Sample records for murine experimental autoimmune

  1. High salt intake does not exacerbate murine autoimmune thyroiditis

    PubMed Central

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  2. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    PubMed

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  3. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  4. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  5. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  6. Tryptase - PAR2 axis in Experimental Autoimmune Prostatitis, a model for Chronic Pelvic Pain Syndrome

    PubMed Central

    Roman, Kenny; Done, Joseph D.; Schaeffer, Anthony J.; Murphy, Stephen F.; Thumbikat, Praveen

    2014-01-01

    Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine experimental autoimmune prostatitis (EAP). Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia lead to ERK1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS. PMID:24726923

  7. Inotuzumab Ozogamicin Murine Analog–Mediated B-Cell Depletion Reduces Anti-islet Allo- and Autoimmune Responses

    PubMed Central

    Carvello, Michele; Petrelli, Alessandra; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Chin, Melissa; Orsenigo, Elena; Staudacher, Carlo; Secchi, Antonio; Dunussi-Joannopoulos, Kyri; Sayegh, Mohamed H.; Markmann, James F.; Fiorina, Paolo

    2012-01-01

    B cells participate in the priming of the allo- and autoimmune responses, and their depletion can thus be advantageous for islet transplantation. Herein, we provide an extensive study of the effect of B-cell depletion in murine models of islet transplantation. Islet transplantation was performed in hyperglycemic B-cell–deficient(μMT) mice, in a purely alloimmune setting (BALB/c into hyperglycemic C57BL/6), in a purely autoimmune setting (NOD.SCID into hyperglycemic NOD), and in a mixed allo-/autoimmune setting (BALB/c into hyperglycemic NOD). Inotuzumab ozogamicin murine analog (anti-CD22 monoclonal antibody conjugated with calicheamicin [anti-CD22/cal]) efficiently depleted B cells in all three models of islet transplantation examined. Islet graft survival was significantly prolonged in B-cell–depleted mice compared with control groups in transplants of islets from BALB/c into C57BL/6 (mean survival time [MST]: 16.5 vs. 12.0 days; P = 0.004), from NOD.SCID into NOD (MST: 23.5 vs. 14.0 days; P = 0.03), and from BALB/c into NOD (MST: 12.0 vs. 5.5 days; P = 0.003). In the BALB/c into B-cell–deficient mice model, islet survival was prolonged as well (MST: μMT = 32.5 vs. WT = 14 days; P = 0.002). Pathology revealed reduced CD3+ cell islet infiltration and confirmed the absence of B cells in treated mice. Mechanistically, effector T cells were reduced in number, concomitant with a peripheral Th2 profile skewing and ex vivo recipient hyporesponsiveness toward donor-derived antigen as well as islet autoantigens. Finally, an anti-CD22/cal and CTLA4-Ig–based combination therapy displayed remarkable prolongation of graft survival in the stringent model of islet transplantation (BALB/c into NOD). Anti-CD22/cal–mediated B-cell depletion promotes the reduction of the anti-islet immune response in various models of islet transplantation. PMID:22076927

  8. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.

    PubMed

    Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar

    2016-03-01

    The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Prolonged Stimulation of a Brainstem Raphe Region Attenuates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.

    2017-01-01

    Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248

  10. Transplantation of autoimmune regulator-encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis.

    PubMed

    Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank

    2010-12-01

    The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens.

    PubMed

    Lapierre, Pascal; Djilali-Saiah, Idriss; Vitozzi, Susana; Alvarez, Fernando

    2004-04-01

    Autoimmune hepatitis (AIH) is characterized by an immune-mediated injury of the hepatic parenchyma of unknown pathogenesis. Type 2 AIH is identified by the presence of anti-liver-kidney microsomes type 1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1) autoantibodies. The current study shows that a murine model of AIH can be generated by DNA immunization against type 2 AIH self-antigens (P450 2D6 and formiminotransferase-cyclodeaminase). A pCMV plasmid containing the N-terminal region of mouse CTLA-4 and the antigenic region of human CYP2D6 (672-1,377 bp) and human formiminotransferase cyclodeaminase (FTCD; 1,232-1,668 bp) was used for DNA immunization of C57BL/6 female mice. Immunized mice showed elevated levels of alanine aminotransferase (ALT), with peaks at 4 and 7 months postinjection. Periportal, portal, and intralobular liver inflammatory infiltrates were observed at histology. Mainly CD4+ lymphocytes, but also CD8+ and B lymphocytes, were found in the liver. Cytotoxic-specific T cells were found in both the liver and spleen of these animals. Mice developed anti-LKM1 and anti-LC1 antibodies of immunoglobulin G2 (IgG2) subclass, against specific mouse autoantigens. The ALT levels correlated with both the presence of anti-LKM1/anti-LC1 antibodies and the presence of liver necroinflammation. In conclusion, in mice, DNA immunization against human autoantigens breaks tolerance and induces an autoimmune liver disease. Molecular mimicry between foreign and self-antigens explains the liver injury. This model of AIH resembles human type 2 AIH and will be helpful for the study of its pathogenesis.

  12. CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas.

    PubMed

    Deininger, M H; Zhao, Y; Schluesener, H J

    1999-01-01

    CP-10 (chemotactic protein of m.w. 10,000) is a member of the S100 superfamily of Ca2+ binding peptides, which has potent chemotactic activity for murine and human myeloid cells. Here we report on the generation of monoclonal antibodies against CP-10 and accumulation of CP-10+ cells during experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), uveitis (EAU) and in experimentally transplanted C6 gliomas. During acute inflammation, CP-10 is mainly expressed by large ED1+ monocytic perivascular cells that accumulate at days 11-14. CP-10+ cells are predominantly located in areas of cellular infiltration but are as well found in the meninges and infiltrating the brain parenchyma. In transplanted gliomas, CP-10+ cells are located exclusively within the tumor parenchyma. Using double labeling experiments, other cells participating in the inflammatory reaction were found to express CP-10, like few lymphoblastic W3/13+ cells in the vicinity of the inflammatory infiltrate.

  13. Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice.

    PubMed

    Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng

    2012-07-01

    Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. T Lymphocytes Do Not Directly Mediate the Protective Effect of Estrogen on Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Polanczyk, Magdalena J.; Jones, Richard E.; Subramanian, Sandhya; Afentoulis, Michael; Rich, Cathleen; Zakroczymski, Melissa; Cooke, Paul; Vandenbark, Arthur A.; Offner, Halina

    2004-01-01

    Gender influences mediated by 17β-estradiol (E2) have been associated with susceptibility to and severity of autoimmune diseases such as diabetes, arthritis, and multiple sclerosis. In this regard, we have shown that estrogen receptor-α (Esr1) is crucial for the protective effect of 17β-estradiol (E2) in murine experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis. The expression of estrogen receptors among various immune cells (eg, T and B lymphocytes, antigen-presenting cells) suggests that the therapeutic effect of E2 is likely mediated directly through specific receptor binding. However, the target immune cell populations responsive to E2 treatment have not been identified. In the current study, we induced EAE in T-cell-deficient, severe combined immunodeficient mice or in immunocompetent mice with encephalitogenic T cells from wild-type Esr1+/+ or Esr1 knockout (Esr1−/−) donors and compared the protective E2 responses. The results showed that E2-responsive, Esr1+/+ disease-inducing encephalitogenic T cells were neither necessary nor sufficient for E2-mediated protection from EAE. Instead, the therapeutic response appeared to be mediated through direct effects on nonlymphocytic, E2-responsive cells and down-regulation of the inflammatory response in the central nervous system. These results provide the first demonstration that the protective effect of E2 on EAE is not mediated directly through E2-responsive T cells and raise the alternative possibility that nonlymphocytic cells such as macrophages, dendritic cells, or other nonlymphocytic cells are primarily responsive to E2 treatment in EAE. PMID:15579449

  15. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  16. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis.

    PubMed

    Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang

    2016-08-01

    NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. © The Author(s) 2016.

  17. [MAIT cells in autoimmunity].

    PubMed

    Miyake, Sachiko

    2014-01-01

    Mucosal associated invariant T (MAIT) cells express a semi-invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. They are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and cells are selected in the thymus. Interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. MAIT cells display antimicrobial capacity. Recently, vitamin metabolites were demonstrated as antigens created by intestinal flora for MAIT cells. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), wheras they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.

  18. Dual Roles of IFN-γ and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine

    PubMed Central

    Syu, Bi-Jhen; Loh, Chia-En; Hsueh, Yu-Hsin; Gershwin, M. Eric; Chuang, Ya-Hui

    2016-01-01

    Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease with a long natural history. The pathogenesis of PBC is thought to be orchestrated by Th1 and/or Th17. In this study, we investigated the role of CD4+ helper T subsets and their cytokines on PBC using our previous established murine model of 2-OA-OVA immunization. We prepared adeno-associated virus (AAV)-IFN-γ and AAV-IL-4 and studied their individual influences on the natural history of autoimmune cholangitis in this model. Administration of IFN-γ significantly promotes recruitment and lymphocyte activation in the earliest phases of autoimmune cholangitis but subsequently leads to downregulation of chronic inflammation through induction of the immunosuppressive molecule IL-30. In contrast, the administration of IL-4 does not alter the initiation of autoimmune cholangitis, but does contribute to the exacerbation of chronic liver inflammation and fibrosis. Thus Th1 cells and IFN-γ are the dominant contributors in the initiation phase of this model but clearly may have different effects as the disease progress. In conclusion, better understanding of the mechanisms by which helper T cells function in the natural history of cholangitis is essential and illustrates that precision medicine may be needed for patients with PBC at various stages of their disease process. PMID:27721424

  19. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  20. The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Birkner, Katharina; Wasser, Beatrice; Loos, Julia; Plotnikov, Alexander; Seger, Rony; Zipp, Frauke; Witsch, Esther; Bittner, Stefan

    2017-01-01

    Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity of Th17 cells. Neither the production of the cytokine interleukin (IL)-17 nor the proliferation rate of T cells was affected by the EPE peptide. The in vivo effects of ERK inhibition were challenged in two independent variants of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Overall, ERK inhibition had only a very minor impact on the clinical disease course of EAE. This indicates that while ERK translocation might promote encephalitogenicity in T cells in vitro by facilitating GM-CSF production, this effect is overcome in more complex in vivo animal models of central nervous system (CNS) autoimmunity. PMID:28914804

  1. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Kaplan, Barbara L F

    2018-02-21

    Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  2. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

    PubMed Central

    Yeste, Ada; Nadeau, Meghan; Burns, Evan J.; Weiner, Howard L.; Quintana, Francisco J.

    2012-01-01

    The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders. PMID:22745170

  3. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-09-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.

  4. Salate derivatives found in sunscreens block experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Wang, Yanping; Marling, Steven J.; Plum, Lori A.; DeLuca, Hector F.

    2017-01-01

    UV light suppresses experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, in mice and may be responsible for the decreased incidence of MS in equatorial regions. To test this concept further, we applied commercially available sunblock preparations to mice before exposing them to UV radiation. Surprisingly, some of the sunblock preparations blocked EAE without UV radiation. Furthermore, various sunblock preparations had variable ability to suppress EAE. By examining the components of the most effective agents, we identified homosalate and octisalate as the components responsible for suppressing EAE. Thus, salates may be useful in stopping the progression of MS, and may provide new insight into mechanisms of controlling autoimmune disease. PMID:28739922

  5. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS).

    PubMed

    Glatigny, Simon; Bettelli, Estelle

    2018-01-08

    Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Irradiation Design for an Experimental Murine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  7. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice

    USDA-ARS?s Scientific Manuscript database

    Autoimmune disease is prevalent in humans. Since conventional therapies have limited efficacy and often come with significant side effects, nutrition may provide an alternative and complementary approach to improving the autoimmune disorders. Naringenin, a flavonoid found in citrus fruits, has been ...

  8. Experimental autoimmune hearing loss

    PubMed Central

    Billings, Peter

    2004-01-01

    Understanding of autoimmune sensorineural hearing loss (ASNHL) has been hindered by the inaccessibility of the inner ear to biopsy and the lack of workable animal models. A report in this issue of the JCI describes a mouse model of CD4+ T cell–mediated ASNHL induced by immunization with peptides from the inner ear–specific proteins cochlin and β-tectorin. PMID:15085190

  9. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  10. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen

    2014-01-01

    Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885

  11. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    PubMed Central

    Na, Songqing; Ma, Yanfei; Zhao, Jingyong; Schmidt, Clint; Zeng, Qing Q.; Chandrasekhar, Srinivasan; Chin, William W.; Nagpal, Sunil

    2011-01-01

    Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia. PMID:21318047

  12. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    PubMed

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Decrease the Development of Severe Experimental Autoimmune Uveitis in B10.RIII Mice.

    PubMed

    Qin, Yu; Chan, Ann M; Chang, Yu-Ling; Matynia, Anna; Kouris, Nicholas A; Kimbrel, Erin A; Ashki, Negin; Parikh, Sachin; Gorin, Michael B; Lanza, Robert; Levinson, Ralph D; Gordon, Lynn K

    2017-09-15

    We investigated the effect of exogenously administered human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) in experimental autoimmune uveitis (EAU) in B10.RIII mice, a murine model of severe uveitis. B10.RIII mice were immunized with an uveitogenic peptide, and intraperitoneal injections of 5 million hESC-MSCs per animal were given on the same day. Behavioral light sensitivity assays, histological evaluation, cytokine production, and regulatory T cells were analyzed at the peak of the disease. Histological and behavioral evidence demonstrated that early systemic treatment with hESC-MSCs decreases the development of severe EAU in B10.RIII mice. hESC-MSCs suppress Th17 and upregulate Th1 and Th2 responses as well as IL-2 and GM-CSF in splenocytes from hESC-MSC-treated mice. MSCs that originate from hESC decrease the development of severe EAU in B10.RIII mice, likely through systemic immune modulation. Further investigation is needed to determine any potential effect on active EAU.

  14. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    PubMed

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  15. [MAIT cells in autoimmunity].

    PubMed

    Miyake, Sachiko

    2012-01-01

    Mucosal associated invariant T (MAIT) cells are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and express an invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. MAIT cells are selected in the thymus, but, interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. Bourhis et al demonstrated that MAIT cells display antimicrobial capacity. Both human and mouse MAIT cells have been shown to be activated by Escherichia coli-infected antigen presenting cells in an MR1-dependent manner. MAIT cells show a protective role against Mycobacteriu abscessus or E. coli infections in mice. Human MAIT cells are capable of producing IFNγ and IL-17 and are found in Mycobacterium tuberculosis-infected lung tissues. Thus, MAIT cells play an antimicrobial function under these infectious conditions. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), whereas they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.

  16. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4+ T cells into CD4+Foxp3+ regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis. PMID:23284891

  17. Mononuclear cell secretome protects from experimental autoimmune myocarditis.

    PubMed

    Hoetzenecker, Konrad; Zimmermann, Matthias; Hoetzenecker, Wolfram; Schweiger, Thomas; Kollmann, Dagmar; Mildner, Michael; Hegedus, Balazs; Mitterbauer, Andreas; Hacker, Stefan; Birner, Peter; Gabriel, Christian; Gyöngyösi, Mariann; Blyszczuk, Przemyslaw; Eriksson, Urs; Ankersmit, Hendrik Jan

    2015-03-14

    Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart diseases. © The Author 2013. Published by Oxford University Press on behalf of the European Society of Cardiology.

  18. Mononuclear cell secretome protects from experimental autoimmune myocarditis

    PubMed Central

    Hoetzenecker, Konrad; Zimmermann, Matthias; Hoetzenecker, Wolfram; Schweiger, Thomas; Kollmann, Dagmar; Mildner, Michael; Hegedus, Balazs; Mitterbauer, Andreas; Hacker, Stefan; Birner, Peter; Gabriel, Christian; Gyöngyösi, Mariann; Blyszczuk, Przemyslaw; Eriksson, Urs; Ankersmit, Hendrik Jan

    2015-01-01

    Aims Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. Methods and results BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. Conclusion MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart diseases. PMID:23321350

  19. Transcutaneous photodynamic therapy delays the onset of paralysis in a murine multiple sclerosis model

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.

    1995-03-01

    Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.

  20. Protective Effects on Central Nervous System by Acidic Polysaccharide of Panax ginseng in Relapse-Remitting Experimental Autoimmune Encephalomyelitis-Induced SJL/J Mice.

    PubMed

    Bing, So Jin; Ha, Danbee; Hwang, Insun; Park, Eunjin; Ahn, Ginnae; Song, Jie-Young; Jee, Youngheun

    2016-01-01

    Bearing pathologic and clinical similarities to human multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) is used as a murine model to test potential therapeutic agents for MS. Recently, we reported the protective effects of an acidic polysaccharide of Panax ginseng (APG) in C57BL/6 strain-dependent EAE, a model of primary progressive MS. In this study, we extend our previous findings on the therapeutic capacity of APG in relapsing-remitting EAE (rr-EAE), the animal model to closely mimic recurrent inflammatory demyelination lesions of relapsing-remitting MS. Treatments with APG led to a significant reduction of clinical symptoms and the relapse rate of EAE than vehicle treatments. Consistent with this, histological examination revealed that APG markedly modulated the infiltration of CD4[Formula: see text] T cells and CD11b[Formula: see text] macrophages into the spinal cord and the APG-treated CNS was devoid of demyelination and axonal damages. In addition, APG decreased the proliferation of peripheral PLP-reactive T cells and the production of pro-inflammatory factors such as IFN-[Formula: see text], IL-17 and TNF-[Formula: see text]. The fact that APG can induce clinically beneficial effects to distinct types of EAE furthers our understanding on the basis of its immunosuppression in EAE and, possibly, in MS. Our results suggest that APG may serve as a new therapeutic agent for MS as well as other human autoimmune diseases, and warrants continued evaluation for its translation into therapeutic application.

  1. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  3. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes

    PubMed Central

    Serr, Isabelle; Scherm, Martin G.; Zahm, Adam M.; Schug, Jonathan; Flynn, Victoria K.; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; Gerlach, Katharina; Liebsch, Nicole; Loretz, Brigitta; Lehr, Claus-Michael; Kirchner, Benedikt; Spornraft, Melanie; Haase, Bettina; Segars, James; Küper, Christoph; Palmisano, Ralf; Waisman, Ari; Willis, Richard A.; Kim, Wan-Uk; Weigmann, Benno; Kaestner, Klaus H.; Ziegler, Anette-Gabriele; Daniel, Carolin

    2018-01-01

    Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)–mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)–mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity. PMID:29298866

  4. Treatment and prevention of experimental autoimmune myocarditis with CD28 superagonists.

    PubMed

    Wang, Shu; Liu, Jing; Wang, Min; Zhang, Jinghui; Wang, Zhaohui

    2010-01-01

    Experimental autoimmune myocarditis (EAM), a rodent model of human dilated cardiomyopathy (DCM), is mediated by an autoimmune mechanism. We investigated whether a CD28 superagonistic antibody selectively targeting CD4+CD25+ regulatory T cells (T(regs)) provides effective therapy for EAM. Four groups of 5 rats were used. The normal control group was immunized with PBS. The EAM group was immunized with porcine myosin. The experimental group was immunized with myosin and superagonistic CD28 antibody JJ316. The final group was immunized with myosin and an unrelated rat IgG. Autoantibody and IL-10 production, CD4+CD25+ cell levels, Foxp3 expression and cardiac histology were analyzed. Anti-myosin autoantibody levels were higher in the EAM and isotype control groups than the normal control group (p < 0.05), and reduced in the CD28-JJ316 group (p < 0.05). The levels of CD25+CD4+ cells, IL-10 and splenocyte Foxp3 expression were significantly lower in the EAM and isotype control groups versus the CD28-JJ316 group (p < 0.05). Infiltration of inflammatory cells was observed in the EAM and isotype control groups, whereas CD28-JJ316 ameliorated myocarditis. CD28 superagonists could be effective in EAM treatment by up-regulating Foxp3 expression and contributing to CD4+CD25+ T(reg) activation and expansion. The enhancement in IL-10 by CD28 superagonists also ameliorated the disease.

  5. Activation of the Stimulator of Interferon Genes (STING) adaptor attenuates experimental autoimmune encephalitis

    PubMed Central

    Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.

    2014-01-01

    Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564

  6. Targeting CD6 for the treatment of experimental autoimmune uveitis.

    PubMed

    Zhang, Lingjun; Li, Yan; Qiu, Wen; Bell, Brent A; Dvorina, Nina; Baldwin, William M; Singer, Nora; Kern, Timothy; Caspi, Rachel R; Fox, David A; Lin, Feng

    2018-06-01

    CD6 is emerging as a new target for treating many pathological conditions in which T cells are integrally involved, but even the latest data from studies of CD6 gene engineered mice were still contradictory. To address this issue, we studied experimental autoimmune uveitis (EAU), a model of autoimmune uveitis, in wild-type (WT) and CD6 knockout (KO) mice. After EAU induction in WT and CD6 KO mice, we evaluated ocular inflammation and compared retinal antigen-specific T-cell responses using scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, histopathology, and T cell recall assays. Uveitogenic T cells from WT and CD6 KO mice were adoptively transferred into WT naïve mice to confirm the impact of CD6 on T cells. In addition, we immunized CD6 KO mice with recombinant CD6 protein to develop mouse anti-mouse CD6 monoclonal antibodies (mAbs) in which functional antibodies exhibiting cross-reactivity with human CD6 were screened and identified for treatment studies. In CD6 KO mice with EAU, we found significantly decreased retinal inflammation and reduced autoreactive T-cell responses, and confirmed the impaired uveitogenic capacity of T cells from these mice in an adoptive transfer experiment. Notably, one of these cross-reactive mAbs significantly ameliorated retinal inflammation in EAU induced by the adoptive transfer of uveitogenic T cells. Together, these data strongly suggest that CD6 plays a previously unknown, but pivotal role in autoimmune uveitis, and may be a promising new treatment target for this blinding disease. In addition, the newly developed mouse anti-mouse/human CD6 mAbs could be valuable tools for testing CD6-targeted therapies in other mouse models of human diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP)

    PubMed Central

    Murphy, Stephen F.; Schaeffer, Anthony J.; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90–95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17’s role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS. PMID:25933188

  8. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP).

    PubMed

    Murphy, Stephen F; Schaeffer, Anthony J; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  9. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity

    PubMed Central

    Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa

    2017-01-01

    B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602

  10. The role of α9β1 integrin and its ligands in the development of autoimmune diseases.

    PubMed

    Kon, Shigeyuki; Uede, Toshimitsu

    2018-03-01

    Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.

  11. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pestronk, A.; Drachman, D.B.; Teoh, R.

    1983-08-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used tomore » repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.« less

  12. Antigen-specific Immunotherapeutic Vaccine for Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2014-01-01

    Myasthenia gravis (MG) and experimental autoimmune myasthenia gravis (EAMG) are caused by antibody-mediated autoimmune responses to muscle nicotinic acetylcholine receptors (AChRs) that impair neuromuscular transmission thereby causing muscle weakness. Previously, we discovered that i. p. injection of a therapeutic vaccine consisting of bacterially-expressed cytoplasmic domains of human AChR subunits reduced development of chronic EAMG in rats. Here we show that immunization with the therapeutic vaccine in adjuvant does not induce EAMG, thus is safe. Potency and efficacy of the therapeutic vaccine were greatly increased by administering repeated low doses subcutaneously in incomplete Freund’s adjuvant. Onset of chronic EAMG could be prevented. Established chronic EAMG could be rapidly reversed, modeling therapy of chronic MG. Therapy reduced pathological antibodies assayed by immune precipitation of a main immunogenic region chimera. Successfully treated rats exhibited long-term resistance to re-induction of EAMG, modeling a lasting cure of MG. A long-term effect of therapy was to change isotype of the pathogenic antibody response from IgG2b that fixes complement to IgG1 that does not. Prevention and reversal of chronic EAMG was not caused by the isotype switch, but the isotype switch may contribute to resistance to reinduction of EAMG. Immunization with AChR cytoplasmic domains in adjuvant is promising as a safe, antigen-specific, potent, effective, rapidly acting, and long lasting approach to therapy of MG. PMID:25288571

  13. Close relations between podocyte injuries and membranous proliferative glomerulonephritis in autoimmune murine models.

    PubMed

    Kimura, Junpei; Ichii, Osamu; Otsuka, Saori; Sasaki, Hayato; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2013-01-01

    Membranous proliferative glomerulonephritis (MPGN) is a major primary cause of chronic kidney disease (CKD). Podocyte injury is crucial in the pathogenesis of glomerular disease with proteinuria, leading to CKD. To assess podocyte injuries in MPGN, the pathological features of spontaneous murine models were analyzed. The autoimmune-prone mice strains BXSB/MpJ-Yaa and B6.MRL-(D1Mit202-D1Mit403) were used as the MPGN models, and BXSB/MpJ-Yaa(+) and C57BL/6 were used as the respective controls. In addition to clinical parameters and glomerular histopathology, the protein and mRNA levels of podocyte functional markers were evaluated as indices for podocyte injuries. The relation between MPGN pathology and podocyte injuries was analyzed by statistical correlation. Both models developed MPGN with albuminuria and elevated serum anti-double-strand DNA (dsDNA) antibody levels. BXSB/MpJ-Yaa and B6.MRL showed severe proliferative lesions with T and B cell infiltrations and membranous lesions with T cell infiltrations, respectively. Foot process effacement and microvillus-like structure formation were observed ultrastructurally in the podocytes of both MPGN models. Furthermore, both MPGN models showed a decrease in immune-positive areas of nephrin, podocin and synaptopodin in the glomerulus, and in the mRNA expression of Nphs1, Nphs2, Synpo, Actn4, Cd2ap, and Podxl in the isolated glomerulus. Significant negative correlations were detected between serum anti-dsDNA antibody levels and glomerular Nphs1 expression, and between urinary albumin-to-creatinine ratio and glomerular expression of Nphs1, Synpo, Actn4, Cd2ap, or Podxl. MPGN models clearly developed podocyte injuries characterized by the decreased expression of podocyte functional markers with altered morphology. These data emphasized the importance of regulation of podocyte injuries in MPGN. Copyright © 2013 S. Karger AG, Basel.

  14. CNS Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Autoimmune Encephalomyelitis1

    PubMed Central

    Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.

    2010-01-01

    Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561

  15. The neuropeptide cortistatin attenuates experimental autoimmune myocarditis via inhibition of cardiomyogenic T cell‐driven inflammatory responses

    PubMed Central

    Delgado‐Maroto, Virginia; Falo, Clara P; Forte‐Lago, Irene; Adan, Norma; Morell, Maria; Maganto‐Garcia, Elena; Robledo, Gema; O'Valle, Francisco; Lichtman, Andrew H; Gonzalez‐Rey, Elena

    2017-01-01

    Background and purpose Myocarditis is an inflammatory and autoimmune cardiovascular disease that causes dilated myocardiopathy and is responsible for high morbidity and mortality worldwide. Cortistatin is a neuropeptide produced by neurons and cells of the immune and vascular systems. Besides its action in locomotor activity and sleep, cortistatin inhibits inflammation in different experimental models of autoimmune diseases. However, its role in inflammatory cardiovascular disorders is unexplored. Here, we investigated the therapeutic effects of cortistatin in a well‐established preclinical model of experimental autoimmune myocarditis (EAM). Experimental Approach We induced EAM by immunization with a fragment of cardiac myosin in susceptible Balb/c mice. Cortistatin was administered i.p. starting 7, 11 or 15 days after EAM induction. At day 21, we evaluated heart hypertrophy, myocardial injury, cardiac inflammatory infiltration and levels of serum and cardiac inflammatory cytokines, cortistatin and autoantibodies. We determined proliferation and cytokine production by heart draining lymph node cells in response to cardiac myosin restimulation. Key Results Systemic injection of cortistatin during the effector phase of the disease significantly reduced its prevalence and signs of heart hypertrophy and injury (decreased the levels of brain natriuretic peptide) and impaired myocardial inflammatory cell infiltration. This effect was accompanied by a reduction in self‐antigen‐specific T‐cell responses in lymph nodes and in the levels of cardiomyogenic antibodies and inflammatory cytokines in serum and myocardium. Finally, we found a positive correlation between cardiac and systemic cortistatin levels and EAM severity. Conclusions and Implications Cortistatin emerges as a new candidate to treat inflammatory dilated cardiomyopathy. PMID:27922195

  16. Eosinophils in Autoimmune Diseases

    PubMed Central

    Diny, Nicola L.; Rose, Noel R.; Čiháková, Daniela

    2017-01-01

    Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs. PMID:28496445

  17. Suppression of chronic experimental autoimmune neuritis by nasally administered recombinant rat interleukin-6

    PubMed Central

    DERETZI, G; PELIDOU, S-H; ZOU, L-P; QUIDING, C; MIX, E; LEVI, M; WAHREN, B; ZHU, J

    1999-01-01

    Experimental autoimmune neuritis (EAN) is a CD4+ T-cell-mediated demyelinating disease of the peripheral nervous system (PNS) and serves as experimental model for human immune-demyelinating neurophathies, especially the Guillain–Barré syndrome. In this study, we examined the effect of recombinant rat interleukin-6 (rrIL-6) on chronic EAN in Lewis rats induced by immunization with P2 peptide 57-81 and Freund’s complete adjuvant (FCA). Nasal administration of rat rIL-6 (1 μg/rat/day) beginning in the initial phase of EAN as a therapeutic agent, decreased the severity and the duration of clinical EAN. Low-grade inflammation and suppression of regional demyelination within the sciatic nerves were seen in rrIL-6-treated rats. Hyporesponsiveness of lymph node T cells, down-regulation of serum tumour necrosis factor-α (TNF-α) and increased levels of P2-specific immunoglobulin G1 (IgG1) antibodies document that nasal administration of rrIL-6 was effective systemically. However, because of the non-specific nature of the treatment and multiple effects of IL-6, more experience and great caution are needed, before nasal administration of IL-6 can be considered as a treatment of human autoimmune demyelinating neurophathies. PMID:10447716

  18. Experimental Trypanosoma rangeli infection in a murine model.

    PubMed

    Horna, A E; Saldaña, A; Orn, A; Sousa, O E

    1997-03-01

    Trypanosoma rangeli experimental murine infections were performed in order to study parasitemias and anti-parasite antibody levels. Three groups of mice were used: a) mice infected with metatrypomastigotes derived from infected bugs; b) mice which received four reinoculations of metatrypomastigotes and c) mice immunosuppressed with cyclophosphamide. The results showed that bloodstream parasites can be found from the first day post inoculation reaching a peak at day 5 or 7 and then start to decline. Parasites disappeared completely from the circulation after 20-25 days. However in the immunosuppressed group, parasites were found in blood up to 45 days post infection. The humoral immune response was monitored using an ELISA test and low levels of specific IgG and IgM immunoglobulins were found. However the IgG titers were lower than the IgM. One could conclude that IgM was the predominant immunoglobulin isotype induced in a T. rangeli experimental infection because the highest titers were observed in the reinoculated group. IgM antibodies also showed the most prominent crossreactivities with T. cruzi antigens.

  19. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  20. Autoimmune synaptopathies.

    PubMed

    Crisp, Sarah J; Kullmann, Dimitri M; Vincent, Angela

    2016-02-01

    Autoantibodies targeting proteins at the neuromuscular junction are known to cause several distinct myasthenic syndromes. Recently, autoantibodies targeting neurotransmitter receptors and associated proteins have also emerged as a cause of severe, but potentially treatable, diseases of the CNS. Here, we review the clinical evidence as well as in vitro and in vivo experimental evidence that autoantibodies account for myasthenic syndromes and autoimmune disorders of the CNS by disrupting the functional or structural integrity of synapses. Studying neurological and psychiatric diseases of autoimmune origin may provide new insights into the cellular and circuit mechanisms underlying a broad range of CNS disorders.

  1. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    PubMed Central

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent

  2. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    PubMed

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  3. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.

    2013-01-01

    Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322

  4. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  5. Enhanced Autoimmunity Associated with Induction of Tumor Immunity in Thyroiditis-Susceptible Mice

    PubMed Central

    Kari, Suresh; Flynn, Jeffrey C.; Zulfiqar, Muhammad; Snower, Daniel P.; Elliott, Bruce E.

    2013-01-01

    Background: Immunotherapeutic modalities to bolster tumor immunity by targeting specific sites of the immune network often result in immune dysregulation with adverse autoimmune sequelae. To understand the relative risk for opportunistic autoimmune disorders, we studied established breast cancer models in mice resistant to experimental autoimmune thyroiditis (EAT). EAT is a murine model of Hashimoto's thyroiditis, an autoimmune syndrome with established MHC class II control of susceptibility. The highly prevalent Hashimoto's thyroiditis is a prominent autoimmune sequela in immunotherapy, and its relative ease of diagnosis and treatment could serve as an early indicator of immune dysfunction. Here, we examined EAT-susceptible mice as a combined model for induction of tumor immunity and EAT under the umbrella of disrupted regulatory T cell (Treg) function. Methods: Tumor immunity was evaluated in female CBA/J mice after depleting Tregs by intravenous administration of CD25 monoclonal antibody and/or immunizing with irradiated mammary adenocarcinoma cell line A22E-j before challenge; the role of T cell subsets was determined by injecting CD4 and/or CD8 antibodies after tumor immunity induction. Tumor growth was monitored 3×/week by palpation. Subsequent EAT was induced by mouse thyroglobulin (mTg) injections (4 daily doses/week over 4 weeks). For some experiments, EAT was induced before establishing tumor immunity by injecting mTg+interleukin-1, 7 days apart. EAT was evaluated by mTg antibodies and thyroid infiltration. Results: Strong resistance to tumor challenge after Treg depletion and immunization with irradiated tumor cells required participation of both CD4+ and CD8+ T cells. This immunity was not altered by induction of mild thyroiditis with our protocol of Treg depletion and adjuvant-free, soluble mTg injections. However, the increased incidence of mild thyroiditis can be directly related to Treg depletion needed to achieve strong tumor immunity. Moreover

  6. Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome.

    PubMed

    Bae, Eun Hui; Fang, Fei; Williams, Vanessa R; Konvalinka, Ana; Zhou, Xiaohua; Patel, Vaibhav B; Song, Xuewen; John, Rohan; Oudit, Gavin Y; Pei, York; Scholey, James W

    2017-06-01

    Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase in the renin-angiotensin system that catalyzes the breakdown of angiotensin II to angiotensin 1-7. We have reported that ACE2 expression in the kidney is reduced in experimental Alport syndrome but the impact of this finding on disease progression has not been studied. Accordingly, we evaluated effects of murine recombinant ACE2 treatment in Col4a3 knockout mice, a model of Alport syndrome characterized by proteinuria and progressive renal injury. Murine recombinant ACE2 (0.5 mg/kg/day) was administered from four to seven weeks of age via osmotic mini-pump. Pathological changes were attenuated by murine recombinant ACE2 treatment which ameliorated kidney fibrosis as shown by decreased expression of COL1α1 mRNA, less accumulation of extracellular matrix proteins, and inhibition of transforming growth factor-β signaling. Further, increases in proinflammatory cytokine expression, macrophage infiltration, inflammatory signaling pathway activation, and heme oxygenase-1 levels in Col4a3 knockout mice were also reduced by murine recombinant ACE2 treatment. Lastly, murine recombinant ACE2 influenced the turnover of renal ACE2, as it suppressed the expression of tumor necrosis factor-α converting enzyme, a negative regulator of ACE2. Thus, treatment with exogenous ACE2 alters angiotensin peptide metabolism in the kidneys of Col4a3 knockout mice and attenuates the progression of Alport syndrome nephropathy. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota

    PubMed Central

    van den Hoogen, Ward J.; Laman, Jon D.; ’t Hart, Bert A.

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research. PMID:28928747

  8. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  9. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  10. Increased spontaneous apoptosis of rat primary neurospheres in vitro after experimental autoimmune encephalomyelitis.

    PubMed

    Sajad, Mir; Zargan, Jamil; Sharma, Jyoti; Chawla, Raman; Arora, Rajesh; Umar, Sadiq; Khan, Haider A

    2011-06-01

    Survival of neuronal progenitors (NPCs) is a critical determinant of the regenerative capacity of brain following cellular loss. Herein, we report for the first time, the increased spontaneous apoptosis of the first acute phase of Experimental Autoimmune Encephalomyelitis (EAE) derived neurospheres in vitro. Neuronal as well as oligodendroglial loss occurs during experimental autoimmune encephalomyelitis (EAE). This loss is replenished spontaneously by the concomitant increase in the NPC proliferation evidenced by the presence of thin myelin sheaths in the remodeled lesions. However, remyelination depends upon the survival of NPCs and their lineage specific differentiation. We observed significant increase (P < 0.001) in number of BrdU (+) cells in ependymal subventricular zone (SVZ) in EAE rats. EAE derived NPCs showed remarkable increase in S-phase population which was indeed due to the decrease in G-phase progeny suggesting activation of neuronal progenitor cells (NPCs) from quiescence. However, EAE derived neurospheres showed limited survival in vitro which was mediated by the significantly (P < 0.01) depolarized mitochondria, elevated Caspase-3 (P < 0.001) and fragmentation of nuclear DNA evidenced by single cell gel electrophoresis. Our results suggest EAE induced spontaneous apoptosis of NPCs in vitro which may increase the possibility of early stage cell death in the negative regulation of the proliferative cell number and may explain the failure of regeneration in human multiple sclerosis.

  11. Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis.

    PubMed

    Wu, Muzhou; Tsirka, Stella E

    2009-08-15

    Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.

  12. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

    PubMed Central

    Lang, Yue

    2018-01-01

    The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314

  13. Chronic varied stress modulates experimental autoimmune encephalomyelitis in Wistar rats.

    PubMed

    Correa, S G; Rodriguez-Galán, M C; Rivero, V E; Riera, C M

    1998-06-01

    Stress disturbs homeostasis by altering the equilibrium of various hormones which have a significant impact on immune responses. Few studies have examined the influence of stressors on autoimmune disease in animal models. In our work, we studied the effects of long-term exposure (14 days) to chronic varied stress (CVS) in a model of experimental autoimmune encephalomyelitis (EAE) in Wistar rats. We studied whether the exposure to CVS before or after the immune challenge would correlate with differences in the clinical course of the disease. We also examined whether the CVS would modulate the magnitude of the cellular or the humoral immune response. We observed opposite effects on the clinical signs in animals stressed before or after the immune challenge. The clinical signs of the disease were attenuated in animals stressed before but not after the immune challenge. Relationships were found in the modulation of the clinical severity related to the time of exposure to the CVS, the histological alterations and the proliferative results. Stressed animals with milder clinical signs presented an exacerbated humoral response against myelin antigens while stressed animals with more severe clinical symptoms exhibited a significantly diminished one. Besides, we detected the presence of specific IgG1 associated with the exposure to CVS before the induction of EAE. Our results show that, depending on the timing of the exposure of Wistar rats to the CVS, the neuroendocrine disbalance favors a more pronounced humoral or cellular profile of the response.

  14. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis

    PubMed Central

    Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R

    2014-01-01

    Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796

  15. Murine AIDS Protects Mice Against Experimental Cerebral Malaria: Down-Regulation by Interleukin 10 a T-Helper Type 1 CD4^+ Cell-Mediated Pathology

    NASA Astrophysics Data System (ADS)

    Eckwalanga, Michel; Marussig, Myriam; Dias Tavares, Marisa; Bouanga, Jean Claude; Hulier, Elisabeth; Henriette Pavlovitch, Jana; Minoprio, Paola; Portnoi, Denis; Renia, Laurent; Mazier, Dominique

    1994-08-01

    The retrovirus LP-BM5 murine leukemia virus induces murine AIDS in C57BL/6 mice that has many similarities with human AIDS; Plasmodium berghei ANKA causes experimental cerebral malaria in the same strain of mice. The outcome of malaria infection was studied in mice concurrently infected with the two pathogens. The retrovirus significantly reduced the gravity of the neurological manifestations associated with Plasmodium berghei ANKA infection. The protection against experimental cerebral malaria induced by murine AIDS increased with duration of viral infection and, hence, with the severity of the immunodeficiency. Interleukin 10, principally from splenic T cells, was shown to play a crucial role in this protection.

  16. Cutting Edge: Nanogel-Based Delivery of an Inhibitor of CaMK4 to CD4+ T Cells Suppresses Experimental Autoimmune Encephalomyelitis and Lupus-like Disease in Mice.

    PubMed

    Otomo, Kotaro; Koga, Tomohiro; Mizui, Masayuki; Yoshida, Nobuya; Kriegel, Christina; Bickerton, Sean; Fahmy, Tarek M; Tsokos, George C

    2015-12-15

    Treatment of autoimmune diseases is still largely based on the use of systemically acting immunosuppressive drugs, which invariably cause severe side effects. Calcium/calmodulin-dependent protein kinase IV is involved in the suppression of IL-2 and the production of IL-17. Its pharmacologic or genetic inhibition limits autoimmune disease in mice. In this study, we demonstrate that KN93, a small-molecule inhibitor of calcium/calmodulin-dependent protein kinase IV, targeted to CD4(+) T cells via a nanolipogel delivery system, markedly reduced experimental autoimmune encephalomyelitis and was 10-fold more potent than the free systemically delivered drug in the lupus mouse models. The targeted delivery of KN93 did not deplete T cells but effectively blocked Th17 cell differentiation and expansion as measured in the spinal cords and kidneys of mice developing experimental autoimmune encephalomyelitis or lupus, respectively. These results highlight the promise of cell-targeted inhibition of molecules involved in the pathogenesis of autoimmunity as a means of advancing the treatment of autoimmune diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Asbestos-induced autoimmunity in C57BL/6 mice.

    PubMed

    Pfau, Jean C; Sentissi, Jami J; Li, Sheng'ai; Calderon-Garciduenas, Lilian; Brown, Jared M; Blake, David J

    2008-04-01

    Environmental impacts on autoimmunity have significant public health implications. Epidemiological studies have shown associations between exposure to airborne silicates, such as crystalline silica or asbestos, and autoimmunity, but the etiology remains unclear. The purpose of this study was to test the hypothesis that asbestos could lead to a specific pattern of autoantibodies and pathology indicative of systemic autoimmune disease (SAID). Female C57Bl/6 mice were instilled intratracheally with 2 doses x 60 microg/mouse of amphibole asbestos (tremolite), wollastonite (a non-fibrogenic control fiber), or saline alone. Serum samples were collected and urine was checked for protein bi-weekly for 7 months. By 26 weeks, the asbestos-instilled animals had a significantly higher frequency of positive anti-nuclear antibody (ANA) tests compared to wollastonite and saline groups. The majority of positive ANAs showed homogeneous or combined homogeneous/speckled patterns, and tested positive for antibodies to dsDNA and SSA/Ro 52. Serum isotyping showed no significant changes in IgM, IgA, or IgG subclasses. However, there was an overall decrease in the mean IgG serum concentration in asbestos-instilled mice. IgG immune complex deposition was demonstrated in the kidneys of asbestos-instilled mice, with evidence of glomerular and tubule abnormalities suggestive of glomerulonephritis. Flow cytometry demonstrated moderate changes in the percentages of CD25+ T-suppressor cells and B1a B-cells in the superficial cervical lymph nodes of the asbestos-instilled mice. These data demonstrate that asbestos leads to immunologic changes consistent with the development of autoimmunity. This study provides a non-autoimmune prone murine model for use in future elucidation of mechanisms involved in asbestos-induced autoimmune disease.

  18. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    PubMed Central

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  19. OGR1/GPR68 Modulates the Severity of Experimental Autoimmune Encephalomyelitis and Regulates Nitric Oxide Production by Macrophages

    PubMed Central

    D’Souza, Cheryl A.; Zhao, Fei Linda; Li, Xujian; Xu, Yan; Dunn, Shannon E.; Zhang, Li

    2016-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity. PMID:26828924

  20. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stanisavljević, Suzana; Dinić, Miroslav; Jevtić, Bojan; Đedović, Neda; Momčilović, Miljana; Đokić, Jelena; Golić, Nataša; Mostarica Stojković, Marija; Miljković, Đorđe

    2018-01-01

    Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.

  1. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis

    PubMed Central

    Quick, Marsha L.; Mukherjee, Soumi; Rudick, Charles N.; Done, Joseph D.; Schaeffer, Anthony J.

    2012-01-01

    Experimental autoimmune prostatitis (EAP) is a murine model of chronic prostatitis/chronic pelvic pain syndrome (CPPS) in men, a syndrome characterized by chronic pelvic pain. We have demonstrated that chemokine ligands CCL2 and CCL3 are biomarkers that correlate with pelvic pain symptoms. We postulated that CCL2 and CCL3 play a functional role in CPPS and therefore examined their expression in EAP. Upon examination of the prostate 5 days after induction of EAP, CCL2 mRNA was elevated 2- to 3-fold, CCL8 by 15-fold, CCL12 by 12- to 13-fold, and CXCL9 by 2- to 4-fold compared with control mice. At 10 days the major chemokines were CXCL13 and CXCL2; at 20 days CCL2 (1- to 2-fold), CCL3 (2- to 3-fold) and CCL11 (2- to 3-fold); and at 30 days, CCL12 (20- to 35-fold) and smaller increases in CCL2, CCL3, and XCL1. Chemokine elevations were accompanied by increases in mast cells and B cells at 5 days, monocytes and neutrophils at day 10, CD4+ T cells at day 20, and CD4+ and CD8+ T cells at day 30. Anti-CCL2 and anti-CCL3 neutralizing antibodies administered at EAP onset attenuated pelvic pain development, but only anti-CCL2 antibodies were effective therapeutically. CCL2- and its cognate receptor CCR2-deficient mice were completely protected from development of pain symptoms but assumed susceptibility after reconstitution with wild-type bone marrow. CCL3-deficient mice showed resistance to the maintenance of pelvic pain while CCR5-deficient mice did not show any lessening of pelvic pain severity. These results suggest that the CCL2-CCR2 axis and CCL3 are important mediators of chronic pelvic pain in EAP. PMID:22814670

  2. Protein kinase Cβ as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis

    PubMed Central

    Lanz, Tobias V.; Becker, Simon; Osswald, Matthias; Bittner, Stefan; Schuhmann, Michael K.; Opitz, Christiane A.; Gaikwad, Sadanand; Wiestler, Benedikt; Litzenburger, Ulrike M.; Sahm, Felix; Ott, Martina; Iwantscheff, Simeon; Grabitz, Carl; Mittelbronn, Michel; von Deimling, Andreas; Winkler, Frank; Meuth, Sven G.; Wick, Wolfgang; Platten, Michael

    2013-01-01

    Disruption of the blood–brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. PMID:23959874

  3. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice.

    PubMed

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-11-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition.

  4. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Amelioration of tissue fibrosis by toll-like receptor 4 knockout in murine models of systemic sclerosis.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Ichimura, Yohei; Toyama, Tetsuo; Taniguchi, Takashi; Noda, Shinji; Akamata, Kaname; Tada, Yayoi; Sugaya, Makoto; Kadono, Takafumi; Sato, Shinichi

    2015-01-01

    Bleomycin-induced fibrosis and the tight skin (TSK/+) mouse are well-established experimental murine models of human systemic sclerosis (SSc). Growing evidence has demonstrated the pivotal role of Toll-like receptors (TLRs) in several autoimmune inflammatory diseases, including SSc. This study was undertaken to determine the role of TLR-4 in the fibrotic processes in these murine models. We generated a murine model of bleomycin-induced SSc using TLR-4(-/-) mice and TLR-4(-/-) ;TSK/+ mice. The mechanisms by which TLR-4 contributes to pathologic tissue fibrosis were investigated in these 2 models by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and flow cytometry. Dermal and lung fibrosis was attenuated in bleomycin-treated TLR-4(-/-) mice compared with their wild-type counterparts. Inflammatory cell infiltration, expression of various inflammatory cytokines, and pathologic angiogenesis induced by bleomycin treatment were suppressed with TLR-4 deletion. Furthermore, the increased expression of interleukin-6 (IL-6) in fibroblasts, endothelial cells, and immune cells in response to bleomycin in vivo and to lipopolysaccharide in vitro was notably abrogated in the absence of TLR-4. Moreover, TLR-4 deletion was associated with alleviated B cell activation and skew toward a Th2/Th17 response against bleomycin treatment. Importantly, in TSK/+ mice, another SSc murine model, TLR-4 abrogation attenuated hypodermal fibrosis. These results indicate the pivotal contribution of TLR-4 to the pathologic tissue fibrosis of SSc murine models. Our results indicate the critical role of TLR-4 signaling in the development of tissue fibrosis, suggesting that biomolecular TLR-4 targeting might be a potential therapeutic approach to SSc. Copyright © 2015 by the American College of Rheumatology.

  6. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity.

    PubMed

    Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M

    2012-02-01

    Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.

  7. Role of DAF in protecting against T-cell autoreactivity that leads to experimental autoimmune uveitis.

    PubMed

    An, Fengqi; Li, Qing; Tu, Zhidan; Bu, Hong; Chan, Chi-Chao; Caspi, Rachel R; Lin, Feng

    2009-08-01

    To investigate the role of decay-accelerating factor (DAF), a cell surface complement regulator that recently has been linked to T-cell responses and autoimmunity in the pathogenesis of experimental autoimmune uveitis (EAU). EAU was induced in wild-type (WT) and Daf1(-/-) mice, and their disease severities, IRBP specific Th1/Th17 responses, and cytokine expression profiles were compared. In a test of the efficacy of treatment with soluble mouse DAF protein, EAU was induced in disease-susceptible B10.RIII mice, and they were treated with 0.5 mg soluble DAF protein or equal volume of PBS IP every other day. Retinal histology and IRBP-specific T-cell responses were compared after 14 days. Both EAU incidence and histopathology scores were significantly greater in Daf1(-/-) mice. There was a >10-fold greater mononuclear cell influx into the retina together with severe vasculitic lesions, retinal folding, and photoreceptor cell layer destruction. There were 5- to 7-fold greater Th1 and 3- to 4-fold greater Th17 responses against IRBP in Daf1(-/-) mice with EAU, and they expressed significantly elevated levels of GM-CSF, IL-2, IL-3, and IFN-gamma. WT B10.RIII mice that received soluble DAF protein treatments exhibited decreased IRBP-specific Th1/Th17 responses and were protected from retinal injury compared with the mice that received PBS treatments. DAF significantly influences IRBP-specific Th1 and Th17 responses and disease severity in EAU. Systemic upregulation of DAF levels could be used to suppress retinal antigen(s)-specific autoimmunity to treat autoimmune posterior uveitis.

  8. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less

  9. [Localization and composition of renal immunodeposits in mice developing HgCl2-induced autoimmune process].

