Science.gov

Sample records for murine experimental autoimmune

  1. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    PubMed

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  2. Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model

    PubMed Central

    Zhao, Hong; Kiptoo, Paul; Williams, Todd D.; Siahaan, Teruna J.; Topp, Elizabeth M.

    2014-01-01

    The effects of controlled release on immune response to an immunomodulating peptide were evaluated in a murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). The peptide, Ac-PLP-BPI-NH2-2 (Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)2-ITDGEATDSG-NH2; Ac = acetyl, Acp = aminocaproic acid) was designed to suppress T-cell activation in response to PLP139–151, an antigenic peptide in MS. Poly-lactide-co-glycolide (PLGA) microparticles containing Ac-PLP-BPI-NH2-2 (8±4 μm, 1.4±0.2% (w/w)) were prepared by a powder-in oil-in water emulsion-solvent evaporation method, sterilized and administered subcutaneously (s.c.) to SJL/J (H-2s) mice in which EAE had been induced by immunization with PLP139–151. Treatment groups received Ac-PLP-BPI-NH2-2: (i) in solution by repeated i.v. or s.c. injection, (ii) in solution co-administered with blank PLGA microparticles, (iii) in solution co-administered with Ac-PLP-BPI-NH2-2 loaded microparticles, and (iv) as Ac-PLP-BPI-NH2-2 loaded microparticles. Administration of Ac-PLP-BPI-NH2-2 as an s.c. solution produced clinical scores and maintenance of body weight comparable to i.v. solution, but with reduced overall survival, presumably due to anaphylaxis. Administration as s.c. microparticles provided a somewhat less effective reduction in symptoms but with no toxicity during treatment. Thus, the results suggest that s.c. administration of Ac-PLP-BPI-NH2-2 microparticles can provide pharmacological efficacy and reduction in dosing frequency without increased toxicity. PMID:19748537

  3. Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography.

    PubMed

    Chu, Colin J; Herrmann, Philipp; Carvalho, Livia S; Liyanage, Sidath E; Bainbridge, James W B; Ali, Robin R; Dick, Andrew D; Luhmann, Ulrich F O

    2013-01-01

    Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r(2) = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r(2) = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with

  4. The Role of Lipoprotein-Associated Phospholipase A₂ in a Murine Model of Experimental Autoimmune Uveoretinitis

    PubMed Central

    Crawford, G. L.; Boldison, J.; Copland, D. A.; Adamson, P.; Gale, D.; Brandt, M.; Nicholson, L. B.; Dick, A. D.

    2015-01-01

    Macrophage activation is, in part, regulated via hydrolysis of oxidised low density lipoproteins by Lipoprotein-Associated phospholipase A2 (Lp-PLA2), resulting in increased macrophage migration, pro-inflammatory cytokine release and chemokine expression. In uveitis, tissue damage is mediated as a result of macrophage activation; hence inhibition of Lp-PLA2 may limit macrophage activation and protect the tissue. Utilising Lp-PLA2 gene-deficient (KO) mice and a pharmacological inhibitor of Lp-PLA2 (SB-435495) we aimed to determine the effect of Lp-PLA2 suppression in mediating retinal protection in a model of autoimmune retinal inflammation, experimental autoimmune uveoretinitis (EAU). Following immunisation with RBP-3 (IRBP) 1–20 or 161–180 peptides, clinical disease was monitored and severity assessed, infiltrating leukocytes were enumerated by flow cytometry and tissue destruction quantified by histology. Despite ablation of Lp-PLA2 enzyme activity in Lp-PLA2 KO mice or wild-type mice treated with SB-435495, the number of infiltrating CD45+ cells in the retina was equivalent to control EAU animals, and there was no reduction in disease severity. Thus, despite the reported beneficial effects of therapeutic Lp-PLA2 depletion in a variety of vascular inflammatory conditions, we were unable to attenuate disease, show delayed disease onset or prevent progression of EAU in Lp-PLA2 KO mice. Although EAU exhibits inflammatory vasculopathy there is no overt defect in lipid metabolism and given the lack of effect following Lp-PLA2 suppression, these data support the hypothesis that sub-acute autoimmune inflammatory disease progresses independently of Lp-PLA2 activity. PMID:25874928

  5. Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis.

    PubMed

    Stoppelkamp, Sandra; Reid, Delyth M; Yeoh, Joyce; Taylor, Julie; McKenzie, Emma J; Brown, Gordon D; Gordon, Siamon; Forrester, John V; Wong, Simon Y C

    2015-10-01

    Mycobacteria in complete Freund's adjuvant (CFA) are an essential component of immunization protocols in a number of autoimmune disease animal models including experimental autoimmune encephalomyelitis and uveoretinitis (EAE and EAU, respectively). We determined the role in EAU of two C-type lectin receptors on myeloid cells that recognize and respond to mycobacteria. Using receptor-specific antibodies and knockout mice, we demonstrated for the first time that the macrophage mannose receptor delays disease development but does not affect severity. In contrast, dectin-1 is critically involved in the development of CFA-mediated EAU. Disease severity is reduced in dectin-1 knockout mice and antibody blockade of dectin-1 during the induction, but not the effector phase, prevents EAU development. Significantly, similar blockade of dectin-1 in vivo has no effect in non-CFA-mediated, spontaneously induced or adoptive transfer models of EAU. Thus dectin-1 plays a critical role in the ability of complete Freund's adjuvant to induce EAU in mice.

