with myelin-specific HLA-E epitopes (human homologues of Qa-1 epitopes) is a promising therapy for MS. PMID:27796368

  16. Mechanisms by Which B Cells and Regulatory T Cells Influence Development of Murine Organ-Specific Autoimmune Diseases

    PubMed Central

    Ellis, Jason S.; Braley-Mullen, Helen

    2017-01-01

    Experiments with B cell-deficient (B−/−) mice indicate that a number of autoimmune diseases require B cells in addition to T cells for their development. Using B−/− Non-obese diabetic (NOD) and NOD.H-2h4 mice, we demonstrated that development of spontaneous autoimmune thyroiditis (SAT), Sjogren’s syndrome and diabetes do not develop in B−/− mice, whereas all three diseases develop in B cell-positive wild-type (WT) mice. B cells are required early in life, since reconstitution of adult mice with B cells or autoantibodies did not restore their ability to develop disease. B cells function as important antigen presenting cells (APC) to initiate activation of autoreactive CD4+ effector T cells. If B cells are absent or greatly reduced in number, other APC will present the antigen, such that Treg are preferentially activated and effector T cells are not activated. In these situations, B−/− or B cell-depleted mice develop the autoimmune disease when T regulatory cells (Treg) are transiently depleted. This review focuses on how B cells influence Treg activation and function, and briefly considers factors that influence the effectiveness of B cell depletion for treatment of autoimmune diseases. PMID:28134752

  17. Experimental Autoimmune Myasthenia Gravis (EAMG): from immunochemical characterization to therapeutic approaches.

    PubMed

    Fuchs, Sara; Aricha, Revital; Reuveni, Debby; Souroujon, Miriam C

    2014-11-01

    Myasthenia Gravis (MG) is an organ-specific autoimmune disease. In high percentage of patients there are autoantibodies to the nicotinic acetylcholine receptor (AChR) that attack AChR on muscle cells at the neuromuscular junction, resulting in muscle weakness. Experimental Autoimmune Myasthenia Gravis (EAMG) is an experimental model disease for MG. EAMG is induced in several animal species by immunization with acetylcholine receptor (AChR), usually isolated from the electric organ of electric fish, which is a rich source for this antigen. Our lab has been involved for several decades in research of AChR and of EAMG. The availability of an experimental autoimmune disease that mimics in many aspects the human disease, provides an excellent model system for elucidating the immunological nature and origin of MG, for studying various existing treatment modalities and for attempting the development of novel treatment approaches. In this review in honor of Michael Sela and Ruth Arnon, we report first on our early pioneering contributions to research on EAMG. These include the induction of EAMG in several animal species, early attempts for antigen-specific treatment for EAMG, elicitation and characterization of monoclonal antibodies and anti-idiotypic antibodies, measuring humoral and cellular AChR-specific immune responses in MG patient and more. In the second part of the review we discuss more recent studies from our lab towards developing and testing novel treatment approaches for myasthenia. These include antigen-dependent treatments aimed at specifically abrogating the humoral and cellular anti-AChR responses, as well as immunomodulatory approaches that could be used either alone, or in conjunction with antigen-specific treatments, or alternatively, serve as steroid-sparing agents.

  18. Protective DNA vaccination against experimental autoimmune encephalomyelitis is associated with induction of IFNbeta.

    PubMed

    Wefer, Judit; Harris, Robert A; Lobell, Anna

    2004-04-01

    DNA vaccines encoding encephalitogenic peptides protect against subsequent development of rat experimental autoimmune encephalomyelitis (EAE) through unknown mechanisms. We investigated immune cell phenotypes at different time points after DNA vaccination with vaccine encoding myelin oligodendrocyte glycoprotein peptide 91-108 and subsequent induction of EAE. In protected rats, we observed (i) no alterations in antigen-specific Th2 or Th3 responses, (ii) reduced MHC II expression on splenocytes early after EAE induction, (iii) antigen-specific upregulation of IFNbeta upon recall stimulation and (iv) reduced IL-12Rbeta2 on lymphocytes. We suggest that the underlying mechanism of DNA vaccination is associated with immunomodulation exerted by induced IFNbeta.

  19. The Complement Anaphylatoxin Receptors Are Not Required for the Development of Experimental Autoimmune Uveitis

    PubMed Central

    Read, Russell W.; Vogt, Susan D.; Barnum, Scott R.

    2013-01-01

    To determine if complement anaphylatoxin-mediated inflammation contributes to the development and progression of experimental autoimmune uveitis (EAU), we induced disease in wild type and complement anaphylatoxin receptor-deficient mice (C3a receptor−/−, C5a receptor−/− and C3aR−/−/C5aR−/−) and evaluated eyes three weeks post-induction. No differences in disease severity or in disease incidence were seen between wild type controls and anaphylatoxin receptor-deficient mice. Our data indicate that C3a and C5a-mediated functions are not critical to the development of EAU. PMID:24035596

  20. The complement anaphylatoxin receptors are not required for the development of experimental autoimmune uveitis.

    PubMed

    Read, Russell W; Vogt, Susan D; Barnum, Scott R

    2013-11-15

    To determine if complement anaphylatoxin-mediated inflammation contributes to the development and progression of experimental autoimmune uveitis (EAU), we induced disease in wild type and complement anaphylatoxin receptor-deficient mice (C3a receptor(-/-), C5a receptor(-/-) and C3aR(-/-)/C5aR(-/-)) and evaluated the eyes three weeks post-induction. No differences in disease severity or in disease incidence were seen between wild type controls and anaphylatoxin receptor-deficient mice. Our data indicate that C3a and C5a-mediated functions are not critical to the development of EAU.

  1. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease.

    PubMed

    Keil, Deborah E; Peden-Adams, Margie M; Wallace, Stacy; Ruiz, Phillip; Gilkeson, Gary S

    2009-04-01

    There is increasing laboratory and epidemiologic evidence relating exposure to trichloroethylene (TCE) with autoimmune disease including scleroderma and lupus. New Zealand Black/New Zealand White (NZBWF1) and B6C3F1 mice were exposed to TCE (0, 1, 400 or 14,000 ppb) via drinking water for 27 or 30 weeks, respectively. NZBWF1 mice spontaneously develop autoimmune disease while B6C3F1 mice, a standard strain used in immunotoxicology testing, are not genetically prone to develop autoimmune disease. During the TCE exposure period, serum levels of total IgG, and autoantibodies (anti-ssDNA, -dsDNA, and -glomerular antigen [GA]) were monitored. At the termination of the study, renal pathology, natural killer (NK) cell activity, total IgG levels, autoantibody production, T-cell activation, and lymphocytic proliferative responses were evaluated. TCE did not alter NK cell activity, or T- and B-cell proliferation in either strain. Numbers of activated T-cells (CD4+/CD44+) were increased in the B6C3F1 mice but not in the NZBWF1 mice. Renal pathology, as indicated by renal score, was significantly increased in the B6C3F1, but not in the NZBWF1 mice. Serum levels of autoantibodies to dsDNA and ssDNA were increased at more time points in B6C3F1, as compared to the NZBWF1 mice. Anti-GA autoantibodies were increased by TCE treatment in early stages of the study in NZBWF1 mice, but by 23 weeks of age, control levels were comparable to those of TCE-exposed animals. Serum levels anti-GA autoantibodies in B6C3F1 were not affected by TCE exposure. Overall, these data suggest that TCE did not contribute to the progression of autoimmune disease in autoimmune-prone mice during the period of 11-36 weeks of age, but rather lead to increased expression of markers associated with autoimmune disease in a non-genetically prone mouse strain.

  2. Evaluation of AD-MSC (adipose-derived mesenchymal stem cells) as a vehicle for IFN-β delivery in experimental autoimmune encephalomyelitis.

    PubMed

    Mohammadzadeh, Adel; Pourfathollah, Ali Akbar; Shahrokhi, Somayeh; Fallah, Ali; Tahoori, Mohammad Taher; Amari, Afshin; Forouzandeh, Mahdi; Soleimani, Masoud

    2016-08-01

    Interferon-β (IFN-β) is commonly used as a disease modifying drug for the treatment of relapse-remitting multiple sclerosis (RR-MS). However, the underlying mechanism by which IFN-β mediate this immunosuppressive effect is still unknown. In this study, we analyzed the effects of genetically modified adipose-derived mesenchymal stem cells (AD-MSCs) expressing murine interferon beta (MSCs-VP/IFN-β) on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Lymph node mononuclear cells and serum were examined by using RT-PCR and ELISA methods to measure the production of IL-10 and IL-17 gene and protein expression, respectively. Our results indicated that in the MSCs-VP/IFN-β treated group induction of Tregs and IL-10 and reduction of IL-17 were significant. Taken together, we showed that using AD-MSCs expressing IFN-β as an anti-inflammatory agent, offer evidence supporting that the stem cell therapies in EAE conceivably will improve the valuable effects of IFN-β in this autoimmune disease.

  3. Intratesticular expression of mRNAs of both interferon γ and tumor necrosis factor α is significantly increased in experimental autoimmune orchitis in mice.

    PubMed

    Terayama, Hayato; Naito, Munekazu; Qu, Ning; Hirai, Shuichi; Kitaoka, Miyuki; Ogawa, Yuki; Itoh, Masahiro

    2011-04-01

    Experimental autoimmune orchitis (EAO) is one of the models of immunological male infertility. Murine EAO is CD4+T cell-dependent and classically induced by immunization with a testicular homogenate and adjuvants. We previously established that immunization with viable syngeneic testicular germ cells (TGC) can also induce murine EAO with no use of any adjuvant. Analyses of this EAO model have already revealed that cultured spleen cells of immunized mice secreted interferon (IFN)-γ and that treatment of the immunized mice with anti-IFN-γ monoclonal antibodies significantly suppressed the EAO. It is known that both IFN-γ and tumor necrosis factor (TNF)-α are representative cytokines of Th1 cells and exhibit local toxicity toward the seminiferous epithelium in vivo. However, changes in these two cytokines in EAO-affected testes have not yet been investigated. Therefore, in the present study, we investigated the expression of intratesticular IFN-γ and TNF- α mRNAs in TGC-induced EAO using real-time RT-PCR. The results demonstrated that the intratesticular mRNAs for both IFN-γ and TNF-α significantly increased, while other cytokines such as IL-1α, IL-1β, IL-6 and TGF-β did not show dramatic changes in the immunized mice. These results suggest that secretion of significant amounts of IFN-γ and TNF-α in situ contributes to the spermatogenic disturbance in EAO.

  4. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.

    PubMed

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4(+) T cells into CD4(+)Foxp3(+) regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis.

  5. Topical levamisole hydrochloride therapy attenuates experimental murine allergic rhinitis.

    PubMed

    Wang, Heyao; Zhang, Jiali; Gao, Chunsheng; Zhu, Ying; Wang, Chen; Zheng, Wenjie

    2007-12-22

    Allergic rhinitis is one of the most common chronic diseases. There are a number of effective therapeutic options for allergic rhinitis patients, such as intranasal corticosteroids. How to avoid the adverse effects of these traditional medicines has come to public attention and started the search for effective and safe medicine. We used BALB/c mice with experimental allergic rhinitis, and determined that levamisole delivered locally (intranasal, i.n.) could attenuate early-phase inflammatory response, decrease histamine, suppress edema and eosinophil infiltration, and diminish the ovalbumin-specific serum IgE level. Detailed analysis of cytokine gene expression showed that levamisole can decrease IL-4, IL-5 and IL-13 mRNA and increase IL-12, IL-18 and IFN-gamma mRNA. Levamisole showed analogous effects of down-regulating Th2 cytokines with budesonide and distinct up-regulating effects on Th1 cytokines gene expression. Our findings offer potential options for allergic rhinitis therapy.

  6. Reduction in parvalbumin-positive interneurons and inhibitory input in the cortex of mice with experimental autoimmune encephalomyelitis.

    PubMed

    Falco, Anna; Pennucci, Roberta; Brambilla, Elena; de Curtis, Ivan

    2014-07-01

    In multiple sclerosis (MS), inflammation leads to damage of central nervous system myelin and axons. Previous studies have postulated impaired GABA transmission in MS, and recent postmortem analysis has shown that GABAergic parvalbumin (PV)-positive interneurons are decreased in the primary motor cortex (M1) of patients with MS. In this report, we present evidence for the loss of a specific population of GABAergic interneurons in the experimental autoimmune encephalomyelitis mouse model of MS. Using experimental autoimmune encephalomyelitis, we evaluated the distribution of both PV-positive interneurons and of the inhibitory presynaptic input in the M1 of experimental autoimmune encephalomyelitis and control mice. Our results demonstrate a specific decrease in the number of PV-positive interneurons in the M1 of mice with experimental autoimmune encephalomyelitis. We detected a significant reduction in the number of PV-positive interneurons in the layers II and III of the M1 of diseased mice, while there was no difference in the number of calretinin (CR)-positive cells between animals with experimental autoimmune encephalomyelitis and control animals. Moreover, we observed a significant reduction in the inhibitory presynaptic input in the M1 of treated mice. These changes were specific for the mice with elevated clinical score, while they were not detectable in the mice with low clinical score. Our results support the hypothesis that reinforcing the action of the GABAergic network may represent a therapeutic alternative to limit the progression of the neuronal damage in MS patients.

  7. Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely.

    PubMed

    Baker, David; Amor, Sandra

    2014-09-01

    Although multiple sclerosis is a uniquely human disease, many pathological features can be induced in experimental autoimmune encephalomyelitis (EAE) models following induction of central nervous system-directed autoimmunity. Whilst it is an imperfect set of models, EAE can be used to identify pathogenic mechanisms and therapeutics. However, the failure to translate many treatments from EAE into human benefit has led some to question the validity of the EAE model. Whilst differences in biology between humans and other species may account for this, it is suggested here that the failure to translate may be considerably influenced by human activity. Basic science contributes to failings in aspects of experimental design and over-interpretation of results and lack of transparency and reproducibility of the studies. Importantly issues in trial design by neurologists and other actions of the pharmaceutical industry destine therapeutics to failure and terminate basic science projects. However animal, particularly mechanism-orientated, studies have increasingly identified useful treatments and provided mechanistic ideas on which most hypothesis-led clinical research is based. Without EAE and other animal studies, clinical investigations will continue to be "look-see" exercises, which will most likely provide more misses than hits and will fail the people with MS that they aim to serve.

  8. Critical roles of TIPE2 protein in murine experimental colitis

    PubMed Central

    Lou, Yunwei; Sun, Honghong; Morrissey, Samantha; Porturas, Thomas; Liu, Suxia; Hua, Xianxin; Chen, Youhai H.

    2014-01-01

    Both commensal bacteria and infiltrating inflammatory cells play essential roles in the pathogenesis of inflammatory bowel disease. The molecular mechanisms whereby these pathogenic factors are regulated during the disease are not fully understood. We report here that a member of the TNFAIP8 (tumor necrosis factor-α-induced protein 8) family called TIPE2 (TNFAIP8-like 2, or TNFAIP8L2) plays a crucial role in regulating commensal bacteria dissemination and inflammatory cell function in experimental colitis induced by dextran sodium sulfate (DSS). Following DSS treatment, TIPE2-deficient mice, or chimeric mice that are deficient in TIPE2 only in their hematopoietic cells, lost less body weight and survived longer than wild type controls. Consistent with this clinical observation, TIPE2-deficient mice exhibited significantly less severe colitis and colonic damage. This was associated with a marked reduction in the colonic expression of inflammatory cytokines such as TNF-α, IL-6, and IL-12. Importantly, the ameliorated DSS-induced colitis in TIPE2−/− mice was also associated with reduced local dissemination of commensal bacteria and a weaker systemic inflammatory response. Combined with our previous report that TIPE2 is a negative regulator of anti-bacterial immunity, these results indicate that TIPE2 promotes colitis by inhibiting mucosal immunity to commensal bacteria. PMID:24973456

  9. Combination therapy with metformin and coenzyme Q10 in murine experimental autoimmune arthritis.

    PubMed

    Jhun, JooYeon; Lee, SeungHoon; Kim, Se-Young; Na, Hyun Sik; Kim, Eun-Kyung; Kim, Jae-Kyung; Jeong, Jeong-Hee; Park, Sung Hwan; Cho, Mi-La

    2016-01-01

    Metformin (Met) and coenzyme Q10 (CoQ10) are reported to have therapeutic functions in several inflammatory diseases. These drugs have shown anti-inflammatory effects and have been utilized in mouse models of rheumatoid arthritis (RA). However, there is no evidence of the additive effect of Met and CoQ10 in RA. Although Met and CoQ10 may be involved in the improvement of mitochondrial dysfunction, limited information is available regarding whether this effect can improve mitochondrial dysfunction in RA in particular. In this study, we sought to determine whether Met and CoQ10 attenuate the severity of collagen-induced arthritis (CIA) and show an additive effect in a mouse model. The combination of Met and CoQ10 improved CIA, reducing joint inflammation, Th17 differentiation and IgG production. In contrast, the combination of Met and CoQ10 induced Treg differentiation. Osteoclastogenesis was reduced by the combination of Met and CoQ10. The protein expression of interleukin-1β, interleukin-6 and tumor necrosis factor-alpha in mice splenocytes exposed to lipopolysaccharide decreased after drug combination therapy. We also found that the expression of JC-1 and COX IV were enhanced by treatment with the combination of Met and CoQ10. Moreover, the combination of Met and CoQ10 promoted mitochondrial O2 consumption. These findings suggest that the combination of Met and CoQ10 reduced CIA severity, improving mitochondrial dysfunction compared to Met or CoQ10 alone. These results present a novel, significant preventive targets in RA and may enhance our understanding of its pathogenesis.

  10. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies

    PubMed Central

    1976-01-01

    Passive transfer of experimental autoimmune myasthenia gravis (EAMG) was achieved using the gamma globulin fraction and purified IgG from sera of rats immunized with Electrophus electricus (eel) acetylcholine receptor (AChR). This demonstrates the critical role of anti-AChR antibodies in impairing neuromuscular transmission in EAMG. Passive transfer of anti-AChR antibodies from rats with chronic EAMG induced signs of the acute phase of EAMG in normal recipient rats, including invasion of the motor end-plate region by mononuclear inflammatory cells. Clinical, eletrophysiological, histological, and biochemical signs of acute EAMG were observed by 24 h after antibody transfer. Recipient rats developed profound weakness and fatigability, and the posture characteristic of EAMG. Striking weight loss was attributable to dehydration. Recipient rats showed large decreases in amplitude of muscle responses to motor nerve stimulation, and repetitive nerve stimulation induced characteristic decrementing responses. End-plate potentials were not detectable in many muscle fibers, and the amplitudes of miniature end-plate potentials were reduced in the others. Passively transferred EAMG more severely affected the forearm muscles than diaphragm muscles, though neuromuscular transmission was impaired and curare sensitivity was increased in both muscles. Some AChR extracted from the muscles of rats with passively transferred EAMG was found to be complexed with antibody, and the total yield of AChR per rat was decreased. The quantitative decrease in AChR approximately paralleled in time the course of clinical and electrophysiological signs. The amount of AChR increased to normal levels and beyond at the time neuromuscular transmission was improving. The excess of AChR extractable from muscle as the serum antibody level decreased probably represented extrajunctional receptors formed in response to functional denervation caused by phagocytosis of the postsynaptic membrane by macrophages

  11. Probenecid Application Prevents Clinical Symptoms and Inflammation in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Hainz, Nadine; Wolf, Sandra; Tschernig, Thomas; Meier, Carola

    2016-02-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Neurological impairments are caused by axonal damage due to demyelination and neuroinflammation within the central nervous system. T cells mediate the neuroinflammation. The activation of T cells is induced by the release of adenosine triphosphate and involves purinergic receptors as well as pannexin (Panx) proteins. As Panx1 is expressed on T cells, we here propose that application of probenecid, a known Panx inhibitor, will prevent the onset of clinical symptoms in a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE) model. EAE-induced mice received daily injections of probenecid. Disease scores, T cell numbers, and microglia activation were compared between experimental groups. Probenecid treatment resulted in lower disease scores as compared to EAE animals. Probenecid-treated animals also displayed fewer inflammatory lesions. Microglia activation was not altered by treatment. In conclusion, probenecid prevented the onset of EAE.

  12. PRMT5-Selective Inhibitors Suppress Inflammatory T Cell Responses and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Webb, Lindsay M.; Amici, Stephanie A.; Jablonski, Kyle A.; Savardekar, Himanshu; Panfil, Amanda R.; Li, Linsen; Zhou, Wei; Peine, Kevin; Karkhanis, Vrajesh; Bachelder, Eric M.; Ainslie, Kristy M.; Green, Patrick L.; Li, Chenglong; Baiocchi, Robert A.

    2017-01-01

    In the autoimmune disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), expansion of pathogenic, myelin-specific Th1 cell populations drives active disease; selectively targeting this process may be the basis for a new therapeutic approach. Previous studies have hinted at a role for protein arginine methylation in immune responses, including T cell–mediated autoimmunity and EAE. However, a conclusive role for the protein arginine methyltransferase (PRMT) enzymes that catalyze these reactions has been lacking. PRMT5 is the main PRMT responsible for symmetric dimethylation of arginine residues of histones and other proteins. PRMT5 drives embryonic development and cancer, but its role in T cells, if any, has not been investigated. In this article, we show that PRMT5 is an important modulator of CD4+ T cell expansion. PRMT5 was transiently upregulated during maximal proliferation of mouse and human memory Th cells. PRMT5 expression was regulated upstream by the NF-κB pathway, and it promoted IL-2 production and proliferation. Blocking PRMT5 with novel, highly selective small molecule PRMT5 inhibitors severely blunted memory Th expansion, with preferential suppression of Th1 cells over Th2 cells. In vivo, PRMT5 blockade efficiently suppressed recall T cell responses and reduced inflammation in delayed-type hypersensitivity and clinical disease in EAE mouse models. These data implicate PRMT5 in the regulation of adaptive memory Th cell responses and suggest that PRMT5 inhibitors may be a novel therapeutic approach for T cell–mediated inflammatory disease. PMID:28087667

  13. Correlation between inhibin secretion and damage of seminiferous tubules in a model of experimental autoimmune orchitis.

    PubMed

    Suescun, M O; Suescun, M O; Lustig, L; Calandra, R S; Calandra, R S; Groome, N P; Campo, S

    2001-07-01

    The aim of the present study was to evaluate inhibin secretion in rats with autoimmune orchitis. As we have previously described, experimental autoimmune orchitis (EAO) induced in rats by active immunization with testis homogenate and adjuvants is characterized by an interstitial mononuclear cell infiltrate and sloughing of the germinal epithelium. At 120 days after the first immunization 60% of the rats exhibited a severe orchitis with large areas of aspermatogenic seminiferous tubules in which only spermatogonia and Sertoli cells with cytoplasmic vacuolization remained attached to the tubular wall. None of the untreated (N) or control (C) rats revealed pathological alterations. Sixty percent decrease in testis weight was observed in rats with EAO compared with N or C groups. A 3-fold increase in serum FSH levels was observed in rats with EAO compared with N or C groups (19.8+/-3.7 vs 5.6+/-0.3 and 5.9+/-0.1 ng/ml respectively). A significant decrease in inhibin B levels was observed in rats with EAO when compared with N or C groups (40+/-4.6 vs 207+/-38.8 and 221.4+/-28.6 pg/ml respectively). An inverse correlation between inhibin B and FSH serum levels and a direct correlation between inhibin B and testis weight were found. Strong expression of the inhibin alpha-subunit in Sertoli cells of untreated and control rats was observed; this subunit was undetectable or poorly detectable in rats with orchitis. Positive staining for the inhibin alpha-subunit was also observed in Leydig cells of all groups studied. In conclusion, using a model of autoimmune orchitis our results show that circulating inhibin B levels and inhibin alpha-subunit expression in Sertoli cell cytoplasm closely correlate with the degree of damage of the germinal epithelium.

  14. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Zhang, JunMei; Jia, Ge; Liu, Qun; Hu, Jue; Yan, Mei; Yang, BaiFeng; Yang, Huan; Zhou, WenBin; Li, Jing

    2015-01-01

    MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.

  15. Interleukin-10 influences susceptibility to experimental autoimmune thyroiditis independently of the H-2 gene.

    PubMed

    Yu, Zhenqian; Liu, Tong; Liu, Shanshan; Zou, Hongjin; Sun, Xuren; Shi, Xiaoguang; Li, Yushu; Shan, Zhongyan; Teng, Weiping

    2015-02-01

    Both BALB/c and C57BL/6 mice are relatively resistant to experimental autoimmune thyroiditis (EAT) due to their histocompatibility (H-2) genetic background; however, susceptibility to EAT is also influenced by other genetic factors. Given the curative effect of interleukin-10 (IL-10) on thyroiditis, in the present study, we investigated whether IL-10 functions as a non-H-2 genetic factor that influences the development of EAT in mice with an EAT-resistant genetic background. In this study, we observed that the development of EAT could be induced in both C57BL/6 IL-10‑deficient (IL-10-/-) and BALB/c IL-10-/- female mice following immunization with mTg, which indicated that IL-10 may be a non-H-2 factor that affects susceptibility to EAT. However, the role of the H-2 factor remained dominant, as the incidence of EAT was low and its severity was mild. We further investigated the underlying pathogenic mechanisms of EAT in IL-10-/- female mice. We found that Th1 cells, Th17 cells, CD4+CD25+Foxp3+ regulatory T cells, and their associated cytokines were all involved in the development of EAT. The absence of IL-10 promoted the polarization of pathogenic cells and the production of associated cytokines, and suppressed the proliferation of protective T cell clones. Together, these factors may contribute to the development of EAT in IL-10-/- mice. In conclusion, our data demonstrate that IL-10 plays a critical role in the susceptibility to EAT, and a better understanding of the role of IL-10 in autoimmune thyroiditis may facilitate the development of novel strategies for the treatment of autoimmune thyroid diseases.

  16. Correlation of Gut Microbiota Composition with Resistance to Experimental Autoimmune Encephalomyelitis in Rats

    PubMed Central

    Stanisavljević, Suzana; Lukić, Jovanka; Soković, Svetlana; Mihajlovic, Sanja; Mostarica Stojković, Marija; Miljković, Djordje; Golić, Natasa

    2016-01-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS). It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate toward gut associated lymphoid tissues (GALTs) and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity. Gut microbiota composition and function has the major impact on the balance in the GALT. Thus, our aim was to perform analyses of gut microbiota in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Albino Oxford (AO) rats that are highly resistant to EAE induction and Dark Agouti (DA) rats that develop EAE after mild immunization were compared for gut microbiota composition in different phases after EAE induction. Microbial analyses of the genus Lactobacillus and related lactic acid bacteria showed higher diversity of Lactobacillus spp. in EAE-resistant AO rats, while some members of Firmicutes and Proteobacteria (Undibacterium oligocarboniphilum) were detected only in feces of DA rats at the peak of the disease (between 13 and 16 days after induction). Interestingly, in contrast to our previous study where Turicibacter sp. was found exclusively in non-immunized AO, but not in DA rats, in this study it was detected in DA rats that remained healthy 16 days after induction, as well as in four of 12 DA rats at the peak of the disease. Similar observation was obtained for the members of Lachnospiraceae. Further, production of a typical regulatory cytokine interleukin-10 was compared in GALT cells of AO and DA rats, and higher production was observed in DA rats. Our data contribute to the idea that gut microbiota and GALT considerably influence multiple sclerosis pathogenesis. PMID:28018327

  17. Identification in Silico and Experimental Validation of Novel Phosphodiesterase 7 Inhibitors with Efficacy in Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    2012-01-01

    A neural network model has been developed to predict the inhibitory capacity of any chemical structure to be a phosphodiesterase 7 (PDE7) inhibitor, a new promising kind of drugs for the treatment of neurological disorders. The numerical definition of the structures was achieved using CODES program. Through the validation of this neural network model, a novel family of 5-imino-1,2,4-thiadiazoles (ITDZs) has been identified as inhibitors of PDE7. Experimental extensive biological studies have demonstrated the ability of ITDZs to inhibit PDE7 and to increase intracellular levels of cAMP. Among them, the derivative 15 showed a high in vitro potency with desirable pharmacokinetic profile (safe genotoxicity and blood brain barrier penetration). Administration of ITDZ 15 in an experimental autoimmune encephalomyelitis (EAE) mouse model results in a significant attenuation of clinical symptoms, showing the potential of ITDZs, especially compound 15, for the effective treatment of multiple sclerosis. PMID:23077723

  18. A new experimental murine aspergillosis model to identify strains of Aspergillus fumigatus with reduced virulence.

    PubMed

    Sarfati, J; Diaquin, M; Debeaupuis, J P; Schmidt, A; Lecaque, D; Beauvais, A; Latge, J P

    2002-01-01

    Experimental animals are an obligate screen to investigate microorganism pathogenicity. Numerous animal models have been used to analyse the virulence of the opportunistic human pathogen Aspergillus fumigatus but none of the experimental models used previously have been satisfactory. This report discuss these models and presents a murine model of pulmonary aspergillosis that is very easy and the most adapted to compare the pathogenicity of A. fumigatus strains. Strains to be tested are inoculated intranasally and synchronously to mice and strains isolated from the lung of mice killed by the infection are typed. The number of colonies recovered is directly correlated to the virulence of the strain.

  19. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice.

    PubMed

    Zhang, Shouxin; Liu, Xiaoyan; Sun, Chengming; Yang, Jun; Wang, Lihong; Liu, Jie; Gong, Lei; Jing, Yanyan

    2016-04-01

    This study aims to investigate the protective effect of apigenin on the development of experimental autoimmune myocarditis (EAM) and the underlying mechanisms. An EAM model was induced in BALB/c mice by the injection of porcine cardiac myosin. Apigenin was orally administered from day 1 to 21. The severity of myocarditis was assessed by determination of heart weight/body weight ratio (HW/BW) and histopathological evaluation. Echocardiography was conducted to evaluate the cardiac function and heart structure. Antigen-specific T cell proliferation responses to cardiac myosin were evaluated by the lymphocyte proliferation assay. ELISA was used to determine serum levels of type 1 helper (Th1) and Th2 cytokines. Apigenin treatment significantly decreased HW/BW. Histopathologic analysis showed that the infiltration of inflammatory cells was reduced significantly by apigenin treatment. Meanwhile, apigenin administration effectively ameliorated autoimmune myocarditis-induced cardiac hypertrophy and cardiac dysfunction as well as inhibited lymphocyte proliferation in mice immunized with myosin. Furthermore, Th1 cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-2 (IL-2) were significantly downregulated, while Th2 cytokines IL-4 and IL-10 were markedly upregulated. The results indicated that apigenin can alleviate EAM due to its immunomodulatory reactions in modification of helper T cell balance.

  20. GM-CSF is not essential for experimental autoimmune encephalomyelitis but promotes brain-targeted disease

    PubMed Central

    Pierson, Emily R.; Goverman, Joan M.

    2017-01-01

    Experimental autoimmune encephalomyelitis (EAE) has been used as an animal model of multiple sclerosis to identify pathogenic cytokines that could be therapeutic targets. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is the only cytokine reported to be essential for EAE. We investigated the role of GM-CSF in EAE in C3HeB/FeJ mice that uniquely exhibit extensive brain and spinal cord inflammation. Unexpectedly, GM-CSF–deficient C3HeB/FeJ mice were fully susceptible to EAE because IL-17 activity compensated for the loss of GM-CSF during induction of spinal cord–targeted disease. In contrast, both GM-CSF and IL-17 were needed to fully overcome the inhibitory influence of IFN-γ on the induction of inflammation in the brain. Both GM-CSF and IL-17 independently promoted neutrophil accumulation in the brain, which was essential for brain-targeted disease. These results identify a GM-CSF/IL-17/IFN-γ axis that regulates inflammation in the central nervous system and suggest that a combination of cytokine-neutralizing therapies may be needed to dampen central nervous system autoimmunity.

  1. Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution.

    PubMed

    Gresle, Melissa M; Schulz, Katrin; Jonas, Anna; Perreau, Victoria M; Cipriani, Tania; Baxter, Alan G; Miranda-Hernandez, Socorro; Field, Judith; Jokubaitis, Vilija G; Cherny, Robert; Volitakis, Irene; David, Samuel; Kilpatrick, Trevor J; Butzkueven, Helmut

    2014-06-01

    We conducted a microarray study to identify genes that are differentially regulated in the spinal cords of mice with the inflammatory disease experimental autoimmune encephalomyelitis (EAE) relative to healthy mice. In total 181 genes with at least a two-fold increase in expression were identified, and most of these genes were associated with immune function. Unexpectedly, ceruloplasmin (Cp), a ferroxidase that converts toxic ferrous iron to its nontoxic ferric form and also promotes the efflux of iron from astrocytes in the CNS, was shown to be highly upregulated (13.2-fold increase) in EAE spinal cord. Expression of Cp protein is known to be increased in several neurological conditions, but the role of Cp regulation in CNS autoimmune disease is not known. To investigate this, we induced EAE in Cp gene knockout, heterozygous, and wild-type mice. Cp knockout mice were found to have slower disease evolution than wild-type mice (EAE days 13-17; P = 0.05). Interestingly, Cp knockout mice also exhibited a significant increase in the number of astrocytes with reactive morphology in early EAE compared with wild-type mice at the same stage of disease. CNS iron levels were not increased with EAE in these mice. Based on these observations, we propose that an increase in Cp expression could contribute to tissue damage in early EAE. In addition, endogenous CP either directly or indirectly inhibits astrocyte reactivity during early disease, which could also worsen early disease evolution.

  2. Small Heat Shock Protein αA-Crystallin Prevents Photoreceptor Degeneration in Experimental Autoimmune Uveitis

    PubMed Central

    Rao, Narsing A.; Saraswathy, Sindhu; Pararajasegaram, Geeta; Bhat, Suraj P.

    2012-01-01

    The small heat shock protein, αA-crystallin null (αA−/−) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA−/− and wild type mice with EAU as donors and Rag2−/− as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses. PMID:22479415

  3. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    PubMed Central

    Herrmann, Martin M.; Barth, Silvia; Greve, Bernhard; Schumann, Kathrin M.; Bartels, Andrea

    2016-01-01

    ABSTRACT After encounter with a central nervous system (CNS)-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1) rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J) mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions. PMID:27519689

  4. The mechanism of sesame oil in ameliorating experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Ghazavi, A; Mosayebi, G

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease of the CNS that serves as an animal model for multiple sclerosis (MS). The study investigated the effectiveness of treatment with sesame oil on the development of EAE. EAE was induced in 8 week old C57BL/6 mice with an emulsion of MOG35-55. Therapy with sesame oil (4 mL/kg/day as oral gavage) was started on day 3 before the immunization. IFN-gamma and IL-10 production from cultured spleen supernatants were determined by the ELISA method. The results showed that daily oral gavage of sesame oil significantly reduced the clinical symptoms of EAE in C57BL/6 mice. In addition, sesame oil-treated mice displayed a significantly delayed disease onset. Mononuclear cells isolated from spleen of sesame oil-treated mice showed a significant decrease in the production of IFN-gamma compared with control mice (p = 0.001). IL-10 production was also enhanced in splenic mononuclear cells in sesame oil-treated mice. The ratio of IFN-gamma to IL-10 in sesame oil-treated EAE mice was significantly less than in non-treated EAE mice (p = 0.01). This report indicates that sesame oil therapy protected mice from developing EAE by reducing IFN-gamma secretion. Thus, sesame oil treatment may be effective in MS patients by immunomodulating the Th1 immune response.

  5. c-kit plays a critical role in induction of intravenous tolerance in experimental autoimmune encephalomyelitis.

    PubMed

    Safavi, Farinaz; Li, Hongmei; Gonnella, Patricia; Mari, Elisabeth Rose; Rasouli, Javad; Zhang, Guang Xian; Rostami, Abdolmohamad

    2015-03-01

    c-kit (CD117) is a tyrosine kinase receptor found in various types of immune cells. It has been shown that c-kit plays a role in the pathogenesis of multiple sclerosis, an inflammatory demyelinating disorder of the CNS. Recent data have suggested an immunoregulatory effect of c-kit. We therefore examined the role of c-kit in autoantigen-induced i.v. tolerance in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our results show that induction of intravenous tolerance against EAE in B6 mice is characterized by increased numbers of CD117(+) cells and altered mast cell-associated molecules in the periphery and in the CNS. W(-sh) (c-kit-deficient) mice were resistant to i.v autoantigen-induced tolerance, with increased proinflammatory cytokine production in the periphery. I.v. autoantigen in WT mice suppressed the production of proinflammatory cytokines IFN-γ and IL-6 and up-regulated the expression of FoxP3, a transcription factor of Tregs; however, in W(-sh) mice, IFN-γ and IL-6 were increased with a failure of FoxP3 induction upon i.v. autoantigen injection and is thus a mechanism for resistance to i.v. tolerance induction in these mice. We conclude that c-kit signaling has a regulatory role in i.v. tolerance and could be a target for potential immunotherapy in autoimmune disorders.

  6. Functional and phenotypic characteristics of testicular macrophages in experimental autoimmune orchitis.

    PubMed

    Rival, C; Theas, M S; Suescun, M O; Jacobo, P; Guazzone, V; van Rooijen, N; Lustig, L

    2008-06-01

    Testicular inflammation with compromised fertility can occur despite the fact that the testis is considered an immunoprivileged organ. Testicular macrophages have been described as cells with an immunosuppressor profile, thus contributing to the immunoprivilege of the testis. Experimental autoimmune orchitis (EAO) is a model of organ-specific autoimmunity and testicular inflammation. EAO is characterized by an interstitial inflammatory mononuclear cell infiltration, damage of the seminiferous tubules and germ cell apoptosis. Here we studied the phenotype and functions of testicular macrophages during the development of EAO. By stereological analysis, we detected an increased number of resident (ED2+) and non-resident (ED1+) macrophages in the testicular interstitium of rats with orchitis. We showed that this increase was mainly due to monocyte recruitment. The in vivo administration of liposomes containing clodronate in rats undergoing EAO led to a reduction in the number of testicular macrophages, which correlated with a decreased incidence and severity of the testicular damage and suggests a pathogenic role of macrophages in EAO. By immunohistochemistry and flow cytometry we detected an increased number of testicular macrophages expressing MHC class II, CD80 and CD86 costimulatory molecules in rats with orchitis. Also, testicular macrophages from rats with EAO showed a higher production of IFNgamma (ELISA). We conclude that testicular macrophages participate in EAO development, and the ED1+ macrophage subset is the main pathogenic subpopulation. They stimulate the immune response through the production of pro-inflammatory cytokines and antigen presentation and thus activation of T cells in the target organ.