    PubMed

    Aref'eva, A S; Dyban, P A; Krasil'shchikova, M S; Dobrucki, J W; Zatsepina, O V

    2010-01-01

    A characteristic feature of systemic autoimmune diseases along with appearance of autoantibodies targeting self-antigenes is deposition of immunoglobulins and components of the complement system in kidneys. However, mechanisms of the deposit formation and their cytotoxic effects still remain poorly studied. To elucidate these questions, we used SJL/J mice which are known to develop autoimmune process accompanied by the appearance of anti-fibrillarin antibodies following regular administrations of sublethal dozes of HgCl2. Using antibodies to the total murine ummunoglobulins we showed that immunodeposits were present in glomeruli of autoimmune and control (not-autoimmune) animals, but their intensity was directly correlated with the titer of anti-fibrillarin autoantibodies and was minimal in control mice. By confocal microscopy and conventional fluorescence microscopy it was defined that immunodeposits deeply penetrate glomeruli and are the most likely located within mesangial cells. In autoimmune animals, ummunoglobulins completely colocolized with the C3--component of complement, but not with the major autoantigen--the protein fibrillarin. We failed to determine the signs of cell proliferation or death in glomeruli. The most prominent difference between control and autoimmune mice was the presence if immunodeposits in renal blood vessels. These observations argue in favor of the idea that destructive and disfunctional renal lesions accompanying development of autoimmune diseases can be caused, in part, by accumulation of immunodeposits in blood vessels.

  10. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  11. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells.

    PubMed

    Hwang, Insun; Ahn, Ginnae; Park, Eunjin; Ha, Danbee; Song, Jie-Young; Jee, Youngheun

    2011-08-30

    An acidic polysaccharide of Panax ginseng (APG), so called ginsan, is a purified polysaccharide. APG has multiple immunomodulatory effects of stimulating natural killer (NK) and T cells and producing a variety of cytokines that proved to diminish the proinflammatory response, and protect from septic lethality. To determine APG's role in the autoimmune demyelinating disease, we tested whether APG can regulate inflammatory and encephalitogenic response in experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). Here, we demonstrate the therapeutic efficacy of the APG which induces the suppression of an encephalitogenic response during EAE. APG significantly ameliorates the progression of EAE by inhibiting the proliferation of autoreactive T cells and the production of inflammatory cytokines such as IFN-γ, IL-1β and IL-17. More importantly, APG promotes the generation of immunosuppressive regulatory T cells (Tregs) through the activation of transcription factor, Foxp3. Furthermore, the depletion of CD25+ cells from APG-treated EAE mice abrogates the beneficial effects of EAE. The capacity of APG to induce clinically beneficial effects furthers our understanding of the basis for its therapeutic immunosuppression of EAE and, possibly, MS. Thus, our results suggest that APG may serve as an effective therapy for MS and other autoimmune diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. From microbiome to infectome in autoimmunity.

    PubMed

    Bogdanos, Dimitrios P; Sakkas, Lazaros I

    2017-07-01

    The current review discusses the pros and cons of the microbiome studies conducted in search of the association between microbiota and autoimmunity. We focus on the role of infectome and autoinfectome as a bridge to link the findings of microbiome studies with those emerging from investigations of the role of specific viruses and antiviral responses as triggers of autoimmunity (through various mechanisms such as molecular mimicry). The 'usual suspects', such as herpetoviruses and Escherichia coli, are thoroughly discussed in light of the data emerged by the microbiome studies, using as examples specific autoimmune rheumatic diseases and inflammatory bowel diseases. We conclude that the studies of the oral cavity, gastrointestinal, and urinary tract microbiome are informative but can only be useful if further explored from the infectome perspective. This means that the plethora of bacteria associated with autoimmune diseases from microbiome studies can be and must be tested experimentally. If certain bacteria are associated directly or indirectly with autoimmune diseases, specific immunological mechanisms must be identified.

  13. Lack of the Long Pentraxin PTX3 Promotes Autoimmune Lung Disease but not Glomerulonephritis in Murine Systemic Lupus Erythematosus

    PubMed Central

    Kulkarni, Onkar P.; Susanti, Heni Eka; Migliorini, Adriana; Garlanda, Cecilia; Mantovani, Alberto; Anders, Hans-Joachim

    2011-01-01

    The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases. PMID:21637713

  14. Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis.

    PubMed

    Hendawy, Nevien

    2017-08-01

    Apoptosis is a hallmark in the pathogenesis of autoimmune hepatitis (AIH). Cytokine stresses and extrinsic apoptotic pathway have been implicated in this type of hepatic injury. Pentoxifylline plays an important role in controlling inflammation and apoptosis in different autoimmune diseases. To assess the protective effect of pentoxifylline for 30days against pro-inflammatory cytokines as tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ) and mediators of extrinsic apoptotic pathway involving TNF receptor 1 (TNFR1) and its ligand TNF-α and Fas receptor and its ligand (FasL) in experimental autoimmune hepatitis (EAH) model. EAH was induced by intraperitoneal injection of syngeneic liver antigen emulsified in complete Freund's adjuvant (CFA) in male C57BL/6 mice. Five groups of mice were used: two control groups; Control PBS group and Control CFA group, EAH group and two EAH+pentoxifylline treated groups in doses (100 or 200mg/kg/d, given by oral gavage). Serum transaminase, pro-inflammatory cytokines (TNF-α and interferon-γ) and hepatic caspase-8 and 3 activities were evaluated. Signs of autoimmune hepatitis were confirmed by liver histology. In addition, hepatic TNFR1, Fas and FasL mRNA expression were assayed. Serum transaminase levels and signs of AIH observed in EAH mice were significantly reduced by pentoxifylline. Upregulated serum TNF-α, IFN-γ, hepatic caspase-8 and 3 activities and TNFR1, Fas and FasL mRNA expression in liver tissues in EAH group were significantly downregulated by pentoxifylline. Pentoxifylline protects against syngeneic liver antigen induced hepatitis and associating apoptosis through attenuating the exaggerated cytokine release and extrinsic apoptotic pathway. Thus, this may represent a new therapeutic strategy for hepatitis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Helicobacter pylori and autoimmune disease: Cause or bystander

    PubMed Central

    Smyk, Daniel S; Koutsoumpas, Andreas L; Mytilinaiou, Maria G; Rigopoulou, Eirini I; Sakkas, Lazaros I; Bogdanos, Dimitrios P

    2014-01-01

    Helicobacter pylori (H. pylori) is the main cause of chronic gastritis and a major risk factor for gastric cancer. This pathogen has also been considered a potential trigger of gastric autoimmunity, and in particular of autoimmune gastritis. However, a considerable number of reports have attempted to link H. pylori infection with the development of extra-gastrointestinal autoimmune disorders, affecting organs not immediately relevant to the stomach. This review discusses the current evidence in support or against the role of H. pylori as a potential trigger of autoimmune rheumatic and skin diseases, as well as organ specific autoimmune diseases. We discuss epidemiological, serological, immunological and experimental evidence associating this pathogen with autoimmune diseases. Although over one hundred autoimmune diseases have been investigated in relation to H. pylori, we discuss a select number of papers with a larger literature base, and include Sjögrens syndrome, rheumatoid arthritis, systemic lupus erythematosus, vasculitides, autoimmune skin conditions, idiopathic thrombocytopenic purpura, autoimmune thyroid disease, multiple sclerosis, neuromyelitis optica and autoimmune liver diseases. Specific mention is given to those studies reporting an association of anti-H. pylori antibodies with the presence of autoimmune disease-specific clinical parameters, as well as those failing to find such associations. We also provide helpful hints for future research. PMID:24574735

  16. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease?

    PubMed Central

    Siragam, Vinayakumar; Brinc, Davor; Crow, Andrew R.; Song, Seng; Freedman, John; Lazarus, Alan H.

    2005-01-01

    Intravenous Ig (IVIg) mediates protection from the effects of immune thrombocytopenic purpura (ITP) as well as numerous other autoimmune states; however, the active antibodies within IVIg are unknown. There is some evidence that antibodies specific for a cell-associated antigen on erythrocytes are responsible, at least in part, for the therapeutic effect of IVIg in ITP. Yet whether an IVIg directed to a soluble antigen can likewise be beneficial in ITP or other autoimmune diseases is also unknown. A murine model of ITP was used to determine the effectiveness of IgG specific to soluble antigens in treating immune thrombocytopenic purpura. Mice experimentally treated with soluble OVA + anti-OVA versus mice treated with OVA conjugated to rbcs (OVA-rbcs) + anti-OVA were compared. In both situations, mice were protected from ITP. Both these experimental therapeutic regimes acted in a complement-independent fashion and both also blocked reticuloendothelial function. In contrast to OVA-rbcs + anti-OVA, soluble OVA + anti-OVA (as well as IVIg) did not have any effect on thrombocytopenia in mice lacking the inhibitory receptor FcγRIIB (FcγRIIB–/– mice). Similarly, antibodies reactive with the endogenous soluble antigens albumin and transferrin also ameliorated ITP in an FcγRIIB-dependent manner. Finally, broadening the significance of these experiments was the finding that anti-albumin was protective in a K/BxN serum–induced arthritis model. We conclude that IgG antibodies directed to soluble antigens ameliorated 2 disparate IVIg-treatable autoimmune diseases. PMID:15630455

  17. The role of IL‐23 receptor signaling in inflammation‐mediated erosive autoimmune arthritis and bone remodeling

    PubMed Central

    Razawy, Wida; van Driel, Marjolein

    2018-01-01

    Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561

  18. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  19. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    PubMed

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  20. Assessment of trichloroethylene (TCE) exposure in murine strains genetically-prone and non-prone to develop autoimmune disease.

    PubMed

    Keil, Deborah E; Peden-Adams, Margie M; Wallace, Stacy; Ruiz, Phillip; Gilkeson, Gary S

    2009-04-01

    There is increasing laboratory and epidemiologic evidence relating exposure to trichloroethylene (TCE) with autoimmune disease including scleroderma and lupus. New Zealand Black/New Zealand White (NZBWF1) and B6C3F1 mice were exposed to TCE (0, 1, 400 or 14,000 ppb) via drinking water for 27 or 30 weeks, respectively. NZBWF1 mice spontaneously develop autoimmune disease while B6C3F1 mice, a standard strain used in immunotoxicology testing, are not genetically prone to develop autoimmune disease. During the TCE exposure period, serum levels of total IgG, and autoantibodies (anti-ssDNA, -dsDNA, and -glomerular antigen [GA]) were monitored. At the termination of the study, renal pathology, natural killer (NK) cell activity, total IgG levels, autoantibody production, T-cell activation, and lymphocytic proliferative responses were evaluated. TCE did not alter NK cell activity, or T- and B-cell proliferation in either strain. Numbers of activated T-cells (CD4+/CD44+) were increased in the B6C3F1 mice but not in the NZBWF1 mice. Renal pathology, as indicated by renal score, was significantly increased in the B6C3F1, but not in the NZBWF1 mice. Serum levels of autoantibodies to dsDNA and ssDNA were increased at more time points in B6C3F1, as compared to the NZBWF1 mice. Anti-GA autoantibodies were increased by TCE treatment in early stages of the study in NZBWF1 mice, but by 23 weeks of age, control levels were comparable to those of TCE-exposed animals. Serum levels anti-GA autoantibodies in B6C3F1 were not affected by TCE exposure. Overall, these data suggest that TCE did not contribute to the progression of autoimmune disease in autoimmune-prone mice during the period of 11-36 weeks of age, but rather lead to increased expression of markers associated with autoimmune disease in a non-genetically prone mouse strain.

  1. Gut microbiota in experimental murine model of Graves' orbitopathy established in different environments may modulate clinical presentation of disease.

    PubMed

    Masetti, Giulia; Moshkelgosha, Sajad; Köhling, Hedda-Luise; Covelli, Danila; Banga, Jasvinder Paul; Berchner-Pfannschmidt, Utta; Horstmann, Mareike; Diaz-Cano, Salvador; Goertz, Gina-Eva; Plummer, Sue; Eckstein, Anja; Ludgate, Marian; Biscarini, Filippo; Marchesi, Julian Roberto

    2018-05-25

    Variation in induced models of autoimmunity has been attributed to the housing environment and its effect on the gut microbiota. In Graves' disease (GD), autoantibodies to the thyrotropin receptor (TSHR) cause autoimmune hyperthyroidism. Many GD patients develop Graves' orbitopathy or ophthalmopathy (GO) characterized by orbital tissue remodeling including adipogenesis. Murine models of GD/GO would help delineate pathogenetic mechanisms, and although several have been reported, most lack reproducibility. A model comprising immunization of female BALBc mice with a TSHR expression plasmid using in vivo electroporation was reproduced in two independent laboratories. Similar orbital disease was induced in both centers, but differences were apparent (e.g., hyperthyroidism in Center 1 but not Center 2). We hypothesized a role for the gut microbiota influencing the outcome and reproducibility of induced GO. We combined metataxonomics (16S rRNA gene sequencing) and traditional microbial culture of the intestinal contents from the GO murine model, to analyze the gut microbiota in the two centers. We observed significant differences in alpha and beta diversity and in the taxonomic profiles, e.g., operational taxonomic units (OTUs) from the genus Lactobacillus were more abundant in Center 2, and Bacteroides and Bifidobacterium counts were more abundant in Center 1 where we also observed a negative correlation between the OTUs of the genus Intestinimonas and TSHR autoantibodies. Traditional microbiology largely confirmed the metataxonomics data and indicated significantly higher yeast counts in Center 1 TSHR-immunized mice. We also compared the gut microbiota between immunization groups within Center 2, comprising the TSHR- or βgal control-immunized mice and naïve untreated mice. We observed a shift of the TSHR-immunized mice bacterial communities described by the beta diversity weighted Unifrac. Furthermore, we observed a significant positive correlation between the

  2. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  3. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  4. Electrosmog and autoimmune disease.

    PubMed

    Marshall, Trevor G; Heil, Trudy J Rumann

    2017-02-01

    Studies in mice have shown that environmental electromagnetic waves tend to suppress the murine immune system with a potency similar to NSAIDs, yet the nature of any Electrosmog effects upon humans remains controversial. Previously, we reported how the human Vitamin-D receptor (VDR) and its ligand, 1,25-dihydroxyvitamin-D (1,25-D), are associated with many chronic inflammatory and autoimmune diseases. We have shown how olmesartan, a drug marketed for mild hypertension, acts as a high-affinity partial agonist for the VDR, and that it seems to reverse disease activity resulting from VDR dysfunction. We here report that structural instability of the activated VDR becomes apparent when observing hydrogen bond behavior with molecular dynamics, revealing that the VDR pathway exhibits a susceptibility to Electrosmog. Further, we note that characteristic modes of instability lie in the microwave frequency range, which is currently populated by cellphone and WiFi communication signals, and that the susceptibility is ligand dependent. A case series of 64 patient-reported outcomes subsequent to use of a silver-threaded cap designed to protect the brain and brain stem from microwave Electrosmog resulted in 90 % reporting "definite" or "strong" changes in their disease symptoms. This is much higher than the 3-5 % rate reported for electromagnetic hypersensitivity in a healthy population and suggests that effective control of environmental Electrosmog immunomodulation may soon become necessary for successful therapy of autoimmune disease.

  5. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  6. Autoimmunity and autoimmune co-morbidities in psoriasis.

    PubMed

    Furue, Kazuhisa; Ito, Takamichi; Tsuji, Gaku; Kadono, Takafumi; Nakahara, Takeshi; Furue, Masutaka

    2018-05-01

    Psoriasis is characterized by widespread scaly erythematous plaques that cause significant physical and psychological burdens for the affected individuals. Accelerated inflammation driven by the tumour necrosis factor-α/interleukin-23/interleukin-17 axis is now known to be the major mechanism in the development of psoriasis. In addition, psoriasis has an autoimmune nature that manifests as autoreactive T cells and is co-morbid with other autoimmune diseases, such as autoimmune bullous diseases, vitiligo, alopecia and thyroiditis. In this article, we review the recent topics on autoimmunity and autoimmune co-morbidities in psoriasis. © 2018 John Wiley & Sons Ltd.

  7. Effect and Mechanism of QiShenYiQi Pill on Experimental Autoimmune Myocarditis Rats.

    PubMed

    Lv, Shichao; Wu, Meifang; Li, Meng; Wang, Qiang; Xu, Ling; Wang, Xiaojing; Zhang, Junping

    2016-03-06

    To observe the effect of QiShenYiQi pill (QSYQ) on experimental autoimmune myocarditis rats, and to explore its mechanism of action. Lewis rats underwent the injection of myocardial myosin mixed with Freund's complete adjuvant were randomized into 3 groups: model, valsartan, and QSYQ groups. Rats injected with phosphate-buffered saline (PBS) mixed with Freund's complete adjuvant were used as the control group. Rats were euthanized at 4 and 8 weeks, and we weighed rat body mass, heart mass, and left ventricular mass. Myocardium sections were stained with hematoxylin and eosin (H&E) and Masson trichrome. Myocardial TGF-β1 and CTGF protein expression was detected by immunohistochemistry, and myocardial TGF-β1 and CTGF mRNA expression was detected by real-time qPCR. QSYQ reduced HMI and LVMI, as well as the histological score of hearts and CVF, which further decreased over time, and its effect was significantly greater than that of valsartan at 4 and 8 weeks. After 4 weeks, QSYQ inhibited the protein and mRNA expression of TGF-β1 and CTGF, and its effect on lowering CTGF was significantly greater than that of valsartan. In addition, after 8 weeks, QSYQ also inhibited the protein and mRNA expression of CTGF, whereas there was no significant difference in the expression of myocardial TGF-β1. This study provides evidence that QSYQ can improve cardiac remodeling of experimental autoimmune myocarditis rats. It also effectively improved the degree of myocardial fibrosis, which is related to the mechanism of regulation of TGF-β1 CTGF.

  8. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in experimental autoimmune encephalomyelitis.

    PubMed

    Medina-Fernández, Francisco J; Luque, Evelio; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijóo, Montserrat; García-Maceira, Fe I; Escribano, Begoña M; Pascual-Leone, Álvaro; Drucker-Colín, René; Túnez, Isaac

    2017-01-15

    Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect. Therefore, we aimed to assess the effect of TMS on the neuroinflammation occurring in EAE. A total of 44 male Dark Agouti rats were used. EAE induction was performed administering subcutaneously at the dorsal base of the tail a single dose of myelin oligodendrocyte glycoprotein. Clinical evaluation of motor symptoms was performed. Brain and spinal cord were collected and analyzed for nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein. We also carried out a histologic exam, which included an astrocyte immunostaining and Nissl staining for the assessment of brain cell density and pyknotic nuclei. TMS effectively ameliorated motor impairment secondary to EAE. This form of magnetic field was capable of decreasing the proliferation of astrocytes as a response to the autoimmune attack, reducing the content of nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein in central nervous system. Moreover, in treated animals, brain cell density was improved and the number of pyknotic nuclei was decreased. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in EAE. These results suggest that TMS could be a promising treatment for neuroinflammatory conditions such as multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Stimulated-single fiber electromyography monitoring of anti-sense induced changes in experimental autoimmune myasthenia gravis.

    PubMed

    Boneva, Neli; Hamra-Amitay, Yasmine; Wirguin, Itzhak; Brenner, Talma

    2006-05-01

    The neuromuscular weakness associated with myasthenia gravis (MG) can be transiently relieved by pharmacological inhibitors of acetylcholinesterase (AChE). Here, we expand the anticholinesterase repertoire to include 2'-O-methyl-protected antisense oligonucleotides targeted to AChE mRNA (EN101). Using stimulated-single fiber electromyography, we show that EN101 treatment of rats with experimental autoimmune myasthenia gravis (EAMG), improved the mean consecutive difference (MCD) and blocking for 24h. This treatment was more efficient than pyridostigmine and was accompanied by marked improvement in stamina and clinical profile.

  10. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling.

    PubMed

    Razawy, Wida; van Driel, Marjolein; Lubberts, Erik

    2018-02-01

    The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus.

    PubMed

    Hutcheson, Jack; Vanarsa, Kamala; Bashmakov, Anna; Grewal, Simer; Sajitharan, Deena; Chang, Betty Y; Buggy, Joseph J; Zhou, Xin J; Du, Yong; Satterthwaite, Anne B; Mohan, Chandra

    2012-11-08

    Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus.

  12. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful?

    PubMed

    Shen, Donghui; Lang, Yue; Chu, Fengna; Wu, Xiujuan; Wang, Ying; Zheng, Xiangyu; Zhang, Hong-Liang; Zhu, Jie; Liu, Kangding

    2018-06-11

    Macrophage migration inhibitory factor (MIF) plays an important role in the pathogenesis of Guillain-Barré syndrome (GBS) and its animal model experimental autoimmune neuritis (EAN), which may offer an opportunity for the development of the novel therapeutic strategies for GBS. Areas covered: 'macrophage migration inhibitory factor' and 'Guillain-Barré syndrome' were used as keywords to search for related publications on Pub-Med, National Center for Biotechnology Information (NCBI), USA. MIF is involved in the etiology of various inflammatory and autoimmune disorders. However, the roles of MIF in GBS and EAN have not been summarized in the publications we identified. Therefore, in this review, we described and analyzed the major roles of MIF in GBS/EAN. Primarily, this molecule aggravates the inflammatory responses in this disorder. However, multiple studies indicated a protective role of MIF in GBS. The potential of MIF as a therapeutic target in GBS has been recently demonstrated in experimental and clinical studies, although clinical trials have been unavailable to date. Expert opinion: MIF plays a critical role in the initiation and progression of GBS and EAN, and it may represent a potential therapeutic target for GBS.

  13. Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Lazaridis, Konstantinos; Dalianoudis, Ioannis; Baltatzidi, Vasiliki; Tzartos, Socrates J

    2017-11-15

    Myasthenia gravis (MG) is caused by autoantibodies, the majority of which target the muscle acetylcholine receptor (AChR). Plasmapheresis and IgG-immunoadsorption are useful therapy options, but are highly non-specific. Antigen-specific immunoadsorption would remove only the pathogenic autoantibodies, reducing the possibility of side effects while maximizing the benefit. We have extensively characterized such adsorbents, but in vivo studies are missing. We used rats with experimental autoimmune MG to perform antigen-specific immunoadsorptions over three weeks, regularly monitoring symptoms and autoantibody titers. Immunoadsorption was effective, resulting in a marked autoantibody titer decrease while the immunoadsorbed, but not the mock-treated, animals showed a dramatic symptom improvement. Overall, the procedure was found to be efficient, suggesting the subsequent initiation of clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Anti-Inflammatory Effects of Rebamipide Eyedrop Administration on Ocular Lesions in a Murine Model of Primary Sjögren's Syndrome

    PubMed Central

    Arakaki, Rieko; Eguchi, Hiroshi; Yamada, Akiko; Kudo, Yasusei; Iwasa, Akihiko; Enkhmaa, Tserennadmid; Hotta, Fumika; Mitamura-Aizawa, Sayaka; Mitamura, Yoshinori; Hayashi, Yoshio; Ishimaru, Naozumi

    2014-01-01

    Background Topical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown. Methods and Finding Reb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment. Conclusion Topical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces. PMID:24866156

  15. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    PubMed

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Effect and Mechanism of QiShenYiQi Pill on Experimental Autoimmune Myocarditis Rats

    PubMed Central

    Lv, Shichao; Wu, Meifang; Li, Meng; Wang, Qiang; Xu, Ling; Wang, Xiaojing; Zhang, Junping

    2016-01-01

    Background To observe the effect of QiShenYiQi pill (QSYQ) on experimental autoimmune myocarditis rats, and to explore its mechanism of action. Material/methods Lewis rats underwent the injection of myocardial myosin mixed with Freund’s complete adjuvant were randomized into 3 groups: model, valsartan, and QSYQ groups. Rats injected with phosphate-buffered saline (PBS) mixed with Freund’s complete adjuvant were used as the control group. Rats were euthanized at 4 and 8 weeks, and we weighed rat body mass, heart mass, and left ventricular mass. Myocardium sections were stained with hematoxylin and eosin (H&E) and Masson trichrome. Myocardial TGF-β1 and CTGF protein expression was detected by immunohistochemistry, and myocardial TGF-β1 and CTGF mRNA expression was detected by real-time qPCR. Results QSYQ reduced HMI and LVMI, as well as the histological score of hearts and CVF, which further decreased over time, and its effect was significantly greater than that of valsartan at 4 and 8 weeks. After 4 weeks, QSYQ inhibited the protein and mRNA expression of TGF-β1 and CTGF, and its effect on lowering CTGF was significantly greater than that of valsartan. In addition, after 8 weeks, QSYQ also inhibited the protein and mRNA expression of CTGF, whereas there was no significant difference in the expression of myocardial TGF-β1. Conclusions This study provides evidence that QSYQ can improve cardiac remodeling of experimental autoimmune myocarditis rats. It also effectively improved the degree of myocardial fibrosis, which is related to the mechanism of regulation of TGF-β1 CTGF. PMID:26946470

  17. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    PubMed

    Rao, Narsing A; Saraswathy, Sindhu; Pararajasegaram, Geeta; Bhat, Suraj P

    2012-01-01

    The small heat shock protein, αA-crystallin null (αA-/-) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  18. Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis.

    PubMed

    Macció, Daniela R; Calfa, Gastón; Roth, German A

    2005-01-01

    Considering that sex steroids can influence the immune system, we studied the development of experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of the central nervous system, and the concomitant cell-mediated immunity in gonadally intact and gonadectomized male Wistar rats given testosterone supplementation. Sham-operated rats and surgically castrated animals were orally self-administered with vehicle or testosterone added in the water bottle for 20 days before EAE induction. The androgenic effect of oral testosterone self-administration was evidenced by changes in body weight, and in the weights of androgen-dependent testes and seminal vesicles. Testosterone administration reduced the incidence of clinical signs of EAE in sham-operated animals and reversed the clinical symptoms of the disease associated with castrated EAE animals. The clinical signs observed in the different groups correlated with changes in delayed-type hypersensitivity and mononuclear cell-proliferative responses to the encephalitogenic myelin basic protein. Moreover, testosterone but not cholesterol supplementation in vitro suppressed the proliferative response of mononuclear cells to myelin basic protein suggesting that testosterone may affect specific immune functions through direct actions on immune cells. Finally, self-administration of testosterone induced also elevated corticosterone levels that in sham-operated rats correlated with the low incidence of the disease and in gonadectomized animals could be involved in the remission of clinical symptoms of EAE. These results suggest that orally self-administered testosterone can modulate specific cellular immune responses and serum corticosterone levels leading to changes in the development of EAE. Copyright 2005 S. Karger AG, Basel.

  19. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus

    PubMed Central

    2012-01-01

    Introduction Systemic lupus erythematosus is a chronic autoimmune disease characterized by an abundance of autoantibodies against nuclear antigens. Bruton's tyrosine kinase (Btk) is a proximal transducer of the BCR signal that allows for B-cell activation and differentiation. Recently, selective inhibition of Btk by PCI-32765 has shown promise in limiting activity of multiple cells types in various models of cancer and autoimmunity. The aim of this study was to determine the effect of Btk inhibition by PCI-32765 on the development of lupus in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice. Methods B6.Sle1 or B6.Sle1.Sle3 mice received drinking water containing either the Btk inhibitor PCI-32765 or vehicle for 56 days. Following treatment, mice were examined for clinical and pathological characteristics of lupus. The effect of PCI-32765 on specific cell types was also investigated. Results In this study, we report that Btk inhibition dampens humoral autoimmunity in B6.Sle1 monocongenic mice. Moreover, in B6.Sle1.Sle3 bicongenic mice that are prone to severe lupus, Btk inhibition also dampens humoral and cellular autoimmunity, as well as lupus nephritis. Conclusions These findings suggest that partial crippling of cell signaling in B cells and antigen presenting cells (APCs) may be a viable alternative to total depletion of these cells as a therapeutic modality for lupus. PMID:23136880

  20. Adoptive Cellular Gene Therapy for the Treatment of Experimental Autoimmune Polychondritis Ear Disease.

    PubMed

    Zhou, Bin; Liao, Yonggan; Guo, Yunkai; Tarner, Ingo H; Liao, Chunfen; Chen, Sisi; Kermany, Mohammad Habiby; Tu, Hanjun; Zhong, Sen; Chen, Peijie

    2017-01-01

    In the past, the clinical therapy for autoimmune diseases, such as autoimmune polychondritis ear disease, was mostly limited to nonspecific immunosuppressive agents, which could lead to variable responses. Currently, gene therapy aims at achieving higher specificity and less adverse effects. This concept utilizes the adoptive transfer of autologous T cells that have been retrovirally transduced ex vivo to express and deliver immunoregulatory gene products to sites of autoimmune inflammation. In the animal model of collagen-induced autoimmune polychondritis ear disease (CIAPED), the adoptive transfer of IL-12p40-expressing collagen type II (CII)-specific CD4+ T-cell hybridomas resulted in a significantly lower disease incidence and severity compared with untreated or vector-only-treated animals. In vivo cell detection using bioluminescent labels showed that transferred CII-reactive T-cell hybridomas accumulated in the inflamed earlobes of the mice with CIAPED. In vitro analysis demonstrated that IL-12p40-transduced T cells did not affect antigen-specific T-cell activation or systemic anti-CII Ab responses. However, IL-12p40-transduced T cells suppressed IFN-γ and augmented IL-4 production, indicating their potential to act therapeutically by interrupting Th1-mediated inflammatory responses via augmenting Th2 responses. These results indicate that the local delivery of IL-12p40 by T cells could inhibit CIAPED by suppressing autoimmune responses at the site of inflammation. © 2017 S. Karger AG, Basel.

  1. Insulinotropic and Anti-Inflammatory Effects of Rosiglitazone in Experimental Autoimmune Diabetes

    PubMed Central

    Awara, Wageh M.; El-Sisi, Alaa E.; El-Refaei, Mohamed; El-Naa, Mona M.; El-Desoky, Karima

    2005-01-01

    Cytokines and nitric oxide (NO) are involved in the pathogenesis of autoimmune diabetes mellitus (DM). Rosiglitazone is an insulin-sensitizing drug that is a ligand for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ). The anti-inflammatory and immunomodulating properties of PPAR-γ have been documented. The aim of this study is to investigate the effectiveness of rosiglitazone in autoimmune DM and to clarify the possible mechanism(s) involved. Autoimmune DM was induced in adult male Balb/c mice by co-administration of cyclosporin A and multiple low doses of streptozotocin. Diabetic mice were treated daily with rosiglitazone (7 mg/kg, p.o.) for 21 days. Blood glucose level (BGL), serum insulin level and pancreatic levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and NO were measured. Histopathological examination and immunohistochemical determination of CD4 and CD8 T lymphocytes in the pancreatic islets were performed. In addition, analysis of pancreatic protein expression was carried out. The results showed that rosiglitazone treatment resulted in a significant decrease in the BGL and the pancreatic levels of TNF-α, IFN-γ and NO compared to diabetic mice. The serum insulin level was significantly increased after rosiglitazone treatment compared to diabetic mice. The destroyed pancreatic islets were regenerated and became free from both CD4 and CD8 T cells after treatment. Furthermore, many changes in pancreatic protein expression were observed. These results suggest that rosiglitazone has a beneficial effect in the treatment of autoimmune diabetes, an effect that seemed to be a secondary consequence of its anti-inflammatory and immunomodulating properties and might be reflected at the level of protein expression. PMID:17491689

  2. Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation.

    PubMed

    Znalesniak, Eva B; Fu, Ting; Guttek, Karina; Händel, Ulrike; Reinhold, Dirk; Hoffmann, Werner

    2016-01-01

    The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Novel function of Extracellular matrix protein 1 in suppressing Th17 cell development in experimental autoimmune encephalomyelitis

    PubMed Central

    Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. While Th17 cells are important for the disease induction, Th2 cells are inhibitory in this process. Here, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of experimental autoimmune encephalomyelitis (EAE). Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further mechanism study revealed that ECM1 could interact with αv integrin on DC cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 differentiation at early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited Th17 cell response and EAE induction in ECM1 transgenic mouse. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 differentiation in the EAE model, suggesting that ECM1 may have a potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685

  4. Intravitreal injection of anti-Interleukin (IL)-6 antibody attenuates experimental autoimmune uveitis in mice.

    PubMed

    Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; Pickhinke, Ute; Garbers, Christoph; Rose-John, Stefan; Nölle, Bernhard; Roider, Johann

    2017-08-01

    To evaluate the effect of an intravitreally applied anti-IL-6 antibody for the treatment of experimental autoimmune uveitis (EAU). EAU was induced in female B10.RIII mice by Inter-Photoreceptor-Binding-Protein (IRBP) in complete Freund's adjuvant, boosted by Pertussis toxin. Single blinded intravitreal injections of anti-IL-6 antibody were applied 5-7days as well as 8-10days (3day interval) after EAU induction into the randomized treatment eye and phosphate buffered saline (PBS) into the fellow control eye. Clinical and fluorescein angiography scoring (6 EAU grades) was done at each injection day and at enucleation day 14. Enucleated eyes were either scored histologically (6 EAU grades) or examined by ELISA for levels of IL-6, IL-17 and IL-6 soluble Receptor (sIL-6R). Uveitis developed in all 12 mice. Clinical uveitis score was significantly reduced (p=0.035) in treated eyes (median 2.0, range 0-4.0, n=12) compared to the fellow control eyes (median 3.0, range 1.0-4.0, n=12). Angiography scores were reduced in 9/12 treated eyes and histological scores in 3/4 treated eyes compared to the fellow control eyes. Cytokine levels were determined in 8 mice, of which 4 responded to anti-IL-6 treatment and 4 did not respond. All mice responding to treatment had a significant reduction of IL-6 (p<0.01) and IL-17 (p=0.01) levels in treated eyes compared to the fellow control eyes. This difference was not seen in non-responding mice. Intravitreal anti-IL-6 treatment significantly attenuates experimental autoimmune uveitis in mice. EAU activity correlates with ocular IL-6 and IL-17 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego

    2011-07-01

    Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. [Autoimmune hepatitis].

    PubMed

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  7. Cannabidiol limits Tcell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation.

    PubMed

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Haskó, György; Čiháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-08

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a non-psychoactive constituent of Marijuana which exerts antiinflammatory effects independent from classical cannabinoid receptors. Recently 80 clinical trials have been reported investigating the effects of CBD in various diseases from inflammatory bowel disease to graft-versus-host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received FDA approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T cell-infiltration, profound inflammatory response, fibrosis (measured by qRT-PCR, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. CBD may represent a promising novel treatment for management of autoimmune myocarditis and possibly other autoimmune disorders, and organ transplantation.

  8. Dendritic cells exposed in vitro to TGF-β1 ameliorate experimental autoimmune myasthenia gravis

    PubMed Central

    YARILIN, D; DUAN, R; HUANG, Y-M; XIAO, B-G

    2002-01-01

    Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG), characterized by an autoaggressive T-cell-dependent antibody-mediated immune response directed against the acetylcholine receptor (AChR) of the neuromuscular junction. Dendritic cells (DC) are unique antigen-presenting cells which control T- and B-cell functions and induce immunity or tolerance. Here, we demonstrate that DC exposed to TGF-β1 in vitro mediate protection against EAMG. Freshly prepared DC from spleen of healthy rats were exposed to TGF-β1 in vitro for 48 h, and administered subcutaneously to Lewis rats (2 × 106DC/rat) on day 5 post immunization with AChR in Freund’s complete adjuvant. Control EAMG rats were injected in parallel with untreated DC (naive DC) or PBS. Lewis rats receiving TGF-β1-exposed DC developed very mild symptoms of EAMG without loss of body weight compared with control EAMG rats receiving naive DC or PBS. This effect of TGF-β1-exposed DC was associated with augmented spontaneous and AChR-induced proliferation, IFN-γ and NO production, and decreased levels of anti-AChR antibody-secreting cells. Autologous DC exposed in vitro to TGF-β1 could represent a new opportunity for DC-based immunotherapy of antibody-mediated autoimmune diseases. PMID:11876742

  9. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation.

    PubMed

    Schuhmann, Michael K; Stegner, David; Berna-Erro, Alejandro; Bittner, Stefan; Braun, Attila; Kleinschnitz, Christoph; Stoll, Guido; Wiendl, Heinz; Meuth, Sven G; Nieswandt, Bernhard

    2010-02-01

    Calcium (Ca(2+)) signaling in T lymphocytes is essential for a variety of functions, including the regulation of differentiation, gene transcription, and effector functions. A major Ca(2+) entry pathway in nonexcitable cells, including T cells, is store-operated Ca(2+) entry (SOCE), wherein depletion of intracellular Ca(2+) stores upon receptor stimulation causes subsequent influx of extracellular Ca(2+) across the plasma membrane. Stromal interaction molecule (STIM) 1 is the Ca(2+) sensor in the endoplasmic reticulum, which controls this process, whereas the other STIM isoform, STIM2, coregulates SOCE. Although the contribution of STIM molecules and SOCE to T lymphocyte function is well studied in vitro, their significance for immune processes in vivo has remained largely elusive. In this study, we studied T cell function in mice lacking STIM1 or STIM2 in a model of myelin-oligodendrocyte glycoprotein (MOG(35-55))-induced experimental autoimmune encephalomyelitis (EAE). We found that STIM1 deficiency significantly impaired the generation of neuroantigen-specific T cell responses in vivo with reduced Th1/Th17 responses, resulting in complete protection from EAE. Mice lacking STIM2 developed EAE, but the disease course was ameliorated. This was associated with a reduced clinical peak of disease. Deficiency of STIM2 was associated with an overall reduced proliferative capacity of lymphocytes and a reduction of IFN-gamma/IL-17 production by neuroantigen-specific T cells. Neither STIM1 nor STIM2 deficiency altered the phenotype or function of APCs. These findings reveal a crucial role of STIM-dependent pathways for T cell function and activation under autoimmune inflammatory conditions, establishing them as attractive new molecular therapeutic targets for the treatment of inflammatory and autoimmune disorders.

  10. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  11. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review.

    PubMed

    Crowe, William; Allsopp, Philip J; Watson, Gene E; Magee, Pamela J; Strain, J J; Armstrong, David J; Ball, Elizabeth; McSorley, Emeir M

    2017-01-01

    Autoimmune diseases result from an interplay of genetic predisposition and factors which stimulate the onset of disease. Mercury (Hg), a well-established toxicant, is an environmental factor reported to be linked with autoimmunity. Hg exists in several chemical forms and is encountered by humans in dental amalgams, certain vaccines, occupational exposure, atmospheric pollution and seafood. Several studies have investigated the effect of the various forms of Hg, including elemental (Hg 0 ), inorganic (iHg) and organic mercury (oHg) and their association with autoimmunity. In vitro studies using peripheral blood mononuclear cells (PBMC) from healthy participants have shown that methylmercury (MeHg) causes cell death at lower concentrations than iHg albeit exposure to iHg results in a more enhanced pro-inflammatory profile in comparison to MeHg. In vivo research utilising murine models susceptible to the development of metal-induced autoimmunity report that exposure to iHg results in a lupus-like syndrome, whilst mice exposed to MeHg develop autoimmunity without the formation of immune complexes. Furthermore, lower concentrations of IgE are detected in MeHg-treated animals in comparison with those treated with iHg. It appears that, oHg has a negative impact on animal models with existing autoimmunity. The research conducted on humans in this area is diverse in study design and the results are conflicting. There is currently no evidence to implicate a role for Hg 0 exposure from dental amalgams in the development or perpetuation of autoimmune disease, apart from some suggestion of individual sensitivity. Several studies have consistently shown a positive correlation between iHg exposure and serum autoantibody concentrations in gold miners, although the clinical impact of iHg remains unknown. Furthermore, a limited number of studies have reported individuals with autoimmune disease have higher concentrations of blood Hg compared to healthy controls. In summary, it

  12. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis.

    PubMed

    Carter, Laura L; Leach, Michael W; Azoitei, Mihai L; Cui, Junqing; Pelker, Jeffrey W; Jussif, Jason; Benoit, Steve; Ireland, Gretchen; Luxenberg, Deborah; Askew, G Roger; Milarski, Kim L; Groves, Christopher; Brown, Tom; Carito, Brenda A; Percival, Karen; Carreno, Beatriz M; Collins, Mary; Marusic, Suzana

    2007-01-01

    Interactions between PD-1 and its two differentially expressed ligands, PD-L1 and PD-L2, attenuate T cell activation and effector function. To determine the role of these molecules in autoimmune disease of the CNS, PD-1-/-, PD-L1-/- and PD-L2-/- mice were generated and immunized to induce experimental autoimmune encephalomyelitis (EAE). PD-1-/- and PD-L1-/- mice developed more severe EAE than wild type and PD-L2-/- mice. Consistent with this, PD-1-/- and PD-L1-/- cells produced elevated levels of the pro-inflammatory cytokines IFN-gamma, TNF, IL-6 and IL-17. These results demonstrate that interactions between PD-1/PD-L1, but not PD-1/PDL-2, are crucial in attenuating T cell responses in EAE.

  13. Loss of β-arrestin 2 exacerbates experimental autoimmune encephalomyelitis with reduced number of Foxp3+ CD4+ regulatory T cells

    PubMed Central

    Zhang, Yu; Liu, Chang; Wei, Bin; Pei, Gang

    2013-01-01

    β-Arrestins are well-known regulators and mediators of G protein-coupled receptor signalling, and accumulating evidence reveals that they are functionally involved in inflammation and autoimmune diseases. Of the two β-arrestins, β-arrestin 1 is documented to play regulatory roles in an animal model of multiple sclerosis (MS), whereas the role of β-arrestin 2 is less clear. Here, we show that β-arrestin 2-deficient mice displayed the exacerbated and sustained symptoms of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. At the cellular level, deficiency of β-arrestin 2 led to a decreased number of Foxp3+ CD4+ regulatory T (Treg) cells in peripheral lymphoid organs of EAE mice. Consistently, our in vitro observations also revealed that loss of β-arrestin 2 impaired the conversion of Foxp3− CD4+ T cells into Foxp3+ CD4+ inducible Treg cells. Taken together, our data suggest that β-arrestin 2 plays a regulatory role in MS, that is opposite to that of β-arrestin 1, in autoimmune diseases such as MS, which is at least partially through regulation of iTreg cell differentiation. PMID:23859136

  14. Effect of thalidomide and pentoxifylline on experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Corrêa, José Otávio do Amaral; Aarestrup, Beatriz Julião Vieira; Aarestrup, Fernando Monteiro

    2010-11-01

    Autoimmune encephalomyelitis (EAE) in Lewis rats is a classical experimental model of demyelinating inflammatory disease of the central nervous system. EAE is widely accepted for study of immune-inflammatory mechanisms in the CNS related to multiple sclerosis (MS) due to similar clinical evolution. In the present study we investigated the effects of Thalidomide and pentoxifylline during EAE development in Lewis rats. EAE was induced in Lewis rats and treatment with Thalidomide or pentoxifylline was performed. Clinical evaluation was carried out daily. Histopathological analysis of the brain tissue and spinal cord was performed. Griess method was used for determination of NO serum levels. TNF-alpha and IFN-gamma serum levels were investigated using ELISA method. Thalidomide and pentoxifylline treatment is associated with significant reduction of neuroinflammation in CNS. Serum levels of NO, IFN-gamma and TNF-alpha showed a marked reduction. Such findings were correlated with improvement of clinical symptoms, particularly in thalidomide treated rats. Taken together the data suggested that thalidomide and pentoxifylline may be therapeutic options for the treatment of MS, however further experiments must be performed to investigate this hypothesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    PubMed

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  16. A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice

    PubMed Central

    Vergani, Andrea; D'Addio, Francesca; Jurewicz, Mollie; Petrelli, Alessandra; Watanabe, Toshihiko; Liu, Kaifeng; Law, Kenneth; Schuetz, Christian; Carvello, Michele; Orsenigo, Elena; Deng, Shaoping; Rodig, Scott J.; Ansari, Javeed M.; Staudacher, Carlo; Abdi, Reza; Williams, John; Markmann, James; Atkinson, Mark; Sayegh, Mohamed H.; Fiorina, Paolo

    2010-01-01

    OBJECTIVE To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent allo- and autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes. PMID:20805386

  17. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice.

    PubMed

    Zhang, Shouxin; Liu, Xiaoyan; Sun, Chengming; Yang, Jun; Wang, Lihong; Liu, Jie; Gong, Lei; Jing, Yanyan

    2016-04-01

    This study aims to investigate the protective effect of apigenin on the development of experimental autoimmune myocarditis (EAM) and the underlying mechanisms. An EAM model was induced in BALB/c mice by the injection of porcine cardiac myosin. Apigenin was orally administered from day 1 to 21. The severity of myocarditis was assessed by determination of heart weight/body weight ratio (HW/BW) and histopathological evaluation. Echocardiography was conducted to evaluate the cardiac function and heart structure. Antigen-specific T cell proliferation responses to cardiac myosin were evaluated by the lymphocyte proliferation assay. ELISA was used to determine serum levels of type 1 helper (Th1) and Th2 cytokines. Apigenin treatment significantly decreased HW/BW. Histopathologic analysis showed that the infiltration of inflammatory cells was reduced significantly by apigenin treatment. Meanwhile, apigenin administration effectively ameliorated autoimmune myocarditis-induced cardiac hypertrophy and cardiac dysfunction as well as inhibited lymphocyte proliferation in mice immunized with myosin. Furthermore, Th1 cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-2 (IL-2) were significantly downregulated, while Th2 cytokines IL-4 and IL-10 were markedly upregulated. The results indicated that apigenin can alleviate EAM due to its immunomodulatory reactions in modification of helper T cell balance.

  18. Can infections prevent or cure allergy and autoimmunity?

    PubMed

    Kamradt, Thomas

    2005-06-01

    Extract: In western countries the prevalence and incidence of allergic and autoimmune diseases have been increasing dramatically over the last 50 years. In the last two decades, significant progress has been made towards understanding the genetic basis for susceptibility to autoimmunity or allergy. Genetic factors, however, cannot explain abrupt changes in disease incidence. It is therefore likely that environmental factors, specifically environmental factors that have changed over the last two generations, are critical for the increasing incidence of allergies and autoimmune diseases. Traditionally, autoimmune diseases such as multiple sclerosis (MS), type I diabetes, or rheumatoid arthritis (RA) are believed to have resulted from aberrant immune response to pathogens. In contrast, the "hygiene hypothesis," first postulated some 20 years ago, proposes that a lack of infections, especially during early childhood, predisposes one to the aberrant immune responses against harmless foreign antigens that cause allergic diseases such as rhinitis, atopic dermatitis, and allergic asthma. Several lines of epidemiological, clinical and experimental research point to more complex connections, either protective or pathogenic, between infection, allergy and autoimmunity.

  19. THE EXPERIMENTAL INFECTION OF THE HUMAN BODY LOUSE, PEDICULUS HUMANUS CORPORIS, WITH MURINE AND EPIDEMIC LOUSE-BORNE TYPHUS STRAINS

    PubMed Central

    Snyder, J. C.; Wheeler, C. M.

    1945-01-01

    Experiments are described which demonstrate that human body lice (Pediculus humanus corporis), were infected experimentally with murine and epidemic louse-borne strains of typhus fever by feeding on suitably prepared rabbits. Details of the two methods of infection, the "bleb technique" and the "I.V. technique," are presented. It is concluded that the experimental infection of human lice with typhus can be accomplished very easily and rapidly with these methods. The possible applications of the method are discussed. PMID:19871482

  20. Capsaicin-enriched diet ameliorates autoimmune neuritis in rats.

    PubMed

    Motte, Jeremias; Ambrosius, Björn; Grüter, Thomas; Bachir, Hussein; Sgodzai, Melissa; Pedreiturria, Xiomara; Pitarokoili, Kalliopi; Gold, Ralf

    2018-04-24

    Autoimmune neuropathies are common PNS disorders and effective treatment is challenging. Environmental influence and dietary components are known to affect the course of autoimmune diseases. Capsaicin as pungent component of chili-peppers is common in human nutrition. An influence of capsaicin on autoimmune diseases has been postulated. We tested capsaicin in the animal model of experimental autoimmune neuritis (EAN) in Lewis rat. Rats were immunized with P2-peptide and were treated with capsaicin in different preventive settings. Electrophysiological, histological, and molecular biological analyses of the sciatic nerve were performed to analyze T-cell and macrophage cell count, TRPV1, and cytokine expression. Moreover, FACS analyses including the intestinal immune system were executed. We observed an immunomodulatory effect of an early preventive diet-concept, where a physiological dosage of oral capsaicin was given 10 days before immunization in EAN. A reduced inflammation of the sciatic nerve was significant detectable clinically, electrophysiologically (CMAPs reduced in control group p < 0.01; increase of nerve conduction blocks in control group p < 0.05), histologically (significant reduction of T-cells, macrophages and demyelination), and at cytokine level. In contrast, this therapeutic effect was missing with capsaicin given from the day of immunization onwards. As possible underlying mechanism, we were able to show changes in the expression of the capsaicin receptor in the sciatic nerve and the small intestine, as well as altered immune cell populations in the small intestine. This is the first report about the immunomodulatory effect of the common nutrient, capsaicin, in an experimental model for autoimmune neuropathies.

  1. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  2. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  3. Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis.

    PubMed

    Chen, Chiao-Chi V; Zechariah, Anil; Hsu, Yi-Hua; Chen, Hsiao-Wen; Yang, Li-Chuan; Chang, Chen

    2008-04-01

    Atrophy of the corpus callosum (CC) is a well-documented observation in clinically definite multiple sclerosis (MS) patients. One recent hypothesis for the neurodegeneration that occurs in MS is that ion dyshomeostasis leads to neuroaxonal damage. To examine whether ion dyshomeostasis occurs in the CC during MS onset, experimental autoimmune encephalomyelitis (EAE) was utilized as an animal MS model to induce autoimmunity-mediated responses. To date, in vivo investigations of neuronal ion homeostasis has not been feasible using traditional neuroscience techniques. Therefore, the current study employed an emerging MRI method, called Mn2+-enhanced MRI (MEMRI). Mn2+ dynamics is closely associated with important neuronal activity events, and is also considered to be a Ca2+ surrogate. Furthermore, when injected intracranially, Mn2+ can be used as a multisynaptic tracer. These features enable MEMRI to detect neuronal ion homeostasis within a multisynaptic circuit that is connected to the injection site. Mn2+ was injected into the visual cortex to trace the CC, and T1-weighted imaging was utilized to observe temporal changes in Mn2+-induced signals in the traced pathways. The results showed that neuroaxonal functional changes associated with ion dyshomeostasis occurred in the CC during an acute EAE attack. In addition, the pathway appeared normal, although EAE-induced immune-cell infiltration was visible around the CC. The findings suggest that ion dyshomeostasis is a major neuronal aberration underlying the deterioration of normal-appearing brain tissues in MS, supporting its involvement in neuroaxonal functioning in MS.

  4. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis

    PubMed Central

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng

    2016-01-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008

  5. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

    PubMed

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J; Markowitz, Sanford D; Kusner, Linda L; Kaminski, Henry J; Lu, Lina; Lin, Feng

    2014-09-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V

    2015-11-15

    Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    NASA Astrophysics Data System (ADS)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  8. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  9. Cannabidiol Limits T Cell–Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation

    PubMed Central

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Hask’, György; ’iháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-01

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell–mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell–mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation. PMID:26772776

  10. A novel murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) induced by immunization with a spermine binding protein (p25) peptide

    PubMed Central

    Altuntas, Cengiz Z.; Veizi, Elias; Izgi, Kenan; Bicer, Fuat; Ozer, Ahmet; Grimberg, Kerry O.; Bakhautdin, Bakytzhan; Sakalar, Cagri; Tasdemir, Cemal; Tuohy, Vincent K.