  6. Prevention and Mitigation of Experimental Autoimmune Encephalomyelitis by Murine β-Defensins via Induction of Regulatory T Cells.

    PubMed

    Bruhs, Anika; Schwarz, Thomas; Schwarz, Agatha

    2016-01-01

    The antimicrobial peptide murine β-defensin-14 (mBD14) was found to exert, in addition to its antimicrobial activity, the capacity to induce regulatory T cells as demonstrated in the model of contact hypersensitivity. Because it is induced by ultraviolet radiation, mBD14 may contribute to the antigen-specific immunosuppression by ultraviolet radiation. To prove whether this applies also for other immunologic models and because ultraviolet radiation appears to have beneficial effects on multiple sclerosis, we utilized the model of experimental autoimmune encephalomyelitis. Injection of mBD14 into mice before immunization with myelin oligodendrocyte glycoprotein caused amelioration of the disease with less central nervous system inflammation and decreased levels of proinflammatory cytokines and cytotoxic T cells. The beneficial effect was due to Foxp3(+) regulatory T cells because it was lost on in vivo depletion of regulatory T cells. mBD14, however, also acts in a therapeutic setting, because injection of mBD14 into mice with clinical features of experimental autoimmune encephalomyelitis reduced the clinical score significantly. Human β-defensin-3, the human orthologue of mBD14, induced in vitro regulatory T cell-specific markers in CD4(+)CD25(-) T cells, shifting these nonregulatory cells into a regulatory phenotype with suppressive features. Thus, defensins may represent candidates worth being further pursued for the therapy of multiple sclerosis. PMID:26763437

  7. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis.

    PubMed

    Gibson-Corley, Katherine N; Boyden, Alexander W; Leidinger, Mariah R; Lambertz, Allyn M; Ofori-Amanfo, Georgina; Naumann, Paul W; Goeken, J Adam; Karandikar, Nitin J

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model for multiple sclerosis and is characterized by infiltration of mononuclear cells and demyelination within the central nervous system along with the clinical symptoms of paralysis. EAE is a multifocal and random disease, which sometimes makes histopathologic analysis of lesions difficult as it may not be possible to predict where lesions will occur, especially when evaluating cross sections of spinal cord. Consequently, lesions may be easily missed due to limited sampling in traditional approaches. To evaluate the entire length of the spinal cord while maintaining anatomic integrity, we have developed a method to section the cord within the decalcified spinal column, which allows for the study of the multifocal nature of this disease and also minimizes handling artifact. HE and Luxol fast blue staining of these spinal cord sections revealed a paucity of lesions in some areas, while others showed marked inflammation and demyelination. The percentage of spinal cord affected by EAE was evaluated at four separate areas of longitudinally sectioned cord and it varied greatly within each animal. Immunohistochemical staining of in situ spinal cords which had undergone decalcification was successful for key immuno-markers used in EAE research including CD3 for T cells, B220 for B cells and F4/80 for murine macrophages. This method will allow investigators to look at the entire spinal cord on a single slide and evaluate the spinal cord with and without classic EAE lesions. PMID:26855861

  8. Review of autoimmune (lupus-like) glomerulonephritis in murine models.

    PubMed

    Hicks, John; Bullard, Daniel C

    2006-01-01

    While murine models of autoimmune (lupus-like) glomerulonephritis have been available for sometime, it is only recently that immune and inflammatory mechanisms and molecular genetics have been extensively investigated. Genes involved in murine and human lupus nephritis have been discovered and provide insight into this disease process and provide avenues for molecular-targeted therapy. Immune modulation of murine nephritis has provided insight into novel therapy that may attenuate this disease or halt disease progression. With the advances in understanding the pathogenesis of lupus nephritis using translational research modalities, including electron microscopy, and molecular genetics, many "designer" therapies have become available for clinical use and for clinical investigational trials. This paper reviews autoimmune (lupus-like) glomerulonephritis in murine models, candidate genes involved in lupus nephritis, adhesion molecules implicated in murine lupus-like nephritis, immune modulation of murine lupus-like nephritis, and novel and potential therapy for immune complex glomerulonephritis.

  9. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    SciTech Connect

    Flynn, J.C.; Kong, Y.C. )

    1991-09-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT.