  7. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  8. Experimental autoimmune anterior uveitis (EAAU): induction by melanin antigen and suppression by various treatments.

    PubMed

    Broekhuyse, R M; Kuhlmann, E D; Winkens, H J

    1993-02-01

    The uveitogenicity of melanin has been a controversial subject for a long time, presumably as a result of the use of ill-defined preparations in the experiments. We have developed procedures for the preparation of purified uveitogenic melanins from the retinal pigment epithelium and choroid that are free from pathogenic retinal photoreceptor proteins. The active melano-antigen is located at the surface of the melanin granules and is probably identical in both tissues. It retains its pathogenicity in hot polar detergent and during in vitro proteolysis, but it is inactivated by macrophage phagocytosis and hydrolysis in hot hydrochloric acid. Lewis rats immunized with microgram doses of bovine retinal pigment epithelial or choroidal melanin develop severe experimental autoimmune anterior uveitis (EAAU) about 10 days later. Retinitis and pinealitis are not observed. Skin melanin prepared in a similar way evokes EAAU as well, but it is only weakly pathogenic. EAAU cannot be transferred by serum, and its development can effectively be inhibited by antibodies to the inciting antigen and by cyclosporin. Vitamin E treatment of the animals causes a delay in its onset. The results indicate that cell-mediated immunity plays a dominant role in the pathogenesis of EAAU. This is the first time it has been shown that purified ocular and skin melanins are able to induce an autoimmune disease. The relevance of this finding for the study of melanin-related immunopathology in man is discussed.

  9. Gestational Hypothyroidism Increases the Severity of Experimental Autoimmune Encephalomyelitis in Adult Offspring

    PubMed Central

    Albornoz, Eduardo A.; Carreño, Leandro J.; Cortes, Claudia M.; Gonzalez, Pablo A.; Cisternas, Pablo A.; Cautivo, Kelly M.; Catalán, Tamara P.; Opazo, M. Cecilia; Eugenin, Eliseo A.; Berman, Joan W.; Bueno, Susan M.; Kalergis, Alexis M.

    2013-01-01

    Background: Maternal thyroid hormones play a fundamental role in appropriate fetal development during gestation. Offspring that have been gestated under maternal hypothyroidism suffer cognitive impairment. Thyroid hormone deficiency during gestation can significantly impact the central nervous system by altering the migration, differentiation, and function of neurons, oligodendrocytes, and astrocytes. Given that gestational hypothyroidism alters the immune cell ratio in offspring, it is possible that this condition could result in higher sensitivity for the development of autoimmune diseases. Methods: Adult mice gestated under hypothyroidism were induced with experimental autoimmune encephalomyelitis (EAE). Twenty-one days after EAE induction, the disease score, myelin content, immune cell infiltration, and oligodendrocyte death were evaluated. Results: We observed that mice gestated under hypothyroidism showed higher EAE scores after disease induction during adulthood compared to mice gestated in euthyroidism. In addition, spinal cord sections of mice gestated under hypothyroidism that suffered EAE in adulthood showed higher demyelination, CD4+ and CD8+ infiltration, and increased oligodendrocyte death. Conclusions: These results show for the first time that a deficiency in maternal thyroid hormones during gestation can influence the outcome of a central nervous system inflammatory disease, such as EAE, in their offspring. These data strongly support evaluating thyroid hormones in pregnant women and treating hypothyroidism during pregnancy to prevent increased susceptibility to inflammatory diseases in the central nervous system of offspring. PMID:23777566

  10. Hydrogen-rich water improves neurological functional recovery in experimental autoimmune encephalomyelitis mice.

    PubMed

    Zhao, Ming; Liu, Ming-Dong; Pu, Ying-Yan; Wang, Dan; Xie, Yu; Xue, Gai-Ci; Jiang, Yong; Yang, Qian-Qian; Sun, Xue-Jun; Cao, Li

    2016-05-15

    Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS). The high costs, inconvenient administration, and side effects of current Food and Drug Administration (FDA)-approved drugs often lead to poor adherence to the long-term treatment of MS. Molecular hydrogen (H2) has been reported to exhibit anti-oxidant, anti-apoptotic, anti-inflammatory, anti-allergy, and anti-cancer effects. In the present study, we explored the prophylactic and therapeutic effects of hydrogen-rich water (HRW) on the progress of experimental autoimmune encephalomyelitis (EAE), the animal model for MS. We found that prophylactic administration of both 0.36mM and 0.89mM HRW was able to delay EAE onset and reduce maximum clinical scores. Moreover, 0.89mM HRW also reduced disease severity, CNS infiltration, and demyelination when administered after the onset of disease. Furthermore, HRW treatment prevented infiltration of CD4(+) T lymphocytes into the CNS and inhibited Th17 cell development without affecting Th1 cell populations. Because HRW is non-toxic, inexpensive, easily administered, and can readily cross the blood-brain barrier, our experiments suggest that HRW may have great potential in the treatment of MS.

  11. Carboxypeptidase N-Deficient Mice Present With Polymorphic Disease Phenotypes on Induction of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Hu, Xianzhen; Wetsel, Rick A; Ramos, Theresa N.; Mueller-Ortiz, Stacey L.; Schoeb, Trenton R.; Barnum, Scott R.

    2015-01-01

    Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN−/− mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN−/− mice compared to wild type mice. The majority of CPN−/− mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN−/− mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN−/− mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN−/− mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed. PMID:24028840

  12. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis.

    PubMed

    Hu, Xianzhen; Wetsel, Rick A; Ramos, Theresa N; Mueller-Ortiz, Stacey L; Schoeb, Trenton R; Barnum, Scott R

    2014-02-01

    Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed.

  13. Effect of transgenic overexpression of FLIP on lymphocytes on development and resolution of experimental autoimmune thyroiditis.

    PubMed

    Fang, Yujiang; Sharp, Gordon C; Braley-Mullen, Helen

    2011-09-01

    In our previous studies, resolution of granulomatous experimental autoimmune thyroiditis (G-EAT) was promoted when thyroid epithelial cells were protected from Fas-mediated apoptosis due to transgenic overexpression of FLIP. We hypothesized that if FLIP were overexpressed on lymphocytes, CD4(+) effector cells would be protected from Fas-mediated apoptosis, and resolution would be delayed. To test this hypothesis, we generated transgenic (Tg) mice overexpressing FLIP under the CD2 promoter. Transgenic FLIP was expressed on CD4(+) and CD8(+) T cells and B cells. Transgenic overexpression of FLIP protected cultured splenocytes from Fas-mediated, but not irradiation-induced, apoptosis in vitro. Unexpectedly, Tg(+) donor cells transferred minimal G-EAT, which was partially overcome by depleting donor CD8(+) T cells. When Tg(+) and Tg(-) donors transferred equivalent disease, G-EAT resolution was delayed in FLIP transgenic mice. However, CD2-FLIP Tg(+) donors often transferred less severe G-EAT, even after depletion of CD8(+) T cells. This influenced the rate of G-EAT resolution, resulting in little difference in G-EAT resolution between groups. Tg(+) mice always had reduced anti-mouse thyroglobulin autoantibody responses, compared with Tg(-) littermates, presumably because of FLIP overexpression on B cells. These results suggest that effects of transgenic FLIP on a particular autoimmune disease vary, depending on what cells express the transgene and whether those cells are effector cells or if they function to modulate disease.

  14. 2-Methoxyestradiol inhibits experimental autoimmune encephalomyelitis through suppression of immune cell activation

    PubMed Central

    Duncan, Gordon S.; Brenner, Dirk; Tusche, Michael W.; Brüstle, Anne; Knobbe, Christiane B.; Elia, Andrew J.; Mock, Thomas; Bray, Mark R.; Krammer, Peter H.; Mak, Tak W.

    2012-01-01

    The endogenous metabolite of estradiol, 2-Methoxyestradiol (2ME2), is an antimitotic and antiangiogenic cancer drug candidate that also exhibits disease-modifying activity in animal models of rheumatoid arthritis (RA). We found that 2ME2 dramatically suppresses development of mouse experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS). 2ME2 inhibits in vitro lymphocyte activation, cytokine production, and proliferation in a dose-dependent fashion. 2ME2 treatment of lymphocytes specifically reduced the nuclear translocation and transcriptional activity of nuclear factor of activated T-cells (NFAT) c1, whereas NF-κB and activator protein 1 (AP-1) activation were not adversely affected. We therefore propose that 2ME2 attenuates EAE through disruption of the NFAT pathway and subsequent lymphocyte activation. By extension, our findings provide a molecular rationale for the use of 2ME2 as a tolerable oral immunomodulatory agent for the treatment of autoimmune disorders such as MS in humans. PMID:23213242

  15. PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice.

    PubMed

    Zhang, Jinyu; Braun, Michel Y

    2014-07-01

    MiR-155 (-/-) mice are highly resistant to experimental autoimmune encephalomyelitis (EAE), while Pdcd1 (-/-) mice develop a more severe form of the disease. To determine the conflicting roles of these two molecules in the disease, we generated miR-155 (-/-) Pdcd1 (-/-) double knockout (DKO) mice. We found that ablation of programmed cell death protein 1 (PD-1) expression in miR-155-deficient mice restored the susceptibility to EAE. The increased severity of the disease in DKO mice was accompanied by an enhanced T-cell infiltration into the brain as well as an increased production of pro-inflammatory cytokines IFN-γ and IL-17. Furthermore, the major contribution of the DKO to EAE was T-cell intrinsic since adoptive transfer of CD4(+) T cells from DKO donors promoted the disease in lymphopenic recipients. These results define PD-1 deficiency in miR-155 (-/-) mice as a promoting factor of autoimmune inflammation by increasing antigen-driven T-cell expansion and infiltration.

  16. Chloroquine Treatment Enhances Regulatory T Cells and Reduces the Severity of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Thomé, Rodolfo; Moraes, Adriel S.; Bombeiro, André Luis; Farias, Alessandro dos Santos; Francelin, Carolina; da Costa, Thiago Alves; Di Gangi, Rosária; dos Santos, Leonilda Maria Barbosa; de Oliveira, Alexandre Leite Rodrigues; Verinaud, Liana

    2013-01-01

    Background The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well. Methodology/Principal Findings EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35–55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset. Conclusion We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE

  17. IL-12Rβ2 has a protective role in relapsing-remitting experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Chong; Ciric, Bogoljub; Yu, Shuo; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-01-01

    IL-12Rβ2 participates in the receptors of IL-12 and IL-35, two cytokines that are involved in a variety of immune responses. In this study we evaluate the role of IL-12Rβ2 in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). We found that the IL-12Rβ2 deficient SJL/J EAE mice presented more severe symptoms and had more frequent, more severe relapses compared with wild type controls. IL-12Rβ2 deficient EAE mice also had more infiltrating mononuclear cells in the central nervous system, as well as higher splenic proliferative capacity and decreased IFN-γ production at the periphery. These findings suggest a protective role of IL-12Rβ2 in RR-EAE, an animal model of RR-MS, the most prevalent form of MS. PMID:26857496

  18. Satellite glial cells in dorsal root ganglia are activated in experimental autoimmune encephalomyelitis.

    PubMed

    Warwick, Rebekah A; Ledgerwood, Craig J; Brenner, Talma; Hanani, Menachem

    2014-05-21

    Pain is a serious and common problem with patients suffering from multiple sclerosis (MS). Very little has been done to investigate the peripheral mechanisms of pain in MS. Here we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to investigate the possible contribution of satellite glial cells (SGCs) to pain in MS. EAE mice had reduced pain thresholds 10 days after disease induction. We examined dorsal root ganglia and found increased expression of glial fibrillary acidic protein in SGCs, a marker of SGC activation, and increased coupling among SGCs, a known component of activated SGCs. Activated SGCs have previously been shown to contribute to pain in other classical neuropathic pain models, suggesting that pain in multiple sclerosis has a peripheral component.

  19. Rituximab Therapy Reduces Organ-Specific T Cell Responses and Ameliorates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Monson, Nancy L.; Cravens, Petra; Hussain, Rehana; Harp, Christopher T.; Cummings, Matthew; de Pilar Martin, Maria; Ben, Li-Hong; Do, Julie; Lyons, Jeri-Anne; Lovette-Racke, Amy; Cross, Anne H.; Racke, Michael K.; Stüve, Olaf; Shlomchik, Mark; Eagar, Todd N.

    2011-01-01

    Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS). The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE) model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH) and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues. PMID:21359213

  20. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells?

    PubMed

    Agahozo, Marie Colombe; Peferoen, Laura; Baker, David; Amor, Sandra

    2016-09-01

    MS is widely considered to be a T cell-mediated disease although T cell immunotherapy has consistently failed, demonstrating distinct differences with experimental autoimmune encephalomyelitis (EAE), an animal model of MS in which T cell therapies are effective. Accumulating evidence has highlighted that B cells also play key role in MS pathogenesis. The high frequency of oligoclonal antibodies in the CSF, the localization of immunoglobulin in brain lesions and pathogenicity of antibodies originally pointed to the pathogenic role of B cells as autoantibody producing plasma cells. However, emerging evidence reveal that B cells also act as antigen presenting cells, T cell activators and cytokine producers suggesting that the strong efficacy of anti-CD20 antibody therapy observed in people with MS may reduce disease progression by several different mechanisms. Here we review the evidence and mechanisms by which B cells contribute to disease in MS compared to findings in the EAE model.

  1. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells

    PubMed Central

    Jiang, Hong; Zhang, Yuanyuan; Tian, Kewei; Wang, Beibei; Han, Shu

    2017-01-01

    Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy. PMID:28186117

  2. Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells.

    PubMed

    Klose, Juliane; Schmidt, Nils Ole; Melms, Arthur; Dohi, Makoto; Miyazaki, Jun-ichi; Bischof, Felix; Greve, Bernhard

    2013-09-22

    Neural stem/progenitor cells (NSPCs) have the ability to migrate into the central nervous system (CNS) to replace damaged cells. In inflammatory CNS disease, cytokine transduced neural stem cells may be used as vehicles to specifically reduce inflammation and promote cell replacement. In this study, we used NSPCs overexpressing IL-10, an immunomodulatory cytokine, in an animal model for CNS inflammation and multiple sclerosis (MS). Intravenous injection of IL-10 transduced neural stem/progenitor cells (NSPC(IL-10)) suppressed myelin oligodendrocyte glycoprotein aa 35-55 (MOG35-55)- induced experimental autoimmune encephalomyelitis (EAE) and, following intravenous injection, NSPC(IL-10) migrated to peripheral lymphoid organs and into the CNS. NSPC(IL-10 )suppressed antigen-specific proliferation and proinflammatory cytokine production of lymph node cells obtained from MOG35-55 peptide immunized mice. In this model, IL-10 producing NSPCs act via a peripheral immunosuppressive effect to attenuate EAE.

  3. Eicosapentaenoic acid (EPA) induces peroxisome proliferator-activated receptors and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Unoda, Kiichi; Doi, Yoshimitsu; Nakajima, Hideto; Yamane, Kazushi; Hosokawa, Takafumi; Ishida, Shimon; Kimura, Fumiharu; Hanafusa, Toshiaki

    2013-03-15

    Eicosapentaenoic acid (EPA), one of the n-3 polyunsaturated fatty acids, is a neuroprotective lipid with anti-inflammatory properties. We investigated the possible therapeutic effect of EPA on experimental autoimmune encephalomyelitis (EAE). EAE mice were fed a diet with or without EPA. The clinical EAE scores of the EPA-fed mice were significantly lower than those of the non-EPA mice. In the EPA-treated mice, IFN-γ and IL-17 productions were remarkably inhibited and the expression levels of peroxisome proliferator-activated receptors were significantly enhanced in the CNS-infiltrating CD4T cells. Thus EPA shows promise as a potential new therapeutic agent against multiple sclerosis.

  4. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis.

    PubMed

    Piddlesden, S J; Jiang, S; Levin, J L; Vincent, A; Morgan, B P

    1996-12-01

    The loss of muscle function seen in myasthenia gravis and in the animal model of the disease, experimental autoimmune myasthenia gravis (EAMG) is in part due to the activation of complement by anti-acetylcholine receptor (AChR) antibodies at the motor end-plate. In this study we describe the effects of a soluble recombinant form of human complement receptor 1 (sCR1) on the development of clinical disease and receptor loss in EAMG induced passively by administration of anti-AChR antibodies. Daily intraperitoneal injection of sCR1 significantly reduced the weight loss and severity of clinical symptoms seen and allowed treated animals to recover normal muscle function. These data suggest that sCR1 could provide a useful additional therapeutic agent in myasthenia.

  5. Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Quintanar, J Luis; Salinas, Eva; Quintanar-Stephano, Andrés

    2011-02-01

    It has been reported that the spinal cord possesses Gonadotropin-releasing hormone (GnRH) receptor and that GnRH has neurotrophic properties. Experimental autoimmune encephalomyelitis (EAE) causes neurodegeneration in spinal cord. Thus, the present study was designed to determine whether administration of GnRH reduces the severity of EAE. The clinical signs of locomotion, axonal morphometry and neurofilaments (NFs) expression were evaluated. Clinical signs remained significantly lower in EAE rats with GnRH administration compared to animals without treatment. Morphometric analysis, there were more axons of larger areas in the spinal cord of EAE+GnRH group compared to EAE animals. Western blot analysis demonstrated that GnRH administration significantly increased the expression of NFs of 68, 160 and 200kDa in the spinal cord of EAE animals. Our results indicate that GnRH administration reduces the severity of EAE in the rat.

  6. The influence of cyclosporin A on experimental autoimmune thyroid disease in the rat

    SciTech Connect

    McGregor, A.M.; Rennie, D.P.; Weetman, A.P.; Hassman, R.A.; Foord, S.M.; Dieguez, C.; Hall, R.

    1983-01-01

    Female PVG/c rats, thymectomised on weaning and given 4 courses of whole body irradiation to a total dose of 1000 rads, developed experimental autoimmune thyroid disease (EAITD) as assessed by histological evidence of thyroiditis and circulating levels of antithyroglobulin antibodies. Hypothyroidism resulted. Induction of the disease was associated with a highly significant fall in T lymphocyte numbers. Eight weeks after their last dose of irradiation the animals commenced treatment with cyclosporin A (10 mg/kg rat/day, intragastrically) and were treated for varying time intervals thereafter. The reversal of the T lymphocyte helper: suppressor ratio on cyclosporin A therapy was associated with a significant improvement in the disease process. The alterations in the T cell subsets and in the disease lasted only as long as the drug was administered and thereafter reverted towards that seen in the control groups of animals receiving no treatment.

  7. Damage to the Optic Chiasm in Myelin Oligodendrocyte Glycoprotein–Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Herrera, Sheryl L; Palmer, Vanessa L; Whittaker, Heather; Smith, Blair Cardigan; Kim, Annie; Schellenberg, Angela E; Thiessen, Jonathan D; Buist, Richard; Del Bigio, Marc R; Martin, Melanie

    2014-01-01

    Optic chiasm lesions in myelin oligodendrocyte glycoprotein (MOG)–experimental autoimmune encephalomyelitis (EAE) mice were characterized using magnetic resonance imaging (MRI) and validated using electron microscopy (EM). MR images were collected from 3 days after induction to remission, approximately 20 days after induction. Hematoxylin and eosin, solochrome cyanin–stained sections, and EM images were obtained from the optic chiasms of some mice approximately 4 days after disease onset when their scores were thought to be the highest. T2-weighted imaging and apparent diffusion coefficient map hyperintensities corresponded to abnormalities in the optic chiasms of EAE mice. Mixed inflammation was concentrated at the lateral surface. Degeneration of oligodendrocytes, myelin, and early axonal damage were also apparent. A marked increase in chiasm thickness was observed. T2-weighted and diffusion-weighted MRI can detect abnormalities in the optic chiasms of MOG-EAE mice. MRI is an important method in the study of this model toward understanding optic neuritis. PMID:25520558

  8. Implanting Glass Spinal Cord Windows in Adult Mice with Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Fenrich, Keith K.; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE. PMID:24378439

  9. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)

    PubMed Central

    Constantinescu, Cris S; Farooqi, Nasr; O'Brien, Kate; Gran, Bruno

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21371012

  10. Involvement of CD44 in leukocyte recruitment to the rat testis in experimental autoimmune orchitis.

    PubMed

    Guazzone, V A; Denduchis, B; Lustig, L

    2005-05-01

    Experimental autoimmune orchitis (EAO) is characterized by an interstitial mononuclear cell infiltrate and a severe lesion of the seminiferous tubules with germ cells that undergo apoptosis and sloughing. The aim of this study was to determine the role of CD44 in testicular leukocyte recruitment in EAO. The biological functions of CD44 have been attributed to the generation of a functionally active hyaluronan-binding phenotype. Orchitis was induced in Sprague-Dawley adult rats by active immunization with an emulsion of testicular homogenate and complete Freund's adjuvant using Bordetella pertussis as co-adjuvant. Control rats (C) injected with saline and adjuvants and normal (N) untreated rats were also studied. CD44 expression was analyzed by flow cytometry in peripheral blood mononuclear cells (PBMC) and lymph node cells isolated from rats at different times after the first immunization. We observed an increase in the mean fluorescence intensity of both samples in the C and experimental (E) groups only after the immunization period. A significant decrease in percentage of CD44+PBMC and in mean fluorescence intensity was observed in rats with orchitis compared with the C group. By in vitro hyaluronic acid-binding assay we demonstrated that the percentage of PBMC adhesion was higher in the E group compared with the C and N groups. By immunohistochemistry, we observed a significant increase in the number of CD44+cells in the testicular interstitium of rats with severe orchitis compared with the N and C groups. These results suggested that the CD44 molecule is involved in the homing of lymphomonocytes into the testes of rats with autoimmune orchitis.

  11. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  12. 1,25-Dihydroxyvitamin D3 Inhibits the Differentiation and Migration of TH17 Cells to Protect against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Chang, Jae-Hoon; Cha, Hye-Ran; Lee, Dong-Sup; Seo, Kyoung Yul; Kweon, Mi-Na

    2010-01-01

    Background Vitamin D3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE); however, the direct effect of vitamin D3 on T cells is largely unknown. Methodology/Principal Findings In an in vitro system using cells from mice, the active form of vitamin D3 (1,25-dihydroxyvitamin D3) suppresses both interleukin (IL)-17-producing T cells (TH17) and regulatory T cells (Treg) differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce the amount of IL-2 regulates the generation of Treg cells, but not TH17 cells. Under TH17-polarizing conditions, 1,25(OH)2D3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH)2D3's negative regulation of TH17 development is still defined in the IL-10−/− T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH)2D3 inhibits IL-17 production in STAT1−/− T cells. Most interestingly, 1,25(OH)2D3 negatively regulates CCR6 expression which might be essential for TH17 cells to enter the central nervous system and initiate EAE. Conclusions/Significance Our present results in an experimental murine model suggest that 1,25(OH)2D3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for TH17-mediated autoimmune diseases. PMID:20886077

  13. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-01-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710. PMID:27746629

  14. P2Y2R Deficiency Attenuates Experimental Autoimmune Uveitis Development

    PubMed Central

    Relvas, Lia Judice M.; Makhoul, Maya; Dewispelaere, Remi; Caspers, Laure; Communi, Didier; Boeynaems, Jean-Marie; Robaye, Bernard; Bruyns, Catherine; Willermain, François

    2015-01-01

    We aimed to study the role of the nucleotide receptor P2Y2R in the development of experimental autoimmune uveitis (EAU). EAU was induced in P2Y2+/+ and P2Y2-/- mice by immunization with IRBP peptide or by adoptive transfer of in vitro restimulated semi-purified IRBP-specific enriched T lymphocytes from spleens and lymph nodes isolated from native C57Bl/6 or P2Y2+/+ and P2Y2-/- immunized mice. Clinical and histological scores were used to grade disease severity. Splenocytes and lymph node cell phenotypes were analyzed using flow cytometry. Semi-purified lymphocytes and MACS-purified CD4+ T lymphocytes from P2Y2+/+ and P2Y2-/- immunized mice were tested for proliferation and cytokine secretion. Our data show that clinical and histological scores were significantly decreased in IRBP-immunized P2Y2-/- mice as in P2Y2-/- mice adoptively transfered with enriched T lymphocytes from C57Bl/6 IRBP-immunized mice. In parallel, naïve C57Bl/6 mice adoptively transferred with T lymphocytes from P2Y2-/- IRBP-immunized mice also showed significantly less disease. No differences in term of spleen and lymph node cell recruitment or phenotype appeared between P2Y2-/- and P2Y2+/+ immunized mice. However, once restimulated in vitro with IRBP, P2Y2-/- T cells proliferate less and secrete less cytokines than the P2Y2+/+ one. We further found that antigen-presenting cells of P2Y2-/- immunized mice were responsible for this proliferation defect. Together our data show that P2Y2-/- mice are less susceptible to mount an autoimmune response against IRBP. Those results are in accordance with the danger model, which makes a link between autoreactive lymphocyte activation, cell migration and the release of danger signals such as extracellular nucleotides. PMID:25692550

  15. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    PubMed

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive.

  16. IgG1 deficiency exacerbates experimental autoimmune myasthenia gravis in BALB/c mice.

    PubMed

    Huda, Ruksana; Strait, Richard T; Tüzün, Erdem; Finkelman, Fred D; Christadoss, Premkumar

    2015-04-15

    Myasthenia gravis is an autoimmune disease characterized by muscle weakness due to neuromuscular junction (NMJ) damage by anti-acetylcholine receptor (AChR) auto-antibodies and complement. In experimental autoimmune myasthenia gravis (EAMG), which is induced by immunization with Torpedo AChR in CFA, anti-AChR IgG2b and IgG1 are the predominant isotypes in the circulation. Complement activation by isotypes such as IgG2b plays a crucial role in EAMG pathogenesis; this suggested the possibility that IgG1, which does not activate complement through the classical pathway, may suppress EAMG. In this study, we show that AChR-immunized BALB/c mice genetically deficient for IgG1 produce higher levels of complement-activating isotypes of anti-AChR, especially IgG3 and IgG2a, and develop increased IgG3/IgG2a deposits at the NMJ, as compared to wild type (WT) BALB/c mice. Consistent with this, AChR-immunized IgG1(-/-) BALB/c mice lose muscle strength and muscle AChR to a greater extent than AChR-immunized WT mice. These observations demonstrate that IgG1 deficiency leads to increased severity of EAMG associated with an increase in complement activating IgG isotypes. Further studies are needed to dissect the specific role or mechanism of IgG1 in limiting EAMG and that of EAMG exacerbating role of complement activating IgG3 and IgG2a in IgG1 deficiency.

  17. Forced Exercise Preconditioning Attenuates Experimental Autoimmune Neuritis by Altering Th1 Lymphocyte Composition and Egress.

    PubMed

    Calik, Michael W; Shankarappa, Sahadev A; Langert, Kelly A; Stubbs, Evan B

    2015-01-01

    A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain-Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7-10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes.

  18. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis.

    PubMed

    Im, S H; Barchan, D; Souroujon, M C; Fuchs, S

    2000-10-01

    We recently demonstrated that oral or nasal administration of recombinant fragments of the acetylcholine receptor (AChR) prevents the induction of experimental autoimmune myasthenia gravis (EAMG) and suppresses ongoing EAMG in rats. We have now studied the role of spatial conformation of these recombinant fragments in determining their tolerogenicity. Two fragments corresponding to the extracellular domain of the human AChR alpha-subunit and differing in conformation were tested: Halpha1-205 expressed with no fusion partner and Halpha1-210 fused to thioredoxin (Trx), and designated Trx-Halpha1-210. The conformational similarity of the fragments to intact AChR was assessed by their reactivity with alpha-bungarotoxin and with anti-AChR mAbs, specific for conformation-dependent epitopes. Oral administration of the more native fragment, Trx-Halpha1-210, at the acute phase of disease led to exacerbation of EAMG, accompanied by an elevation of AChR-specific humoral and cellular reactivity, increased levels of Th1-type cytokines (IL-2, IL-12), decreased levels of Th2 (IL-10)- or Th3 (TGF-beta)-type cytokines, and higher expression of costimulatory factors (CD28, CTLA4, B7-1, B7-2, CD40L, and CD40). On the other hand, oral administration of the less native fragments Halpha1-205 or denatured Trx-Halpha1-210 suppressed ongoing EAMG and led to opposite changes in the immunological parameters. It thus seems that native conformation of AChR-derived fragments renders them immunogenic and immunopathogenic and therefore not suitable for treatment of myasthenia gravis. Conformation of tolerogens should therefore be given careful attention when considering oral tolerance for treatment of autoimmune diseases.

  19. Coumestrol inhibits autoantibody production through modulating Th1 response in experimental autoimmune thyroiditis

    PubMed Central

    Zhao, Xuemin; Jin, Qian; Fan, Chenling; Li, Jing; Shan, Zhongyan; Teng, Weiping

    2016-01-01

    Coumestrol is a common phytoestrogen found in plants and Chinese medicinal herbs. Its influences on experimental autoimmune thyroiditis (EAT) were investigated in this study. Female adult CBA/J mice were fed with drinking water containing 1% Tween80 only (Control group), 0.8 mg/l (L group) and 8 mg/l coumestrol (H group) from 6 to 15 weeks of age, respectively. Their serum coumestrol concentrations were determined by high performance liquid chromatography, which were undetectable, 43.70 ± 21.74 ng/ml and 135.07 ± 70.40 ng/ml, respectively. In addition, the mice (n = 14–16/group) were immunized twice with thyroglobulin (Tg) and Freund's adjuvant to induce EAT during the meantime. Although no overt changes in the extent of intrathyroidal mononuclear cell infiltration were shown in the two coumestrol-treated groups as compared with the controls, serum anti-Tg IgG2a, IgG3 and IgG1 titers, ratio of IgG2a to IgG1 and the percentage of T helper (Th)1 cells in the splenocytes were significantly reduced in the L group. Another consistent change was the significantly decreased expression of splenic IFN-γ mRNA after low dose of coumestrol exposure. Uterine weight was also markedly reduced in the mice of L group. These findings suggest that coumestrol treatment may have some beneficial actions against thyroid-specific autoantibody production in the development of autoimmune thyroiditis through suppression of Th1 response due to its anti-estrogenic activity. PMID:27384679

  20. Connexin43 and connexin47 alterations after neural precursor cells transplantation in experimental autoimmune encephalomyelitis.

    PubMed

    Theotokis, Paschalis; Kleopa, Kleopas A; Touloumi, Olga; Lagoudaki, Roza; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Kesidou, Evangelia; Poulatsidou, Kyriaki-Nepheli; Dardiotis, Efthimios; Hadjigeorgiou, Georgios; Karacostas, Dimitris; Cifuentes-Diaz, Carmen; Irinopoulou, Theano; Grigoriadis, Nikolaos

    2015-10-01

    Exogenous transplanted neural precursor cells (NPCs) exhibit miscellaneous immune-modulatory effects in models of autoimmune demyelination. However, the regional interactions of NPCs with the host brain tissue in remissive inflammatory events have not been adequately studied. In this study we used the chronic MOG-induced Experimental Autoimmune Encephalomyelitis (EAE) model in C57BL/six mice. Based on previous data, we focused on neuropathology at Day 50 post-induction (D50) and studied the expression of connexin43 (Cx43) and Cx47, two of the main glial gap junction (GJ) proteins, in relation to the intraventricular transplantation of GFP(+) NPCs and their integration with the host tissue. By D50, NPCs had migrated intraparenchymally and were found in the corpus callosum at the level of the lateral ventricles and hippocampus. The majority of GFP(+) cells differentiated with simple or ramified processes expressing mainly markers of mature GLIA (GFAP and NogoA) and significantly less of precursor glial cells. GFP(+) NPCs expressed connexins and formed GJs around the hippocampus more than lateral ventricles. The presence of NPCs did not alter the increase in Cx43 GJ plaques at D50 EAE, but prevented the reduction of oligodendrocytic Cx47, increased the number of oligodendrocytes, local Cx47 levels and Cx47 GJ plaques per cell. These findings suggest that transplanted NPCs may have multiple effects in demyelinating pathology, including differentiation and direct integration into the panglial syncytium, as well as amelioration of oligodendrocyte GJ loss, increasing the supply of potent myelinating cells to the demyelinated tissue.

  1. Fundamental differences in the dynamics of CNS lesion development and composition in MP4- and MOG peptide 35-55-induced experimental autoimmune encephalomyelitis.

    PubMed

    Kuerten, Stefanie; Javeri, Sita; Tary-Lehmann, Magdalena; Lehmann, Paul V; Angelov, Doychin N

    2008-11-01

    Multiple sclerosis (MS) is characterized by a dynamic inflammatory process in which CNS lesions of distinct cellular composition coexist. In particular the formation of B cell plaques has been ascribed an important role as predictor of disease progression. Here we show that the novel MBP-PLP fusion protein (MP4)-induced experimental autoimmune encephalomyelitis (EAE) of C57BL/6 mice fulfils these criteria inducing differential cellular infiltration of B cells, T cells, macrophages and granulocytes and permitting the quantification and staging of the disease. On the contrary, both key features - dynamic CNS inflammation and B cell infiltration - were absent in the classical MOG:35-55-induced EAE of C57BL/6 mice, which was characterized by a static CD4(+) T cell and macrophage-mediated CNS immunopathology throughout the disease. MP4-induced EAE may thus provide a unique opportunity for studying immune-pathomechanisms of the disease that have been previously neglected due to experimental shortcomings in murine EAE.

  2. Epstein-Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function

    PubMed Central

    Chang, Rhoda A.; Miller, Stephen D.; Longnecker, Richard

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory, autoimmune disease of the central nervous system. The cause of MS is still unknown but epidemiological and immunological studies have implicated Epstein-Barr virus (EBV), which infects B cells, as a possible etiological agent involved in disease. Of particular interest is EBV latent membrane protein 2A (LMP2A) because previous studies have demonstrated that LMP2A enhances the expansion and differentiation of B cells upon antigen stimulation, revealing a potential contribution of this protein in autoimmunity. Since B cells are thought to contribute to MS, we examined the role of LMP2A in the animal model experimental autoimmune encephalomyelitis (EAE). In this model, transgenic mice in which B cells express LMP2A show increased severity and incidence of disease. This difference was not due to lymphocyte recruitment into the CNS or differences in T cell activation, rather, we show that LMP2A enhances antigen presentation function. PMID:22616025

  3. Lessons from probiotic-host interaction studies in murine models of experimental colitis.

    PubMed

    Claes, Ingmar J J; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Lebeer, Sarah

    2011-10-01

    In inflammatory bowel diseases (IBD), it is known that besides genetic and environmental factors (e.g. diet, drugs, stress), the microbiota play an important role in the pathogenesis. Patients with IBD have an altered microbiota (dysbiosis) and therefore, probiotics, defined as 'live micro-organisms that when administered in adequate amounts can confer a health benefit on the host', have been suggested as nutritional supplements to restore these imbalances. The best response on probiotics among the different types of IBD appears to be in the case of ulcerative colitis. Although probiotics show promise in IBD in both clinical and animal studies, further mechanistic studies are necessary to optimize the use of probiotics as supporting therapy in IBD. Murine models of experimental colitis have been used for decades to study this pathology, and these models have been proven useful to search for new therapeutic approaches. The purpose of this review is to summarize probiotic-host interaction studies in murine models of experimental colitis and to evaluate how these models can further help in understanding these complex interactions. Unraveling the molecular mechanisms behind the beneficial effects will assist in better and possibly more efficient probiotic formulations.

  4. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  5. Methotrexate treatment in murine experimental systemic lupus erythematosus (SLE); clinical benefits associated with cytokine manipulation.

    PubMed Central

    Segal, R; Dayan, M; Zinger, H; Mozes, E

    1995-01-01

    The objective of this study was to determine the effects of Methotrexate (MTX) on the development and the course of experimental murine SLE, as well as on the cytokine profile involved in the disease. SLE was induced in naive BALB/c female mice by injection of the human anti-DNA MoAb bearing a common idiotype (16/6 Id). Six weeks following immunization, when high levels of autoantibodies were demonstrated, the mice were treated with MTX (2 mg/kg once a week) for a period of 10 months. MTX treatment had no effect on 16/6 Id-induced autoantibody production. However, MTX treatment had beneficial effects on the clinical manifestations of the experimental disease (i.e. leucocyte counts, levels of protein in the urine and immune complex deposits in the kidneys). Thus, only 20% of 16/6 Id-immunized BALB/c mice that were treated with MTX had immune complex deposits in their kidneys compared with 100% of SLE-afflicted BALB/c mice that were not treated. We have observed a significant elevation in IL-1, tumour necrosis factor (TNF) and IL-10 secretion in BALB/c mice afflicted with experimental SLE. IL-2, IL-4, IL-6 and interferon-gamma (INF-gamma) levels were decreased in these mice compared with the levels detected in healthy controls. Treatment with MTX reversed the levels of all the above cytokines to normal levels observed in control mice. These studies demonstrate therapeutic effects of MTX on murine experimental SLE. The normal cytokine profile observed following treatment with MTX is suggested to play a role in the amelioration of the clinical manifestations of experimental SLE. Images Fig. 1 PMID:7621594

  6. An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity

    SciTech Connect

    Sobel, E.S.; Katagiri, T.; Katagiri, K.; Morris, S.C.; Cohen, P.L.; Eisenberg, R.A. )

    1991-06-01

    Mice homozygous for the gene lpr develop marked lymphadenopathy and a spectrum of autoantibodies closely resembling that of human systemic lupus erythematosus. The unusual T cell phenotype of the expanded lymphocyte population and the T-dependence of several antibodies in this strain have suggested that primary T cell abnormalities underlie the autoimmune syndrome. Using double chimeras, we now show that expression of the lpr gene in B cells is absolutely necessary for autoantibody production. Combinations of anti-Thy 1.2 + C' treated bone marrow from congenic strains of C57BL/6 mice, differing only at the immunoglobulin heavy chain (Igh) and lpr loci, were transferred into lethally irradiated B6/lpr mice. Double chimerism was documented by allotype-specific surface IgD and IgM immunofluorescence assay of peripheral blood and by allotype-specific enzyme-linked immunosorbent assay for total IgM in serum. Despite the presence of both +/+ and lpr B cells, IgM and IgG2a anti-chromatin as well as IgM anti-IgG were entirely the products of lpr B cells. Total serum IgG2a and IgG1 were also dominated by the lpr phenotype but not to the same extent. A similar experiment using B6/lpr-Igha recipients confirmed these findings. Additional experiments in which B6/lpr recipients were infused with ratios of donor bone marrow favoring B6.C20 +/+ over B6/lpr showed that even though +/+ B cells were overrepresented, autoantibodies were only of the lpr allotype. In addition, in the presence of lpr B cells, normal B cells showed little response to an exogenous, T cell-dependent antigen. The data thus indicate that lpr B cells manifest an intrinsic abnormality which is essential for autoantibody production in the lpr model.