    2013-01-01

    The pathophysiology of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is poorly understood. Inflammatory and autoimmune mechanisms may play a role. We developed a murine model of experimental autoimmune prostatitis (EAP) that mimics the human phenotype of CP/CPPS. Eight-week-old mice were immunized subcutaneously with prostate-specific peptides in an emulsion of complete Freund's adjuvant. Mice were euthanized 10 days after immunization, and lymph node cells were isolated and assessed for recall proliferation to each peptide. P25 99–118 was the most immunogenic peptide. T-cell and B-cell immunity and serum levels of C-reactive protein and nitrate/nitrite levels were evaluated over a 9-wk period. Morphometric studies of prostate, 24-h micturition frequencies, and urine volume per void were evaluated. Tactile referred hyperalgesia was measured using von Frey filaments to the pelvic region. The unpaired Student's t-test was used to analyze differences between EAP and control groups. Prostates from p25 99–118-immunized mice demonstrated elevated gene expression levels of TNF-α, IL-17A, IFN-γ, and IL-1β, not observed in control mice. Compared with controls, p25 99–118-immunized mice had significantly higher micturition frequency and decreased urine output per void, and they demonstrated elevated pelvic pain response. p25 99–118 immunization of male SWXJ mice induced prostate-specific autoimmunity characterized by prostate-confined inflammation, increased micturition frequency, and pelvic pain. This autoimmune prostatitis model provides a useful tool for exploring the pathophysiology and new treatments. PMID:23344231

  11. The Autoimmune Ecology

    PubMed Central

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A.; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures – internal and external – across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied. PMID:27199979

  12. The Autoimmune Ecology.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.

  13. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research.

    PubMed

    Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi

    2015-10-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Avian models with spontaneous autoimmune diseases

    PubMed Central

    Wick, Georg; Andersson, Leif; Hala, Karel; Gershwin, M. Eric; Selmi, Carlo F.; Erf, Gisela F.; Lamont, Susan J.; Sgonc, Roswitha

    2012-01-01

    Autoimmune diseases in human patients only become clinically manifest when the disease process has developed to a stage where functional compensation by the afflicted organ or system is not possible any more. In order to understand the initial etiologic and pathogenic events that are generally not yet accessible in humans, appropriate animal models are required. In this respect, spontaneously developing models - albeit rare – reflect the situation in humans much more closely than experimentally induced models, including knockout and transgenic mice. The present review describes three spontaneous chicken models for human autoimmune diseases, the Obese strain (OS) with a Hashimoto-like autoimmune thyroiditis, the University of California at Davis lines 200 and 206 (UCD-200 and 206) with a scleroderma-like disease and the amelanotic Smyth line with a vitiligo-like syndrome (SLV). Special emphasis is given to the new opportunities to unravel the genetic basis of these diseases in view of the recently completed sequencing of the chicken genome. PMID:17145302

  15. Vaccination and autoimmunity-'vaccinosis': a dangerous liaison?

    PubMed

    Shoenfeld, Y; Aron-Maor, A

    2000-02-01

    The question of a connection between vaccination and autoimmune illness (or phenomena) is surrounded by controversy. A heated debate is going on regarding the causality between vaccines, such as measles and anti-hepatitis B virus (HBV), and multiple sclerosis (MS). Brain antibodies as well as clinical symptoms have been found in patients vaccinated against those diseases. Other autoimmune illnesses have been associated with vaccinations. Tetanus toxoid, influenza vaccines, polio vaccine, and others, have been related to phenomena ranging from autoantibodies production to full-blown illness (such as rheumatoid arthritis (RA)). Conflicting data exists regarding also the connection between autism and vaccination with measles vaccine. So far only one controlled study of an experimental animal model has been published, in which the possible causal relation between vaccines and autoimmune findings has been examined: in healthy puppies immunized with a variety of commonly given vaccines, a variety of autoantibodies have been documented but no frank autoimmune illness was recorded. The findings could also represent a polyclonal activation (adjuvant reaction). The mechanism (or mechanisms) of autoimmune reactions following immunization has not yet been elucidated. One of the possibilities is molecular mimicry; when a structural similarity exists between some viral antigen (or other component of the vaccine) and a self-antigen. This similarity may be the trigger to the autoimmune reaction. Other possible mechanisms are discussed. Even though the data regarding the relation between vaccination and autoimmune disease is conflicting, it seems that some autoimmune phenomena are clearly related to immunization (e.g. Guillain-Barre syndrome). The issue of the risk of vaccination remains a philosophical one, since to date the advantages of this policy have not been refuted, while the risk for autoimmune disease has not been irrevocably proved. We discuss the pros and cons of this

  16. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment.

    PubMed

    Peón, Alberto N; Ledesma-Soto, Yadira; Olguín, Jonadab E; Bautista-Donis, Marcel; Sciutto, Edda; Terrazas, Luis I

    2017-01-01

    A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  17. Emerging role of IL-35 in inflammatory autoimmune diseases.

    PubMed

    Su, Lin-Chong; Liu, Xiao-Yan; Huang, An-Fang; Xu, Wang-Dong

    2018-05-03

    Interleukin 35 (IL-35) is the recently identified member of the IL-12 family of cytokines and provides the possibility to be a target for new therapies for autoimmune, inflammatory diseases. It is composed of an α chain (p35) and a β chain (EBI3). IL-35 mediates signaling by binding to its receptors, activates subsequent signaling pathways, and therefore, regulates the differentiation, function of T, B cells, macrophages, dendritic cells. Recent findings have shown abnormal expression of IL-35 in inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes, psoriasis, multiple sclerosis, autoimmune hepatitis, experimental autoimmune uveitis. In addition, functional analysis suggested that IL-35 is critical in the onset and development of these diseases. Therefore, the present study will systematically review what had been occurred regarding IL-35 in inflammatory autoimmune disease. The information collected will help to understand the biologic role of IL-35 in immune cells, and give information about the therapeutic potential of IL-35 in these diseases. Copyright © 2018. Published by Elsevier B.V.

  18. Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection.

    PubMed

    Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir

    2018-01-01

    Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A human anti-neuronal autoantibody against GABA B receptor induces experimental autoimmune agrypnia.

    PubMed

    Frisullo, Giovanni; Della Marca, Giacomo; Mirabella, Massimiliano; Caggiula, Marcella; Broccolini, Aldobrando; Rubino, Marco; Mennuni, Gioacchino; Tonali, Pietro Attilio; Batocchi, Anna Paola

    2007-04-01

    In the serum and cerebrospinal fluid of a patient with recurrent acute episodes of respiratory crises, autonomic symptoms and total insomnia (agrypnia), we identified a novel anti-neural complement fixing antibody directed against GABA(B) receptor (GABA(B)R). Patient purified IgG recognized a band of approximately 110 kDa on protein extracts of mouse cerebellum, cortex and brainstem and immunolabelled cultured Chinese hamster ovary (CHO) cells, transfected with human GABA(B)R1 and rat GABA(B)R2 receptors. Western blot analysis of transfected CHO homogenates showed the same band using both patient purified IgG and anti-GABA(B)R1 antibody. In order to verify the pathogenic role of these purified antibodies, we injected patient IgG intrathecally into cisterna magna of C57BL/6 mice pre-implanted with EEG electrodes and we observed severe ataxia followed by breathing depression and total suppression of slow wave sleep, as evidenced by EEG recording, in a dose-dependent manner. Immunohistochemistry on brain sections of mice injected with patient IgG showed the simultaneous presence of bound human IgG and C5b-9 deposits on Purkinje cells and cerebellar granular layer. After incubation with anti-GABA(B)R antibody, a marked reduction of receptor immunostaining was found with relative sparing of neuronal architecture. In conclusion we recognized an anti-neuronal autoantibody directed against GABA(B)R that is associated with autoimmune agrypnia and we showed that our patient purified IgG was able to induce in mice experimental autoimmune agrypnia characterized by a complex neurological syndrome affecting several CNS functions.

  20. Unresolved issues in theories of autoimmune disease using myocarditis as a framework

    PubMed Central

    Root-Bernstein, Robert; Fairweather, DeLisa

    2014-01-01

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. PMID:25484004

  1. Unresolved issues in theories of autoimmune disease using myocarditis as a framework.

    PubMed

    Root-Bernstein, Robert; Fairweather, DeLisa

    2015-06-21

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Therapeutic Potential of Shark Anti-ICOSL VNAR Domains is Exemplified in a Murine Model of Autoimmune Non-Infectious Uveitis.

    PubMed

    Kovaleva, Marina; Johnson, Katherine; Steven, John; Barelle, Caroline J; Porter, Andrew

    2017-01-01

    Induced costimulatory ligand (ICOSL) plays an important role in the activation of T cells through its interaction with the inducible costimulator, ICOS. Suppression of full T cell activation can be achieved by blocking this interaction and has been shown to be an effective means of ameliorating disease in models of autoimmunity and inflammation. In this study, we demonstrated the ability of a novel class of anti-ICOSL antigen-binding single domains derived from sharks (VNARs) to effectively reduce inflammation in a murine model of non-infectious uveitis. In initial selections, specific VNARs that recognized human ICOSL were isolated from an immunized nurse shark phage display library and lead domains were identified following their performance in a series of antigen selectivity and in vitro bioassay screens. High potency in cell-based blocking assays suggested their potential as novel binders suitable for further therapeutic development. To test this hypothesis, surrogate anti-mouse ICOSL VNAR domains were isolated from the same phage display library and the lead VNAR clone selected via screening in binding and ICOS/ICOSL blocking experiments. The VNAR domain with the highest potency in cell-based blocking of ICOS/ICOSL interaction was fused to the Fc portion of human IgG1 and was tested in vivo in a mouse model of interphotoreceptor retinoid-binding protein-induced uveitis. The anti-mICOSL VNAR Fc, injected systemically, resulted in a marked reduction of inflammation in treated mice when compared with untreated control animals. This approach inhibited disease progression to an equivalent extent to that seen for the positive corticosteroid control, cyclosporin A, reducing both clinical and histopathological scores. These results represent the first demonstration of efficacy of a VNAR binding domain in a relevant clinical model of disease and highlight the potential of VNARs for the treatment of auto-inflammatory conditions.

  3. Autoimmune disease: A role for new anti-viral therapies?

    PubMed

    Dreyfus, David H

    2011-12-01

    Many chronic human diseases may have an underlying autoimmune mechanism. In this review, the author presents a case of autoimmune CIU (chronic idiopathic urticaria) in stable remission after therapy with a retroviral integrase inhibitor, raltegravir (Isentress). Previous reports located using the search terms "autoimmunity" and "anti-viral" and related topics in the pubmed data-base are reviewed suggesting that novel anti-viral agents such as retroviral integrase inhibitors, gene silencing therapies and eventually vaccines may provide new options for anti-viral therapy of autoimmune diseases. Cited epidemiologic and experimental evidence suggests that increased replication of epigenomic viral pathogens such as Epstein-Barr Virus (EBV) in chronic human autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus Erythematosus (SLE), and multiple sclerosis (MS) may activate endogenous human retroviruses (HERV) as a pathologic mechanism. Memory B cells are the reservoir of infection of EBV and also express endogenous retroviruses, thus depletion of memory b-lymphocytes by monoclonal antibodies (Rituximab) may have therapeutic anti-viral effects in addition to effects on B-lymphocyte presentation of both EBV and HERV superantigens. Other novel anti-viral therapies of chronic autoimmune diseases, such as retroviral integrase inhibitors, could be effective, although not without risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Follistatin-like protein 1 is a critical mediator of experimental Lyme arthritis and the humoral response to Borrelia burgdorferi infection.

    PubMed

    Campfield, Brian T; Nolder, Christi L; Marinov, Anthony; Bushnell, Daniel; Davis, Amy; Spychala, Caressa; Hirsch, Raphael; Nowalk, Andrew J

    2014-08-01

    Follistatin-like protein 1 (FSTL-1) has recently been described as a critical mediator of CIA and a marker of disease activity. Lyme arthritis, caused by Borrelia burgdorferi, shares similarities with autoimmune arthritis and the experimental murine model collagen-induced arthritis (CIA). Because FSTL-1 is important in CIA and autoimmune arthritides, and Lyme arthritis shares similarities with CIA, we hypothesized that FSTL-1 may be an important mediator of Lyme arthritis. We demonstrate for the first time that FSTL-1 is induced by B. burgdorferi infection and is required for the development of Lyme arthritis in a murine model, utilizing a gene insertion to generate FSTL-1 hypomorphic mice. Using qPCR and qRT-PCR, we found that despite similar early infectious burden, FSTL-1 hypomorphic mice have improved spirochetal clearance in the face of attenuated arthritis and inflammatory cytokine production. Further, FSTL-1 mediates pathogen-specific antibody production and antigen recognition when assessed by ELISA and one- and two-dimensional immunoblotting. This study is the first to describe a role for FSTL-1 in the development of Lyme arthritis and anti-Borrelia response, and the first to demonstrate a role for FSTL-1 in response to infection, highlighting the potential for FSTL-1 as a target in the treatment of B. burgdorferi infection. Copyright © 2014. Published by Elsevier Ltd.

  5. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  6. Autoimmune Manifestations in the 3xTg-AD Model of Alzheimer's Disease

    PubMed Central

    Marchese, Monica; Cowan, David; Head, Elizabeth; Ma, Donglai; Karimi, Khalil; Ashthorpe, Vanessa; Kapadia, Minesh; Zhao, Hui; Davis, Paulina; Sakic, Boris

    2015-01-01

    Background Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. Objective The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. Methods A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. Results Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory disease, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired “cognitive” flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. Conclusion The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD. PMID:24150111

  7. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a

  8. Autoimmunity and Gastric Cancer

    PubMed Central

    Bizzaro, Nicola; Antico, Antonio; Villalta, Danilo

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms. PMID:29373557

  9. Development of Murine Lupus Involves the Combined Genetic Contribution of the SLAM and FcγR Intervals within the Nba2 Autoimmune Susceptibility Locus

    PubMed Central

    Jørgensen, Trine N.; Alfaro, Jennifer; Enriquez, Hilda L.; Jiang, Chao; Loo, William M.; Atencio, Stephanie; Bupp, Melanie R. Gubbels; Mailloux, Christina M.; Metzger, Troy; Flannery, Shannon; Rozzo, Stephen J.; Kotzin, Brian L.; Rosemblatt, Mario; Bono, María Rosa; Erickson, Loren D.

    2010-01-01

    Autoantibodies are of central importance in the pathogenesis of Ab-mediated autoimmune disorders. The murine lupus susceptibility locus Nba2 on chromosome 1 and the syntenic human locus are associated with a loss of immune tolerance that leads to antinuclear Ab production. To identify gene intervals within Nba2 that control the development of autoantibody-producing B cells and to determine the cellular components through which Nba2 genes accomplish this, we generated congenic mice expressing various Nba2 intervals where genes for the FcγR, SLAM, and IFN-inducible families are encoded. Analysis of congenic strains demonstrated that the FcγR and SLAM intervals independently controlled the severity of autoantibody production and renal disease, yet are both required for lupus susceptibility. Deregulated homeostasis of terminally differentiated B cells was found to be controlled by the FcγR interval where FcγRIIb-mediated apoptosis of germinal center B cells and plasma cells was impaired. Increased numbers of activated plasmacytoid dendritic cells that were distinctly CD19+ and promoted plasma cell differentiation via the proinflammatory cytokines IL-10 and IFNα were linked to the SLAM interval. These findings suggest that SLAM and FcγR intervals act cooperatively to influence the clinical course of disease through supporting the differentiation and survival of autoantibody-producing cells. PMID:20018631

  10. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  11. Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis.

    PubMed

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E; Figueroa, Fernando E; Fuentealba, Rodrigo A; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis.

  12. Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cells Induces a Switch from Classical to Atypical Symptoms in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E.; Figueroa, Fernando E.; Fuentealba, Rodrigo A.; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis. PMID:25838828

  13. Synergistic suppression of autoimmune arthritis through concurrent treatment with tolerogenic DC and MSC

    PubMed Central

    Li, Rong; Zhang, Yujuan; Zheng, Xiufen; Peng, Shanshan; Yuan, Keng; Zhang, Xusheng; Min, Weiping

    2017-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC. PMID:28230210

  14. Autoimmune encephalitis.

    PubMed

    Newman, M P; Blum, S; Wong, R C W; Scott, J G; Prain, K; Wilson, R J; Gillis, D

    2016-02-01

    Over the past decade, the clinical spectrum of autoimmune encephalitis has expanded with the emergence of several new clinicopathological entities. In particular, autoimmune encephalitis has recently been described in association with antibodies to surface receptors and ion channels on neurological tissues. Greater clinician awareness has resulted in autoimmune encephalitis being increasingly recognised in patients with unexplained neurological and psychiatric symptoms and signs. The clinical spectrum of presentations, as well as our understanding of disease mechanisms and treatment regimens, is rapidly developing. An understanding of these conditions is important to all subspecialties of Internal Medicine, including neurology and clinical immunology, psychiatry, intensive care and rehabilitation medicine. This review provides a contemporary overview of the aetiology, investigations and treatment of the most recently described autoimmune encephalitides. © 2016 Royal Australasian College of Physicians.

  15. Treatment with selective estrogen receptor modulators regulates myelin specific T-cells and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Bebo, Bruce F; Dehghani, Babak; Foster, Scott; Kurniawan, Astrid; Lopez, Francisco J; Sherman, Larry S

    2009-05-01

    Steroidal estrogens can regulate inflammatory immune responses and may be involved in the suppression of multiple sclerosis (MS) during pregnancy. However, the risks and side effects associated with steroidal estrogens may limit their usefulness for long-term MS therapy. Selective estrogen receptor modulators (SERMs) could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues. In this study, we investigated the ability of two commercially available SERMs (tamoxifen and raloxifene) to regulate myelin specific immunity and experimental autoimmune encephalomyelitis (EAE) in mice. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation. However, tamoxifen was more effective in this regard. Tamoxifen treatment reduced the induction of major histocompatibility complex II by lipopolysaccharide stimulated dendritic cells and decreased their ability to activate myelin specific T-cells. At lower doses, tamoxifen was found to increase the levels of Th2 transcription factors and induce a Th2 bias in cultures of myelin-specific splenocytes. EAE symptoms and the degree of demyelination were less severe in mice treated with tamoxifen than in control mice. These findings support the notion that tamoxifen or related SERMs are potential agents that could be used in the treatment of inflammatory autoimmune disorders that affect the central nervous system.

  16. Autoimmune Thyroid Disorders

    PubMed Central

    Iddah, M. A.; Macharia, B. N.

    2013-01-01

    Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice. PMID:23878745

  17. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  18. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis

    PubMed Central

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.

    2014-01-01

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311

  19. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  20. 18 F-Fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis

    PubMed Central

    2014-01-01

    Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the

  1. Heritability versus the role of the environment in autoimmunity.

    PubMed

    Selmi, Carlo; Lu, Qianjin; Humble, Michael C

    2012-12-01

    The higher concordant occurrence of autoimmune diseases in monozygotic twins compared to dizygotic or sibling pairs supports the role for genetic susceptibility. For most conditions, however, concordance rates are considerably below 100% and lead to the estimate of the weight of genetics coined "heritability". In the group of autoimmune diseases heritability ranges between 0.008 and 1 with median values of approximately 0.60. A complementary term coined "environmentability" represents the environmental influence on individual phenotype, and can include dietary habits, chemicals, or hygienic conditions. Genome-wide association data in complex diseases confirmed a role for the environment in disease etiology as significantly associated polymorphisms were found only in subgroups of patients and controls. Environmental links to autoimmunity range from anecdotal associations or case series to largely investigated experimental and epidemiological studies. A bibliographic analysis reveals that the number of publications dedicated to environmental factors in autoimmunity has grown on average by 7% every year since 1997. The National Institute of Environmental Health Sciences (NIEHS) convened an expert panel workshop to review the body of literature examining the role of the environment in the development of autoimmune disease and to identify conclusions, confidences, and critical knowledge gaps in this area. The results of the workshop discussion are summarized in the articles found in this issue of the Journal of Autoimmunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis.

    PubMed

    Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod

    2004-04-01

    Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.

  3. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  4. Autoimmune encephalopathies

    PubMed Central

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  5. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity.

    PubMed

    Cauvi, David M; Cauvi, Gabrielle; Toomey, Christopher B; Jacquinet, Eric; Pollard, Kenneth Michael

    2017-07-01

    IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Anti-Inflammatory Effect of Dialyzable Leukocyte Extract in Autoimmune Prostatitis: Evaluation in Animal Model

    PubMed Central

    Pérez-Alvarado, Carlos; Gómez, Consuelo; Reyes, Miguel; García, Mario; Pérez, Elizabeth; Pérez de la Mora, Carlos; Sanchez, Virginia

    2017-01-01

    Objective. To evaluate the anti-inflammatory properties of Dialyzable Leukocyte Extract (DLE) in a murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Methods. Histopathological characterization, prostatein Enzyme-Linked Immunosorbent Assay, and immunohistochemical analysis for CD45, TNF-α, IFN-γ, IL-6, IL-17, and IL-4 molecules were done in prostatic Wistar rats treated with DLE, placebo, or Dexamethasone. Results. Histopathological analysis of animals induced to prostatitis showed inflammatory infiltrate, mainly constituted by leucocytes and mast cells as well as Benign Prostatic Hyperplasia. Serum prostatein concentrations were 14 times higher than those displayed by healthy animals. After DLE and Dexamethasone treatments, the inflammatory infiltrate decreased; the tissue morphology was similar to that of a normal prostate, and the prostatein decreased to the basal levels of healthy animals. DLE treatment produced a decreased expression of the cell surface marker CD45 and the proinflammatory cytokines TNF-α, IFN-γ, IL-6, and IL-17. On the other hand, the expression of anti-inflammatory cytokine IL-4 increased in both the Dexamethasone and DLE groups. Conclusion. DLE is able to modulate the inflammatory response in Experimental Autoimmune Prostatitis (EAP). PMID:28386549

  7. Anti-Inflammatory Effect of Dialyzable Leukocyte Extract in Autoimmune Prostatitis: Evaluation in Animal Model.

    PubMed

    Pérez-Alvarado, Carlos; Gómez, Consuelo; Reyes, Miguel; García, Mario; Pérez, Elizabeth; Pérez de la Mora, Carlos; Sanchez, Virginia; Pérez Ishiwara, D Guillermo

    2017-01-01

    Objective. To evaluate the anti-inflammatory properties of Dialyzable Leukocyte Extract (DLE) in a murine model of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Methods. Histopathological characterization, prostatein Enzyme-Linked Immunosorbent Assay, and immunohistochemical analysis for CD45, TNF- α , IFN- γ , IL-6, IL-17, and IL-4 molecules were done in prostatic Wistar rats treated with DLE, placebo, or Dexamethasone. Results. Histopathological analysis of animals induced to prostatitis showed inflammatory infiltrate, mainly constituted by leucocytes and mast cells as well as Benign Prostatic Hyperplasia. Serum prostatein concentrations were 14 times higher than those displayed by healthy animals. After DLE and Dexamethasone treatments, the inflammatory infiltrate decreased; the tissue morphology was similar to that of a normal prostate, and the prostatein decreased to the basal levels of healthy animals. DLE treatment produced a decreased expression of the cell surface marker CD45 and the proinflammatory cytokines TNF- α , IFN- γ , IL-6, and IL-17. On the other hand, the expression of anti-inflammatory cytokine IL-4 increased in both the Dexamethasone and DLE groups. Conclusion. DLE is able to modulate the inflammatory response in Experimental Autoimmune Prostatitis (EAP).

  8. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis.

    PubMed

    Im, S H; Barchan, D; Souroujon, M C; Fuchs, S

    2000-10-01

    We recently demonstrated that oral or nasal administration of recombinant fragments of the acetylcholine receptor (AChR) prevents the induction of experimental autoimmune myasthenia gravis (EAMG) and suppresses ongoing EAMG in rats. We have now studied the role of spatial conformation of these recombinant fragments in determining their tolerogenicity. Two fragments corresponding to the extracellular domain of the human AChR alpha-subunit and differing in conformation were tested: Halpha1-205 expressed with no fusion partner and Halpha1-210 fused to thioredoxin (Trx), and designated Trx-Halpha1-210. The conformational similarity of the fragments to intact AChR was assessed by their reactivity with alpha-bungarotoxin and with anti-AChR mAbs, specific for conformation-dependent epitopes. Oral administration of the more native fragment, Trx-Halpha1-210, at the acute phase of disease led to exacerbation of EAMG, accompanied by an elevation of AChR-specific humoral and cellular reactivity, increased levels of Th1-type cytokines (IL-2, IL-12), decreased levels of Th2 (IL-10)- or Th3 (TGF-beta)-type cytokines, and higher expression of costimulatory factors (CD28, CTLA4, B7-1, B7-2, CD40L, and CD40). On the other hand, oral administration of the less native fragments Halpha1-205 or denatured Trx-Halpha1-210 suppressed ongoing EAMG and led to opposite changes in the immunological parameters. It thus seems that native conformation of AChR-derived fragments renders them immunogenic and immunopathogenic and therefore not suitable for treatment of myasthenia gravis. Conformation of tolerogens should therefore be given careful attention when considering oral tolerance for treatment of autoimmune diseases.

  9. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    PubMed

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  10. Murine Cytomegalovirus Downregulates Interleukin-17 in Mice with Retrovirus-induced Immunosuppression that are Susceptible to Experimental Cytomegalovirus Retinitis

    PubMed Central

    Blalock, Emily L.; Chien, Hsin; Dix, Richard D.

    2013-01-01

    Interleukin-17 (IL-17), a proinflammatory cytokine produced by CD4+ Th17 cells, has been associated with the pathogenesis of several autoimmune diseases including uveitis. The fate of IL-17 during HIV/AIDS, however, remains unclear, and a possible role for IL-17 in the pathogenesis of AIDS-related diseases has not been investigated. Toward these ends, we performed studies using a well-established animal model of experimental murine cytomegalovirus (MCMV) retinitis that develops in C57/BL6 mice with retrovirus-induced immunosuppression (MAIDS). After establishing baseline levels for IL-17 production in whole splenic cells of healthy mice, we observed a significant increase in IL-17 mRNA levels in whole splenic cells of mice with MAIDS of 4-weeks (MAIDS-4), 8-weeks (MAIDS-8), and 10-weeks (MAIDS-10) duration. In contrast, enriched populations of splenic CD4+ T cells, splenic macrophages, and splenic neutrophils exhibited a reproducible decrease in levels of IL-17 mRNA during MAIDS progression. To explore a possible role for IL-17 during the pathogenesis of MAIDS-related MCMV retinitis, we first demonstrated constitutive IL-17 expression in retinal photoreceptor cells of uninfected eyes of healthy mice. Subsequent studies, however, revealed a significant decrease in intraocular levels of IL-17 mRNA and protein in MCMV-infected eyes of MAIDS-10 mice during retinitis development. That MCMV infection might cause a remarkable downregulation of IL-17 production was supported further by the finding that systemic MCMV infection of healthy, MAIDS-4, or MAIDS-10 mice also significantly decreased IL-17 mRNA production by whole splenic CD4+ T cells. Based on additional studies using IL-10 −/− mice infected systemically with MCMV and IL-10 −/− mice with MAIDS infected intraocularly with MCMV, we propose that MCMV infection downregulates IL-17 production via stimulation of suppressor of cytokine signaling (SOCS)-3 and interleukin-10. PMID:23415673

  11. Autoimmune gastritis.

    PubMed

    Kulnigg-Dabsch, Stefanie

    2016-10-01

    Autoimmune gastritis is a chronic inflammatory disease with destruction of parietal cells of the corpus and fundus of the stomach. The known consequence is vitamin B12 deficiency and, consequently, pernicious anemia. However, loss of parietal cells reduces secretion of gastric acid which is also required for absorption of inorganic iron; thus, iron deficiency is commonly found in patients with autoimmune gastritis. This usually precedes vitamin B12 deficiency and is found mainly in young women. Patients with chronic iron deficiency, especially those refractory to oral iron therapy, should therefore be evaluated for the presence of autoimmune gastritis.

  12. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  13. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    PubMed

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  14. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    PubMed

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  15. Decay-accelerating factor 1 deficiency exacerbates Trypanosoma cruzi-induced murine chronic myositis.

    PubMed

    Solana, María E; Ferrer, María F; Novoa, María Mercedes; Song, Wen-Chao; Gómez, Ricardo M

    2012-10-01

    Murine infection with Trypanosoma cruzi (Tc) has been used to study the role of T-cells in the pathogenesis of human inflammatory idiopathic myositis. Absence of decay-accelerating factor 1 (Daf1) has been shown to enhance murine T-cell responses and autoimmunity. To determine whether Daf1 deficiency can exacerbate Tc-induced myositis, C57BL/6 DAF(+/+) and DAF(-/-) mice were inoculated with 5 × 10(4) trypomastigotes, and their morbidity, parasitemia, parasite burden, histopathology, and T-cell expansion were studied in the acute and chronic stages. DAF(-/-) mice had lower parasitemia and parasite burden but higher morbidity, muscle histopathology, and increased number of CD44(+) (activated/memory phenotype) splenic CD4(+) and CD8(+) T-cells. An enhanced CD8(+) T-cell immune-specific response may explain the lower parasitemia and parasite burden levels and the increase in histopathological lesions. We propose that Tc-inoculated DAF(-/-) mice are a useful model to study T-cell mediated immunity in skeletal muscle tissues. Copyright © 2012 Wiley Periodicals, Inc.

  16. Pain in autoimmune disorders.

    PubMed

    Mifflin, Katherine A; Kerr, Bradley J

    2017-06-01

    Most autoimmune diseases are associated with pathological pain development. Autoimmune diseases with pathological pain include complex regional pain syndrome, rheumatoid arthritis, and Guillian-Barré syndrome to name a few. The present Review explores research linking the immune system to the development of pathological pain in autoimmune diseases. Pathological pain has been linked to T-cell activation and the release of cytokines from activated microglia in the dorsal horn of the spinal cord. New research on the role of autoantibodies in autoimmunity has generated insights into potential mechanisms of pain associated with autoimmune disease. Autoantibodies may act through various mechanisms in autoimmune disorders. These include the alteration of neuronal excitability via specific antigens such as the voltage-gated potassium channel complexes or by mediating bone destruction in rheumatoid arthritis. Although more research must be done to understand better the role of autoantibodies in autoimmune disease related pain, this may be a promising area of research for new analgesic therapeutic targets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis.

    PubMed

    Markoullis, Kyriaki; Sargiannidou, Irene; Gardner, Christopher; Hadjisavvas, Andreas; Reynolds, Richard; Kleopa, Kleopas A

    2012-07-01

    Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination. Copyright © 2012 Wiley Periodicals, Inc.

  18. Autoimmune hepatitis.

    PubMed

    Vergani, D; Mieli-Vergani, G

    1996-01-01

    Autoimmune hepatitis is an inflammatory liver disease in which the immune system is believed to orchestrate an immune attack onto the liver cell. Current knowledge suggests that both T helper 1 (TH1) and TH2 programmes are involved in the generation of the liver damage. Release of TH2 cytokines leads to the production of autoantibodies to the hepatocyte membrane that recruit killer cells. TH1 cytokines induce macrophage activation which contributes to hepatocyte destruction. Patients commonly possess the "autoimmune" HLA A1/B8/DR3 haplotype and a silent gene at the C4A locus with consequent partial deficiency of the complement component C4. Two main types of autoimmune hepatitis are recognised according to the presence of circulating non-organ specific autoantibodies. Patients with smooth muscle antibody and/or antinuclear antibody may be adults or children, while patients with antiliver kidney microsomal type 1 (LKM1) antibody are usually children or very young adults. In both types there is a preponderance of females. LKM1 antibody is also present in a proportion of adult patients, mainly male, with chronic hepatitis C virus infection. This observation originally led to the suggestion that hepatitis C virus may be the cause of this form of autoimmune hepatitis, but several studies have shown that the epitopes target of the LKM1 antibody in autoimmune hepatitis and chronic hepatitis C virus infection differ. Although autoimmune hepatitis responds satisfactorily to immunosuppression in the short term, progression to cirrhosis is frequent. It is hoped that ongoing research will provide a better understanding of the pathogenic mechanisms of liver damage leading to a more effective and specific mode of treatment.

  19. Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12

    PubMed Central

    Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J

    2010-01-01

    Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477

  20. Cytokines in autoimmune bullous skin diseases. Epiphenomena or contribution to pathogenesis?

    PubMed

    Ludwig, R J; Schmidt, E

    2009-08-01

    An increasing number of publications reports altered expression of numerous cytokines in autoimmune bullous skin diseases. However, with few exceptions, the pathogenic relevance of increased levels in serum and blister fluid as well as elevated cytokine expression in the skin has not been addressed. The introduction of TNFalfa inhibition into the treatment of several chronic inflammatory and autoimmune diseases has clearly demonstrated the potential of an anti-cytokine-based therapy. As the treatment of autoimmune bullous skin diseases remains a therapeutic challenge, introduction of novel treatment options for these patients is needed. Therefore, we here present the current understanding of the role of cytokines in autoimmune bullous skin diseases; focusing on pemphigus vulgaris and bullous pemphigoid as representative autoimmune bullous skin diseases, and on the cytokines TNFalfa, IL-1 and IL-6, as respective inhibitory compounds have been licensed. Increased levels of these 3 chemokines have been found in both sera and blister fluid of patients with pemphigus vulgaris and bullous pemphigoid, and for most, disease activity correlates with cytokine levels. In animal models of pemphigus vulgaris, deficiency of IL-1 or TNFalfa partially protects from pemphigus IgG-induced blister formation. For bullous pemphigoid, circumstantial experimental evidence suggests, that inhibition of TNFalfa, IL-1 and IL-6 might be a suitable approach to dampen the inflammatory response. These assumptions are supported by reports of a therapeutic benefit of TNFalfa inhibition in treatment-refractory cases of pemphigus and several pemphigoid diseases. In summary, the current understanding of the contribution of chemokines to autoimmune bullous skin diseases, does not allow to draw final A more detailed understanding of the chemokine network in these disorders is required and may be provided by the corresponding experimental models.

  1. Organ specificity in autoimmune diseases: thyroid and islet autoimmunity in alopecia areata.

    PubMed

    Noso, Shinsuke; Park, Choongyong; Babaya, Naru; Hiromine, Yoshihisa; Harada, Takeshi; Ito, Hiroyuki; Taketomo, Yasunori; Kanto, Kousei; Oiso, Naoki; Kawada, Akira; Suzuki, Tamio; Kawabata, Yumiko; Ikegami, Hiroshi

    2015-05-01

    Multiple autoimmune diseases, such as autoimmunity against the thyroid gland and pancreatic islets, are often observed in a single patient. Although alopecia areata (AA) is one of the most frequent organ-specific autoimmune diseases, the association of AA with other autoimmune diseases and the genetic basis of the association remain to be analyzed. The aim of this study was to clarify the similarities and differences in HLA and clinical characteristics of thyroid and islet autoimmunity in patients with AA. A total of 126 patients with AA were newly recruited. Anti-islet and antithyroid autoantibodies were tested, and genotypes of HLA genes were determined. Among the autoimmune diseases associated with AA, autoimmune thyroid disease was most frequent (10.0%), followed by vitiligo (2.7%) and rheumatoid arthritis (0.9%) but not type 1 diabetes (0.0%). The prevalence of thyroid-related autoantibodies in patients with AA was significantly higher than that in controls (TSH receptor antibody [TRAb]: 42.7% vs 1.2%, P = 1.6 × 10(-46); thyroid peroxidase antibody: 29.1% vs 11.6%; P = 1.7 × 10(-6)), whereas the prevalence of islet-related autoantibodies was comparable between patients with AA and control subjects. The frequency of DRB1*15:01-DQB1*06:02, a protective haplotype for type 1 diabetes, was significantly higher in TRAb-positive (12.8%, P = .0028, corrected P value [Pc] = .02) but not TRAb-negative (7.1%, not significant) patients with AA than in control subjects (4.5%). The frequency of DRB1*04:05-DQB1*04:01, a susceptible haplotype for type 1 diabetes, was significantly lower in patients with AA (TRAb-positive: 8.5%; TRAb-negative: 11.9%) than in those with type 1 diabetes (29.5%, Pc < .0003 and Pc < .0008, respectively). AA was associated with thyroid autoimmunity but not islet autoimmunity, which correlated with class II HLA haplotypes susceptible or resistant to each autoimmune disease.

  2. Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris

    PubMed Central

    Hermanrud, Christina E.; Lucas, Carrie L.; Sykes, Megan; Huang, Christene A.; Wang, Zhirui

    2010-01-01

    The anti-murine CD40L monoclonal antibody MR1 has been widely used in immunology research to block the CD40-CD40L interaction for induction of transplantation tolerance and to abrogate autoimmune diseases. The availability of recombinant CD40L with high binding capacity for MR1 would provide a valuable immunological research tool. In this study, we constructed the single chain murine soluble CD40L monomer, dimer, trimer and successfully expressed them in yeast Pichia pastoris under the control of the alcohol oxidase promoter. The secreted single chain murine soluble CD40L monomers, dimers, and trimers were initially enriched through histidine tag capture by Ni-Sepharose 6 fast flow resin and further purified on a cation exchange resin. Purity reached more than 95% for the monomer and dimer forms and more than 90% for the trimer. Protein yield following purification was 16 mg/L for the monomer and dimer, and 8 mg/L for the trimer. ELISA analysis demonstrated that the CD40L dimers and trimers correctly folded in conformations exposing the MR1 antigenic determinant. PMID:21074618

  3. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model

    PubMed Central

    ’t Hart, Bert A.; Dunham, Jordon; Faber, Bart W.; Laman, Jon D.; van Horssen, Jack; Bauer, Jan; Kap, Yolanda S.

    2017-01-01

    The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes. PMID:28744286

  4. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  5. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    PubMed Central

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  6. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins.

    PubMed

    Lider, O; Baharav, E; Mekori, Y A; Miller, T; Naparstek, Y; Vlodavsky, I; Cohen, I R

    1989-03-01

    The ability of activated T lymphocytes to penetrate the extracellular matrix and migrate to target tissues was found to be related to expression of a heparanase enzyme (Naparstek, Y., I. R. Cohen, Z. Fuks, and I. Vlodavsky. 1984. Nature (Lond.). 310:241-243; Savion, N., Z. Fuks, and I. Vlodavsky. 1984. J. Cell. Physiol. 118:169-176; Fridman, R., O. Lider, Y. Naparstek, Z. Fuks, I. Vlodavsky, and I. R. Cohen. 1987. J. Cell. Physiol. 130:85-92; Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We found previously that heparin molecules inhibited expression of T lymphocyte heparanase activity in vitro and in vivo, and administration of a low dose of heparin in mice inhibited lymphocyte traffic and delayed-type hypersensitivity reactions (Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We now report that treatment with commercial or chemically modified heparins at relatively low doses once daily (5 micrograms for mice and 20 micrograms for rats) led to inhibition of allograft rejection and the experimental autoimmune diseases adjuvant arthritis and experimental autoimmune encephalomyelitis. Higher doses of the heparins were less effective. The ability of chemically modified heparins to inhibit these immune reactions was associated with their ability to inhibit expression of T lymphocyte heparanase. There was no relationship to anticoagulant activity. Thus heparins devoid of anticoagulant activity can be effective in regulating immune reactions when used at appropriate doses.

  7. Toll/Interleukin-1 Receptor Domain Derived from TcpC (TIR-TcpC) Ameliorates Experimental Autoimmune Arthritis by Down-modulating Th17 Cell Response*

    PubMed Central

    Pasi, Shweta; Kant, Ravi; Surolia, Avadhesha

    2016-01-01

    Evasion through immunomodulation is one of the several strategies adopted by pathogens to prolong their survival within the host. One such pathogen, Escherichia coli CFT073, utilizes an immunomodulatory protein, TcpC, to combat the host's innate immune defense. TcpC abrogates the function of MyD88 in macrophages, thus perturbing all the signaling processes that involve this adaptor protein. Although central to various signaling pathways initiated by IL-1, IL-18, and toll-like receptors, the precise contribution of MyD88 to the development of autoimmunity, particularly rheumatoid arthritis, still needs extensive exploration. Herein, by using the toll/interleukin-1 receptor (TIR) domain homologous C-terminal motif of TcpC, i.e. TIR-TcpC, we found MyD88 to be critical for the induction and progression of rheumatoid arthritis through its pivotal role in the development of Th17 cells, the subset of CD4+ T-cells widely implicated in various autoimmune disorders. The TIR-TcpC mediated inhibition of signaling through MyD88, and subsequent amelioration of experimental autoimmune arthritis was observed to be an outcome of perturbations in the NFκB-RORγt (RAR-related orphan receptor γt) axis. PMID:27022030

  8. Plasma Cell Depletion Attenuates Hypertension in an Experimental Model of Autoimmune Disease.

    PubMed

    Taylor, Erin B; Barati, Michelle T; Powell, David W; Turbeville, Hannah R; Ryan, Michael J

    2018-04-01

    Numerous studies show a direct relation between circulating autoantibodies, characteristic of systemic autoimmune disorders, and primary hypertension in humans. Whether these autoantibodies mechanistically contribute to the development of hypertension remains unclear. Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by aberrant immunoglobulin production, notably pathogenic autoantibodies, and is associated with prevalent hypertension, renal injury, and cardiovascular disease. Because plasma cells produce the majority of serum immunoglobulins and are the primary source of autoantibodies in SLE, we hypothesized that plasma cell depletion using the proteasome inhibitor bortezomib would lower autoantibody production and attenuate hypertension. Thirty-week-old female SLE (NZBWF1) and control (NZW [New Zealand White]) mice were injected IV with vehicle (0.9% saline) or bortezomib (0.75 mg/kg) twice weekly for 4 weeks. Bortezomib treatment significantly lowered the percentage of bone marrow plasma cells in SLE mice. Total plasma IgG and anti-dsDNA IgG levels were higher in SLE mice compared with control mice but were lowered by bortezomib treatment. Mean arterial pressure (mm Hg) measured in conscious mice by carotid artery catheter was higher in SLE mice than in control mice, but mean arterial pressure was significantly lower in bortezomib-treated SLE mice. Bortezomib also attenuated renal injury, as assessed by albuminuria and glomerulosclerosis, and reduced glomerular immunoglobulin deposition and B and T lymphocytes infiltration into the kidneys. Taken together, these data show that the production of autoantibodies by plasma cells mechanistically contributes to autoimmune-associated hypertension and suggests a potential role for patients with primary hypertension who have increased circulating immunoglobulins. © 2018 American Heart Association, Inc.

  9. Prolactin and Autoimmunity

    PubMed Central

    Borba, Vânia Vieira; Zandman-Goddard, Gisele; Shoenfeld, Yehuda

    2018-01-01

    The great asymmetry of autoimmune diseases between genders represents one of the most enigmatic observations among the mosaic of autoimmunity. Sex hormones are believed to play a crucial role on this dimorphism. The higher prevalence of autoimmunity among women at childbearing ages, disease onset/relapses during pregnancy, and post-partum are some of the arguments that support this hypothesis. Certainly, motherhood represents one of the most remarkable challenges for the immune system, which not only has to allow for the conceptus, but also has to deal with complex endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in achieving a competent and healthy immune system. Prolactin (PRL) has a bioactive function acting as a hormone and a cytokine. It interferes with immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, hyperprolactinemia has been described in relation to the pathogenesis and activity of several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, we attempt to provide a critical overview of the link between PRL, autoimmune diseases, and motherhood. PMID:29483903

  10. Prolactin and Autoimmunity.

    PubMed

    Borba, Vânia Vieira; Zandman-Goddard, Gisele; Shoenfeld, Yehuda

    2018-01-01

    The great asymmetry of autoimmune diseases between genders represents one of the most enigmatic observations among the mosaic of autoimmunity. Sex hormones are believed to play a crucial role on this dimorphism. The higher prevalence of autoimmunity among women at childbearing ages, disease onset/relapses during pregnancy, and post-partum are some of the arguments that support this hypothesis. Certainly, motherhood represents one of the most remarkable challenges for the immune system, which not only has to allow for the conceptus, but also has to deal with complex endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in achieving a competent and healthy immune system. Prolactin (PRL) has a bioactive function acting as a hormone and a cytokine. It interferes with immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, hyperprolactinemia has been described in relation to the pathogenesis and activity of several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, we attempt to provide a critical overview of the link between PRL, autoimmune diseases, and motherhood.

  11. The neuroprotective agent SR 57746A abrogates experimental autoimmune encephalomyelitis and impairs associated blood–brain barrier disruption: Implications for multiple sclerosis treatment

    PubMed Central

    Bourrié, Bernard; Bribes, Estelle; Esclangon, Martine; Garcia, Laurent; Marchand, Jean; Thomas, Corinne; Maffrand, Jean-Pierre; Casellas, Pierre

    1999-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents. PMID:10536012

  12. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis.

    PubMed

    Afonso, Marta B; Rodrigues, Pedro M; Carvalho, Tânia; Caridade, Marta; Borralho, Paula; Cortez-Pinto, Helena; Castro, Rui E; Rodrigues, Cecília M P

    2015-10-01

    Hepatocyte cell death, inflammation and oxidative stress constitute key pathogenic mechanisms underlying non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the role of necroptosis in human and experimental NAFLD and its association with tumour necrosis factor α (TNF-α) and oxidative stress. Serum markers of necrosis, liver receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like (MLKL) were evaluated in control individuals and patients with NAFLD. C57BL/6 wild-type (WT) or RIP3-deficient (RIP3(-/-)) mice were fed a high-fat choline-deficient (HFCD) or methionine and choline-deficient (MCD) diet, with subsequent histological and biochemical analysis of hepatic damage. In primary murine hepatocytes, necroptosis and oxidative stress were also assessed after necrostatin-1 (Nec-1) treatment or RIP3 silencing. We show that circulating markers of necrosis and TNF-α, as well as liver RIP3 and MLKL phosphorylation were increased in NAFLD. Likewise, RIP3 and MLKL protein levels and TNF-α expression were increased in the liver of HFCD and MCD diet-fed mice. Moreover, RIP3 and MLKL sequestration in the insoluble protein fraction of NASH (non-alcoholic steatohepatitis) mice liver lysates represented an early event during stetatohepatitis progression. Functional studies in primary murine hepatocytes established the association between TNF-α-induced RIP3 expression, activation of necroptosis and oxidative stress. Strikingly, RIP3 deficiency attenuated MCD diet-induced liver injury, steatosis, inflammation, fibrosis and oxidative stress. In conclusion, necroptosis is increased in the liver of NAFLD patients and in experimental models of NASH. Further, TNF-α triggers RIP3-dependent oxidative stress during hepatocyte necroptosis. As such, targeting necroptosis appears to arrest or at least impair NAFLD progression. © 2015 Authors; published by Portland Press Limited.

  13. Longitudinal evaluation of immunohistochemical findings of milk aspiration: an experimental study using a murine model.

    PubMed

    Nagai, Tomonori; Aoyagi, Miwako; Ochiai, Eriko; Sakai, Kentaro; Maruyama-Maebashi, Kyoko; Fukui, Kenji; Iwadate, Kimiharu

    2011-06-15

    To examine the longitudinal change of pathological findings of the lung and other organs in milk aspiration, an experimental study using a murine model was carried out. Either 0.5 or 1.0 ml cow's milk was instilled into the trachea of rats. From immediately after to 14 days after instillation, the animals were sacrificed, and the lungs, liver, kidneys, and spleen were removed. The results of immunostaining with anti-human α lactalbumin antibody indicated that not only the lung but also the kidney and spleen showed a positive reaction against the antibody over time. Experimentally aspirated milk was detectable in alveoli until 2 days after instillation. It was also detectable in renal tubules from 1 to 6h after instillation. Macrophages containing granules of aspirated milk were observed in splenic red pulp from 3h to 14 days after instillation. Detection of aspirated milk in other organs except the lung would be clear evidence of intravital milk aspiration and would suggest previous or recurrent milk aspiration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. [Non-autoimmune thyroiditis].

    PubMed

    Rizzo, Leonardo F L; Mana, Daniela L; Bruno, Oscar D

    2014-01-01

    The term thyroiditis comprises a group of thyroid diseases characterized by the presence of inflammation, including autoimmune and non-autoimmune entities. It may manifest as an acute illness with severe thyroid pain (subacute thyroiditis and infectious thyroiditis), and conditions in which the inflammation is not clinically evident evolving without pain and presenting primarily thyroid dysfunction and/or goiter (drug-induced thyroiditis and Riedel thyroiditis). The aim of this review is to provide an updated approach on non-autoimmune thyroiditis and its clinical, diagnostic and therapeutic aspects.

  15. Hot topics in autoimmune diseases: perspectives from the 2013 Asian Congress of Autoimmunity.

    PubMed

    Selmi, Carlo

    2014-08-01

    Our understanding of the pathogenic mechanisms and possible treatments of autoimmune diseases has significantly increased over the past decade. Nonetheless, numerous major issues remain open and such issues span from epidemiology to clinimetrics and from the role of infectious agents to the search for accurate biomarkers in paradigmatic conditions such as systemic lupus erythematosus, rheumatoid arthritis, and spondyloarthropathies. In the case of cardiovascular comorbidities of autoimmune diseases or, more generally, the pathogenesis of atherosclerosis, fascinating evidence points to a central role of autoimmunity and metabolic dysfunctions and a possible role of therapies targeting inflammation to ameliorate both conditions. Basic science and translational medicine contribute to identify common mechanisms that underlie different autoimmune diseases, as in the case of tumor necrosis factor alpha, and more recently vitamin D, autoantibodies, T and B regulatory cells, and microRNA. Finally, new therapies are expected to significantly change our approach to autoimmune diseases, as represented by the recent FDA approval of the first oral JAK inhibitor. The present article moves from the major topics that were discussed at the 2013 Asian Congress of Autoimmunity in Hong Kong to illustrate the most recent data from leading journals in autoimmunity and immunology. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  17. Autoimmune progesterone dermatitis.

    PubMed

    Detrixhe, A; Nikkels, A F; Dezfoulian, B

    2017-11-01

    Autoimmune progesterone dermatitis (APD) is an exceptional condition affecting young women of childbearing age with a high prevalence during the third decade of life. The diagnosis should be confirmed using an intradermal skin test to progesterone, during the follicular phase of the menstrual cycle. APD represents an early manifestation of autoimmune disease. A case of APD is presented who after curative treatment did not develop other autoimmune diseases during a 6-year follow-up. Dermatologists, gynecologists and obstetricians should be aware of this rare but highly invalidating entity.

  18. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    PubMed

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  19. Stem cells for murine interstitial cells of cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.