  10. Experimental autoimmune myasthenia gravis in the mouse

    PubMed Central

    Wu, Bo; Goluszko, Elzbieta; Huda, Ruksana; Tuzun, Erdem; Christadoss, Premkumar

    2011-01-01

    Myasthenia gravis (MG) is a T cell-dependent antibody-mediated autoimmune neuromuscular disease. Antibodies to the nicotinic acetylcholine receptor (AChR) destroy the AChR, thus leading to defective neuromuscular transmission of electrical impulse and to muscle weakness. This unit is a practical guide to the induction and evaluation of experimental autoimmune myasthenia gravis (EAMG) in the mouse, the animal model for MG. Protocols are provided for the extraction and purification of AChR from the electric organs of Torpedo californica, or eel. The purified receptor is used as an immunogen to induce autoimmunity to AChR, thus causing EAMG. The defect in neuromuscular transmission can also be measured quantitatively by electromyography. In addition, EAMG is frequently characterized by the presence of serum antibodies to AChR, which are measured by radioimmunoassay and by a marked antibody-mediated reduction in the number of muscle AChRs. AChR extracted from mouse muscle is used in measuring serum antibody levels and for quantifying muscle AChR content. Another hallmark of the disease is complement and IgG deposits located at the neuromuscular junction, which can be visualized by immunofluorescence techniques. PMID:18432738

  11. Heparanase upregulaes Th2 cytokines, ameliorating experimental autoimmune encephalitis

    PubMed Central

    Bitan, Menachem; Weiss, Lola; Reibstein, Israel; Zeira, Michael; Fellig, Yakov; Slavin, Shimon; Zcharia, Eyal; Nagler, Arnon; Vlodavsky, Israel

    2010-01-01

    Heparanase is an endo–β–D-glucuronidase that cleaves heparan sulfate (HS) saccharide chains. The enzyme promotes cell adhesion, migration and invasion and plays a significant role in cancer metastasis, angiogenesis and inflammation. The present study focuses on the involvement of heparanase in autoimmunity, applying the murine experimental autoimmune encephalitis (EAE) model, a T cell dependent disease often used to investigate the pathophysiology of multiple sclerosis (MS). Intraperitoneal administration of recombinant heparanase ameliorated, in a dose dependent manner, the clinical signs of the disease. In vitro and in vivo studies revealed that heparanase inhibited mitogen induced splenocyte proliferation and mixed lymophocyte reaction (MLR) through modulation of their repertoire of cytokines indicated by a marked increase in the levels of IL-4, IL-6 and IL-10, and a parallel decrease in IL-12 and TNF-α. Similar results were obtained with active, latent, or point mutated inactive heparanase, indicating that the observed inhibitory effect is attributed to a non-enzymatic activity of the heparanase protein. We suggest that heparanase induces upregulation of Th2 cytokines, resulting in inhibition of the inflammatory lesion of EAE. PMID:20399501

  12. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

    PubMed Central

    Arima, Yasunobu; Kamimura, Daisuke; Atsumi, Toru; Harada, Masaya; Kawamoto, Tadafumi; Nishikawa, Naoki; Stofkova, Andrea; Ohki, Takuto; Higuchi, Kotaro; Morimoto, Yuji; Wieghofer, Peter; Okada, Yuka; Mori, Yuki; Sakoda, Saburo; Saika, Shizuya; Yoshioka, Yoshichika; Komuro, Issei; Yamashita, Toshihide; Hirano, Toshio; Prinz, Marco; Murakami, Masaaki

    2015-01-01

    Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.08733.001 PMID:26193120

  13. CD44 Deficiency Contributes to Enhanced Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Flynn, Kelly M.; Michaud, Michael; Madri, Joseph A.

    2014-01-01

    Adhesion molecule CD44 is expressed by multiple cell types and is implicated in various cellular and immunological processes. In this study, we examined the effect of global CD44 deficiency on myelin oligodendrocyte glycoprotein peptide (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. Compared to C57BL/6 wild-type mice, CD44-deficient mice presented with greater disease severity, increased immune cell numbers in the central nervous system, and increased anti-MOG antibody and proinflammatory cytokine production, especially those associated with T helper 17 (Th17) cells. Further, decreased numbers of peripheral CD4+CD25+FoxP3+ regulatory T cells (Tregs) were observed in CD44-knockout mice throughout the disease course. CD44-knockout CD4 T cells exhibited reduced transforming growth factor-β receptor type I (TGF-β RI) expression that did not impart a defect in Treg polarization in vitro, but did correlate with enhanced Th17 polarization in vitro. Further, EAE in bone marrow–chimeric animals suggested CD44 expression on both circulating and noncirculating cells limited disease severity. Endothelial expression of CD44 limited T-cell adhesion to and transmigration through murine endothelial monolayers in vitro. Importantly, we also identified increased permeability of the blood–brain barrier in vivo in CD44-deficient mice before and following immunization. These data suggest that CD44 has multiple protective roles in EAE, with effects on cytokine production, T-cell differentiation, T-cell–endothelial cell interactions, and blood–brain barrier integrity. PMID:23416161

  14. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  15. Murine genotype influences the specificity, magnitude and persistence of murine mercury-induced autoimmunity.