  7. Inhibitory effects of alprazolam on the development of acute experimental autoimmune encephalomyelitis in stressed rats.

    PubMed

    Núñez-Iglesias, María J; Novío, Silvia; Almeida-Dias, Antonio; Freire-Garabal, Manuel

    2010-12-01

    The progression and development of multiple sclerosis (MS) has long been hypothesized to be associated with stress. Benzodiazepines have been observed to reduce negative consequences of stress on the immune system in experimental and clinical models, but there are no data on their effects on MS, or experimental autoimmune encephalomyelitis (EAE), a model for human MS. We designed experiments conducted to ascertain whether alprazolam could modify the clinical, histological and neuroendocrine manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. EAE was induced by injection of an emulsion of MBP and complete Freund's adjuvant containing Mycobacterium tuberculosis H37Ra. Stress application and treatment with drugs (placebo or alprazolam) were initiated 5days before inoculation and continued daily for the duration of the experiment (days 14 or 34 postinoculation).Our results show significant increases in the severity of neurological signs, the histological lesions of the spinal cord (inflammation), and the corticosterone plasmatic levels in stressed rats compared to those non-stressed ones. Treatment with alprazolam reversed the adverse effects of stress. These findings could have clinical implications in patients suffering from MS treated with benzodiazepines, so besides the psychopharmacological properties of alprazolam against stress, it has beneficial consequences on EAE.

  8. Protective Effects on Central Nervous System by Acidic Polysaccharide of Panax ginseng in Relapse-Remitting Experimental Autoimmune Encephalomyelitis-Induced SJL/J Mice.

    PubMed

    Bing, So Jin; Ha, Danbee; Hwang, Insun; Park, Eunjin; Ahn, Ginnae; Song, Jie-Young; Jee, Youngheun

    2016-01-01

    Bearing pathologic and clinical similarities to human multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) is used as a murine model to test potential therapeutic agents for MS. Recently, we reported the protective effects of an acidic polysaccharide of Panax ginseng (APG) in C57BL/6 strain-dependent EAE, a model of primary progressive MS. In this study, we extend our previous findings on the therapeutic capacity of APG in relapsing-remitting EAE (rr-EAE), the animal model to closely mimic recurrent inflammatory demyelination lesions of relapsing-remitting MS. Treatments with APG led to a significant reduction of clinical symptoms and the relapse rate of EAE than vehicle treatments. Consistent with this, histological examination revealed that APG markedly modulated the infiltration of CD4[Formula: see text] T cells and CD11b[Formula: see text] macrophages into the spinal cord and the APG-treated CNS was devoid of demyelination and axonal damages. In addition, APG decreased the proliferation of peripheral PLP-reactive T cells and the production of pro-inflammatory factors such as IFN-[Formula: see text], IL-17 and TNF-[Formula: see text]. The fact that APG can induce clinically beneficial effects to distinct types of EAE furthers our understanding on the basis of its immunosuppression in EAE and, possibly, in MS. Our results suggest that APG may serve as a new therapeutic agent for MS as well as other human autoimmune diseases, and warrants continued evaluation for its translation into therapeutic application.

  9. Modulation of the expression of integrins on glial cells during experimental autoimmune encephalomyelitis. A central role for TNF-alpha.

    PubMed Central

    Previtali, S. C.; Archelos, J. J.; Hartung, H. P.

    1997-01-01

    Integrins comprise a group of adhesion receptors involved in cell-cell and cell-extracellular matrix interactions. Evidence is accumulating that integrins expressed on mononuclear cells play a central role in the induction of autoimmune diseases of the central nervous system. The effects of integrins on glial cell behavior, myelination, and angiogenesis suggest that they may also have a role in resolving inflammation in the nervous system and in promoting tissue repair. We investigated the temporospatial expression of integrins in the rat central nervous system during the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. A higher expression of alpha v- and beta 4-integrin subunits in astrocytes and alpha 2 integrin in oligodendrocytes was observed in active lesions of experimental autoimmune encephalomyelitis, in comparison with controls. Proinflammatory cytokines, primarily TNF-alpha, also enhanced alpha v, beta 4, and alpha 2 expression in purified glial cells ex vivo. Furthermore, we observed that the expression of some integrin subunits was modulated in the cerebral vasculature during inflammation. Our results suggest an active role for glial and vascular integrins in the regulation of autoimmune diseases of the central nervous system, opening an avenue for new potential immunotherapies. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 9 PMID:9358769

  10. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats.

    PubMed

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte; Gejl, Michael; Landau, Anne M; Møller, Arne; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1

  11. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    PubMed

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  12. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  13. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis.

    PubMed

    Amir-Levy, Yifat; Mausner-Fainberg, Karin; Karni, Arnon

    2014-01-01

    Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU(+)GFAP(+) NSCs to BrdU(+)DCX(+) neuroblasts in the subventricular zone (SVZ), increased BrdU(+)NeuN(+) neurons in the granular cell layer of the dentate gyrus, and increased BrdU(+)O4(+) oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS.

  14. Immune mechanisms in the transfer of experimental autoimmune encephalomyelitis without adjuvant

    SciTech Connect

    Silberg, D.G.

    1985-01-01

    Experimental autoimmune encephalomyelitis (EAE) can be induced in Lewis rats without the use of adjuvant. Spleen cells of naive rats were sensitized to myelin basic protein (MBP) in vitro. Transfer of these cells did not result in the development of EAE. However, spleen cells from primary recipients, taken 10 days post transfer, and cultured with MBP (secondary culture, transferred EAE to secondary recipients. EAE can be induced in primary recipients by the transfer of secondary cultured cells or cultured cells or challenge with MBP in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) 10 days after injection of naive cultured cells. The finding that MBP-CFA challenged 1' recipients developed EAE, suggests that the rats have been primed to MBP through the naive cultured cell transfer. The cells from naive culture that sensitize the primary recipient were radioresistant (1500 R), probably macrophages. This is in contrast to the cells transferring EAE to the secondary recipient, which were radiosensitive. Unlike the spleen cells which transfer EAE from MBP-CFA sensitized rats, the cells in the secondary transfer could not be activated to transfer EAE when cultured with concanavalin A. Clinical EAE in the secondary recipient was more severe when these rats were irradiated (200 R) prior to transfer. There is evidence that low dose irradiation eliminates naturally occurring suppressor cells. EAE also developed in lethally irradiated (850 R) recipients of secondary cultured cells, suggesting that the transferred cells can induce EAE alone or by recruiting radioresistant cells in the secondary host.

  15. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  16. Early handling increases susceptibility to experimental autoimmune encephalomyelitis (EAE) in C57BL/6 male mice.

    PubMed

    Columba-Cabezas, Sandra; Iaffaldano, Grazia; Chiarotti, Flavia; Alleva, Enrico; Cirulli, Francesca

    2009-07-25

    Brief maternal separations of neonatal animals can exert long-lasting effects on the reactivity of the neuroendocrine system. The aim of the present study was to investigate whether manipulations of the mother-infant interaction could affect susceptibility to immune-mediated diseases, such experimental autoimmune encephalomyelitis (EAE), and whether this effect would be mediated by changes in leptin which has been shown to regulate disease susceptibility and severity at adulthood. Given the different gender susceptibility to EAE previously described, we tested also whether early experiences could differentially affect the two genders. To this purpose, female and male C56BL/6 mice were subjected to handling (15 min daily) postnatally, from day 2 until day 14. All subjects were weaned at 21 days. At 7 weeks of age mice were immunized with MOG(35-55) to actively induce EAE. We thus determined the effect of neonatal handling on plasma concentrations of testosterone in male mice and leptin in both genders at different times post EAE induction. Our results show that early experiences influence susceptibility to EAE in a gender-specific manner, early manipulations resulting in an enhancement of sex-related differences in susceptibility. These effects were associated with changes in the testosterone profile of male subjects. Changes in leptin levels during the preclinical stage of EAE may predict a more severe disease course.

  17. A study of experimental autoimmune encephalomyelitis in dogs as a disease model for canine necrotizing encephalitis

    PubMed Central

    Moon, Jong-Hyun; Jung, Hae-Won; Lee, Hee-Chun; Jeon, Joon-Hyeok; Kim, Na-Hyun; Sur, Jung-Hyang; Ha, Jeongim

    2015-01-01

    In the present study, the use of dogs with experimental autoimmune encephalomyelitis (EAE) as a disease model for necrotizing encephalitis (NE) was assessed. Twelve healthy dogs were included in this study. Canine forebrain tissues (8 g), including white and grey matter, were homogenized with 4 mL of phosphate-buffered saline for 5 min in an ice bath. The suspension was emulsified with the same volume of Freund's complete adjuvant containing 1 mg/mL of killed Mycobacterium tuberculosis H37Ra. Under sedation, each dog was injected subcutaneously with canine brain homogenate at four sites: two in the inguinal and two in the axillary regions. A second injection (booster) was administered to all the dogs using the same procedure 7 days after the first injection. Clinical assessment, magnetic resonance imaging, cerebrospinal fluid analyses, necropsies, and histopathological and immunohistochemical examinations were performed for the dogs with EAE. Out of the 12 animals, seven (58%) developed clinically manifest EAE at various times after immunization. Characteristics of canine EAE models were very similar to canine NE, suggesting that canine EAE can be a disease model for NE in dogs. PMID:25269720

  18. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis.

    PubMed

    Rossi, Silvia; Furlan, Roberto; De Chiara, Valentina; Muzio, Luca; Musella, Alessandra; Motta, Caterina; Studer, Valeria; Cavasinni, Francesca; Bernardi, Giorgio; Martino, Gianvito; Cravatt, Benjamin F; Lutz, Beat; Maccarrone, Mauro; Centonze, Diego

    2011-08-01

    Cannabinoid CB1 receptors (CB1Rs) regulate the neurodegenerative damage of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R stimulation exerts protective effects is still unclear. Here we show that pharmacological activation of CB1Rs dampens the tumor necrosis factor α (TNFα)-mediated potentiation of striatal spontaneous glutamate-mediated excitatory postsynaptic currents (EPSCs), which is believed to cogently contribute to the inflammation-induced neurodegenerative damage observed in EAE mice. Furthermore, mice lacking CB1Rs showed a more severe clinical course and, in parallel, exacerbated alterations of sEPSC duration after induction of EAE, indicating that endogenous cannabinoids activate CB1Rs and mitigate the synaptotoxic action of TNFα in EAE. Consistently, we found that mice lacking the fatty acid amide hydrolase (FAAH), and thus expressing abnormally high brain levels of the endocannabinoid anandamide, developed a less severe EAE associated with preserved TNFα-induced sEPSC alterations. CB1Rs are important modulators of EAE pathophysiology, and might play a mechanistic role in the neurodegenerative damage of MS patients.

  19. Bromocriptine and low dose cyclosporine in the treatment of experimental autoimmune uveitis in the rat.

    PubMed Central

    Palestine, A G; Muellenberg-Coulombre, C G; Kim, M K; Gelato, M C; Nussenblatt, R B

    1987-01-01

    The immunologic effects of bromocriptine and low dose cyclosporine on experimental autoimmune uveitis (EAU) induced in Lewis rats by S-antigen immunization were studied. Rats treated with a sub-optimal dose (low dose) of cyclosporine (2 mg/kg per d), bromocriptine (1.8 mg/kg per d), or both drugs were compared with untreated rats in regard to the development of EAU, lymphocyte proliferative responses, and anti-S-antigen serum antibodies. Bromocriptine alone decreased the incidence of EAU only in female rats (P less than 0.01), did not effect the lymphocyte proliferative response, but did significantly decrease antibody titers in both males (P less than 0.004) and females (P less than 0.0005). Low dose cyclosporine also partially decreased the incidence of EAU in female rats, but did not decrease antibody titers or lymphocyte proliferative responses. Bromocriptine plus low-dose cyclosporine led to more marked decreases in the incidence of EAU and anti-S-antigen antibody titers as well as in the lymphocyte proliferative assay (P less than 0.01 for males, P less than 0.0005 for females). This study suggests that bromocriptine can enhance the immunosuppression of low dose cyclosporine. PMID:3494043

  20. Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis*

    PubMed Central

    Kurnellas, Michael P.; Brownell, Sara E.; Su, Leon; Malkovskiy, Andrey V.; Rajadas, Jayakumar; Dolganov, Gregory; Chopra, Sidharth; Schoolnik, Gary K.; Sobel, Raymond A.; Webster, Jonathan; Ousman, Shalina S.; Becker, Rachel A.; Steinman, Lawrence; Rothbard, Jonathan B.

    2012-01-01

    To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions. PMID:22955287

  1. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis

    PubMed Central

    Inoue, Makoto; Williams, Kristi L.; Gunn, Michael D.; Shinohara, Mari L.

    2012-01-01

    The NLRP3 inflammasome is a multiprotein complex consisting of three kinds of proteins, NLRP3, ASC, and pro-caspase-1, and plays a role in sensing pathogens and danger signals in the innate immune system. The NLRP3 inflammasome is thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, the mechanism by which the NLRP3 inflammasome induces EAE is not clear. In this study, we found that the NLRP3 inflammasome played a critical role in inducing T-helper cell migration into the CNS. To gain migratory ability, CD4+ T cells need to be primed by NLRP3 inflammasome-sufficient antigen-presenting cells to up-regulate chemotaxis-related proteins, such as osteopontin, CCR2, and CXCR6. In the presence of the NLRP3 inflammasome, dendritic cells and macrophages also induce chemotactic ability and up-regulate chemotaxis-related proteins, such as α4β1 integrin, CCL7, CCL8, and CXCL16. On the other hand, reduced Th17 cell population size in immunized Nlrp3−/− and Asc−/− mice is not a determinative factor for their resistance to EAE. As currently applied in clinical interventions of MS, targeting immune cell migration molecules may be an effective approach in treating MS accompanied by NLRP3 inflammasome activation. PMID:22699511

  2. Immunomodulation by Transplanted Human Embryonic Stem Cell-Derived Oligodendroglial Progenitors in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kim, Heechul; Walczak, Piotr; Kerr, Candace; Galpoththawela, Chulani; Gilad, Assaf A.; Muja, Naser; Bulte, Jeff W.M.

    2013-01-01

    Transplantation of embryonic stem cells and their neural derivatives can lead to amelioration of the disease symptoms of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Oligodendroglial progenitors (OPs), derived from human embryonic stem cells (hESC, HES-1), were labeled with superparamagnetic iron oxide and transduced with luciferase. At 7 days following induction of EAE in C57/BL6 mice, 1 × 106 cells were transplanted in the ventricles of C57/BL6 mice and noninvasively monitored by magnetic resonance and bioluminescence imaging. Cells were found to remain within the cerebroventricular system and did not survive for more than 10 days. However, EAE mice that received hESC-OPs showed a significant improvement in neurological disability scores (0.9 ± 0.2; n = 12) compared to that of control animals (3.3 ± 0.4; n = 12) at day 15 post-transplantation. Histopathologically, transplanted hESC-OPs generated TREM2-positive CD45 cells, increased TIMP-1 expression, confined inflammatory cells within the subarachnoid space, and gave rise to higher numbers of Foxp3-positive regulatory T cells in the spinal cord and spleen. Our results suggest that transplantation of hESC-OPs can alter the pathogenesis of EAE through immunomodulation, potentially providing new avenues for stem cell-based treatment of MS. PMID:22949039

  3. Ninjurin1 deficiency attenuates susceptibility of experimental autoimmune encephalomyelitis in mice.

    PubMed

    Ahn, Bum Ju; Le, Hoang; Shin, Min Wook; Bae, Sung-Jin; Lee, Eun Ji; Wee, Hee-Jun; Cha, Jong-Ho; Lee, Hyo-Jong; Lee, Hye Shin; Kim, Jeong Hun; Kim, Chang-Yeon; Seo, Ji Hae; Lo, Eng H; Jeon, Sejin; Lee, Mi-Ni; Oh, Goo Taeg; Yin, Guo Nan; Ryu, Ji-Kan; Suh, Jun-Kyu; Kim, Kyu-Won

    2014-02-07

    Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26-37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis.

  4. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation.

    PubMed

    Djelloul, Mehdi; Popa, Natalia; Pelletier, Florence; Raguénez, Gilda; Boucraut, José

    2016-11-01

    Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.

  5. Regular exercise promotes memory function and enhances hippocampal neuroplasticity in experimental autoimmune encephalomyelitis mice.

    PubMed

    Kim, Tae-Woon; Sung, Yun-Hee

    2017-03-27

    Multiple sclerosis (MS) is a progressive condition affecting the central nervous system (CNS), and is characterized by the development of demyelinated lesions and plaques in the brain and spinal cord. Exercise is beneficial against dementia in elderly patients, so we investigated the effects of exercise on memory in relation to hippocampal demyelination and neuroplasticity in a mouse model of MS (experimental autoimmune encephalomyelitis [EAE]). Mice were randomly divided into three groups: Sham, EAE, and EAE and exercise (EAE+EX). EAE+EX mice exercised five times a week for 4weeks, and all mice performed step-down avoidance tasks in order to verify memory ability. We analyzed changes in myelin basic protein (MBP), 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNPase), 5-bromo-2'-deoxyuridine (brdU), doublecortin (DCX), bcl-2, bax, TUNEL, caspase-3, and brain derived neurotrophic factor (BDNF) via immunoassay or histological staining. We found decreased memory ability in EAE mice, accompanied by impaired myelination, increased apoptosis and cell proliferation, and decreased BDNF in the hippocampus. The memory decline and changes in demyelination, apoptosis, BDNF, and cell proliferation were partially reversed in EAE+EX mice. Our findings suggest that in patients with MS, regular exercise may benefit cognitive function by rescuing some hippocampal cellular and molecular impairments.

  6. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    PubMed Central

    Kaminski, Henry J.; Himuro, Keiichi; Alshaikh, Jumana; Gong, Bendi; Cheng, Georgiana; Kusner, Linda L.

    2016-01-01

    The differential susceptibility of skeletal muscle by myasthenia gravis (MG) is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM), diaphragm (DIA), and extensor digitorum (EDL) of rats with experimental autoimmune MG (EAMG) to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, 359 probes (1.16%) with greater than 2-fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism. PMID:27891095

  7. Breast regression protein-39 is not required for experimental autoimmune encephalomyelitis induction.

    PubMed

    Cantó, Ester; Espejo, Carmen; Costa, Carme; Montalban, Xavier; Comabella, Manuel

    2015-10-01

    Increasing evidence points to a role for chitinase 3-like 1 (CHI3L1) in multiple sclerosis (MS). Here, we aimed to explore the potential involvement of CHI3L1 in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). EAE was induced by immunization with MOG 35-55 peptide in wild-type (WT) and knock-out (KO) mice for breast regression protein 39 (BRP-39), the mouse homologue of human CHI3L1. Immunological responses in splenocytes were assessed by means of polyclonal and antigen-specific proliferation assays. Central nervous system pathology and chitinase gene expression were also investigated. BRP-39 expression was increased in WT MOG 35-55-immunized mice compared to saline-immunized controls. No differences were found between WT and BRP-39 KO mice regarding EAE clinical course, day of disease onset, mortality rate, splenocyte proliferative responses or histopathological findings. These results do not support a role of BRP-39 in the pathogenesis of EAE.

  8. C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells.

    PubMed

    Pentón-Rol, Giselle; Martínez-Sánchez, Gregorio; Cervantes-Llanos, Majel; Lagumersindez-Denis, Nielsen; Acosta-Medina, Emilio Felino; Falcón-Cama, Viviana; Alonso-Ramírez, Ruby; Valenzuela-Silva, Carmen; Rodríguez-Jiménez, Efraín; Llópiz-Arzuaga, Alexey; Marín-Prida, Javier; López-Saura, Pedro Antonio; Guillén-Nieto, Gerardo Emilio; Pentón-Arias, Eduardo

    2011-01-01

    For decades Experimental Autoimmune Encephalitis (EAE) has remained as an unsurpassed multiple sclerosis (MS) animal model. C-Phycocyanin (C-Pc) has been reported to exhibit pharmacological properties that may be expected to symptomatically improve EAE and MS. However, in this paper we reveal a basic underlying mechanism that may provide a new approach to the rationale of the overall beneficial effect of this natural antioxidant. We demonstrate that C-Pc is able to trigger mechanisms preventing or downgrading EAE expression and induces a regulatory T cell (Treg) response, in peripheral blood mononuclear cells (PBMC) from MS patients. These results agree with reports suggesting that Treg limit acute MS attacks and that C-Pc may act as a neuroprotector and thereby reverts the organic and functional damage in neurodegenerative disorders of the central nervous system (CNS). Moreover, evidence is provided on the antioxidant activity of C-Pc within the CNS, intended to improve the myelin and axonal damage of EAE induced Lewis rats. Our results indicate that specific Treg activation may represent a central and essential mechanism in supporting the therapeutic potential of C-Pc for MS and may lead to new and more effective therapies; this property would then complement and enhance other proven active principles such as interferons (IFN), giving rise to combined therapies.

  9. Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

    PubMed Central

    Arellano, Gabriel; Ottum, Payton A.; Reyes, Lilian I.; Burgos, Paula I.; Naves, Rodrigo

    2015-01-01

    The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more than 30 years. Several studies attribute this cytokine a prominent proinflammatory and pathogenic function in these pathologies. However, accumulating evidence shows that IFN-γ also plays a protective role inducing regulatory cell activity and modulating the effector T cell response. Several innate and adaptive immune cells also develop opposite functions strongly associated with the production of IFN-γ in EAE. Even the suppressive activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent data supports a stage-specific participation of IFN-γ in EAE providing a plausible explanation for previous conflicting results. In this review, we will summarize and discuss such literature, emphasizing the protective role of IFN-γ on immune cells. These findings are fundamental to understand the complex role of IFN-γ in the pathogenesis of these diseases and can provide basis for potential stage-specific therapy for MS targeting IFN-γ-signaling or IFN-γ-producing immune cells. PMID:26483787

  10. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor

    PubMed Central

    Kaye, Joel; Piryatinsky, Victor; Birnberg, Tal; Hingaly, Tal; Raymond, Emanuel; Kashi, Rina; Amit-Romach, Einat; Caballero, Ignacio S.; Towfic, Fadi; Ator, Mark A.; Rubinstein, Efrat; Laifenfeld, Daphna; Orbach, Aric; Shinar, Doron; Marantz, Yael; Grossman, Iris; Knappertz, Volker; Hayden, Michael R.; Laufer, Ralph

    2016-01-01

    Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington’s disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR−/− mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases. PMID:27671624

  11. Collagenase-2 deficiency or inhibition impairs experimental autoimmune encephalomyelitis in mice.

    PubMed

    Folgueras, Alicia R; Fueyo, Antonio; García-Suárez, Olivia; Cox, Jennifer; Astudillo, Aurora; Tortorella, Paolo; Campestre, Cristina; Gutiérrez-Fernández, Ana; Fanjul-Fernández, Miriam; Pennington, Caroline J; Edwards, Dylan R; Overall, Christopher M; López-Otín, Carlos

    2008-04-04

    Matrix metalloproteinases (MMPs) have been implicated in a variety of human diseases, including neuroimmunological disorders such as multiple sclerosis. However, the recent finding that some MMPs play paradoxical protective roles in these diseases has made necessary the detailed study of the specific function of each family member in their pathogenesis. To determine the relevance of collagenase-2 (MMP-8) in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, we have performed two different analyses involving genetic and biochemical approaches. First, we have analyzed the development of EAE in mutant mouse deficient in MMP-8, with the finding that the absence of this proteolytic enzyme is associated with a marked reduction in the clinical symptoms of EAE. We have also found that MMP-8(-/-) mice exhibit a marked reduction in central nervous system-infiltrating cells and demyelinating lesions. As a second approach, we have carried out a pharmacological inhibition of MMP-8 with a selective inhibitor against this protease (IC(50) = 0.4 nM). These studies have revealed that the administration of the MMP-8 selective inhibitor to mice with EAE also reduces the severity of the disease. Based on these findings, we conclude that MMP-8 plays an important role in EAE development and propose that this enzyme may be a novel therapeutic target in human neuro-inflammatory diseases such as multiple sclerosis.

  12. A DPP-4 inhibitor suppresses fibrosis and inflammation on experimental autoimmune myocarditis in mice.

    PubMed

    Hirakawa, Hiroyuki; Zempo, Hirofumi; Ogawa, Masahito; Watanabe, Ryo; Suzuki, Jun-Ichi; Akazawa, Hiroshi; Komuro, Issei; Isobe, Mitsuaki

    2015-01-01

    Myocarditis is a critical inflammatory disorder which causes life-threatening conditions. No specific or effective treatment has been established. DPP-4 inhibitors have salutary effects not only on type 2 diabetes but also on certain cardiovascular diseases. However, the role of a DPP-4 inhibitor on myocarditis has not been investigated. To clarify the effects of a DPP-4 inhibitor on myocarditis, we used an experimental autoimmune myocarditis (EAM) model in Balb/c mice. EAM mice were assigned to the following groups: EAM mice group treated with a DPP-4 inhibitor (linagliptin) (n = 19) and those untreated (n = 22). Pathological analysis revealed that the myocardial fibrosis area ratio in the treated group was significantly lower than in the untreated group. RT-PCR analysis demonstrated that the levels of mRNA expression of IL-2, TNF-α, IL-1β and IL-6 were significantly lower in the treated group than in the untreated group. Lymphocyte proliferation assay showed that treatment with the DPP-4 inhibitor had no effect on antigen-induced spleen cell proliferation. Administration of the DPP-4 inhibitor remarkably suppressed cardiac fibrosis and reduced inflammatory cytokine gene expression in EAM mice. Thus, the agents present in DPP-4 inhibitors may be useful to treat and/or prevent clinical myocarditis.

  13. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  14. Treatment of experimental autoimmune encephalomyelitis with antisense oligonucleotides against the low affinity neurotrophin receptor.

    PubMed

    Soilu-Hänninen, M; Epa, R; Shipham, K; Butzkueven, H; Bucci, T; Barrett, G; Bartlett, P F; Kilpatrick, T J

    2000-03-15

    Upregulated expression of the low-affinity neurotrophin receptor (p75) in the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) has recently been demonstrated. To investigate whether p75 plays a role in disease pathogenesis, we adopted a gene therapy approach, utilizing antisense oligonucleotides to downregulate p75 expression during EAE. Phosphorothioate antisense oligonucleotides (AS), nonsense oligonucleotides (NS) or phosphate buffered saline (PBS) were injected daily for 18 days after immunization of SJL/J (H-2s)-mice with myelin proteolipid protein (PLP) peptide 139-151. In the AS group, there was a statistically significant reduction in both the mean maximal disease score (1.85 in the AS, 2.94 in the NS and 2.75 in the PBS-groups, respectively, P < 0.025) and in the cumulative disease incidence ( approximately 60% in the AS group and approximately 90% in the control groups). Histological and immunohistochemical analysis showed reduced inflammation and demyelination, as well as reduced p75 expression at the blood-brain barrier (BBB) in the AS-treated mice in comparison with both control groups. There was no difference, however, in p75 expression on neural cells within the CNS between the three groups of mice. We conclude that p75 could play a proactive role in the pathogenesis of EAE and may exert its effect at the level of the BBB.

  15. Routes of administration and dose optimization of soluble antigen arrays in mice with experimental autoimmune encephalomyelitis.

    PubMed

    Thati, Sharadvi; Kuehl, Christopher; Hartwell, Brittany; Sestak, Joshua; Siahaan, Teruna; Forrest, M Laird; Berkland, Cory

    2015-02-01

    Soluble antigen arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared with distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation (p.i.) was included as reports suggest T cells are licensed in the lungs before moving to the CNS. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, and 10 also reduced efficacy compared with injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via p.i., however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice.

  16. Histopathology of the tubuli recti at the start of experimental autoimmune orchitis in mice.

    PubMed

    Naito, Munekazu; Terayama, Hayato; Hirai, Shuichi; Qu, Ning; Kawata, Shinichi; Itoh, Masahiro

    2009-12-01

    We previously established an experimental model of autoimmune orchitis (EAO) by means of immunization with testicular germ cells (TGC) alone in mice and confirmed that the disease can be transferred to mice that had received CD4+ but not CD8+ or B lymphocytes obtained from TGC-immunized donor mice. The tubuli recti (TR) are special in that lymphocytes first accumulate around them before spreading to the peripheral seminiferous tubules in EAO. However, the minute changes in the TR remain unknown. Therefore, we investigated the histopathology of the TR before the induction of spermatogenic disturbance. The results revealed that the first infiltrating lymphocytes around the TR were not only of T-cell but also of B-cell lineage. Moreover, it was also shown that some of these infiltrating lymphocytes migrated into the TR, with resultant degeneration of the TR epithelium before damage to the seminiferous epithelium. These findings indicate that TR epithelial cells are the first targets of autoreactive T and B lymphocytes in EAO.

  17. Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Galuppo, Maria; Giacoppo, Sabrina; De Nicola, Gina Rosalinda; Iori, Renato; Navarra, Michele; Lombardo, Giovanni Enrico; Bramanti, Placido; Mazzon, Emanuela

    2014-06-01

    Glucomoringin (4(α-L-rhamnosyloxy)-benzyl glucosinolate) (GMG) is an uncommon member of glucosinolate group belonging to the Moringaceae family, of which Moringa oleifera Lam. is the most widely distributed. Bioactivation of GMG with the enzyme myrosinase forms the corresponding isothiocyanate (4(α-L-rhamnosyloxy)-benzyl isothiocyanate) (GMG-ITC), which can play a key role in antitumoral activity and counteract the inflammatory response. The aim of this study was to assess the effect of GMG-ITC treatment in an experimental mouse model of multiple sclerosis (MS), an inflammatory demyelinating disease with neurodegeneration characterized by demyelinating plaques, neuronal, and axonal loss. For this reason, C57Bl/6 male mice were injected with myelin oligodendrocyte glycoprotein35-55 which is able to evoke an autoimmune response against myelin fibers miming human multiple sclerosis physiopatogenesis. Results clearly showed that the treatment was able to counteract the inflammatory cascade that underlies the processes leading to severe MS. In particular, GMG-ITC was effective against proinflammatory cytokine TNF-α. Oxidative species generation including the influence of iNOS, nitrotyrosine tissue expression and cell apoptotic death pathway was also evaluated resulting in a lower Bax/Bcl-2 unbalance. Taken together, this work adds new interesting properties and applicability of GMG-ITC and this compound can be suggested as a useful drug for the treatment or prevention of MS, at least in association with current conventional therapy.

  18. Fusion of metabolomics and proteomics data for biomarkers discovery: case study on the experimental autoimmune encephalomyelitis

    PubMed Central

    2011-01-01

    Background Analysis of Cerebrospinal Fluid (CSF) samples holds great promise to diagnose neurological pathologies and gain insight into the molecular background of these pathologies. Proteomics and metabolomics methods provide invaluable information on the biomolecular content of CSF and thereby on the possible status of the central nervous system, including neurological pathologies. The combined information provides a more complete description of CSF content. Extracting the full combined information requires a combined analysis of different datasets i.e. fusion of the data. Results A novel fusion method is presented and applied to proteomics and metabolomics data from a pre-clinical model of multiple sclerosis: an Experimental Autoimmune Encephalomyelitis (EAE) model in rats. The method follows a mid-level fusion architecture. The relevant information is extracted per platform using extended canonical variates analysis. The results are subsequently merged in order to be analyzed jointly. We find that the combined proteome and metabolome data allow for the efficient and reliable discrimination between healthy, peripherally inflamed rats, and rats at the onset of the EAE. The predicted accuracy reaches 89% on a test set. The important variables (metabolites and proteins) in this model are known to be linked to EAE and/or multiple sclerosis. Conclusions Fusion of proteomics and metabolomics data is possible. The main issues of high-dimensionality and missing values are overcome. The outcome leads to higher accuracy in prediction and more exhaustive description of the disease profile. The biological interpretation of the involved variables validates our fusion approach. PMID:21696593

  19. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats.

    PubMed

    Stoop, Marcel P; Rosenling, Therese; Attali, Amos; Meesters, Roland J W; Stingl, Christoph; Dekker, Lennard J; van Aken, Hans; Suidgeest, Ernst; Hintzen, Rogier Q; Tuinstra, Tinka; van Gool, Alain; Luider, Theo M; Bischoff, Rainer

    2012-08-03

    To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of neurological symptoms, and proteomics analysis was performed using nano-LC-Orbitrap mass spectrometry. Additionally, the minocycline concentration in CSF was determined using quantitative matrix-assisted laser desorption/ionization-triple-quadrupole tandem mass spectrometry (MALDI-MS/MS) in the selected reaction monitoring (SRM) mode. Fifty percent of the minocycline-treated EAE animals did not show neurological symptoms on day 14 ("responders"), while the other half displayed neurological symptoms ("nonresponders"), indicating that minocycline delayed disease onset and attenuated disease severity in some, but not all, animals. Neither CSF nor plasma minocycline concentrations correlated with the onset of symptoms or disease severity. Analysis of the proteomics data resulted in a list of 20 differentially abundant proteins between the untreated animals and the responder group of animals. Two of these proteins, complement C3 and carboxypeptidase B2, were validated by quantitative LC-MS/MS in the SRM mode. Differences in the CSF proteome between untreated EAE animals and minocycline-treated responders were similar to the differences between minocycline-treated responders and nonresponders (70% overlap). Six proteins that remained unchanged in the minocycline-treated animals but were elevated in untreated EAE animals may be related to the mechanism of action of minocycline.

  20. Angiogenesis is regulated by angiopoietins during experimental autoimmune encephalomyelitis and is indirectly related to vascular permeability.

    PubMed

    Macmillan, Carolyn J; Starkey, Ryan J; Easton, Alexander S

    2011-12-01

    The regulation of angiogenesis was studied over the course of the animal model of multiple sclerosis, acute experimental autoimmune encephalomyelitis (EAE) in mice using immunohistochemistry. During EAE, angiogenesis peaked 21 days after disease induction, with significant increases in gray matter and adjacent to the leptomeninges. Angiogenesis correlated with clinical and pathologic scores. Spinal cord expression of angiopoietin 1 (Ang-1) by neurons and glia was reduced at Day 14, but expression by inflammatory cells restored earlier levels at Day 21. Angiopoietin 2 expression increased markedly at Day 21 and was mostly associated with inflammatory cells. Levels of the angiopoietin receptor Tie-2 were reduced at Day 14, but recovered by day D21. Double labeling demonstrated Ang-1 expression on infiltrating CD3-positive T cells; Ang-2 was expressed by monocytes/macrophages. During EAE, the expression of vascular endothelial growth factor peaked at Day 14 and began to decrease by Day 21. Double labeling showed expression of Tie-2 and vascular endothelial growth factor receptor 2 but not Ang-2 in blood vessels at Day 21. Vascular permeability increased early in EAE, but was reduced by Day 21. Although individual values did not correlate with angiogenesis, the volume of permeable tissue showed a weak positive correlation with angiogenesis. These temporal changes in angiogenic factors suggest an integral role during EAE-related angiogenesis.

  1. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  2. SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-04-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.

  3. The extent of ultrastructural spinal cord pathology reflects disease severity in experimental autoimmune encephalomyelitis.

    PubMed

    Gruppe, Traugott L; Recks, Mascha S; Addicks, Klaus; Kuerten, Stefanie

    2012-09-01

    Experimental autoimmune encephalomyelitis (EAE) has been studied for decades as an animal model for human multiple sclerosis (MS). Here we performed ultrastructural analysis of corticospinal tract (CST) and motor neuron pathology in myelin oligodendrocyte glycoprotein (MOG) peptide 35-55- and MP4-induced EAE of C57BL/6 mice. Both models were clinically characterized by ascending paralysis. Our data show that CST and motor neuron pathology differentially contributed to the disease. In both MOG peptide- and MP4-induced EAE pathological changes in the CST were evident. While the MP4 model also encompassed severe motor neuron degeneration in terms of rough endoplasmic reticulum alterations, the presence of intracytoplasmic vacuoles and nuclear dissolution, both models showed motor neuron atrophy. Features of axonal damage covered mitochondrial swelling, a decrease in nearest neighbor neurofilament distance (NNND) and an increase of the oligodendroglial cytoplasm inner tongue. The extent of CST and motor neuron pathology was reflective of the severity of clinical EAE in MOG peptide- and MP4-elicited EAE. Differential targeting of CNS gray and white matter are typical features of MS pathology. The MOG peptide and MP4 model may thus be valuable tools for downstream studies of the mechanisms underlying these morphological disease correlates.