    PubMed

    Dave, Maneesh; Hayashi, Yujiro; Gajdos, Gabriella B; Smyrk, Thomas C; Svingen, Phyllis A; Kvasha, Sergiy M; Lorincz, Andrea; Dong, Haidong; Faubion, William A; Ordog, Tamas

    2015-05-01

    After allogeneic transplantation, murine stem cells (SCs) for interstitial cells of Cajal (ICCs), electrical pacemaker, and neuromodulator cells of the gut, were incorporated into gastric ICC networks, indicating in vivo immunosuppression. Immunosuppression is characteristic of bone marrow- and other non-gut-derived mesenchymal stem cells (MSCs), which are emerging as potential therapeutic agents against autoimmune diseases, including inflammatory bowel disease. Therefore, we investigated whether gut-derived ICC-SCs could also mitigate experimental colitis and studied the mechanisms of ICC-SC-mediated immunosuppression in relation to MSC-induced pathways. Isolated ICC-SCs were studied by transcriptome profiling, cytokine assays, flow cytometry, mixed lymphocyte reaction, and T-cell proliferation assay. Mice with acute and chronic colitis induced by dextran sulfate sodium and T-cell transfer, respectively, were administered ICC-SCs intraperitoneally and evaluated for disease activity by clinical and pathological assessment and for ICC-SC homing by live imaging. Unlike strain-matched dermal fibroblasts, intraperitoneally administered ICC-SCs preferentially homed to the colon and reduced the severity of both acute and chronic colitis assessed by clinical and blind pathological scoring. ICC-SCs profoundly suppressed T-cell proliferation in vitro. Similar to MSCs, ICC-SCs strongly expressed cyclooxygenase 1/2 and basally secreted prostaglandin E2. Indomethacin, a cyclooxygenase inhibitor, countered the ICC-SC-mediated suppression of T-cell proliferation. In contrast, we found no role for regulatory T-cell-, programmed death receptor-, and transforming growth factor-β-mediated mechanisms reported in MSCs; and transcriptome profiling did not support a relationship between ICC-SCs and MSCs. Murine ICC-SCs belong to a class different from MSCs and potently mitigate experimental colitis via prostaglandin E2-mediated immunosuppression. Copyright © 2015 AGA Institute

  20. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.

    PubMed

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-09-26

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. St. John's wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud

    2016-05-01

    Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.

  2. Local S100A8 Levels Correlate With Recurrence of Experimental Autoimmune Uveitis and Promote Pathogenic T Cell Activity

    PubMed Central

    Yun, Juan; Xiao, Tong; Zhou, Lei; Beuerman, Roger W.; Li, Juanjuan; Zhao, Yuan; Hadayer, Amir; Zhang, Xiaomin; Sun, Deming; Kaplan, Henry J.

    2018-01-01

    Purpose To investigate the role of damage-associated molecular patterns (DAMPs) in recurrent experimental autoimmune uveitis (EAU). Methods Recurrent EAU was induced in Lewis rats by interphotoreceptor retinoid-binding protein (IRBP) R16-peptide specific T cells (tEAU). Aqueous humor and serum samples were kinetically collected and DAMPs examined by quantitative proteomics, Western blot analysis, and ELISA. tEAU rats were treated with S100 inhibitor paquinimod followed by disease evaluation. The functions of T effector cells and T regulatory cells (Tregs) were compared between treated and nontreated groups. The expression of costimulatory molecules on antigen-presenting cells was examined by flow cytometry. Results S100A8, but not high mobility group box 1 (HMGB1), in the eye was found to be correlated with intraocular inflammatory episodes. Administration of paquinimod significantly protected tEAU rats from recurrence. Treated tEAU rats had fewer R16-specific Th1 and Th17 cells, but increased numbers of Tregs. R16-specific T cells from treated tEAU rats into naïve recipients prevented induction of tEAU by R16-specific T cells from nontreated tEAU rats. Moreover, APCs from treated tEAU rats expressed higher levels of a negative costimulatory molecule, CD200R, and lower levels of CD80, CD86, and MHC class II molecules compared to APCs from nontreated tEAU rats. An opposite pattern of expression of these molecules was observed on APCs incubated in vitro with recombinant S100A8. Conclusions Our data demonstrate a link between local expression of DAMPs and autoimmune responses, and suggest that complete S100A8/A9 blockade may be a new therapeutic target in recurrent autoimmune uveitis. PMID:29625456

  3. Inhibitory effects of alprazolam on the development of acute experimental autoimmune encephalomyelitis in stressed rats.

    PubMed

    Núñez-Iglesias, María J; Novío, Silvia; Almeida-Dias, Antonio; Freire-Garabal, Manuel

    2010-12-01

    The progression and development of multiple sclerosis (MS) has long been hypothesized to be associated with stress. Benzodiazepines have been observed to reduce negative consequences of stress on the immune system in experimental and clinical models, but there are no data on their effects on MS, or experimental autoimmune encephalomyelitis (EAE), a model for human MS. We designed experiments conducted to ascertain whether alprazolam could modify the clinical, histological and neuroendocrine manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. EAE was induced by injection of an emulsion of MBP and complete Freund's adjuvant containing Mycobacterium tuberculosis H37Ra. Stress application and treatment with drugs (placebo or alprazolam) were initiated 5days before inoculation and continued daily for the duration of the experiment (days 14 or 34 postinoculation).Our results show significant increases in the severity of neurological signs, the histological lesions of the spinal cord (inflammation), and the corticosterone plasmatic levels in stressed rats compared to those non-stressed ones. Treatment with alprazolam reversed the adverse effects of stress. These findings could have clinical implications in patients suffering from MS treated with benzodiazepines, so besides the psychopharmacological properties of alprazolam against stress, it has beneficial consequences on EAE. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Mucosal tolerance induced by an immunodominant peptide from rat alpha3(IV)NC1 in established experimental autoimmune glomerulonephritis.

    PubMed

    Reynolds, John; Abbott, Danielle S; Karegli, Julieta; Evans, David J; Pusey, Charles D

    2009-06-01

    Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the noncollagenous domain of the alpha 3 chain of type IV collagen, alpha3(IV)NC1. Recent studies have identified an immunodominant peptide, pCol (24-38), from the N-terminus of rat alpha3(IV)NC1; this peptide contains the major B- and T-cell epitopes in EAG and can induce crescentic nephritis. In this study, we investigated the mechanisms of mucosal tolerance in EAG by examining the effects of the nasal administration of this peptide after the onset of disease. A dose-dependent effect was observed: a dose of 300 microg had no effect, a dose of 1000 microg resulted in a moderate reduction in EAG severity, and a dose of 3000 microg produced a marked reduction in EAG severity accompanied by diminished antigen-specific, T-cell proliferative responses. These results demonstrate that mucosal tolerance in EAG can be induced by nasal administration of an immunodominant peptide from the N-terminus of alpha3(IV)NC1 and should be of value in designing new therapeutic strategies for patients with Goodpasture's disease and other autoimmune disorders.

  5. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  6. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  7. Confirmation of the "protein-traffic-hypothesis" and the "protein-localization-hypothesis" using the diabetes-mellitus-type-1-knock-in and transgenic-murine-models and the trepitope sequences.

    PubMed

    Arneth, Borros

    2012-10-01

    As possible mechanisms to explain the emergence of autoimmune diseases, the current author has suggested in earlier papers two new pathways: the "protein localization hypothesis" and the "protein traffic hypothesis". The "protein localization hypothesis" states that an autoimmune disease develops if a protein accumulates in a previously unoccupied compartment, that did not previously contain that protein. Similarly, the "protein traffic hypothesis" states that a sudden error within the transport of a certain protein leads to the emergence of an autoimmune disease. The current article discusses the usefulness of the different commercially available transgenic murine models of diabetes mellitus type 1 to confirm the aforementioned hypotheses. This discussion shows that several transgenic murine models of diabetes mellitus type 1 are in-line and confirm the aforementioned hypotheses. Furthermore, these hypotheses are additionally inline with the occurrence of several newly discovered protein sequences, the so-called trepitope sequences. These sequences modulate the immune response to certain proteins. The current study analyzed to what extent the hypotheses are supported by the occurrence of these new sequences. Thereby the occurrence of the trepitope sequences provides additional evidence supporting the aforementioned hypotheses. Both the "protein localization hypothesis" and the "protein traffic hypothesis" have the potential to lead to new causal therapy concepts. The "protein localization hypothesis" and the "protein traffic hypothesis" provide conceptional explanations for the diabetes mouse models as well as for the newly discovered trepitope sequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs

    PubMed Central

    Khan, Deena; Ansar Ahmed, S.

    2015-01-01

    In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted. PMID:26236331

  9. Hippocampal neurodegeneration in experimental autoimmune encephalomyelitis (EAE): potential role of inflammation activated myeloperoxidase.

    PubMed

    Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A

    2009-08-01

    Experimental Autoimmune Encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). The effect of this inflammatory disease on hippocampus has not been addressed. Keeping in view the above consideration an attempt was made to delineate the effect of EAE on the hippocampus of Wistar rats. The assessment of the damage to the hippocampus was done 16 days post induction by the immunolocalization of ChAT (choline acetyl transferase). ChAT decreased remarkably after induction that revealed cholinergic neuronal degeneration in the hippocampus. Subsequently, many biochemical parameters were assessed to ascertain inflammatory activation of nitric oxide and associated oxidative damage as a putative mechanism of the cholinergic degeneration. Nitric oxide metabolites increased significantly (P < 0.05) with enhancement of MPO (Myeloperoxidase activity) (P < 0.001) in the MOG (myelin oligodendrocyte protein) group as compared to the controls. Peroxidation of biomembranes increased (P < 0.001), while reduced glutathione depleted (P < 0.001) with parallel decrease in catalase (P < 0.01) and superoxide dismutase enzyme activity (P < 0.001) in the MOG group. Our results show a strong role of peroxidase dependent oxidation of nitrite and oxidative stress in cholinergic degeneration in EAE.

  10. Autoimmune diseases in asthma.

    PubMed

    Tirosh, Amir; Mandel, Dror; Mimouni, Francis B; Zimlichman, Eyal; Shochat, Tzippora; Kochba, Ilan

    2006-06-20

    Previous research has suggested an inverse relationship between T-helper 2-related atopic disorders, such as asthma, and T-helper 1-related autoimmune diseases. One controversial hypothesis postulates that asthma provides a protective effect for the development of autoimmune-related disorders. To assess the rate of newly diagnosed autoimmune disorders in a large cohort of young adults. Using cross-sectional data from the Israeli Defense Force database, the authors analyzed the prevalence of autoimmune disorders in asthmatic and nonasthmatic military personnel between 1980 and 2003. A follow-up study traced newly diagnosed autoimmune disorders among asthmatic and nonasthmatic individuals from the time of enrollment in military service until discharge (22 and 36 months for women and men, respectively). General community. 307,367 male and 181,474 female soldiers in compulsory military service who were between 18 and 21 years of age. Cases of type 1 diabetes mellitus, vasculitis, immune thrombocytopenic purpura, inflammatory bowel disease, rheumatoid arthritis, and the antiphospholipid syndrome. Of 488,841 participants at enrollment, significantly more women than men had autoimmune disorders. Compared with asthmatic women, nonasthmatic women had a significantly higher prevalence of all autoimmune disorders except for the antiphospholipid syndrome. Type 1 diabetes mellitus, vasculitis, and rheumatoid arthritis were less prevalent in men with asthma than in those without. During the follow-up period, vasculitis and rheumatoid arthritis were more frequently diagnosed in nonasthmatic persons of both sexes. There was a significantly higher incidence of immune thrombocytopenic purpura, inflammatory bowel disease, and the antiphospholipid syndrome in nonasthmatic women and a statistically significantly higher incidence of type 1 diabetes mellitus in nonasthmatic men. The study was limited to a population of young military recruits; therefore, its findings are not necessarily

  11. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    PubMed Central

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  12. Experimental models of hepatotoxicity related to acute liver failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less

  13. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E

    2017-01-01

    Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration

  14. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    PubMed

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  15. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    PubMed Central

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  16. Sirolimus for Autoimmune Disease of Blood Cells

    ClinicalTrials.gov

    2017-11-02

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  17. Effect of QiShenYiQi pill on myocardial collagen metabolism in experimental autoimmune myocarditis rats.

    PubMed

    Lv, Shi-Chao; Wu, Meifang; Li, Meng; Wang, Qiang; Wang, Xiao-Jing; Zhang, Ao; Xu, Ling; Zhang, Jun-Ping

    2017-04-01

    To observe the effect of QiShenYiQi pill (QSYQ) on myocardial collagen metabolism in experimental autoimmune myocarditis rats, and to explore its mechanism of action. Lewis rats underwent the injection of myocardial myosin mixed with freund's complete adjuvant were randomized into three groups: model, valsartan and QSYQ groups. And we treated rats which were injected phosphate buffered saline (PBS) mixed with freund's complete adjuvant as control group. Rats were intervened and euthanized at 4 and 8 weeks. We use alkaline hydrolysis to detect the content of myocardial hydroxyproline (HYP), and ELISA to detect the level of serum procollagen type I carboxyterminal peptide (PICP), procollagen type III amino-terminal peptide (PIIINP), and collagen C telopeptide type I (CTX-I). Myocardial MMP-1 and TIMP-1 protein expression was detected by immunohistochemistry, and myocardial MMP-1 and TIMP-1 mRNA expression was detected by real-time qPCR. QSYQ reduced the content of myocardial HYP, and this reduction was greater over time. QSYQ also reduced the serum concentration of PICP, PIIINP, CTX-I and the PICP/PIIINP ratio, which further reduced over time, whereas its effect on lowering PICP was significantly greater than that of valsartan at 4 and 8 weeks, and lowering CTX-I was significantly greater than that of valsartan at 8 weeks. In addition, after 4 weeks, QSYQ enhanced the protein and mRNA expression of MMP-1 and TIMP-1, and its effect on highering TIMP-1 was significantly greater than that of valsartan, whereas there was no significant difference in the expression of myocardial MMP-1 or TIMP-1 at 8 weeks. QSYQ reduced the ratio of MMP-1/TIMP-1, which further reduced over time, and the effect of QYSQ was significantly greater than that of valsartan after 4 weeks. This study provides evidence that QSYQ can reduce the rate of myocardial collagen synthesis and degradation. It also effectively improved the degree of myocardial fibrosis in experimental autoimmune myocarditis

  18. [Microbiota and autoimmunity].

    PubMed

    Miyake, Sachiko

    2014-01-01

    The microbiota plays a fundamental role in the development and the maintenance of the host immune system. Since microbiota is important in the induction and the expansion of Th17 cells and regulatory T cells, growing evidence supports that microbiome affect the induction and the disease course of autoimmune disorders. In this review, we describe the recent studies on the involvement of microbes in animal models of autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS) using germ-free conditions, antibiotics treatment and gnotobiotic mice. Furthermore, we introduce the studies on analysis of microbiota in human autoimmune diseases including RA and MS.

  19. Mercury and autoimmunity: implications for occupational and environmental health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silbergeld, Ellen K.; Silva, Ines A.; Nyland, Jennifer F.

    Mercury (Hg) has long been recognized as a neurotoxicant; however, recent work in animal models has implicated Hg as an immunotoxicant. In particular, Hg has been shown to induce autoimmune disease in susceptible animals with effects including overproduction of specific autoantibodies and pathophysiologic signs of lupus-like disease. However, these effects are only observed at high doses of Hg that are above the levels to which humans would be exposed through contaminated fish consumption. While there is presently no evidence to suggest that Hg induces frank autoimmune disease in humans, a recent epidemiological study has demonstrated a link between occupational Hgmore » exposure and lupus. In our studies, we have tested the hypothesis that Hg does not cause autoimmune disease directly, but rather that it may interact with triggering events, such as genetic predisposition, exposure to antigens, or infection, to exacerbate disease. Treatment of mice that are not susceptible to Hg-induced autoimmune disease with very low doses and short term exposures of inorganic Hg (20-200 {mu}g/kg) exacerbates disease and accelerates mortality in the graft versus host disease model of chronic lupus in C57Bl/6 x DBA/2 mice. Furthermore, low dose Hg exposure increases the severity and prevalence of experimental autoimmune myocarditis (induced by immunization with cardiac myosin peptide in adjuvant) in A/J mice. To test our hypothesis further, we examined sera from Amazonian populations exposed to Hg through small-scale gold mining, with and without current or past malaria infection. We found significantly increased prevalence of antinuclear and antinucleolar antibodies and a positive interaction between Hg and malaria. These results suggest a new model for Hg immunotoxicity, as a co-factor in autoimmune disease, increasing the risks and severity of clinical disease in the presence of other triggering events, either genetic or acquired.« less

  20. [The pathogenesis and regulation of autoimmunity].

    PubMed

    Miyake, Sachiko

    2008-06-01

    The pathogenesis of autoimmunity has been studied extensively using animal models and genome-wide genetic analysis. Moreover, recent advance in the therapy for the autoimmune diseases using molecular-targeted drugs has provided us a lot of information in the pathogenesis of human autoimmune diseases. In this review, we overviewed the recent progress in the study of autoimmunity including central tolerance, regulatory cells and cytokines. Finally, we discuss the relationship of innate immunity and adoptive immunity in the context of autoimmunity.

  1. Experimental murine fascioliasis derives early immune suppression with increased levels of TGF-β and IL-4.

    PubMed

    Chung, Joon-Yong; Bae, Young-An; Yun, Doo-Hee; Yang, Hyun-Jong; Kong, Yoon

    2012-12-01

    In fascioliasis, T-helper 2 (Th2) responses predominate, while little is known regarding early immune phenomenon. We herein analyzed early immunophenotype changes of BALB/c, C57BL/6, and C3H/He mice experimentally infected with 5 Fasciola hepatica metacercariae. A remarkable expansion of CD19(+) B cells was observed as early as week 1 post-infection while CD4(+)/CD8(+) T cells were down-regulated. Accumulation of Mac1(+) cells with time after infection correlated well with splenomegaly of all mice strains tested. The expression of tumor necrosis factor (TNF)-α mRNA in splenocytes significantly decreased while that of IL-4 up-regulated. IL-1β expression was down-modulated in BALB/c and C57BL/6 mice, but not in C3H/He. Serum levels of transforming growth factor (TGF)-β were considerably elevated in all mice during 3 weeks of infection period. These collective results suggest that experimental murine fascioliasis might derive immune suppression with elevated levels of TGF-β and IL-4 during the early stages of infection.

  2. Autoimmune phenomena following prostatectomy.

    PubMed

    Tweezer-Zaks, Nurit; Marai, Ibrahim; Livneh, Avi; Bank, Ilan; Langevitz, Pnina

    2005-09-01

    Benign prostatic hypertrophy is the most common benign tumor in males, resulting in prostatectomy in 20-30% of men who live to the age of 80. There are no data on the association of prostatectomy with autoimmune phenomena in the English-language medical literature. To report our experience with three patients who developed autoimmune disease following prostatectomy. Three patients presented awith autoimmune phenomenon soon after a prostectomy for BPH or prostatic carcinoma: one had clinically diagnosed temporal arteritis, one had leukocytoclastic vasculitis, and the third patient developed sensory Guillian-Barré syndrome following prostatectomy. In view of the temporal association between the removal of the prostate gland andthe autoimmune process, combined with previously known immunohistologic features of BPH, a cause-effect relationship probably exists.

  3. Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.

    PubMed

    Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank

    2011-05-01

    Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.

  4. Autoimmune gastritis: Pathologist's viewpoint.

    PubMed

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-11-14

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling.

  5. [The experimental research of inner ear metabolism and electrical physiology of autoimmune sensorineural hearing loss].

    PubMed

    Tan, C; Cao, Y; Hu, P

    1998-09-01

    Inquire into the mechanism of inner ear pathological physiology in autoimmune sensorineural hearing loss (ASHL). With the auditory electric-physiological techniques and enzyme-histochemical method, the change of inner ear hearing function and enzyme activity were observed. These animals, which threshold of auditory nerve compound active potential (CAP) and cochlear microphonic potential(CM) heightening evidently, showed that the amplitude of endolymphatic potential(EP) (include-EP) bring down in various degrees, which was related to the change of the active of Na(+)-K(+)-ATPase and SDH in vascularis stria and endolymphatic sac. The abnormality of enzymes metabolism in inner ear tissues, which following autoimmune inflammation damage, is the pathological foundation of hearing dysfunction.

  6. Novel pebbles in the mosaic of autoimmunity.

    PubMed

    Perricone, Carlo; Agmon-Levin, Nancy; Shoenfeld, Yehuda

    2013-04-04

    Almost 25 years ago, the concept of the 'mosaic of autoimmunity' was introduced to the scientific community, and since then this concept has continuously evolved, with new pebbles being added regularly. We are now looking at an era in which the players of autoimmunity have changed names and roles. In this issue of BMC Medicine, several aspects of autoimmunity have been addressed, suggesting that we are now at the forefront of autoimmunity science. Within the environmental factors generating autoimmunity are now included unsuspected molecules such as vitamin D and aluminum. Some adjuvants such as aluminum are recognized as causal factors in the development of the autoimmune response. An entirely new syndrome, the autoimmune/inflammatory syndrome induced by adjuvants (ASIA), has been recently described. This is the new wind blowing within the branches of autoimmunity, adding knowledge to physicians for helping patients with autoimmune disease.

  7. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice.

    PubMed

    Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li

    2016-10-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    PubMed

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  9. GM-CSF-Induced Regulatory T cells Selectively Inhibit Anti-Acetylcholine Receptor-Specific Immune Responses in Experimental Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.

    2011-01-01

    We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723

  10. Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis.

    PubMed

    Vanderlocht, Joris; van der Cruys, Mart; Stals, Frans; Bakker-Jonges, Liesbeth; Damoiseaux, Jan

    2017-09-01

    Autoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e. automation, objective reading, no interfering reactivities, no coincidental findings. In the current study we evaluated automated DIA (D-Tek) for detecting autoantibodies related to autoimmune diseases of the gastrointestinal tract. We tested samples of the Dutch EQC program and compared the results with the consensus of the participating labs. For the autoimmune liver diseases and AIG, respectively, 64 and 36 samples were tested. For anti-mitochondrial and anti-smooth muscle antibodies a concordance rate of 97% and 88% was observed, respectively. The concordance rate for anti-parietal cell antibodies was 92% when samples without EQC consensus (n=15) were excluded. For antibodies against intrinsic factor a concordance of 96% was observed. For all these antibodies discrepancies were identified that relate to the different test characteristics and the preponderance of IIF utilizing labs in the EQC program. In conclusion, we observed good agreement of the tested DIA blots with the consensus results of the Dutch EQC program. Taken together with the logistic advantages these blots are a good alternative for autoantibody detection in the respective diseases. A large prospective multicenter study is warranted to position these novel tests further in the whole spectrum of assays for the detection of these antibodies in a routine autoimmune laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis

    PubMed Central

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-01-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441

  12. EBV and Autoimmunity.

    PubMed

    Ascherio, Alberto; Munger, Kassandra L

    2015-01-01

    Although a role of EBV in autoimmunity is biologically plausible and evidence of altered immune responses to EBV is abundant in several autoimmune diseases, inference on causality requires the determination that disease risk is higher in individuals infected with EBV than in those uninfected and that in the latter it increases following EBV infection. This determination has so far been possible only for multiple sclerosis (MS) and, to some extent, for systemic lupus erythematosus (SLE), whereas evidence is either lacking or not supportive for other autoimmune conditions. In this chapter, we present the main epidemiological findings that justify the conclusion that EBV is a component cause of MS and SLE and possible mechanisms underlying these effects.

  13. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  14. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Autoimmune diseases and vaccinations.

    PubMed

    Vial, Thierry; Descotes, Jacques

    2004-01-01

    The potential association between vaccination and autoimmune diseases has been largely questioned in the past few years, but this assumption has mostly been based on case reports. The available evidence derived from several negative epidemiological studies is reassuring and at least indicates that vaccines are not a major cause of autoimmune diseases. However, there are still uncertainties as to whether a susceptible subpopulation may be at a higher risk of developing an autoimmune disease without causing an overall increase in the disease incidence. Based on selected examples, this review highlights the difficulties in assessing this issue. We suggest that a potential link between vaccines and autoimmune diseases cannot be definitely ruled out and should be carefully explored during the development of new candidate vaccines. Copyright John Libbey Eurotext 2003.

  16. What causes relapses of autoimmune diseases? The etiological role of autoreactive T cells.

    PubMed

    Wildner, Gerhild; Kaufmann, Ulrike

    2013-09-01

    Most human autoimmune diseases have a relapsing-remitting or a chronic progressive course, while animal models are usually acute and monophasic. In our experimental animal model the disease can be either monophasic or remitting, depending on the autoantigen used for induction, and it appears to lie in the effector phenotype of the elicited T helper cell response. Since both, monophasic and relapsing courses of disease are induced by immunization as well as by adoptive transfer of peptide-specific, CD4(+) T cells, we were able to directly compare the transcriptomes of pathogenic T cell lines by gene array analysis and qPCR as well as protein expression. Upregulated genes were only determined in T cells inducing relapsing uveitis and belong to certain pathways of antigen presentation, activation, inflammation, migration and survival, comprising WNT, Hedgehog, MAP-kinase and JAK/STAT-pathways. These pathways are partially interacting with each other, and the central molecule upregulated in T cells causing relapsing disease was found to be IFN-γ. Here the course of the autoimmune diseases strictly depends on the characteristics of the autoreactive T cells, which are already determined at their early stage of antigen-specific activation. Our rat models of experimental autoimmune uveitis could help elucidating the immune mechanisms behind relapsing autoimmunity in order to develop better therapeutic strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  18. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis

    PubMed Central

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-01-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy. PMID:24905997

  19. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    PubMed

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  20. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    PubMed

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  1. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    PubMed Central

    Vincent, Tonia L.; Marenzana, Massimo

    2017-01-01

    Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010

  2. Autoantibodies in Autoimmune Hepatitis.

    PubMed

    Muratori, Luigi; Deleonardi, Gaia; Lalanne, Claudine; Barbato, Erica; Tovoli, Alessandra; Libra, Alessia; Lenzi, Marco; Cassani, Fabio; Muratori, Paolo

    2015-01-01

    The detection of diagnostic autoantibodies such as antinuclear antibodies (ANA), anti-smooth muscle antibodies (SMA), anti-liver/kidney microsomal type 1 (anti-LKM1), anti-liver cytosol type 1 (anti-LC1) and anti-soluble liver antigen (anti-SLA) is historically associated with the diagnosis of autoimmune hepatitis. When autoimmune hepatitis is suspected, the detection of one or any combination of diagnostic autoantibodies, by indirect immunofluorescence or immuno-enzymatic techniques with recombinant antigens, is a pivotal step to reach a diagnostic score of probable or definite autoimmune hepatitis. Diagnostic autoantibodies (ANA, SMA, anti-LKM1, anti-LC1, anti-SLA) are a cornerstone in the diagnosis of autoimmune hepatitis. Other ancillary autoantibodies, associated with peculiar clinical correlations, appear to be assay-dependent and institution-specific, and validation studies are needed. © 2015 S. Karger AG, Basel.

  3. Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies

    PubMed Central

    Abu-Shakra, M; Buskila, D; Ehrenfeld, M; Conrad, K; Shoenfeld, Y

    2001-01-01

    OBJECTIVES—To review the autoimmune and rheumatic manifestations of patients with malignancy.
METHODS—A Medline search of all published papers using keywords related to malignancies, autoimmunity, rheumatic diseases, and paraneoplastic syndromes.
RESULTS—Patients with malignant diseases may develop autoimmune phenomena and rheumatic diseases as a result of (a) generation of autoantibodies against various autoantigens, including oncoproteins (P185, 1-myc, c-myc, c-myb), tumour suppression genes (P53), proliferation associated antigens (cyclin A, B1, D1, E; CENP-F; CDK, U3-RNP), onconeural antigens (Hu, Yo, Ri, Tr), cancer/testis antigens (MAGE, GAGE, BAGE, SSX, ESO, SCP, CT7), and rheumatic disease associated antigens (RNP, Sm). The clinical significance of the various autoantibodies is not clear. Anti-oncoprotein and anti-tumour suppression gene antigens are detected before the diagnosis of the cancer or in the early stages of the malignant disease, suggesting a potential diagnostic or prognostic role. Anti-onconeural antibodies are pathogenic and are associated with specific clinical neurological syndromes (anti-Hu syndrome and others). (b) Paraneoplastic syndromes, a wide range of clinical syndromes, including classic autoimmune rheumatic diseases that develop among patients with cancer. (c) Rheumatism after chemotherapy, a clinical entity characterised by the development of musculoskeletal symptoms after combination chemotherapy for malignancy.
CONCLUSION—Autoimmune and rheumatic features are not rare among patients with malignancies. They are the result of various diverse mechanisms and occasionally they may be associated with serious clinical entities.

 PMID:11302861

  4. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  5. Homo-β-amino acid containing MBP(85–99) analogs alleviate experimental autoimmune encephalomyelitis

    PubMed Central

    Kant, Ravi; Pasi, Shweta; Surolia, Avadhesha

    2015-01-01

    MBP(85–99), an immuno-dominant epitope of myelin basic protein which binds to the major histocompatibility complex haplotype HLA-DR2 is widely implicated in the pathogenesis of multiple sclerosis. J5, an antagonist of MBP(85–99), that blocks the binding of MBP(85–99) to soluble HLA-DR2b much more efficiently than glatiramer acetate (a random copolymer comprising major MHC and T-cell receptor contact residues), was transformed into analogs with superior biological half-lives and antagonistic-activities by substitution of some of its residues with homo-β-amino acids. S18, the best analog obtained ameliorated symptoms of experimental autoimmune encephalomyelitis at least twice more effectively than glatiramer acetate or J5. S18 displayed marked resistance to proteolysis in-vitro; biological impact of which was evident in the form of delayed clinical onset of disease and prolonged therapeutic-benefits. Besides active suppression of MBP(85–99)-reactive CD4+ T-cells in-vitro and in-vivo S18 treatment also generated IL-4 producing CD4+ T-cell clones, through which protective effect could be transferred passively. PMID:25644378

  6. The Experimental Autoimmune Encephalomyelitis Disease Course Is Modulated by Nicotine and Other Cigarette Smoke Components

    PubMed Central

    Gao, Zhen; Nissen, Jillian C.; Ji, Kyungmin; Tsirka, Stella E.

    2014-01-01

    Epidemiological studies have reported that cigarette smoking increases the risk of developing multiple sclerosis (MS) and accelerates its progression. However, the molecular mechanisms underlying these effects remain unsettled. We have investigated here the effects of the nicotine and the non-nicotine components in cigarette smoke on MS using the experimental autoimmune encephalomyelitis (EAE) model, and have explored their underlying mechanism of action. Our results show that nicotine ameliorates the severity of EAE, as shown by reduced demyelination, increased body weight, and attenuated microglial activation. Nicotine administration after the development of EAE symptoms prevented further disease exacerbation, suggesting that it might be useful as an EAE/MS therapeutic. In contrast, the remaining components of cigarette smoke, delivered as cigarette smoke condensate (CSC), accelerated and increased adverse clinical symptoms during the early stages of EAE, and we identify a particular cigarette smoke compound, acrolein, as one of the potential mediators. We also show that the mechanisms underlying the opposing effects of nicotine and CSC on EAE are likely due to distinct effects on microglial viability, activation, and function. PMID:25250777

  7. The autoimmune ecology: an update.

    PubMed

    Anaya, Juan-Manuel; Restrepo-Jiménez, Paula; Ramírez-Santana, Carolina

    2018-07-01

    The autoimmune ecology refers to the interactions between individuals and their environment leading to a breakdown in immune tolerance and, therefore, to the development of one or more autoimmune diseases in such an individual. Herein, an update is offered on four specific factors associated with autoimmune diseases, namely, vitamin D, smoking, alcohol and coffee consumption from the perspective of exposome and metabolomics. Smoking is associated with an increased risk for most of the autoimmune diseases. Carbamylation of proteins as well as NETosis have emerged as possible new pathophysiological mechanisms for rheumatoid arthritis. Low-to-moderate alcohol consumption seems to decrease the risk of systemic lupus erythematosus and rheumatoid arthritis, and studies of vitamin have suggested a beneficial effect on these conditions. Coffee intake appears to be a risk factor for type 1 diabetes mellitus and rheumatoid arthritis and a protective factor for multiple sclerosis and primary biliary cholangitis. Recent studies support the previously established positive associations between environmental factors and most of the autoimmune diseases. Nevertheless, further studies from the perspective of metabolomics, proteomics and genomics will help to clarify the effect of environment on autoimmune diseases.

  8. Chronic Fibro-Inflammatory Responses in Autoimmune Pancreatitis Depend on IFN-α and IL-33 Produced by Plasmacytoid Dendritic Cells.

    PubMed

    Watanabe, Tomohiro; Yamashita, Kouhei; Arai, Yasuyuki; Minaga, Kosuke; Kamata, Ken; Nagai, Tomoyuki; Komeda, Yoriaki; Takenaka, Mamoru; Hagiwara, Satoru; Ida, Hiroshi; Sakurai, Toshiharu; Nishida, Naoshi; Strober, Warren; Kudo, Masatoshi

    2017-05-15

    In previous studies, we found that human IgG4-related autoimmune pancreatitis (AIP) and murine AIP are driven by activation of plasmacytoid dendritic cells (pDCs) producing IFN-α. In the present studies we examined additional roles of pDC-related mechanisms in AIP pathogenesis, particularly those responsible for induction of fibrosis. We found that in murine AIP (MRL/Mp mice treated with polyinosinic-polycytidylic acid) not only the pancreatic infiltration of immune cells but also the development of fibrosis were markedly reduced by the depletion of pDCs or blockade of type I IFN signaling; moreover, such treatment was accompanied by a marked reduction of pancreatic expression of IL-33. Conversely, polyinosinic-polycytidylic acid-induced inflamed pancreatic tissue in murine AIP exhibited increased expression of type I IFNs and IL-33 (and downstream IL-33 cytokines such as IL-13 and TGF-β1). pDCs stimulated by type I IFN were the source of the IL-33 because purified populations of these cells isolated from the inflamed pancreas produced a large amount of IL-33 upon activation by TLR9 ligands, and such production was abrogated by the neutralization of type I IFN. The role of IL-33 in murine AIP pathogenesis was surprisingly important because blockade of IL-33 signaling by anti-ST2 Ab attenuated both pancreatic inflammation and accompanying fibrosis. Finally, whereas patients with both conventional pancreatitis and IgG4-related AIP exhibited increased numbers of acinar cells expressing IL-33, only the latter also exhibited pDCs producing this cytokine. These data thus suggest that pDCs producing IFN-α and IL-33 play a pivotal role in the chronic fibro-inflammatory responses underlying murine AIP and human IgG4-related AIP. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice.

    PubMed

    Piconese, Silvia; Costanza, Massimo; Musio, Silvia; Tripodo, Claudio; Poliani, Pietro L; Gri, Giorgia; Burocchi, Alessia; Pittoni, Paola; Gorzanelli, Andrea; Colombo, Mario P; Pedotti, Rosetta

    2011-04-01

    Mast cell (MC)-deficient c-Kit mutant Kit(W/W-v) mice are protected against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, suggesting a detrimental role for MCs in this disease. To further investigate the role of MCs in EAE, we took advantage of a recently characterized model of MC deficiency, Kit(W-sh/W-sh). Surprisingly, we observed that myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE was exacerbated in Kit(W-sh/W-sh) compared with Kit(+/+) mice. Kit(W-sh/W-sh) mice showed more inflammatory foci in the central nervous system (CNS) and increased T-cell response against myelin. To understand whether the discrepant results obtained in Kit(W-sh/W-sh) and in Kit(W/W-v) mice were because of the different immunization protocols, we induced EAE in these two strains with varying doses of MOG(35-55) and adjuvants. Although Kit(W-sh/W-sh) mice exhibited exacerbated EAE under all immunization protocols, Kit(W/W-v) mice were protected from EAE only when immunized with high, but not low, doses of antigen and adjuvants. Kit(W-sh/W-sh) mice reconstituted systemically, but not in the CNS, with bone marrow-derived MCs still developed exacerbated EAE, indicating that protection from disease could be exerted by MCs mainly in the CNS, and/or by other cells possibly dysregulated in Kit(W-sh/W-sh) mice. In summary, these data suggest to reconsider MC contribution to EAE, taking into account the variables of using different experimental models and immunization protocols.

  10. Autoimmune encephalitis update

    PubMed Central

    Dalmau, Josep; Rosenfeld, Myrna R.

    2014-01-01

    Cancer-associated immune-mediated disorders of the central nervous system are a heterogeneous group. These disorders include the classic paraneoplastic neurologic disorders and the more recently described autoimmune encephalitis associated with antibodies to neuronal cell-surface or synaptic receptors that occur with and without a cancer association. Autoimmune encephalitis is increasingly recognized as the cause of a variety of neuropsychiatric syndromes that can be severe and prolonged. In contrast to the classic paraneoplastic disorders that are poorly responsive to tumor treatment and immunotherapy, autoimmune encephalitis often responds to these treatments, and patients can have full or marked recoveries. As early treatment speeds recovery, reduces disability, and decreases relapses that can occur in about 20% of cases, it is important that the immune pathogenesis of these disorders is recognized. PMID:24637228

  11. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1-T146.

    PubMed

    Consonni, Alessandra; Sharma, Sapna; Schön, Karin; Lebrero-Fernández, Cristina; Rinaldi, Elena; Lycke, Nils Yngve; Baggi, Fulvio

    2017-01-01

    Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1-T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1-T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1-T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.

  12. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis.

    PubMed

    Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian

    2013-04-03

    There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.

  13. Immunomodulatory Effect of Agave tequilana Evaluated on an Autoimmunity Like-SLE Model Induced in Balb/c Mice with Pristane.

    PubMed

    Gutiérrez Nava, Zúlima Jannette; Jiménez-Aparicio, Antonio Ruperto; Herrera-Ruiz, Maribel Lucila; Jiménez-Ferrer, Enrique

    2017-05-25

    In this work, the immunomodulatory activity of the acetone extract and the fructans obtained from Agave tequilana were evaluated, on the systemic autoimmunity type-SLE model generated by the administration of 2,6,10,14-tetramethylpentadecane (TMPD, also known as pristane) on Balb/c female mice. The systemic autoimmunity type-SLE was observed seven months after the application of TMPD, in which the animals from the negative control group (animals with damage and without any other treatment) developed articular inflammation, proteinuria, an increment of the antinuclear antibody titters and tissue pro-inflammatory cytokines levels (IL-1β, IL-6, TNF-α e IFN-γ) as well as the anti-inflammatory cytokine IL-10. The administration of the different treatments and the extracts of A. tequilana , provoked the decrease of: articular inflammation, the development of proteinuria, ssDNA/dsDNA antinuclear antibody titters and cytokines IL-1β, IL-6, TNF-α, IFN-γ and IL-10. The phytochemical analysis of the acetone extract identified the presence of the following compounds: β-sitosterol glycoside; 3,7,11,15-tetramethyl-2-hexadecen-1-ol (phytol); octadecadienoic acid-2,3-dihydroxypropyl ester; stigmasta-3,5-dien-7-one; cycloartenone and cycloartenol. Therefore, A. tequilana contains active compounds with the capacity to modify the evolution of the systemic autoimmunity type-SLE on a murine model.

  14. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease.

    PubMed

    Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S

    1997-07-21

    Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.

  15. Topical moringin cream relieves neuropathic pain by suppression of inflammatory pathway and voltage-gated ion channels in murine model of multiple sclerosis

    PubMed Central

    Giacoppo, Sabrina; Iori, Renato; Bramanti, Placido

    2017-01-01

    Background Neuropathic pain represents the major public health burden with a strong impact on quality life in multiple sclerosis patients. Although some advances have been obtained in the last years, the conventional therapies remain poorly effective. Thus, the discovery of innovative approaches to improve the outcomes for multiple sclerosis patients is a goal of primary importance. With this aim, we investigated the efficacy of the 4-(α−L-rhamnopyranosyloxy)benzyl isothiocyanate (moringin), purified from Moringa oleifera seeds and ready-to-use as topical treatment in experimental autoimmune encephalomyelitis, murine model of multiple sclerosis. Female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG35–55) were topically treated with 2% moringin cream twice daily from the onset of the symptoms until the sacrifice occurred about 21 days after experimental autoimmune encephalomyelitis induction. Results Our observations showed the efficacy of 2% moringin cream treatment in reducing clinical and histological disease score, as well as in alleviating neuropathic pain with consequent recovering of the hind limbs and response to mechanical stimuli. In particular, Western blot analysis and immunohistochemical evaluations revealed that 2% moringin cream was able to counteract the inflammatory cascade by reducing the production of pro-inflammatory cytokines (interleukin-17 and interferon-γ) and in parallel by increasing the expression of anti-inflammatory cytokine (interleukin-10). Interestingly, 2% moringin cream treatment was found to modulate the expression of voltage-gated ion channels (results focused on P2X7, Nav 1.7, Nav 1.8 KV4.2, and α2δ-1) as well as metabotropic glutamate receptors (mGluR5 and xCT) involved in neuropathic pain initiation and maintenance. Conclusions Finally, our evidences suggest 2% moringin cream as a new pharmacological trend in the management of multiple sclerosis-induced neuropathic pain. PMID:28741431

  16. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.

    PubMed

    Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo

    2013-09-15

    The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells.

    PubMed

    Du, Jing; Paz, Katelyn; Thangavelu, Govindarajan; Schneidawind, Dominik; Baker, Jeanette; Flynn, Ryan; Duramad, Omar; Feser, Colby; Panoskaltsis-Mortari, Angela; Negrin, Robert S; Blazar, Bruce R

    2017-06-08

    Chronic graft-versus-host-disease (cGVHD) can cause multiorgan system disease, typically with autoimmune-like features, resulting in high mortality and morbidity caused by treatment limitations. Invariant natural killer T cells (iNKTs), a small population characterized by expression of a semi-invariant T-cell receptor, rapidly produce copious amounts of diverse cytokines on activation that exert potent immune regulatory function. Here, we show that iNKTs are significantly reduced in a cGVHD murine model that recapitulates several aspects of autoimmunity and organ fibrosis observed in patients with cGVHD. Low iNKT infused doses effectively prevented and, importantly, reversed established cGVHD, as did third-party iNKTs. iNKTs suppressed the autoimmune response by reducing the germinal center (GC) reaction, which was associated with an increase in total Tregs and follicular Tregs (Tfr) that control the GC reaction, along with pathogenic antibody production. Treg depletion during iNKT infusions completely abolished iNKT efficacy in treating cGVHD. iNKT cell interleukin 4 production and GC migration were critical to cGVHD reversal. In vivo stimulation of iNKT cells by α-galactosyl-ceramide was effective in both preventing and treating cGVHD. Together, this study demonstrates iNKT deficiency in cGVHD mice and highlights the key role of iNKTs in regulating cGVHD pathogenesis and as a potentially novel prophylactic and therapeutic option for patients with cGVHD. © 2017 by The American Society of Hematology.

  18. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy

    PubMed Central

    Engler, Jan Broder; Kursawe, Nina; Solano, María Emilia; Patas, Kostas; Wehrmann, Sabine; Heckmann, Nina; Lühder, Fred; Reichardt, Holger M.; Arck, Petra Clara; Gold, Stefan M.

    2017-01-01

    Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell–specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy. PMID:28049829

  19. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    PubMed

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Autoimmune paediatric liver disease

    PubMed Central

    Mieli-Vergani, Giorgina; Vergani, Diego

    2008-01-01

    Liver disorders with a likely autoimmune pathogenesis in childhood include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is divided into two subtypes according to seropositivity for smooth muscle and/or antinuclear antibody (SMA/ANA, type 1) or liver kidney microsomal antibody (LKM1, type 2). There is a female predominance in both. LKM1 positive patients tend to present more acutely, at a younger age, and commonly have partial IgA deficiency, while duration of symptoms before diagnosis, clinical signs, family history of autoimmunity, presence of associated autoimmune disorders, response to treatment, and long-term prognosis are similar in both groups. The most common type of paediatric sclerosing cholangitis is ASC. The clinical, biochemical, immunological, and histological presentation of ASC is often indistinguishable from that of AIH type 1. In both, there are high IgG, non-organ specific autoantibodies, and interface hepatitis. Diagnosis is made by cholangiography. Children with ASC respond to immunosuppression satisfactorily and similarly to AIH in respect to remission and relapse rates, times to normalization of biochemical parameters, and decreased inflammatory activity on follow up liver biopsies. However, the cholangiopathy can progress. There may be evolution from AIH to ASC over the years, despite treatment. De novo AIH after liver transplantation affects patients not transplanted for autoimmune disorders and is strikingly reminiscent of classical AIH, including elevated titres of serum antibodies, hypergammaglobulinaemia, and histological findings of interface hepatitis, bridging fibrosis, and collapse. Like classical AIH, it responds to treatment with prednisolone and azathioprine. De novo AIH post liver transplantation may derive from interference by calcineurin inhibitors with the intrathymic physiological mechanisms of T-cell maturation and selection. Whether this condition is a

  1. Autoimmune paediatric liver disease.

    PubMed

    Mieli-Vergani, Giorgina; Vergani, Diego

    2008-06-07

    Liver disorders with a likely autoimmune pathogenesis in childhood include autoimmune hepatitis (AIH), autoimmune sclerosing cholangitis (ASC), and de novo AIH after liver transplantation. AIH is divided into two subtypes according to seropositivity for smooth muscle and/or antinuclear antibody (SMA/ANA, type 1) or liver kidney microsomal antibody (LKM1, type 2). There is a female predominance in both. LKM1 positive patients tend to present more acutely, at a younger age, and commonly have partial IgA deficiency, while duration of symptoms before diagnosis, clinical signs, family history of autoimmunity, presence of associated autoimmune disorders, response to treatment, and long-term prognosis are similar in both groups. The most common type of paediatric sclerosing cholangitis is ASC. The clinical, biochemical, immunological, and histological presentation of ASC is often indistinguishable from that of AIH type 1. In both, there are high IgG, non-organ specific autoantibodies, and interface hepatitis. Diagnosis is made by cholangiography. Children with ASC respond to immunosuppression satisfactorily and similarly to AIH in respect to remission and relapse rates, times to normalization of biochemical parameters, and decreased inflammatory activity on follow up liver biopsies. However, the cholangiopathy can progress. There may be evolution from AIH to ASC over the years, despite treatment. De novo AIH after liver transplantation affects patients not transplanted for autoimmune disorders and is strikingly reminiscent of classical AIH, including elevated titres of serum antibodies, hypergammaglobulinaemia, and histological findings of interface hepatitis, bridging fibrosis, and collapse. Like classical AIH, it responds to treatment with prednisolone and azathioprine. De novo AIH post liver transplantation may derive from interference by calcineurin inhibitors with the intrathymic physiological mechanisms of T-cell maturation and selection. Whether this condition is a

  2. Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen

    PubMed Central

    1994-01-01

    Antinuclear antibodies (ANAs) reactive with a limited spectrum of nuclear antigens are characteristic of systemic lupus erythematosus (SLE) and other collagen vascular diseases, and are also associated with certain viral infections. The factors that initiate ANA production and determine ANA specificity are not well understood. In this study, high titer ANAs specific for the p53 tumor suppressor protein were induced in mice immunized with purified complexes of murine p53 and the Simian virus 40 large T antigen (SVT), but not in mice immunized with either protein separately. The autoantibodies to p53 in these mice were primarily of the IgG1 isotype, were not cross-reactive with SVT, and were produced at titers up to 1:25,000, without the appearance of other autoantibodies. The high levels of autoantibodies to p53 in mice immunized with p53/SVT complexes were transient, but low levels of the autoantibodies persisted. The latter may have been maintained by self antigen, since the anti-p53, but not the SVT, response in these mice could be boosted by immunizing with murine p53. Thus, once autoimmunity to p53 was established by immunizing with p53/SVT complexes, it could be maintained without a requirement for SVT. These data may be explained in at least two ways. First, altered antigen processing resulting from the formation of p53/SVT complexes might activate autoreactive T helper cells specific for cryptic epitopes of murine p53, driving anti-p53 autoantibody production. Alternatively, SVT- responsive T cells may provide intermolecular-intrastructural help to B cells specific for murine p53. In a second stage, these activated B cells might themselves process self p53, generating p53-responsive autoreactive T cells. The induction of autoantibodies during the course of an immune response directed against this naturally occurring complex of self and nonself antigens may be relevant to the generation of specific autoantibodies in viral infections, and may also have

  3. Autoimmune encephalitis associated with vitiligo?

    PubMed

    Haitao, Ren; Huiqin, Liu; Tao, Qu; Xunzhe, Yang; Xiaoqiu, Shao; Wei, Li; Jiewen, Zhang; Liying, Cui; Hongzhi, Guan

    2017-09-15

    The autoimmune encephalitis can develop with or without an underlying tumor. For tumor-negative autoimmune encephalitis, the causes are still largely unknown. Here we presented three patients with autoimmune encephalitis accompanied with vitiligo. Among them, two patients suffered from anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis and one patient suffered from anti-IgLON5 encephalopathy. All of them received intravenous immunoglobulin and steroids as immunotherapy. The two patients with anti-LGI1 encephalitis recovered and got a good prognosis. For the patient with anti-IgLON5 encephalopathy, he only got a moderate and transient improvement. Based on the above, we speculate that vitiligo may be a clue to an autoimmune cause for encephalitis. Copyright © 2017. Published by Elsevier B.V.

  4. Autoimmunity and the Gut

    PubMed Central

    Campbell, Andrew W.

    2014-01-01

    Autoimmune diseases have increased dramatically worldwide since World War II. This is coincidental with the increased production and use of chemicals both in industrial countries and agriculture, as well as the ease of travel from region to region and continent to continent, making the transfer of a pathogen or pathogens from one part of the world to another much easier than ever before. In this review, triggers of autoimmunity are examined, principally environmental. The number of possible environmental triggers is vast and includes chemicals, bacteria, viruses, and molds. Examples of these triggers are given and include the mechanism of action and method by which they bring about autoimmunity. PMID:24900918

  5. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis.

    PubMed

    Dunham, Jordon; Bauer, Jan; Campbell, Graham R; Mahad, Don J; van Driel, Nikki; van der Pol, Susanne M A; 't Hart, Bert A; Lassmann, Hans; Laman, Jon D; van Horssen, Jack; Kap, Yolanda S

    2017-06-01

    Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  6. IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci

    PubMed Central

    2012-01-01

    Background Murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ) signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO) and vice versa (IFNγRperiKO). Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1. Conclusions Alterations in

  7. Isohormonal therapy of endocrine autoimmunity.

    PubMed

    Schloot, N; Eisenbarth, G S

    1995-06-01

    For most autoimmune disorders, the site (if any) of chronic immunization required for perpetuation of autoimmunity is unknown. However, one possible site is the target organ itself. If this were the case, feedback regulation of target cell activity might influence autoimmunity. Here, Nanette Schloot and George Eisenbarth review several recent studies suggesting that therapies that inhibit hormonal secretion of target endocrine organs, and/or modulate immunity by therapy with the isohormone, are associated with disease suppression.

  8. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Rare variants and autoimmune disease.