    PubMed

    Hultman, P; Turley, S J; Eneström, S; Lindh, U; Pollard, K M

    1996-04-01

    Genetic factors are major contributors in determining the susceptibility to systemic autoimmune diseases. We studied the influence of genotype on systemic autoimmunity by treating female mice of the H-2s strains SJL/N, SJL/J, A.SW, and B10.S with mercuric chloride (HgCl2) for 10 weeks and then following autoantibody and tissue immune deposits during the subsequent 12 months. All strains developed antinucleolar antibodies (ANoA) of the IgG class which reacted in immunoblotting with a 34-kDa nucleolar protein identified as fibrillarin. The titre of ANoA attained after 10 weeks' treatment varied from 1:1,280 to 1:20,480 in the order: A.SW > SJL > > B10.S. Following cessation of HgCl2 treatment ANoA and antifibrillarin antibodies (AFA) persisted for up to 12 months, although some B10.S mice showed pronounced reduction not only of their autoantibody titres, but also systemic immune deposits when compared to other H-2s strains. A second set of autoantibodies targeted chromatin and in some mice specifically histones, and were distinguished from the ANoA by a rapid decline after treatment and a susceptibility linked to the non-H-2 genes of the SJL. Tissue levels of mercury remained elevated above untreated controls throughout the study period, suggesting that the mercury detected in lymphoid tissues may provide stimulation of lymphoid cells specific for fibrillarin for a considerable period after exposure has ceased. We conclude that H-2 as well as non-H-2 genetic factors distinctly influence not only the susceptibility to induction of autoimmunity, but also the specificity and magnitude of the response.

  16. Oral flavonoids delay recovery from experimental autoimmune encephalomyelitis in SJL mice.

    PubMed

    Verbeek, Richard; van Tol, Eric A F; van Noort, Johannes M

    2005-07-15

    Flavonoids are food components that appear to have potential beneficial health effects. There is a range of in vitro studies supporting the anti-oxidant and anti-inflammatory properties of flavonoids. Previously, we demonstrated that in vitro flavonoids, including luteolin and apigenin, inhibit proliferation and IFN-gamma production by murine and human autoimmune T cells. In the present study, we examined the effects of oral flavonoids as well as of curcumin on autoimmune T cell reactivity in mice and on the course of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. Continuous oral administration of flavonoids significantly affected antigen-specific proliferation and IFN-gamma production by lymph node-derived T cells following immunization with an EAE-inducing peptide. Both luteolin and apigenin suppress proliferative responses as they did in vitro, whereas IFN-gamma production on the other hand was enhanced. Other flavonoids exerted differential effects on proliferation and IFN-gamma production. The effects of flavonoids and curcumin on EAE were assessed using either passive transfer of autoimmune T cells or active disease induction. In passive EAE, flavonoids led to delayed recovery of clinical symptoms rather than to any reduction in disease. In active EAE, the effects were less pronounced but also, in this case, the flavonoid hesperitin delayed recovery. Oral curcumin had overall mild but beneficial effects. Our results indicate that oral flavonoids fail to beneficially influence the course of EAE in mice but, instead, suppress recovery from acute inflammatory damage.

  17. Murine autoimmune hearing loss mediated by CD4+ T cells specific for inner ear peptides.

    PubMed

    Solares, C Arturo; Edling, Andrea E; Johnson, Justin M; Baek, Moo-Jin; Hirose, Keiko; Hughes, Gordon B; Tuohy, Vincent K

    2004-04-01

    Autoimmune sensorineural hearing loss (ASNHL) is characterized typically by bilateral, rapidly progressive hearing loss that responds therapeutically to corticosteroid treatment. Despite its name, data implicating autoimmunity in the etiopathogenesis of ASNHL have been limited, and targeted self-antigens have not been identified. In the current study we show that the inner ear-specific proteins cochlin and beta-tectorin are capable of targeting experimental autoimmune hearing loss (EAHL) in mice. Five weeks after immunization of SWXJ mice with either Coch 131-150 or beta-tectorin 71-90, auditory brainstem responses (ABR) showed significant hearing loss at all frequencies tested. Flow cytometry analysis showed that each peptide selectively activated CD4(+) T cells with a proinflammatory Th1-like phenotype. T cell mediation of EAHL was determined by showing significantly increased ABR thresholds 6 weeks after adoptive transfer of peptide-activated CD4(+) T cells into naive SWXJ recipients. Immunocytochemical analysis showed that leukocytic infiltration of inner ear tissues coincided with onset of hearing loss. Our study provides a contemporary mouse model for clarifying our understanding of ASNHL and facilitating the development of novel effective treatments for this clinical entity. Moreover, our data provide experimental confirmation that ASNHL may be a T cell-mediated organ-specific autoimmune disorder of the inner ear.

  18. ERβ-Dependent Direct Suppression of Human and Murine Th17 Cells and Treatment of Established Central Nervous System Autoimmunity by a Neurosteroid.

    PubMed

    Aggelakopoulou, Maria; Kourepini, Evangelia; Paschalidis, Nikolaos; Simoes, Davina C M; Kalavrizioti, Dimitra; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Mouzaki, Athanasia; Panoutsakopoulou, Vily