  4. Treatment with Vitamin D/MOG Association Suppresses Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Chiuso-Minicucci, Fernanda; Ishikawa, Larissa Lumi Watanabe; Mimura, Luiza Ayumi Nishiyama; Fraga-Silva, Thais Fernanda de Campos; França, Thais Graziela Donegá; Zorzella-Pezavento, Sofia Fernanda Gonçalves; Marques, Camila; Ikoma, Maura Rosane Valerio; Sartori, Alexandrina

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development. PMID:25965341

  5. Celastrol Attenuates Multiple Sclerosis and Optic Neuritis in an Experimental Autoimmune Encephalomyelitis Model

    PubMed Central

    Yang, Hongbin; Liu, Chang; Jiang, Jie; Wang, Yuena; Zhang, Xiaoyu

    2017-01-01

    This study was aimed to evaluate the effects of celastrol, a natural compound with multiple bioactivities, on multiple sclerosis and optic neuritis (ON) in rat experimental autoimmune encephalomyelitis (EAE). EAE was induced in Sprague Dawley rats using myelin basic protein, and the animals received daily intraperitoneal injections of celastrol or vehicle for 13 days. The EAE rats showed abnormal neurobehavior and inflammatory infiltration and demyelination in the spinal cord. Significantly upregulated mRNA expression of pro-inflammatory cytokines interferon-γ and interleukin-17 and downregulated anti-inflammatory cytokines interleukin-4 were found in the spinal cord of EAE rats. In the study of ON, severely inflammatory responses like in the spinal cord were also seen in the optic nerve, as well as obvious microgliosis. Furthermore, activation of nuclear factor kappa-B and upregulated inducible nitric oxide synthase was observed in the optic nerve. In addition, apoptosis of retinal ganglion cells and dysregulation of apoptotic-associated proteins in the optic nerve were found in EAE rats. Treatment of celastrol potently restored these changes. In most of the indexes, the effects of high dose of celastrol were better than the low dose. Our data conclude that administration of celastrol attenuates multiple sclerosis and ON in EAE via anti-inflammatory and anti-apoptotic effects. These findings provide new pre-clinical evidence for the use of celastrol in treatment of multiple sclerosis. PMID:28239352

  6. Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis

    PubMed Central

    Wang, I-Ching; Chung, Chen-Yen; Liao, Fang; Chen, Chih-Cheng; Lee, Cheng-Han

    2017-01-01

    Multiple sclerosis (MS)-induced neuropathic pain deteriorates quality of life in patients but is often refractory to treatment. In experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, animals develop neuropathy and inflammation-induced tissue acidosis, which suggests the involvement of acid-sensing ion channels (ASICs). Also, peripheral neuropathy is reported in MS patients. However, the involvement of the peripheral nervous system (PNS) in MS neuropathic pain remains elusive. This study investigated the contribution of ASICs and peripheral neuropathy in MS-induced neuropathic pain. Elicited pain levels were as high in Asic1a−/−, Asic2−/− and Asic3−/− mice as wild-type mice even though only Asic1a−/− mice showed reduced EAE disease severity, which indicates that pain in EAE was independent of disease severity. We thus adopted an EAE model without pertussis toxin (EAEnp) to restrain activated immunity in the periphery and evaluate the PNS contribution to pain. Both EAE and EAEnp mice showed similar pain behaviors and peripheral neuropathy in nerve fibers and DRG neurons. Moreover, pregabalin significantly reduced neuropathic pain in both EAE and EAEnp mice. Our findings highlight the essential role of the PNS in neuropathic pain in EAE and pave the way for future development of analgesics without side effects in the CNS. PMID:28181561

  7. [Umbilical cord mesenchymal stem cell transplantation for treatment of experimental autoimmune myasthenia gravis in rats].

    PubMed

    Yu, Jing-Xia; Chen, Fang; Sun, Jun; Wang, Ji-Ming; Zhao, Qin-Jun; Ren, Xin-Jun; Ma, Feng-Xia; Yang, Shao-Guang; Han, Zhi-Bo; Han, Zhong-Chao

    2011-06-01

    Umbilical cord mesenchymal stem cell (UCMSC) transplantation has been widely used in the treatment of a variety of diseases due to their advantages such as abundant resources, low immunogenicity and large ex vivo expansion capacity. This study was aimed to investigate the effects of UCMSC on experimental autoimmune myasthenia gravis (EAMG) rats. The distribution of human-derived cells was observed by immunofluorescence method, the effect of MSC on B-cell in situ-secreted antibodies was assayed by ELISPOT, the secreted IFN-γ level was detected by using Transwell test. The results showed that UCMSC were able to migrate to inflammation region and lymph nudes, moreover human-derived cells could be detected in medulla zone of lymph nudes. In vitro in situ detection of AchR specific antibody secretion revealed that the full contact of MSC with lymphnode-derived lymphocytes could effectively inhibit production of AchR antibody. Transwell test indicated that the direct contact of UCMSC with CD4 T cells could effectively decrease production of IFN-γ, which modulated the unbalance between Th1/Th2 to a certain extent. It is concluded that UCMSC can regulate the immune system by direct cell-cell contact or/and release of cytokines, which bring a new insight into knowledge about MSC-based therapy for EAMG.

  8. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS.

  9. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation

    PubMed Central

    Zhang, Han; Qi, Yuanyuan; Yuan, Yuanyang; Cai, Li; Xu, Haiyan; Zhang, Lili; Su, Bing; Nie, Hong

    2017-01-01

    Paeoniflorin (PF) is a monoterpene glycoside and exhibits multiple effects, including anti-inflammation and immunoregulation. To date, the effect of PF on multiple sclerosis (MS) has not been investigated. In this study, we investigated the effect of PF in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. After administered with PF, the onset and clinical symptoms of EAE mice were significantly ameliorated, and the number of Th17 cells infiltrated in central nervous system (CNS) and spleen was also dramatically decreased. Instead of inhibiting the differentiation of Th17 cells directly, PF influenced Th17 cells via suppressing the expression of costimulatory molecules and the production of interlukin-6 (IL-6) of dendritic cells (DCs) in vivo and in vitro, which may be attributable to the inhibition of IKK/NF-κB and JNK signaling pathway. When naïve CD4+ T cells were co-cultured with PF-treated dendritic cells under Th17-polarizing condition, the percentage of Th17 cells and the phosphorylation of STAT3 were decreased, as well as the mRNA levels of IL-17, RORα, and RORγt. Our study provided insights into the role of PF as a unique therapeutic agent for the treatment of multiple sclerosis and illustrated the underlying mechanism of PF from a new perspective. PMID:28165507

  10. Mice lacking Axl and Mer tyrosine kinase receptors are susceptible to experimental autoimmune orchitis induction.

    PubMed

    Li, Nan; Liu, Zhenghui; Zhang, Yue; Chen, Qiaoyuan; Liu, Peng; Cheng, C Yan; Lee, Will M; Chen, Yongmei; Han, Daishu

    2015-03-01

    The mammalian testis is an immunoprivileged organ where male germ cell autoantigens are immunologically ignored. Both systemic immune tolerance to autoantigens and local immunosuppressive milieu contribute to the testicular immune privilege. Testicular immunosuppression has been intensively studied, but information on systemic immune tolerance to autoantigens is lacking. In the present study, we aimed to determine the role of Axl and Mer receptor tyrosine kinases in maintaining the systemic tolerance to male germ cell antigens using the experimental autoimmune orchitis (EAO) model. Axl and Mer double-knockout (Axl(-/-)Mer(-/-)) mice developed evident EAO after a single immunization with germ cell homogenates emulsified with complete Freund's adjuvant. EAO was characterized by the accumulation of macrophages and T lymphocytes in the testis. Damage to the seminiferous epithelium was also observed. EAO induction was associated with pro-inflammatory cytokine upregulation in the testes, impaired permeability of the blood-testis barrier and generation of autoantibodies against germ cell antigens in Axl(-/-)Mer(-/-) mice. Immunization also induced mild EAO in Axl or Mer single-gene-knockout mice. By contrast, a single immunization failed to induce EAO in wild-type mice. The results indicate that Axl and Mer receptors cooperatively regulate the systemic immune tolerance to male germ cell antigens.

  11. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats.

    PubMed

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats ("EAE" group). 2- "N. sativa + EAE" group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- "EAE + N. sativa" group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE.

  12. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment.

    PubMed

    Robinson, Andrew P; Harp, Christopher T; Noronha, Avertano; Miller, Stephen D

    2014-01-01

    While no single model can exactly recapitulate all aspects of multiple sclerosis (MS), animal models are essential in understanding the induction and pathogenesis of the disease and to develop therapeutic strategies that limit disease progression and eventually lead to effective treatments for the human disease. Several different models of MS exist, but by far the best understood and most commonly used is the rodent model of experimental autoimmune encephalomyelitis (EAE). This model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. Mouse models are most frequently used because of the inbred genotype of laboratory mice, their rapid breeding capacity, the ease of genetic manipulation, and availability of transgenic and knockout mice to facilitate mechanistic studies. Although not all therapeutic strategies for MS have been developed in EAE, all of the current US Food and Drug Administration (FDA)-approved immunomodulatory drugs are effective to some degree in treating EAE, a strong indicator that EAE is an extremely useful model to study potential treatments for MS. Several therapies, such as glatiramer acetate (GA: Copaxone), and natalizumab (Tysabri), were tested first in the mouse model of EAE and then went on to clinical trials. Here we discuss the usefulness of the EAE model in understanding basic disease pathophysiology and developing treatments for MS as well as the potential drawbacks of this model.

  13. Complement in Experimental Autoimmune Encephalomyelitis Revisited: C3 is Required for Development of Maximal Disease

    PubMed Central

    Szalai, Alexander J.; Hu, Xianzhen; Adams, Jillian E.; Barnum, Scott R.

    2007-01-01

    Complement per se has been shown to play an important role in demyelinating disease but controversy remains regarding the role of C3 in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. In this study we used C3-/- mice to confirm previous findings that C3 is required for full development of EAE. Furthermore, C3+/- mice (with serum C3 levels 50% that of wild type mice) developed EAE with a severity intermediate between wild type and C3-/- mice. Importantly transfer of wild type encephalitogenic T cells to C3-/- mice resulted in attenuated EAE. C3-/- mice with EAE had fewer CD4+ and CD8+ T cells in the CNS and 50% fewer of these cells produced IFN-γ compared to wild type mice. When treated with anti-CD3 antibody, CD4+ T cell from wild type and C3-/- mice had similar activation profiles as judged by IFN-γ production and CD25 and CD69 expression, indicating there is no gross or intrinsic defect in T cells from C3-/- mice. T cells from primed C3-/- mice proliferated comparably to that of control T cells on re-stimulation with MOG peptide. Our results confirm a requirement for C3 for maximal development of EAE and suggest that receptors for C3-derived activation fragments might be a viable therapeutic target for prevention and treatment demyelinating disease. PMID:17353050

  14. Effector and Suppressor Roles for LFA-1 During the Development of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Dugger, Kari J.; Zinn, Kurt R.; Weaver, Casey; Bullard, Daniel C.; Barnum, Scott R.

    2009-01-01

    LFA-1 (CD11a/CD18) is a member of the β2-integrin family of adhesion molecules important in leukocyte trafficking and activation. Although LFA-1 is thought to contribute to the development of experimental autoimmune encephalomyelitis (EAE) primarily through its functions on effector T cells, its importance on other leukocyte populations remains unexplored. To address this question, we performed both adoptive transfer EAE experiments involving CD11a-/- mice and trafficking studies using bioluminescent T cells expressing luciferase under the control of a CD2 promoter (T-lux cells). Transfer of encephalitogenic CD11a-/- T cells to wild type mice resulted in a significant reduction in overall EAE severity compared to control transfers. We also observed, using in vivo imaging techniques, that CD11a-/- T-lux cells readily infiltrated lymph nodes and the CNS of wild type recipients with kinetics comparable to CD11a+/+ transfers, although their overall numbers in these organs were reduced. Surprisingly, transfer of encephalitogenic wild type T cells to CD11a-/- mice induced a severe and sometimes fatal EAE disease course, associated with massive T cell infiltration and proliferation in the CNS. These data indicate that LFA-1 expression on leukocytes in recipient mice plays an important immunomodulatory role in EAE. Thus, LFA-1 acts as a key regulatory adhesion molecule during the development of EAE, serving both pro- and anti-inflammatory roles in disease pathogenesis. PMID:19010554

  15. [GAP-43 and its proteolytic fragment in spinal cord cells of rats with experimental autoimmune encephalomyelitis].

    PubMed

    Tikhomirova, M S; Karpenko, M N; Kirik, O V; Sukhorukova, E G; Korzhevskiĭ, D É; Klimenko, V M

    2015-01-01

    The regenerative capacity of the Central Nervous System (CNS) is a key factor implicated in the pathogenesis of neurodegenerative diseases. In the present study, the regenerative capacity of the CNS is considered using one of the markers of regeneration, Growth Associated Protein-43 (GAP-43) and its proteolytic fragment GAP-43-3 in the Experimental Autoimmune Encephalomyelitis (EAE) animal model of multiple sclerosis. The EAE on Wistar rats was characterized as an adequate model of multiple sclerosis, with typical clinical (pares and paralysis) and morphological (infiltration of spinal cord and deformation of motoneurons) disorders. Normally about 60% of GAP-43 is cleaved by m-calpain and stays in the form of GAP-43-3. During severe form of EAE up to 85% of GAP-43 can be found cleaved. We speculated that the cleavage of GAP-43 can play a crucial role for regenerative capacity of CNS during EAE development. Thus the distribution of GAP-43 and GAP-43-3 in the spinal cord was analyzed. The manifestation of clinical signs of EAE has been found to be in correlation with the levels of GAP-43 proteolysis both in the homogenate of the spinal cord and on the spinal cord slices. The immunoreactive staining enabled the observation of the accumulation of GAP-43-3 predominantly in microglial cells.

  16. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis.

    PubMed

    Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian

    2013-04-03

    There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.

  17. Autoimmune Hepatitis

    MedlinePlus

    ... Cholangitis Wilson Disease Liver Disease A-Z Autoimmune Hepatitis What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ... bacteria, viruses, toxins, and medications. What causes autoimmune hepatitis? A combination of autoimmunity, environmental triggers, and a ...

  18. Neuroprotective arylpiperazine dopaminergic/serotonergic ligands suppress experimental autoimmune encephalomyelitis in rats.

    PubMed

    Popovic, Marjan; Stanojevic, Zeljka; Tosic, Jelena; Isakovic, Aleksandra; Paunovic, Verica; Petricevic, Sasa; Martinovic, Tamara; Ciric, Darko; Kravic-Stevovic, Tamara; Soskic, Vukic; Kostic-Rajacic, Sladjana; Shakib, Kaveh; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2015-10-01

    Arylpiperazine-based dopaminergic/serotonergic ligands exert neuroprotective activity. We examined the effect of arylpiperazine D2 /5-HT1A ligands, N-{4-[2-(4-phenyl-piperazin-1-yl)-ethyl}-phenyl]-picolinamide (6a) and N-{3-[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide (6b), in experimental autoimmune encephalomyelitis (EAE), a model of neuroinflammation. Both compounds (10 mg/kg i.p.) reduced EAE clinical signs in spinal cord homogenate-immunized Dark Agouti rats. Compound 6b was more efficient in delaying the disease onset and reducing the maximal clinical score, which correlated with its higher affinity for D2 and 5-HT1A receptors. The protection was retained if treatment was limited to the effector (from day 8 onwards), but not the induction phase (day 0-7) of EAE. Compound 6b reduced CNS immune infiltration and expression of mRNA encoding the proinflammatory cytokines tumor necrosis factor, IL-6, IL-1, and GM-CSF, TH 1 cytokine IFN-γ, TH 17 cytokine IL-17, as well as the signature transcription factors of TH 1 (T-bet) and TH 17 (RORγt) cells. Arylpiperazine treatment reduced apoptosis and increased the activation of anti-apoptotic mediators Akt and p70S6 kinase in the CNS of EAE animals. The in vitro treatment with 6b protected oligodendrocyte cell line OLN-93 and neuronal cell line PC12 from mitogen-activated normal T cells or myelin basic protein-activated encephalitogenic T cells. In conclusion, arylpiperazine dopaminergic/serotonergic ligands suppress EAE through a direct neuroprotective action and decrease in CNS inflammation. Arylpiperazine dopaminergic/serotonergic ligands reduce neurological symptoms of acute autoimmune encephalomyelitis in rats without affecting the activation of autoreactive immune response, through mechanisms involving a decrease in CNS immune infiltration, as well as direct protection of CNS from immune-mediated damage. These data indicate potential usefulness of arylpiperazine-based compounds in the treatment of

  19. Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis

    PubMed Central

    Johnson, Thomas W.; Wu, Ying; Nathoo, Nabeela; Rogers, James A.; Wee Yong, V.; Dunn, Jeff F.

    2016-01-01

    Background Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS. Objective Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course. Methods C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls. Results There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits. Conclusions A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS. PMID:27907119

  20. Comparative assessment of PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune encephalomyelitis

    PubMed Central

    González-García, C; Bravo, B; Ballester, A; Gómez-Pérez, R; Eguiluz, C; Redondo, M; Martínez, A; Gil, C; Ballester, S

    2013-01-01

    BACKGROUND AND PURPOSE PDE4 inhibition suppresses experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, side effects hinder PDE4 inhibitors clinical use. PDE7 inhibition might constitute an alternative therapeutic strategy, but few data about the anti-inflammatory potential of PDE7 inhibitors are currently available. We have used the EAE model to perform a comparative evaluation of PDE4 and PDE7 inhibition as strategies for MS treatment. EXPERIMENTAL APPROACH Two PDE7 inhibitors, the sulfonamide derivative BRL50481 and the recently described quinazoline compound TC3.6, were assayed to modulate EAE in SJL mice, in comparison with the well-known PDE4 inhibitor Rolipram. We evaluated clinical signs, presence of inflammatory infiltrates in CNS and anti-inflammatory markers. We also analysed the effect of these inhibitors on the inflammatory profile of spleen cells in vitro. KEY RESULTS TC3.6 prevented EAE with efficacy similar to Rolipram, while BRL50481 had no effect on the disease. Differences between both PDE7 inhibitors are discussed. Data from Rolipram and TC3.6 showed that PDE4 and PDE7 inhibition work through both common and distinct pathways. Rolipram administration caused an increase in IL-10 and IL-27 expression which was not found after TC3.6 treatment. On the other hand, both inhibitors reduced IL-17 levels, prevented infiltration in CNS and increased the expression of the T regulator cell marker Foxp3. CONCLUSIONS AND IMPLICATIONS These results provide new information about the effects of Rolipram on EAE, underline PDE7 inhibition as a new therapeutic target for inflammatory diseases and show the value of TC3.6 to prevent EAE, with possible consequences for new therapeutic tools in MS. PMID:23869659

  1. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Oxombre, B; Lee-Chang, C; Duhamel, A; Toussaint, M; Giroux, M; Donnier-Maréchal, M; Carato, P; Lefranc, D; Zéphir, H; Prin, L; Melnyk, P; Vermersch, P

    2015-01-01

    Background and Purpose Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. Experimental Approach EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139–151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. Key Results Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. Conclusions and Implications This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS. PMID:25521311

  2. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.

    PubMed

    Van Kaer, Luc; Wu, Lan; Parekh, Vrajesh V

    2015-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.

  3. Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101.

    PubMed

    Bar-Yehuda, Sara; Luger, Dror; Ochaion, Avivit; Cohen, Shira; Patokaa, Renana; Zozulya, Galina; Silver, Phyllis B; de Morales, Jose Maria Garcia Ruiz; Caspi, Rachel R; Fishman, Pnina

    2011-11-01

    Uveitis is an inflammation of the middle layer of the eye with a high risk of blindness. The Gi protein associated A3 adenosine receptor (A3AR) is highly expressed in inflammatory cells whereas low expression is found in normal cells. CF101 is a highly specific agonist at the A3AR known to induce a robust anti-inflammatory effect in different experimental animal models. The CF101 mechanism of action entails down-regulation of the NF-κB-TNF-α signaling pathway, resulting in inhibition of pro-inflammatory cytokine production and apoptosis of inflammatory cells. In this study the effect of CF101 on the development of retinal antigen interphotoreceptor retinoid-binding protein (IRBP)-induced experimental autoimmune uveitis (EAU) was assessed. Oral treatment with CF101 (10 µg/kg, twice daily), initiated upon disease onset, improved uveitis clinical score measured by fundoscopy and ameliorated the pathological manifestations of the disease. Shortly after treatment with CF101 A3AR expression levels were down-regulated in the lymph node and spleen cells pointing towards receptor activation. Downstream events included a decrease in PI3K and STAT-1 and proliferation inhibition of IRPB auto-reactive T cells ex vivo. Inhibition of interleukin-2, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) production and up-regulation of interleukin-10 was found in cultured splenocytes derived from CF101-treated animals. Overall, the present study data point towards a marked anti-inflammatory effect of CF101 in EAU and support further exploration of this small molecule drug for the treatment of uveitis.

  4. Carbon nanospheres mediated delivery of nuclear matrix protein SMAR1 to direct experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Chemmannur, Sijo V; Bhagat, Prasad; Mirlekar, Bhalchandra; Paknikar, Kishore M; Chattopadhyay, Samit

    2016-01-01

    Owing to the suppression of immune responses and associated side effects, steroid based treatments for inflammatory encephalitis disease can be detrimental. Here, we demonstrate a novel carbon nanosphere (CNP) based treatment regime for encephalomyelitis in mice by exploiting the functional property of the nuclear matrix binding protein SMAR1. A truncated part of SMAR1 ie, the DNA binding domain was conjugated with hydrothermally synthesized CNPs. When administered intravenously, the conjugate suppressed experimental animal encephalomyelitis in T cell specific conditional SMAR1 knockout mice (SMAR−/−). Further, CNP-SMAR1 conjugate delayed the onset of the disease and reduced the demyelination significantly. There was a significant decrease in the production of IL-17 after re-stimulation with MOG. Altogether, our findings suggest a potential carbon nanomaterial based therapeutic intervention to combat Th17 mediated autoimmune diseases including experimental autoimmune encephalomyelitis. PMID:27274234

  5. Localization of interferon-gamma and Ia-antigen in T cell line-mediated experimental autoimmune encephalomyelitis.

    PubMed Central

    Stoll, G.; Müller, S.; Schmidt, B.; van der Meide, P.; Jung, S.; Toyka, K. V.; Hartung, H. P.

    1993-01-01

    This study reports the cellular localization of interferon-gamma (IFN-gamma) and MHC class II antigen (Ia) in the spinal cord of rats with experimental autoimmune encephalomyelitis induced by adoptive transfer of myelin basic protein-specific T cells. Numerous IFN-gamma-positive cells, stained with two different monoclonal antibodies against IFN-gamma, were present from days 3 to 7 after cell transfer. Their number was greatly reduced on day 10. A subpopulation of T cells was IFN-gamma positive. Moreover, a large number of ED1-positive macrophages contained IFN-gamma immunoreactivity. The transient presence of immune cells containing IFN-gamma immunoreactivity in experimental autoimmune encephalomyelitis suggests a pathogenic role of this cytokine in immune-mediated demyelination of the central nervous system. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7685153

  6. Herbal medicine Gamgungtang down-regulates autoimmunity through induction of TH2 cytokine production by lymphocytes in experimental thyroiditis model.

    PubMed

    Sa, Eun-Ho; Jin, Un-Ho; Kim, Dong-Soo; Kang, Bong-Seok; Ha, Ki-Tae; Kim, June-Ki; Park, Won-Hwan; Kim, Cheorl-Ho

    2007-02-12

    The crude herbal formulation, Gamgungtang (GGT), has been shown to protect animals against a wide range of spontaneously developing or induced autoimmune diseases. We have previously reported that GGT shows marked down-regulation of several experimental autoimmune diseases. Although very effective at preventing thyroid infiltrates in mice immunized with mouse deglycosylated thyroglobulin and complete Freund's adjuvant and in spontaneous models of thyroiditis, it completely failed to modify experimental autoimmune thyroiditis (EAT) induced in mice immunized with mouse thyroglobulin and lipopolysaccharide. In this study, in an effort to elucidate the mechanisms by which GGT suppresses EAT, and autoimmunity in general, we investigated the in vivo effects of this drug on the Th1/Th2 lymphocyte balance, which is important for the induction or inhibition of autoreactivity. Naive SJL/J mice were treated orally for 5 days with GGT (80 mg/(kg day)). Spleen cells were obtained at various time points during the treatment period and were stimulated in vitro with concanavalin A. Interleukins IL-4, IL-10 and IL-12, transforming growth factor-beta (TGF-beta) and interferon-gamma (IFN-gamma) cytokine production was evaluated at the protein levels of the cytokines in the medium and mRNA expressions. A significant upregulation of IL-4, IL-10 and TGF-beta was observed following treatment with GGT, which peaked at day 5 (IL-10) or day 10 (IL-4). On the other hand, IL-12 and IFN-gamma production were either unchanged or decreased. It seems therefore that GGT induces in vivo a shift towards Th2 lymphocytes which may be one of the mechanisms of down-regulation of the autoimmune reactivity in EAT. Our observations indicate that down-regulation of TH1 cytokines (especially IL-12) and enhancement of Th2 cytokine production may play an important role in the control of T-cell-mediated autoimmunity. These data may contribute to the design of new immunomodulating treatments for a group of

  7. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells.

    PubMed

    Schluesener, H J; Seid, K; Kretzschmar, J; Meyermann, R

    1998-10-01

    Allograft inflammatory factor-1 (AIF-1) is a Ca2+ binding peptide expressed predominantly by activated monocytes. In order to investigate the role of AIF-1 in autoimmune lesions of the rat nervous system, we have used a synthetic gene to express AIF-1 in E. coli and have produced monoclonal antibodies against AIF-1. AIF-1 was localized to monocytes/macrophages with rather selective staining of a minor rat monocyte subpopulation of lymphoid tissue. We then investigated expression of AIF-1 in experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), and uveitis (EAU). Within the local inflammatory lesions, infiltrating macrophages are prominently stained. In the diseased brain, AIF-1-positive microglial cells are not only found in the direct vicinity of the infiltrate, but widespread activation is seen in the parenchyma. This is the first demonstration that AIF-1 is present in autoimmune lesions. Immunostaining of microglial cells is noteworthy, as these cells are strategically placed regulatory elements of CNS immunosurveillance. Thus, AIF-1 might be a valuable marker to dissect the local monocyte heterogeneity in autoimmune disease.

  8. Immunosuppressive activity of a novel peptide analog of α-melanocyte stimulating hormone (α-MSH) in experimental autoimmune uveitis.

    PubMed

    Edling, Andrea E; Gomes, Danilo; Weeden, Timothy; Dzuris, John; Stefano, Jim; Pan, Clark; Williams, John; Kaplan, Johanne; Perricone, Michael A

    2011-07-01

    Autoimmune uveitis is an inflammatory disorder of the eye that can lead to pain and vision loss. Steroids and immunosuppressive drugs are currently the only therapeutics for uveitis and have serious ocular and systemic toxicities. Therefore, safer alternative therapeutics are desired. Alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide that suppresses effector T cell functions, induces regulatory T cells and has beneficial effects in certain autoimmune and transplant models. A novel d-amino acid peptide analog of native α-MSH (dRI-α-MSH) was produced that was protected from protease digestion and had increased selectivity for the melanocortin-1 receptor. Systemic delivery of the dRI-α-MSH analog dramatically suppressed disease progression and retained retinal architecture in the experimental autoimmune uveitis (EAU) model. Local delivery by periorbital injection was equally effective. Importantly, treatment with the novel dRI-α-MSH analog suppressed uveitis with a similar magnitude to the corticosteroid, dexamethasone. Data indicate that the novel dRI-α-MSH analogs show anti-inflammatory activities and have potential therapeutic use in uveitis and other autoimmune diseases.

  9. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  10. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  11. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    PubMed

    Fu, Weisi; Taylor, Bradley K

    2015-05-19

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.

  12. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats

    PubMed Central

    DellaValle, Brian; Brix, Gitte S.; Brock, Birgitte; Gejl, Michael; Landau, Anne M.; Møller, Arne; Rungby, Jørgen; Larsen, Agnete

    2016-01-01

    Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1

  13. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    PubMed

    Lutz, Norbert W; Fernandez, Carla; Pellissier, Jean-François; Cozzone, Patrick J; Béraud, Evelyne

    2013-01-01

    Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE) and adjuvant arthritis (AA) in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA) and spinal-cord homogenate (SC-H), whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group). Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE) or extra-cerebral (AA) inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and/or due to the

  14. Adoptive transfer of experimental autoimmune hepatitis in mice: cellular interaction between donor and recipient mice

    PubMed Central

    Ogawa, M.; Mori, Y.; Mori, T.; Ueda, S.; Yoshida, H.; Kato, I.; Iesato, K.; Wakashin, Y.; Azemoto, R.; Wakashin, M.; Okuda, K.; Ohto, M.

    1988-01-01

    This report extends our previous study on experimental autoimmune hepatitis in C57BL/6 (B6) mice. Cellular immunity involved in the induction of liver injury in this model was studied by transfer of primed spleen cells from hepatitis donor mice to syngeneic normal recipient mice. The most prominent liver damage in recipient B6 mice was induced by transfer of nylon wool adherent spleen cells from hepatitis donor mice, and T cells in this fraction were the essential requirement for the liver damage in the recipient mice. Nylon wool adherent spleen cells from hepatitis donor mice after depletion of the suppressor T-cell function by low-dose (300 rad) irradiation induced more severe liver injury compared to the same cells without irradiation. When the recipient mice were depleted of lymphocytes by low or high dose (700 rad) whole body irradiation, transfer of primed spleen cells from hepatitis donor mice did not induce liver lesion in the lymphocyte-depleted mice. This low susceptibility of lymphocyte-depleted recipient mice to primed spleen cells of hepatitis mice was no longer demonstrated after reconstitution with normal spleen cells. In a cell-migration study using 51Cr-labelled spleen cells, it was shown that a considerable number of infiltrating cells in the liver of recipient mice were derived from recipient mice themselves. These results seem to indicate that cell-to-cell interaction between radiosensitive precursor cells of recipient mice and liver-antigen-primed T cells from hepatitis donor mice play an essential role in the induction of liver injury in the recipient mice. ImagesFig. 1 PMID:3052945

  15. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  16. Protective mechanisms of berberine against experimental autoimmune myocarditis in a rat model.

    PubMed

    Liu, Xuefei; Zhang, Xinghua; Ye, Lin; Yuan, Haitao

    2016-04-01

    Berberine, an alkaloid derivative extracted from numerous plants of the general Berberis and Coptis, has been reported to have immunomodulatory effects against immune-mediated disorders in emerging studies. In this study, the effects of berberine and its underlying molecular mechanisms were investigated from the myosin-induced myocardial injury in rats. Lewis rats were immunized with porcine cardiac myosin to induce experimental autoimmune myocarditis (EAM), treated with berberine and specific JAK inhibitor AG490 as a positive control. Our data showed that both berberine and AG490 significantly reduced the impaired cardiac function and the pathophysiological severity, impeded high levels of anti-cardiac myosin antibody of EAM rats. Th17 and Th1 cells as well as their cytokines IL-17 and IFN-γ were up-regulated in EAM. However, the excessive increase of Th17/Th1 responses was restored by berberine and AG490. We also examined the expression level of phosphorylated proteins of JAK-STAT pathway which has a key role in the Th17 and Th1 lineage commitment. The phosphorylated (p)-STAT1,STAT3 and STAT4 increased significantly in EAM, while berberine notably attenuated their excessive expression. This effect of berberine was equivalent to that of AG490 blockade. Our current study demonstrated that berberine could ameliorate EAM and the underling mechanisms may be due to the fact that berberine differentially modulates the activities of p-STAT1, p-STAT3 and p-STAT4 to suppress Th17 and Th1 cell differentiation.

  17. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario

    2017-01-01

    Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677

  18. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice.

    PubMed

    Jhun, JooYeon; Lee, Seung Hoon; Byun, Jae-Kyeong; Jeong, Jeong-Hee; Kim, Eun-Kyung; Lee, Jennifer; Jung, Young-Ok; Shin, Dongyun; Park, Sung Hwan; Cho, Mi-La

    2015-08-01

    Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant synthesized in human body. This enzyme promotes immune system function and can be used as a dietary supplement. Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. RA results in severe destruction of cartilage and disability. This study aimed to investigate the effect of CoQ10 on inflammation and Th17 cell proliferation on an experimental rheumatoid arthritis (RA) mice model. CoQ10 or cotton seed oil as control was orally administrated once a day for seven weeks to mice with zymosan-induced arthritis (ZIA). Histological analysis of the joints was conducted using immunohistochemistry. Germinal center (GC) B cells, Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. mRNA expression was measured by real-time PCR and protein levels were estimated by enzyme-linked immunosorbent assay (ELISA). Flow cytometric analysis (FACS) was used to evaluate Th17 cells and Treg cells. CoQ10 mitigated the severity of ZIA and decreased serum immunoglobulin concentrations. CoQ10 also reduced RANKL-induced osteoclastogenesis, inflammatory mediators and oxidant factors. Th17/Treg axis was reciprocally controlled by CoQ10 treatment. Moreover, CoQ10 treatment on normal mouse and human cells cultured in Th17 conditions decreased the number of Th17 cells and enhanced the number of Treg cells. CoQ10 alleviates arthritis in mice with ZIA declining inflammation, Th17 cells and osteoclast differentiation. These findings suggest that CoQ10 can be a potential therapeutic substance for RA.

  19. Imbalance Between Th17 Cells and Regulatory T Cells During Monophasic Experimental Autoimmune Uveitis.

    PubMed

    Zhang, Lian; Wan, Fangzhu; Song, Jike; Tang, Kai; Zheng, Fengming; Guo, Junguo; Guo, Dadong; Bi, Hongsheng

    2016-02-01

    The aim of this study is to explore the dynamic changes in IL-17-expressing T cells (Th17)/Treg expression in monophasic experimental autoimmune uveitis (mEAU). mEAU was induced in Lewis rats with IRBP1177-1191 peptide and evaluated clinically and pathologically on days 9, 13, 18, 23, 28, 35, and 48. Lymphocytes isolated from inguinal lymph nodes were subjected to flow cytometry to analyze the frequency of Th17/Treg cells. The levels of cytokines (IL-17, IL-6, IL-10, transforming growth factor (TGF)-β) in serum were detected by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative PCR (RT-PCR) was used for measuring the levels of IL-17, IL-6, TGF-β, and Foxp3. Clinical and histopathologic assessment showed that mEAU began on day 9, peaked on day 13, and decreased to normal on day 18. The frequency of Th17 cells increased obviously on day 9, peaking on day 13, while the frequency of Treg cells increased on day 13, peaked on day 18, and remained at a high level until day 48. In the serum, the levels of IL-17 and IL-6 peaked on day 9 and gradually decreased to normal on day 28. The level of TGF-β increased on day 9, peaked on day 13, and decreased to normal on day 35. Meanwhile, the level of IL-10 increased on day 9 and stayed at a high level until day 48. Additionally, the above results were further confirmed by RT-PCR. The imbalance between Th17 and Treg cells contributes to the onset and progression of mEAU, and a compartmental imbalance of Treg over Th17 exists in the recovery phase of mEAU.

  20. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation.

    PubMed

    Miyawaki, Akimitsu; Mitsuhara, Yusuke; Orimoto, Aya; Nakayasu, Yusuke; Tsunoda, Shin-Ichi; Obana, Masanori; Maeda, Makiko; Nakayama, Hiroyuki; Yoshioka, Yasuo; Tsutsumi, Yasuo; Fujio, Yasushi

    2016-08-01

    Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes.

  1. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis

    SciTech Connect

    Massa, P.T.; ter Meulen, V.; Fontana, A.

    1987-06-01

    In search of a phenotypic marker determining genetically controlled susceptibility to delayed-type hypersensitivity (DTH) reactions in the brain-in particular, experimental autoimmune encephalomyelitis (EAE)- the authors have compared the ..gamma..-interferon (IFN-..gamma..) induction of Ia molecules on astrocytes and macrophages from rat and mouse strains that are susceptible or resistant to this disease. They focused on Ia expression because DTH reactions to self or foreign antigens are largely mediated by lymphocytes restricted by class II (Ia) antigens of the major histocompatibility complex (MHC). The data demonstrate that Lewis (fully susceptible) and Brown Norway (BN) (fully resistant) rats are very different in that Lewis astrocytes express much higher levels of Ia than BN astrocytes. Similar data were obtained from an analysis of EAE-susceptible and -resistant mouse strains (SJL and BALB/c, respectively), which suggest that this phenomenon may be universal and not limited to only one mammalian species. At least one gene responsible for Ia hyperinduction is located outside the rat RT-1 or the mouse MHC locus. Animals congenic at the RT-1 or MHC locus of the resistant strain but with background genes of the susceptible strain exhibit intermediate levels of Ia compared to fully resistant and susceptible rodents, which fits well with the reduced EAE susceptibility of these congenic animals. Furthermore, hyperinduction of Ia is astrocyte specific, since peritoneal macrophages of susceptible and resistant strains exhibit identical profiles of Ia induction. Thus, astrocyte Ia hyperinducibility may be a major strain- and tissue-specific factor that contributes to Ia-restricted DTH reactions in the brain.

  2. Regulation of ceramide synthase 6 in a spontaneous experimental autoimmune encephalomyelitis model is sex dependent.

    PubMed

    Eberle, Max; Ebel, Philipp; Wegner, Marthe-Susanna; Männich, Julia; Tafferner, Nadja; Ferreiros, Nerea; Birod, Kerstin; Schreiber, Yannick; Krishnamoorthy, Gurumoorthy; Willecke, Klaus; Geisslinger, Gerd; Grösch, Sabine; Schiffmann, Susanne

    2014-11-15

    Ceramides (Cer) are mediators of inflammatory processes. In a chronic experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), we observed a significant elevation of C16-Cer and its synthesizing enzyme, ceramide synthase(CerS)6, in the lumbar spinal cord. In the present study, we have confirmed that C16-Cer and CerS6 are also upregulated in the lumbar spinal cord in a spontaneous relapse-remitting EAE model, using SJL mice overexpressing a transgenic T cell receptor (TCR1640). CerS6 was found to be expressed in macrophages, T cells and B cells in EAE lesions. In macrophages, we demonstrated that interferon gamma (IFN-γ)-induced CerS6 upregulation was amplified by 17ß-estradiol, an action that was further accompanied by increased upregulation of tumor necrosis factor alpha (TNF-α). Accordingly, CerS6 and TNF-α expression was upregulated predominantly in the spinal cord in female TCR1640 mice, which usually develop the relapse-remitting form of EAE, while male TCR1640 mice showed an attenuated regulation of CerS6 and TNF-α and exhibit mostly chronic disease progression. Furthermore, expression of TNFR2, one of two receptors of TNF-α, which is linked to neuroprotection and remyelination, was also upregulated to a greater extent during EAE in female TCR1640 mice in comparison to male TCR1640 mice. Taken together, our results confirm the upregulation of CerS6 and C16-Cer in an adjuvant-independent, physiological EAE model and further suggest an anti-inflammatory role of CerS6 in the regulation of the disease course in female TCR1640 mice via TNF-α/TNFR2.