    PubMed

    Massey, Jonathan; Eyre, Steve

    2014-09-01

    The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Autoimmune gastritis: Pathologist’s viewpoint

    PubMed Central

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-01-01

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling. PMID:26576102

  11. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice.

    PubMed

    Yang, G-X; Sun, Y; Tsuneyama, K; Zhang, W; Leung, P S C; He, X-S; Ansari, A A; Bowlus, C; Ridgway, W M; Gershwin, M E

    2016-08-01

    During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation. © 2016 British Society for Immunology.

  12. Autoimmune liver disease in children.

    PubMed

    Mieli-Vergani, G; Vergani, D

    2003-03-01

    Autoimmune liver disorders are characterised by an inflammatory liver histology, circulating non-organ specific autoantibodies and increased levels of immunoglobulin G (IgG) in the absence of a known aetiology. They respond to immunosuppressive treatment, which should be instituted as soon as diagnosis is made. Liver disorders with a likely autoimmune pathogenesis include autoimmune hepatitis (AIH) and autoimmune sclerosing cholangitis (ASC). Two types of AIH are recognised according to seropositivity for smooth muscle and/or antinuclear antibody (SMA/ANA, type 1) or liver kidney microsomal antibody (LKM1, type 2). There is a female predominance in both. LKM1-positive patients tend to present more acutely, at a younger age, and commonly have immunoglobulin A (IgA) deficiency, while duration of symptoms before diagnosis, clinical signs, family history of autoimmunity, presence of associated autoimmune disorders, response to treatment and long-term prognosis are similar in both groups. The most common type of paediatric sclerosing cholangitis is ASC. The clinical, biochemical, immunological and histological presentation of ASC is often indistinguishable from that of AIH. In both, there are high IgG, non-organ specific autoantibodies and interface hepatitis. Diagnosis is made by cholangiography. Children with ASC respond to immunosuppression satisfactorily and similarly to AIH in respect to remission and relapse rates, times to normalisation of biochemical parameters and decreased inflammatory activity on follow-up liver biopsies. However, the cholangiopathy can progress and there may be an evolution from AIH to ASC over the years, despite treatment. Whether the juvenile autoimmune form of sclerosing cholangitis and AIH are 2 distinct entities, or different aspects of the same condition, remains to be elucidated.

  13. Clinical aspects of autoimmune rheumatic diseases.

    PubMed

    Goldblatt, Fiona; O'Neill, Sean G

    2013-08-31

    Multisystem autoimmune rheumatic diseases are heterogeneous rare disorders associated with substantial morbidity and mortality. Efforts to create international consensus within the past decade have resulted in the publication of new classification or nomenclature criteria for several autoimmune rheumatic diseases, specifically for systemic lupus erythematosus, Sjögren's syndrome, and the systemic vasculitides. Substantial progress has been made in the formulation of new criteria in systemic sclerosis and idiopathic inflammatory myositis. Although the autoimmune rheumatic diseases share many common features and clinical presentations, differentiation between the diseases is crucial because of important distinctions in clinical course, appropriate drugs, and prognoses. We review some of the dilemmas in the diagnosis of these autoimmune rheumatic diseases, and focus on the importance of new classification criteria, clinical assessment, and interpretation of autoimmune serology. In this era of improvement of mortality rates for patients with autoimmune rheumatic diseases, we pay particular attention to the effect of leading complications, specifically cardiovascular manifestations and cancer, and we update epidemiology and prognosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept.

    PubMed

    Altieri, Barbara; Muscogiuri, Giovanna; Barrea, Luigi; Mathieu, Chantal; Vallone, Carla V; Mascitelli, Luca; Bizzaro, Giorgia; Altieri, Vincenzo M; Tirabassi, Giacomo; Balercia, Giancarlo; Savastano, Silvia; Bizzaro, Nicola; Ronchi, Cristina L; Colao, Annamaria; Pontecorvi, Alfredo; Della Casa, Silvia

    2017-09-01

    In the last few years, more attention has been given to the "non-calcemic" effect of vitamin D. Several observational studies and meta-analyses demonstrated an association between circulating levels of vitamin D and outcome of many common diseases, including endocrine diseases, chronic diseases, cancer progression, and autoimmune diseases. In particular, cells of the immune system (B cells, T cells, and antigen presenting cells), due to the expression of 1α-hydroxylase (CYP27B1), are able to synthesize the active metabolite of vitamin D, which shows immunomodulatory properties. Moreover, the expression of the vitamin D receptor (VDR) in these cells suggests a local action of vitamin D in the immune response. These findings are supported by the correlation between the polymorphisms of the VDR or the CYP27B1 gene and the pathogenesis of several autoimmune diseases. Currently, the optimal plasma 25-hydroxyvitamin D concentration that is necessary to prevent or treat autoimmune diseases is still under debate. However, experimental studies in humans have suggested beneficial effects of vitamin D supplementation in reducing the severity of disease activity. In this review, we summarize the evidence regarding the role of vitamin D in the pathogenesis of autoimmune endocrine diseases, including type 1 diabetes mellitus, Addison's disease, Hashimoto's thyroiditis, Graves' disease and autoimmune polyendocrine syndromes. Furthermore, we discuss the supplementation with vitamin D to prevent or treat autoimmune diseases.

  15. No association of psoriasis with autoimmune thyroiditis.

    PubMed

    Vassilatou, E; Papadavid, E; Papastamatakis, P; Alexakos, D; Koumaki, D; Katsimbri, P; Hadjidakis, D; Dimitriadis, G; Rigopoulos, D

    2017-01-01

    Common autoimmune diseases tend to coexist in the same patients. Few studies have examined the possible association between autoimmune thyroiditis and psoriasis or psoriatic arthritis (PsA), with inconsistent results. To investigate the prevalence of autoimmune thyroiditis in psoriatic patients with or without PsA, living in an iodine-sufficient area. We studied prospectively, 114 psoriatic patients with disease duration of 5-38 years, 30 of them with PsA, and 286 age- and body mass index (BMI)-matched subjects without psoriasis or known thyroid disease or autoimmune disease. A detailed medical history was obtained from all participants and clinical examination and laboratory evaluation was performed. Psoriasis severity was assessed with Psoriasis Area and Severity Index (PASI). Autoimmune thyroiditis was defined by the presence of positive autoantibodies to thyroid peroxidase and/or thyroglobulin. There was no difference in the prevalence of autoimmune thyroiditis between psoriatic patients and controls (20.2% vs. 19.6%). The prevalence of autoimmune thyroiditis in male and female psoriatic patients was similar (9.6% and 10.5% respectively), in contrast to the increased, as expected, prevalence in female vs. male controls (14.7% vs. 4.9%, P < 0.01). Detected cases with hypothyroidism due to autoimmune thyroiditis were similar in psoriatic patients and controls (7.9% and 7.0% respectively). Autoimmune thyroiditis in psoriatic patients was not related with age of psoriasis onset, psoriasis duration, PASI score, PsA and obesity. These data support that psoriatic patients with or without PsA do not have an increased risk for autoimmune thyroiditis. © 2016 European Academy of Dermatology and Venereology.

  16. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.

    PubMed

    Ulusoy, Canan; Çavuş, Filiz; Yılmaz, Vuslat; Tüzün, Erdem

    2017-07-01

    Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.

  17. Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis.

    PubMed

    Trubiani, Oriana; Giacoppo, Sabrina; Ballerini, Patrizia; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela

    2016-01-04

    Multiple sclerosis is a demyelinating disease mostly of autoimmune origin that affects and damages the central nervous system, leading to a disabling condition. The aim of the present study was to investigate whether administration of mesenchymal stem cells from human periodontal ligament (hPDLSCs) could ameliorate multiple sclerosis progression by exerting neuroprotective effects in an experimental model of autoimmune encephalomyelitis (EAE). EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55 in C57BL/6 mice. After immunization, mice were observed every 48 hours for signs of EAE and weight loss. At the onset of disease, approximately 14 days after immunization, EAE mice were subjected to a single intravenous injection of hPDLSCs (10(6) cells/150 μl) into the tail vein. At the point of animal sacrifice on day 56 after EAE induction, spinal cord and brain tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results reveal that treatment with hPDLSCs may exert neuroprotective effects against EAE, diminishing both clinical signs and histological score typical of the disease (lymphocytic infiltration and demyelination) probably through the production of neurotrophic factors (results focused on brain-derived neurotrophic factor and nerve growth factor expression). Furthermore, administration of hPDLSCs modulates expression of inflammatory key markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-10, glial fibrillary acidic protein, Nrf2 and Foxp3), the release of CD4 and CD8α T cells, and the triggering of apoptotic death pathway (data shown for cleaved caspase 3, p53 and p21). In light of the achieved results, transplantation of hPDLSCs may represent a putative novel and helpful tool for multiple sclerosis treatment. These cells could have considerable implication for future therapies for multiple sclerosis and this study may represent the

  18. Modulation of immune responses and suppression of experimental autoimmune myasthenia gravis by surgical denervation of the spleen

    PubMed Central

    Bakhiet, M; Yu, L-Y; Özenci, V; Khan, A; Shi, F-D

    2006-01-01

    Critical interactions between the nervous system and the immune system during experimental autoimmune myasthenia gravis (EAMG) were examined in an animal model for human MG after immunization of adult female Lewis rats with Torpedo acetylcholine receptor (AChR) and complete Freund's adjuvant. Immunized rats depicted marked clinical severity of the disease. Using enzyme-linked immunospot (ELISPOT) assay and in situ hybridization techniques, immune responses in these animals were examined and showed elevated numbers of anti-AChR IgG secreting B cells and AChR reactive interferon (IFN)-γ-secreting cells, enhanced mRNA expression of the proinflammatory cytokines IFN-γ and tumour necrosis factor (TNF)-α as Th1 subset and the anti-inflammatory cytokines interleukin (IL)-4 and IL-10 as a Th2 subset, and transforming growth factor (TGF)-β as a Th3 cytokine. Corticosterone and prostaglandin E2 (PGE2) levels were measured by radioimmunoassay and illustrated increased production after immunization. Surgical denervation of the spleen reduced significantly the clinical severity of the disease, suppressed the numbers of IgG and IFN-γ-secreting cells, down-regulated the mRNA expression for cytokines and reduced corticosterone and PGE2 production. As controls, sham-operated rats were used and showed results as the EAMG non-denervated control rats. The data present herein, and for the first time, substantial effects of the nervous system on immune responses that may influence the outcome of EAMG. These effects were not dependent on cytokine inhibitory mediators such as prostaglandins or stress hormones. IL-10 and TGF-β, the two potent immunosuppressive cytokines, were also suppressed, indicating a general suppression by splenic denervation. More investigations are initiated at our laboratories to understand the evident neural control over the immune system during challenges leading to the break of tolerance and development of autoimmunity, which may assist in innovative

  19. Coherent Somatic Mutation in Autoimmune Disease

    PubMed Central

    Ross, Kenneth Andrew

    2014-01-01

    Background Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are observed under inflammation. Results Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length, repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative. Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence is highly significant (). Long STRs occur within twenty genes that are associated with sixteen common autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with systemic lupus erythematosus is proposed. Conclusions The results support the hypothesis that many autoimmune diseases are triggered by immune responses to proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a comprehensive explanation for the initiation of many autoimmune diseases. PMID:24988487

  20. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    PubMed Central

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  1. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  2. Renal inflammation, autoimmunity and salt-sensitive hypertension

    PubMed Central

    Rodríguez-Iturbe, Bernardo; Franco, Martha; Tapia, Edilia; Quiroz, Yasmir; Johnson, Richard J

    2011-01-01

    This article reviews the role of immune competent cells infiltrating the kidney and their association with oxidative stress and renal angiotensin activity in the development of salt-sensitive hypertension.We discuss the alteration of the pressure-natriuresis relationship resulting from renal inflammation and its improvement resulting from immunosuppressive treatment.The potential role of T cell-driven reactivity in sustaining the renal inflammation is examined in the light of accumulating evidence of autoimmune mechanisms in experimental and clinical hypertension. PMID:21251049

  3. Novel Immunotherapies for Autoimmune Hepatitis

    PubMed Central

    Cassim, Shamir; Bilodeau, Marc; Vincent, Catherine; Lapierre, Pascal

    2017-01-01

    Autoimmune hepatitis (AIH) is a multifactorial autoimmune disease of unknown pathogenesis, characterized by a loss of immunological tolerance against liver autoantigens resulting in the progressive destruction of the hepatic parenchyma. Current treatments are based on non-specific immunosuppressive drugs. Although tremendous progress has been made using specific biological agents in other inflammatory diseases, progress has been slow to come for AIH patients. While current treatments are successful in the majority of patients, treatment discontinuation is difficult to achieve, and relapses are frequent. Lifelong immunosuppression is not without risks, especially in the pediatric population; 4% of patient with type 1 AIH will eventually develop hepatocellular carcinoma with a 2.9% probability after 10 years of treatment. Therefore, future treatments should aim to restore tolerance to hepatic autoantigens and induce long-term remission. Promising new immunotherapies have been tested in experimental models of AIH including T and B cell depletion and regulatory CD4+ T cells infusion. Clinical studies on limited numbers of patients have also shown encouraging results using B-cell-depleting (rituximab) and anti-TNF-α (infliximab) antibodies. A better understanding of key molecular targets in AIH combined with effective site-specific immunotherapies could lead to long-term remission without blanket immunosuppression and with minimal deleterious side effects. PMID:28184367

  4. Adoptive Cell Therapy of Induced Regulatory T Cells Expanded by Tolerogenic Dendritic Cells on Murine Autoimmune Arthritis.

    PubMed

    Yang, Jie; Liu, Lidong; Yang, Yiming; Kong, Ning; Jiang, Xueyu; Sun, Juan; Xie, Rufeng

    2017-01-01

    Tolerogenic dendritic cells (tDCs) can expand TGF- β -induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTreg mtDC ) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mouse model. After induction by TGF- β and expansion by mature tDCs (mtDCs), the phenotype and proliferation of iTreg mtDC were assessed by flow cytometry. The ability of iTregs and iTreg mtDC to inhibit CD4 + T cell proliferation and suppress Th17 cell differentiation was compared. Following adoptive transfer of iTregs and iTreg mtDC to mice with CIA, the clinical and histopathologic scores, serum levels of IFN- γ , TNF- α , IL-17, IL-6, IL-10, TGF- β and anti-CII antibodies, and the distribution of the CD4 + Th subset were assessed. Compared with iTregs, iTreg mtDC expressed higher levels of Foxp3 and suppressed CD4 + T cell proliferation and Th17 cell differentiation to a greater extent. In vivo, iTreg mtDC reduced the severity and progression of CIA more significantly than iTregs, which was associated with a modulated inflammatory cytokine profile, reduced anti-CII IgG levels, and polarized Treg/Th17 balance. This study highlights the potential therapeutic utility of iTreg mtDC in autoimmune arthritis and should facilitate the future design of iTreg immunotherapeutic strategies.

  5. Adoptive Cell Therapy of Induced Regulatory T Cells Expanded by Tolerogenic Dendritic Cells on Murine Autoimmune Arthritis

    PubMed Central

    Liu, Lidong; Kong, Ning; Jiang, Xueyu; Sun, Juan; Xie, Rufeng

    2017-01-01

    Objective Tolerogenic dendritic cells (tDCs) can expand TGF-β-induced regulatory T cells (iTregs); however, the therapeutic utility of these expanded iTregs in autoimmune diseases remains unknown. We sought to determine the properties of iTregs expanded by mature tolerogenic dendritic cells (iTregmtDC) in vitro and explore their potential to ameliorate collagen-induced arthritis (CIA) in a mouse model. Methods After induction by TGF-β and expansion by mature tDCs (mtDCs), the phenotype and proliferation of iTregmtDC were assessed by flow cytometry. The ability of iTregs and iTregmtDC to inhibit CD4+ T cell proliferation and suppress Th17 cell differentiation was compared. Following adoptive transfer of iTregs and iTregmtDC to mice with CIA, the clinical and histopathologic scores, serum levels of IFN-γ, TNF-α, IL-17, IL-6, IL-10, TGF-β and anti-CII antibodies, and the distribution of the CD4+ Th subset were assessed. Results Compared with iTregs, iTregmtDC expressed higher levels of Foxp3 and suppressed CD4+ T cell proliferation and Th17 cell differentiation to a greater extent. In vivo, iTregmtDC reduced the severity and progression of CIA more significantly than iTregs, which was associated with a modulated inflammatory cytokine profile, reduced anti-CII IgG levels, and polarized Treg/Th17 balance. Conclusion This study highlights the potential therapeutic utility of iTregmtDC in autoimmune arthritis and should facilitate the future design of iTreg immunotherapeutic strategies. PMID:28702462

  6. Paraneoplastic autoimmune movement disorders.

    PubMed

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Disruption of Pathogenic Cellular Networks by IL-21 Blockade Leads to Disease Amelioration in Murine Lupus

    PubMed Central

    Choi, Jin-Young; Seth, Abhinav; Kashgarian, Michael; Terrillon, Sonia; Fung, Emma; Huang, Lili; Wang, Li Chun; Craft, Joe

    2017-01-01

    Systemic lupus erythematosus (SLE, lupus) is characterized by autoantibody-mediated organ injury. Follicular helper T cells (Tfh) orchestrate physiological germinal center (GC) B cell responses, while in lupus they promote aberrant GC responses with autoreactive memory B cell development and plasma cell-derived autoantibody production. IL-21, a Tfh cell-derived cytokine, provides instructional cues for GC B cell maturation, with disruption of IL-21 signaling representing a potential therapeutic strategy for autoantibody-driven diseases such as SLE. We used blockade of IL-21 to dissect the mechanisms by which this cytokine promotes autoimmunity in murine lupus. Treatment of lupus-prone B6.Sle1.Yaa mice with an anti-IL-21 blocking antibody reduced titers of autoantibodies, delayed progression of glomerulonephritis and diminished renal infiltrating Tfh and T helper 1 (Th1) cells, and improved overall survival. Therapy inhibited excessive accumulation of Tfh cells co-expressing IL-21 and IFN-γ, and suppressed their production of the latter cytokine, albeit while not affecting their frequency. Anti-IL-21 treatment also led to a reduction in GC B cells, CD138hi plasmablasts, IFN-γ-dependent IgG2c production, and autoantibodies, indicating that Tfh-cell derived IL-21 is critical for pathological B cell cues in lupus. Normalization of GC responses were, in part, due to uncoupling of Tfh-B cell interactions, as evidenced by reduced expression of CD40L on Tfh cells and reduced B cell proliferation in treated mice. Our work provides mechanistic insight into the contribution of IL-21 to the pathogenesis of murine lupus, while revealing the importance of T-B cellular cross-talk in mediating autoimmunity, demonstrating that its interruption impacts both cell types leading to disease amelioration. PMID:28219887

  8. Disruption of Pathogenic Cellular Networks by IL-21 Blockade Leads to Disease Amelioration in Murine Lupus.

    PubMed

    Choi, Jin-Young; Seth, Abhinav; Kashgarian, Michael; Terrillon, Sonia; Fung, Emma; Huang, Lili; Wang, Li Chun; Craft, Joe

    2017-04-01

    Systemic lupus erythematosus (lupus) is characterized by autoantibody-mediated organ injury. Follicular Th (Tfh) cells orchestrate physiological germinal center (GC) B cell responses, whereas in lupus they promote aberrant GC responses with autoreactive memory B cell development and plasma cell-derived autoantibody production. IL-21, a Tfh cell-derived cytokine, provides instructional cues for GC B cell maturation, with disruption of IL-21 signaling representing a potential therapeutic strategy for autoantibody-driven diseases such as systemic lupus erythematosus. We used blockade of IL-21 to dissect the mechanisms by which this cytokine promotes autoimmunity in murine lupus. Treatment of lupus-prone B6. Sle1.Yaa mice with an anti-IL-21 blocking Ab reduced titers of autoantibodies, delayed progression of glomerulonephritis and diminished renal-infiltrating Tfh and Th1 cells, and improved overall survival. Therapy inhibited excessive accumulation of Tfh cells coexpressing IL-21 and IFN-γ, and suppressed their production of the latter cytokine, albeit while not affecting their frequency. Anti-IL-21 treatment also led to a reduction in GC B cells, CD138 hi plasmablasts, IFN-γ-dependent IgG2c production, and autoantibodies, indicating that Tfh cell-derived IL-21 is critical for pathological B cell cues in lupus. Normalization of GC responses was, in part, caused by uncoupling of Tfh-B cell interactions, as evidenced by reduced expression of CD40L on Tfh cells and reduced B cell proliferation in treated mice. Our work provides mechanistic insight into the contribution of IL-21 to the pathogenesis of murine lupus, while revealing the importance of T-B cellular cross-talk in mediating autoimmunity, demonstrating that its interruption impacts both cell types leading to disease amelioration. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1–T146

    PubMed Central

    Consonni, Alessandra; Sharma, Sapna; Schön, Karin; Lebrero-Fernández, Cristina; Rinaldi, Elena; Lycke, Nils Yngve; Baggi, Fulvio

    2017-01-01

    Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG) model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR) at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients. PMID:28959261

  10. Diagnosis and classification of autoimmune orchitis.

    PubMed

    Silva, C A; Cocuzza, M; Carvalho, J F; Bonfá, E

    2014-01-01

    Autoimmune orchitis is characterized by testis inflammation and the presence of specific antisperm antibodies (ASA). It is classified in two categories. Primary autoimmune orchitis is defined by infertility and asymptomatic orchitis associated with ASA (100%) directed to the basement membrane or seminiferous tubules in infertile men, without any systemic disease and usually asymptomatic. Secondary autoimmune orchitis is characterized by symptomatic orchitis and/or testicular vasculiti`s associated with a systemic autoimmune disease, particularly vasculitis. These patients typically demonstrate testicular pain, erythema and/or swelling. ASA in secondary autoimmune orchitis have been reported in up to 50% of patients, especially in systemic lupus erythematosus patients. The pathogenesis of primary as well as secondary autoimmune orchitis is still unknown. Although the etiology is likely to be multifactorial, testicular inflammation, infection or trauma may induce T cell response with pro-inflammatory cytokine production with a consequent blood-testis-barrier permeability alteration, ASA production and apoptosis of spermatocytes and spermatids. ASA is known to cause immobilization and/or agglutination of spermatozoa, which may block sperm-egg interaction resulting in infertility. Assisted reproduction has been used as an efficient option in primary cases and immunosuppressive therapy for secondary autoimmune orchitis, although there is no double-blind, randomized trial to confirm the efficacy of any treatment regimens for these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS)

    PubMed Central

    Al Jumah, Mohammed A.; Abumaree, Mohamed H.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE. PMID:22942767

  12. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  13. Tissue resident macrophages are sufficient for demyelination during peripheral nerve myelin induced experimental autoimmune neuritis?

    PubMed

    Taylor, Jude Matthew

    2017-12-15

    The contribution of resident endoneurial tissue macrophages versus recruited monocyte derived macrophages to demyelination and disease during Experimental Autoimmune Neuritis (EAN) was investigated using passive transfer of peripheral nerve myelin (PNM) specific serum antibodies or adoptive co-transfer of PNM specific T and B cells from EAN donors to leukopenic and normal hosts. Passive transfer of PNM specific serum antibodies or adoptive co-transfer of myelin specific T and B cells into leukopenic recipients resulted in a moderate reduction in nerve conduction block or in the disease severity compared to the normal recipients. This was despite at least a 95% decrease in the number of circulating mononuclear cells during the development of nerve conduction block and disease and a 50% reduction in the number of infiltrating endoneurial macrophages in the nerve lesions of the leukopenic recipients. These observations suggest that during EAN in Lewis rats actively induced by immunization with peripheral nerve myelin, phagocytic macrophages originating from the resident endoneurial population may be sufficient to engage in demyelination initiated by anti-myelin antibodies in this model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pep19 drives epitope spreading in periodontitis and periodontitis-associated autoimmune diseases.

    PubMed

    Kwon, E-Y; Cha, G S; Jeong, E; Lee, J-Y; Kim, S-J; Surh, C D; Choi, J

    2016-06-01

    Epitope spreading is one of valid mechanisms operating in immunopathological processes of infection-induced autoimmune diseases. We hypothesized that the peptide 19 from Porphyromonas gingivalis heat shock protein (HSP) 60 (Pep19) may be the dominant epitope from which epitope-specific immune response to subdominant epitopes may diversify sequentially into autoimmune responses directed at human neoepitopes in P. gingivalis-induced periodontitis and autoimmune diseases. However, the exact feature and mechanism on how Pep19 may drive epitope spreading into human autoantigens in chronic periodontitis or P. gingivalis-induced experimental periodontitis has not been clarified. The present study was performed with the following specific aims: (i) to delineate retrospectively the features of epitope spreading by human cross-sectional analysis; (ii) to demonstrate prospectively the epitope spreading into new antigenic determinants in an ordered, predictable and sequential manner in experimental periodontitis; and (iii) to clarify the mechanism on how immunization with Pep19 may mobilize helper T cells or elicit B-cell responses to human autoantigens and neoantigen. The study was devised for two independent investigations - a cross-sectional analysis on clinical subjects and a prospective analysis on experimental periodontitis - each being subdivided further into two additional independent observations. Cross-sectional dot immunoblot pattern against a panel of peptides of P. gingivalis HSP60 and human HSP60 was performed among age-dependent healthy subjects and between healthy subjects, patients with chronic periodontitis and patients with autoimmune disease, to identify epitope spreading. A peptide-specific T-cell line was established for phenotype analysis and for proliferation assay to an array of identical peptides. An identical prospective analysis was performed in P. gingivalis-induced experimental periodontitis or in Pep19-immunized mice. Cross-reactivity of anti

  15. Clues to immune tolerance: The monogenic autoimmune syndromes

    PubMed Central

    Waterfield, Michael; Anderson, Mark S.

    2010-01-01

    Autoimmune disease affects a significant proportion of the population. The etiology of most autoimmune diseases is largely unknown, but it is thought to be multifactorial with both environmental and genetic influences. Rare monogenic autoimmune diseases, however, offer an invaluable window into potential disease mechanisms. In this review, we will discuss the autoimmune polyglandular syndrome (APS1), the immunedysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), and autoimmune lymphoproliferative syndrome (ALPS). Significantly, the information gained from the study of these diseases has provided new insights into more common autoimmune disease and have yielded new diagnostics and therapeutic opportunities. PMID:20969580

  16. Mesenchymal stem cells induce functionally active T-regulatory lymphocytes in a paracrine fashion and ameliorate experimental autoimmune uveitis.

    PubMed

    Tasso, Roberta; Ilengo, Cristina; Quarto, Rodolfo; Cancedda, Ranieri; Caspi, Rachel R; Pennesi, Giuseppina

    2012-02-01

    Mesenchymal stem/progenitor cells (MSCs) have regenerative and immunomodulatory properties, exerted by cell-cell contact and in a paracrine fashion. Part of their immunosuppressive activity has been ascribed to their ability to promote the induction of CD4+CD25+FoxP3+ T lymphocytes with regulatory functions (Treg). Here the authors studied the effect of MSCs on the induction of Treg and on the development of autoimmunity, and they examined the possibility that MSC-mediated Treg induction could be attributed to the secretion of soluble factors. The authors induced experimental autoimmune uveitis (EAU) in mice by immunization with the 1-20 peptide of the intraphotoreceptor binding protein. At the same time, some of the animals were treated intraperitoneally with syngeneic MSCs. The authors checked T-cell responses and in vitro Treg conversion by cell proliferation and blocking assays, in cell-cell contact and transwell settings. TGFβ and TGFβ receptor gene expression analyses were performed by real-time PCR. The authors found that a single intraperitoneal injection of MSCs was able to significantly attenuate EAU and that a significantly higher percentage of adaptive Treg was present in MSC-treated mice than in MSC-untreated animals. In vitro blocking of antigen presentation by major histocompatibility complex class II precluded priming and clonal expansion of antigen-specific Treg, whereas blockade of TGFβ impaired the expression of FoxP3, preventing the conversion of CD4+ T cells into functionally active Treg. The authors demonstrated that MSCs can inhibit EAU and that their immunomodulatory function is due at least in part to the induction of antigen-specific Treg in a paracrine fashion by secreting TGFβ.

  17. Association pernicious anemia and autoimmune polyendocrinopathy: a retrospective study.

    PubMed

    Zulfiqar, A A; Andres, E

    2017-01-01

    To investigate the association between pernicious anemia and other autoimmune diseases. This retrospective and bicentric study was conducted at Reims and Strasbourg University Hospitals and involved 188 patients with pernicious anemia examined between 2000 and 2010 in order to search for other autoimmune diseases and to evaluate the role of pernicious anemia in autoimmune polyglandular syndrome. A total of 74 patients with a combination of pernicious anemia and other autoimmune diseases were included in the study. Our study revealed the privileged association of pernicious anemia with autoimmune thyroiditis. The association of pernicious anemia and autoimmune thyroiditis are a part of the autoimmune polyglandular syndrome type 3b. We suggest undertaking a systematic clinical examination and laboratory investigations in search of autoimmune thyroiditis in patient(s) with the diagnosis of pernicious anemia. The association of pernicious anemia and autoimmune thyroiditis is frequent and a part of autoimmune polyglandular 3b.

  18. Curcumin and autoimmune disease.

    PubMed

    Bright, John J

    2007-01-01

    The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.

  19. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis.

    PubMed

    Mor, Adi; Planer, David; Luboshits, Galia; Afek, Arnon; Metzger, Shula; Chajek-Shaul, Tova; Keren, Gad; George, Jacob

    2007-04-01

    Naturally occurring CD4+ CD25+ regulatory T cells (Tregs) exert suppressive effects on effector CD4 cells and downregulate experimental autoimmune disorders. We investigated the importance and potential role of Tregs in murine atherogenesis. Tregs were investigated comparatively between aged and young apolipoprotein E-knockout (ApoE-KO) mice and age-matched C57BL/6 littermates. The effect of oxidized LDL (oxLDL) was tested on the functional suppressive properties of Tregs from ApoE-KO and C57BL/6 mice. Tregs, CD4+ CD25- cells, and saline were infused into ApoE-KO mice to study their effects on atherogenesis. Treg numbers were reduced in atherosclerotic compared with nonatherosclerotic ApoE-KO mice. The functional suppressive properties of Tregs from ApoE-KO mice were compromised in comparison with those from their C57BL/6 littermates. Thus, oxLDL attenuated the suppressive properties of Tregs from C57BL/6 mice and more so in ApoE-KO mice. Transfer of Tregs from age-matched ApoE-KO mice resulted in significant attenuation of atherosclerosis compared with that after delivery of CD4+ CD25+/- T cells or phosphate-buffered saline. CD4+ CD25+ Tregs may play a protective role in the progression of atherosclerosis and could be considered a therapeutic tool if results from human studies can solidify observations in murine models.

  20. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

    PubMed

    González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J

    2017-12-01

    Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Auto-immune hepatitis following delivery.

    PubMed

    Saini, Vandana; Gupta, Mamta; Mishra, S K

    2013-05-01

    Auto-immune hepatitis first presenting in the early postpartum period is rare. Immunosuppressive effects of pregnancy result in delayed manifestation of auto-immune hepatitis, and in established cases, the spontaneous improvements are there. Auto-immune hepatitis should be considered in the differential diagnosis of liver dysfunction first presenting in the early postpartum period. A case of postpartum hepatitis of auto-immune aetiology is being presented here. It is disease of unknown aetiology, characterised by inflammation of liver (as evidenced by raised serum transaminases, presence of interface hepatitis on histological examination), hypergammaglobulinaemia (> 1.5 times normal), presence of auto-antibodies [(antinuclear antibodies (ANA)], smooth muscle antibody (SMA) and antibody to liver-kidney microsome type 1 (LKM1) in the absence of viral markers ie, hepatitis B (HBsAg) and C (AntiHCV) and excellent response to corticosteroid therapy.

  2. Evaluation of autoimmune phenomena in patients with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS).

    PubMed

    Stagi, Stefano; Rigante, Donato; Lepri, Gemma; Bertini, Federico; Matucci-Cerinic, Marco; Falcini, Fernanda

    2014-12-01

    The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) are basically characterized by obsessive-compulsive symptoms and/or tics triggered by group-A beta-hemolytic Streptococcus infections. Poor data are available about the clear definition of PANDAS's autoimmune origin. The aim of our study was to evaluate the prevalence of autoimmune phenomena, including thyroid function abnormalities, specific celiac disease antibodies, and positivity of organ- or nonorgan-specific autoantibodies in a large cohort of Caucasian children and adolescents with PANDAS. Seventy-seven consecutive patients (59 males, 18 females; mean age 6.3±2.5 years, range 2.0-14.5 years) strictly fulfilling the clinical criteria for PANDAS diagnosis were recruited. In all subjects we evaluated serum concentrations of free-T3, free-T4, thyrotropin, and the following auto-antibodies: anti-thyroperoxidase, anti-thyroglobulin, anti-thyrotropin receptor, anti-gliadin, anti-endomysium, anti-tissue transglutaminase, anti-nuclear, anti-smooth muscle, anti-extractable nuclear antigens, anti-phospholipid, plus lupus-like anticoagulant. The results were compared with those obtained from 197 age- and sex-matched healthy controls (130 males, 67 females; mean age 6.8±2.9 years, range 2.3-14.8 years). The frequencies of subclinical (3.8% vs 3.6%) and overt hypothyroidism (1.2% vs 0%), autoimmune thyroiditis (2.46% vs 1.14%), celiac disease (1.2% vs 0.05%), and positivity of organ- and nonorgan-specific autoantibodies (5.1% vs 4.8%) were not statistically significant between patients with PANDAS and controls. Evaluating the overall disease duration, we did not observe any significant difference between patients with (3.4±2.15 years) and without (3.4±2.89 years) autoimmune abnormalities. However, PANDAS patients with autoimmune diseases or positivity for any organ- and nonorgan-specific antibodies showed significantly higher anti-streptolysin O and anti-DNAse B

  3. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    PubMed Central

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  4. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis.

    PubMed

    Colpitts, Sara L; Kasper, Eli J; Keever, Abigail; Liljenberg, Caleb; Kirby, Trevor; Magori, Krisztian; Kasper, Lloyd H; Ochoa-Repáraz, Javier

    2017-11-02

    The gut microbiome plays an important role in the development of inflammatory disease as shown using experimental models of central nervous system (CNS) demyelination. Gut microbes influence the response of regulatory immune cell populations in the gut-associated lymphoid tissue (GALT), which drive protection in acute and chronic experimental autoimmune encephalomyelitis (EAE). Recent observations suggest that communication between the host and the gut microbiome is bidirectional. We hypothesized that the gut microbiota differs between the acute inflammatory and chronic progressive stages of a murine model of secondary-progressive multiple sclerosis (SP-MS). This non-obese diabetic (NOD) model of EAE develops a biphasic pattern of disease that more closely resembles the human condition when transitioning from relapsing-remitting (RR)-MS to SP-MS. We compared the gut microbiome of NOD mice with either mild or severe disease to that of non-immunized control mice. We found that the mice which developed a severe secondary form of EAE harbored a dysbiotic gut microbiome when compared with the healthy control mice. Furthermore, we evaluated whether treatment with a cocktail of broad-spectrum antibiotics would modify the outcome of the progressive stage of EAE in the NOD model. Our results indicated reduced mortality and clinical disease severity in mice treated with antibiotics compared with untreated mice. Our findings support the hypothesis that there are reciprocal effects between experimental CNS inflammatory demyelination and modification of the microbiome providing a foundation for the establishment of early therapeutic interventions targeting the gut microbiome that could potentially limit disease progression.

  5. Association pernicious anemia and autoimmune polyendocrinopathy: a retrospective study

    PubMed Central

    Zulfiqar, AA; Andres, E

    2017-01-01

    Objective: To investigate the association between pernicious anemia and other autoimmune diseases. Methods: This retrospective and bicentric study was conducted at Reims and Strasbourg University Hospitals and involved 188 patients with pernicious anemia examined between 2000 and 2010 in order to search for other autoimmune diseases and to evaluate the role of pernicious anemia in autoimmune polyglandular syndrome. Results: A total of 74 patients with a combination of pernicious anemia and other autoimmune diseases were included in the study. Our study revealed the privileged association of pernicious anemia with autoimmune thyroiditis. The association of pernicious anemia and autoimmune thyroiditis are a part of the autoimmune polyglandular syndrome type 3b. Conclusion: We suggest undertaking a systematic clinical examination and laboratory investigations in search of autoimmune thyroiditis in patient(s) with the diagnosis of pernicious anemia. The association of pernicious anemia and autoimmune thyroiditis is frequent and a part of autoimmune polyglandular 3b. PMID:29362601

  6. Familial Aggregation and Segregation Analysis in Families Presenting Autoimmunity, Polyautoimmunity, and Multiple Autoimmune Syndrome

    PubMed Central

    Castiblanco, John; Sarmiento-Monroy, Juan Camilo; Mantilla, Ruben Dario; Rojas-Villarraga, Adriana; Anaya, Juan-Manuel

    2015-01-01

    Studies documenting increased risk of developing autoimmune diseases (ADs) have shown that these conditions share several immunogenetic mechanisms (i.e., the autoimmune tautology). This report explored familial aggregation and segregation of AD, polyautoimmunity, and multiple autoimmune syndrome (MAS) in 210 families. Familial aggregation was examined for first-degree relatives. Segregation analysis was implemented as in S.A.G.E. release 6.3. Data showed differences between late- and early-onset families regarding their age, age of onset, and sex. Familial aggregation of AD in late- and early-onset families was observed. For polyautoimmunity as a trait, only aggregation was observed between sibling pairs in late-onset families. No aggregation was observed for MAS. Segregation analyses for AD suggested major gene(s) with no clear discernible classical known Mendelian transmission in late-onset families, while for polyautoimmunity and MAS no model was implied. Data suggest that polyautoimmunity and MAS are not independent traits and that gender, age, and age of onset are interrelated factors influencing autoimmunity. PMID:26697508

  7. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    PubMed

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  8. Complicating autoimmune diseases in myasthenia gravis: a review

    PubMed Central

    Nacu, Aliona; Andersen, Jintana Bunpan; Lisnic, Vitalie; Owe, Jone Furlund; Gilhus, Nils Erik

    2015-01-01

    Abstract Myasthenia gravis (MG) is a rare autoimmune disease of skeletal muscle endplates. MG subgroup is relevant for comorbidity, but usually not accounted for. MG patients have an increased risk for complicating autoimmune diseases, most commonly autoimmune thyroid disease, systemic lupus erythematosus and rheumatoid arthritis. In this review, we present concomitant autoimmune disorders associated with the different MG subgroups, and show how this influences treatment and prognosis. Concomitant MG should always be considered in patients with an autoimmune disorder and developing new neuromuscular weakness, fatigue or respiratory failure. When a second autoimmune disorder is suspected, MG should be included as a differential diagnosis. PMID:25915571

  9. Cutting-edge issues in autoimmune orchitis.

    PubMed

    Silva, Clovis A; Cocuzza, Marcello; Borba, Eduardo F; Bonfá, Eloísa

    2012-04-01

    Autoimmune orchitis is a relevant cause of decreased fecundity in males, and it is defined as a direct aggression to the testis with the concomitant presence of anti-sperm antibodies (ASA). The presence of these specific antibodies has been observed in approximately 5-12% of infertile male partners. Primary autoimmune orchitis is defined by isolated infertility with ASA but without evidence of a systemic disease. Secondary causes of orchitis and/or testicular vasculitis are uniformly associated with autoimmune diseases, mainly in primary vasculitis such as polyarteritis nodosa, Behçet's disease, and Henoch-Schönlein purpura. The overall frequencies of acute orchitis and ASA in rheumatic diseases are 2-31% and 0-50%, respectively. The pathogenesis of primary/secondary autoimmune orchitis is not completely understood but probably involves the access of immune cells to the testicular microenvironment due to inflammation, infection or trauma, leading to apoptosis of spermatocytes and spermatids. Glucocorticoids and immunosuppressive drugs are indicated in autoimmune orchitis-associated active systemic autoimmune diseases. However, there are no standardized treatment options, and the real significance of ASA in infertile men is still controversial. Assisted reproductive technologies such as intrauterine insemination, in vitro fertilization, and intracytoplasmic sperm injection (ICSI) are therapeutic options for male infertility associated with these autoantibodies. ICSI is considered to be the best choice for patients with severe sperm autoimmunity, particularly in males with low semen counts or motility.

  10. SIALIC ACIDS AND AUTOIMMUNE DISEASE

    PubMed Central

    Mahajan, Vinay S.; Pillai, Shiv

    2016-01-01

    summary An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid containing ligands and recruit SH2-domain containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid binding proteins are also reviewed. PMID:26683151

  11. How I treat autoimmune lymphoproliferative syndrome

    PubMed Central

    Oliveira, João Bosco

    2011-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) represents a failure of apoptotic mechanisms to maintain lymphocyte homeostasis, permitting accumulation of lymphoid mass and persistence of autoreactive cells that often manifest in childhood with chronic nonmalignant lymphadenopathy, hepatosplenomegaly, and recurring multilineage cytopenias. Cytopenias in these patients can be the result of splenic sequestration as well as autoimmune complications manifesting as autoimmune hemolytic anemia, immune-mediated thrombocytopenia, and autoimmune neutropenia. More than 300 families with hereditary ALPS have now been described; nearly 500 patients from these families have been studied and followed worldwide over the last 20 years by our colleagues and ourselves. Some of these patients with FAS mutations affecting the intracellular portion of the FAS protein also have an increased risk of B-cell lymphoma. The best approaches to diagnosis, follow-up, and management of ALPS, its associated cytopenias, and other complications resulting from infiltrative lymphoproliferation and autoimmunity are presented. This trial was registered at www.clinicaltrial.gov as #NCT00001350. PMID:21885601

  12. The Diagnosis and Treatment of Autoimmune Encephalitis

    PubMed Central

    2016-01-01

    Autoimmune encephalitis causes subacute deficits of memory and cognition, often followed by suppressed level of consciousness or coma. A careful history and examination may show early clues to particular autoimmune causes, such as neuromyotonia, hyperekplexia, psychosis, dystonia, or the presence of particular tumors. Ancillary testing with MRI and EEG may be helpful for excluding other causes, managing seizures, and, rarely, for identifying characteristic findings. Appropriate autoantibody testing can confirm specific diagnoses, although this is often done in parallel with exclusion of infectious and other causes. Autoimmune encephalitis may be divided into several groups of diseases: those with pathogenic antibodies to cell surface proteins, those with antibodies to intracellular synaptic proteins, T-cell diseases associated with antibodies to intracellular antigens, and those associated with other autoimmune disorders. Many forms of autoimmune encephalitis are paraneoplastic, and each of these conveys a distinct risk profile for various tumors. Tumor screening and, if necessary, treatment is essential to proper management. Most forms of autoimmune encephalitis respond to immune therapies, although powerful immune suppression for weeks or months may be needed in difficult cases. Autoimmune encephalitis may relapse, so follow-up care is important. PMID:26754777

  13. Autoimmune encephalitis and its relation to infection.

    PubMed

    Venkatesan, Arun; Benavides, David R

    2015-03-01

    Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen's encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.

  14. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity.

    PubMed

    Sonar, Sandip Ashok; Lal, Girdhari

    2017-01-01

    CD4 + T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4 + T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood-brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4 + T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4 + T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity.

  15. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model.

    PubMed

    Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi

    2017-10-05

    As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of control group. Our preliminary

  16. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model

    PubMed Central

    Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi

    2017-01-01

    Background: As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Methods: Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35–55 to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Results: Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of

  17. Bell's palsy and autoimmunity.

    PubMed

    Greco, A; Gallo, A; Fusconi, M; Marinelli, C; Macri, G F; de Vincentiis, M

    2012-12-01

    To review our current knowledge of the etiopathogenesis of Bell's palsy, including viral infection or autoimmunity, and to discuss disease pathogenesis with respect to pharmacotherapy. Relevant publications on the etiopathogenesis, clinical presentation, diagnosis and histopathology of Bell's palsy from 1975 to 2012 were analysed. Bell's palsy is an idiopathic peripheral nerve palsy involving the facial nerve. It accounts for 60 to 75% of all cases of unilateral facial paralysis. The annual incidence of Bell's palsy is 15 to 30 per 100,000 people. The peak incidence occurs between the second and fourth decades (15 to 45 years). The aetiology of Bell's palsy is unknown but viral infection or autoimmune disease has been postulated as possible pathomechanisms. Bell's palsy may be caused when latent herpes viruses (herpes simplex, herpes zoster) are reactivated from cranial nerve ganglia. A cell-mediated autoimmune mechanism against a myelin basic protein has been suggested for the pathogenesis of Bell's palsy. Bell's palsy may be an autoimmune demyelinating cranial neuritis, and in most cases, it is a mononeuritic variant of Guillain-Barré syndrome, a neurologic disorder with recognised cell-mediated immunity against peripheral nerve myelin antigens. In Bell's palsy and GBS, a viral infection or the reactivation of a latent virus may provoke an autoimmune reaction against peripheral nerve myelin components, leading to the demyelination of cranial nerves, especially the facial nerve. Given the safety profile of acyclovir, valacyclovir, and short-course oral corticosteroids, patients who present within three days of the onset of symptoms should be offered combination therapy. However it seems logical that in fact, steroids exert their beneficial effect via immunosuppressive action, as is the case in some other autoimmune disorders. It is to be hoped that (monoclonal) antibodies and/or T-cell immunotherapy might provide more specific treatment guidelines in the

  18. Virus infection, antiviral immunity, and autoimmunity

    PubMed Central

    Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.

    2014-01-01

    Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356

  19. Autoimmunity to protective molecules: is it the perpetuum mobile (vicious cycle) of autoimmune rheumatic diseases?

    PubMed

    Kravitz, Martine Szyper; Shoenfeld, Yehuda

    2006-09-01

    Apoptotic defects and impaired clearance of cellular debris are considered key events in the development of autoimmunity, as they can contribute to autoantigen overload and might be involved in the initiation of an autoimmune response. The C1q protein and mannose-binding lectin are activators of the complement system. The pentraxins are a group of highly conserved proteins including the short pentraxins, C-reactive protein and serum amyloid P, and the long pentraxin family member, pentraxin 3, all of which are involved in innate immunity and in acute-phase responses. In addition to their role in innate immunity and inflammation, each of these proteins participates in the removal of damaged and apoptotic cells. In this article, we discuss the clinical significance of different levels of these proteins, their role in the induction of or protection against autoimmunity, and the presence of specific autoantibodies against them in various autoimmune diseases.

  20. [The autoimmune rheumatic disease and laryngeal pathology].

    PubMed

    Osipenko, E V; Kotel'nikova, N M

    Vocal disorders make up one of the autoimmune pathological conditions characterized by multiple organ system dysfunction. Laryngeal pathology in this condition has an autoimmune nature; it is highly diverse and poorly explored. The objective of the present work based on the analysis of the relevant literature publications was to study clinical manifestations of the autoimmune rheumatic disease affecting the larynx. 'Bamboo nodes' on the vocal folds is a rare manifestation of laryngeal autoimmune diseases. We found out references to 49 cases of this condition in the available literature. All the patients were women presenting with autoimmune diseases. The present review highlights the problems pertaining to etiology of 'bamboo nodes' on the vocal folds and the method for the treatment of this condition.

  1. Acrylamine-induced autoimmune phenomena.

    PubMed

    Rothschild, Bruce

    2010-09-01

    The objective of this study is to document a series of cases of occupationally derived autoimmune disease. Individuals with occupational exposure to acrylamides were evaluated clinically and biochemically/immunologically for evidence of autoimmune disease. Symptoms and signs and immuno-reactivity were monitored during exposure-free and re-exposure as part of the individuals' clinical evaluation. Six individuals with occupational acrylamide exposure had clinical and laboratory alterations characteristic of drug-induced autoimmune disease, specifically lupus, anti-phospholipid syndrome, Sjogren's syndrome, scleroderma, and polymyositis. The similarity of the full spectrum of disease in the reported patients to that found with procainamide strongly suggests the effects of occupational exposure. This uncontrolled study suggests the need for a full epidemiologic analysis of all individuals working with such occupational exposure, including full clinical and immunological examination.

  2. Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1

    PubMed Central

    Landegren, Nils; Sharon, Donald; Freyhult, Eva; Hallgren, Åsa; Eriksson, Daniel; Edqvist, Per-Henrik; Bensing, Sophie; Wahlberg, Jeanette; Nelson, Lawrence M.; Gustafsson, Jan; Husebye, Eystein S.; Anderson, Mark S.; Snyder, Michael; Kämpe, Olle

    2016-01-01

    Autoimmune polyendocrine syndrome type 1 (APS1) is a monogenic disorder that features multiple autoimmune disease manifestations. It is caused by mutations in the Autoimmune regulator (AIRE) gene, which promote thymic display of thousands of peripheral tissue antigens in a process critical for establishing central immune tolerance. We here used proteome arrays to perform a comprehensive study of autoimmune targets in APS1. Interrogation of established autoantigens revealed highly reliable detection of autoantibodies, and by exploring the full panel of more than 9000 proteins we further identified MAGEB2 and PDILT as novel major autoantigens in APS1. Our proteome-wide assessment revealed a marked enrichment for tissue-specific immune targets, mirroring AIRE’s selectiveness for this category of genes. Our findings also suggest that only a very limited portion of the proteome becomes targeted by the immune system in APS1, which contrasts the broad defect of thymic presentation associated with AIRE-deficiency and raises novel questions what other factors are needed for break of tolerance. PMID:26830021

  3. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck.

    PubMed

    Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua

    2014-04-09

    JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.

  4. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  5. Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis.

    PubMed

    Sefia, Eseberuo; Pryce, Gareth; Meier, Ute-Christiane; Giovannoni, Gavin; Baker, David

    2017-05-01

    Multiple sclerosis (MS) is often considered to be a CD4, T cell-mediated disease. This is largely based on the capacity of CD4 T cells to induce relapsing experimental autoimmune encephalomyelitis (EAE) in rodents. However, CD4-depletion using a monoclonal antibody was considered unsuccessful and relapsing MS responds well to B cell depletion via CD20 B cell depleting antibodies. The influence of CD20 B cell depletion in relapsing EAE was assessed. Relapsing EAE was induced in Biozzi ABH mice. These were treated with CD20-specific (18B12) antibody and the influence on CD45RA-B220 B cell depletion and clinical course was analysed. Relapsing EAE in Biozzi ABH failed to respond to the marked B cell depletion induced with a CD20-specific antibody. In contrast to CD20 and CD8-specific antibodies, CD4 T cell depletion inhibited EAE. Spinal cord antigen-induced disease in ABH mice is CD4 T cell-dependent. The lack of influence of CD20 B cell depletion in relapsing EAE, coupled with the relatively marginal and inconsistent results obtained in other mouse studies, suggests that rodents may have limited value in understanding the mechanism occurring following CD20 B cell depletion in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Immunomodulatory effects of Longdan Xiegan Tang on CD4+/CD8+ T cells and associated inflammatory cytokines in rats with experimental autoimmune uveitis.