    2016-10-01

    Multiple sclerosis (MS), an autoimmune disease of the CNS, is mediated by autoreactive Th cells. A previous study showed that the neurosteroid dehydroepiandrosterone (DHEA), when administered preclinically, could suppress progression of relapsing-remitting experimental autoimmune encephalomyelitis (EAE). However, the effects of DHEA on human or murine pathogenic immune cells, such as Th17, were unknown. In addition, effects of this neurosteroid on symptomatic disease, as well as the receptors involved, had not been investigated. In this study, we show that DHEA suppressed peripheral responses from patients with MS and reversed established paralysis and CNS inflammation in four different EAE models, including the 2D2 TCR-transgenic mouse model. DHEA directly inhibited human and murine Th17 cells, inducing IL-10-producing regulatory T cells. Administration of DHEA in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in an IL-10-dependent manner. Expression of the estrogen receptor β by CD4(+) T cells was necessary for DHEA-mediated EAE amelioration, as well as for direct downregulation of Th17 responses. TGF-β1 as well as aryl hydrocarbon receptor activation was necessary for the expansion of IL-10-producing T cells by DHEA. Thus, our studies demonstrate that compounds that inhibit pathogenic Th17 responses and expand functional regulatory cells could serve as therapeutic agents for autoimmune diseases, such as MS. PMID:27549171

  19. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Robinson, Andrew P; Caldis, Matthew W; Harp, Christopher T; Goings, Gwendolyn E; Miller, Stephen D

    2013-06-01

    Multiple sclerosis (MS) is an autoimmune, demyelinating disease and as such, the gold standard of treatment is to selectively suppress the pathogenic autoimmune response without compromising the entire arm of the adaptive immune response. One target of this strategy lying upstream of the pathologic adaptive immune response is the local, innate immune signaling that initiates and drives autoimmunity and sterile injury. High-mobility group box 1 protein (HMGB1) is a ubiquitous nuclear protein that when released from necrotic cells, such as damaged oligodendrocytes in MS lesions, drives pro-inflammatory responses. Here we demonstrate that HMGB1 drives neuroinflammatory responses in experimental autoimmune encephalomyelitis (EAE), a murine model for MS, and that inhibition of HMGB1 signaling ameliorates disease. Specifically i.v. injection of an HMGB1 neutralizing antibody in the C57BL/6 model of chronic EAE or SJL/J model of relapsing-remitting EAE ameliorated clinical disease prophylactically or during ongoing disease, blocked T cell infiltration of the central nervous system, and inhibited systemic CD4(+) T cell responses to myelin epitopes. Additionally, lymphocytes from EAE mice restimulated in vitro in the presence of recombinant HMGB1 exhibited increased proliferation and pro-inflammatory cytokine production, an effect that was blocked by anti-HMGB1 antibody. Similarly recombinant HMGB1 promoted proliferation and pro-inflammatory cytokine production of human peripheral blood mononuclear cells stimulated in vitro, and anti-HMGB1 antibody blocked this effect. These findings indicate that HMGB1 contributes to neuroinflammatory responses that drive EAE pathogenesis and that HMGB1 blockade may be a novel means to selectively disrupt the pro-inflammatory loop that drives MS autoimmunity.

  20. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Clark, Matthew P; Leaman, Douglas W; Hazelhurst, Lori A; Hwang, Eun S; Quinn, Anthony

    2016-02-01

    Previously we showed that BBR3378, a novel analog of the anticancer drug mitoxantrone, had the ability to ameliorate ascending paralysis in MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis, without the drug-induced cardiotoxicity or lymphopenia associated with mitoxantrone therapy. Chemotherapeutic drugs like mitoxantrone, a topoisomerase inhibitor, are thought to provide protection in inflammatory autoimmune diseases like EAE by inducing apoptosis in rapidly proliferating autoreactive lymphocytes. Here, we show that while BR3378 blocked cell division, T cells were still able to respond to antigenic stimulation and upregulate surface molecules indicative of activation. However, in contrast to mitoxantrone, BBR3378 inhibited the production of the proinflammatory cytokine IFN-γ both in recently activated T cell blasts and established Th1 effectors, while sparing the activities of IL-13-producing Th2 cells. IFN-γ is known to be regulated by the transcription factor T-bet. In addition to IFN-γ, in vitro and in vivo exposure to BBR3378 suppressed the expression of other T-bet regulated proteins, including CXCR3 and IL-2Rβ. Microarray analysis revealed BBR3378-induced suppression of additional T-bet regulated genes, suggesting that the drug might disrupt global Th1 programming. Importantly, BBR3378 antagonized ongoing Th1 autoimmune responses in vivo, modulated clinical disease and CNS inflammation in acute and relapsing forms of EAE. Therefore, BBR3378 may be a unique inhibitor of T-bet regulated genes and may have potential as a therapeutic intervention in human autoimmune disease. PMID:26709219

  1. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Chandraratna, Roshantha As; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4(+) T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4(+) T cells that produce pro-inflammatory cytokines. In addition, CD4(+) T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  2. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Chandraratna, Roshantha AS; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4+ T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4+ T cells that produce pro-inflammatory cytokines. In addition, CD4+ T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  3. Chronic exercise confers neuroprotection in experimental autoimmune encephalomyelitis.