  3. Pain in experimental autoimmune encephalitis: a comparative study between different mouse models

    PubMed Central

    2012-01-01

    Background Pain can be one of the most severe symptoms associated with multiple sclerosis (MS) and develops with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE) mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55 peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the spinal cord and investigated functional changes in the peripheral nerves using electrophysiology. Methods We analyzed thermal and mechanical sensitivity of the hindpaw in both EAE models during the whole disease course. Qualitative and quantitative immunohistochemical analysis of pain-related molecules and plasticity-related genes was performed on spinal cord sections at different timepoints during the disease course. Moreover, we investigated functional changes in the peripheral nerves using electrophysiology. Results Mice in both EAE models developed thermal hyperalgesia during the chronic phase of the disease. However, whereas SJL mice developed marked mechanical allodynia over the chronic phase of the disease, C57BL/6 mice developed only minor mechanical allodynia over the onset and peak phase of the disease. Interestingly, the magnitude of glial changes in the spinal cord was stronger in SJL mice than in C57BL/6 mice and their time course matched the temporal profile of mechanical hypersensitivity. Conclusions Diverse EAE models bearing genetic, clinical and histopathological heterogeneity, show different profiles of sensory and pathological changes and thereby enable studying the mechanistic basis

  4. Thermal and motor behavior in experimental autoimmune encephalitis in Lewis rats.

    PubMed

    Wrotek, Sylwia; Rosochowicz, Tomasz; Nowakowska, Anna; Kozak, Wiesław

    2014-08-01

    Thermoregulation in patients, who suffer from multiple sclerosis (MS) is impaired and may result in either increases or decreases in body temperature. Disturbances in body temperature correlate with acute relapses, and for this reason, it is an important issue in everyday life of those who suffer from MS. Although rat experimental autoimmune encephalitis (EAE) appeared useful for the examination of current therapies against MS, it has not been thoroughly investigated in terms of body temperature. The purpose of this study was to examine the effect of EAE induction on thermal and motor behavior in the rats. Subcutaneous injection of encephalitogenic emulsion into both pads of hind feet of the Lewis rats provoked symptoms of EAE. Body temperature (T(b)) and motor activity of rats were measured using biotelemetry system. We report a significant increase in body temperature within 24 h prior to the EAE manifestation (12 h average of T(b) for EAE induced animals was higher by 1.07 ± 0.06 °C during day-time and by 0.5 ± 0.05 °C during night time in comparison to the control rats). On the other hand, the onset of EAE symptoms was associated with gradual decrease of body temperature, and during the first night-time T(b) was lower by 1.03 ± 0.08 °C in comparison to the control rats. The inhibition of the motor activity started from the night time, 2 days before EAE onset. On the basis of our data, we concluded that the pattern of body temperature changes after EAE induction may be considered as useful symptom (prodrom) to predict precisely the time of EAE onset. Furthermore, we suggest that EAE in rats may be a suitable model to study mechanism of body temperature alternations observed in MS patients.

  5. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.

  6. Prevention of passively transferred experimental autoimmune myasthenia gravis by a phage library-derived cyclic peptide

    PubMed Central

    Venkatesh, Natarajan; Im, Sin-Heyog; Balass, Moshe; Fuchs, Sara; Katchalski-Katzir, Ephraim

    2000-01-01

    Many pathogenic antibodies in myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are directed against the main immunogenic region (MIR) of the acetylcholine receptor (AcChoR). These antibodies are highly conformation dependent; hence, linear peptides derived from native receptor sequences are poor candidates for their immunoneutralization. We employed a phage-epitope library to identify peptide-mimotopes capable of preventing the pathogenicity of the anti-MIR mAb 198. We identified a 15-mer peptide (PMTLPENYFSERPYH) that binds specifically to mAb 198 and inhibits its binding to AcChoR. A 10-fold increase in the affinity of this peptide was achieved by incorporating flanking amino acid residues from the coat protein as present in the original phage library. This extended peptide (AEPMTLPENYFSERPYHPPPP) was constrained by the addition of cysteine residues on both ends of the peptide, thus generating a cyclic peptide that inhibited the binding of mAb 198 to AcChoR with a potency that is three orders of magnitude higher when compared with the parent library peptide. This cyclic peptide inhibited the in vitro binding of mAb 198 to AcChoR and prevented the antigenic modulation of AcChoR caused by mAb 198 in human muscle cell cultures. The cyclic peptide also reacted with several other anti-MIR mAbs and the sera of EAMG rats. In addition, this peptide blocked the ability of mAb 198 to passively transfer EAMG in rats. Further derivatization of the cyclic peptide may aid in the design of suitable synthetic mimotopes for modulation of MG. PMID:10639153

  7. Pre‐existing central nervous system lesions negate cytokine requirements for regional experimental autoimmune encephalomyelitis development

    PubMed Central

    Li, Xin; Lees, Jason R.

    2013-01-01

    Summary In region‐specific forms of experimental autoimmune encephalomyelitis (EAE), lesion initiation is regulated by T‐cell‐produced interferon‐γ (IFN‐γ) resulting in spinal cord disease in the presence of IFN‐γ and cerebellar disease in the absence of IFN‐γ. Although this role for IFN‐γ in regional disease initiation is well defined, little is known about the consequences of previous tissue inflammation on subsequent regional disease, information vital to the development of therapeutics in established disease states. This study addressed the hypothesis that previous establishment of regional EAE would determine subsequent tissue localization of new T‐cell invasion and associated symptoms regardless of the presence or absence of IFN‐γ production. Serial transfer of optimal or suboptimal doses of encephalitogenic IFN‐γ‐sufficient or ‐deficient T‐cell lines was used to examine the development of new clinical responses associated with the spinal cord and cerebellum at various times after EAE initiation. Previous inflammation within either cerebellum or spinal cord allowed subsequent T‐cell driven inflammation within that tissue regardless of IFN‐γ presence. Further, T‐cell IFN‐γ production after initial lesion formation exacerbated disease within the cerebellum, suggesting that IFN‐γ plays different roles at different stages of cerebellar disease. For the spinal cord, IFN‐γ‐deficient cells (that are ordinarily cerebellum disease initiators) were capable of driving new spinal‐cord‐associated clinical symptoms more than 60 days after the initial acute EAE resolution. These data suggest that previous inflammation modulates the molecular requirements for new neuroinflammation development. PMID:23121407

  8. Idazoxan reduces blood-brain barrier damage during experimental autoimmune encephalomyelitis in mouse.

    PubMed

    Wang, Xin-Shi; Fang, Hui-Lin; Chen, Yu; Liang, Shan-Shan; Zhu, Zhen-Guo; Zeng, Qing-Yi; Li, Jia; Xu, Hui-Qin; Shao, Bei; He, Jin-Cai; Hou, Sheng-Tao; Zheng, Rong-Yuan

    2014-08-05

    We have previously shown that Idazoxan (IDA), an imidazoline 2 receptor ligand, is neuroprotective against spinal cord injury caused by experimental autoimmune encephalomyelitis (EAE) in mouse, an animal modal of multiple sclerosis (MS). However, the protective mechanism remains unclear. Here, we provided evidence to show that IDA confers neuroprotection through reduction in blood-brain barrier (BBB) damage. EAE was induced by immunizing C57 BL/6 mice with myelin oligodendrocyte glycoprotein35-55 amino acid peptide (MOG35-55). IDA was administrated for 14 days after MOG immunization at 2 mg/kg (i.p., bid). Significant reduction in BBB damage occurred in the IDA-treated group of mice compared with the saline-treated group, as evidenced by the reduction in Evan׳s blue content in the brain tissue and the reduced BBB tight junction damage viewed under a transmission electron microscope. Moreover, EAE-induced reductions in tight junction proteins (JAM-1, Occludin, Claudin-5 and ZO-1) were also significantly ameliorated in IDA-treated mice, all of which supported the notion that IDA reduced BBB damage. Interestingly, the expression levels of extracellular matrix metalloproteinase-9 (MMP-9) and the ratio of MMP-9 against tissue inhibitor of metalloproteinase-1 (TIMP-1), which is known to be associated with MS-induced BBB damage, were significantly reduced in IDA-treated group, lending further support to the hypothesis that IDA confers brain protection through reducing BBB damage. This study raised a possibility that IDA is a promising pro-drug for development against MS.

  9. MiR-384 Regulates the Th17/Treg Ratio during Experimental Autoimmune Encephalomyelitis Pathogenesis

    PubMed Central

    Qu, Xuebin; Han, Jingjing; Zhang, Ying; Wang, Yuanyuan; Zhou, Jun; Fan, Hongbin; Yao, Ruiqin

    2017-01-01

    Specific miRNAs are involved in the pathogenesis of multiple sclerosis (MS), during which IL-17-producing CD4+ T helper (Th17) cells accumulate in the central nervous system (CNS). In this study, we identified levels of miR-384 as significantly increased in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Over-expression of miR-384 in vivo led to severe EAE, characterized by exacerbated demyelination, and increased inflammatory cell infiltration of the spinal cord; inhibition of miR-384 reversed these changes. Both the percentage of Th17, and ratio of Th17/regulatory T (Treg), cells were elevated in miR-384-transfected EAE mice, which was consistent with the observed upregulation of expression of IL-17 and the Th17 lineage-specific transcription factor, RORγt. Importantly, transfer of miR-384 overexpressing naïve T cells from wild-type (WT) to Rag1−/− mice, which are deficient in functional autologous T and B cells, led to aggravated EAE pathogenesis, while an miR-384 inhibited group was protected from EAE. Moreover, miR-384 promoted differentiation of naïve T cells into Th17 cells in vitro. Furthermore, target prediction and dual luciferase reporter assays demonstrated that suppressor of cytokine signaling 3 (SOCS3), a gene encoding protein with an established role in Th17 differentiation, was a direct target of miR-384. Our results demonstrate an important role for miR-384 in regulation of the Th17/Treg ratio during the pathogenesis of EAE, indicating that this molecule may have potential as a biomarker and/or therapeutic target in MS.

  10. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis.

    PubMed

    Bonfiglio, Tommaso; Olivero, Guendalina; Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario; Pittaluga, Anna

    2017-01-01

    Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1-0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders.

  11. Targeting CB(2) receptor as a neuroinflammatory modulator in experimental autoimmune encephalomyelitis.

    PubMed

    Lou, Zhi-Yin; Chen, Chan; He, Qing; Zhao, Chong-Bo; Xiao, Bao-Guo

    2011-12-01

    During immune mediated demyelinating lesions, the endocannabinoid system is involved in the pathogenesis of both neuroinflammation and neurodegeneration through different mechanisms. Here, we explored the cellular distribution of cannabinoid 2 receptor (CB(2)R) in the central nervous system (CNS) and detected the level of CB(2)R expression during experimental autoimmune encephalomyelitis (EAE) by RT-PCR, Western blot and immunostaining. Our results show that CB(2)R was expressed in neurons, microglia and astrocytes. During EAE, the expression of CB(2)R in spinal cord rose slowly at days 9 and 17 post immunization (p.i.), and elevated rapidly at day 28 p.i., while the expression of CB(2)R in spleen elevated rapidly and got a plateau at days 17 and 28 p.i. Only the increase of CB(2)R expression in spinal cord demonstrated a significant difference when compared to control mice immunized with complete Freund's adjuvant (CFA). The selective CB(2)R antagonist (SR144528) exacerbated EAE clinical severity accompanied by weight loss. SR144528 inhibited the expression of CB(2)R, but increased the expression of CB(1)R in brain, spinal cord and spleen. The administration of SR144528 declined interferon-γ, IL-17, IL-4, IL-10, IL-1β, IL-6 and tumor necrosis factor-α, but increased CX3CL1 in brain and/or spinal cord. In contrast, IL-17 and MCP-1 were increased, while CX3CL1 was decreased in splenic mononuclear cells as compared to vehicle controls. These results indicate that manipulation of CB(2)R may have therapeutic value in MS, but its complexity remains to be considered and studied for further clinical application.

  12. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response.

    PubMed

    Kwon, Ho-Keun; Kim, Gi-Cheon; Kim, Young; Hwang, Won; Jash, Arijita; Sahoo, Anupama; Kim, Jung-Eun; Nam, Jong Hee; Im, Sin-Hyeog

    2013-03-01

    The immunomodulatory effect of probiotics has been shown mainly in gastro-intestinal immune disorders and little information is available on the inflammation of central nervous system. Recently we reported that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental inflammatory disorders. In this study, we evaluated the prophylactic and therapeutic effects of IRT5 probiotics in experimental autoimmune encephalomyelitis (EAE), a T cell mediated inflammatory autoimmune disease of the central nervous system. Pretreatment of IRT5 probiotics before disease induction significantly suppressed EAE development. In addition, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset. Administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL10(+) producing or/and Foxp3(+) regulatory T cells, both in the peripheral immune system and at the site of inflammation. Collectively, our data suggest that IRT5 probiotics could be applicable to modulate T cell mediated neuronal autoimmune diseases, including multiple sclerosis.

  13. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models.

    PubMed

    Lühder, Fred; Gold, Ralf; Flügel, Alexander; Linker, Ralf A

    2013-04-01

    The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.

  14. Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice

    PubMed Central

    2013-01-01

    Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory

  15. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte

  16. Characterization of dendritic cells in testicular draining lymph nodes in a rat model of experimental autoimmune orchitis.

    PubMed

    Guazzone, V A; Hollwegs, S; Mardirosian, M; Jacobo, P; Hackstein, H; Wygrecka, M; Schneider, E; Meinhardt, A; Lustig, L; Fijak, M

    2011-06-01

    The maturation state of dendritic cells (DC) is regarded as a control point for the induction of peripheral tolerance or autoimmunity. Experimental autoimmune orchitis (EAO) serves as a model to investigate inflammatory-based testicular impairment, which ranks as a significant cause of male infertility. This work aimed to determine whether DC enrichment occurs organotypically in testicular draining lymph nodes (TLN) compared with LN draining the site of immunization (ILN) and thus contributes to the pathogenesis of autoimmune orchitis. In this regard, we quantified and characterized the DC from TLN and ILN in rats with EAO. Flow cytometric analysis showed a significant increase in the percentage of DC (OX62+) only in TLN from EAO rats compared with normal (N) and adjuvant control (C) groups. The number of DC from ILN and TLN expressing CD80, CD86 and major histocompatibility complex (MHC) II was comparable among N, C and experimental (E) groups at 30 and 50 days after the first immunization. However, TLN DC from EAO rats (50 days) showed an increase in mean fluorescence intensity for MHC II compared with N, C and E groups (30 days). The mRNA expression level of IL-10 and IL-12p35 was significantly upregulated in enriched DC fraction from TLN in EAO rats with no significant changes observed in ILN DC. The expression of IL-23p19 mRNA remained unchanged. Functional data, using proliferation assays showed that EAO-DC from TLN, but not from ILN, significantly enhanced the proliferation of naïve T cells compared with C-DC. In summary, our data suggest that the DC in TLN from orchitis rats are mature, present antigens to T cells and stimulate an autoimmune response against testicular antigens, thus causing immunological infertility.

  17. Complement anaphylatoxin receptors C3aR and C5aR are required in the pathogenesis of experimental autoimmune uveitis.

    PubMed

    Zhang, Lingjun; Bell, Brent A; Yu, Minzhong; Chan, Chi-Chao; Peachey, Neal S; Fung, John; Zhang, Xiaoming; Caspi, Rachel R; Lin, Feng

    2016-03-01

    Recent studies have suggested that reagents inhibiting complement activation could be effective in treating T cell mediated autoimmune diseases such as autoimmune uveitis. However, the precise role of the complement anaphylatoxin receptors (C3a and C5a receptors) in the pathogenesis of autoimmune uveitis remains elusive and controversial. We induced experimental autoimmune uveitis in mice deficient or sufficient in both C3a and C5a receptors and rigorously compared their retinal phenotype using various imaging techniques, including indirect ophthalmoscopy, confocal scanning laser ophthalmoscopy, spectral domain optical coherence tomography, topical endoscopic fundus imaging, and histopathological analysis. We also assessed retinal function using electroretinography. Moreover, we performed Ag-specific T cell recall assays and T cell adoptive transfer experiments to compare pathogenic T cell activity between wild-type and knockout mice with experimental autoimmune uveitis. These experiments showed that C3a receptor/C5a receptor-deficient mice developed much less severe uveitis than did control mice using all retinal examination methods and that these mice had reduced pathogenic T cell responses. Our data demonstrate that both complement anaphylatoxin receptors are important for the development of experimental autoimmune uveitis, suggesting that targeting these receptors could be a valid approach for treating patients with autoimmune uveitis.

  18. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest that green tea component epigallocatechin-3-gallate (EGCG) may have a beneficial effect in reducing the pathogenesis of autoimmune diseases; however, the underlying mechanism(s) are not well understood. In this study, we determined the effect of EGCG on the development of experiment...

  19. Lingo-1 inhibited by RNA interference promotes functional recovery of experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Chun-Juan; Qu, Chuan-Qiang; Zhang, Jie; Fu, Pei-Cai; Guo, Shou-Gang; Tang, Rong-Hua

    2014-12-01

    Lingo-1 is a negative regulator of myelination. Repairment of demyelinating diseases, such as multiple sclerosis (MS)/experimental autoimmune encephalomyelitis (EAE), requires activation of the myelination program. In this study, we observed the effect of RNA interference on Lingo-1 expression, and the impact of Lingo-1 suppression on functional recovery and myelination/remyelination in EAE mice. Lentiviral vectors encoding Lingo-1 short hairpin RNA (LV/Lingo-1-shRNA) were constructed to inhibit Lingo-1 expression. LV/Lingo-1-shRNA of different titers were transferred into myelin oligodendrocyte glycoprotein-induced EAE mice by intracerebroventricular (ICV) injection. Meanwhile, lentiviral vectors carrying nonsense gene sequence (LVCON053) were used as negative control. The Lingo-1 expression was detected and locomotor function was evaluated at different time points (on days 1,3,7,14,21, and 30 after ICV injection). Myelination was investigated by luxol fast blue (LFB) staining.LV/Lingo-1-shRNA administration via ICV injection could efficiently down-regulate the Lingo-1 mRNA and protein expression in EAE mice on days 7,14,21, and 30 (P < 0.01), especially in the 5 × 10(8) TU/mL and 5 × 10(9) TU/mL LV/Lingo-1-shRNA groups. The locomotor function score in the LV/Lingo-1-shRNA treated groups were significantly lower than the untreated or LVCON053 group from day 7 on. The 5 × 10(8) TU/mL LV/Lingo-1-shRNA group achieved the best functional improvement (0.87 ± 0.11 vs. 3.05 ± 0.13, P < 0.001). Enhanced myelination/remyelination was observed in the 5 × 10(7) , 5 × 10(8) , 5 × 10(9) TU/mL LV/Lingo-1-shRNA groups by LFB staining (P < 0.05, P < 0.01, and P < 0.05).The data showed that administering LV/Lingo-1-shRNA by ICV injection could efficiently knockdown Lingo-1 expression in vivo, improve functional recovery and enhance myelination/remyelination. Antagonism of Lingo-1 by RNA interference is, therefore, a promising approach for the

  20. Role of Anti-Osteopontin Antibodies in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Clemente, Nausicaa; Comi, Cristoforo; Raineri, Davide; Cappellano, Giuseppe; Vecchio, Domizia; Orilieri, Elisabetta; Gigliotti, Casimiro L.; Boggio, Elena; Dianzani, Chiara; Sorosina, Melissa; Martinelli-Boneschi, Filippo; Caldano, Marzia; Bertolotto, Antonio; Ambrogio, Luca; Sblattero, Daniele; Cena, Tiziana; Leone, Maurizio; Dianzani, Umberto; Chiocchetti, Annalisa

    2017-01-01

    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing–remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35–55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and

  1. Role of Anti-Osteopontin Antibodies in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis.

    PubMed

    Clemente, Nausicaa; Comi, Cristoforo; Raineri, Davide; Cappellano, Giuseppe; Vecchio, Domizia; Orilieri, Elisabetta; Gigliotti, Casimiro L; Boggio, Elena; Dianzani, Chiara; Sorosina, Melissa; Martinelli-Boneschi, Filippo; Caldano, Marzia; Bertolotto, Antonio; Ambrogio, Luca; Sblattero, Daniele; Cena, Tiziana; Leone, Maurizio; Dianzani, Umberto; Chiocchetti, Annalisa

    2017-01-01

    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing-remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35-55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and

  2. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  3. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  4. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice.

    PubMed

    Liu, Zhenghui; Zhao, Shutao; Chen, Qiaoyuan; Yan, Keqin; Liu, Peng; Li, Nan; Cheng, C Yan; Lee, Will M; Han, Daishu

    2015-03-01

    The mammalian testis is an immunoprivileged site where male germ cell antigens are immunologically tolerated under physiological conditions. However, some pathological conditions can disrupt the immunoprivileged status and induce autoimmune orchitis, an etiological factor of male infertility. Mechanisms underlying autoimmune orchitis induction are largely unknown. The present study investigated the roles of Toll-like receptor 2 (TLR2) and TLR4 in mediating the induction of experimental autoimmune orchitis (EAO) in mice after immunization with male germ cell antigens emulsified with complete Freund adjuvant. Wild-type mice developed severe EAO after three immunizations, which was characterized by leukocyte infiltration, autoantibody production, and impaired spermatogenesis. Tlr2 or Tlr4 deficient mice showed relatively low susceptibility to EAO induction compared with wild-type mice. Notably, Tlr2 and Tlr4 double knockout mice were almost completely protected from EAO induction. Moreover, we demonstrated that TLR2 was crucial in mediating autoantibody production in response to immunization. The results imply that TLR2 and TLR4 cooperatively mediate EAO induction.

  5. Adeno-associated virus-mediated human IL-10 gene transfer suppresses the development of experimental autoimmune orchitis.

    PubMed

    Watanabe, M; Kashiwakura, Y; Kusumi, N; Tamayose, K; Nasu, Y; Nagai, A; Shimada, T; Daida, H; Kumon, H

    2005-07-01

    Testicular germ cell-induced autoimmune orchitis is characterized by inflammatory cell infiltration followed by disturbance of spermatogenesis. Experimental autoimmune orchitis (EAO) is an animal model for human immunological male infertility; delayed-type hypersensitivity (DTH) response plays a key role in its induction. Interleukin-10 (IL-10) is a regulatory cytokine that is critical in preventing organ-specific autoimmune inflammation. To determine the effects on EAO of human IL-10 (hIL-10) gene transfer, C3H/He mice immunized by unilateral testicular injury were administered intramuscular (i.m.) injections of adeno-associated viral (AAV) vector-encoding hIL-10 on the day of immunization. Serum hIL-10 was detected beginning at 1 week postinjection, and peaked at 3 weeks. Histological examinations showed a significantly low incidence of orchitis and disturbance of spermatogenesis in AAV hIL-10-treated mice, and the DTH response to autologous testicular cells was significantly suppressed. Immunohistochemical analysis of IFN- and IL-2, T-cell-associated cytokines, in the spleen and testes revealed significantly fewer cytokine-expressing cells after treatment. We conclude that a single i.m. administration of AAV hIL-10 significantly suppresses EAO and hypospermatogenesis by regulating cell-mediated immunity in the testes.

  6. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model

    PubMed Central

    Kim, Woo Sik; Kim, Jong-Seok; Kim, Hong Min; Kwon, Kee Woong; Cho, Sang-Nae; Shin, Sung Jae; Koh, Won-Jung

    2015-01-01

    The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection. PMID:26406237

  7. Inactivation of T cell receptor peptide-specific CD4 regulatory T cells induces chronic experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Kumar, V; Stellrecht, K; Sercarz, E

    1996-11-01

    T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1-9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide-specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.

  8. Experimental Demyelination and Remyelination of Murine Spinal Cord by Focal Injection of Lysolecithin

    PubMed Central

    Keough, Michael B.; Jensen, Samuel K.; Yong, V. Wee

    2015-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system characterized by plaque formation containing lost oligodendrocytes, myelin, axons, and neurons. Remyelination is an endogenous repair mechanism whereby new myelin is produced subsequent to proliferation, recruitment, and differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes, and is necessary to protect axons from further damage. Currently, all therapeutics for the treatment of multiple sclerosis target the aberrant immune component of the disease, which reduce inflammatory relapses but do not prevent progression to irreversible neurological decline. It is therefore imperative that remyelination-promoting strategies be developed which may delay disease progression and perhaps reverse neurological symptoms. Several animal models of demyelination exist, including experimental autoimmune encephalomyelitis and curprizone; however, there are limitations in their use for studying remyelination. A more robust approach is the focal injection of toxins into the central nervous system, including the detergent lysolecithin into the spinal cord white matter of rodents. In this protocol, we demonstrate that the surgical procedure involved in injecting lysolecithin into the ventral white matter of mice is fast, cost-effective, and requires no additional materials than those commercially available. This procedure is important not only for studying the normal events involved in the remyelination process, but also as a pre-clinical tool for screening candidate remyelination-promoting therapeutics. PMID:25867716

  9. Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder

    PubMed Central

    Cannet, Arnaud; Akhoundi, Mohammad; Michel, Gregory; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Leishmaniasis is a vector-borne disease that is transmitted by sandflies and caused by obligate intracellular protozoa of the genus Leishmania. In the present study, we carried out a screening on the experimental infection of Phlebotomus pernioucus by bioluminescent Leishmania infantum using murine model and artificial feeder. We developed a real-time polymerase chain reaction (RT-PCR)-based method to determine individually the number of Leishmania promastigotes fed by infected flies. Among 1840 new emerged female sand flies, 428 were fed on the infected mice. After their death, they were analysed individually by RT-PCR. Our results demonstrated just a single Leishmania positive female at sixth day post meal. A total of 1070 female sand flies were exposed in contact with artificial feeder containing the human blood with two different quantities of Leishmania parasites: 2.106/mL and 1.107/mL. A blood meal including 1.107/mL LUC-promastigotes was proposed to 270 females and 75 (28%) flies were engorged. Among them, 44 (59%) were positive by RT-PCR analysis, with a relative average of 50551 Leishmania parasites. In case of blood feeding of females with 2.106/mL promastigotes, 57 out of 800 (7%) females succeed to feed from artificial feeder which 22 (39%) were positive with a relative average of 6487 parasites. PMID:27439032

  10. Detection of antibodies against Theiler's murine encephalomyelitis virus GDVII strain in experimental guinea pigs.

    PubMed

    Häger, C; Glage, S; Held, N; Bleich, E M; Burghard, A; Mähler, M; Bleich, André

    2016-10-01

    A disease affecting guinea pigs called 'guinea pig lameness' characterized by clinical signs of depression, lameness of limbs, flaccid paralysis, weight loss and death within a few weeks was first described by Römer in 1911. After a research group in our facility kept laboratory guinea pigs from two different origins together in one room, lameness was observed in two animals. Further investigations revealed a serological immune response against Theiler's murine encephalomyelitis virus (TMEV; GDVII strain) in these animals. Histopathology of the lumbar spinal cord of these animals showed mononuclear cell infiltration and necrotic neurons in the anterior horn. Therefore, all guinea pigs from this contaminated animal unit, from other units in our facility, as well as from different European institutions and breeding centres were screened for antibodies directed against GDVII. Our investigations showed that approximately 80% of all guinea pigs from the contaminated animal unit were seropositive for GDVII, whereas animals from other separate units were completely negative. In addition, 43% of tested sera from the different European institutions and breeding centres contained antibodies against GDVII. The present data confirm that an unknown viral infection causes an immune response in experimental guinea pigs leading to seroconversion against GDVII and that guinea pigs from a commercial breeder are the source of the infection.

  11. A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major.

    PubMed

    Ahmed, Sami Ben Hadj; Bahloul, Chokri; Robbana, Cyrine; Askri, Souhir; Dellagi, Koussay

    2004-04-16

    Over the past few years, several reports of DNA vaccines against murine cutaneous experimental leishmaniasis came out with promising but sometimes discordant results. The present studies were designed to compare, under similar conditions, the protective effects in the highly susceptible BALB/c mice of DNA vaccine candidates encoding to various Leishmania major antigens. The candidate DNA vaccines encode to the following antigens: LACK, PSA2, Gp63, LeIF and two newly identified p20 and Ribosomal like protein, in addition to different truncated portions of the LACK antigen. The most promising gene was LACK and it is more protective when it is used as a p24 truncated form. Furthermore, the presence of a tandem repeats of immunostimulating sequences (ISS) in the plasmid backbone played an important adjuvant effect in the observed protective effect induced by the DNA vaccine encoding to the LACKp24. Nevertheless, neither of the DNA vaccine candidates was able to mount a full protection in BALB/c mice challenged with a highly virulent L. major strain. Further improvements of the DNA vaccination approach are still needed to design a fully protective vaccine against leishmaniasis. Three directions of investigations are currently explored: DNA vaccines using a cocktail of antigens; Prime/Boost approach; and association of immune modulators with the candidate antigens.

  12. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis.

    PubMed

    Shen, Fengge; Feng, Jiaxuan; Wang, Xinhui; Qi, Zhimin; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Wang, Chao; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-02-10

    This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.

  13. Interferon triggers experimental synovitis and may potentiate auto-immune disease in humans.

    PubMed

    Rosenbach, T O; Moshonov, S; Zor, U; Yaron, M

    1984-09-01

    From these data it appears that IFN is capable of stimulating prostaglandin E and hyaluronic acid production by human synovial fibroblasts in vitro and of initiating an inflammatory reaction in animal joints. In chronic arthritis its production may result from persisting viral or other antigenic stimulation. IFN may enhance the immune response and mediate the inflammatory process in the joint. Its role in the pathogenesis of rheumatic and various other autoimmune diseases is undergoing further study.

  14. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  15. The effect of experimental haemocarbofiltration upon activity of mononuclear cells from normal and autoimmune patients.

    PubMed Central

    Grando, S A; Glukhenky, B T; Drannik, G N; Kostromin, A P; Romanenko, A B

    1989-01-01

    We examined the functional activity of peripheral blood mononuclears (PBM) of 18 healthy subjects, 18 patients with pemphigus vulgaris, 12 with bullous pemphigoid and nine with discoid lupus erythematosus, after haemofiltration on carbon haemo-adsorbents of 'SKN' type. Proliferation in the response to PHA and Con A, for IL-1 and IL-2 production, and exogenous IL-2 absorption were assayed. The presence of IL-1 and IL-2 inhibitors in haemocarbo-adsorbent eluants was shown. We also investigated the natural killer (NK) and antibody-dependent cellular cytotoxic (ADCC) activities. We found significant increases of both lectin-dependent proliferation and of interleukin production by PBM of autoimmune patients after two to four perfusions. The ability of PBM to absorb IL-2 displayed a steady growth after each perfusion, whereas increase of NK and ADCC activities was observed after not less than six passes. The enhancement of PBM functional activity in autoimmune patients was accompanied by accumulation of IL-1 and IL-2 inhibitors in the sorbent. It was concluded that therapeutic effects of haemofiltration in autoimmune diseases involve improvement of immunocompetent cell function due to their deligandization by activated charcoal. PMID:15493276

  16. Modulation of endoplasmic reticulum stress and cardiomyocyte apoptosis by mulberry leaf diet in experimental autoimmune myocarditis rats

    PubMed Central

    Arumugam, Somasundaram; Thandavarayan, Rajarajan A.; Veeraveedu, Punniyakoti T.; Ma, Meilei; Giridharan, Vijayasree V.; Arozal, Wawaimuli; Sari, Flori R.; Sukumaran, Vijayakumar; Lakshmanan, Arunprasath; Soetikno, Vivian; Suzuki, Kenji; Kodama, Makoto; Watanabe, Kenichi

    2012-01-01

    Mulberry is commonly used as silkworm diet and an alternative medicine in Japan and China, has recently reported to contain many antioxidative flavanoid compounds and having the free radical scavenging effects. Antioxidants reduce cardiac oxidative stress and attenuate cardiac dysfunction in animals with pacing-induced congestive heart failure. Hence we investigated the cardioprotective effect of mulberry leaf powder in rats with experimental autoimmune myocarditis. Eight-week-old Lewis rats immunized with cardiac myosin were fed with either normal chow or a diet containing 5% mulberry leaf powder and were examined on day 21. ML significantly decreased oxidative stress, myocyte apoptosis, cellular infiltration, cardiac fibrosis, mast cell density, myocardial levels of sarco/endo-plasmic reticulum Ca2+ ATPase2, p22phox, receptor for advanced glycation end products, phospho-p38 mitogen activated protein kinase, phospho-c-Jun NH2-terminal protein kinase, glucose regulated protein78, caspase12 and osteopontin levels in EAM rats. These results may suggest that mulberry diet can preserve the cardiac function in experimental autoimmune myocarditis by modulating oxidative stress induced MAPK activation and further afford protection against endoplasmic reticulum stress mediated apoptosis. PMID:22448095

  17. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins.

    PubMed Central

    Lider, O; Baharav, E; Mekori, Y A; Miller, T; Naparstek, Y; Vlodavsky, I; Cohen, I R

    1989-01-01

    The ability of activated T lymphocytes to penetrate the extracellular matrix and migrate to target tissues was found to be related to expression of a heparanase enzyme (Naparstek, Y., I. R. Cohen, Z. Fuks, and I. Vlodavsky. 1984. Nature (Lond.). 310:241-243; Savion, N., Z. Fuks, and I. Vlodavsky. 1984. J. Cell. Physiol. 118:169-176; Fridman, R., O. Lider, Y. Naparstek, Z. Fuks, I. Vlodavsky, and I. R. Cohen. 1987. J. Cell. Physiol. 130:85-92; Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We found previously that heparin molecules inhibited expression of T lymphocyte heparanase activity in vitro and in vivo, and administration of a low dose of heparin in mice inhibited lymphocyte traffic and delayed-type hypersensitivity reactions (Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We now report that treatment with commercial or chemically modified heparins at relatively low doses once daily (5 micrograms for mice and 20 micrograms for rats) led to inhibition of allograft rejection and the experimental autoimmune diseases adjuvant arthritis and experimental autoimmune encephalomyelitis. Higher doses of the heparins were less effective. The ability of chemically modified heparins to inhibit these immune reactions was associated with their ability to inhibit expression of T lymphocyte heparanase. There was no relationship to anticoagulant activity. Thus heparins devoid of anticoagulant activity can be effective in regulating immune reactions when used at appropriate doses. PMID:2493485

  18. Antiinflammatory Effect of Phytosterols in Experimental Murine Colitis Model: Prevention, Induction, Remission Study

    PubMed Central

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects. PMID:25268769

  19. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study.

    PubMed

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.

  20. Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model

    PubMed Central

    Zhu, Luping; Shimada, Takashi; Chen, Ruoxi; Lu, Meiping; Zhang, Qingzhao; Lu, Wenmin; Yin, Min; Enomoto, Tadao; Cheng, Lei

    2012-01-01

    In the current study, we sought to investigate whether lysed Enterococcus faecalis FK-23 (LFK), a heat-killed probiotic preparation, attenuated eosinophil influx into the upper airway and had immunomodulatory activity in a murine allergic rhinitis model. Eighteen BALB/c mice were divided into three groups; the ovalbumin (OVA)-sensitized/challenged group, which received saline orally for 6 weeks (OVA group), the OVA-sensitized/challenged group, which received LFK orally for 6 weeks (LFK-fed group), and the non-sensitized group, which received saline for 6 weeks (saline control group). Nasal rubbing and sneezing were monitored during the study. After the final challenge, interleukin (IL)-4, interferon (IFN)-γ, and OVA-specific IgE levels in the sera and splenocyte culture supernatants were determined, eosinophilic infiltrate into the upper airway was quantified, and splenic CD4+CD25+ regulatory T cells (Tregs) were examined by flow cytometry. We found that nasal rubbing was significantly reduced in LFK-fed mice compared to the OVA group on d 27 and 35, and sneezing was significantly inhibited by LFK administration for 35 d. LFK-fed mice had significantly less eosinophil influx into the nasal mucosa than the OVA group. There were no significant differences between the LFK-fed group and OVA group in the serum and splenocyte culture supernatant levels of IL-4, IFN-γ, and OVA-specific IgE. Interestingly, the LFK-fed mice had a significantly greater percentage of splenic CD4+CD25+ Tregs than OVA group. Our results indicate that oral administration of LFK may alleviate nasal symptoms, reduce nasal eosinophilia, and increase the percentage of CD4+CD25+ Tregs in experimental allergic rhinitis. PMID:23554753

  1. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication.

  2. Experimental neonatal autoimmune myasthenia gravis: an immunohistochemical, ultrastructural and electrophysiological study of the motor end-plate.

    PubMed

    Tetsuo, N; Tsujihata, M; Satoh, A; Yoshimura, T; Nakamura, T; Seto, M; Nagataki, S

    1995-10-01

    Neonatal rats born of and nursed by mothers immunized with Narke japonica acetylcholine receptor protein had elevated serum anti-acetylcholine receptor antibodies that reached the mother's level on day 10 after delivery and decreased rapidly after weaning. IgG was present at the motor end-plates up to day 170, and the motor end-plate fine structure remained abnormal up to day 80. Miniature end-plate potential amplitudes in the diaphragm were at the control levels within 10 days of birth, but were lower than those of the controls up to day 80 after birth. We could not obtain the direct evidence that transient synthesis of antibodies occurs in experimental autoimmune myasthenia gravis pups. This model can serve as an experimental model of transient neonatal myasthenia gravis in humans, exception for the route of antibody transfer and the time of the onset of illness.

  3. Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis.