    PubMed

    Tang, Kai; Guo, Dadong; Zhang, Lian; Guo, Junguo; Zheng, Fengming; Si, Junkang; Bi, Hongsheng

    2016-09-01

    Longdan Xiegan Tang (LXT) is a mixture of herbal extracts commonly used in traditional Chinese medicine that may exert immunomodulatory effects for the treatment of autoimmune diseases. However, the detailed mechanisms that mediate the actions of LXT are unclear. The present study induced an experimental autoimmune uveitis (EAU) model in Lewis rats via injection of IRBP1177‑1191 emulsion. The model was used to investigate the effects of LXT on EAU rats and assess the efficacy of LXT by measuring clinical manifestations and histopathological changes caused by EAU. Additionally, alterations in the ratio of CD4+/CD8+‑T cells were determined by flow cytometry, and the expression of interferon (IFN)‑γ, interleukin (IL)‑17, IL‑10 and tumor necrosis factor (TNF)‑α were measured using reverse transcription‑quantitative polymerase chain reaction and enzyme‑linked immunosorbent assay analysis. The results of the present study demonstrate that LXT can efficiently alleviate the symptoms of EAU, inhibit the differentiation of uveitogenic CD4+ T cells and reduce the expression of proinflammatory cytokines, including IFN‑γ, IL‑17 and TNF‑α. Furthermore, LXT promotes the production of IL‑10 and accelerates the recovery of EAU, indicating that the immunomodulatory effects of LXT may potentially be used for the treatment of uveitis.

  7. Gestational Hypothyroxinemia Affects Its Offspring With a Reduced Suppressive Capacity Impairing the Outcome of the Experimental Autoimmune Encephalomyelitis.

    PubMed

    Haensgen, Henny; Albornoz, Eduardo; Opazo, María C; Bugueño, Katherinne; Jara Fernández, Evelyn Liliana; Binzberger, Rebecca; Rivero-Castillo, Tomás; Venegas Salas, Luis F; Simon, Felipe; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Kalergis, Alexis M; Bueno, Susan M; Riedel, Claudia A

    2018-01-01

    Hypothyroxinemia (Hpx) is a thyroid hormone deficiency (THD) condition highly frequent during pregnancy, which although asymptomatic for the mother, it can impair the cognitive function of the offspring. Previous studies have shown that maternal hypothyroidism increases the severity of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis (MS). Here, we analyzed the immune response after EAE induction in the adult offspring gestated in Hpx. Mice gestated in Hpx showed an early appearance of EAE symptoms and the increase of all parameters of the disease such as: the pathological score, spinal cord demyelination, and immune cell infiltration in comparison to the adult offspring gestated in euthyroidism. Isolated CD4 + CD25 + T cells from spleen of the offspring gestated in Hpx that suffer EAE showed reduced capacity to suppress proliferation of effector T cells (T Eff ) after being stimulated with anti-CD3 and anti-CD28 antibodies. Moreover, adoptive transfer experiments of CD4 + CD25 + T cells from the offspring gestated in Hpx suffering EAE to mice that were induced with EAE showed that the receptor mice suffer more intense EAE pathological score. Even though, no significant differences were detected in the frequency of T reg cells and IL-10 content in the blood, spleen, and brain between mice gestated in Hpx or euthyroidism, T cells CD4 + CD25 + from spleen have reduced capacity to differentiate in vitro to T reg and to produce IL-10. Thus, our data support the notion that maternal Hpx can imprint the immune response of the offspring suffering EAE probably due to a reduced capacity to trigger suppression. Such "imprints" on the immune system could contribute to explaining as to why adult offspring gestated in Hpx suffer earlier and more intense EAE.

  8. Human neutrophils in auto-immunity.

    PubMed

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. ADAM-17 and TIMP3 protein and mRNA expression in spinal cord white matter of rats with acute experimental autoimmune encephalomyelitis.

    PubMed

    Plumb, Jonnie; Cross, Alison K; Surr, Jessica; Haddock, Gail; Smith, Terence; Bunning, Rowena A D; Woodroofe, M Nicola

    2005-07-01

    Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.

  10. Autoimmunity in 2016.

    PubMed

    Selmi, Carlo

    2017-08-01

    The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.

  11. Autoimmune hepatitis.

    PubMed

    Vergani, D; Mieli-Vergani, G

    2004-06-01

    Autoimmune hepatitis (AIH) is characterised histologically by interface hepatitis, and serologically by the presence of non-organ and liver specific autoantibodies and increased levels of immunoglobulin G. Its onset is often ill-defined, frequently mimicing acute hepatitis. AIH usually responds to immunosuppressive treatment, which should be instituted as soon as diagnosis is made. Two types of AIH are recognized according to seropositivity for smooth muscle and/or antinuclear antibody (SMA/ANA, type 1 AIH) or liver kidney microsomal type 1 antibody (LKM1, type 2 AIH). There is a female predominance in both. LKM1 positive patients tend to present more acutely, at a younger age and commonly have immunoglobulin A deficiency, while duration of symptoms before diagnosis, clinical signs, family history of autoimmunity, presence of associated autoimmune disorders, response to treatment and long-term prognosis are similar in the 2 groups. Susceptibility to AIH type 1 is conferred by possession of HLA DR3 and DR4, while to AIH type 2 by possession of HLA DR7. Liver damage is likely to derive from an immune reaction to liver cell antigens, possibly triggered by a mechanism of molecular mimicry, where immune responses to external pathogens, e.g. viruses, become directed towards structurally similar self-components. In AIH this process would be perpetuated by impairment in immune regulation.

  12. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis.

    PubMed

    Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; Engelhardt, Britta

    2011-11-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.

  13. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes.

    PubMed

    Gottumukkala, Raju V S R K; Lv, HuiJuan; Cornivelli, Lizbeth; Wagers, Amy J; Kwong, Raymond Y; Bronson, Roderick; Stewart, Garrick C; Schulze, P Christian; Chutkow, William; Wolpert, Howard A; Lee, Richard T; Lipes, Myra A

    2012-06-13

    Patients with type 1 diabetes (T1D) suffer excessive morbidity and mortality after myocardial infarction (MI) that is not fully explained by the metabolic effects of diabetes. Acute MI is known to trigger a profound innate inflammatory response with influx of mononuclear cells and production of proinflammatory cytokines that are crucial for cardiac repair. We hypothesized that these same pathways might exert "adjuvant effects" and induce pathological responses in autoimmune-prone T1D hosts. Here, we show that experimental MI in nonobese diabetic mice, but not in control C57BL/6 mice, results in a severe post-infarction autoimmune (PIA) syndrome characterized by destructive lymphocytic infiltrates in the myocardium, infarct expansion, sustained cardiac autoantibody production, and T helper type 1 effector cell responses against cardiac (α-)myosin. PIA was prevented by inducing tolerance to α-myosin, demonstrating that immune responses to cardiac myosin are essential for this disease process. Extending these findings to humans, we developed a panel of immunoassays for cardiac autoantibody detection and found autoantibody positivity in 83% post-MI T1D patients. We further identified shared cardiac myosin autoantibody signatures between post-MI T1D patients and nondiabetic patients with myocarditis, which were absent in post-MI type 2 diabetic patients, and confirmed the presence of myocarditis in T1D by cardiac magnetic resonance imaging techniques. These data provide experimental and clinical evidence for a distinct post-MI autoimmune syndrome in T1D. Our findings suggest that PIA may contribute to worsened post-MI outcomes in T1D and highlight a role for antigen-specific immunointervention to selectively block this pathway.

  14. Role of different pathways of the complement cascade in experimental bullous pemphigoid

    PubMed Central

    Nelson, Kelly C.; Zhao, Minglang; Schroeder, Pamela R.; Li, Ning; Wetsel, Rick A.; Diaz, Luis A.; Liu, Zhi

    2006-01-01

    Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease associated with autoantibodies directed against the hemidesmosomal proteins BP180 and BP230 and inflammation. Passive transfer of antibodies to the murine BP180 (mBP180) induces a skin disease that closely resembles human BP. In the present study, we defined the roles of the different complement activation pathways in this model system. Mice deficient in the alternative pathway component factor B (Fb) and injected with pathogenic anti-mBP180 IgG developed delayed and less intense subepidermal blisters. Mice deficient in the classical pathway component complement component 4 (C4) and WT mice pretreated with neutralizing antibody against the first component of the classical pathway, C1q, were resistant to experimental BP. These mice exhibited a significantly reduced level of mast cell degranulation and polymorphonuclear neutrophil (PMN) infiltration in the skin. Intradermal administration of compound 48/80, a mast cell degranulating agent, restored BP disease in C4–/– mice. Furthermore, C4–/– mice became susceptible to experimental BP after local injection of PMN chemoattractant IL-8 or local reconstitution with PMNs. These findings provide the first direct evidence to our knowledge that complement activation via the classical and alternative pathways is crucial in subepidermal blister formation in experimental BP. PMID:17024247

  15. The immunomodulator AS101 suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D; Yu, Shiguang

    2014-08-15

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O') tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The immunomodulator AS101suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang

    2014-01-01

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323

  17. The Diagnostic Challenges of Autoimmune Pancreatitis

    PubMed Central

    Papp, Kata; Angst, Eliane; Seidel, Stefan; Flury-Frei, Renata; Hetzer, Franc Heinrich

    2015-01-01

    Autoimmune pancreatitis is a rare but important differential diagnosis from pancreatic cancer. This autoimmune disease can mimic pancreatic cancer by its clinical symptoms, including weight loss and jaundice. Furthermore imaging findings may include a mass of the pancreas. Here we present the case of a 67-year-old male patient diagnosed with autoimmune pancreatitis but showing the well-known symptoms of pancreatic cancer. This emphasizes the difficulties of histological findings and the importance of the correct diagnostic process. PMID:25802499

  18. The Genetics of Autoimmune Thyroiditis: the first decade

    PubMed Central

    Rose, Noel R.

    2011-01-01

    Most of our current understanding of the genetic predisposition to autoimmune disease can be traced to experiments performed in the decade from 1971 to 1981. Chella David was a key contributor to this research. Many of these early steps came from studies of experimental autoimmune thyroiditis. This model has been especially valuable because essentially the same disease can occur spontaneously in selected strains of animals or can be induced by deliberate immunization. From a genetic point of view, the disease has been investigated in three different species: mice, rats and chickens. The same antigen, thyroglobulin, initiates the disease in all three species. Among the main discoveries were the relationship of autoimmune disease to the major histocompatibility complex (MHC), the interplay of different subregions within the MHC in promoting or retarding development of disease, the differing roles of MHC class II and MHC I class genes in induction and effector phases, respectively, and the cumulative effect of non-MHC genes, each of which represents a small addition to overall susceptibility. Other experiments revealed that genetic differences in thyroglobulin allotypes influence susceptibility to thyroiditis. Thyroid glands differed in different strains in vulnerability to passive transfer of antibody. The first evidence of modulatory genes on the sex-related X chromosome emerged. All of these genetic findings were concurrently translated to the human disease, Hashimoto’s thyroiditis, where thyroglobulin is also the initiating antigen. PMID:21683550

  19. Genetic variation associated with cardiovascular risk in autoimmune diseases

    PubMed Central

    Perrotti, Pedro P.; Aterido, Adrià; Fernández-Nebro, Antonio; Cañete, Juan D.; Ferrándiz, Carlos; Tornero, Jesús; Gisbert, Javier P.; Domènech, Eugeni; Fernández-Gutiérrez, Benjamín; Gomollón, Fernando; García-Planella, Esther; Fernández, Emilia; Sanmartí, Raimon; Gratacós, Jordi; Martínez-Taboada, Víctor Manuel; Rodríguez-Rodríguez, Luís; Palau, Núria; Tortosa, Raül; Corbeto, Mireia L.; Lasanta, María L.; Marsal, Sara; Julià, Antonio

    2017-01-01

    Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNFα and IFNγ cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity. PMID:28982122

  20. Autoimmune disorders

    MedlinePlus

    ... exact cause of autoimmune disorders is unknown. One theory is that some microorganisms (such as bacteria or ... the thyroid or pancreas Joints Muscles Red blood cells Skin A person may have more than one ...

  1. Autoimmunity in focus: from mechanisms to treatment.

    PubMed

    Kon, Yujiro

    2012-05-01

    The 5th Asian Congress on Autoimmunity took place in Suntec City, Singapore, on the 17-19 November 2011 under the presidency of Yehuda Shoenfeld (Chaim Sheba Medical Center, Ramat Gan, Israel). Senior investigators from a range of fields--including immunology, autoimmunity, rheumatology, neurology and hepatology--attended the conference. The scientific program placed an emphasis on the pathogenesis, genetic basis and mechanistic aspects of autoimmune diseases, as well as their clinical outcomes and treatment options. Particular focus was placed on systemic lupus erythematosus, rheumatoid arthritis, Type I diabetes, antiphospholipid syndrome and autoimmune hepatitis. Participants from over 50 countries attended the conference.

  2. Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis.

    PubMed

    Huang, Jie; Han, Song; Sun, Qi; Zhao, Yipeng; Liu, Junchen; Yuan, Xiaolu; Mao, Wenqian; Peng, Biwen; Liu, Wanhong; Yin, Jun; He, Xiaohua

    2017-01-01

    Disruption of blood-brain barrier (BBB) and subsequent infiltration of auto-reactive T lymphocytes are major characteristics of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Kv1.3 channel blockers are demonstrated potential therapeutic effects on MS patients and EAE models, maybe via reducing activation of T cells. However, it remains to be explored whether Kv1.3 channel blockers maintain integrity of BBB in MS model. In this study, ImKTx88, a highly selective Kv1.3 channel blocker, was used to determine the role of Kv1.3 channel in the pathogenesis of EAE, particularly in the maintenance of BBB. ImKTx88 ameliorated pathological severity in the EAE rats, and reduced extravasation into CNS. ImKTx88 also ameliorated the severity of loss or redistribution of tight junction proteins, and inhibited over-expression of ICAM-1 and VCAM-1 in the brain from EAE rats. Furthermore ImKTx88 protection was associated with activation of Ang-1/Tie-2 axis, and might be due to decreased IL-17 production. ImKTx88 may be a novel therapeutic agent for MS treatment by stabilizing the BBB.

  3. Monogenic autoimmune diseases of the endocrine system.

    PubMed

    Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E

    2016-10-01

    The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Clinical Recommendations for the Use of Islet Cell Autoantibodies to Distinguish Autoimmune and Non-Autoimmune Gestational Diabetes.

    PubMed

    Haller-Kikkatalo, Kadri; Uibo, Raivo

    2016-02-01

    Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance that begins or is first recognized during pregnancy. The prevalence of GDM is highly variable, depending on the population studied, and reflects the underlying pattern of diabetes in the population. GDM manifests by the second half of pregnancy and disappears following delivery in most cases, but is associated with the risk of subsequent diabetes development. Normal pregnancy induces carbohydrate intolerance to favor the availability of nutrients for the fetus, which is compensated by increased insulin secretion from the maternal pancreas. Pregnancy shares similarities with adiposity in metabolism to save energy, and both conditions favor the development of insulin resistance (IR) and low-grade inflammation. A highly complicated network of modified regulatory mechanisms may primarily affect carbohydrate metabolism by promoting autoimmune reactions to pancreatic β cells and affecting insulin function. As a result, diabetes development during pregnancy is facilitated. Depending on a pregnant woman's genetic susceptibility to diabetes, autoimmune mechanisms or IR are fundamental to the development autoimmune or non-autoimmune GDM, respectively. Pregnancy may facilitate the identification of women at risk of developing diabetes later in life; autoimmune and non-autoimmune GDM may be early markers of the risk of future type 1 and type 2 diabetes, respectively. The most convenient and efficient way to discriminate GDM types is to assess pancreatic β-cell autoantibodies along with diagnosing diabetes in pregnancy.

  5. Effect of Erythromycin on Chronic Respiratory Infection Caused by Pseudomonas aeruginosa with Biofilm Formation in an Experimental Murine Model

    PubMed Central

    Nagata, Towako; Mukae, Hiroshi; Kadota, Junichi; Hayashi, Tomayoshi; Fujii, Takeshi; Kuroki, Misuzu; Shirai, Ryo; Yanagihara, Katsunori; Tomono, Kazunori; Koji, Takehiko; Kohno, Shigeru

    2004-01-01

    Diffuse panbronchiolitis (DPB) is a chronic lower respiratory tract infection commonly associated with persistent late-stage Pseudomonas aeruginosa infection. However, low-dose long-term therapy with certain macrolides is effective in most patients with DPB. The present study was designed to examine the effects of long-term erythromycin (ERY) therapy by using our established murine model of chronic respiratory P. aeruginosa infection. ERY or saline was administered from day 80 after intubation with a P. aeruginosa-precoated tube for the subsequent 10, 20, 40, and 80 days. Bacteriologic and histologic analyses of the murine lungs and electron microscopy of the intubated tube were performed. In the murine model, treatment with ERY for 80 days significantly reduced the number of viable P. aeruginosa organisms in the lungs (P < 0.05). The biofilm formed in situ by P. aeruginosa on the inner wall of the inoculation tube placed into the murine bronchus became significantly thinner after 80 days of ERY treatment. We conclude that the clinical efficacy of macrolides in DPB may be due at least in part to the reduction in P. aeruginosa biofilm formation. PMID:15155229

  6. The value of Autoimmune Syndrome Induced by Adjuvant (ASIA) - Shedding light on orphan diseases in autoimmunity.

    PubMed

    Segal, Yahel; Dahan, Shani; Sharif, Kassem; Bragazzi, Nicola Luigi; Watad, Abdulla; Amital, Howard

    2018-05-01

    Autoimmune Syndrome Induced by Adjuvant (ASIA) is a definition aimed to describe the common etiological process at the root of five clinical entities sharing similar symptomatology: macrophagic myofasciitis syndrome (MMF), Gulf War Syndrome (GWS), sick building syndrome (SBS), siliconosis, and post vaccination autoimmune phenomena. ASIA illustrates the role of environmental immune stimulating agents, or adjuvants, in the instigation of complex autoimmune reactions among individuals bearing a genetic preponderance for autoimmunity. The value of ASIA lies first in the acknowledgment it provides for patients suffering from these as yet ill-defined medical conditions. Equally important is the spotlight it sheds for further research of these poorly understood conditions sharing a common pathogenesis. In this article we elaborate on the significance of ASIA, review the current evidence in support of the syndrome, and address recent reservations raised regarding its validity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Diagnosing autoimmune pancreatitis with the Unifying-Autoimmune-Pancreatitis-Criteria.

    PubMed

    Schneider, Alexander; Michaely, Henrik; Rückert, Felix; Weiss, Christel; Ströbel, Philipp; Belle, Sebastian; Hirth, Michael; Wilhelm, Torsten J; Haas, Stephan L; Jesenofsky, Ralf; Schönberg, Stefan; Marx, Alexander; Singer, Manfred V; Ebert, Matthias P; Pfützer, Roland H; Löhr, J Matthias

    We had developed the Unifying-Autoimmune-Pancreatitis-Criteria (U-AIP) to diagnose autoimmune pancreatitis (AiP) within the M-ANNHEIM classification of chronic pancreatitis. In 2011, International-Consensus-Diagnostic-Criteria (ICDC) to diagnose AiP have been published. We had applied the U-AIP long before the ICDC were available. The aims of the study were, first, to describe patients with AiP diagnosed by the U-AIP; second, to compare diagnostic accuracies of the U-AIP and other diagnostic systems; third, to evaluate the clinical applicability of the U-AIP. From 1998 until 2008, we identified patients with AiP using U-AIP, Japanese-, Korean-, Asian-, Mayo-HISORt-, Revised-Mayo-HISORt- and Italian-criteria. We retrospectively verified the diagnosis by ICDC and Revised-Japanese-2011-criteria, compared diagnostic accuracies of all systems and evaluated all criteria in consecutive patients with pancreatitis (2009 until 2010, Pancreas-Outpatient-Clinic-Cohort, n = 84). We retrospectively validated our diagnostic approach in consecutive patients with a pancreatic lesion requiring surgery (Surgical-Cohort, n = 98). Overall, we identified 21 patients with AiP. Unifying-Autoimmune-Pancreatitis-Criteria and ICDC presented the highest diagnostic accuracies (each 98.8%), highest Youden indices (each 0.95238), and highest proportions of diagnosed patients (each n = 20/21, U-AIP/ICDC vs. other diagnostic systems, p < 0.05, McNemar test). In the Pancreas-Outpatient-Clinic-Cohort, seven patients were diagnosed with AiP (n = 6 by U-AIP, n = 1 by Asian-criteria). International-Consensus-Diagnostic-Criteria confirmed the diagnosis in these individuals. Based on partial fulfillment of U-AIP, AiP was initially suspected in 13% (n = 10/77) of remaining patients from the Pancreas-Outpatient-Clinic-Cohort. In the Surgical-cohort, we identified one patient with AiP by U-AIP and ICDC. Unifying-Autoimmune-Pancreatitis-Criteria revealed a satisfactory clinical applicability

  8. The hygiene theory harnessing helminths and their ova to treat autoimmunity.

    PubMed

    Ben-Ami Shor, Dana; Harel, Michal; Eliakim, Rami; Shoenfeld, Yehuda

    2013-10-01

    The incidence of autoimmune diseases is increasing in Western countries, possibly due to the improved sanitary conditions and reduced exposure to infections in childhood (the hygiene hypothesis). There is an ongoing debate whether infection prevents or precipitates autoimmune diseases. Various helminths species used in several animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. At present the scientific data is based mostly on experimental animal models; however, there is an increasing body of evidence in a number of clinical trials being conducted. Herein we review several clinical trials evaluating the anti-inflammatory effects of helminths and assessing their association with different autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, and autoimmune liver diseases. We also describe the common pathways by which helminths induce immune modulation and the key changes observed in the host immune system following exposure to helminths. These common pathways include the inhibition of IFN-γ and IL-17 production, promotion of IL-4, IL-10 and TGF-β release, induction of CD4(+) T cell FoxP3(+) expression, and generation of regulatory macrophages, dendritic cells, and B cells. Helminths products are becoming significant candidates for anti-inflammatory agents in this context. However, further research is needed for synthetic analogues of helminths' potent products that mimic the parasite-mediated immunomodulation effect.

  9. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity

    PubMed Central

    Sonar, Sandip Ashok; Lal, Girdhari

    2017-01-01

    CD4+ T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4+ T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood–brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4+ T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4+ T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity. PMID:29238350

  11. Clinical characterization of autoimmune encephalitis and psychosis.

    PubMed

    Hao, Qinjian; Wang, Dahai; Guo, Lanting; Zhang, Bo

    2017-04-01

    Autoimmune disorders are growing alarmingly high in prevalence across the globe. Autoimmune encephalitis has had a dramatic impact on the medical field, effectually altering diagnostic and treatment paradigms in regard to neuropsychiatric disorders. Our primary goal in conducting this study was to analyze the clinical characteristics of autoimmune encephalitis patients, with special focus on psychiatric presentations, in the West China Hospital and report patient prognoses after immunotherapy. Data for patients admitted to the West China Hospital with autoimmune encephalitis diagnoses from 2015 to 2016 were collected and the corresponding clinical features were analyzed. We ultimately included 70 patients with autoimmune encephalitis: 56 (80%) anti-NMDAR encephalitis patients, 8 (11%) LGI1 antibody encephalitis patients, and 6 (9%) GABAbR antibody encephalitis patients. The median age of the 70 patients was 33years, 40% were female, and the initial symptoms in 31 patients (44%) were psychiatric in nature. Psychiatric disturbance appeared in 58 patients (83%) during inpatient treatment, after which 57 patients (81%) recovered. Many patients with autoimmune encephalitis present psychotic symptoms; psychiatric symptoms typically appear before neurological features emerge. Timely diagnosis and treatment may yield favorable prognosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Thyroid Autoimmunity in Girls with Turner Syndrome.

    PubMed

    Witkowska-Sędek, Ewelina; Borowiec, Ada; Kucharska, Anna; Chacewicz, Karolina; Rumińska, Małgorzata; Demkow, Urszula; Pyrżak, Beata

    2017-01-01

    Turner syndrome is associated with increased incidence of autoimmune diseases, especially those of the thyroid gland. The aim of this study was to assess the prevalence of thyroid autoimmunity among pediatric patients with Turner syndrome. The study was retrospective and included 41 girls with Turner syndrome aged 6-18 years. Free thyroxine (FT4), thyroid stimulating hormone (TSH), anti-thyroid peroxidase (TPO-Ab) antibodies, anti-thyroglobulin (TG-Ab) antibodies, and karyotype were investigated. The correlation between karyotype and incidence of thyroid autoimmunity was also examined. Eleven patients (26.8%) were positive for TPO-Ab and/or TG-Ab. Three girls from that subgroup were euthyroid, 5 had subclinical hypothyroidism, and 3 were diagnosed with overt hypothyroidism. Out of these 11 patients affected by thyroid autoimmunity, 6 girls had mosaic karyotype with X-isochromosome (n = 4) or with deletions (n = 2), and 5 had the 45,X karyotype. The study findings confirmed a high incidence of thyroid autoimmunity in girls with Turner syndrome, but we failed to observe an association between the incidence of thyroid autoimmunity and karyotype. We conclude that it is important to monitor thyroid function in patients with Turner syndrome because they are prone to develop hypothyroidism.

  13. Suppression of Murine Retrovirus Polypeptide Termination: Effect of Amber Suppressor tRNA on the Cell-Free Translation of Rauscher Murine Leukemia Virus, Moloney Murine Leukemia Virus, and Moloney Murine Sarcoma Virus 124 RNA

    PubMed Central

    Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.

    1980-01-01

    The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716

  14. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    PubMed

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  15. Autoimmune Addison's disease.

    PubMed

    Napier, Catherine; Pearce, Simon H S

    2012-12-01

    Addison's disease is a rare autoimmune disorder. In the developed world, autoimmune adrenalitis is the commonest cause of primary adrenal insufficiency, where the majority of patients have circulating antibodies against the key steroidogenic enzyme 21-hydroxylase. A complex interplay of genetic, immunological and environmental factors culminates in symptomatic adrenocortical insufficiency, with symptoms typically developing over months to years. Biochemical evaluation and further targeted investigations must confirm primary adrenal failure and establish the underlying aetiology. The diagnosis of adrenocortical insufficiency will necessitate lifelong glucocorticoid and mineralocorticoid replacement therapy, aiming to emulate physiological patterns of hormone secretion to achieve well-being and good quality of life. Education of patients and healthcare professionals is essential to minimise the risk of a life-threatening adrenal crisis, which must be promptly recognised and aggressively managed when it does occur. This article provides an overview of our current understanding of the natural history and underlying genetic and immunological basis of this condition. Future research may reveal novel therapeutic strategies for patient management. Until then, optimisation of pharmacological intervention and continued emphasis on education and empowerment of patients should underpin the management of individuals with autoimmune Addison's disease. Copyright © 2012. Published by Elsevier Masson SAS.

  16. [Autoimmune hepatitis: Immunological diagnosis].

    PubMed

    Brahim, Imane; Brahim, Ikram; Hazime, Raja; Admou, Brahim

    2017-11-01

    Autoimmune hepatopathies (AIHT) including autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune cholangitis (AIC), represent an impressive entities in clinical practice. Their pathogenesis is not perfectly elucidated. Several factors are involved in the initiation of hepatic autoimmune and inflammatory phenomena such as genetic predisposition, molecular mimicry and/or abnormalities of T-regulatory lymphocytes. AIHT have a wide spectrum of presentation, ranging from asymptomatic forms to severe acute liver failure. The diagnosis of AIHT is based on the presence of hyperglobulinemia, cytolysis, cholestasis, typical even specific circulating auto-antibodies, distinctive of AIH or PBC, and histological abnormalities as well as necrosis and inflammation. Anti-F actin, anti-LKM1, anti-LC1 antibodies permit to distinguish between AIH type 1 and AIH type 2. Anti-SLA/LP antibodies are rather associated to more severe hepatitis, and particularly useful for the diagnosis of seronegative AIH for other the antibodies. Due to the relevant diagnostic value of anti-M2, anti-Sp100, and anti-gp210 antibodies, the diagnosis of PBC is more affordable than that of PSC and AIC. Based on clinical data, the immunological diagnosis of AIHT takes advantage of the various specialized laboratory techniques including immunofluorescence, immunodot or blot, and the Elisa systems, provided of a closer collaboration between the biologist and the physician. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis.

    PubMed

    Lourbopoulos, Athanasios; Grigoriadis, Nikolaos; Lagoudaki, Roza; Touloumi, Olga; Polyzoidou, Eleni; Mavromatis, Ioannis; Tascos, Nikolaos; Breuer, Aviva; Ovadia, Haim; Karussis, Dimitris; Shohami, Ester; Mechoulam, Raphael; Simeonidou, Constantina

    2011-05-16

    Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther

    2016-12-01

    The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.

  19. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid

    PubMed Central

    Chen, Ruoyan; Ning, Gang; Zhao, Ming-Lang; Fleming, Matthew G.; Diaz, Luis A.; Werb, Zena; Liu, Zhi

    2001-01-01

    Bullous pemphigoid (BP) is an inflammatory subepidermal blistering disease associated with an IgG autoimmune response to the hemidesmosomal protein BP180. Passive transfer of antibodies to the murine BP180 (mBP180) ectodomain triggers a blistering skin disease in mice that depends on complement activation and neutrophil infiltration and closely mimics human BP. In the present study, we show that mast cells (MCs) play a crucial role in experimental BP. Wild-type mice injected intradermally with pathogenic anti-mBP180 IgG exhibited extensive MC degranulation in skin, which preceded neutrophil infiltration and subsequent subepidermal blistering. In contrast, mice genetically deficient in MCs or MC-sufficient mice pretreated with an inhibitor of MC degranulation failed to develop BP. Further, MC-deficient mice reconstituted in skin with MCs became susceptible to experimental BP. Despite the activation of complement to yield C3a and C5a, in the absence of MCs, accumulation of neutrophils at the injection site was blunted. The lack of response due to MC deficiency was overcome by intradermal administration of a neutrophil chemoattractant, IL-8, or by reconstitution of the injection sites with neutrophils. These findings provide the first direct evidence to our knowledge that MCs play an essential role in neutrophil recruitment during subepidermal blister formation in experimental BP. PMID:11602622

  20. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  1. Autoimmunity-Basics and link with periodontal disease.

    PubMed

    Kaur, Gagandeep; Mohindra, Kanika; Singla, Shifali

    2017-01-01

    Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Molecular Diagnosis in Autoimmune Skin Blistering Conditions

    PubMed Central

    Otten, J.V.; Hashimoto, T.; Hertl, M.; Payne, A.S.; Sitaru, C.

    2014-01-01

    Blister formation in skin and mucous membranes results from a loss of cell-cell or cell-matrix adhesion and is a common outcome of pathological events in a variety of conditions, including autoimmune and genetic diseases, viral and bacterial infections, or injury by physical and chemical factors. Autoantibodies against structural components maintaining cell-cell and cell-matrix adhesion induce tissue damage in autoimmune blistering diseases. Detection of these autoantibodies either tissue-bound or circulating in serum is essential to diagnose the autoimmune nature of disease. Various immunofluorescence methods as well as molecular immunoassays, including enzyme-linked immunosorbent assay and immunoblotting, belong to the modern diagnostic algorithms for these disorders. There is still a considerable need to increase awareness of the rare autoimmune blistering diseases, which often show a severe, chronic-relapsing course, among physicians and the public. This review article describes the immunopathological features of autoimmune bullous diseases and the molecular immunoassays currently available for their diagnosis and monitoring. PMID:24160488

  3. Autoimmune mechanisms in pernicious anaemia & thyroid disease.

    PubMed

    Osborne, David; Sobczyńska-Malefora, Agata

    2015-09-01

    Pernicious anaemia (PA) and some types of thyroid disease result from autoimmune processes. The autoimmune mechanisms in these conditions have not been fully elucidated. This review discusses the autoimmune mechanisms involved in PA and how these affect diagnosis and disease progression. In addition to gastric antibodies, antibodies to the vitamin B12 binding protein transcobalamin which can result in high serum B12 levels are also addressed with regard to how they affect clinical practice. The role of autoimmune susceptibility is investigated by comparing PA to one of its most common comorbidities, autoimmune thyroid disease (AITD). Thyroid disease (although not exclusively AITD) and B12 deficiency are both also implicated in the pathology of hyperhomocysteinemia, an elevated homocysteine in plasma. Since hyperhomocysteinemia is a risk factor for cardiovascular occlusive disease, this review also addresses how thyroid disease in particular leads to changes in homocysteine levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice.

    PubMed

    Roths, J B; Murphy, E D; Eicher, E M

    1984-01-01

    A newly discovered autosomal recessive mutation, generalized lymphoproliferative disease (gld), in the C3H/HeJ strain of mice, determines the development of early onset massive lymphoid hyperplasia with autoimmunity. Significant lymph node enlargement is apparent as early as 12 wk of age. By 20 wk, lymph nodes are 50-fold heavier than those of coisogenic C3H/HeJ-+/+ mice. There is a concomitant increase in the numbers of peripheral blood lymphocytes. Analysis of C3H-gld lymph node lymphocyte subsets by immunofluorescence indicates an increase in numbers of B cells, T cells, and null (Thy-1-, sIg-) lymphocytes by 6-, 15-, and 33-fold compared with congeneic control mice. Serologically, gld/gld mice develop antinuclear antibodies (including anti-dsDNA), thymocyte-binding autoantibody, and hypergammaglobulinemia with major increases in several immunoglobulin isotypes. Mutant gld mice live only one-half as long as normal controls (12 and 23 mo, respectively). Interstitial pneumonitis was found in virtually all C3H-gld mice autopsied when moribund. Although immune complexes were detected in the glomerulus by immunofluorescence techniques, only 14% of the autopsied mice had significant lupus-like nephritis. Vascular disease was not found. The pattern of early onset massive lymph node enlargement, hypergammaglobulinemia, and production of antinuclear autoantibodies resembles the basic abnormal phenotype induced by the lpr (lymphoproliferation) mutation. The mutations gld and lpr are not allelic. Linkage studies indicate that gld is located between Pep-3 and Lp on chromosome 1. This new mutation adds another genetically well-defined model to the list of murine lymphoproliferative/autoimmune disorders that may be exploited to gain a clearer understanding of immunoregulatory defects and for identifying common pathogenetic factors involved in systemic autoimmune diseases.

  5. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice

    PubMed Central

    1984-01-01

    A newly discovered autosomal recessive mutation, generalized lymphoproliferative disease (gld), in the C3H/HeJ strain of mice, determines the development of early onset massive lymphoid hyperplasia with autoimmunity. Significant lymph node enlargement is apparent as early as 12 wk of age. By 20 wk, lymph nodes are 50-fold heavier than those of coisogenic C3H/HeJ-+/+ mice. There is a concomitant increase in the numbers of peripheral blood lymphocytes. Analysis of C3H-gld lymph node lymphocyte subsets by immunofluorescence indicates an increase in numbers of B cells, T cells, and null (Thy-1-, sIg-) lymphocytes by 6-, 15-, and 33-fold compared with congeneic control mice. Serologically, gld/gld mice develop antinuclear antibodies (including anti-dsDNA), thymocyte-binding autoantibody, and hypergammaglobulinemia with major increases in several immunoglobulin isotypes. Mutant gld mice live only one-half as long as normal controls (12 and 23 mo, respectively). Interstitial pneumonitis was found in virtually all C3H-gld mice autopsied when moribund. Although immune complexes were detected in the glomerulus by immunofluorescence techniques, only 14% of the autopsied mice had significant lupus-like nephritis. Vascular disease was not found. The pattern of early onset massive lymph node enlargement, hypergammaglobulinemia, and production of antinuclear autoantibodies resembles the basic abnormal phenotype induced by the lpr (lymphoproliferation) mutation. The mutations gld and lpr are not allelic. Linkage studies indicate that gld is located between Pep-3 and Lp on chromosome 1. This new mutation adds another genetically well-defined model to the list of murine lymphoproliferative/autoimmune disorders that may be exploited to gain a clearer understanding of immunoregulatory defects and for identifying common pathogenetic factors involved in systemic autoimmune diseases. PMID:6693832

  6. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies.

    PubMed

    't Hart, Bert A; Jagessar, S Anwar; Kap, Yolanda S; Haanstra, Krista G; Philippens, Ingrid H C H M; Serguera, Che; Langermans, Jan; Vierboom, Michel

    2014-09-01

    The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cardiovascular disease biomarkers across autoimmune diseases.

    PubMed

    Ahearn, Joseph; Shields, Kelly J; Liu, Chau-Ching; Manzi, Susan

    2015-11-01

    Cardiovascular disease is increasingly recognized as a major cause of premature mortality among those with autoimmune disorders. There is an urgent need to identify those patients with autoimmune disease who are at risk for CVD so as to optimize therapeutic intervention and ultimately prevention. Accurate identification, monitoring and stratification of such patients will depend upon a panel of biomarkers of cardiovascular disease. This review will discuss some of the most recent biomarkers of cardiovascular diseases in autoimmune disease, including lipid oxidation, imaging biomarkers to characterize coronary calcium, plaque, and intima media thickness, biomarkers of inflammation and activated complement, genetic markers, endothelial biomarkers, and antiphospholipid antibodies. Clinical implementation of these biomarkers will not only enhance patient care but also likely accelerate the pharmaceutical pipeline for targeted intervention to reduce or eliminate cardiovascular disease in the setting of autoimmunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Antibody-Mediated Autoimmune Encephalitis in Childhood.

    PubMed

    Brenton, J Nicholas; Goodkin, Howard P

    2016-07-01

    The differential diagnosis of encephalitis in childhood is vast, and evaluation for an etiology is often unrevealing. Encephalitis by way of autoimmunity has long been suspected, as in cases of acute disseminated encephalomyelitis; however, researchers have only recently reported evidence of antibody-mediated immune dysregulation resulting in clinical encephalitis. These pathologic autoantibodies, aimed at specific neuronal targets, can result in a broad spectrum of symptoms including psychosis, catatonia, behavioral changes, memory loss, autonomic dysregulation, seizures, and abnormal movements. Autoimmune encephalitis in childhood is often quite different from adult-onset autoimmune encephalitis in clinical presentation, frequency of tumor association, and ultimate prognosis. As many of the autoimmune encephalitides are sensitive to immunotherapy, prompt diagnosis and initiation of appropriate treatment are paramount. Here we review the currently recognized antibody-mediated encephalitides of childhood and will provide a framework for diagnosis and treatment considerations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alterations of glutamate release in the spinal cord of mice with experimental autoimmune encephalomyelitis.

    PubMed

    Marte, Antonella; Cavallero, Anna; Morando, Sara; Uccelli, Antonio; Raiteri, Maurizio; Fedele, Ernesto

    2010-10-01

    We have investigated the spontaneous and the depolarisation-induced release of [(3)H]D-aspartate ([(3)H]D-ASP), a non-metabolisable analogue of glutamate, in spinal cord slices, synaptosomes and gliosomes from mice with experimental autoimmune encephalomyelitis (EAE) at 13, 21 and 55 days post-immunisation (d.p.i.), representing onset, peak and chronic phases of the pathology. At 13 and 21 d.p.i., the KCl-evoked, calcium-dependent overflow of [(3)H]D-ASP in spinal cord slices was significantly lower (30-40%), whereas at 55 d.p.i. it was significantly higher (30%), than that elicited in matched controls. When the release was measured from spinal cord synaptosomes and gliosomes in superfusion, a different picture emerged. The spontaneous and the KCl(15 mM)-induced release of [(3)H]D-ASP were significantly increased both in synaptosomes (17% and 45%, respectively) and gliosomes (26% and 25%, respectively) at 21, but not at 13, d.p.i. At 55 d.p.i., the KCl-induced [(3)H]D-ASP release was significantly increased (40%) only in synaptosomes. Finally, uptake of [(3)H]D-ASP was markedly (50-60%) increased in spinal cord synaptosomes, but not in gliosomes, obtained from EAE mice at 21 d.p.i., whereas no differences could be detected at 13 d.p.i. Our data indicate that glutamatergic neurotransmission is altered in the spinal cord of EAE mice. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  10. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa

    The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune

  11. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis

    DOE PAGES

    Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa; ...

    2016-07-01

    The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune

  12. Immunotherapy of Alzheimer's disease (AD): from murine models to anti-amyloid beta (Abeta) human monoclonal antibodies.

    PubMed

    Geylis, Valeria; Steinitz, Michael

    2006-01-01

    The deposition of amyloid beta (Abeta) protein is a key pathological feature in Alzheimer's disease (AD). In murine models of AD, both active and passive immunization against Abeta induce a marked reduction in amyloid brain burden and an improvement in cognitive functions. Preliminary results of a prematurely terminated clinical trial where AD patients were actively vaccinated with aggregated Abeta bear resemblance to those documented in murine models. Passive immunization of AD patients with anti-Abeta antibodies, in particular human antibodies, is a strategy that provides a more cautious management and control of any undesired side effects. Sera of all healthy adults contain anti-Abeta IgG autoimmune antibodies. Hence antigen-committed human B-cells are easily immortalized by Epstein-Barr virus (EBV) into anti-Abeta secreting cell lines. Two anti-Abeta human monoclonal antibodies which we recently prepared bind to the N-terminus of Abeta peptide and were shown to stain amyloid plaques in non-fixed brain sections from an AD patient. It is anticipated that specifically selected anti-Abeta human monoclonal antibodies could reduce and inhibit deposits of amyloid in brain while avoiding the cognitive decline that characterizes AD. In the future, this type of antibody may prove to be a promising immune therapy for the disease.

  13. Frequency of autoimmune diseases in myasthenia gravis: a systematic review.

    PubMed

    Mao, Zhi-Feng; Yang, Long-Xiu; Mo, Xue-An; Qin, Chao; Lai, Yong-Rong; He, Ning-Yu; Li, Tong; Hackett, Maree L

    2011-03-01

    The course of myasthenia gravis (MG) may get complicated by the development of other autoimmune diseases. Estimates of the frequency of autoimmune diseases will help inform patients and physicians, direct health policy discussion, provide etiologic clues, and optimize the management of MG. However, the frequency of autoimmune diseases in people with MG is still uncertain. A systematic search for English language studies was conducted by MEDLINE and EMBASE from 1960 through 2010. Incidence studies and case series of all MG subtypes with information about autoimmune diseases were included; 25 studies met the inclusion criteria. Although there was considerable heterogeneity, the pooled estimate of the coexisting autoimmune diseases in MG was 13% (95% confidence interval, 12%-14%). Autoimmune thyroid disease seems to occur more frequently than other autoimmune conditions in MG patients. Heterogeneity in study estimates could be explained by ascertainment bias and case mix. Furthermore, autoimmune diseases occurred significantly more often in females and anti-acetylcholine receptor seropositive MG patients. Patients with MG have an increased frequency of coexisting autoimmune diseases. Autoimmune diseases seem to occur more often in female and seropositive MG patients. Further research is needed to expand our understanding of these associations.

  14. Upper gastrointestinal symptoms in autoimmune gastritis

    PubMed Central

    Carabotti, Marilia; Lahner, Edith; Esposito, Gianluca; Sacchi, Maria Carlotta; Severi, Carola; Annibale, Bruno

    2017-01-01

    Abstract Autoimmune gastritis is often suspected for its hematologic findings, and rarely the diagnosis is made for the presence of gastrointestinal symptoms. Aims of this cross-sectional study were to assess in a large cohort of patients affected by autoimmune gastritis the occurrence and the pattern of gastrointestinal symptoms and to evaluate whether symptomatic patients are characterized by specific clinical features. Gastrointestinal symptoms of 379 consecutive autoimmune gastritis patients were systematically assessed and classified following Rome III Criteria. Association between symptoms and anemia pattern, positivity to gastric autoantibodies, Helicobacter pylori infection, and concomitant autoimmune disease were evaluated. In total, 70.2% of patients were female, median age 55 years (range 17–83). Pernicious anemia (53.6%), iron deficiency anemia (34.8%), gastric autoantibodies (68.8%), and autoimmune disorders (41.7%) were present. However, 56.7% of patients complained of gastrointestinal symptoms, 69.8% of them had exclusively upper symptoms, 15.8% only lower and 14.4% concomitant upper and lower symptoms. Dyspepsia, subtype postprandial distress syndrome was the most represented, being present in 60.2% of symptomatic patients. Univariate and multivariate analyses showed that age <55 years (OR 1.6 [CI:1–2.5]), absence of smoking habit (OR 2.2 [CI:1.2–4]), and absence of anemia (OR 3.1 [CI:1.5–6.4]) were independent factors associated to dyspepsia. Autoimmune gastritis is associated in almost 60% of cases with gastrointestinal symptoms, in particular dyspepsia. Dyspepsia is strictly related to younger age, no smoking, and absence of anemia. PMID:28072728

  15. Autoimmune liver disease in Noonan Syndrome.

    PubMed

    Loddo, Italia; Romano, Claudio; Cutrupi, Maria Concetta; Sciveres, Marco; Riva, Silvia; Salpietro, Annamaria; Ferraù, Valeria; Gallizzi, Romina; Briuglia, Silvana

    2015-03-01

    Noonan Syndrome (NS) is characterized by short stature, typical facial dysmorphology and congenital heart defects. The incidence of NS is estimated to be between 1:1000 and 1:2500 live births. The syndrome is transmitted as an autosomal dominant trait. In approximately 50% of cases, the disease is caused by missense mutations in the PTPN11 gene on chromosome 12, resulting in a gain of function of the non-receptor protein tyrosine phosphatase SHP-2 protein. Autoimmune Hepatitis (AIH) is a cryptogenic, chronic and progressive necroinflammatory liver disease. Common features of AIH are hypergammaglobulinemia (IgG), presence of circulating autoantibodies, histological picture of interface hepatitis and response to immunosuppressant drugs. Conventional treatment with Prednisone and Azathioprine is effective in most patients. We describe the case of a 6 years-old girl with Noonan Syndrome and Autoimmune Hepatitis type 1. Molecular analysis of PTPN11 gene showed heterozygous mutation c.923A>G (Asn308Ser) in exon 8. Though association between NS and autoimmune disorders is known, this is the second case of association between Noonan Syndrome and Autoimmune Hepatitis type 1 described in literature. In the management of NS, an accurate clinical evaluation would be recommended. When there is a clinical suspicion of autoimmune phenomena, appropriate laboratory tests should be performed with the aim of clarifying whether the immune system is involved in NS. We think that autoimmunity represents a characteristic of NS, even if the etiopathogenesis is still unknown. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms.

    PubMed

    Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.

  18. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    NASA Astrophysics Data System (ADS)

    Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo

    2013-02-01

    Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  19. [Clinical Phenomenology of Autoimmune Encephalitis].

    PubMed

    Holle, J F; Jessen, F; Kuhn, J

    2016-05-01

    Antibody-associated disorders of the central nervous system constitute a heterogeneous group of disorders that can be roughly divided into two categories: Classic paraneoplastic syndromes associated with so-called well-characterized antibodies (paraneoplastic neurological disorders, PND) and autoimmune disorders with antibodies to membrane-bound or synaptic antigens (autoimmune encephalitis, AE). The discovery of autoimmune encephalitis has led to a paradigm shift in diagnosis and therapy as well as a reclassification of some neuropsychiatric syndromes that were previously classified as idiopathic or simply covered with descriptive terms.In this review article, especially clinical aspects of autoimmune encephalitis will be discussed, as there has been a rapid increase in knowledge in this regard within the past decade; increasingly overlap syndromes and associations with other disease entities have been detected. In addition to general aspects, characteristics of anti-NMDAR-, anti-LGI1-, anti-GABAA and GABABR, anti-AMPAR-, anti-CASPR2-, anti-mGluR, anti-GlycinR-, anti-GAD, anti- DPPX- and anti-D2 R encephalitis and the anti-IgLON5 encephalopathy will be presented. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Predicting post-vaccination autoimmunity: who might be at risk?

    PubMed

    Soriano, Alessandra; Nesher, Gideon; Shoenfeld, Yehuda

    2015-02-01

    Vaccinations have been used as an essential tool in the fight against infectious diseases, and succeeded in improving public health. However, adverse effects, including autoimmune conditions may occur following vaccinations (autoimmune/inflammatory syndrome induced by adjuvants--ASIA syndrome). It has been postulated that autoimmunity could be triggered or enhanced by the vaccine immunogen contents, as well as by adjuvants, which are used to increase the immune reaction to the immunogen. Fortunately, vaccination-related ASIA is uncommon. Yet, by defining individuals at risk we may further limit the number of individuals developing post-vaccination ASIA. In this perspective we defined four groups of individuals who might be susceptible to develop vaccination-induced ASIA: patients with prior post-vaccination autoimmune phenomena, patients with a medical history of autoimmunity, patients with a history of allergic reactions, and individuals who are prone to develop autoimmunity (having a family history of autoimmune diseases; asymptomatic carriers of autoantibodies; carrying certain genetic profiles, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Autoimmunity as a Driving Force of Cognitive Evolution

    PubMed Central

    Nataf, Serge

    2017-01-01

    In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here

  2. Role of autoimmunity in nonviral chronic liver disease.

    PubMed

    Amarapurkar, D N; Amarapurkar, A D

    2000-11-01

    To evaluate the prevalence and clinical profile of autoimmune hepatitis (AIH) in patients with chronic liver disease. Four hundred and thirty five consecutive patient with chronic liver disease seen in our department from January 1997 to December 1998 were studied with detailed history and clinical examination. All the patients underwent liver function tests, ultrasonography, isotope liver scanning, viral markers, autoimmune markers ANA, ASMA, LKM1 and AMA (by immunofluorescence technique) and liver histology whenever permissible. Appropriate work up for Wilson's disease was done whenever suspected clinically. Diagnosis of autoimmune hepatitis was made by the composite scoring system by international autoimmune hepatitis group. Twenty out of the 435 patients met the criteria of definite autoimmune hepatitis and seven patient had probable autoimmune hepatitis. Forty out of 408 patients showed markers of autoimmunity positive but did not qualify diagnosis of AIH on composite scores. Demographic profile of 27 patients with autoimmune hepatitis was as follows; male:female ratio 1:8, mean age 39.8 +/- 13 years (Range 4-65 years); mode of presentation as cirrhosis 11/27 (40.7%), chronic hepatitis 12/27 (44.4%) and acute hepatitis 4/27 (14.8%). Elevated serum bilirubin levels were seen in 12 (44.4%) patients while mean serum aminotransferases levels were 249 +/- 343 and 262 +/- 418 respectively. Other disease associations seen were as follows: diabetes in 4 (14.8%), rheumatoid arthritis in 3 (11%), hypothyroidism in 2 (7.4%) and ulcerative colitis in 1 (3.7%). The pattern of autoimmune markers was ANA +ve 23/27 (85%) (+ve titres of ANA > 1:80 in adults and 1:20 in children), ASMA +ve in 16/27 (59.2%) (+ve titres of ASMA > 1:40) and LKM1 in 3 patients. AMA in tires less than 1:80 was found in 3 patients. Liver histology changes seen were lymphoplasmacytic infiltrates (100%), bridging necrosis (93%), liver cell rossetting (80%) and fibrosis with or without cirrhosis (50

  3. Autoimmune Abnormalities of Postpartum Thyroid Diseases

    PubMed Central

    Di Bari, Flavia; Granese, Roberta; Le Donne, Maria; Vita, Roberto; Benvenga, Salvatore

    2017-01-01

    The year following parturition is a critical time for the de novo appearance or exacerbation of autoimmune diseases, including autoimmune thyroid disease. The vast majority of postpartum thyroid disease consists of postpartum thyroiditis (PPT) and the minority by Graves’ disease and non-autoimmune thyroiditis. PPT has a worldwide prevalence ranging from 1 to 22% and averaging 5% based on a review published in 2012. Several factors confer risk for the development of PPT. Typically, the clinical course of PPT is characterized by three phases: thyrotoxic, hypothyroid, and euthyroid phase. Approximately half of PPT women will have permanent hypothyroidism. The best humoral marker for predictivity, already during the first trimester of gestation, is considered positivity for thyroperoxidase autoantibodies (TPOAb), though only one-third to half of such TPOAb-positive pregnant women will develop PPT. Nutraceuticals (such as selenium) or omega-3-fatty acid supplements seem to have a role in prevention of PPT. In a recent study on pregnant women with stable dietary habits, we found that the fish consumers had lower rates of positivity (and lower serum levels) of both TPOAb and thyroglobulin Ab compared to meat eaters. Finally, we remind the reader of other diseases that can be observed in the postpartum period, either autoimmune or non-autoimmune, thyroid or non-thyroid. PMID:28751877

  4. Autoimmune Encephalitis Following Bone Marrow Transplantation.

    PubMed

    Rathore, Geetanjali S; Leung, Kathryn S; Muscal, Eyal

    2015-09-01

    Neurological complications, especially encephalopathy and seizures, are commonly seen in bone marrow transplant patients. Infections, chemotoxicity, graft versus host disease, or secondary central nervous system malignancies are the most common underlying etiologies. There is increased awareness that autoimmune encephalitis may cause neurological dysfunction in immunocompetent children. The potential role of such a mechanism in children undergoing bone marrow transplantation is unknown. We report a boy who developed autoimmune encephalitis with voltage-gated potassium channel-associated and thyroid autoantibodies subsequent to transplantation. A 7-year-old boy presented with a change in behavior, poor attention, cognitive deficits, and abnormal movements 15 months after undergoing transplantation for idiopathic aplastic anemia. He had clinical and subclinical seizures and brain magnetic resonance imaging hyperintensities bilaterally in the uncal regions. His evaluation revealed high titers of voltage-gated potassium channel, leucine-rich glioma-inactivated 1 protein, and thyroglobulin antibodies suggestive of autoimmune limbic encephalitis. He showed significant improvement in behavior and neuropsychological testing and has remained seizure-free on levetiracetam after immunotherapy with corticosteroids and intravenous immunoglobulin. Systemic autoimmune manifestations in bone marrow transplant patients have been well-documented, but autoimmune encephalitis after transplantation has yet to be described in children. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Intraocular inflammation in autoimmune diseases.