    PubMed

    Pryor, William M; Freeman, Kimberly G; Larson, Rebecca D; Edwards, Gaylen L; White, Lesley J

    2015-05-01

    Multiple sclerosis (MS) is an autoimmune disease that affects the CNS, resulting in accumulated loss of cognitive, sensory, and motor function. This study evaluates the neuropathological effects of voluntary exercise in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Two groups of C57BL/6J mice were injected with an emulsion containing myelin oligodendrocyte glycoprotein and then randomized to housing with a running wheel or a locked wheel. Exercising EAE mice exhibited a less severe neurological disease score and later onset of disease compared with sedentary EAE animals. Immune cell infiltration and demyelination in the ventral white matter tracts of the lumbar spinal cord were significantly reduced in the EAE exercise group compared with sedentary EAE animals. Neurofilament immunolabeling in the ventral pyramidal and extrapyramidal motor tracts displayed a more random distribution of axons and an apparent loss of smaller diameter axons, with a greater loss of fluorescence immunolabeling in the sedentary EAE animals. In lamina IX gray matter regions of the lumbar spinal cord, sedentary animals with EAE displayed a greater loss of α-motor neurons compared with EAE animals exposed to exercise. These findings provide evidence that voluntary exercise results in reduced and attenuated disability, reductions in autoimmune cell infiltration, and preservation of axons and motor neurons in the lumbar spinal cord of mice with EAE.

  4. Autoimmune Diabetes: An Overview of Experimental Models and Novel Therapeutics.

    PubMed

    You, Sylvaine; Chatenoud, Lucienne

    2016-01-01

    Type 1 diabetes (T1D) results from a chronic and selective destruction of insulin-secreting β-cells within the islets of Langerhans of the pancreas by autoreactive CD4(+) and CD8(+) T lymphocytes. The use of animal models of T1D was instrumental for deciphering the steps of the autoimmune process leading to T1D. The non-obese diabetic (NOD) mouse and the bio-breeding (BB) rat spontaneously develop the disease similar to the human pathology in terms of the immune responses triggering autoimmune diabetes and of the genetic and environmental factors influencing disease susceptibility. The generation of genetically modified models allowed refining our understanding of the etiology and the pathogenesis of the disease. In the present review, we provide an overview of the experimental models generated and used to gain knowledge on the molecular and cellular mechanisms underlying the breakdown of self-tolerance in T1D and the progression of the autoimmune response. Immunotherapeutic interventions designed in these animal models and translated into the clinical arena in T1D patients will also be discussed. PMID:26530798

  5. AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis.

    PubMed

    Hsueh, Yu-Hsin; Chang, Yun-Ning; Loh, Chia-En; Gershwin, M Eric; Chuang, Ya-Hui

    2016-01-01

    There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC.

  6. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats

    PubMed Central

    Yan, Jun; Yang, Xue; Han, Dong; Feng, Juan

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune neurodegenerative disease, which features focal demyelination and inflammatory cell infiltration of the brain and the spinal cord. Tanshinone IIA (TSIIA), one of the major fat-soluble components of Salvia miltiorrhiza (Danshen), has anti-inflammatory, immunoregulatory and neuroprotective activity; however, its efficacy in MS remains unknown. The current study was designed to investigate the potential therapeutic function of TSIIA on MS in the experimental autoimmune encephalomyelitis (EAE) rat model. In comparison to the vehicle control group, the TSIIA-treated groups showed notably improved clinical symptoms and pathological changes, including central nervous system inflammatory cell infiltration and demyelination. Following administration of TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macrophages/microglia in the spinal cord were reduced to different extents. Furthermore, TSIIA was also shown to downregulate interleukin (IL)-17 and IL-23 levels in the brain and serum of EAE rats. The results collectively provide evidence that TSIIA alleviates EAE and support its utility as a novel therapy for MS. PMID:27357729

  7. Translational utility of experimental autoimmune encephalomyelitis: recent developments

    PubMed Central

    Guerreiro-Cacais, Andre Ortlieb; Laaksonen, Hannes; Flytzani, Sevasti; N’diaye, Marie; Olsson, Tomas; Jagodic, Maja

    2015-01-01

    Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future. PMID:26622189

  8. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis.

    PubMed

    Xin, Junping; Feinstein, Douglas L; Hejna, Matthew J; Lorens, Stanley A; McGuire, Susan O

    2012-06-13

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients. PMID:22243431

  9. Antigen-specific immunotherapeutic vaccine for experimental autoimmune myasthenia gravis.

    PubMed

    Luo, Jie; Lindstrom, Jon

    2014-11-15

    Myasthenia gravis (MG) and experimental autoimmune myasthenia gravis (EAMG) are caused by Ab-mediated autoimmune responses to muscle nicotinic acetylcholine receptors (AChRs) that impair neuromuscular transmission, thereby causing muscle weakness. Previously, we discovered that i.p. injection of a therapeutic vaccine consisting of bacterially expressed cytoplasmic domains of human AChR subunits reduced the development of chronic EAMG in rats. In this article, we show that immunization with the therapeutic vaccine in adjuvants does not induce EAMG and, thus, is safe. The potency and efficacy of the therapeutic vaccine were greatly increased by s.c. administration of repeated low doses in IFA. Onset of chronic EAMG could be prevented. Established chronic EAMG could be rapidly reversed, modeling therapy of chronic MG. Therapy reduced pathological Abs assayed by immune precipitation of a main immunogenic region chimera. Successfully treated rats exhibited long-term resistance to reinduction of EAMG, suggesting a lasting cure of MG. A long-term effect of therapy was to change the isotype of the pathogenic Ab response from IgG2b, which fixes complement, to IgG1, which does not. Prevention and reversal of chronic EAMG was not caused by the isotype switch, but the isotype switch may contribute to resistance to reinduction of EAMG. Immunization with AChR cytoplasmic domains in adjuvant is promising as a safe, Ag-specific, potent, effective, rapidly acting, and long-lasting therapeutic approach to MG. PMID:25288571