    PubMed

    Anderson, J M; Hampton, D W; Patani, R; Pryce, G; Crowther, R A; Reynolds, R; Franklin, R J M; Giovannoni, G; Compston, D A S; Baker, D; Spillantini, M G; Chandran, S

    2008-07-01

    The pathological correlate of clinical disability and progression in multiple sclerosis is neuronal and axonal loss; however, the underlying mechanisms are unknown. Abnormal phosphorylation of tau is a common feature of some neurodegenerative disorders, such as Alzheimer's disease. We investigated the presence of tau hyperphosphorylation and its relationship with neuronal and axonal loss in chronic experimental autoimmune encephalomyelitis (CEAE) and in brain samples from patients with secondary progressive multiple sclerosis. We report the novel finding of abnormal tau phosphorylation in CEAE. We further show that accumulation of insoluble tau is associated with both neuronal and axonal loss that correlates with progression from relapsing-remitting to chronic stages of EAE. Significantly, analysis of secondary progressive multiple sclerosis brain tissue also revealed abnormally phosphorylated tau and the formation of insoluble tau. Together, these observations provide the first evidence implicating abnormal tau in the neurodegenerative phase of tissue injury in experimental and human demyelinating disease.

  4. Induction of experimental autoimmune encephalomyelitis in the absence of c-Jun N-terminal kinase 2.

    PubMed

    Nicolson, Kirsty; Freland, Sofia; Weir, Catherine; Delahunt, Brett; Flavell, Richard A; Bäckström, B Thomas

    2002-08-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-dependent, organ-specific autoimmune model commonly used to investigate mechanisms involved in the activation of autoreactive T(h)1 cells. Mitogen-activated protein kinases such as c-Jun N-terminal kinase (Jnk) 1 and 2 play an important role in the differentiation of naive precursors into T(h)1 or T(h)2 effector cells. To investigate the role of Jnk2 on autoimmunity, Jnk2(-/-) and wild-type mice were immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide and the onset of EAE studied. Surprisingly, Jnk2(-/-) mice were as susceptible to EAE as wild-type mice, regardless of whether low or high antigen doses were used to induce disease. In vitro stimulation of lymph node cells from Jnk2(-/-) and wild-type mice resulted in comparable proliferation in response to MOG35-55, Mycobacterium tuberculosis and concanavalin A. MOG35-55-specific T cells lacking Jnk2 showed a T(h)1 cytokine profile with IFN-gamma, but no IL-4 or IL-5 production. No differences in the types of infiltrating cells or myelin destruction in the central nervous system were found between Jnk2(-/-) and wild-type mice, indicating that lack of Jnk2 does not alter the effector phase of EAE. Our results suggest that, despite involvement in T(h)1/T(h)2 differentiation in vitro, Jnk2 is necessary neither for the induction nor effector phase of MOG35-55-induced EAE and nor is it required for antigen-specific IFN-gamma production.

  5. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    SciTech Connect

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C. )

    1989-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.

  6. Genetic differentiation of poly I:C from B:9-23 peptide induced experimental autoimmune diabetes.

    PubMed

    Paronen, Johanna; Liu, Edwin; Moriyama, Hiroaki; Devendra, Devasenan; Ide, Akane; Taylor, Robert; Yu, Liping; Miao, Dongmei; Melanitou, Evie; Eisenbarth, George S

    2004-06-01

    Type 1 diabetes is an immune-mediated disease, in which T cells of the adaptive immune system mediate beta cell destruction. Recently the innate immune system has been linked to etiopathogenesis of several autoimmune diseases including type 1 diabetes, as innate effector cells (e.g. dendritic cells, monocytes/macrophages and NK cells) can prime and promote or regulate (auto)immune responses. We have previously developed an experimental autoimmune diabetes (EAD) model with insulin peptide B:9-23 immunization in transgenic H-2(d)mice expressing the costimulatory molecule B7.1 in their islets (under the Rat Insulin Promotor, RIP). We compared the induction of diabetes with polyinosinic-polycytidylic acid (Poly I:C), a mimic of double stranded viral RNA versus insulin B:9-23 peptide in mice following backcrossing of the B7.1 transgene on to BALB/c mice from original B7.1 C57Bl/6 mice. We find that diabetes induction by Poly I:C is C57Bl/6 associated, whereas B:9-23 peptide induced diabetes and induction of insulin autoantibodies (IAA) are dependent on BALB/c genes. This B:9-23 peptide induced diabetes is consistent with MHC class II H-2(d)being necessary for the response to this peptide. Of note Poly I:C induction of diabetes was lost while B:9-23 induction was retained with backcrossing to BALB/c mice. Interaction of genes and environment (antigenic epitope and viral mimic) can be important in the pathogenesis of immune mediated diabetes and activation of the innate immune system (e.g. Poly I:C) may be one key determinant.

  7. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis.

    PubMed

    Fitzgerald, Denise C; Ciric, Bogoljub; Touil, Tarik; Harle, Heather; Grammatikopolou, Julia; Das Sarma, Jayasri; Gran, Bruno; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2007-09-01

    IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.

  8. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis

    PubMed Central

    Sarma, Jayasri Das; Ciric, Bogoljub; Marek, Ryan; Sadhukhan, Sanjoy; Caruso, Michael L; Shafagh, Jasmine; Fitzgerald, Denise C; Shindler, Kenneth S; Rostami, AM

    2009-01-01

    Background Interleukin-17A (IL-17A) is the founding member of a novel family of inflammatory cytokines that plays a critical role in the pathogenesis of many autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). IL-17A signals through its receptor, IL-17RA, which is expressed in many peripheral tissues; however, expression of IL-17RA in the central nervous system (CNS) and its role in CNS inflammation are not well understood. Methods EAE was induced in C57Bl/6 mice by immunization with myelin oligodendroglial glycoprotein. IL-17RA expression in the CNS was compared between control and EAE mice using RT-PCR, in situ hybridization, and immunohistochemistry. Cell-type specific expression was examined in isolated astrocytic and microglial cell cultures. Cytokine and chemokine production was measured in IL-17A treated cultures to evaluate the functional status of IL-17RA. Results Here we report increased IL-17RA expression in the CNS of mice with EAE, and constitutive expression of functional IL-17RA in mouse CNS tissue. Specifically, astrocytes and microglia express IL-17RA in vitro, and IL-17A treatment induces biological responses in these cells, including significant upregulation of MCP-1, MCP-5, MIP-2 and KC chemokine secretion. Exogenous IL-17A does not significantly alter the expression of IL-17RA in glial cells, suggesting that upregulation of chemokines by glial cells is due to IL-17A signaling through constitutively expressed IL-17RA. Conclusion IL-17RA expression is significantly increased in the CNS of mice with EAE compared to healthy mice, suggesting that IL-17RA signaling in glial cells can play an important role in autoimmune inflammation of the CNS and may be a potential pathway to target for therapeutic interventions. PMID:19400960

  9. TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced experimental autoimmune thyroiditis in NOD mice.

    PubMed

    Yu, Xiujie; Li, Lanying; Li, Qingxin; Zang, Xiaoyi; Liu, Zebing

    2011-11-01

    Death receptor-mediated apoptosis has been implicated in target organ destruction in patients with chronic autoimmune thyroiditis. Several apoptosis signaling pathways, such as Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), have been shown to be active in thyroid cells and may be involved in destructive thyroiditis. Thyroid toxicity of iodide excess has been demonstrated in animals fed with an iodide-rich diet, but its pathogenic role remains unclear. The effects of excessive iodine on TRAIL and its death receptor expression in thyroid were investigated. Experimental autoimmune thyroiditis (EAT) was induced by excessive iodine and thyroglobulin (Tg) in non-obese diabetic mice. The expression of TRAIL and its death receptor DR5 was detected by immunofluorescence staining. Following administration of excessive iodine alone, Tg, and excessive iodine combined with Tg, TRAIL-positive cells appear not only in follicular cells but also in lymphocytes infiltrated in the thyroid, whereas DR5-positive cells appear only in follicular cells. Large numbers of CD3-positive cells and a few CD22-positive cells were detected in thyroid. A great amount of follicular cells were labeled specifically by terminal deoxynucleotide transferase-mediated deoxynucleotide triphosphate nick-end labeling assay. Taken together, our results suggest that excessive iodine could induce TRAIL and DR5 abnormal expression in thyroid. TRAIL band with DR5 to promote follicular cells apoptosis thus mediate thyroid destruction in EAT.

  10. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the CNS

    PubMed Central

    Pierson, Emily R.; Stromnes, Ingunn M.; Goverman, Joan M.

    2014-01-01

    The efficacy of rituximab treatment in multiple sclerosis has renewed interest in the role of B cells in CNS autoimmunity. Here we show that B cells are the predominant MHC class II+ subset in the naïve CNS in mice, and they constitutively express pro-inflammatory cytokines. Incidence of experimental autoimmune encephalomyelitis (EAE) induced by adoptive transfer was significantly reduced in C3HeB/Fej μMT (B cell-deficient) mice, suggesting an important role for CNS B cells in initiating inflammatory responses. Initial T cell infiltration of the CNS occurred normally in μMT mice; however, lack of production of T cell cytokines and other immune mediators indicated impaired T cell reactivation. Subsequent recruitment of immune cells from the periphery driven by this initial T cell reactivation did not occur in μMT mice. B cells required exogenous IL-1β to reactivate Th17 but not Th1 cells in vitro. Similarly, reactivation of Th1 cells infiltrating the CNS was selectively impaired compared to Th17 cells in μMT mice, causing an increased Th17:Th1 ratio in the CNS at EAE onset and enhanced brain inflammation. These studies reveal an important role for B cells within the CNS in reactivating T cells and influencing the clinical manifestation of disease. PMID:24367024

  11. Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis.

    PubMed

    Garidou, Lucile; Laffont, Sophie; Douin-Echinard, Victorine; Coureau, Christiane; Krust, Andrée; Chambon, Pierre; Guéry, Jean-Charles

    2004-08-15

    Estrogen treatment has been shown to exert a protective effect on experimental autoimmune encephalomyelitis (EAE), and is under clinical trial for multiple sclerosis. Although it is commonly assumed that estrogens exert their effect by modulating immune functions, we show in this study that 17beta-estradiol (E2) treatment can inhibit mouse EAE without affecting autoantigen-specific T cell responsiveness and type 1 cytokine production. Using mutant mice in which estrogen receptor alpha (ERalpha) has been unambiguously inactivated, we found that ERalpha was responsible for the E2-mediated inhibition of EAE. We next generated irradiation bone marrow chimeras in which ERalpha expression was selectively impaired in inflammatory T lymphocytes or was limited to the radiosensitive hemopoietic compartment. Our data show that the protective effect of E2 on clinical EAE and CNS inflammation was not dependent on ERalpha signaling in inflammatory T cells. Likewise, EAE development was not prevented by E2 treatment in chimeric mice that selectively expressed ERalpha in the systemic immune compartment. In conclusion, our data demonstrate that the beneficial effect of E2 on this autoimmune disease does not involve ERalpha signaling in blood-derived inflammatory cells, and indicate that ERalpha expressed in other tissues, such as CNS-resident microglia or endothelial cells, mediates this effect.

  12. Mucosal Tolerance Induced by an Immunodominant Peptide from Rat α3(IV)NC1 in Established Experimental Autoimmune Glomerulonephritis

    PubMed Central

    Reynolds, John; Abbott, Danielle S.; Karegli, Julieta; Evans, David J.; Pusey, Charles D.

    2009-01-01

    Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture’s disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the noncollagenous domain of the α 3 chain of type IV collagen, α3(IV)NC1. Recent studies have identified an immunodominant peptide, pCol (24-38), from the N-terminus of rat α3(IV)NC1; this peptide contains the major B- and T-cell epitopes in EAG and can induce crescentic nephritis. In this study, we investigated the mechanisms of mucosal tolerance in EAG by examining the effects of the nasal administration of this peptide after the onset of disease. A dose-dependent effect was observed: a dose of 300 μg had no effect, a dose of 1000 μg resulted in a moderate reduction in EAG severity, and a dose of 3000 μg produced a marked reduction in EAG severity accompanied by diminished antigen-specific, T-cell proliferative responses. These results demonstrate that mucosal tolerance in EAG can be induced by nasal administration of an immunodominant peptide from the N-terminus of α3(IV)NC1 and should be of value in designing new therapeutic strategies for patients with Goodpasture’s disease and other autoimmune disorders. PMID:19406992

  13. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.

  14. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  15. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  16. Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1–deficient mice

    PubMed Central

    Graesser, Donnasue; Solowiej, Anna; Bruckner, Monika; Osterweil, Emily; Juedes, Amy; Davis, Sandra; Ruddle, Nancy H.; Engelhardt, Britta; Madri, Joseph A.

    2002-01-01

    Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31), a 130-kDa glycoprotein member of the Ig superfamily of transmembrane proteins, is expressed on endothelial cells, platelets, and subsets of leukocytes. It functions as a cell adhesion molecule as well as a scaffolding molecule capable of modulating cellular signaling pathways. In this study, using PECAM-1–deficient (KO) mice, as well as cells derived from these mice, we demonstrate that the absence of PECAM-1 expression is associated with an early onset of clinical symptoms during experimental autoimmune encephalomyelitis (EAE), a mouse model for the human autoimmune disease multiple sclerosis. During EAE, mononuclear cell extravasation and infiltration of the CNS occur at earlier time points in PECAM-KO mice than in wild-type mice. In vitro, T lymphocyte transendothelial migration across PECAM-KO endothelial cells is enhanced, regardless of expression of PECAM-1 on transmigrating T cells. Additionally, cultured PECAM-KO endothelial cells exhibit prolonged permeability changes in response to histamine treatment compared with PECAM-1–reconstituted endothelial cells. Lastly, we demonstrate an exaggerated and prolonged CNS vascular permeability during the development of EAE and a delay in restoration of dermal vascular integrity following histamine challenge in PECAM-KO mice. PMID:11827998

  17. Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis

    PubMed Central

    Didonna, Alessandro; Cekanaviciute, Egle; Oksenberg, Jorge R.; Baranzini, Sergio E.

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by focal lymphocytic infiltration, demyelination and neurodegeneration. Despite the recent advances in understanding MS molecular basis, no reliable biomarkers have been identified yet to monitor disease progression. Our group has previously reported that low levels of TOB1 in CD4+ T cells are strongly associated with a higher risk of MS conversion in individuals experiencing an initial demyelinating event. Consistently, Tob1 ablation in mice exacerbates the clinical phenotype of the MS model experimental autoimmune encephalomyelitis (EAE). To shed light on Tob1 molecular functions in the immune system, we have conducted the first cell-based transcriptomic analysis in Tob1−/− and wildtype mice upon EAE. Next-generation sequencing was employed to characterize the changes in gene expression in T and B cells at pre- and post-symptomatic EAE stages. Remarkably, we found only modest overlap among the different genetic signatures, suggesting that Tob1 may control distinct genetic programs in the different cytotypes. This hypothesis was corroborated by gene ontology and global interactome analyses, which highlighted specific cellular pathways in each cellular subset before and after EAE induction. In summary, our work pinpoints a multifaceted activity of Tob1 in both homeostasis and disease progression. PMID:27546286

  18. Galectin-1 is essential for the induction of MOG35-55 -based intravenous tolerance in experimental autoimmune encephalomyelitis.

    PubMed

    Mari, Elisabeth R; Rasouli, Javad; Ciric, Bogoljub; Moore, Jason N; Conejo-Garcia, José R; Rajasagi, Naveen; Zhang, Guang-Xian; Rabinovich, Gabriel A; Rostami, Abdolmohamad

    2016-07-01

    In experimental autoimmune encephalomyelitis (EAE), intravenous (i.v.) injection of the antigen, myelin oligodendrocyte glycoprotein-derived peptide, MOG35-55 , suppresses disease development, a phenomenon called i.v. tolerance. Galectin-1, an endogenous glycan-binding protein, is upregulated during autoimmune neuroinflammation and plays immunoregulatory roles by inducing tolerogenic dendritic cells (DCs) and IL-10 producing regulatory type 1 T (Tr1) cells. To examine the role of galectin-1 in i.v. tolerance, we administered MOG35-55 -i.v. to wild-type (WT) and galectin-1 deficient (Lgals1(-/-) ) mice with ongoing EAE. MOG35-55 suppressed disease in the WT, but not in the Lgals1(-/-) mice. The numbers of Tr1 cells and Treg cells were increased in the CNS and periphery of tolerized WT mice. In contrast, Lgals1(-/-) MOG-i.v. mice had reduced numbers of Tr1 cells and Treg cells in the CNS and periphery, and reduced IL-27, IL-10, and TGF-β1 expression in DCs in the periphery. DCs derived from i.v.-tolerized WT mice suppressed disease when adoptively transferred into mice with ongoing EAE, whereas DCs from Lgals1(-/-) MOG-i.v. mice were not suppressive. These findings demonstrate that galectin-1 is required for i.v. tolerance induction, likely via induction of tolerogenic DCs leading to enhanced development of Tr1 cells, Treg cells, and downregulation of proinflammatory responses.

  19. CD73 is expressed by inflammatory Th17 cells in experimental autoimmune encephalomyelitis but does not limit differentiation or pathogenesis

    PubMed Central

    Hernandez-Mir, Gerard

    2017-01-01

    CD73 works together with CD39 to convert extracellular ATP to immunoregulatory adenosine, thus inhibiting inflammation. TGFβ-mediated CD73 expression on ‘regulatory’ Th17 cells limits their ability to eradicate tumors, similar to the immunosuppressive mechanism described for CD73 on Tregs. However, CD73 is also expressed on Th17 cells thought to be inflammatory in Crohn’s disease. CD73 has previously been reported to contribute to inflammation in the central nervous system (CNS). In experimental autoimmune encephalomyelitis (EAE), we found that inflammatory cytokine-producing Th17 cells showed increased CD73 expression as disease progressed. We therefore hypothesized that CD73 could be important for limiting the expansion or pathogenic function of Th17 cells in autoimmune inflammation of the CNS. Surprisingly, EAE development was not enhanced or inhibited by CD73 deficiency; there was correspondingly no difference in induction of Th17-associated cytokines IL-17, IFNγ or GM-CSF or recruitment of either inflammatory or regulatory cells to the central nervous system. We confirmed that CD73 was similarly not required for differentiation of Th17 cells in vitro. These data show that while CD73 expression is regulated during EAE, this enzyme is not absolutely required to either promote or limit Th17 cell expansion or EAE severity. PMID:28288184

  20. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    PubMed Central

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  1. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  2. A natural anti-T-cell receptor monoclonal antibody protects against experimental autoimmune encephalomyelitis.

    PubMed

    Fernández-Malavé, Edgar; Stark-Aroeira, Luiz

    2011-05-01

    The therapeutic potential of natural anti-T-cell receptor (TCR) antibodies is largely unknown. We investigated whether passive administration of C1-19, a novel natural anti-TCRVβ8 monoclonal antibody, could interfere with the development of EAE. Treatment with C1-19 prevented myelin basic protein (MBP)-induced EAE in Vβ8-sufficient B10.PL but not in Vβ8-deficient SJL mice. Furthermore, C1-19 reduced disease severity when administrated shortly after disease onset. These protective effects of C1-19 correlated with a Th2 bias of the cytokine response, in the absence of T-cell deletion or anergy. Together, these findings indicate that natural anti-TCR antibodies could function as therapeutic tools in autoimmune inflammatory diseases.

  3. Therapeutic effects of garenoxacin in murine experimental secondary pneumonia by Streptococcus pneumoniae after influenza virus infection.

    PubMed

    Fukuda, Yoshiko; Furuya, Yuri; Nozaki, Yusuke; Takahata, Masahiro; Nomura, Nobuhiko; Mitsuyama, Junichi

    2014-02-01

    In a pneumococcal pneumonia murine model following influenza virus infection, garenoxacin was more effective than other fluoroquinolones and demonstrated high levels of bacterial eradication in the lung, low mortality, and potent histopathological improvements. Garenoxacin could potentially be used for the treatment of secondary pneumococcal pneumonia following influenza.

  4. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord.

  5. Reactivated astrocytes as a possible source of oligodendrocyte precursors for remyelination in remitting phase of experimental autoimmune encephalomyelitis rats

    PubMed Central

    Guo, An-Chen; Chu, Takho; Liu, Xu-Qing; Su, Huan-Xing; Wu, Wu-Tian

    2016-01-01

    Multiple sclerosis (MS) is ademyelinating disease in the central nervous system (CNS). Majority of the MS patients show relapsing-remitting disease course. Evidences show that oligodendrocyte precursor cells (OPCs), which remain relatively quiescent in normal adult CNS, play a key role in the remitting phase by proliferation and remyelination. In the present study, we found that spinal cord astrocytesco-expressed progenitor cell marker and oligodendroglial lineage markers in the remittance phase in adult rat experimental autoimmune encephalomyelitis (EAE) model. We suggest that activated astrocyte could de-differentiate into OPCs and re-differentiate into mature oligodendrocytes, raising the possibility that astrocytes can be a potential source of OPCs in the adult demyelinated spinal cord. PMID:28078034

  6. Reactivated astrocytes as a possible source of oligodendrocyte precursors for remyelination in remitting phase of experimental autoimmune encephalomyelitis rats.

    PubMed

    Guo, An-Chen; Chu, Takho; Liu, Xu-Qing; Su, Huan-Xing; Wu, Wu-Tian

    2016-01-01

    Multiple sclerosis (MS) is ademyelinating disease in the central nervous system (CNS). Majority of the MS patients show relapsing-remitting disease course. Evidences show that oligodendrocyte precursor cells (OPCs), which remain relatively quiescent in normal adult CNS, play a key role in the remitting phase by proliferation and remyelination. In the present study, we found that spinal cord astrocytesco-expressed progenitor cell marker and oligodendroglial lineage markers in the remittance phase in adult rat experimental autoimmune encephalomyelitis (EAE) model. We suggest that activated astrocyte could de-differentiate into OPCs and re-differentiate into mature oligodendrocytes, raising the possibility that astrocytes can be a potential source of OPCs in the adult demyelinated spinal cord.

  7. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  8. Leuprolide acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis.

    PubMed

    Guzmán-Soto, Irene; Salinas, Eva; Hernández-Jasso, Irma; Quintanar, J Luis

    2012-10-01

    Gonadotrophin-releasing hormone (GnRH), a well known hypothalamic neuropeptide, has been reported to possess neurotrophic properties. Leuprolide acetate, a synthetic analogue of GnRH is considered to be a very safe and tolerable drug and it has been used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. The present study was designed to determine whether Leuprolide acetate administration, exerts neurotrophic effects on clinical signs, body weight gain, neurofilaments (NFs) and myelin basic protein (MBP) expression, axonal morphometry and cell infiltration in spinal cord of experimental autoimmune encephalomyelitis (EAE) rats. In this work, we have found that Leuprolide acetate treatment decreases the severity of clinical signs of locomotion, induces a significantly greater body weight gain, increases the MBP and NFs expression, axonal area and cell infiltration in EAE animals. These results suggest the use of this agonist as a potential therapeutic approach for multiple sclerosis.

  9. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

    PubMed Central

    Fakharzadeh, Saideh; Sahraian, Mohammad Ali; Hafizi, Maryam; Kalanaky, Somayeh; Masoumi, Zahra; Mahdavi, Mehdi; Kamalian, Nasser; Minagar, Alireza; Nazaran, Mohammad Hassan

    2014-01-01

    Purpose Currently approved therapies for multiple sclerosis (MS) at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2)-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50). Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic behavior and improved the disabling features of experimental autoimmune encephalomyelitis, which was confirmed by decreased clinical scores versus increased body mass and 100% survival probability. It did not cause any adverse effects on hemoglobin or red blood cell count. Histopathological studies showed no neural loss or lymphocyte infiltration in MSc1-treated mice, while the hepatic iron content was also normal. Conclusion These results demonstrate that MSc1 could be a promising beneficial novel agent and has the capacity to be evaluated

  10. A minimum number of autoimmune T cells to induce autoimmunity?

    PubMed

    Bosch, Angela J T; Bolinger, Beatrice; Keck, Simone; Stepanek, Ondrej; Ozga, Aleksandra J; Galati-Fournier, Virginie; Stein, Jens V; Palmer, Ed

    2017-03-12

    While autoimmune T cells are present in most individuals, only a minority of the population suffers from an autoimmune disease. To better appreciate the limits of T cell tolerance, we carried out experiments to determine how many autoimmune T cells are required to initiate an experimental autoimmune disease. Variable numbers of autoimmune OT-I T cells were transferred into RIP-OVA mice, which were injected with antigen-loaded DCs in a single footpad; this restricted T cell priming to a few OT-I T cells that are present in the draining popliteal lymph node. Using selective plane illumination microscopy (SPIM) we counted the number of OT-I T cells present in the popliteal lymph node at the time of priming. Analysis of our data suggests that a single autoimmune T cell cannot induce an experimental autoimmune disease, but a "quorum" of 2-5 autoimmune T cells clearly has this capacity.

  11. T cell-intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis

    PubMed Central

    Martin, Bradley N.; Wang, Chenhui; Zhang, Cun-jin; Kang, Zizhen; Gulen, Muhammet Fatih; Zepp, Jarod A.; Zhao, Junjie; Bian, Guanglin; Do, Jeong-su; Min, Booki; Pavicic, Paul G.; El-Sanadi, Caroline; Fox, Paul L.; Akitsu, Aoi; Iwakura, Yoichiro; Sarkar, Anasuya; Wewers, Mark D.; Kaiser, William J.; Mocarski, Edward S.; Rothenberg, Marc E.; Hise, Amy G.; Dubyak, George R.; Ransohoff, Richard M.; Li, Xiaoxia

    2017-01-01

    IL-1β is critical for TH17 cell survival, expansion, and effector function in vivo during autoimmune responses, including EAE. However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis is poorly defined. In the present study, we uncovered a novel T cell-intrinsic inflammasome that drives IL-1β production during TH17-mediated EAE pathogenesis. TCR activation induced pro-IL-1β expression, while ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on TH17 but not TH1 cells, and ATP-treated TH17 cells showed enhanced survival compared to ATP-treated TH1 cells, suggesting autocrine action of TH17-derived IL-1β. Together, these data reveal a critical role for IL-1β produced by a TH17 cell-intrinsic ASC-NLRP3-Caspase-8 inflammasome during CNS inflammation. PMID:26998763

  12. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li

    2017-05-01

    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  13. Attenuation of experimental autoimmune neuritis with locally administered lovastatin-encapsulating poly(lactic-co-glycolic) acid nanoparticles.

    PubMed

    Langert, Kelly A; Goshu, Bruktawit; Stubbs, Evan B

    2017-01-01

    Acute inflammatory demyelinating polyneuropathy (AIDP) is an aggressive antibody- and T-cell-mediated variant of Guillain-Barré Syndrome (GBS), a prominent and debilitating autoimmune disorder of the peripheral nervous system. Despite advancements in clinical management, treatment of patients with AIDP/GBS and its chronic variant CIDP remains palliative and relies on the use of non-specific immunemodulating therapies. Our laboratory has previously reported that therapeutic administration of statins safely attenuates the clinical severity of experimental autoimmune neuritis (EAN), a well-characterized animal model of AIDP/GBS, by restricting the migration of autoreactive leukocytes across peripheral nerve microvascular endoneurial endothelial cells that form the blood-nerve barrier. Despite these advancements, the clinical application of systemically administered statins for the management of inflammatory disorders remains controversial as a result of disappointingly inconclusive phase trials. Here, poly(lactic-co-glycolic) acid (PLGA) nanoparticles were evaluated as an alternative strategy by which to locally administer statins for the management of EAN. When tested in vitro, lovastatin-encapsulating PLGA nanoparticles elicited a marked increase in RhoB mRNA content in peripheral nerve microvascular endoneurial endothelial cells, similar to cells treated with activated unencapsulated lovastatin. Unilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles, but not empty nanoparticles, to naïve Lewis rats similarly enhanced RhoB mRNA content in adjacent nerve and muscle tissue. When administered in this manner, serum levels of lovastatin were below the level of detection. Bilateral peri-neural administration of lovastatin-encapsulating PLGA nanoparticles to EAN-induced Lewis rats significantly attenuated EAN clinical severity while protecting against EAN-induced peripheral nerve morphological and functional deficits. This study provides

  14. St. John's wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud

    2016-05-01

    Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.

  15. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Penkowa, M; Hidalgo, J

    2001-07-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE. However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE in vivo and that MT-II might be a potentially useful factor for treatment of EAE/MS.

  16. Spontaneously relapsing-remitting experimental autoimmune uveitis in rats allows successful therapeutic oral tolerance induction in ongoing disease.

    PubMed

    Huber, Andrea; Diedrichs-Möhring, Maria; Wildner, Gerhild

    2015-02-01

    Antigen-specific tolerance induction is a desired therapy for uveitis patients. Our relapsing-remitting rat model of experimental autoimmune uveitis (EAU) induced with IRBP peptide R14 enables us to test the effect of oral tolerance on the prevention of relapsing uveitis. We investigated several peptides overlapping the sequence of R14 for prevention and different doses of R14 for therapy to determine the tolerogenic epitope and the most effective therapeutic regimen for uveitis. Lewis rats were immunized with R14-CFA to induce EAU. Oral tolerance was induced prior to immunization (prevention) or after onset of EAU to prevent relapses (therapy). Therapeutic feeding was performed with high and/or low doses of oral antigen for clonal deletion of effector and induction of regulatory T cells. Uveitis was determined clinically and histologically; mesenteric lymph node (mLN) cells of tolerized rats were tested for surface markers, cytokines and Foxp3 expression. Preventive feeding of R14 and its major epitope R16, but none of the overlapping peptides significantly suppressed EAU and also prevented relapses, irrespective of their pathogenicity. Therapeutic feeding with R14 dramatically reduced relapses, while only the consecutive feeding of high and low-dose R14 had an ameliorating effect on the first course of disease. IL-10-producing T cells from mLN decreased after oral tolerization, and with R14-stimulation in vitro the TCRαβ+/Foxp3+ population increased in the low-dose fed group. No mLN population could be clearly assigned to successful oral tolerance induction during active autoimmune uveitis.

  17. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬.

    PubMed

    Zeitelhofer, Manuel; Adzemovic, Milena Z; Gomez-Cabrero, David; Bergman, Petra; Hochmeister, Sonja; N'diaye, Marie; Paulson, Atul; Ruhrmann, Sabrina; Almgren, Malin; Tegnér, Jesper N; Ekström, Tomas J; Guerreiro-Cacais, André Ortlieb; Jagodic, Maja

    2017-02-28

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  18. Novel pathogenic epitopes of myelin oligodendrocyte glycoprotein induce experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Delarasse, Cecile; Smith, Paul; Baker, David; Amor, Sandra

    2013-12-01

    Myelin oligodendrocyte glycoprotein (MOG), a minor protein of the central nervous system myelin, is recognized as a potential target in multiple sclerosis and neuromyelitis optica. The extracellular domain of MOG is commonly used in a wide range of mouse strains and other animals to induce experimental autoimmune encephalomyelitis (EAE), an autoimmune animal model of multiple sclerosis, because it is a target for antibody-mediated attack. Previous studies, using selected peptides, have indicated that MOG(35-55) peptide is an encephalitogenic epitope in C57BL/6 (H-2(b)) mice. A more systematic analysis of both T-cell and B-cell responses following immunization of C57BL/6 mice with either recombinant extracellular mouse MOG protein (1-116) or with overlapping peptides spanning the whole sequence of MOG, before assessment of responses to 15 mer and 23 mer peptides was undertaken. The studies identified T-cell responses within the MOG(35-55) (extracellular domain) but also two new immunogenic and encephalitogenic T-cell epitopes within residues MOG(113-127), MOG(120-134) (localized in the transmembrane region) and MOG(183-197) (in the second hydrophobic MOG domain). In addition, residue MOG(113-127) was found to be a B-cell epitope, suggesting that this may be a useful adjunct for the induction of EAE as well as for immunological studies in C57BL/6 mice, which are increasingly being used to study immune function through the use of transgenic and gene knockout technology.

  19. Implication of the intestinal microbiome as a potential surrogate marker of immune responsiveness to experimental therapies in autoimmune diabetes

    PubMed Central

    Needell, James C.; Dinarello, Charles A.; Ir, Diana; Robertson, Charles E.; Ryan, Sarah M.; Kroehl, Miranda E.; Frank, Daniel N.; Zipris, Danny

    2017-01-01

    Type 1 diabetes (T1D) is an autoimmune proinflammatory disease with no effective intervention. A major obstacle in developing new immunotherapies for T1D is the lack of means for monitoring immune responsiveness to experimental therapies. The LEW1.WR1 rat develops autoimmunity following infection with the parvovirus Kilham rat virus (KRV) via mechanisms linked with activation of proinflammatory pathways and alterations in the gut bacterial composition. We used this animal to test the hypothesis that intervention with agents that block innate immunity and diabetes is associated with a shift in the gut microbiota. We observed that infection with KRV results in the induction of proinflammatory gene activation in both the spleen and pancreatic lymph nodes. Furthermore, administering animals the histone deacetylase inhibitor ITF-2357 and IL-1 receptor antagonist (Anakinra) induced differential STAT-1 and the p40 unit of IL-12/IL-23 gene expression. Sequencing of bacterial 16S rRNA genes demonstrated that both ITF-2357 and Anakinra alter microbial diversity. ITF-2357 and Anakinra modulated the abundance of 23 and 8 bacterial taxa in KRV-infected animals, respectively, of which 5 overlapped between the two agents. Lastly, principal component analysis implied that ITF-2357 and Anakinra induce distinct gut microbiomes compared with those from untreated animals or rats provided KRV only. Together, the data suggest that ITF-2357 and Anakinra differentially influence the innate immune system and the intestinal microbiota and highlight the potential use of the gut microbiome as a surrogate means of assessing anti-inflammatory immune effects in type 1 diabetes. PMID:28301545

  20. Implication of the intestinal microbiome as a potential surrogate marker of immune responsiveness to experimental therapies in autoimmune diabetes.

    PubMed

    Needell, James C; Dinarello, Charles A; Ir, Diana; Robertson, Charles E; Ryan, Sarah M; Kroehl, Miranda E; Frank, Daniel N; Zipris, Danny

    2017-01-01

    Type 1 diabetes (T1D) is an autoimmune proinflammatory disease with no effective intervention. A major obstacle in developing new immunotherapies for T1D is the lack of means for monitoring immune responsiveness to experimental therapies. The LEW1.WR1 rat develops autoimmunity following infection with the parvovirus Kilham rat virus (KRV) via mechanisms linked with activation of proinflammatory pathways and alterations in the gut bacterial composition. We used this animal to test the hypothesis that intervention with agents that block innate immunity and diabetes is associated with a shift in the gut microbiota. We observed that infection with KRV results in the induction of proinflammatory gene activation in both the spleen and pancreatic lymph nodes. Furthermore, administering animals the histone deacetylase inhibitor ITF-2357 and IL-1 receptor antagonist (Anakinra) induced differential STAT-1 and the p40 unit of IL-12/IL-23 gene expression. Sequencing of bacterial 16S rRNA genes demonstrated that both ITF-2357 and Anakinra alter microbial diversity. ITF-2357 and Anakinra modulated the abundance of 23 and 8 bacterial taxa in KRV-infected animals, respectively, of which 5 overlapped between the two agents. Lastly, principal component analysis implied that ITF-2357 and Anakinra induce distinct gut microbiomes compared with those from untreated animals or rats provided KRV only. Together, the data suggest that ITF-2357 and Anakinra differentially influence the innate immune system and the intestinal microbiota and highlight the potential use of the gut microbiome as a surrogate means of assessing anti-inflammatory immune effects in type 1 diabetes.

  1. Deletion of both the C3a and C5a receptors fails to protect against experimental autoimmune encephalomyelitis.

    PubMed

    Ramos, Theresa N; Wohler, Jillian E; Barnum, Scott R

    2009-12-31

    Multiple sclerosis (MS) is an autoimmune disease in which inflammation, leukocyte infiltration, and ultimately, demyelination occur as a result of innate and adaptive immune-mediated mechanisms. The pathophysiological role of the complement system, a major component of innate immunity, in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for MS has been extensively examined. Previous studies from our lab have shown that the complement receptor for the anaphylatoxin C3a, but not for C5a plays an important role in EAE. Based on the important contributions of the complement anaphylatoxin receptors to other inflammatory conditions in the CNS, we reasoned that deletion of both receptors may reveal underlying interactions between them that are important to EAE pathology. We performed EAE in C3aR/C5aR double knockout mice (C3aR/C5aR(-/-)) and observed delayed onset of disease but no attenuation of disease severity compared to wild type mice. Interestingly there was trend toward greater infiltration of CD4(+), but not CD8(+) T cells, in C3aR/C5aR(-/-) mice with EAE, suggesting altered trafficking of these cells. Antigen-specific T cells isolated from C3aR/C5aR(-/-) mice during acute EAE produced elevated levels of TNF-alpha, but markedly reduced levels of IFN-gamma and IL-12 compared to wild type mice. It remains unclear how the changes in these disease parameters contribute to the loss of the protective effect seen in C3aR(-/-) mice, however our data indicate a level of cross-modulation between the C3aR and C5aR during EAE.

  2. Deletion of Both the C3a and C5a Receptors Fails to Protect Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Ramos, Theresa N.; Wohler, Jillian E.; Barnum, Scott R.

    2009-01-01

    Multiple sclerosis (MS) is an autoimmune disease in which inflammation, leukocyte infiltration, and ultimately, demyelination occur as a result of innate and adaptive immune-mediated mechanisms. The pathophysiological role of the complement system, a major component of innate immunity, in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for MS has been extensively examined. Previous studies from our lab have shown that the complement receptor for the anaphylatoxin C3a, but not for C5a plays an important role in EAE. Based on the important contributions of the complement anaphylatoxin receptors to other inflammatory conditions in the CNS, we reasoned that deletion of both receptors may reveal underlying interactions between them that are important to EAE pathology. We performed EAE in C3aR/C5aR double knockout mice (C3aR/C5aR−/−) and observed delayed onset of disease but no attenuation of disease severity compared to wild type mice. Interestingly there was trend toward greater infiltration of CD4+, but not CD8+ T cells, in C3aR/C5aR−/− mice with EAE, suggesting altered trafficking of these cells. Antigen-specific T cells isolated from C3aR/C5aR−/− mice during acute EAE produced elevated levels of TNF-α, but markedly reduced levels of IFN-γ and IL-12 compared to wild type mice. It remains unclear how the changes in these disease parameters contribute to the loss of the protective effect seen in C3aR−/− mice, however our data indicate a level of cross modulation between the C3aR and C5aR during EAE. PMID:19850104

  3. Deletion of both ICAM-1 and C3 Enhances Severity of Experimental Autoimmune Encephalomyelitis Compared to C3-Deficient Mice

    PubMed Central

    Smith, Sherry S.; Ludwig, Michael; Wohler, Jillian E.; Bullard, Daniel C.; Szalai, Alex J.; Barnum, Scott R.