    PubMed

    Pras, Eran; Neumann, Ron; Zandman-Goddard, Gisele; Levy, Yair; Assia, Ehud I; Shoenfeld, Yehuda; Langevitz, Pnina

    2004-12-01

    The uveal tract represents the vascular organ of the eye. In addition to providing most of the blood supply to the intraocular structures, it acts as a conduit for immune cells, particularly lymphocytes, to enter the eye. Consequently, the uveal tract is represented in many intraocular inflammatory processes. Uveitis is probably a misnomer unless antigens within the uvea are the direct targets of the inflammatory process. A better term of the condition is "intraocular inflammation" (IOI). To review the presence of IOI in autoimmune diseases, the immunopathogenic mechanisms leading to disease, and treatment. We reviewed the English medical literature by using MEDLINE (1984-2003) employing the terms "uveitis," "intraocular inflammation," and "autoimmune diseases." An underlying autoimmune disease was identified in up to 40% of patients with IOI, and included spondyloarthropathies, Behcets disease, sarcoidosis, juvenile chronic arthritis, Vogt-Koyanagi-Harada syndrome (an inflammatory syndrome including uveitis with dermatologic and neurologic manifestations), immune recovery syndrome, and uveitis with tubulointerstitial disease. The immunopathogenesis of IOI involves enhanced T-cell response. Recently, guidelines for the use of immunosuppressive drugs for inflammatory eye disease were established and include: corticosteroids, azathioprine, methotrexate, mycophenolate mofetil, cyclosporine, tacrolimus, cyclophosphamide, and chlorambucil. New therapies with limited experience include the tumor necrosis factor alpha inhibitors, interferon alfa, monoclonal antibodies against lymphocyte surface antigens, intravenous immunoglobulin (IVIG), and the intraocular delivery of immunosuppressive agents. An underlying autoimmune disease was identified in up to 40% of patients with IOI. Immunosuppressive drugs, biologic agents, and IVIG are employed for the treatment of IOI in autoimmune diseases.

  6. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    PubMed Central

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  7. Thyroid nodules and thyroid autoimmunity in the context of environmental pollution.

    PubMed

    Benvenga, Salvatore; Antonelli, Alessandro; Vita, Roberto

    2015-12-01

    Evidence suggests that in most industrialized countries autoimmune disorders, including chronic lymphocytic thyroiditis, are increasing. This increase parallels the one regarding differentiated thyroid cancer, the increment of which is mainly due to the papillary histotype. A number of studies have pointed to an association between chronic lymphocytic thyroiditis and differentiated thyroid cancer. The upward trend of these two thyroid diseases is sustained by certain environmental factors, such as polluting substances acting as endocrine disrupting chemicals. Herein we will review the experimental and clinical literature that highlights the effects of environmental and occupational exposure to polluting chemicals in the development of autoimmune thyroid disease or differentiated thyroid cancer. Stakeholders, starting from policymarkers, should become more sensitive to the consequences for the thyroid resulting from exposure to EDC. Indeed, the economic burden resulting from such consequences has not been quantified thus far.

  8. Cellular immunity and immunopathology in autoimmune Addison's disease.

    PubMed

    Bratland, Eirik; Husebye, Eystein S

    2011-04-10

    Autoimmune adrenocortical failure, or Addison's disease, is a prototypical organ-specific autoimmune disorder. In common with related autoimmune endocrinopathies, Addison's disease is only manageable to a certain extent with replacement therapy being the only treatment option. Unfortunately, the available therapy does not restore the physiological hormone levels and biorhythm. The key to progress in treating and preventing autoimmune Addison's disease lies in improving our understanding of the predisposing factors, the mechanisms responsible for the progression of the disease, and the interactions between adrenal antigens and effector cells and molecules of the immune system. The aim of the present review is to summarize the current knowledge on the role of T cells and cellular immunity in the pathogenesis of autoimmune Addison's disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Inheritable and sporadic non-autoimmune hyperthyroidism.

    PubMed

    Ferraz, Carolina; Paschke, Ralf

    2017-03-01

    Hyperthyroidism is a clinical state that results from high thyroid hormone levels which has multiple etiologies, manifestations, and potential therapies. Excluding the autoimmune Graves disease, autonomic adenomas account for the most import cause of non-autoimmune hyperthyroidism. Activating germline mutations of the TSH receptor are rare etiologies for hyperthyroidism. They can be inherited in an autosomal dominant manner (familial or hereditary, FNAH), or may occur sporadically as a de novo condition, also called: persistent sporadic congenital non-autoimmune hyperthyroidism (PSNAH). These three conditions: autonomic adenoma, FNAH and PSNAH constitute the inheritable and sporadic non-autoimmune hyperthyroidism. Particularities in epidemiology, etiology, molecular and clinical aspects of these three entities will be discussed in this review in order to guide to an accurate diagnosis allowing among others genetic counseling and presymptomatic diagnosis for the affected families. The optimal treatment based on the right diagnosis will avoid consequences of a persistent or relapsing hyperthyroidism. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  10. Autoimmunity in endocrine diseases.

    PubMed

    Rose, N R; Burek, C L

    1982-01-01

    The realization that autoimmunity underlies many endocrine disorders of previously unknown etiology has greatly broadened our understanding of the pathogenesis of these diseases. It has provided new explanations for their heredity and their association with particular HLA haplotypes. It has also offered new tools for diagnosing these diseases as well as monitoring their course or predicting their outcome. Finally, establishing the autoimmune basis of these diseases offers new potential for their treatment. The next quarter century of research into immunologic aspects of endocrine diseases promises to be as fruitful as the last.

  11. Severe systemic autoimmune disease associated with Epstein-Barr virus infection.

    PubMed

    Sevilla, Julián; del Carmen Escudero, Maria; Jiménez, Raquel; González-Vicent, Marta; Manzanares, Javier; García-Novo, Dolores; Madero, Luis

    2004-12-01

    Infection with Epstein-Barr virus (EBV) has been associated with different autoimmune manifestations. The authors describe a girl who developed a severe systemic autoimmune disease with severe autoimmune hemolytic anemia, mild autoimmune thrombopenia, antineutrophil antibodies, and fatal autoimmune hepatitis after EBV infection. Despite immunosuppressive treatment and ultimately liver transplantation, this patient could not overcome her clinical condition and died. The etiopathogenesis of this complex disease and the association with EBV infection is discussed.

  12. Effects of 1, 25-Dihydroxyvitamin D3 on Experimental Autoimmune Myocarditis in Mice.

    PubMed

    Hu, Fen; Yan, Lianhua; Lu, Shuai; Ma, Wenhan; Wang, Ya; Wei, Yuzhen; Yan, Xiaofei; Zhao, Xin; Chen, Zhijian; Wang, Zhaohui; Cheng, Bo

    2016-01-01

    Myocarditis is an important inflammatory disease of the heart which causes life-threatening conditions. 1, 25(OH)2 D3 has effects on multiple systems and diseases. The present study was aimed to investigate the effect of 1, 25(OH)2 D3 on experimental autoimmune myocarditis (EAM), and explored the underlying mechanisms involved. EAM was induced by immunizing BALB/c mice with cardiac α-myosin heavy chain peptides (MyHC-α). 1, 25(OH)2 D3 (1,000 ng/kg once) or vehicle was administered intraperitoneally every other day during the entire experiment. On day 21, transthoracic echocardiography was performed and cardiac inflammatory infiltration was detected by hematoxylin and eosin (HE). The terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, and Western blots for the expression of protein caspase-3 and cleaved-caspase3 were used to evaluate apoptosis. Transmission electron microscopy and Western blots for the expression of protein Beclin-1, LC3B, and P62 were used to evaluate autophagy. The ratio of heart weight/body weight was significantly reduced in 1, 25(OH)2 D3 -treated EAM mice, compared with vehicle -treated ones. 1, 25(OH)2 D3 treatment improved cardiac function, diminished cell infiltration in cardiac, suppressed myocardial apoptosis, decreased the number of autophagosomes, and decreased the protein expression of Beclin-1, LC3-II and p62. The present results demonstrated that administration of 1, 25(OH)2 D3 decreased EAM severity. 1, 25(OH)2 D3 treatment may be a feasible therapeutic approach for EAM. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Mycobacterium bovis Bacille Calmette-Guérin Infection in the CNS Suppresses Experimental Autoimmune Encephalomyelitis and Th17 Responses in an IFN-gamma-independent Manner1

    PubMed Central

    Lee, JangEun; Reinke, Emily K.; Zozulya, Alla L.; Sandor, Matyas; Fabry, Zsuzsanna

    2009-01-01

    Multiple sclerosis (MS) and an animal model resembling MS, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the central nervous system (CNS) that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-γ, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-γ in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). Here we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of MOG-specific IFN-γ-producing CD4+ T cells in the CNS. IL-17+CD4+ T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3+CD4+ T cells in these mice was equivalent to that of control mice. The i.c. BCG infection-induced protection of EAE and suppression of MOG-specific IL-17+CD4+ T cell responses were similar in both wild type (WT) and IFN-γ deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-γ-mediated mechanisms. PMID:18941210

  14. Requirement for Pathogenic IL-23 Signaling Is Restricted to Initiation of Autoimmune Myocarditis

    PubMed Central

    Wu, Lei; Diny, Nicola L.; Ong, SuFey; Barin, Jobert G.; Hou, Xuezhou; Rose, Noel R.; Talor, Monica V.; Čiháková, Daniela

    2016-01-01

    Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL-23 stimulation of CD4+ T cells is required only briefly at the initiation of GM-CFS-dependent cardiac autoimmunity. IL-23 signal, acting as a switch, turns on pathogenicity of CD4+ T cells, and becomes dispensable once autoreactivity is established. Il23a−/− mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL-23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4+ T cells raised from Il23a−/− donors. Thus, IL-23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL-23 induced GM-CSF mediates the pathogenicity of CD4+ T cells in EAM. The neutralization of GM-CSF abrogated cardiac inflammation. However, sustained IL-23 signaling is required to maintain IL-17A production in CD4+ T cells. Despite inducing inflammation in Il23a−/− recipients comparable to WT, autoreactive CD4+ T cells downregulated IL-17A production without persistent IL-23 signaling. This divergence on the controls of GM-CSF-dependent pathogenicity on one side and IL-17A production on the other side may contribute to the discrepant efficacies of anti-IL-23 therapy in different autoimmune diseases. PMID:26660726

  15. MuSK induced experimental autoimmune myasthenia gravis does not require IgG1 antibody to MuSK.

    PubMed

    Küçükerden, Melike; Huda, Ruksana; Tüzün, Erdem; Yılmaz, Abdullah; Skriapa, Lamprini; Trakas, Nikos; Strait, Richard T; Finkelman, Fred D; Kabadayı, Sevil; Zisimopoulou, Paraskevi; Tzartos, Socrates; Christadoss, Premkumar

    2016-06-15

    Sera of myasthenia gravis (MG) patients with muscle-specific receptor kinase-antibody (MuSK-Ab) predominantly display the non-complement fixing IgG4 isotype. Similarly, mouse IgG1, which is the analog of human IgG4, is the predominant isotype in mice with experimental autoimmune myasthenia gravis (EAMG) induced by MuSK immunization. The present study was performed to determine whether IgG1 anti-MuSK antibody is required for immunized mice to develop EAMG. Results demonstrated a significant correlation between clinical severity of EAMG and levels of MuSK-binding IgG1+, IgG2+ and IgG3+ peripheral blood B cells in MuSK-immunized wild-type (WT) mice. Moreover, MuSK-immunized IgG1 knockout (KO) and WT mice showed similar EAMG severity, serum MuSK-Ab levels, muscle acetylcholine receptor concentrations, neuromuscular junction immunoglobulin and complement deposit ratios. IgG1 and IgG3 were the predominant anti-MuSK isotypes in WT and IgG1 KO mice, respectively. These observations demonstrate that non-IgG1 isotypes can mediate MuSK-EAMG pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The split personality of NKT cells in malignancy, autoimmune and allergic disorders

    PubMed Central

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-01-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570

  17. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity

    PubMed Central

    Jaworski, Maike; Marsland, Ben J; Gehrig, Jasmine; Held, Werner; Favre, Stéphanie; Luther, Sanjiv A; Perroud, Mai; Golshayan, Déla; Gaide, Olivier; Thome, Margot

    2014-01-01

    The protease activity of the paracaspase Malt1 has recently gained interest as a drug target for immunomodulation and the treatment of diffuse large B-cell lymphomas. To address the consequences of Malt1 protease inactivation on the immune response in vivo, we generated knock-in mice expressing a catalytically inactive C472A mutant of Malt1 that conserves its scaffold function. Like Malt1-deficient mice, knock-in mice had strong defects in the activation of lymphocytes, NK and dendritic cells, and the development of B1 and marginal zone B cells and were completely protected against the induction of autoimmune encephalomyelitis. Malt1 inactivation also protected the mice from experimental induction of colitis. However, Malt1 knock-in mice but not Malt1-deficient mice spontaneously developed signs of autoimmune gastritis that correlated with an absence of Treg cells, an accumulation of T cells with an activated phenotype and high serum levels of IgE and IgG1. Thus, removal of the enzymatic activity of Malt1 efficiently dampens the immune response, but favors autoimmunity through impaired Treg development, which could be relevant for therapeutic Malt1-targeting strategies. PMID:25319413

  18. Cocaine/levamisole-associated autoimmune syndrome: a disease of neutrophil-mediated autoimmunity.

    PubMed

    Cascio, Michael J; Jen, Kuang-Yu

    2018-01-01

    Levamisole was previously used for its immunomodulatory properties to treat rheumatoid arthritis and some cancers. However, because of serious side-effects, it was taken off the market in the United States. Recently, levamisole has reemerged as a popular cocaine adulterant. Some individuals who consume levamisole-adulterated cocaine can develop a life-threatening autoimmune syndrome. In this review, the medical consequences of levamisole exposure and postulated mechanisms by which levamisole induces these adverse effects are discussed. Although agranulocytosis and cutaneous vasculitis are the major findings in patients who develop cocaine/levamisole-associated autoimmune syndrome (CLAAS), more recent experience indicates that other organ systems can be involved as well. Current studies point to neutrophil activation and neutrophil extracellular trap formation with subsequent antineutrophil cytoplasmic antibody-mediated tissue injury as a possible mechanism of CLAAS. In the past decade, the detrimental effects of levamisole have reemerged because of its popularity as a cocaine adulterant. Although infrequent, some individuals develop a systemic autoimmune syndrome characterized by immune-mediated agranulocytosis and antineutrophil cytoplasmic antibody-mediated vasculitis. Mechanistically, neutrophil antigens appear to be a major player in inducing CLAAS. Prompt cessation of levamisole exposure is key to treatment, although relapses are frequent because of the addictive effects of cocaine and the high prevalence of levamisole within the cocaine supply.

  19. Is Multiple Sclerosis an Autoimmune Disease?

    PubMed Central

    Wootla, Bharath; Eriguchi, Makoto; Rodriguez, Moses

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS. PMID:22666554

  20. Interleukin-35 induces regulatory B cells that suppress autoimmune disease.

    PubMed

    Wang, Ren-Xi; Yu, Cheng-Rong; Dambuza, Ivy M; Mahdi, Rashid M; Dolinska, Monika B; Sergeev, Yuri V; Wingfield, Paul T; Kim, Sung-Hye; Egwuagu, Charles E

    2014-06-01

    Interleukin-10 (IL-10)-producing regulatory B (Breg) cells suppress autoimmune disease, and increased numbers of Breg cells prevent host defense to infection and promote tumor growth and metastasis by converting resting CD4(+) T cells to regulatory T (Treg) cells. The mechanisms mediating the induction and development of Breg cells remain unclear. Here we show that IL-35 induces Breg cells and promotes their conversion to a Breg subset that produces IL-35 as well as IL-10. Treatment of mice with IL-35 conferred protection from experimental autoimmune uveitis (EAU), and mice lacking IL-35 (p35 knockout (KO) mice) or defective in IL-35 signaling (IL-12Rβ2 KO mice) produced less Breg cells endogenously or after treatment with IL-35 and developed severe uveitis. Adoptive transfer of Breg cells induced by recombinant IL-35 suppressed EAU when transferred to mice with established disease, inhibiting pathogenic T helper type 17 (TH17) and TH1 cells while promoting Treg cell expansion. In B cells, IL-35 activates STAT1 and STAT3 through the IL-35 receptor comprising the IL-12Rβ2 and IL-27Rα subunits. As IL-35 also induced the conversion of human B cells into Breg cells, these findings suggest that IL-35 may be used to induce autologous Breg and IL-35(+) Breg cells and treat autoimmune and inflammatory disease.

  1. Autoimmunity and primary immunodeficiency: two sides of the same coin?

    PubMed

    Schmidt, Reinhold E; Grimbacher, Bodo; Witte, Torsten

    2017-12-19

    Autoimmunity and immunodeficiency were previously considered to be mutually exclusive conditions; however, increased understanding of the complex immune regulatory and signalling mechanisms involved, coupled with the application of genetic analysis, is revealing the complex relationships between primary immunodeficiency syndromes and autoimmune diseases. Single-gene defects can cause rare diseases that predominantly present with autoimmune symptoms. Such genetic defects also predispose individuals to recurrent infections (a hallmark of immunodeficiency) and can cause primary immunodeficiencies, which can also lead to immune dysregulation and autoimmunity. Moreover, risk factors for polygenic rheumatic diseases often exist in the same genes as the mutations that give rise to primary immunodeficiency syndromes. In this Review, various primary immunodeficiency syndromes are presented, along with their pathogenetic mechanisms and relationship to autoimmune diseases, in an effort to increase awareness of immunodeficiencies that occur concurrently with autoimmune diseases and to highlight the need to initiate appropriate genetic tests. The growing knowledge of various genetically determined pathologic mechanisms in patients with immunodeficiencies who have autoimmune symptoms opens up new avenues for personalized molecular therapies that could potentially treat immunodeficiency and autoimmunity at the same time, and that could be further explored in the context of autoimmune rheumatic diseases.

  2. The suppression of mitogen responses associated with resistance to experimental autoimmune encephalomyelitis requires adherent and T cells.

    PubMed

    Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S

    1984-05-01

    Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.

  3. Autoimmune thyrotoxicosis: diagnostic challenges.

    PubMed

    Ponto, Katharina A; Kahaly, George J

    2012-09-01

    Autoimmune thyrotoxicosis or Graves' disease (GD) is the most common cause of hyperthyroidism in the United States (full text available online: http://education.amjmed.com/pp1/249). GD occurs more often in women (ratio 5:1) and has a population prevalence of 1-2%. A genetic determinant to the susceptibility to GD is suspected because of familial clustering of the disease, a high sibling recurrence risk, and the familial occurrence of thyroid autoantibodies. GD is a systemic autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid-antigen-specific T cells into the thyroid and thyroid stimulating hormone receptor (TSHR) expressing tissues, i.e. orbit, skin, with the production of autoantibodies to well-defined thyroidal antigens. Stimulatory autoantibodies in GD activate the TSHR leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow on neck ultrasound) thyroid gland, associated orbitopathy, biochemically confirmed thyrotoxicosis, positive TSHR autoantibodies, and often a family history of autoimmune disorders. Copyright © 2012. Published by Elsevier Inc.

  4. Autoimmune mechanisms in myasthenia gravis.

    PubMed

    Cavalcante, Paola; Bernasconi, Pia; Mantegazza, Renato

    2012-10-01

    This article reviews recent findings on factors and mechanisms implicated in the pathogenesis of myasthenia gravis and briefly summarizes data on therapies acting at various stages of the autoimmune process. Data published over the last year promise to improve understanding of pathogenic mechanisms underlying myasthenia gravis. Animal studies have at last shown that antimuscle-specific kinase (MuSK) autoantibodies, like antiacetylcholine receptor (AChR) autoantibodies, are myasthenogenic. A new autoantigen, the low-density lipoprotein receptor-related protein 4 (LRP4), has been identified in variable proportions of otherwise seronegative patients. Anti-LRP4 antibodies may define a new myasthenia gravis subtype, supporting the concept that myasthenia gravis is not a single disease entity, and that different subtypes can differ in aetiology. Genetic and environmental factors are implicated in myasthenia gravis. The finding of persisting viral infection in the thymus of AChR-myasthenia gravis patients, combined with data on chronic inflammation, suggest that pathogens may favour intrathymic AChR-specific autosensitization and maintenance of autoimmunity in genetically susceptible individuals. Defective immunoregulatory mechanisms, involving pathogenic Th17 and regulatory T cells, contribute to tolerance loss and perpetuation of the autoimmune response in myasthenia gravis patients. The recent identification of mechanisms initiating and perpetuating autoimmunity in myasthenia gravis may stimulate the development of more effective therapies.

  5. Autoimmune Epilepsy”: Encephalitis With Autoantibodies for Epileptologists

    PubMed Central

    Bien, Christian G.; Holtkamp, Martin

    2017-01-01

    Autoimmune encephalitides may account for epilepsies of so far unknown cause. These “autoimmune epilepsies” may respond well to immunotherapy. More than a dozen autoantibodies have been found with this constellation; therefore, broad autoantibody testing of serum-CSF pairs offers the best diagnostic yield. Several particular features raise the suspicion of an autoimmune cause in otherwise unexplained seizure disorders. PMID:28684941

  6. Murine fundus fluorescein angiography: An alternative approach using a handheld camera.

    PubMed

    Ehrenberg, Moshe; Ehrenberg, Scott; Schwob, Ouri; Benny, Ofra

    2016-07-01

    In today's modern pharmacologic approach to treating sight-threatening retinal vascular disorders, there is an increasing demand for a compact, mobile, lightweight and cost-effective fluorescein fundus camera to document the effects of antiangiogenic drugs on laser-induced choroidal neovascularization (CNV) in mice and other experimental animals. We have adapted the use of the Kowa Genesis Df Camera to perform Fundus Fluorescein Angiography (FFA) in mice. The 1 kg, 28 cm high camera has built-in barrier and exciter filters to allow digital FFA recording to a Compact Flash memory card. Furthermore, this handheld unit has a steady Indirect Lens Holder that firmly attaches to the main unit, that securely holds a 90 diopter lens in position, in order to facilitate appropriate focus and stability, for photographing the delicate central murine fundus. This easily portable fundus fluorescein camera can effectively record exceptional central retinal vascular detail in murine laser-induced CNV, while readily allowing the investigator to adjust the camera's position according to the variable head and eye movements that can randomly occur while the mouse is optimally anesthetized. This movable image recording device, with efficiencies of space, time, cost, energy and personnel, has enabled us to accurately document the alterations in the central choroidal and retinal vasculature following induction of CNV, implemented by argon-green laser photocoagulation and disruption of Bruch's Membrane, in the experimental murine model of exudative macular degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Risk Factors for Autoimmune Diseases Development After Thrombotic Thrombocytopenic Purpura.

    PubMed

    Roriz, Mélanie; Landais, Mickael; Desprez, Jonathan; Barbet, Christelle; Azoulay, Elie; Galicier, Lionel; Wynckel, Alain; Baudel, Jean-Luc; Provôt, François; Pène, Frédéric; Mira, Jean-Paul; Presne, Claire; Poullin, Pascale; Delmas, Yahsou; Kanouni, Tarik; Seguin, Amélie; Mousson, Christiane; Servais, Aude; Bordessoule, Dominique; Perez, Pierre; Chauveau, Dominique; Veyradier, Agnès; Halimi, Jean-Michel; Hamidou, Mohamed; Coppo, Paul

    2015-10-01

    Autoimmune thrombotic thrombocytopenic purpura (TTP) can be associated with other autoimmune disorders, but their prevalence following autoimmune TTP remains unknown. To assess the prevalence of autoimmune disorders associated with TTP and to determine risk factors for and the time course of the development of an autoimmune disorder after a TTP episode, we performed a cross sectional study. Two-hundred sixty-one cases of autoimmune TTP were included in the French Reference Center registry between October, 2000 and May, 2009. Clinical and laboratory data available at time of TTP diagnosis were recovered. Each center was contacted to collect the more recent data and diagnosis criteria for autoimmunity. Fifty-six patients presented an autoimmune disorder in association with TTP, 9 years before TTP (median; min: 2 yr, max: 32 yr) (26 cases), at the time of TTP diagnosis (17 cases) or during follow-up (17 cases), up to 12 years after TTP diagnosis (mean, 22 mo). The most frequent autoimmune disorder reported was systemic lupus erythematosus (SLE) (26 cases) and Sjögren syndrome (8 cases). The presence of additional autoimmune disorders had no impact on outcomes of an acute TTP or the occurrence of relapse. Two factors evaluated at TTP diagnosis were significantly associated with the development of an autoimmune disorder during follow-up: the presence of antidouble stranded (ds)DNA antibodies (hazard ratio (HR): 4.98; 95% confidence interval (CI) [1.64-15.14]) and anti-SSA antibodies (HR: 9.98; 95% CI [3.59-27.76]). A follow-up across many years is necessary after an acute TTP, especially when anti-SSA or anti-dsDNA antibodies are present on TTP diagnosis, to detect autoimmune disorders early before immunologic events spread to prevent disabling complications.

  8. Risk Factors for Autoimmune Diseases Development After Thrombotic Thrombocytopenic Purpura

    PubMed Central

    Roriz, Mélanie; Landais, Mickael; Desprez, Jonathan; Barbet, Christelle; Azoulay, Elie; Galicier, Lionel; Wynckel, Alain; Baudel, Jean-Luc; Provôt, François; Pène, Frédéric; Mira, Jean-Paul; Presne, Claire; Poullin, Pascale; Delmas, Yahsou; Kanouni, Tarik; Seguin, Amélie; Mousson, Christiane; Servais, Aude; Bordessoule, Dominique; Perez, Pierre; Chauveau, Dominique; Veyradier, Agnès; Halimi, Jean-Michel; Hamidou, Mohamed; Coppo, Paul

    2015-01-01

    Abstract Autoimmune thrombotic thrombocytopenic purpura (TTP) can be associated with other autoimmune disorders, but their prevalence following autoimmune TTP remains unknown. To assess the prevalence of autoimmune disorders associated with TTP and to determine risk factors for and the time course of the development of an autoimmune disorder after a TTP episode, we performed a cross sectional study. Two-hundred sixty-one cases of autoimmune TTP were included in the French Reference Center registry between October, 2000 and May, 2009. Clinical and laboratory data available at time of TTP diagnosis were recovered. Each center was contacted to collect the more recent data and diagnosis criteria for autoimmunity. Fifty-six patients presented an autoimmune disorder in association with TTP, 9 years before TTP (median; min: 2 yr, max: 32 yr) (26 cases), at the time of TTP diagnosis (17 cases) or during follow-up (17 cases), up to 12 years after TTP diagnosis (mean, 22 mo). The most frequent autoimmune disorder reported was systemic lupus erythematosus (SLE) (26 cases) and Sjögren syndrome (8 cases). The presence of additional autoimmune disorders had no impact on outcomes of an acute TTP or the occurrence of relapse. Two factors evaluated at TTP diagnosis were significantly associated with the development of an autoimmune disorder during follow-up: the presence of antidouble stranded (ds)DNA antibodies (hazard ratio (HR): 4.98; 95% confidence interval (CI) [1.64–15.14]) and anti-SSA antibodies (HR: 9.98; 95% CI [3.59–27.76]). A follow-up across many years is necessary after an acute TTP, especially when anti-SSA or anti-dsDNA antibodies are present on TTP diagnosis, to detect autoimmune disorders early before immunologic events spread to prevent disabling complications. PMID:26496263

  9. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be

  10. Autoimmune hepatitis

    MedlinePlus

    ... and Liver Disease. 10th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 90. Pawlotsky J-M. Chronic viral and autoimmune hepatitis. In: Goldman L, ... Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 149. ... Updated by: Michael M. Phillips, MD, Clinical Professor of Medicine, The George ...

  11. Autoimmune disease prevalence in a multiple sclerosis cohort in Argentina.

    PubMed

    Farez, Mauricio F; Balbuena Aguirre, María E; Varela, Francisco; Köhler, Alejandro A; Correale, Jorge

    2014-01-01

    Background. Comorbid autoimmune diseases in MS patients have been studied extensively with controversial results. Moreover, no such data exists for Latin-American MS patients. Methods. We conducted a case-control study aimed to establish the prevalence of autoimmune disorders in a cohort of Argentinean MS patients. Results. There were no significant differences in autoimmune disease prevalence in MS patients with respect to controls. The presence of one or more autoimmune disorders did not increase risk of MS (OR 0.85, 95% CI 0.6-1.3). Discussion. Our results indicate absence of increased comorbid autoimmune disease prevalence in MS patients, as well as of increased risk of MS in patients suffering from other autoimmune disorders.

  12. Autoimmune Disease Prevalence in a Multiple Sclerosis Cohort in Argentina

    PubMed Central

    Farez, Mauricio F.; Balbuena Aguirre, María E.; Varela, Francisco; Köhler, Alejandro A.

    2014-01-01

    Background. Comorbid autoimmune diseases in MS patients have been studied extensively with controversial results. Moreover, no such data exists for Latin-American MS patients. Methods. We conducted a case-control study aimed to establish the prevalence of autoimmune disorders in a cohort of Argentinean MS patients. Results. There were no significant differences in autoimmune disease prevalence in MS patients with respect to controls. The presence of one or more autoimmune disorders did not increase risk of MS (OR 0.85, 95% CI 0.6–1.3). Discussion. Our results indicate absence of increased comorbid autoimmune disease prevalence in MS patients, as well as of increased risk of MS in patients suffering from other autoimmune disorders. PMID:25170425

  13. Hemostasis in Hypothyroidism and Autoimmune Thyroid Disorders.

    PubMed

    Ordookhani, Arash; Burman, Kenneth D

    2017-04-01

    There are contradictory results on the effect of hypothyroidism on the changes in hemostasis. Inadequate population-based studies limited their clinical implications, mainly on the risk of venous thromboembolism (VTE). This paper reviews the studies on laboratory and population-based findings regarding hemostatic changes and risk of VTE in hypothyroidism and autoimmune thyroid disorders. A comprehensive literature search was conducted employing MEDLINE database. The following words were used for the search: Hypothyroidism; thyroiditis, autoimmune; blood coagulation factors; blood coagulation tests; hemostasis, blood coagulation disorders; thyroid hormones; myxedema; venous thromboembolism; fibrinolysis, receptors thyroid hormone. The papers that were related to hypothyroidism and autoimmune thyroid disorder and hemostasis are used in this review. Overt hypothyroidism is more associated with a hypocoagulable state. Decreased platelet count, aggregation and agglutination, von Willebrand factor antigen and activity, several coagulation factors such as factor VIII, IX, XI, VII, and plasminogen activator-1 are detected in overt hypothyrodism. Increased fibrinogen has been detected in subclinical hypothyroidism and autoimmune thyroid disease rendering a tendency towards a hypercoagulability state. Increased factor VII and its activity, and plasminogen activator inhibitor-1 are among several findings contributing to a prothrombotic state in subclinical hypothyroidism. Overt hypothyroidism is associated with a hypocoagulable state and subclinical hypothyroidism and autoimmune thyroid disorders may induce a prothrombotic state. However, there are contradictory findings for the abovementioned thyroid disorders. Prospective studies on the risk of VTE in various levels of hypofunctioning of the thyroid and autoimmune thyroid disorders are warranted.

  14. Detection of antibodies against Theiler's murine encephalomyelitis virus GDVII strain in experimental guinea pigs.

    PubMed

    Häger, C; Glage, S; Held, N; Bleich, E M; Burghard, A; Mähler, M; Bleich, André

    2016-10-01

    A disease affecting guinea pigs called 'guinea pig lameness' characterized by clinical signs of depression, lameness of limbs, flaccid paralysis, weight loss and death within a few weeks was first described by Römer in 1911. After a research group in our facility kept laboratory guinea pigs from two different origins together in one room, lameness was observed in two animals. Further investigations revealed a serological immune response against Theiler's murine encephalomyelitis virus (TMEV; GDVII strain) in these animals. Histopathology of the lumbar spinal cord of these animals showed mononuclear cell infiltration and necrotic neurons in the anterior horn. Therefore, all guinea pigs from this contaminated animal unit, from other units in our facility, as well as from different European institutions and breeding centres were screened for antibodies directed against GDVII. Our investigations showed that approximately 80% of all guinea pigs from the contaminated animal unit were seropositive for GDVII, whereas animals from other separate units were completely negative. In addition, 43% of tested sera from the different European institutions and breeding centres contained antibodies against GDVII. The present data confirm that an unknown viral infection causes an immune response in experimental guinea pigs leading to seroconversion against GDVII and that guinea pigs from a commercial breeder are the source of the infection. © The Author(s) 2015.

  15. [Coexistence of autoimmune polyglandular syndrome type 3 with diabetes insipidus].

    PubMed

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Autoimmune polyglandular syndromes are conditions characterized by the combination of two or more organ-specific disorders. The underestimation oftheir real frequency probable results from physicians' inadequate knowledge of these clinical entities and sometimes their atypical clinical presentation. Because they comprise a wide spectrum of autoimmune disorders, autoimmune polyglandular syndromes are divided into four types, among which type-3 is the most common one. In this article, we report the case of a young female, initially diagnosed with diabetes mellitus who several years later developed full-blown autoimmune polyglandular syndrome type 3 consisting of autoimmune thyroid disorder and latent autoimmune diabetes in adults.The discussed case suggests that in selected patients diabetes insipidus may coexist with autoimmune endocrinopathies and nonendocrine autoimmunopathies, as well as that in some patients idiopathic diabetes insipidus may be secondary to lymphocytic infiltration and destruction of the hypothalamic supraoptic and paraventricular nuclei and/or the supraoptic-hypophyseal tract

  16. Adoptive cell transfer in autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2015-06-01

    Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.

  17. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action.

    PubMed

    Ansar Ahmed, S; Penhale, W J; Talal, N

    1985-12-01

    Immune reactivity is greater in females than in males. In both experimental animals and in man there is a greater preponderance of autoimmune diseases in females, compared with males. Studies in many experimental models have established that the underlying basis for this sex-related susceptibility is the marked effects of sex hormones. Sex hormones influence the onset and severity of immune-mediated pathologic conditions by modulating lymphocytes at all stages of life, prenatal, prepubertal, and postpubertal. However, despite extensive studies, the mechanisms of sex hormone action are not precisely understood. Earlier evidence suggested that the sex hormones acted via the thymus gland. In recent years it has become apparent that sex hormones can also influence the immune system by acting on several nonclassic target sites such as the immune system itself (nonthymic lymphoid organs), the central nervous system, the macrophage-macrocyte system, and the skeletal system. Immunoregulatory T cells appear to be most sensitive to sex hormone action among lymphoid cells. Several mechanisms of action of sex hormones are discussed in this review. The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation.

  18. Tumor vascularity and hematogenous metastasis in experimental murine intraocular melanoma.

    PubMed Central

    Grossniklaus, H E

    1998-01-01

    PURPOSE: The purpose of this study is to test the hypothesis that primary tumor vascularity in a murine model of intraocular melanoma positively correlates with the development and hematogenous spread of metastasis. METHODS: Forty 12-week-old C57BL6 mice were inoculated in either the anterior chamber (AC) or posterior compartment (PC) of 1 eye with 5 x 10(5) cells/microL of Queens tissue culture melanoma cells. The inoculated eye was enucleated at 2 weeks; the mice were sacrificed at 4 weeks postinoculation, and necropsies were performed. The enucleated eyes were examined for histologic and ultrastructural features, including relationship of tumor cells to tumor vascular channels, vascular pattern, and mean vascular density. RESULTS: Melanoma grew and was confined to the eye in 12 of 20 AC eyes and 10 of 20 PC eyes. Histologic and electron microscopic examination showed tumor invasion into vascular channels. Five of 12 AC tumors (42%) and 8 of 10 PC tumors (80%) metastasized. All of the AC tumors, but none of the PC tumors, that distantly metastasized also metastasized to ipsilateral cervical lymph nodes (P = .00535). There was no statistically significant difference of vascular pattern between the melanomas that did and did not metastasize to lungs in the PC group (P = .24), although there was a significant difference in the AC group (P = .02). Tumors with high-grade vascular patterns were more likely to metastasize than tumors with low-grade vascular patterns in the AC group. The mean vascular density positively correlated with the presence and number of metastases in both groups (P = .0000 and P < .001, respectively). There was no statistically significant difference of vascular pattern and mean vascular density for AC versus PC melanoma (P = .97). CONCLUSIONS: The rate of metastasis in this murine intraocular melanoma model positively correlates with primary tumor vascularity. The melanoma metastasizes via invasion of tumor vascular channels. AC melanoma also

  19. The C3aR promotes macrophage infiltration and regulates ANCA production but does not affect glomerular injury in experimental anti-myeloperoxidase glomerulonephritis

    PubMed Central

    Gan, Poh-Yi; Kitching, A. Richard; Holdsworth, Stephen R.

    2018-01-01

    The anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitides are autoimmune diseases associated with significant morbidity and mortality. They often affect the kidney causing rapidly progressive glomerulonephritis. While signalling by complement anaphylatoxin C5a though the C5a receptor is important in this disease, the role of the anaphylatoxin C3a signalling via the C3a receptor (C3aR) is not known. Using two different murine models of anti-myeloperoxidase (MPO) glomerulonephritis, one mediated by passive transfer of anti-MPO antibodies, the other by cell-mediated immunity, we found that the C3aR did not alter histological disease severity. However, it promoted macrophage recruitment to the inflamed glomerulus and inhibited the generation of MPO-ANCA whilst not influencing T cell autoimmunity. Thus, whilst the C3aR modulates some elements of disease pathogenesis, overall it is not critical in effector responses and glomerular injury caused by autoimmunity to MPO. PMID:29315316

  20. Tick-borne diseases and autoimmunity: A comprehensive review.

    PubMed

    Rodríguez, Yhojan; Rojas, Manuel; Gershwin, M Eric; Anaya, Juan-Manuel

    2018-03-01

    Tick-borne diseases (TBDs) are emerging and reemerging diseases transmitted by ticks, which portray wide heterogeneity and global distribution. TBDs may present acute clinical pictures that resemble those of autoimmune diseases (i.e., musculoskeletal symptoms, cutaneous involvement, neurologic impairment, renal failure, etc.), and in some cases infection is considered a triggering factor for autoimmunity (e.g., rheumatoid arthritis, autoimmune thyroid disease, vasculitides). The clinician should consider TBDs among the differential diagnoses when approaching autoimmune-like signs in areas of tick infestation. Epidemiological setting (e.g., endemic areas, seasons) and an accurate diagnostic approach (i.e., clinical history, physical examination and laboratory tests) are necessary to confirm TBDs. Further, control and prevention of TBDs is warranted. Research in the fields of ticks microbiome and vaccination (i.e., wildlife and humans) are ahead to control vector transmission and bacterial infection. This review offers a comprehensive update on TBDs and their relationship with autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    PubMed

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  2. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs

    PubMed Central

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C.; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-01-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. PMID:25796590

  3. Autoimmune vitiligo in rheumatic disease in the mestizo Mexican population.

    PubMed

    Avalos-Díaz, Esperanza; Pérez-Pérez, Elena; Rodríguez-Rodríguez, Mayra; Pacheco-Tovar, María-Guadalupe; Herrera-Esparza, Rafael

    2016-08-01

    Vitiligo is a chronic disease characterized by the dysfunction or destruction of melanocytes with secondary depigmentation. The aim of the present study was to determine the prevalence of vitiligo associated with autoimmune rheumatic diseases. The clinical records from a 10-year database of patients with rheumatic diseases and associated vitiligo was analysed, with one group of patients having autoimmune rheumatic disease and another non-autoimmune rheumatic disease. Available serum samples were used to assess the anti-melanocyte antibodies. A total of 5,251 individual clinical files were archived in the last 10 years, and these patients underwent multiple rheumatology consultations, with 0.3% of the group presenting with vitiligo. The prevalence of vitiligo in the autoimmune rheumatic disease group was 0.672%, which was mainly associated with lupus and arthritis. However, patients with more than one autoimmune disease had an increased relative risk to develop vitiligo, and anti-melanocyte antibodies were positive in 92% of these patients. By contrast, the prevalence was 0.082% in the group that lacked autoimmune rheumatic disease and had negative autoantibodies. In conclusion, the association between vitiligo and autoimmune rheumatic diseases was relatively low. However, the relative risk increased when there were other autoimmune comorbidities, such as thyroiditis or celiac disease. Therefore, the presence of multiple autoimmune syndromes should be suspected.

  4. COMPARATIVE TOXICITY OF DIFFERENT EMISSION PARTICLES IN MURINE PULMONARY EPITHELIAL CELLS AND MACROPHAGES

    EPA Science Inventory

    Comparative Toxicity of Different Emission Particles in Murine Pulmonary Epithelial Cells and Macrophages. T Stevens1, M Daniels2, P Singh2, M I Gilmour2. 1 UNC, Chapel Hill 27599 2Experimental Toxicology Division, NHEERL, RTP, NC 27711

    Epidemiological studies have shown ...

  5. Targeting the Notch signaling pathway in autoimmune diseases.

    PubMed

    Ma, Daoxin; Zhu, Yuanchao; Ji, Chunyan; Hou, Ming

    2010-05-01

    The Notch signaling pathway regulates a variety of processes and has been linked to diverse effects. Aberrant Notch function is important in several disorders. Pre-clinical studies have suggested that inhibition of Notch is an attractive approach to treat hematologic and solid malignancies. Many patients with refractory autoimmune diseases respond poorly to therapy and have significant morbidity and the treatment is highly toxic, so more effective therapies for autoimmune diseases are being examined. The role of the Notch pathway and therapeutic strategies targeting it in many illnesses, especially autoimmune diseases. The Notch pathway has unique and attractive advantages for targeting. Targeting it has already been trialed in many experiments, which may show better efficacy and fewer side effects compared with classical drugs for the treatment. Targeting Notch might provide etiological rather than symptomatic treatment. Various methods targeting the Notch pathway have been under investigation. Rational targeting of the Notch signaling pathway in cancer and some autoimmune diseases has proven to be successful. Classical drugs for the treatment of autoimmune diseases are inefficient and toxic to some extent, and targeting the Notch pathway is a promising therapeutic concept. However, there are still many questions about targeting Notch in autoimmune diseases, and further investigation will be needed.

  6. Same-sex marriage, autoimmune thyroid gland dysfunction and other autoimmune diseases in Denmark 1989-2008.

    PubMed

    Frisch, Morten; Nielsen, Nete Munk; Pedersen, Bo Vestergaard

    2014-01-01

    Autoimmune diseases have been little studied in gay men and lesbians. We followed 4.4 million Danes, including 9,615 same-sex married (SSM) persons, for 47 autoimmune diseases in the National Patient Registry between 1989 and 2008. Poisson regression analyses provided first hospitalization rate ratios (RRs) comparing rates between SSM individuals and persons in other marital status categories. SSM individuals experienced no unusual overall risk of autoimmune diseases. However, the risk of autoimmune thyroid dysfunction was increased, notably Hashimoto's thyroiditis (women(SSM), RR = 2.92; 95% confidence interval (CI) 1.74-4.55) and Graves' disease (men(SSM), RR = 1.88; 95% CI 1.08-3.01). There was also an excess of primary biliary cirrhosis (women(SSM), RR = 4.09; 95% CI 1.01-10.7), and of psoriasis (men(SSM), RR = 2.48; 95% CI 1.77-3.36), rheumatic fever (men(SSM), RR = 7.55; 95% CI 1.87-19.8), myasthenia gravis (men(SSM), RR = 5.51; 95% CI 1.36-14.4), localized scleroderma (men(SSM), RR = 7.16; 95% CI 1.18-22.6) and pemphigoid (men(SSM), RR = 6.56; 95% CI 1.08-20.6), while Dupuytren's contracture was reduced (men(SSM), RR = 0.64; 95% CI 0.39-0.99). The excess of psoriasis was restricted to same-sex married men with HIV/AIDS (men(SSM), RR = 10.5; 95% CI 6.44-15.9), whereas Graves' disease occurred in excess only among same-sex married men without HIV/AIDS (men(SSM), RR = 1.99; 95% CI 1.12-3.22). Lesbians and immunologically competent gay men in same-sex marriage face no unusual overall risk of autoimmune diseases. However, the observed increased risk of thyroid dysfunction in these lesbians and gay men deserves further study.

  7. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    PubMed

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.

  8. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis.

    PubMed

    Kumar, Prateek; Friebe, Katharina; Schallhorn, Rieka; Moinfar, Zahra; Nau, Roland; Bähr, Mathias; Schütze, Sandra; Hein, Katharina

    2015-06-19

    Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1-125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.

  9. Experimental Hyalohyphomycosis by Purpureocillium lilacinum: Outcome of the Infection in C57BL/6 Murine Models.

    PubMed

    de Sequeira, Danielly C M; Menezes, Rodrigo C; Oliveira, Manoel M E; Antas, Paulo R Z; De Luca, Paula M; de Oliveira-Ferreira, Joseli; Borba, Cintia de Moraes

    2017-01-01

    Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8 + lymphocytes predominance over TCD4 + in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8 + in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response.

  10. Experimental Hyalohyphomycosis by Purpureocillium lilacinum: Outcome of the Infection in C57BL/6 Murine Models

    PubMed Central

    de Sequeira, Danielly C. M.; Menezes, Rodrigo C.; Oliveira, Manoel M. E.; Antas, Paulo R. Z.; De Luca, Paula M.; de Oliveira-Ferreira, Joseli; Borba, Cintia de Moraes

    2017-01-01

    Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8+ lymphocytes predominance over TCD4+ in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8+ in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response. PMID:28878763

  11. Incidence of new-onset autoimmune disease in girls and women with pre-existing autoimmune disease after quadrivalent human papillomavirus vaccination: a cohort study.

    PubMed

    Grönlund, O; Herweijer, E; Sundström, K; Arnheim-Dahlström, L

    2016-12-01

    To assess whether quadrivalent human papillomavirus (qHPV) vaccination is associated with increased incidence of new-onset autoimmune disease in girls and women with pre-existing autoimmune disease. This register-based open cohort study included all girls and women between 10 and 30 years of age in Sweden in 2006-2012 diagnosed with at least one of 49 prespecified autoimmune diseases (n = 70 265). Incidence rate ratios were estimated for new-onset autoimmune disease within 180 days of qHPV vaccination using Poisson regression adjusting for, country of birth, parental country of birth, parental income and parental education. A total of 70 265 girls and women had at least one of the 49 predefined autoimmune diseases; 16% of these individuals received at least one dose of qHPV vaccine. In unvaccinated girls and women, 5428 new-onset autoimmune diseases were observed during 245 807 person-years at a rate of 22.1 (95% CI 21.5-22.7) new events per 1000 person-years. In vaccinated girls and women, there were 124 new events during 7848 person-years at a rate of 15.8 (95% CI 13.2-18.8) per 1000 person-years. There was no increase in the incidence of new-onset autoimmune disease associated with qHPV vaccination during the risk period; on the contrary, we found a slightly reduced risk (incidence rate ratio 0.77, 95% CI 0.65-0.93). In this nationwide study, qHPV vaccination was not associated with increased incidence of new-onset autoimmune disease in girls and women with pre-existing autoimmune disease. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  12. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific

    PubMed Central

    Krementsov, Dimitry N.; Case, Laure K.; Hickey, William F.; Teuscher, Cory

    2015-01-01

    Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood–brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated.—Krementsov, D. N., Case, L. K., Hickey, W. F., Teuscher, C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. PMID:25917331

  13. Pregnancy and autoimmune connective tissue diseases

    PubMed Central

    Marder, Wendy; Littlejohn, Emily A

    2016-01-01

    The autoimmune connective tissue diseases predominantly affect women and often occur during the reproductive years. Thus, specialized issues in pregnancy planning and management are commonly encountered in this patient population. This chapter provides a current overview of pregnancy as a risk factor for onset of autoimmune disease, considerations related to the course of pregnancy in several autoimmune connective tissue diseases, and disease management and medication issues before and during pregnancy and the postpartum period. A major theme that has emerged across these inflammatory diseases is that active maternal disease during pregnancy is associated with adverse pregnancy outcomes, and that maternal and fetal health can be optimized when conception is planned during times of inactive disease and through maintaining treatment regimens compatible with pregnancy. PMID:27421217

  14. [Oral diseases in auto-immune polyendocrine syndrome type 1].