  10. Tuftsin-driven experimental autoimmune encephalomyelitis recovery requires neuropilin-1.

    PubMed

    Nissen, Jillian C; Tsirka, Stella E

    2016-06-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of demyelinating autoimmune disease, such as multiple sclerosis (MS), which is characterized by central nervous system white matter lesions, microglial activation, and peripheral T-cell infiltration secondary to blood-brain barrier disruption. We have previously shown that treatment with tuftsin, a tetrapeptide generated from IgG proteolysis, dramatically improves disease symptoms in EAE. Here, we report that microglial expression of Neuropilin-1 (Nrp1) is required for tuftsin-driven amelioration of EAE symptoms. Nrp1 ablation in microglia blocks microglial signaling and polarization to the anti-inflammatory M2 phenotype, and ablation in either the microglia or immunosuppressive regulatory T cells (Tregs) reduces extended functional contacts between them and Treg activation, implicating a role for microglia in the activation process, and more generally, how immune surveillance is conducted in the CNS. Taken together, our findings delineate the mechanistic action of tuftsin as a candidate therapeutic against immune-mediated demyelinating lesions. PMID:26880314

  11. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    SciTech Connect

    Pestronk, A.; Drachman, D.B.; Teoh, R.; Adams, R.N.

    1983-08-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used to repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.

  12. Mononuclear cell secretome protects from experimental autoimmune myocarditis

    PubMed Central

    Hoetzenecker, Konrad; Zimmermann, Matthias; Hoetzenecker, Wolfram; Schweiger, Thomas; Kollmann, Dagmar; Mildner, Michael; Hegedus, Balazs; Mitterbauer, Andreas; Hacker, Stefan; Birner, Peter; Gabriel, Christian; Gyöngyösi, Mariann; Blyszczuk, Przemyslaw; Eriksson, Urs; Ankersmit, Hendrik Jan

    2015-01-01

    Aims Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. Methods and results BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. Conclusion MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart diseases. PMID:23321350

  13. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland.

    PubMed

    Kayes, Timothy Daniel; Weisman, Gary A; Camden, Jean M; Woods, Lucas T; Bredehoeft, Cole; Downey, Edward F; Cole, James; Braley-Mullen, Helen

    2016-09-15

    Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems. PMID:27521344

  14. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland.

    PubMed

    Kayes, Timothy Daniel; Weisman, Gary A; Camden, Jean M; Woods, Lucas T; Bredehoeft, Cole; Downey, Edward F; Cole, James; Braley-Mullen, Helen

    2016-09-15

    Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems.

  15. Development of an improved animal model of experimental autoimmune myositis

    PubMed Central

    Kang, Juan; Zhang, Hong-Ya; Feng, Guo-Dong; Feng, Dong-Yun; Jia, Hong-Ge

    2015-01-01

    Multiple animal models of experimental autoimmune myositis (EAM) have been developed. However, these models vary greatly in the severity of disease and reproducibility. The goal of this study was to test whether vaccination twice with increased dose of rat myosin and pertussis toxin (PT) could induce EAM with severer disease in mice. BALB/c mice were injected with 1 mg rat myosin in 50% complete Freund’s adjuvant (CFA) weekly for four times and one time of PT (EAM) or twice with 1.5 mg myosin in CFA and PT (M-EAM). In comparison with that in the CFA and PT injected controls, vaccination with rat myosin and injection PT significantly reduced the muscle strength and EMG duration, elevated serum creatine kinase levels, promoted inflammatory infiltration in the muscle tissues, leading to pathological changes in the muscle tissues, demonstrating to induce EAM. Interestingly, we found that vaccination twice with the high dose of myosin and PT prevented EAM-related gain in body weights and caused significantly less muscle strength in mice. More importantly, all of the mice receiving high dose of myosin and PT survived while 3 out of 16 mice with four times of low dose of myosin died. Finally, vaccination with high dose of myosin promoted CD4+ and CD8+ T cell infiltration in the muscle tissues and up-regulated MHC-I expression in the muscle tissues of mice. Hence, the new model of EAM is a time-saving, efficient and easily replicable tool for studying autoimmune myositis. PMID:26823763