    2008-01-01

    Multiple sclerosis (MS) is an autoimmune disease characterized by central nervous system (CNS) inflammation and leukocyte infiltration, demyelination of neurons, and blood-brain barrier breakdown. The development of experimental autoimmune encephalomyelitis (EAE), the animal model for MS is dependent on a number of components of the immune system including complement and adhesion molecules. Previous studies in our lab have examined the role of C3, the central complement component, and intercellular adhesion molecule-1 (ICAM-1) a key cell adhesion molecule involved in leukocyte trafficking to sites of inflammation including the CNS. In these studies we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-induced EAE is markedly attenuated in both ICAM-1−/− and C3−/− mice. Given the pivotal role that these proteins play in EAE, we hypothesized that EAE in ICAM-1−/− and C3−/− double mutant mice would likely fail to develop. Unexpectedly, EAE in ICAM-1−/− × C3−/− mice was only modestly attenuated compared to wild type mice and significantly worse than C3−/− mice. Leukocyte infiltration was commensurate with disease severity between the three groups of mice. Spinal cord T cells from ICAM-1−/− × C3−/− mice produced the highest levels of IFN-γ and TNF-α, despite reduced disease severity compared to wild type mice. The mechanisms behind the elevated EAE severity in ICAM-1−/− × C3−/− mice may relate to altered homing of leukocytes or processing of self-antigens in the double mutant background. PMID:18634851

  4. An increase in tolerogenic dendritic cell and natural regulatory T cell numbers during experimental autoimmune encephalomyelitis in Rras-/- mice results in attenuated disease.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Miller, Nichole M; Chan, Andrew M; Dittel, Bonnie N

    2014-06-01

    R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC II(low) DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCII(low) DC with tolerogenic potential.

  5. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    PubMed Central

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  6. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms.

  7. Modulating phenotype and cytokine production of leucocytic retinal infiltrate in experimental autoimmune uveoretinitis following intranasal tolerance induction with retinal antigens

    PubMed Central

    Laliotou, B.; Dick, A.

    1999-01-01

    BACKGROUND/AIM—Nasal administration of retinal antigens induces systemic tolerance which results in suppression of experimental autoimmune uveoretinitis (EAU) when subsequently exposed to antigen. The aim was to establish if tolerance induction alters retinal infiltrating leucocyte phenotype and cytokine profile in tolerised animals when there is significantly reduced tissue destruction despite immunisation with retinal antigen.
METHODS—Female Lewis rats were tolerised by intranasal administration with retinal extract (RE) before immunisation with RE to induce EAU. Control animals were administered phosphate buffered saline (PBS) intranasally. Post immunisation, daily clinical responses were recorded and at the height of disease, retinas were removed and either infiltrating leucocytes isolated for flow cytometric phenotype assessment and intracellular cytokine production, or chorioretina processed for immunohistochemistry. Fellow eyes were assessed for cytokine mRNA by semiquantitative RT-PCR.
RESULTS—Flow cytometric analysis showed that before clinical onset of EAU there is no evidence of macrophage infiltration and no significant difference in circulating T cell populations within the retina. By day 14 a reduced retinal infiltrate in tolerised animals was observed and in particular a reduction in numbers of "activated" (with respect to CD4 and MHC class II expression) macrophages. Immunohistochemistry confirmed these findings and additionally minimal rod outer segment destruction was observed histologically. Cytokine analysis revealed that both IL-10 mRNA and intracellular IL-10 production was increased in tolerised eyes 7 days post immunisation. Although by day 14 post immunisation, IL-10 production was equivalent in both groups, a reduced percentage of IFN-γ+ macrophages and IFN-γ+ CD4+ T cells with increased percentage of IL-4+ CD4+ T cells were observed in tolerised animals.
CONCLUSIONS—Leucocytic infiltrate is not only reduced in number

  8. Subcutaneous Transplantation of Neural Precursor Cells in Experimental Autoimmune Encephalomyelitis Reduces Chemotactic Signals in the Central Nervous System

    PubMed Central

    Ravanidis, Stylianos; Poulatsidou, Kyriaki Nepheli; Lagoudaki, Roza; Touloumi, Olga; Polyzoidou, Elena; Lourbopoulos, Athanasios; Nousiopoulou, Evangelia; Theotokis, Paschalis; Kesidou, Evangelia; Tsalikakis, Dimitrios; Karacostas, Dimitrios; Grigoriou, Maria; Chlichlia, Katerina

    2015-01-01

    Neural precursor cell (NPC) transplantation has been proposed as a therapy for multiple sclerosis (MS) and other degenerative disorders of the central nervous system (CNS). NPCs are suggested to exert immune modulation when they are transplanted in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Herein, we explore whether the effect of NPC transplantation on the clinical course and the pathological features of EAE is combined with the modulation of chemokines levels expressed in the inflamed CNS. NPCs were isolated from brains of neonatal C57/Bl6 mice and were subcutaneously administered in female mice with myelin oligodendrocyte glycoprotein (MOG)-induced EAE. Clinical signs of the disease and transcript analysis of the CNS in the acute phase were performed. In addition, the presence of inflammatory components in the spinal cord was evaluated and ex vivo proliferation of lymphocytes was measured. NPC recipients exhibited ameliorated clinical outcome and less pronounced pathological features in their spinal cord. Downregulation of chemokine mRNA levels throughout the CNS was correlated with diminished Mac-3-, CD3-, and CD4-positive cells and reduced expression levels of antigen-presenting molecules in the spinal cord. Moreover, NPC transplantation resulted in lymphocyte-related, although not splenocyte-related, peripheral immunosuppression. We conclude that NPCs ameliorated EAE potentially by modulating the levels of chemokines expressed in the inflamed CNS, thus resulting in the impaired recruitment of immune cells. These findings further contribute to the better understanding of NPCs’ immunomodulatory properties in neuroinflammatory disorders, and may lead to faster translation into potential clinical use. Significance Endogenous neural precursor cells of the central nervous system are able to migrate and differentiate toward mature cells to repair an injury. There is increasing evidence that autologous transplantation of these cells in

  9. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis.

    PubMed

    Huang, Hai-Peng; Pan, Hong; Wang, Hong-Feng

    2016-03-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  10. Sex Difference in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis: Relation to Neurological Deficit.

    PubMed

    Dimitrijević, Mirjana; Kotur-Stevuljević, Jelena; Stojić-Vukanić, Zorica; Vujnović, Ivana; Pilipović, Ivan; Nacka-Aleksić, Mirjana; Leposavić, Gordana

    2017-02-01

    The study examined (a) whether there is sex difference in spinal cord and plasma oxidative stress profiles in Dark Agouti rats immunised for experimental autoimmune encephalomyelitis (EAE), the principal experimental model of multiple sclerosis, and (b) whether there is correlation between the oxidative stress in spinal cord and neurological deficit. Regardless of rat sex, with the disease development xanthine oxidase (XO) activity and inducible nitric oxide synthase (iNOS) mRNA expression increased in spinal cord, whereas glutathione levels decreased. This was accompanied by the rise in spinal cord malondialdehyde level. On the other hand, with EAE development superoxide dismutase (SOD) activity decreased, while O2(-) concentration increased only in spinal cord of male rats. Consequently, SOD activity was lower, whereas O2(-) concentration was higher in spinal cord of male rats with clinically manifested EAE. XO activity and iNOS mRNA expression were also elevated in their spinal cord. Consistently, in the effector phase of EAE the concentration of advanced oxidation protein product (AOPP) was higher in spinal cord of male rats, which exhibit more severe neurological deficit than their female counterparts. In as much as data obtained in the experimental models could be translated to humans, the findings may be relevant for designing sex-specific antioxidant therapeutic strategies. Furthermore, the study indicated that the increased pro-oxidant-antioxidant balance in plasma may be an early indicator of EAE development. Moreover, it showed that plasma AOPP level may indicate not only actual activity of the disease, but also serve to predict severity of its course.

  11. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  12. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis.

    PubMed

    Jackson, D P; Percy, D H; Morris, V L

    1984-09-01

    When Wistar Furth rats are inoculated intracerebrally with the murine hepatitis virus JHM they often develop a demyelinating disease with resulting hind leg paralysis. Using an RNA transfer procedure and hybridization kinetic analysis, the virus-specific RNA in these rats was characterized. The pattern of JHM-specific RNA varied with individual infections of Wistar Furth rats. However, two species of JHM-specific RNA, the nucleocapsid and a 2.1-2.4 X 10(6)-Da RNA species were generally present. A general decrease in JHM-specific RNA in brains and spinal cord samples taken later than 20 days postinoculation was observed; however, JHM-specific RNA persisted in the spinal cord longer than in the brain of these rats.

  13. Experimental murine cryptococcal infection results in contamination of bedding with Cryptococcus neoformans.

    PubMed

    Nosanchuk, Joshua D; Mednick, Aron; Shi, Li; Casadevall, Arturo

    2003-07-01

    Cryptococcus neoformans is a fungal pathogen that survives in diverse environments. To determine whether cages of mice infected with C. neoformans posed an infection risk to animal caregivers, we investigated whether the fungus could be isolated from the bedding or stool of mice infected by intratracheal (i.t.), intravenous (i.v.), or intraperitoneal (i.p.) routes. The bedding of mice infected i.t. was contaminated with C. neoformans. In contrast, no contamination of bedding with C. neoformans was detected in cages of mice infected i.v. or i.p. C. neoformans was not isolated from murine feces. The C. neoformans strain recovered from bedding material was indistinguishable from the infecting strain by biochemical and molecular techniques. This result suggests that precautions may be warranted when disposing bedding from cages that housed mice with pulmonary C. neoformans infection.

  14. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    PubMed Central

    Gonzalez-Rey, Elena; Martin, Francisco; Oliver, F. Javier

    2017-01-01

    Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function. PMID:28250776

  15. Regulatory T cells play a role in T-cell receptor CDR2 peptide regulation of experimental autoimmune encephalomyelitis.

    PubMed

    Buenafe, Abigail C; Andrew, Shayne; Offner, Halina; Vandenbark, Arthur A

    2012-02-01

    Eliciting T-cell receptor (TCR) -specific responsiveness has been known to provide an effective autoregulatory mechanism for limiting inflammation mediated by T effector cells. Our previous use of TCR peptides derived from the CDR3 regions of a pathogenic TCR effectively reversed ongoing experimental autoimmune encephalomyelitis (EAE) in a humanized TCR transgenic model. In this study, we use the TCR BV8S2 CDR2 peptide in the non-transgenic C57BL/6 EAE model to down-regulate the heterogeneous TCR BV8S2(+)  MOG-35-55-specific pathogenic T-cell population and demonstrate successful treatment of EAE after disease onset. Suppression of disease was associated with reduced MOG-35-55-specific and non-specific T-cell production of interleukin-17a and interferon-γ in the central nervous system, as well as reduced numbers of CD4(+) and Foxp3(+) T cells in the central nervous system. With the use of Foxp3-GFP and Foxp3 conditional knockout mice, we demonstrate that the TCR CDR2 peptide treatment effect is dependent on the presence of Foxp3(+) regulatory T cells and that regulatory T cell numbers are significantly expanded in the periphery of treated mice. Hence, TCR CDR2 peptide therapy is effective in regulating heterogeneous, pathogenic T-cell populations through the activity of the Foxp3(+) regulatory T cell population.

  16. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    PubMed Central

    Luo, Shasha; Zou, Qiang

    2016-01-01

    It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525

  17. Characterization and restoration of altered inhibitory and excitatory control of micturition reflex in experimental autoimmune encephalomyelitis in rats

    PubMed Central

    Vignes, Jean-Rodolphe; Deloire, Mathilde S A; Petry, Klaus G; Nagy, Frédéric

    2007-01-01

    Multiple sclerosis (MS) is characterized by inflammatory lesions throughout the central nervous system. Spinal cord inflammation correlates with many neurological defecits. Most MS patients suffer from micturition dysfunction with urinary incontinence and difficulty in emptying the bladder. In experimental autoimmune encephalomyelitis (EAE) induced in female Lewis rats, a model of MS, we investigated at distinct clinical severity scores the micturition reflex by cystometrograms. All rats presenting symptomatic EAE suffered from micturition reflex alterations with either detrusor areflexia or hyperactivity. During pre-symptomatic EAE, a majority of rats presented with detrusor areflexia, whereas at onset of clinical EAE, detrusor hyperactivity was predominant. During progression of EAE, detrusor areflexia and hyperactivity were equally expressed. Bladder hyperactivity was suppressed by activation of glycine and GABA receptors in the lumbosacral spinal cord with an order of potency: glycine > GABAB > GABAA. Detrusor areflexia was transformed into detrusor hyperactivity by blocking glycine and GABA receptors. Spinalization abolished bladder activity in rats presenting detrusor hyperactivity and failed to induce activity in detrusor areflexia. Altogether, the results reveal an exaggerated descending excitatory control in both detrusor reflex alterations. In detrusor areflexia, a strong segmental inhibition dominates this excitatory control. As in treatment of MS, electrical stimulation of sacral roots reduced detrusor hyperactivity in EAE. Blockade of glycine receptors in the lumbosacral spinal cord suppressed the stimulation-induced inhibitory effect. Our data help to better understand bladder dysfunction and treatment mechanisms to suppress detrusor hyperactivity in MS. PMID:17068103

  18. Exacerbation of Experimental Autoimmune Encephalomyelitis in the Absence of Breast Regression Protein-39/Chitinase 3-like-1

    PubMed Central

    Bonneh-Barkay, Dafna; Wang, Guoji; LaFramboise, William A.; Wiley, Clayton A.; Bissel, Stephanie J.

    2012-01-01

    We previously reported that YKL-40, the human analog of mouse breast regression protein-39 (BRP-39; chitinase 3-like 1), is elevated in the cerebrospinal fluid of patients with a variety of neuroinflammatory conditions, such as multiple sclerosis and traumatic brain injury. YKL-40 expression in the CNS was predominantly associated with reactive astrocytes in the vicinity of inflammatory lesions. Because previous studies have shown that reactive astrocytes play a critical role in limiting immune infiltration in the mouse model of experimental autoimmune encephalomyelitis (EAE), we explored the role of BRP-39 in regulating neuroinflammation in EAE. Using BRP-39-deficient mice (BRP-39−/−), we demonstrate the importance of BRP-39 in modulating the severity of clinical EAE and CNS neuroinflammation. At disease onset, absence of BRP-39 had little effect on clinical disease or lymphocytic infiltrate, but by 14 days post-immunization (dpi), differences in clinical scores were evident. By 28 dpi, BRP-39−/− mice showed more severe and persistent clinical disease than BRP-39+/+ controls. Histopathological evaluation showed that BRP-39−/− mice had more marked lymphocytic and macrophage infiltrates and gliosis vs. BRP-39+/+ mice. These findings support the role of BRP-39 expression in limiting immune cell infiltration into the CNS and offer a new target to modulate neuroinflammation. PMID:23041842

  19. MAP kinase phosphatase 2 deficient mice develop attenuated experimental autoimmune encephalomyelitis through regulating dendritic cells and T cells

    PubMed Central

    Barbour, Mark; Plevin, Robin; Jiang, Hui-Rong

    2016-01-01

    Mitogen-activated protein kinase phosphatases (MKPs) play key roles in inflammation and immune mediated diseases. Here we investigated the mechanisms by which MKP-2 modulates central nervous system (CNS) inflammation in experimental autoimmune encephalomyelitis (EAE). Our results show that MKP-2 mRNA levels in the spinal cord and lymphoid organs of EAE mice were increased compared with naive controls, indicating an important role for MKP-2 in EAE development. Indeed, MKP-2−/− mice developed reduced EAE severity, associated with diminished CNS immune cell infiltration, decreased proinflammatory cytokine production and reduced frequency of CD4+ and CD8+ T cells in spleens and lymph nodes. In addition, MKP-2−/− CD11c+ dendritic cells (DCs) had reduced expression of MHC-II and CD40 compared with MKP-2+/+ mice. Subsequent experiments revealed that CD4+ T cells from naïve MKP-2−/− mice had decreased cell proliferation and IL-2 and IL-17 production relative to wild type controls. Furthermore, co-culture experiments showed that bone marrow derived DCs of MKP-2−/− mice had impaired capability in antigen presentation and T cell activation. While MKP-2 also modulates macrophage activation, our study suggests that MKP-2 is essential to the pathogenic response of EAE, and it acts mainly via regulating the important antigen presenting DC function and T cell activation. PMID:27958388

  20. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    PubMed Central

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  1. The leukotriene B{sub 4} receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis

    SciTech Connect

    Kihara, Yasuyuki; Yokomizo, Takehiko; Kunita, Akiko; Morishita, Yasuyuki; Fukayama, Masashi; Ishii, Satoshi; Shimizu, Takao

    2010-04-09

    Leukotriene B{sub 4} (LTB{sub 4}) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB{sub 4}. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and T{sub H}1/T{sub H}17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1{sup -/-} mice had delayed onset and less severe symptoms of EAE than BLT1{sup +/+} mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1{sup +/+}, but not BLT1{sup -/-} mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-{gamma}, TNF-{alpha}, IL-17 and IL-6 were impaired in BLT1{sup -/-} cells, as compared with BLT1{sup +/+} cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and T{sub H}1/T{sub H}17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other T{sub H}17-mediated diseases.

  2. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  3. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis.

    PubMed

    Mi, Sha; Hu, Bing; Hahm, Kyungmin; Luo, Yi; Kam Hui, Edward Sai; Yuan, Qiuju; Wong, Wai Man; Wang, Li; Su, Huanxing; Chu, Tak-Ho; Guo, Jiasong; Zhang, Wenming; So, Kwok-Fai; Pepinsky, Blake; Shao, Zhaohui; Graff, Christilyn; Garber, Ellen; Jung, Vincent; Wu, Ed Xuekui; Wu, Wutian

    2007-10-01

    Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms to impede or slow disease progression. The identification of a means to enhance axon myelination would present new therapeutic approaches to inhibit and possibly reverse disease progression. Previously, LRR and Ig domain-containing, Nogo receptor-interacting protein (LINGO-1) has been identified as an in vitro and in vivo negative regulator of oligodendrocyte differentiation and myelination. Here we show that loss of LINGO-1 function by Lingo1 gene knockout or by treatment with an antibody antagonist of LINGO-1 function leads to functional recovery from experimental autoimmune encephalomyelitis. This is reflected biologically by improved axonal integrity, as confirmed by magnetic resonance diffusion tensor imaging, and by newly formed myelin sheaths, as determined by electron microscopy. Antagonism of LINGO-1 or its pathway is therefore a promising approach for the treatment of demyelinating diseases of the CNS.

  4. Four different synthetic peptides of proteolipid protein induce a distinct antibody response in MP4-induced experimental autoimmune encephalomyelitis.

    PubMed

    Recks, Mascha S; Grether, Nicolai B; van der Broeck, Franziska; Ganscher, Alla; Wagner, Nicole; Henke, Erik; Ergün, Süleyman; Schroeter, Michael; Kuerten, Stefanie

    2015-07-01

    Here we studied the autoantibody specificity elicited by proteolipid protein (PLP) in MP4-induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis (MS). In C57BL/6 (B6) mice, antibodies were induced by immunization with one of the two extracellular and by the intracellular PLP domain. Antibodies against extracellular PLP were myelin-reactive in oligodendrocyte cultures and induced mild spinal cord demyelination upon transfer into B cell-deficient J(H)T mice. Remarkably, also antibodies against intracellular PLP showed binding to intact oligodendrocytes and were capable of inducing myelin pathology upon transfer into J(H)T mice. In MP4-immunized mice peptide-specific T(H)1/T(H)17 responses were mainly directed against the extracellular PLP domains, but also involved the intracellular epitopes. These data suggest that both extracellular and intracellular epitopes of PLP contribute to the pathogenesis of MP4-induced EAE already in the setting of intact myelin. It remains to be elucidated if this concept also applies to MS itself.

  5. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  6. Intranasal delivery of FSD-C10, a novel Rho kinase inhibitor, exhibits therapeutic potential in experimental autoimmune encephalomyelitis.

    PubMed

    Li, Yan-Hua; Yu, Jie-Zhong; Liu, Chun-Yun; Zhang, Hui; Zhang, Hai-Fei; Yang, Wan-Fang; Li, Jun-Lian; Feng, Qian-Jin; Feng, Ling; Zhang, Guang-Xian; Xiao, Bao-Guo; Ma, Cun-Gen

    2014-10-01

    Viewing multiple sclerosis (MS) as both neuroinflammation and neurodegeneration has major implications for therapy, with neuroprotection and neurorepair needed in addition to controlling neuroinflammation in the central nervous system (CNS). While Fasudil, an inhibitor of Rho kinase (ROCK), is known to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of MS, it relies on multiple, short-term injections, with a narrow safety window. In this study, we explored the therapeutic effect of a novel ROCK inhibitor FSD-C10, a Fasudil derivative, on EAE. An important advantage of this derivative is that it can be used via non-injection routes; intranasal delivery is the preferred route because of its efficient CNS delivery and the much lower dose compared with oral delivery. Our results showed that intranasal delivery of FSD-C10 effectively ameliorated the clinical severity of EAE and CNS inflammatory infiltration and promoted neuroprotection. FSD-C10 effectively induced CNS production of the immunoregulatory cytokine interleukin-10 and boosted expression of nerve growth factor and brain-derived neurotrophic factor proteins, while inhibiting activation of p-nuclear factor-κB/p65 on astrocytes and production of multiple pro-inflammatory cytokines. In addition, FSD-C10 treatment effectively induced CD4(+) CD25(+) , CD4(+) FOXP3(+) regulatory T cells. Together, our results demonstrate that intranasal delivery of the novel ROCK inhibitor FSD-C10 has therapeutic potential in EAE, through mechanisms that possibly involve both inhibiting CNS inflammation and promoting neuroprotection.

  7. Prenatal Vitamin D Deficiency Induces an Early and More Severe Experimental Autoimmune Encephalomyelitis in the Second Generation

    PubMed Central

    de Abreu, Diana Andrea Fernandes; Landel, Véréna; Barnett, Adrian G.; McGrath, John; Eyles, Darryl; Feron, Francois

    2012-01-01

    In a previous study, we demonstrated that mouse adult F1 offspring, exposed to a vitamin D deficiency during pregnancy, developed a less severe and delayed Experimental Autoimmune Encephalomyelitis (EAE), when compared with control offspring. We then wondered whether a similar response was observed in the subsequent generation. To answer this question, we assessed F2 females whose F1 parents (males or females) were vitamin D-deprived when developing in the uterus of F0 females. Unexpectedly, we observed that the vitamin D deficiency affecting the F0 pregnant mice induced a precocious and more severe EAE in the F2 generation. This paradoxical finding led us to assess its implications for the epidemiology of Multiple Sclerosis (MS) in humans. Using the REFGENSEP database for MS trios (the patient and his/her parents), we collected the parents’ dates of birth and assessed a potential season of birth effect that could potentially be indicative of the vitamin D status of the pregnant grandmothers. A trend for a reduced number of births in the Fall for the parents of MS patients was observed but statistical significance was not reached. Further well powered studies are warranted to validate the latter finding. PMID:23109828

  8. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo

    PubMed Central

    Boggio, Elena; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases. PMID:27478856

  9. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo.

    PubMed

    Boggio, Elena; Dianzani, Chiara; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Cappellano, Giuseppe; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Comi, Cristoforo; Dianzani, Umberto; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α 4 β 1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases.

  10. Inhibition of Experimental Autoimmune Encephalomyelitis in Human C-Reactive Protein Transgenic Mice Is FcγRIIB Dependent

    PubMed Central

    Hu, Xian-Zhen; Wright, Tyler T.; Jones, Nicholas R.; Ramos, Theresa N.; Skibinski, Gregory A.; McCrory, Mark A.; Barnum, Scott R.; Szalai, Alexander J.

    2011-01-01

    We showed earlier that experimental autoimmune encephalomyelitis (EAE) in human C-reactive protein (CRP) transgenic mice (CRPtg) has delayed onset and reduced severity compared to wild-type mice. Since human CRP is known to engage Fc receptors and Fc receptors are known to play a role in EAE in the mouse, we sought to determine if FcγRI, FcγRIIb, or FcγRIII was needed to manifest human CRP-mediated protection of CRPtg. We report here that in CRPtg lacking either of the two activating receptors, FcγRI and FcγRIII, the beneficial effects of human CRP are still observed. In contrast, if CRPtg lack expression of the inhibitory receptor FcγRIIB, then the beneficial effect of human CRP is abrogated. Also, subcutaneous administration of purified human CRP stalled progression of ongoing EAE in wild-type mice, but similar treatment failed to impede EAE progression in mice lacking FcγRIIB. The results reveal that a CRP → FcγRIIB axis is responsible for protection against EAE in the CRPtg model. PMID:21151582

  11. Inhibition of Experimental Autoimmune Encephalomyelitis in Human C-Reactive Protein Transgenic Mice Is FcγRIIB Dependent.

    PubMed

    Hu, Xian-Zhen; Wright, Tyler T; Jones, Nicholas R; Ramos, Theresa N; Skibinski, Gregory A; McCrory, Mark A; Barnum, Scott R; Szalai, Alexander J

    2010-10-12

    We showed earlier that experimental autoimmune encephalomyelitis (EAE) in human C-reactive protein (CRP) transgenic mice (CRPtg) has delayed onset and reduced severity compared to wild-type mice. Since human CRP is known to engage Fc receptors and Fc receptors are known to play a role in EAE in the mouse, we sought to determine if FcγRI, FcγRIIb, or FcγRIII was needed to manifest human CRP-mediated protection of CRPtg. We report here that in CRPtg lacking either of the two activating receptors, FcγRI and FcγRIII, the beneficial effects of human CRP are still observed. In contrast, if CRPtg lack expression of the inhibitory receptor FcγRIIB, then the beneficial effect of human CRP is abrogated. Also, subcutaneous administration of purified human CRP stalled progression of ongoing EAE in wild-type mice, but similar treatment failed to impede EAE progression in mice lacking FcγRIIB. The results reveal that a CRP → FcγRIIB axis is responsible for protection against EAE in the CRPtg model.

  12. Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice

    PubMed Central

    Li, Jia; Chen, Ying; Chen, Zhibo; Huang, Yuanyuan; Yang, Dehao; Su, Zhongqian; Weng, Yiyun; Li, Xiang; Zhang, Xu

    2017-01-01

    This study is to investigate the therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. EAE mouse model was established by MOG35-55 immunization. Body weight and neurological function were assessed. H&E and LFB staining was performed to evaluate histopathological changes. Flow cytometry was used to detect Th17 and Treg cells. ELISA and real-time PCR were performed to determine transcription factor and pro-inflammatory cytokine levels. Transplantation of hADSCs significantly alleviated the body weight loss and neurological function impairment of EAE mice. Inflammatory cell infiltration and demyelination were significantly increased, which were relieved by hADSC transplantation. Moreover, the Th17 cells and the ROR-γt mRNA level were significantly elevated, while the Treg cells and the Foxp3 mRNA level were significantly declined, resulting in significantly increased Th17/Treg ratio. This was reversed by the transplantation of hADSCs. Furthermore, serum levels of IL-17A, IL-6, IL-23, and TGF-β, were significantly increased, which could be influenced by the hADSC transplantation. Transplantation of hADSCs alleviates the neurological function impairment and histological changes, and reduces the inflammatory cell infiltration and demyelination in EAE mice, which might be associated with the regulation of Th17/Treg balance. PMID:28198408

  13. [Expression of the stress-response protein 60 in iritis in experimental autoimmune encephalomyelitis--an immunohistochemical study].

    PubMed

    Kumagami, T; Kato, S; Ohama, E

    1997-04-01

    Uveitis of unknown etiology is known to occur in association with various systemic disorders. We did an immunohistochemical study on the expression of stress-response proteins (srp's) in iritis associated with experimental autoimmune encephalomyelitis (EAE), which is regarded as a model of multiple sclerosis. EAE was induced in Lewis rats by sensitization with homogenized spinal cord of guinea pig in complete Freund's adjuvant (CFA) (Group EAE). For controls, we used rats sensitized with CFA only (Group CFA) and untreated rats (normal controls). All rats developed iritis in Group EAE. In Group CFA, no rats developed iritis. No expression of ubiquitin, alpha B-crystallin, srp 27, srp 60, or srp 72 was seen in the epithelium of the iris of the rats in Group CFA. In the rats in Group EAE, srp 60 was expressed in the epithelium of the iris in 20/22 (90.9%) of the eyes examined, ubiquitin in 4/22 (18.2%), and alpha B-crystallin in 3/22 (13.6%). In the untreated rats, only ubiquitin was expressed in the epithelium of the iris in 1/6 (16.7%) of the eyes examined. These results suggest that srp 60, 60 kDa srp, plays an important role in the occurrence of iritis associated with EAE.

  14. Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Madri, J A

    2000-09-22

    Expression of alpha4 integrin by auto-reactive T cells is critical for their ability to induce EAE, an autoimmune disease of the central nervous system in mice, used as a model to study human multiple sclerosis. Having previously identified one role for alpha4 integrin in adhesion-mediated induction of matrix metalloproteinase-2 (MMP-2), an enzyme that degrades the subendothelial basement membrane matrix, we investigated independent roles for MMP-2 and alpha4 integrin during EAE. The data suggest that expression of alpha4 integrin by auto-reactive T cells is important not only in mediating MMP-2 induction to facilitate entry into the CNS, but also plays a role in maintaining residency within the CNS.

  15. Regulation of experimental autoimmune uveitis in rats--separation of MHC and non-MHC gene effects.

    PubMed Central

    Hirose, S; Ogasawara, K; Natori, T; Sasamoto, Y; Ohno, S; Matsuda, H; Onoé, K

    1991-01-01

    Experimental autoimmune uveitis (EAU) is an organ-specific autoimmune disease and has served as a model of certain ocular inflammatory conditions in man. The present study was aimed at separating the effects of MHC and non-MHC genes on the development of EAU in the rat. EAU-susceptible LEW (RT1l), EAU-resistant WKAH (RT1k), and WKAH.1L (RT1l) MHC congenic strain of WKAH background rats were immunized with retinal soluble antigen (S-Ag) in Freund's complete adjuvant (FCA). LEW rats showed typical EAU, while neither WKAH nor WKAH.1L congenic rats developed EAU. However, when an additional i.v. injection of Bordetella pertussis was given, all rat strains developed EAU. Furthermore, when immunized with peptide M, an 18-mer synthetic peptide, which corresponds to amino acid positions 303-320 of bovine S-Ag, and given an additional i.v. injection of B. pertussis, LEW and WKAH.1L rats developed EAU, whereas WKAH did not. When ACI (RT1avl), BUF (RT1b), LEJ (RT1j), W (RT1k), F344 (RT1lvl), BN (RT1n), NIG-III (RT1q), TO (RT1t), and SDJ (RT1u) rats were immunized with peptide M or S-Ag and then B. pertussis, all strains developed EAU by immunization with S-Ag plus B. pertussis, but only F344 and NIG-III developed EAU by immunization with peptide M. These findings suggest that susceptibility to EAU in rats is controlled by both MHC and non-MHC genes; and that in the absence of B. pertussis adjuvant, the form of disease induced by native S-Ag in FCA is governed by non-MHC gene(s). However, this effect of non-MHC gene(s) could no longer be observed when the rats were also injected with B. pertussis adjuvant at sensitization. Images Fig. 1 PMID:1747950

  16. Comparison of human adult stem cells from adipose tissue and bone marrow in the treatment of experimental autoimmune encephalomyelitis

    PubMed Central

    2014-01-01

    Introduction While administration of ex vivo culture-expanded stem cells has been used to study immunosuppressive mechanisms in multiple models of autoimmune diseases, less is known about the uncultured, nonexpanded stromal vascular fraction (SVF)-based therapy. The SVF is composed of a heterogeneous population of cells and has been used clinically to treat acute and chronic diseases, alleviating symptoms in a range of tissues and organs. Methods In this study, the ability of human SVF cells was compared with culture-expanded adipose stem cells (ASCs) and bone-derived marrow stromal cells (BMSCs) as a treatment of myelin oligodendrocyte glycoprotein (35–55)-induced experimental autoimmune encephalitis in C57Bl/6J mice, a well-studied multiple sclerosis model (MS). A total of 1 × 106 BMSCs, ASCs, or SVF cells were administered intraperitoneally concomitantly with the induction of disease. Mice were monitored daily for clinical signs of disease by three independent, blinded investigators and rated on a scale of 0 to 5. Spinal cords were obtained after euthanasia at day 30 and processed for histological staining using luxol fast blue, toluidine blue, and hematoxylin and eosin to measure myelin and infiltrating immune cells. Blood was collected from mice at day 30 and analyzed by enzyme-linked immunosorbent assay to measure serum levels of inflammatory cytokines. Results The data indicate that intraperitoneal administration of all cell types significantly ameliorates the severity of disease. Furthermore, the data also demonstrate, for the first time, that the SVF was as effective as the more commonly cultured BMSCs and ASCs in an MS model. All cell therapies also demonstrated a similar reduction in tissue damage, inflammatory infiltrates, and sera levels of IFNγ and IL-12. While IFNγ levels were reduced to comparable levels between treatment groups, levels of IL-12 were significantly lower in SVF-treated than BMSC-treated or ASC-treated mice. Conclusions Based

  17. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice.

    PubMed

    Yun, Jaesuk; Gu, Sun Mi; Yun, Hyung Mun; Son, Dong Ju; Park, Mi Hee; Lee, Moon Soon; Hong, Jin Tae

    2015-12-01

    Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord.

  18. Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis.

    PubMed

    Khorooshi, Reza; Mørch, Marlene Thorsen; Holm, Thomas Hellesøe; Berg, Carsten Tue; Dieu, Ruthe Truong; Dræby, Dina; Issazadeh-Navikas, Shohreh; Weiss, Siegfried; Lienenklaus, Stefan; Owens, Trevor

    2015-07-01

    The Type I interferons (IFN), beta (IFN-β) and the alpha family (IFN-α), act through a common receptor and have anti-inflammatory effects. IFN-β is used to treat multiple sclerosis (MS) and is effective against experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice with EAE show elevated levels of Type I IFNs in the central nervous system (CNS), suggesting a role for endogenous Type I IFN during inflammation. However, the therapeutic benefit of Type I IFN produced in the CNS remains to be established. The aim of this study was to examine whether experimentally induced CNS-endogenous Type I IFN influences EAE. Using IFN-β reporter mice, we showed that direct administration of polyinosinic-polycytidylic acid (poly I:C), a potent inducer of IFN-β, into the cerebrospinal fluid induced increased leukocyte numbers and transient upregulation of IFN-β in CD45/CD11b-positive cells located in the meninges and choroid plexus, as well as enhanced IFN-β expression by parenchymal microglial cells. Intrathecal injection of poly I:C to mice showing first symptoms of EAE substantially increased the normal disease-associated expression of IFN-α, IFN-β, interferon regulatory factor-7 and IL-10 in CNS, and disease worsening was prevented for as long as IFN-α/β was expressed. In contrast, there was no therapeutic effect on EAE in poly I:C-treated IFN receptor-deficient mice. IFN-dependent microglial and astrocyte response included production of the chemokine CXCL10. These results show that Type I IFN induced within the CNS can play a protective role in EAE and highlight the role of endogenous type I IFN in mediating neuroprotection.

  19. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis

    PubMed Central

    Park, Yun Seong; Jeong, Eui Man; Lee, Dong-Sup; Kim, In-Gyu; Chung, Hum; Hwang, Young-il; Lee, Wang Jae; Yu, Hyeong Gon; Kang, Jae Seung

    2016-01-01

    IL-22 is a pro- and anti-inflammatory cytokine that is mainly produced by T cells and NK cells. Recent studies have reported the increased number of IL-22 producing T cells in patients with autoimmune noninfectious uveitis; however, the correlation between IL-22 and uveitis remains unclear. In this study, we aimed to determine the specific role of IL-22 and its receptor in the pathogenesis of uveitis. Serum concentration of IL-22 was significantly increased in uveitis patients. IL-22Rα was expressed in the retinal pigment epithelial cell line, ARPE-19. To examine the effect of IL-22, ARPE-19 was treated with recombinant IL-22. The proliferation of ARPE-19 and the production of monocyte chemoattractant protein (MCP)-1 from ARPE-19 were clearly elevated. IL-22 induced MCP-1 which facilitated the migration of inflammatory cells. Moreover, IL-22 increased the IL-22Rα expression in ARPE-19 through the activation of PI3K/Akt. Experimental animal models of uveitis induced by interphotoreceptor retinoid binding protein 1–20 (IRBP1-20) exhibited elevation of hyperplasia RPE and IL-22 production. When CD4+ T cells from the uveitis patients were stimulated with IRBP1-20, the production of IL-22 definitely increased. In addition, we examine the regulatory role of cysteamine, which has an anti-inflammatory role in the cornea, in uveitis through the down-regulation of IL-22Rα expression. Cysteamine effectively suppressed the IRBP1-20-induced IL-22Rα expression and prevented the development of IRBP1-20-induced uveitis in the experimental animal model. These finding suggest that IL-22 and its receptor have a crucial role in the development and pathogenesis of uveitis by facilitating inflammatory cell infiltration, and that cysteamine may be a useful therapeutic drug in treating uveitis by down-regulating IL-22Rα expression in RPE. PMID:27166675

  20. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Giacoppo, Sabrina; Soundara Rajan, Thangavelu; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2016-01-01

    Aberrant canonical Wnt-β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt-β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin-PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt-β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt-β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt-β-catenin signaling cascade and as a new potential therapeutic target for MS treatment.