    PubMed

    Proust-Lemoine, Emmanuelle; Guyot, Sylvie

    2017-09-01

    Auto-immune polyendocrine syndrome type 1 (APS1) also called Auto-immune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED) is a rare monogenic childhood-onset auto-immune disease. This autosomal recessive disorder is caused by mutations in the auto-immune regulator (AIRE) gene, and leads to autoimmunity targeting peripheral tissues. There is a wide variability in clinical phenotypes in patients with APSI, with auto-immune endocrine and non-endocrine disorders, and chronic mucocutaneous candidiasis. These patients suffer from oral diseases such as dental enamel hypoplasia and candidiasis. Both are frequently described, and in recent series, enamel hypoplasia and candidiasis are even the most frequent components of APS1 together with hypoparathyroidism. Both often occur during childhood (before 5 years old for canrdidiasis, and before 15 years old for enamel hypoplasia). Oral candidiasis is recurrent all life long, could become resistant to azole antifungal after years of treatment, and be carcinogenic, leading to severe oral squamous cell carcinoma. Oral components of APS1 should be diagnosed and rigorously treated. Dental enamel hypoplasia and/or recurrent oral candidiasis in association with auto-immune diseases in a young child should prompt APS1 diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Autoimmune gastritis: histology phenotype and OLGA staging.

    PubMed

    Rugge, M; Fassan, M; Pizzi, M; Zorzetto, V; Maddalo, G; Realdon, S; De Bernard, M; Betterle, C; Cappellesso, R; Pennelli, G; de Boni, M; Farinati, F

    2012-06-01

    Among Western populations, the declining incidence of Helicobacter pylori infection coincides with a growing clinical impact of autoimmune gastritis. To describe the histological phenotype of autoimmune gastritis, also to test the prognostic impact of OLGA staging in the autoimmune setting. A single-institutional series (spanning the years 2003-2011) of 562 consecutive patients (M:F ratio: 1:3.7; mean age = 57.6 ± 14.4 years) with serologically confirmed autoimmune gastritis underwent histology review and OLGA staging. Helicobacter pylori infection was ascertained histologically in 44/562 cases (7.8%). Forty six biopsy sets (8.2%) featured OLGA stages III-IV; they included all four cases of incidental epithelial neoplasia (three intraepithelial and one invasive; three of these four cases had concomitant H. pylori infection). There were 230 (40.9%) and 139 (24.7%) cases, respectively, of linear and micro-nodular enterochromaffin-like cell hyperplasia; 19 (3.4%) type I carcinoids were detected. The series included 116 patients who underwent repeated endoscopy/biopsy sampling (mean time elapsing between the two procedures = 54 months; range 24-108). Paired histology showed a significant (P = 0.009) trend towards a stage progression [the stage increased in 25/116 cases (22%); it remained unchanged in 87/116 cases (75%)]. In autoimmune gastritis, the cancer risk is restricted to high-risk gastritis stages (III-IV), and is associated mainly with concomitant H. pylori infection. OLGA staging consistently depicts the time-dependent organic progression of the autoimmune disease and provides key information for secondary gastric cancer prevention strategies. © 2012 Blackwell Publishing Ltd.

  16. Hemostasis in Hypothyroidism and Autoimmune Thyroid Disorders

    PubMed Central

    Ordookhani, Arash; Burman, Kenneth D.

    2017-01-01

    Context There are contradictory results on the effect of hypothyroidism on the changes in hemostasis. Inadequate population-based studies limited their clinical implications, mainly on the risk of venous thromboembolism (VTE). This paper reviews the studies on laboratory and population-based findings regarding hemostatic changes and risk of VTE in hypothyroidism and autoimmune thyroid disorders. Evidence Acquisition A comprehensive literature search was conducted employing MEDLINE database. The following words were used for the search: Hypothyroidism; thyroiditis, autoimmune; blood coagulation factors; blood coagulation tests; hemostasis, blood coagulation disorders; thyroid hormones; myxedema; venous thromboembolism; fibrinolysis, receptors thyroid hormone. The papers that were related to hypothyroidism and autoimmune thyroid disorder and hemostasis are used in this review. Results Overt hypothyroidism is more associated with a hypocoagulable state. Decreased platelet count, aggregation and agglutination, von Willebrand factor antigen and activity, several coagulation factors such as factor VIII, IX, XI, VII, and plasminogen activator-1 are detected in overt hypothyrodism. Increased fibrinogen has been detected in subclinical hypothyroidism and autoimmune thyroid disease rendering a tendency towards a hypercoagulability state. Increased factor VII and its activity, and plasminogen activator inhibitor-1 are among several findings contributing to a prothrombotic state in subclinical hypothyroidism. Conclusions Overt hypothyroidism is associated with a hypocoagulable state and subclinical hypothyroidism and autoimmune thyroid disorders may induce a prothrombotic state. However, there are contradictory findings for the abovementioned thyroid disorders. Prospective studies on the risk of VTE in various levels of hypofunctioning of the thyroid and autoimmune thyroid disorders are warranted. PMID:29026409

  17. A case of polyglandular autoimmune syndrome type III complicated with autoimmune hepatitis.

    PubMed

    Oki, Kenji; Yamane, Kiminori; Koide, Junko; Mandai, Koichi; Nakanishi, Shuhei; Fujikawa, Rumi; Kohno, Nobuoki

    2006-10-01

    A 58-year-old woman complaining of finger tremor was referred to our hospital. The diagnosis of Graves' disease was made based on increased free triiodothyronine (18.88 pg/ml) and free thyroxine (7.47 ng/dl), low TSH (<0.005 microIU/ml) and increased TSH receptor binding antibody activity (70.9%). Serum level of AST (62 U/l) and ALT (93 U/l) were increased and liver biopsy revealed linkage of adjacent portal areas by lymphoplasmacytic infiltrates and fibrosis with piecemeal necrosis. Although antinuclear antibody was negative, these findings indicated that she had autoimmune hepatitis (AIH) according to the criteria of the International Autoimmune Hepatitis Scoring System. Slowly progressive type 1 diabetes mellitus (DM) was confirmed by a diabetic response pattern due to 75 g-oral glucose tolerance test, and seropositivity towards anti-glutamic acid decarboxylase (725 U/ml) and islet cell (80 JDF Units) antibodies. This case exhibited an extremely rare combination of three different autoimmune diseases, including Graves' disease, slowly progressive type 1 DM and AIH, and had no known sensitive human leukocyte antigen (HLA) typing or haplotype for these disorders. Although it is common for patients with Graves' disease to exhibit abnormal liver function, it is important to make an accurate diagnosis of AIH because of this life-threatening disorder.

  18. Thyroid dysfunction: an autoimmune aspect.

    PubMed

    Khan, Farah Aziz; Al-Jameil, Noura; Khan, Mohammad Fareed; Al-Rashid, May; Tabassum, Hajera

    2015-01-01

    Auto immune thyroid disease (AITD) is the common organ specific autoimmune disorder, Hashimoto thyroiditis (HT) and Grave's disease (GD) are its well-known sequelae. It occurs due to loss of tolerance to autoantigens thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid stimulating hormone receptor (TSH-R) which leads to the infiltration of the gland. T cells in chronic autoimmune thyroiditis (cAIT) induce apoptosis in thyroid follicular cells and cause destruction of the gland. Presences of TPO antibodies are common in HT and GD, while Tg has been reported as an independent predictor of thyroid malignancy. Cytokines are small proteins play an important role in autoimmunity, by stimulating B and T cells. Various cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-14, TNF-α and IFN-γ are found in thyroid follicular cells which enhance inflammatory response with nitric oxide (NO) and prostaglandins.

  19. Retinal phlebitis associated with autoimmune hemolytic anemia.

    PubMed

    Chew, Fiona L M; Tajunisah, Iqbal

    2009-01-01

    To describe a case of retinal phlebitis associated with autoimmune hemolytic anemia. Observational case report. A 44-year-old Indian man diagnosed with autoimmune hemolytic anemia presented with a 1-week history of blurred vision in both eyes. Fundus biomicroscopy revealed bilateral peripheral retinal venous sheathing and cellophane maculopathy. Fundus fluorescent angiogram showed bilateral late leakage from the peripheral venous arcades and submacular fluid accumulation. The retinal phlebitis resolved following a blood transfusion and administration of systemic steroids. Retinopathy associated with autoimmune hemolytic anemia is not well known. This is thought to be the first documentation of retinal phlebitis occurring in this condition.

  20. Inflammatory Bowel Disease and the Risk of Autoimmune Diseases.

    PubMed

    Wilson, J Claire; Furlano, Raoul I; Jick, Susan S; Meier, Christoph R

    2016-02-01

    An increased risk of autoimmune disease has been reported in patients with inflammatory bowel disease [IBD]. Using data from the Clinical Practice Research Datalink [CPRD], this study set out to further examine this relationship. Patients with a first-time IBD diagnosis were randomly matched to an equal-sized IBD-free comparison group. Incidence rates for new-onset autoimmune diseases were estimated. A nested case-control analysis comprising IBD patients was conducted, using conditional logistic regression to assess whether IBD severity, duration, or treatment influences the risk of developing autoimmune diseases. During follow-up, 1069 IBD and 585 IBD-free patients developed an incident autoimmune disease. An increased incidence of autoimmune disease was observed in IBD patients (incidence rate [IR] 9.65, 95% confidence interval [CI] 9.09-10.24) compared with the non-IBD comparison group [IR 5.22, 95% CI 4.82-5.66]. In IBD patients, increased disease severity was associated with an increased risk of autoimmune disease development (odds ratio [OR] 1.62, 95% CI 1.28-2.05). Current antibiotic use was also associated with an increased risk [adjusted OR 1.72, 95% CI 1.07-2.78]. A reduced risk of incident autoimmune diseases was observed for current long-term users of aminosalicylates [adjusted OR 0.72, 95% CI 0.57-0.91]. Individuals with IBD had an increased risk of developing an autoimmune disease. Increased disease severity and current antibiotic use were associated with an increased relative risk of developing additional autoimmune diseases in IBD patients. Long-term current aminosalicylate use was associated with a reduced risk. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Therapeutic Vaccination against Adjuvant Arthritis Using Autoimmune T Cells Treated with Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Lider, Ofer; Karin, Nathan; Shinitzky, Meir; Cohen, Irun R.

    1987-07-01

    An ideal treatment for autoimmune diseases would be a nontoxic means of specifically neutralizing the autoreactive lymphocytes responsible for the disease. This goal has been realized in experimental autoimmunity models by immunizing rats or mice against their own autoimmune cells such that the animals generate an immune response specifically repressive to the disease-producing lymphocytes. This maneuver, termed lymphocyte vaccination, was demonstrated to be effective using some, but not all, autoimmune helper T-lymphocyte lines. We now report that T lymphocytes, otherwise incapable of triggering an immune response, can be transformed into effective immunogens by treating the cells in vitro with hydrostatic pressure. Clone A2b, as effector clone that recognized cartilage proteoglycan and caused adjuvant arthritis in Lewis rats, is such a cell. Untreated A2b could not trigger an immune response, but inoculating rats with pressure-treated A2b induced early remission of established adjuvant arthritis as well as resistance to subsequent disease. Specific resistance to arthritis was associated with anti-idiotypic T-cell reactivity to clone A2b and could be transferred from vaccinated rats to naive recipients using donor lymphoid cells. Aggregation of T-lymphocyte membrane components appeared to be important for an immune response because the effects of hydrostatic pressure could be reproduced by treatment of A2b with chemical cross-linkers or with agents disrupting the cytoskeleton. Populations of lymph node cells from antigen-primed rats, when treated with hydrostatic pressure, could also induce suppression of disease. Thus, effective vaccines can be developed without having to isolate the autoimmune T lymphocytes as lines or clones. These results demonstrate that effector T lymphocytes suitably treated may serve as agents for specifically controlling the immune system.

  2. Autoimmune Channelopathies of the Nervous System

    PubMed Central

    Kleopa, Kleopas A

    2011-01-01

    Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460

  3. Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons.

    PubMed

    Taha, Omneya; Opitz, Thoralf; Mueller, Marcus; Pitsch, Julika; Becker, Albert; Evert, Bernd Oliver; Beck, Heinz; Jeub, Monika

    2017-11-01

    Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy characterized by rapidly progressive paresis and sensory disturbances. Moderate to severe and often intractable neuropathic pain is a common symptom of GBS, but its underlying mechanisms are unknown. Pathology of GBS is classically attributed to demyelination of large, myelinated peripheral fibers. However, there is increasing evidence that neuropathic pain in GBS is associated with impaired function of small, unmyelinated, nociceptive fibers. We therefore examined the functional properties of small DRG neurons, the somata of nociceptive fibers, in a rat model of GBS (experimental autoimmune neuritis=EAN). EAN rats developed behavioral signs of neuropathic pain. This was accompanied by a significant shortening of action potentials due to a more rapid repolarization and an increase in repetitive firing in a subgroup of capsaicin-responsive DRG neurons. Na + current measurements revealed a significant increase of the fast TTX-sensitive current and a reduction of the persistent TTX-sensitive current component. These changes of Na + currents may account for the significant decrease in AP duration leading to an overall increase in excitability and are therefore possibly directly linked to pathological pain behavior. Thus, like in other animal models of neuropathic and inflammatory pain, Na + channels seem to be crucially involved in the pathology of GBS and may constitute promising targets for pain modulating pharmaceuticals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The role of AIRE in human autoimmune disease.

    PubMed

    Akirav, Eitan M; Ruddle, Nancy H; Herold, Kevan C

    2011-01-01

    The autoimmune regulator (AIRE) gene encodes a transcription factor involved in the presentation of tissue-restricted antigens during T-cell development in the thymus. Mutations of this gene lead to type 1 autoimmune polyglandular syndrome (APS-1), also termed autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is characterized by the clinical presentation of at least two of a triad of underlying disorders: Addison disease, hypoparathyroidism and chronic mucocutaneous candidiasis. This Review describes the process of positive and negative selection of developing T cells in the thymus and the role of AIRE as a regulator of peripheral antigen presentation. Furthermore, it addresses how mutations of this gene lead to the failure to eliminate autoreactive T cells, which can lead to clinical autoimmune syndromes.

  5. Thyroid-associated orbitopathy is linked to gastrointestinal autoimmunity

    PubMed Central

    Ponto, K A; Schuppan, D; Zwiener, I; Binder, H; Mirshahi, A; Diana, T; Pitz, S; Pfeiffer, N; Kahaly, G J

    2014-01-01

    Common autoimmune disorders tend to co-exist in the same subjects and cluster in families. The objective of this study was to determine the prevalence of autoimmune co-morbidity in patients with autoimmune thyroid disease (AITD) with and without thyroid-associated orbitopathy (TAO). This was a cross-sectional study conducted at an academic tertiary referral centre. Of 1310 patients with AITD [n = 777 or 59% with Graves' disease (GD) and n = 533, 41% with Hashimoto's thyroiditis (HT)] followed at a specialized joint thyroid–eye out-patient clinic, 176 (13·4%) had an adult type of the autoimmune polyglandular syndrome, 129 (9·8%) type 1 diabetes, 111 (8·5%) coeliac disease, 60 (4·6%) type A autoimmune gastritis, 57 (4·4%) vitiligo and 25 (1·9%) Addison's disease. Coeliac disease and autoimmune gastritis were associated positively with GD [odds ratio (OR) = 2·18; P = 0·002 and OR = 6·52; P < 0·001], whereas type 1 diabetes, Addison's disease, autoimmune primary hypogonadism, alopecia areata, rheumatoid arthritis and Sjögren's syndrome were ‘protective’ for GD and thus linked to HT, OR = 0·49 (P < 0·001), 0·06 (P < 0·001), 0·25 (P < 0·001), 0·50 (P = 0·090) and 0·32 (P = 0·003), respectively. Of 610 (46·6%) AITD patients with TAO, 584 (95·7%) and 26 (4·3%) had GD and HT, respectively (P < 0·001). TAO was most prevalent in GD patients with coeliac disease (94%, OR = 1·87, P < 0·001). Multivariate analysis showed high OR for coeliac disease and autoimmune gastritis (3·4 and 4·03, both P < 0·001) pertaining to the association with TAO while type 1 diabetes, Addison's disease and alopecia areata were protective for TAO. In patients with TAO, coeliac disease is the most prevalent co-morbid autoimmune condition and rates are increased compared to GD patients without TAO. PMID:24903731

  6. The Potential Roles of Bisphenol A (BPA) Pathogenesis in Autoimmunity

    PubMed Central

    2014-01-01

    Bisphenol A (BPA) is a monomer found in commonly used consumer plastic goods. Although much attention in recent years has been placed on BPA's impact as an endocrine disruptor, it also appears to activate many immune pathways involved in both autoimmune disease development and autoimmune reactivity provocation. The current scientific literature is void of research papers linking BPA directly to human or animal onset of autoimmunity. This paper explores the impact of BPA on immune reactivity and the potential roles these mechanisms may have on the development or provocation of autoimmune diseases. Potential mechanisms by which BPA may be a contributing risk factor to autoimmune disease development and progression include its impact on hyperprolactinemia, estrogenic immune signaling, cytochrome P450 enzyme disruption, immune signal transduction pathway alteration, cytokine polarization, aryl hydrocarbon activation of Th-17 receptors, molecular mimicry, macrophage activation, lipopolysaccharide activation, and immunoglobulin pathophysiology. In this paper a review of these known autoimmune triggering mechanisms will be correlated with BPA exposure, thereby suggesting that BPA has a role in the pathogenesis of autoimmunity. PMID:24804084

  7. Membranoproliferative glomerulonephritis associated with autoimmune diseases.

    PubMed

    Zand, Ladan; Fervenza, Fernando C; Nasr, Samih H; Sethi, Sanjeev

    2014-04-01

    Membranoproliferative glomerulonephritis (MPGN) has been classified based on its pathogenesis into immune complex-mediated and complement-mediated MPGN. The immune complex-mediated type is secondary to chronic infections, autoimmune diseases or monoclonal gammopathy. There is a paucity of data on MPGN associated with autoimmune diseases. We reviewed the Mayo Clinic database over a 10-year period and identified 12 patients with MPGN associated with autoimmune diseases, after exclusion of systemic lupus erythematosus. The autoimmune diseases included rheumatoid arthritis, primary Sjögren's syndrome, undifferentiated connective tissue disease, primary sclerosing cholangitis and Graves' disease. Nine of the 12 patients were female, and the mean age was 57.9 years. C4 levels were decreased in nine of 12 patients tested. The serum creatinine at time of renal biopsy was 2.2 ± 1.0 mg/dl and the urinary protein was 2,850 ± 3,543 mg/24 h. Three patients required dialysis at the time of renal biopsy. Renal biopsy showed an MPGN in all cases, with features of cryoglobulins in six cases; immunoglobulin (Ig)M was the dominant Ig, and both subendothelial and mesangial electron dense deposits were noted. Median follow-up was 10.9 months. Serum creatinine and proteinuria improved to 1.6 ± 0.8 mg/dl and 428 ± 677 mg/24 h, respectively, except in 3 patients with end-stage renal disease. In summary, this study describes the clinical features, renal biopsy findings, laboratory evaluation, treatment and prognosis of MPGN associated with autoimmune diseases.

  8. Eating Disorders, Autoimmune, and Autoinflammatory Disease.

    PubMed

    Zerwas, Stephanie; Larsen, Janne Tidselbak; Petersen, Liselotte; Thornton, Laura M; Quaranta, Michela; Koch, Susanne Vinkel; Pisetsky, David; Mortensen, Preben Bo; Bulik, Cynthia M

    2017-12-01

    Identifying factors associated with risk for eating disorders is important for clarifying etiology and for enhancing early detection of eating disorders in primary care. We hypothesized that autoimmune and autoinflammatory diseases would be associated with eating disorders in children and adolescents and that family history of these illnesses would be associated with eating disorders in probands. In this large, nationwide, population-based cohort study of all children and adolescents born in Denmark between 1989 and 2006 and managed until 2012, Danish medical registers captured all inpatient and outpatient diagnoses of eating disorders and autoimmune and autoinflammatory diseases. The study population included 930 977 individuals (48.7% girls). Cox proportional hazards regression models and logistic regression were applied to evaluate associations. We found significantly higher hazards of eating disorders for children and adolescents with autoimmune or autoinflammatory diseases: 36% higher hazard for anorexia nervosa, 73% for bulimia nervosa, and 72% for an eating disorder not otherwise specified. The association was particularly strong in boys. Parental autoimmune or autoinflammatory disease history was associated with significantly increased odds for anorexia nervosa (odds ratio [OR] = 1.13, confidence interval [CI] = 1.01-1.25), bulimia nervosa (OR = 1.29; CI = 1.08-1.55) and for an eating disorder not otherwise specified (OR = 1.27; CI = 1.13-1.44). Autoimmune and autoinflammatory diseases are associated with increased risk for eating disorders. Ultimately, understanding the role of immune system disturbance for the etiology and pathogenesis of eating disorders could point toward novel treatment targets. Copyright © 2017 by the American Academy of Pediatrics.

  9. Autoimmune Neuromuscular Disorders

    PubMed Central

    Kraker, Jessica; Živković, Saša A

    2011-01-01

    Autoimmune neuromuscular disorders affecting peripheral nerves, neuromuscular junction or muscle have a wide clinical spectrum with diverse pathogenetic mechanisms. Peripheral nervous system may be targeted in the context of complex immune reactions involving different cytokines, antigen-presenting cells, B cells and different types of T cells. Various immunomodulating and cytotoxic treatments block proliferation or activation of immune cells by different mechanisms attempting to control the response of the immune system and limit target organ injury. Most treatment protocols for autoimmune neuromuscular disorders are based on the use of corticosteroids, intravenous immunoglobulins and plasmapheresis, with cytotoxic agents mostly used as steroid-sparing medications. More recently, development of specific monoclonal antibodies targeting individual cell types allowed a different approach targeting specific immune pathways, but these new treatments are also associated with various adverse effects and their long-term efficacy is still unknown. PMID:22379454

  10. The Anti-Inflammatory Effects of a Yin Zhi Huang Soup in an Experimental Autoimmune Prostatitis Rat Model.

    PubMed

    Deng, Longsheng; Zhang, Xikui; Zhu, Weikun; Lu, Taikun; Chen, Jinchun; Zou, Qiang; Zheng, Qizhong; Chen, Junying; Jiang, Changming; Jin, Guanyu

    2017-01-01

    The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups ( n = 12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF- α ) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats' prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats' prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF- α levels in the blood serum and inhibited the expression of iNOS in the rats' prostate tissues ( P < 0.05). Following YZS treatment, the pathological changes in the rats' prostates were improved compared with those in the model group ( P < 0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF- α , and chemokines, such as iNOS, in the rat model of EAP.

  11. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-09-02

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  12. The Anti-Inflammatory Effects of a Yin Zhi Huang Soup in an Experimental Autoimmune Prostatitis Rat Model

    PubMed Central

    Zhang, Xikui; Zhu, Weikun; Lu, Taikun; Chen, Jinchun; Zou, Qiang; Zheng, Qizhong; Chen, Junying; Jiang, Changming; Jin, Guanyu

    2017-01-01

    The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups (n = 12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF-α) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats' prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats' prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF-α levels in the blood serum and inhibited the expression of iNOS in the rats' prostate tissues (P < 0.05). Following YZS treatment, the pathological changes in the rats' prostates were improved compared with those in the model group (P < 0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF-α, and chemokines, such as iNOS, in the rat model of EAP. PMID:29430255

  13. Imaging combined autoimmune and infectious disease microarrays

    NASA Astrophysics Data System (ADS)

    Ewart, Tom; Raha, Sandeep; Kus, Dorothy; Tarnopolsky, Mark

    2006-09-01

    Bacterial and viral pathogens are implicated in many severe autoimmune diseases, acting through such mechanisms as molecular mimicry, and superantigen activation of T-cells. For example, Helicobacter pylori, well known cause of stomach ulcers and cancers, is also identified in ischaemic heart disease (mimicry of heat shock protein 65), autoimmune pancreatitis, systemic sclerosis, autoimmune thyroiditis (HLA DRB1*0301 allele susceptibility), and Crohn's disease. Successful antibiotic eradication of H.pylori often accompanies their remission. Yet current diagnostic devices, and test-limiting cost containment, impede recognition of the linkage, delaying both diagnosis and therapeutic intervention until the chronic debilitating stage. We designed a 15 minute low cost 39 antigen microarray assay, combining autoimmune, viral and bacterial antigens1. This enables point-of-care serodiagnosis and cost-effective narrowly targeted concurrent antibiotic and monoclonal anti-T-cell and anti-cytokine immunotherapy. Arrays of 26 pathogen and 13 autoimmune antigens with IgG and IgM dilution series were printed in triplicate on epoxysilane covalent binding slides with Teflon well masks. Sera diluted 1:20 were incubated 10 minutes, washed off, anti-IgG-Cy3 (green) and anti-IgM-Dy647 (red) were incubated for 5 minutes, washed off and the slide was read in an ArrayWoRx(e) scanning CCD imager (Applied Precision, Issaquah, WA). As a preliminary model for the combined infectious disease-autoimmune diagnostic microarray we surveyed 98 unidentified, outdated sera that were discarded after Hepatitis B antibody testing. In these, significant IgG or IgM autoantibody levels were found: dsDNA 5, ssDNA 11, Ro 2, RNP 7, SSB 4, gliadin 2, thyroglobulin 13 cases. Since control sera showed no autoantibodies, the high frequency of anti-DNA and anti-thyroglobulin antibodies found in infected sera lend increased support for linkage of infection to subsequent autoimmune disease. Expansion of the antigen

  14. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome.

    PubMed

    Chao, Ya-Hsuan; Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells.

  15. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome

    PubMed Central

    Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells. PMID:29894515

  16. [Animal models of autoimmune prostatitis and their evaluation criteria].

    PubMed

    Shen, Jia-ming; Lu, Jin-chun; Yao, Bing

    2016-03-01

    Chronic prostatitis is a highly prevalent disease of unclear etiology. Researches show that autoimmune reaction is one cause of the problem. An effective animal model may help a lot to understand the pathogenesis and find proper diagnostic and therapeutic strategies of the disease. Currently used autoimmune prostatitis-related animal models include those of age-dependent spontaneous prostatitis, autoimmune regulator-dependent spontaneous prostatitis, self antigen-induced prostatitis, and steroid-induced prostatitis. Whether an animal model of autoimmune prostatitis is successfully established can be evaluated mainly from the five aspects: histology, morphology, specific antigens, inflammatory factors, and pain intensity.

  17. Altered B cell signalling in autoimmunity

    PubMed Central

    Rawlings, David J.; Metzler, Genita; Wray-Dutra, Michelle; Jackson, Shaun W.

    2017-01-01

    Recent work has provided new insights into how altered B cell-intrinsic signals — through the B cell receptor (BCR) and key co-receptors — function together to promote the pathogenesis of autoimmunity. These combined signals affect B cells at two distinct stages: first, in the selection of the naive repertoire; and second, during extrafollicular or germinal centre activation responses. Thus, dysregulated signalling can lead to both an altered naive BCR repertoire and the generation of autoantibody-producing B cells. Strikingly, high-affinity autoantibodies predate and predict disease in several autoimmune disorders, including type 1 diabetes and systemic lupus erythematosus. This Review summarizes how, rather than being a downstream consequence of autoreactive T cell activation, dysregulated B cell signalling can function as a primary driver of many human autoimmune diseases. PMID:28393923

  18. Enhancing the Ability of Experimental Autoimmune Encephalomyelitis to Serve as a More Rigorous Model of Multiple Sclerosis through Refinement of the Experimental Design

    PubMed Central

    Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M

    2009-01-01

    Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303

  19. Autoimmunity: a decision theory model.

    PubMed Central

    Morris, J A

    1987-01-01

    Concepts from statistical decision theory were used to analyse the detection problem faced by the body's immune system in mounting immune responses to bacteria of the normal body flora. Given that these bacteria are potentially harmful, that there can be extensive cross reaction between bacterial antigens and host tissues, and that the decisions are made in uncertainty, there is a finite chance of error in immune response leading to autoimmune disease. A model of ageing in the immune system is proposed that is based on random decay in components of the decision process, leading to a steep age dependent increase in the probability of error. The age incidence of those autoimmune diseases which peak in early and middle life can be explained as the resultant of two processes: an exponentially falling curve of incidence of first contact with common bacteria, and a rapidly rising error function. Epidemiological data on the variation of incidence with social class, sibship order, climate and culture can be used to predict the likely site of carriage and mode of spread of the causative bacteria. Furthermore, those autoimmune diseases precipitated by common viral respiratory tract infections might represent reactions to nasopharyngeal bacterial overgrowth, and this theory can be tested using monoclonal antibodies to search the bacterial isolates for cross reacting antigens. If this model is correct then prevention of autoimmune disease by early exposure to low doses of bacteria might be possible. PMID:3818985

  20. Autoimmune chorea in adults

    PubMed Central

    O’Toole, Orna; Lennon, Vanda A.; Ahlskog, J. Eric; Matsumoto, Joseph Y.; Pittock, Sean J.; Bower, James; Fealey, Robert; Lachance, Daniel H.

    2013-01-01

    Objectives: To determine the characteristics of adult-onset autoimmune chorea, and compare paraneoplastic and idiopathic subgroups. Methods: Thirty-six adults with autoimmune chorea were identified at Mayo Clinic (Rochester, MN) from 1997 to 2012. Medical record and laboratory data were recorded. Nonparaneoplastic (n = 22) and paraneoplastic cases (n = 14) were compared. Results: Women accounted for 21 patients (58%). Median age at symptom onset was 67 years (range 18–87 years). We estimated the incidence for Olmsted County was 1.5 per million person-years. Symptom onset was subacute in all. Chorea was focal (20 patients) or generalized (16 patients). Although chorea predominated, other neurologic disorders frequently coexisted (29 patients); abnormal eye movements were uncommon (4 patients). No patient had NMDA receptor antibody or any immunoglobulin (Ig)G yielding a detectable immunofluorescence binding pattern restricted to basal ganglia. Two had synaptic IgG antibodies novel to the context of chorea (GAD65, 1; CASPR2, 1). In the paraneoplastic group, 14 patients had evidence of cancer. Of 13 with a histopathologically confirmed neoplasm, small-cell carcinoma and adenocarcinoma were most common; 6 patients had a cancer-predictive paraneoplastic autoantibody, with CRMP-5–IgG and ANNA-1 being most common. In the idiopathic group, 19 of the 22 patients had a coexisting autoimmune disorder (most frequently systemic lupus erythematosus and antiphospholipid syndrome); autoantibodies were detected in 21 patients, most frequently lupus and phospholipid specificities (19 patients). The paraneoplastic group was older (p = 0.001), more frequently male (p = 0.006), had more frequent weight loss (p = 0.02), and frequently had peripheral neuropathy (p = 0.008). Conclusions: Autoimmune chorea is a rare disorder with rapid onset. Male sex, older age, severe chorea, coexisting peripheral neuropathy, and weight loss increase the likelihood of cancer. PMID:23427325

  1. [Autoimmune encephalitis: possibilities in the laboratory investigation].

    PubMed

    Böröcz, Katalin; Hayden, Zsófia; Mészáros, Viktória; Csizmadia, Zsuzsanna; Farkas, Kornélia; Kellermayer, Zoltán; Balogh, Péter; Nagy, Ferenc; Berki, Tímea

    2018-01-01

    The role of autoimmune responses against central nervous system (CNS) antigens in encephalitis presenting with non-classified neurologic or psychiatric symptoms has been appreciated in the past decade. Paraneoplastic limbic encephalitis has a poor prognosis and is most commonly associated with lung, ovarium, and testicular neoplasms, leading to immune reactions against intracellular antigens (anti-Hu/ANNA1, anti-Ri/ANNA2, anti-CV2/CRMP5 and anti-Ma2/Ta). In contrast, the recently described autoimmune encephalitis subtypes present with a broad spectrum of symptoms, respond to autoimmune therapies well and usually associate with autoantibodies against neuronal cell surface receptors (NMDAR, GABA B R, AMPAR) or synaptic proteins (LGI1, CASPR2). Our aim is to bring to awareness the increasing number of autoimmune encephalitis patients requiring neurologic, psychiatric and intensive care and to emphasize the significance of detecting various autoantibodies in diagnosing patients. In the past 6 years, our laboratory received 836 autoimmune encephalitis diagnostic test requests from a total of 717 patients. Serum and cerebrospinal fluid (CSF) samples were analysed with indirect immunofluorescence using a BIOCHIP consisting of cell lines transfected with 6 different receptor proteins. IgG autoantibodies against receptor proteins were present in 7.5% of patients. The frequency of positive samples was the following: NMDAR > LGI1 > GABA B R > CASPR2. Detecting autoantibodies facilitates the diagnosis of autoimmune encephalitis in an early stage. Patients diagnosed early can be effectively treated with plasmapheresis and immunosuppressive drugs. The efficiency of therapies can be monitored by autoantibody detection. Therefore, the diagnostic immune laboratory plays an important role in proper diagnosis and in the prevention of rapidly progressing symptoms. Orv Hetil. 2018; 159(3): 107-112.

  2. Effect of ether glycerol lipids on interleukin-1β release and experimental autoimmune encephalomyelitis.

    PubMed

    Boomkamp, Stephanie D; Byun, Hoe-Sup; Ubhi, Satvir; Jiang, Hui-Rong; Pyne, Susan; Bittman, Robert; Pyne, Nigel J

    2016-01-01

    We have assessed the effect of two ether glycerol lipids, 77-6 ((2S, 3R)-4-(Tetradecyloxy)-2-amino-1,3-butanediol) and 56-5 ((S)-2-Amino-3-O-hexadecyl-1-propanol), which are substrates for sphingosine kinases, on inflammatory responses. Treatment of differentiated U937 macrophage-like cells with 77-6 but not 56-5 enhanced IL-1β release; either alone or in the presence of LPS. The stimulatory effect of sphingosine or 77-6 on LPS-stimulated IL-1β release was reduced by pretreatment of cells with the caspase-1 inhibitor, Ac-YVAD-CHO, thereby indicating a role for the inflammasome. The enhancement of LPS-stimulated IL-1β release in response to sphingosine, but not 77-6, was reduced by pretreatment of cells with the cathepsin B inhibitor, CA074Me, indicating a role for lysosomal destabilization in the effect of sphingosine. Administration of 56-5 to mice increased disease progression in an experimental autoimmune encephalomyelitis model and this was associated with a considerable increase in the infiltration of CD4(+) T-cells, CD11b(+) monocytes and F4/80(+) macrophages in the spinal cord. 56-5 and 77-6 were without effect on the degradation of myc-tagged sphingosine 1-phosphate 1 receptor in CCL39 cells. Therefore, the effect of 56-5 on EAE disease progression is likely to be independent of the inflammasome or the sphingosine 1-phosphate 1 receptor. However, 56-5 is chemically similar to platelet activating factor and the exacerbation of EAE disease progression might be linked to platelet activating factor receptor signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Minocycline-Induced Drug Hypersensitivity Syndrome Followed by Multiple Autoimmune Sequelae

    PubMed Central

    Brown, Rebecca J.; Rother, Kristina I.; Artman, Henry; Mercurio, Mary Gail; Wang, Roger; Looney, R. John; Cowen, Edward W.

    2010-01-01

    Background Drug hypersensitivity syndrome (DHS) is a severe, multisystem adverse drug reaction that may occur following the use of numerous medications, including anticonvulsants, sulfonamides, and minocycline hydrochloride. Long-term autoimmune sequelae of DHS have been reported, including hypothyroidism. Observations A 15-year-old female adolescent developed DHS 4 weeks after starting minocycline therapy for acne vulgaris. Seven weeks later she developed autoimmune hyperthyroidism (Graves disease), and 7 months after discontinuing minocycline therapy she developed autoimmune type 1 diabetes mellitus. In addition, she developed elevated titers of several markers of systemic autoimmune disease, including antinuclear, anti-Sjögren syndrome A, and anti-Smith antibodies. Conclusions Minocycline-associated DHS may be associated with multiple autoimmune sequelae, including thyroid disease, type 1 diabetes mellitus, and elevated markers of systemic autoimmunity. Long-term follow-up is needed in patients with DHS to determine the natural history of DHS-associated sequelae. PMID:19153345

  4. The prevalence of autoimmune disease in patients with esophageal achalasia.

    PubMed

    Booy, J D; Takata, J; Tomlinson, G; Urbach, D R

    2012-04-01

    Achalasia is a rare disease of the esophagus that has an unknown etiology. Genetic, infectious, and autoimmune mechanisms have each been proposed. Autoimmune diseases often occur in association with one another, either within a single individual or in a family. There have been separate case reports of patients with both achalasia and one or more autoimmune diseases, but no study has yet determined the prevalence of autoimmune diseases in the achalasia population. This paper aims to compare the prevalence of autoimmune disease in patients with esophageal achalasia to the general population. We retrospectively reviewed the charts of 193 achalasia patients who received treatment at Toronto's University Health Network between January 2000 and May 2010 to identify other autoimmune diseases and a number of control conditions. We determined the general population prevalence of autoimmune diseases from published epidemiological studies. The achalasia sample was, on average, 10-15 years older and had slightly more men than the control populations. Compared to the general population, patients with achalasia were 5.4 times more likely to have type I diabetes mellitus (95% confidence interval [CI] 1.5-19), 8.5 times as likely to have hypothyroidism (95% CI 5.0-14), 37 times as likely to have Sjögren's syndrome (95% CI 1.9-205), 43 times as likely to have systemic lupus erythematosus (95% CI 12-154), and 259 times as likely to have uveitis (95% CI 13-1438). Overall, patients with achalasia were 3.6 times more likely to suffer from any autoimmune condition (95% CI 2.5-5.3). Our findings are consistent with the impression that achalasia's etiology has an autoimmune component. Further research is needed to more conclusively define achalasia as an autoimmune disease. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  5. Epigenomics of autoimmune diseases.

    PubMed

    Gupta, Bhawna; Hawkins, R David

    2015-03-01

    Autoimmune diseases are complex disorders of largely unknown etiology. Genetic studies have identified a limited number of causal genes from a marginal number of individuals, and demonstrated a high degree of discordance in monozygotic twins. Studies have begun to reveal epigenetic contributions to these diseases, primarily through the study of DNA methylation, but chromatin and non-coding RNA changes are also emerging. Moving forward an integrative analysis of genomic, transcriptomic and epigenomic data, with the latter two coming from specific cell types, will provide an understanding that has been missed from genetics alone. We provide an overview of the current state of the field and vision for deriving the epigenomics of autoimmunity.

  6. Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology.

    PubMed

    Batoulis, H; Recks, M S; Holland, F O; Thomalla, F; Williams, R O; Kuerten, S

    2014-01-01

    In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery. © 2013 British Society for Immunology.

  7. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells

    PubMed Central

    Shen, Ping; Brown, Sheila; Lampropoulou, Vicky; Roch, Toralf; Lawrie, Sarah; Fan, Boli; O’Connor, Richard A.; Anderton, Stephen M.; Bar-Or, Amit; Fillatreau, Simon; Gray, David

    2012-01-01

    B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6–secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell–specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6–sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6–producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell–driven pathogenesis in T cell–mediated autoimmune disease such as EAE and MS. PMID:22547654

  8. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.

    PubMed

    Guillot, Flora; Garcia, Alexandra; Salou, Marion; Brouard, Sophie; Laplaud, David A; Nicot, Arnaud B

    2015-07-04

    Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was

  9. Gender differences in autoimmunity associated with exposure to environmental factors

    PubMed Central

    Pollard, K. Michael

    2011-01-01

    Autoimmunity is thought to result from a combination of genetics, environmental triggers, and stochastic events. Gender is also a significant risk factor with many diseases exhibiting a female bias. Although the role of environmental triggers, especially medications, in eliciting autoimmunity is well established less is known about the interplay between gender, the environment and autoimmunity. This review examines the contribution of gender in autoimmunity induced by selected chemical, physical and biological agents in humans and animal models. Epidemiological studies reveal that environmental factors can be associated with a gender bias in human autoimmunity. However many studies show that the increased risk of autoimmunity is often influenced by occupational exposure or other gender biased activities. Animal studies, although often prejudiced by the exclusive use of female animals, reveal that gender bias can be strain specific suggesting an interaction between sex chromosome complement and background genes. This observation has important implications because it argues that within a gender biased disease there may be individuals in which gender does not contribute to autoimmunity. Exposure to environmental factors, which encompasses everything around us, adds an additional layer of complexity. Understanding how the environment influences the relationship between sex chromosome complement and innate and adaptive immune responses will be essential in determining the role of gender in environmentally-induced autoimmunity. PMID:22137891

  10. Rare phenotypes in the understanding of autoimmunity

    PubMed Central

    Zeissig, Yvonne; Petersen, Britt-Sabina; Franke, Andre; Blumberg, Richard S; Zeissig, Sebastian

    2017-01-01

    The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and ‘horror autotoxicus’. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity. PMID:27562064

  11. Autoimmune liver disease 2007.

    PubMed

    Muratori, Paolo; Granito, Alessandro; Pappas, Georgios; Muratori, Luigi; Lenzi, Marco; Bianchi, Francesco B

    2008-01-01

    Autoimmune liver disease (ALD) includes a spectrum of diseases which comprises both cholestatic and hepatitic forms: autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and the so called "overlap" syndromes where hepatitic and cholestatic damage coexists. All these diseases are characterized by an extremely high heterogeneity of presentation, varying from asymptomatic, acute (as in a subset of AIH) or chronic (with aspecific symptoms such as fatigue and myalgia in AIH or fatigue and pruritus in PBC and PSC). The detection and characterization of non organ specific autoantibodies plays a major role in the diagnostic approach of autoimmune liver disease; anti nuclear reactivities (ANA) and anti smooth muscle antibodies (SMA) mark type 1 AIH, liver kidney microsomal antibody type 1 (LKM1) and liver cytosol type 1 (LC1) are the serological markers of type 2 AIH; antimitochondrial antibodies (AMA) are associated with PBC, while no specific marker is found in PSC, since anticytoplasmic neutrophil antibodies with perinuclear pattern (atypical p-ANCA or p-ANNA) are also detected in a substantial proportion of type 1 AIH cases. Treatment options rely on immunosoppressive therapy (steroids and azathioprine) in AIH and on ursodeoxycholic acid in cholestatic conditions; in all these diseases liver transplantation remains the only therapeutical approach for the end stage of liver disease.

  12. Cell- and stage-specific localization of galectin-3, a β-galactoside-binding lectin, in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko

    2018-06-16

    Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.

  13. Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Mahmoudi, Mahmoud

    2016-10-01

    Hyperforin an herbal compound, is commonly used in traditional medicine due to its anti-inflammatory activities. The aim of this study was to use a hyperforin loaded gold nanoparticle (Hyp-GNP) in the treatment of experimental autoimmune encephalomyelitis (EAE) an animal model of multiple sclerosis (MS). Hyp-GNP and hyperforin significantly reduced clinical severity of EAE, which was accompanied by a decrease in the number of inflammatory cell infiltration in the spinal cord. Additionally, treatment with Hyp-GNP significantly inhibited disease-associated cytokines as well as an increase in the anti-inflammatory cytokines in comparison to all groups including the free-hyp group. Furthermore, hyperforin and Hyp-GNP inhibited the differentiation of Th1 and Th17 cells while promoting Treg and Th2 cell differentiation via regulating their master transcription factors. The current study demonstrated the although, free-hyp improved clinical and laboratory data Hyp-GNP is significantly more efficient than free hyperforin in the treatment of EAE. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    PubMed

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 k

  15. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action.

    PubMed Central

    Ansar Ahmed, S.; Penhale, W. J.; Talal, N.

    1985-01-01

    Immune reactivity is greater in females than in males. In both experimental animals and in man there is a greater preponderance of autoimmune diseases in females, compared with males. Studies in many experimental models have established that the underlying basis for this sex-related susceptibility is the marked effects of sex hormones. Sex hormones influence the onset and severity of immune-mediated pathologic conditions by modulating lymphocytes at all stages of life, prenatal, prepubertal, and postpubertal. However, despite extensive studies, the mechanisms of sex hormone action are not precisely understood. Earlier evidence suggested that the sex hormones acted via the thymus gland. In recent years it has become apparent that sex hormones can also influence the immune system by acting on several nonclassic target sites such as the immune system itself (nonthymic lymphoid organs), the central nervous system, the macrophage-macrocyte system, and the skeletal system. Immunoregulatory T cells appear to be most sensitive to sex hormone action among lymphoid cells. Several mechanisms of action of sex hormones are discussed in this review. The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation. Images Figure 1 PMID:3907369

  16. Autoimmune pancreatitis associated with renal lesions mimicking metastatic tumours

    PubMed Central

    Rudmik, Lucas; Trpkov, Kiril; Nash, Carla; Kinnear, Susan; Falck, Vincent; Dushinski, John; Dixon, Elijah

    2006-01-01

    Autoimmune pancreatitis is a chronic inflammatory disorder that is often misdiagnosed as pancreatic cancer. Since autoimmune pancreatitis is benign and responds to steroid management, it is important to diagnose it to avoid unnecessary surgical intervention. We describe a novel case of IgG4-associated autoimmune pancreatitis presenting with tubulointerstitial nephritis as renal lesions mimicking metastatic tumours but with no change in renal function. PMID:16908897

  17. Glycyrrhizin, a Direct HMGB1 Antagonist, Ameliorates Inflammatory Infiltration in a Model of Autoimmune Thyroiditis via Inhibition of TLR2-HMGB1 Signaling.

    PubMed

    Li, Chenyan; Peng, Shiqiao; Liu, Xin; Han, Cheng; Wang, Xinyi; Jin, Ting; Liu, Shanshan; Wang, Weiwei; Xie, Xiaochen; He, Xue; Zhang, Hanyi; Shan, Ling; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2017-05-01

    High mobility group box-1 (HMGB1), a non-histone protein, plays an important role in autoimmune diseases. However, the significance of HMGB1 in the pathogenesis of autoimmune thyroiditis has not been reported. The purpose of this study was to explore whether HMGB1 participates in the pathogenesis of autoimmune thyroiditis, and whether glycyrrhizin (GL), a direct inhibitor of HMGB1, attenuates the severity of thyroid inflammatory infiltration in a murine model of autoimmune thyroiditis. A total of 80 male NOD.H-2 h4 mice were randomly divided into a control or iodine supplement (NaI) group at four weeks of age, and the control group was fed with regular water, whereas the NaI group was supplied with 0.005% sodium iodine water. Another 24 male NOD.H-2 h4 mice were also randomized into three groups (eight mice per group) as follows: control, NaI, and GL treatment after iodine supplementation (NaI + GL). The NOD.H-2 h4 mice were fed with 0.005% sodium iodide water for eight weeks to enhance autoimmune thyroiditis. After iodine treatment, the mice received intraperitoneal injections of GL for four weeks. The severity of lymphocytic infiltration in the thyroid gland was measured by histopathological studies. The serum levels of HMGB1, tumor necrosis factor alpha, interleukin (IL)-6, IL-1β, and thyroglobulin antibody titers were measured using an enzyme-linked immunosorbent assay. HMGB1 expression was measured by immunohistochemical staining and real-time polymerase chain reaction. TLR2, HMGB1, MyD88, and nuclear transcription factor κB were measured by Western blot. The mRNA expression of HMGB1 was significantly higher at 8 and 16 weeks in the NaI group than it was in the control group. Serum levels of thyroglobulin antibodies, HMGB1, tumor necrosis factor alpha, IL-6, and IL-1β were significantly increased in the NaI group, but they were dramatically attenuated with GL injection. The prevalence of thyroiditis and the infiltration of lymphocytes were significantly

  18. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  19. Murine models of breast cancer bone metastasis

    PubMed Central

    Wright, Laura E; Ottewell, Penelope D; Rucci, Nadia; Peyruchaud, Olivier; Pagnotti, Gabriel M; Chiechi, Antonella; Buijs, Jeroen T; Sterling, Julie A

    2016-01-01

    Bone metastases cause significant morbidity and mortality in late-stage breast cancer patients and are currently considered incurable. Investigators rely on translational models to better understand the pathogenesis of skeletal complications of malignancy in order to identify therapeutic targets that may ultimately prevent and treat solid tumor metastasis to bone. Many experimental models of breast cancer bone metastases are in use today, each with its own caveats. In this methods review, we characterize the bone phenotype of commonly utilized human- and murine-derived breast cell lines that elicit osteoblastic and/or osteolytic destruction of bone in mice and report methods for optimizing tumor-take in murine models of bone metastasis. We then provide protocols for four of the most common xenograft and syngeneic inoculation routes for modeling breast cancer metastasis to the skeleton in mice, including the intra-cardiac, intra-arterial, orthotopic and intra-tibial methods of tumor cell injection. Recommendations for in vivo and ex vivo assessment of tumor progression and bone destruction are provided, followed by discussion of the strengths and limitations of the available tools and translational models that aid investigators in the study of breast cancer metastasis to bone. PMID:27867497

  20. Porous silicon biosensor for the detection of autoimmune diseases

    NASA Astrophysics Data System (ADS)

    Jane, Andrew O.; Szili, Endre J.; Reed, Joanne H.; Gordon, Tom P.; Voelcker, Nicolas H.

    2007-12-01

    Advances in porous silicon (pSi) technology have led to the development of new sensitive biosensors. The unique optical properties of pSi renders the material a perfect candidate for optical transducers exploiting photoluminescence or white light interference effects. The ability of biosensors exploiting these transduction mechanisms to quickly and accurately detect biological target molecules affords an alternative to current bioassays such as enzyme-linked immunosorbent assays (ELISAs). Here, we present a pSi biosensor that was developed to detect antibodies against the autoimmune protein La. This protein is associated with autoimmune diseases including rheumatic disorders, systematic lupus erythematosus (SLE) and Sjogren's syndrome (SS). A fast and sensitive detection platform such as the one described here can be applied to the rapid diagnosis of these debilitating autoimmune diseases. The immobilisation of the La protein onto pSi films gave a protein receptor-decorated sensor matrix. A cascade of immunological reactions was then initiated to detect anti-La antibody on the functionalised pSi surface. In the presence of o-phenylenediamine (OPD), horseradish peroxidase (HRP)/H IIO II catalysed the formation of an oxidised radical species that accelerated pSi corrosion. pSi corrosion was detected as a blue-shift in the generated interference pattern, corresponding to a decrease in the effective optical thickness (EOT) of the pSi film. Compared to an ELISA, the pSi biosensor could detect the anti-La antibody at a similar concentration (500 - 125 ng/ml). Furthermore, we found that the experimental process can be significantly shortened resulting in detection of the anti-La antibody in 80 minutes compared to a minimum of 5 hours required for ELISA.