  1. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis

    PubMed Central

    Giacoppo, Sabrina; Soundara Rajan, Thangavelu; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2016-01-01

    Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. PMID:27784989

  2. Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms

    PubMed Central

    Bittner, Stefan; Bobak, Nicole; Hofmann, Majella-Sophie; Schuhmann, Michael K.; Ruck, Tobias; Göbel, Kerstin; Brück, Wolfgang; Wiendl, Heinz; Meuth, Sven G.

    2015-01-01

    Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K2P5.1 (TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K2P5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K2P5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K2P5.1 knockout (K2P5.1−/−) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K2P5.1−/− mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K2P3.1 and KV1.3 seems to counterbalance the deletion of K2P5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K2P5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K2P5.1-targeting drugs. PMID:26213925

  3. Murine K2P5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K2P3.1- and KV1.3-Dependent Mechanisms.

    PubMed

    Bittner, Stefan; Bobak, Nicole; Hofmann, Majella-Sophie; Schuhmann, Michael K; Ruck, Tobias; Göbel, Kerstin; Brück, Wolfgang; Wiendl, Heinz; Meuth, Sven G

    2015-07-24

    Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K2P5.1 (TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K2P5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K2P5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K2P5.1 knockout (K2P5.1-/-) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K2P5.1-/- mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K2P3.1 and KV1.3 seems to counterbalance the deletion of K2P5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K2P5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K2P5.1-targeting drugs.

  4. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis – in the perspective of inflammasomes

    PubMed Central

    Inoue, Makoto; Shinohara, Mari L

    2013-01-01

    Inflammasomes in innate immune cells mediate the induction of inflammation by sensing microbes and pathogen-associated/damage-associated molecular patterns. Inflammasomes are also known to be involved in the development of some human and animal autoimmune diseases. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is currently the most fully characterized inflammasome, although a limited number of studies have demonstrated its role in demyelinating autoimmune diseases in the central nervous system of humans and animals. Currently, the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), is known to be induced by the NLRP3 inflammasome through enhanced recruitment of inflammatory immune cells in the central nervous system. On the other hand, interferon-β (IFNβ), a first-line drug to treat MS, inhibits NLRP3 inflammasome activation, and ameliorates EAE. The NLRP3 inflammasome is indeed a factor capable of inducing EAE, but it is dispensable when EAE is induced by aggressive disease induction regimens. In such NLRP3 inflammasome-independent EAE, IFN-β treatment is generally not effective. This might therefore be one mechanism that leads to occasional failures of IFN-β treatment in EAE, and possibly, in MS as well. In the current review, we discuss inflammasomes and autoimmunity; in particular, the impact of the NLRP3 inflammasome on MS/EAE, and on IFN-β therapy. PMID:23360426

  5. Treatment with the Antipsychotic Agent, Risperidone, Reduces Disease Severity in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Stone, Sarrabeth; Zareie, Pirooz; Kharkrang, Marie; Fong, Dahna; Connor, Bronwen; La Flamme, Anne Camille

    2014-01-01

    Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS. PMID:25116424

  6. Treatment with the antipsychotic agent, risperidone, reduces disease severity in experimental autoimmune encephalomyelitis.

    PubMed

    O'Sullivan, David; Green, Laura; Stone, Sarrabeth; Zareie, Pirooz; Kharkrang, Marie; Fong, Dahna; Connor, Bronwen; La Flamme, Anne Camille

    2014-01-01

    Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS.

  7. Autoimmunity in Immunodeficiency

    PubMed Central

    Todoric, Krista; Koontz, Jessica B.; Mattox, Daniel; Tarrant, Teresa K.

    2013-01-01

    Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date. PMID:23591608

  8. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  9. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model.

    PubMed

    Brito, Marcelly M S; Conceição-Silva, Fatima; Morgado, Fernanda N; Raibolt, Priscila S; Schubach, Armando; Schubach, Tania P; Schäffer, Guido M V; Borba, Cintia M

    2007-12-01

    The virulence of two strains of Sporothrix schenckii isolated from patients with lymphocutaneous or disseminated sporotrichosis were examined in BALB/c mice (Group 1 and 2, respectively). The mice were inoculated subcutaneously into the left hind footpad with 4 x 10(6) S. schenckii yeast cells in order to evaluate (i) the development of cutaneous lesions, (ii) signs of inactivity, (iii) weight loss, (iv) survival rates, (v) number of viable yeast cells in the lungs and spleen, (vi) splenic index, (vii) extent of organ lesions, and (viii) immunological responses. Comparison of the two groups showed more severe disease in Group 2 mice that developed significant weight and hair loss associated with inactivity and left hind footpad lesions that extended close to the testicular area. The histopathology and large number of viable microorganisms isolated from the spleen confirmed the higher invasive ability of this strain. Moreover, a decrease of an in vitro specific lymphoproliferative response and IFN-gamma production were observed over time in Group 2 mice. As a result, at the end of the experiment, the S. schenckii-antigen (Ss-Ag) response was considered negative with a stimulation index (SI) = 2. In contrast, Group 1 mice presented a positive response to Ss-Ag (SI = 14.1). These results confirm the existence of different virulence profiles in S. schenckii strains. In addition, the use of subcutaneous inoculation as a suitable route for verification of the pathogenicity of this fungus in the murine model was confirmed.

  10. Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma.

    PubMed

    Logani, Mahendra K; Bhanushali, Ashok; Anga, Altaf; Majmundar, Amar; Szabo, Imre; Ziskin, Marvin C

    2004-10-01

    The objective of the present studies was to investigate whether millimeter wave (MMW) therapy can increase the efficacy of cyclophosphamide (CPA), a commonly used anti-cancer drug. The effect of combined MMW-CPA treatment on melanoma growth was compared to CPA treatment alone in a murine model. MMWs were produced with a Russian made YAV-1 generator. The device produced 42.2 +/- 0.2 GHz modulated wave radiation through a 10 x 20 mm rectangular output horn. The animals, SKH-1 hairless female mice, were irradiated on the nasal area. Peak SAR and incident power density were measured as 730 +/- 100 W/kg and 36.5 +/- 5 mW/cm2, respectively. The maximum skin surface temperature elevation measured at the end of 30 min irradiation was 1.5 degrees C. B16F10 melanoma cells (0.2 x 10(6)) were implanted subcutaneously into the left flank of mice on day 1 of the experiment. On days 4-8, CPA was administered intraperitoneally (30 mg/kg/day). MMW irradiation was applied concurrently with, prior to or following CPA administration. A significant reduction (P < .05) in tumor growth was observed with CPA treatment, but MMW irradiation did not provide additional therapeutic benefit as compared to CPA alone. Similar results were obtained when MMW irradiation was applied both prior to and following CPA treatment.

  11. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    PubMed Central

    Vincent, Tonia L.; Marenzana, Massimo

    2017-01-01

    Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010

  12. Novel CD28 antagonist mPEG PV1-Fab’ mitigates experimental autoimmune uveitis by suppressing CD4+ T lymphocyte activation and IFN-γ production

    PubMed Central

    Papotto, Pedro Henrique; Marengo, Eliana Blini; Sardinha, Luiz Roberto; Carvalho, Karina Inácio; de Carvalho, Ana Eduarda Zulim; Castillo-Mendez, Sheyla; Jank, Carina Calixto; Vanhove, Bernard; Goldberg, Anna Carla; Rizzo, Luiz Vicente

    2017-01-01

    Autoimmune Uveitis is an important chronic inflammatory disease and a leading cause of impaired vision and blindness. This ocular autoimmune disorder is mainly mediated by T CD4+ lymphocytes poising a TH1 phenotype. Costimulatory molecules are known to play an important role on T cell activation and therefore represent interesting therapeutical targets for autoimmune disorders. CD28 is the prototypical costimulatory molecule for T lymphocytes, and plays a crucial role in the initiation, and maintenance of immune responses. However, previous attempts to use this molecule in clinical practice achieved no success. Thus, we evaluated the efficacy of mPEG PV1-Fab’ (PV1), a novel selective CD28 antagonist monovalent Fab fragment in the treatment of Experimental Autoimmune Uveitis (EAU). Here, we showed that PV1 treatment decreases both average disease score and incidence of EAU. A decrease in the activation profile of both T CD4+ and T CD8+ eye-infiltrating lymphocytes was evidenced. In the periphery, T CD4+ cells from PV1-treated mice also showed a decrease in their activation status, with reduced expression of CD69, CD25, and PD-1 molecules. This suppression was not dependent on Treg cells, as both their frequency and absolute number were lower in PV1-treated mice. In addition, frequency of CD4+IFN-γ+ T cells was significantly lower in PV1-treated group, but not of IL-17-producing T cells. Moreover, after specific restimulation, PV1 blockade selectively blocked IFN-γ production by CD4+ lymphocytes Taken together, our data suggest that mPEG PV1-Fab’ acts mainly on IFN-γ-producing CD4+ T cells and emphasize that this specific CD28 blockade strategy is a potential specific and alternative tool for the treatment of autoimmune disorders in the eye. PMID:28248972

  13. The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Macaque Species

    PubMed Central

    Curtis, Alan D.; Taslim, Najla; Reece, Shaun P.; Grebenciucova, Elena; Ray, Richard H.; Rosenbaum, Matthew D.; Wardle, Robert L.; Van Scott, Michael R.; Mannie, Mark D.

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord

  14. [(11)C]DAC-PET for noninvasively monitoring neuroinflammation and immunosuppressive therapy efficacy in rat experimental autoimmune encephalomyelitis model.

    PubMed

    Xie, Lin; Yamasaki, Tomoteru; Ichimaru, Naotsugu; Yui, Joji; Kawamura, Kazunori; Kumata, Katsushi; Hatori, Akiko; Nonomura, Norio; Zhang, Ming-Rong; Li, Xiao-Kang; Takahara, Shiro

    2012-03-01

    Neuroimaging measures have potential for monitoring neuroinflammation to guide treatment before the occurrence of significant functional impairment or irreversible neuronal damage in multiple sclerosis (MS). N-Benzyl-N-methyl-2-(7-[(11)C]methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl) acetamide ([(11)C]DAC), a new developed positron emission tomography (PET) probe for translocator protein 18 kDa (TSPO), has been adopted to evaluate the neuroinflammation and treatment effects of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. [(11)C]DAC-PET enabled visualization of neuroinflammation lesion of EAE by tracing TSPO expression in the spinal cords; the maximal uptake value reached in day 11 and 20 EAE rats with profound inflammatory cell infiltration compared with control, day 0 and 60 EAE rats. Biodistribution studies and in vitro autoradiography confirmed these in vivo imaging results. Doubling immunohistochemical studies showed the infiltration and expansion of CD4+ T cells and CD11b+ microglia; CD68+ macrophages were responsible for the increased TSPO levels visualized by [(11)C]DAC-PET. Furthermore, mRNA level analysis of the cytokines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) revealed that TSPO+/CD4 T cells, TSPO+ microglia and TSPO+ macrophages in EAE spinal cords were activated and secreted multiple proinflammation cytokines to mediate inflammation lesions of EAE. EAE rats treated with an immunosuppressive agent: 2-amino-2-[2-(4-octylphenyl)ethyl] propane-1,3-diolhydrochloride (FTY720), which exhibited an absence of inflammatory cell infiltrates, displaying a faint radioactive signal compared with the high accumulation of untreated EAE rats. These results indicated that [(11)C] DAC-PET imaging is a sensitive tool for noninvasively monitoring the neuroinflammation response and evaluating therapeutic interventions in EAE.

  15. Preventive effect of chrysin on experimental autoimmune uveitis triggered by injection of human IRBP peptide 1-20 in mice.

    PubMed

    Meng, Xiangda; Fang, Sijie; Zhang, Zhuhong; Wang, Yang; You, Caiyun; Zhang, Jingkai; Yan, Hua

    2016-03-21

    Uveitis is a common cause of blindness worldwide. Experimental autoimmune uveitis (EAU) is an animal model of noninfectious uveitis. Chrysin (5,7-dihydroxyflavone) is a member of the flavonoid family and has anti-inflammatory effects. We immunized C57BL/6J mice with human interphotoreceptor retinoid-binding protein peptide 1-20 to induce EAU. Chrysin was administered intragastrically at 25 mg/kg daily to the chrysin-treated mice from 3 days before immunization to 21 days after immunization. Vehicle was administered to the mice in the control group according to the same protocol. Lower clinical and histopathological scores, increased integrity of the blood-retinal barrier (BRB) and higher expression of tight junction proteins were observed in the chrysin-treated mice. Chrysin significantly decreased the proportions of Th1, Th17 and CD4(+)CD3(+)CD62L(+) Th0 cells, and increased the proportion of Treg cells. Both macrophage infiltration and the expression of inducible nitric oxide synthase in the retina were efficiently inhibited by chrysin treatment. In chrysin-treated mice, the expression of interferon-γ, interleukin (IL)-17A, IL-6, IL-1β and tumor necrosis factor-α was reduced in the retina, whereas higher levels of transforming growth factor-β were detected. Furthermore, NF-κBp65 was downregulated after chrysin treatment. In conclusion, as an anti-inflammatory molecule, chrysin exerts a preventive effect on EAU by modulating the balance among helper T-cell subsets and suppressing ocular inflammation, thereby maintaining the integrity of the BRB.Cellular & Molecular Immunology advance online publication, 21 March 2016; doi:10.1038/cmi.2015.107.

  16. Gene Expression in the Spinal Cord in Female Lewis Rats with Experimental Autoimmune Encephalomyelitis Induced with Myelin Basic Protein

    PubMed Central

    Inglis, Hayley R.; Greer, Judith M.; McCombe, Pamela A.

    2012-01-01

    Background Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE) is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. Methodology/Principal Findings MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. Conclusions/Significance EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease. PMID:23139791

  17. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis.

    PubMed

    Mills, Jeffrey H; Thompson, Linda F; Mueller, Cynthia; Waickman, Adam T; Jalkanen, Sirpa; Niemela, Jussi; Airas, Laura; Bynoe, Margaret S

    2008-07-08

    CD73 is a cell surface enzyme of the purine catabolic pathway that catalyzes the breakdown of AMP to adenosine. Because of the strong immunosuppressive and antiinflammatory properties of adenosine, we predicted that cd73(-/-) mice would develop severe experimental autoimmune encephalomyelitis (EAE), an animal model for the central nervous system (CNS) inflammatory disease, multiple sclerosis. Surprisingly, cd73(-/-) mice were resistant to EAE. However, CD4 T cells from cd73(-/-) mice secreted more proinflammatory cytokines than wild-type (WT) mice and were able to induce EAE when transferred into naïve cd73(+/+) T cell-deficient recipients. Therefore, the protection from EAE observed in cd73(-/-) mice was not caused by a deficiency in T cell responsiveness. Immunohistochemistry showed that cd73(-/-) mice had fewer infiltrating lymphocytes in their CNS compared with WT mice. Importantly, susceptibility to EAE could be induced in cd73(-/-) mice after the transfer of WT CD73(+)CD4(+) T cells, suggesting that CD73 must be expressed either on T cells or in the CNS for disease induction. In the search for the source of CD73 in the CNS that might facilitate lymphocyte migration, immunohistochemistry revealed a lack of CD73 expression on brain endothelial cells and high expression in the choroid plexus epithelium which regulates lymphocyte immunosurveillance between the blood and cerebrospinal fluid. Because blockade of adenosine receptor signaling with the A(2a) adenosine receptor-specific antagonist SCH58261 protected WT mice from EAE induction, we conclude that CD73 expression and adenosine receptor signaling are required for the efficient entry of lymphocytes into the CNS during EAE development.

  18. Effect of aqueous extract of Achillea millefolium on the development of experimental autoimmune encephalomyelitis in C57BL/6 mice

    PubMed Central

    Vazirinejad, Reza; Ayoobi, Fateme; Arababadi, Mohammad Kazemi; Eftekharian, Mohammad M.; Darekordi, Ali; Goudarzvand, Mahdi; Hassanshahi, Gholamhossein; Taghavi, Mohammad Mohsen; Ahmadabadi, Behzad Nasiri; Kennedy, Derek; Shamsizadeh, Ali

    2014-01-01

    Objective: Achillea millefolium (A. millefolium) is widely used as an anti-inflammatory remedy in traditional and herbal medicine. In this study, we investigated the effect of an aqueous extract from A. millefolium on experimental autoimmune encephalomyelitis (EAE) and on the serum cytokine levels in C57BL/6 mice. Materials and Methods: EAE was induced in 63 C57BL/6 mice weighing 20-25 g (8 weeks old). Following immunization, the treatment protocol was initiated by using different doses of an aqueous extract from A. millefolium (1, 5, and 10 mg/mouse/day). Histopathologic assessments were performed by hematoxylin and eosin (H and E) and luxol fast blue (LFB) staining. Behavioral disabilities were recorded by a camera. Serum levels of interleukin (IL)-10, IL-12, and transforming growth factor (TGF)-β were measured using enzyme-linked immunosorbent assay (ELISA). Results: On average, mice developed classical behavioral disabilities of EAE, 13.2 ± 1.9 days following immunization. Treatment of mice with A. millefolium led to delay the appearance of behavioral disabilities along with reduced severity of the behavioral disabilities. Treatment with A. millefolium prevented weight loss and increased serum levels of TGF-β in immunized mice with MOG35-55. EAE-induced mice, which were treated with A. millefolium, had less cerebral infiltration of inflammatory cells. Conclusion: The results demonstrated that treatment with aqueous extract of A. millefolium may attenuate disease severity, inflammatory responses, and demyelinating lesions in EAE-induced mice. In addition, following treatment with A. millefolium, serum levels of TGF-βwere increased in EAE-induced mice. PMID:24987178

  19. Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Yu, Jing-Wen; Li, Yan-Hua; Song, Guo-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Zhang, Hai-Fei; Yang, Wan-Fang; Wang, Qing; Yan, Ya-Ping; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-12-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.

  20. Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils.

    PubMed

    Eberle, Max; Ebel, Philipp; Mayer, Christoph A; Barthelmes, Julia; Tafferner, Nadja; Ferreiros, Nerea; Ulshöfer, Thomas; Henke, Marina; Foerch, Christian; de Bazo, Anika Männer; Grösch, Sabine; Geisslinger, Gerd; Willecke, Klaus; Schiffmann, Susanne

    2015-10-01

    Ceramides are mediators of inflammatory processes. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed that CerS6 mRNA expression was upregulated 15-fold in peripheral blood leukocytes before the onset of EAE symptoms. In peripheral blood leukocytes from MS patients, a 3.9-fold upregulation was found. Total genetic deletion of CerS6 and the selective deletion of CerS6 in peripheral blood leucocytes exacerbated the progression of clinical symptoms in EAE mice. This was associated with enhanced leukocyte, predominantly neutrophil infiltration and enhanced demyelination in the lumbar spinal cord of EAE mice. Interferon-gamma/tumor necrosis factor alpha (IFN-γ/TNF-α) and granulocyte colony-stimulating factor (G-CSF) both drive EAE development and induce expression of the integrin CD11b and the chemokine receptor C-X-C motif chemokine receptor 2 (CXCR2), and we found they also induce CerS6 expression. In vivo, the genetic deletion of CerS6 enhanced the activation/migration of neutrophils, as reflected by an enhanced upregulation of CD11b and CXCR2. In vitro, the genetic deletion of CerS6 enhanced the activation status of IFN-γ/TNF-α-stimulated neutrophils, as shown by increased expression of nitric oxide and CD11b and an increased adhesion capacity. In G-CSF-stimulated neutrophils, the migration status was enhanced, as reflected by an elevated level of CXCR2 and an increased migration capacity. These data suggest that CerS6/C16-Cer mediates feedback regulation by inhibiting the formation of CD11b and CXCR2, which are induced either by IFN-γ/TNF-α or by G-CSF, respectively. We conclude that CerS6/C16-Cer mediates anti-inflammatory effects during the development of EAE and MS possibly by suppressing the migration and deactivation of neutrophils.

  1. The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species.

    PubMed

    Curtis, Alan D; Taslim, Najla; Reece, Shaun P; Grebenciucova, Elena; Ray, Richard H; Rosenbaum, Matthew D; Wardle, Robert L; Van Scott, Michael R; Mannie, Mark D

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund's adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund's adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6-7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and

  2. Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter.

    PubMed

    Vana, Adam C; Li, Shihe; Ribeiro, Rachel; Tchantchou, Flaubert; Zhang, Yumin

    2011-09-01

    Inhibition of phospholipase A(2) (PLA(2)) has recently been found to attenuate the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis (MS). However, the protective mechanisms that underlie PLA(2) inhibition are still not well understood. In this study, we found that cytosolic PLA(2) (cPLA(2)) was highly expressed in infiltrating lymphocytes and macrophages/microglia in mouse spinal cord white matter. Although cPLA(2) is also expressed in spinal cord neurons and oligodendrocytes, there were no differences observed in these cell types between EAE and control animals. Arachidonyl trifluoromethyl ketone (AACOCF3), a cPLA(2) inhibitor, significantly reduced the clinical symptoms and inhibited the body weight loss typically found in EAE mice. AACOCF3 also attenuated the loss of mature, myelin producing, oligodendrocytes, and axonal damage in the spinal cord white matter. Nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was dramatically increased in EAE mice and attenuated by treatment with AACOCF3. These protective effects were not evident when AA861, an inhibitor of lipoxygenase, was used. In primary cultures of microglia, lipopolysaccharide (LPS) induced an upregulation of cPLA(2), inducible nitric oxide synthase (iNOS) and components of the NADPH oxidase complex, p47phox and p67phox. AACOCF3 significantly attenuated iNOS induction, nitric oxide production and the generation of reactive oxygen species in reactive microglia. Similar to the decomposition catalyst of peroxynitrite, AACOCF3 also blocked oligodendrocyte toxicity induced by reactive microglia. These results suggest that AACOCF3 may prevent oligodendrocyte loss in EAE by attenuating peroxynitrite formation in the spinal cord white matter.

  3. LINGO-1-Fc-Transduced Neural Stem Cells Are Effective Therapy for Chronic Stage Experimental Autoimmune Encephalomyelitis.

    PubMed

    Li, Xing; Zhang, Yuan; Yan, Yaping; Ciric, Bogoljub; Ma, Cun-Gen; Chin, Jeannie; Curtis, Mark; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2016-06-25

    The chronic stage multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system (CNS), remains refractory to current treatments. This refractory nature may be due to the fact that current treatments are primarily immunomodulatory, which prevent further demyelination but lack the capacity to promote remyelination. Several approaches, including transplantation of neural stem cells (NSCs) or antagonists to LINGO-1, a key part of the receptor complex for neuroregeneration inhibitors, have been effective in suppressing the acute stage of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, their effect on the chronic stage EAE is not known. Here, we show that transplantation of NSCs had only a slight therapeutic effect when treatment started at the chronic stage of EAE (e.g., injected at day 40 postimmunization). However, NSCs engineered to produce LINGO-1-Fc, a soluble LINGO-1 antagonist, significantly promoted neurological recovery as demonstrated by amelioration of clinical signs, improvement in axonal integrity, and enhancement of oligodendrocyte maturation and neuron repopulation. Significantly enhanced NAD production and Sirt2 expression were also found in the CNS of mice treated with LINGO-1-Fc-producing NSC. Moreover, differentiation of LINGO-1-Fc-producing NSCs into oligodendrocytes in vitro was largely diminished by an NAMPT inhibitor, indicating that LINGO-1-Fc enhances the NAMPT/NAD/Sirt2 pathway. Together, our study establishes a CNS-targeted, novel LINGO-1-Fc delivery system using NSCs, which represents a novel and effective NSC-based gene therapy approach for the chronic stage of MS.

  4. Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS.

    PubMed

    Muench, Frédéric; Retel, Joren; Jeuthe, Sarah; O h-Ici, Darach; van Rossum, Barth; Wassilew, Katharina; Schmerler, Patrick; Kuehne, Titus; Berger, Felix; Oschkinat, Hartmut; Messroghli, Daniel R

    2015-12-01

    Experimental autoimmune myocarditis (EAM) in rodents is an accepted model of myocarditis and dilated cardiomyopathy (DCM). Altered metabolism is thought to play an important role in the pathogenesis of DCM and heart failure (HF). Study of the metabolism may provide new diagnostic information and insights into the mechanisms of myocarditis and HF. Proton MRS ((1)H-MRS) has not yet been used to study the changes occurring in myocarditis and subsequent HF. We aimed to explore the changes in creatine metabolism using this model and compare them with the findings in healthy animals. Myocardial function of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short-axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle spinning MRS ((1)H-MAS-MRS). Myocarditis was confirmed histologically by the presence of an inflammatory cellular infiltrate and CD68 positive staining. A significant increase in the metabolic ratio of Tau/tCr (taurine/total creatine) obtained by (1)H-MAS-MRS was observed in myocarditis compared with healthy controls (21 d acute EAM, 4.38 (±0.23); 21 d control, 2.84 (±0.08); 35 d chronic EAM, 4.47 (±0.83); 35 d control, 2.59 (±0.38); P < 0.001). LVEF was reduced in diseased animals (EAM, 55.2% (±11.3%); control, 72.6% (±3.8%); P < 0.01) and correlated with Tau/tCr ratio (R = 0.937, P < 0.001). Metabolic alterations occur acutely with the development of myocarditis. Myocardial Tau/tCr ratio as detected by (1)H-MRS correlates with LVEF and is able to differentiate between healthy myocardium and myocardium from rats with EAM.

  5. Modulation of the anti-acetylcholine receptor response and experimental autoimmune myasthenia gravis by recombinant fragments of the acetylcholine receptor.

    PubMed

    Barchan, D; Asher, O; Tzartos, S J; Fuchs, S; Souroujon, M C

    1998-02-01

    Myasthenia gravis (MG) is a neuromuscular disorder of man caused by a humoral response to the acetylcholine receptor (AChR). Most of the antibodies in MG and in experimental autoimmune myasthenia gravis (EAMG) are directed to the extracellular portion of the AChR alpha subunit, and within it, primarily to the main immunogenic region (MIR). We have cloned and expressed recombinant fragments, corresponding to the entire extracellular domain of the AChR alpha subunit (H alpha1-210), and to portions of it that encompass either the MIR (H alpha1-121) or the ligand binding site of AChR (H alpha122-210), and studied their ability to interfere with the immunopathological anti-AChR response in vitro and in vivo. All fragments were expressed as fusion proteins with glutathione S-transferase. Fragments H alpha1-121 and H alpha1-210 protected AChR in TE671 cells against accelerated degradation induced by the anti-MIR monoclonal antibody (mAb)198 in a dose-dependent manner. Moreover, these fragments had a similar effect on the antigenic modulation of AChR by other anti-MIR mAb and by polyclonal rat anti-AChR antibodies. Fragments H alpha1-121 and H alpha1-210 were also able to modulate in vivo muscle AChR loss and development of clinical symptoms of EAMG, passively transferred to rats by mAb 198. Fragment H alpha122-210 did not have such a protective activity. Our results suggest that the appropriate recombinant fragments of the human AChR may be employed in the future for antigen-specific therapy of myasthenia.

  6. Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene

    PubMed Central

    De Kozak, Y; Thillaye-Goldenberg, B; Naud, M -C; Viana Da Costa, A; Auriault, C; Verwaerde, C

    2002-01-01

    Pathological ocular manifestations result from a dysregulation in the balance between proinflammatory type 1 cytokines and regulatory type 2 cytokines. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with potent immunosuppressive effects. We have examined the efficiency of viral IL-10 adenovirus (Ad-vIL-10)-mediated gene transfer on experimental autoimmune uveoretinitis (EAU) induced in mice and rats by purified retinal autoantigens, respectively, interphotoreceptor binding protein (IRBP) and S-antigen (S-Ag). B10-A mice that received a single unilateral injection of Ad-vIL-10 in the retro-orbital sinus venosus performed 1 day before immunization with IRBP in the footpads showed high levels of circulating vIL-10 in their sera and a significant reduction in pathological ocular manifestations. Lower levels of IFN-γ and IL-2 were found in cellular supernatants from IRBP-stimulated splenic cells in these treated mice. The local effect on ocular disease of vIL-10 was neutralized completely by injection of a monoclonal anti-vIL-10 antibody, demonstrating the specificity of the treatment. To determine whether the transfer of the vIL-10 gene within the periocular tissues of the eye could prevent acute EAU, a subconjunctival injection of Ad-vIL-10 was performed in Lewis rats simultaneously with S-antigen in the footpads. This injection determined in situ vIL-10 expression with very low circulating vIL-10 and led to a significant reduction of EAU without affecting the systemic immune response. The present results suggest that Ad-mediated gene transfer resulting in systemic and local expression of vIL-10 provide a promising approach for the treatment of uveitis. PMID:12390308

  7. Myelin ultrastructure of sciatic nerve in rat experimental autoimmune neuritis model and its correlation with associated protein expression

    PubMed Central

    Yuan, Xiao-Jing; Wei, Yu-Jun; Ao, Qiang; Gong, Kai; Wang, Jian-Yong; Sun, Qiang-San; Zhang, Ling; Zheng, Zun-Cheng; Chen, Lin

    2015-01-01

    To explore the relationship of peripheral nerve ultrastructure and its associated protein expression in experimental autoimmune neuritis (EAN). EAN was established in Lewis rats using an emulsified mixture of P0 peptide 180-199, Mycobacterium tuberculosis, and incomplete Freund’s adjuvant. Rats immunized with saline solution were used as a control group. Sciatic nerve ultrastructure and immunofluorescence histopathology were measured at the neuromuscular severity peak on day 18 post-induction. Cell-specific protein markers were used for immunofluorescence histopathology staining to characterize sciatic nerve cells: CD3 (T cell), Iba-1 (microglia), S100 (myelin), and neurofilament 200 (axon). The results showed that swelling of the myelin lamellae, vesicular disorganization, separation of the myelin lamellae, and an attenuation or disappearance of the axon were observed by transmission electron microscopy in the EAN group. CD3 and Iba-1 increased significantly in the structures characterized by separation or swelling of the myelin lamellae, and increased slightly in the structures characterized by vesicular of the myelin lamellae, S100 decreased in the structures characterized by vesicular disorganization or separation of the myelin lamellae. And neurofilament 200 decreased in the structures characterized by separation of the myelin lamellae. Furthermore, we found that Iba1 were positive in the myelin sheath, and overlapped with S100, which significantly indicated that Schwann cells played as macrophage-like cells during the disease progression of ENA. Our findings may be a significant supplement for the knowledge of EAN model, and may offer a novel sight on the treatment of Guillain-Barré syndrome. PMID:26339349

  8. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Ribeiro, R; Yu, F; Wen, J; Vana, A; Zhang, Y

    2013-12-19

    Multiple Sclerosis (MS) is a demyelinating disease which causes inflammation, demyelination, and axonal injury. Currently, there is no cure for the disease. The endocannabinoid system has recently emerged as a promising therapeutic target for MS. The protective mechanisms of cannabinoids are thought to be mediated by the activation of the cannabinoid type 1 (CB1) and type 2 (CB2) receptors expressed primarily in neurons and immune cells, respectively. However, the molecular mechanisms and the contribution of each receptor in ameliorating disease progression are still debatable. Although CB1 and CB2 receptors are expressed in oligodendrocytes, the myelin producing cells in the central nervous system, the role of cannabinoids in oligodendrocyte survival has not been well investigated. Using primary cultures of mature oligodendrocytes, we tested the effect of a novel synthetic cannabinoid CB52 on oligodendrocyte toxicity induced by peroxynitrite, the primary toxic species released by microglia. Interestingly, we found that CB52 is more potent than a number of broad and selective CB1 and CB2 agonists in protecting oligodendrocytes against peroxynitrite-induced toxicity. The protection provided by CB52 is likely due to its reduction of ERK1/2 phosphorylation and reactive oxygen species (ROS) generation in these cells. Using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found that CB52 reduces microglia activation, nitrotyrosine formation, T cell infiltration, oligodendrocyte toxicity, myelin loss and axonal damage in the mouse spinal cord white matter and alleviates the clinical scores when given either before or after disease onset. These effects are reversed by the CB1 receptor antagonist, but not by the CB2 receptor antagonist, suggesting that the activation of CB1 receptors contributes significantly to the anti-inflammatory and neuroprotective effects of cannabinoids on MS.

  9. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis

    PubMed Central

    Dahl, Lisa CM; Nasa, Zeyad; Chung, JieYu; Niego, Be’eri; Tarlac, Volga; Ho, Heidi; Galle, Adam; Petratos, Steven; Lee, Jae Young; Alderuccio, Frank; Medcalf, Robert L.

    2016-01-01

    Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE. PMID:27427941

  10. p150/95 (CD11c/CD18) Expression Is Required for the Development of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Bullard, Daniel C.; Hu, Xianzhen; Adams, Jillian E.; Schoeb, Trenton R.; Barnum, Scott R.

    2007-01-01

    p150/95 (CD11c/CD18, CR4) is a member of the β2-integrin family of adhesion molecules and is considered an important phagocytic receptor. The role of p150/95 in the development of central nervous system demyelinating diseases, including multiple sclerosis, remains unexplored. To determine p150/95-mediated mechanisms in experimental autoimmune encephalomyelitis (EAE), we performed EAE using CD11c-deficient (CD11c−/−) mice. EAE in CD11c−/− mice was significantly attenuated and characterized by markedly reduced spinal cord T-cell infiltration and interferon-γ production by these cells. Adoptive transfer of antigen-restimulated T cells from wild-type to CD11c−/− mice produced significantly attenuated EAE, whereas transfer of CD11c−/− antigen-restimulated T cells to control mice induced a very mild, monophasic EAE. T cells from MOG35–55 peptide-primed CD11c−/− mice displayed an unusual cytokine phenotype with elevated levels of interleukin (IL)-2, IL-4, and IL-12 but reduced levels of interferon-γ, tumor necrosis factor-α, IL-10, IL-17, and transforming growth factor-β compared with control mice. Overall, CD11c−/− T cells from primed mice proliferated comparably to that of control T cells on MOG35-55 restimulation. Our results indicate that expression of p150/95 is critical on both T cells as well as other leukocytes for the development of demyelinating disease and may represent a novel therapeutic target for multiple sclerosis. PMID:17525267

  11. Monocyte behaviour and tissue transglutaminase expression during experimental autoimmune encephalomyelitis in transgenic CX3CR1(gfp/gfp) mice.

    PubMed

    Chrobok, Navina L; Jaouen, Alexandre; Fenrich, Keith K; Bol, John G J M; Wilhelmus, Micha M M; Drukarch, Benjamin; Debarbieux, Franck; van Dam, Anne-Marie

    2017-03-01

    Leukocyte infiltration into the central nervous system (CNS) is a key pathological feature in multiple sclerosis (MS) and the MS animal model experimental autoimmune encephalomyelitis (EAE). Recently, preventing leukocyte influx into the CNS of MS patients is the main target of MS therapies and insight into cell behaviour in the circulation is needed for further elucidation of such therapies. In this study, we aimed at in vivo visualization of monocytes in a time-dependent manner during EAE. Using intravital two-photon microscopy (IVM), we imaged CX3CR1(gfp/gfp) mice during EAE, visualizing CX3CR1-GFP(+) monocytes and their dynamics in the spinal cord vasculature. Our observations showed that intraluminal crawling of CX3CR1-GFP(+) monocytes increased even before the clinical onset of EAE due to immunization of the animals. Furthermore, intraluminal crawling remained elevated during ongoing clinical disease. Besides, the displacement of these cells was larger during the peak of EAE compared to the control animals. In addition, we showed that the enzyme tissue transglutaminase (TG2), which is present in CNS-infiltrated cells in MS patients, is likewise found in CX3CR1-GFP(+) monocytes in the spinal cord lesions and at the luminal side of the vasculature during EAE. It might thereby contribute to adhesion and crawling of monocytes, facilitating extravasation into the CNS. Thus, we put forward that interference with monocyte adhesion, by e.g. inhibition of TG2, should be applied at a very early stage of EAE and possibly MS, to effectively combat subsequent pathology.

  12. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    PubMed Central

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  13. Impact of Notch1 Deletion in Macrophages on Pro-inflammatory Cytokine Production and the Outcome of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wongchana, Wipawee; Lawlor, Rebecca G.; Osborne, Barbara A.; Palaga, Tanapat

    2015-01-01

    Notch signaling is involved in regulating TLR-mediated responses in activated macrophages. In this study, we investigated the impact of Notch signaling in macrophages in an experimental autoimmune encephalomyelitis (EAE) model. To examine the impact of deficiency in Notch signaling in activated macrophages in EAE, an adoptive transfer of activated macrophages derived from Notch1fl/fl X Mx1cre+/− (N1KO) or CSL/Rbp-jkfl/fl X Mx1cre+/− (CSL/RBP-Jκ KO) mice was performed prior to induction of EAE. Mice receiving activated N1KO macrophages showed decreased severity of EAE, compared with mice receiving wild type or CSL/RBP-Jκ KO macrophages. In vitro re-stimulation of splenocytes by MOG35-55 peptide from these mice revealed that cells from mice receiving N1KO macrophages produced significantly less IL-17 compared with the control mice, whereas IFNγ production was similar in both groups. We found that activated N1KO, but not CSL/RBP-Jκ KO, macrophages produced less IL-6 and had lower CD80 expression, compared with wild type and did not exhibit any defect in IL-12p40/70 production, whereas activated macrophages from CSL/RBP-Jκ KO mice phenocopied gamma secretase inhibitor (GSI) treatment for reduced IL-12p40/70 production. Furthermore, the nuclear translocation of the NF-κB subunit c-Rel was compromised in GSI-treated and CSL/RBP-Jκ KO but not N1KO macrophages. These results suggest that Notch1 and CSL/RBP-Jκ in macrophages may affect the severity of EAE differently, possibly through modulating IL-6 and CD80 expression, which is involved in the Th17 but not Th1 response. PMID:26503951

  14. Enhancing the Ability of Experimental Autoimmune Encephalomyelitis to Serve as a More Rigorous Model of Multiple Sclerosis through Refinement of the