  16. Idiotypic expression of antibodies to retinal S-antigen in experimental autoimmune uveoretinitis.

    PubMed Central

    Suleyman, S; Dumonde, D C; Banga, J P

    1987-01-01

    Retinal S-antigen (S-ag), found in the rod photoreceptors of the eye, is a potent autoantigen that is commonly involved in inflammatory eye disease leading to blindness in man. Antibodies, induced in the experimental model by immunizing rats with S-ag purified from porcine retina, were used to prepare heterologous rabbit anti-idiotypic antibodies. The binding of the four rabbit anti-idiotypes to S-ag antibodies was partially inhibitable by porcine S-ag but not by ovalbumin. The idiotypic determinants were localized to the heavy chains by Western blotting with the anti-idiotypes. The presence of the idiotype recognized by the rabbit anti-idiotype was assessed in antisera from various species containing antibodies to S-ag. All rat sera from animals undergoing experimental autoimmune uveoretinitis by immunization with S-ag from porcine or bovine retina contained antibodies that react to varying degrees with the rabbit anti-idiotype. The intraspecies nature of the idiotypic determinants recognized was demonstrated by the fact that none of the anti-idiotypes showed any reactivity with rabbit or murine antisera to S-ag from porcine, bovine or human retina or to human autoantibodies to S-ag from patients with inflammatory eye disease. Thus, all private and recurrent idiotypic determinants induced in rats by immunization with S-ag appear to be restricted to that species. Images Figure 5 PMID:2448224

  17. Analysis of neurogenesis during experimental autoimmune encephalomyelitis reveals pitfalls of bioluminescence imaging.

    PubMed

    Ayzenberg, Ilya; Schlevogt, Sibylle; Metzdorf, Judith; Stahlke, Sarah; Pedreitturia, Xiomara; Hunfeld, Anika; Couillard-Despres, Sebastien; Kleiter, Ingo

    2015-01-01

    Bioluminescence imaging is a sensitive approach for longitudinal neuroimaging. Transgenic mice expressing luciferase under the promoter of doublecortin (DCX-luc), a specific marker of neuronal progenitor cells (NPC), allow monitoring of neurogenesis in living mice. Since the extent and time course of neurogenesis during autoimmune brain inflammation are controversial, we investigated neurogenesis in MOG-peptide induced experimental allergic encephalomyelitis (EAE) using DCX-luc reporter mice. We observed a marked, 2- to 4-fold increase of the bioluminescence signal intensity 10 days after EAE induction and a gradual decline 1-2 weeks thereafter. In contrast, immunostaining for DCX revealed no differences between EAE and control mice 2 and 4 weeks after immunization in zones of adult murine neurogenesis such as the dentate gyrus. Ex vivo bioluminescence imaging showed similar luciferase expression in brain homogenates of EAE and control animals. Apart from complete immunization including MOG-peptide also incomplete immunization with complete Freund´s adjuvant and pertussis toxin resulted in a rapid increase of the in vivo bioluminescence signal. Blood-brain barrier (BBB) leakage was demonstrated 10 days after both complete and incomplete immunization and might explain the increased bioluminescence signal in vivo. We conclude, that acute autoimmune inflammation in EAE does not alter neurogenesis, at least at the stage of DCX-expressing NPC. Effects of immunization on the BBB integrity must be considered when luciferase is used as a reporter within the CNS during the active stage of EAE. Models with stable CNS-restricted luciferase expression could serve as technically convenient way to evaluate BBB integrity in a longitudinal manner.

  18. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells.

    PubMed

    Jörg, Stefanie; Kissel, Jan; Manzel, Arndt; Kleinewietfeld, Markus; Haghikia, Aiden; Gold, Ralf; Müller, Dominik N; Linker, Ralf A

    2016-05-01

    Recently, we have shown that high dietary salt intake aggravates T helper cell (Th) 17 responses and neuroinflammation. Here, we employed in vitro assays for myeloid dendritic cell (mDC) maturation, DC cytokine production, T cell activation and ex vivo analyses in murine experimental autoimmune encephalomyelitis (EAE) to investigate whether the salt effect on Th17 cells is further mediated through DCs in vivo. In cell culture, an excess of 40mM sodium chloride did neither affect the generation, maturation nor the function of DCs, but, in different assays, significantly increased Th17 differentiation. During the initiation phase of MOG35-55 EAE, we did not observe altered DC frequencies or co-stimulatory capacities in lymphoid organs, while IL-17A production and Th17 cells in the spleen were significantly increased. Complementary ex vivo analyses of the spinal cord during the effector phase of EAE showed increased frequencies of Th17 cells, but did not reveal differences in phenotypes of CNS invading DCs. Finally, adaption of transgenic mice harboring a MOG specific T cell receptor to a high-salt diet led to aggravated clinical disease only after active immunization. Wild-type mice adapted to a high-salt diet in the effector phase of EAE, bypassing the priming phase of T cells, only displayed mildly aggravated disease. In summary, our data argue for a direct effect of NaCl on Th17 cells in neuroinflammation rather than an effect primarily exerted via DCs. These data may further fuel our understanding on the dietary impact on different immune cell subsets in autoimmune diseases, such as multiple sclerosis.

  19. Immunomodulatory effects and improved prognosis of experimental autoimmune encephalomyelitis after O-tetradecanoyl-genistein treatment.

    PubMed

    Castro, Sandra B R; Junior, Celso O R; Alves, Caio C S; Dias, Alyria T; Alves, Lívia L; Mazzoccoli, Luciano; Mesquita, Felipe P; Figueiredo, Nathália S V; Juliano, Maria A; Castañon, Maria Christina M N; Gameiro, Jacy; Almeida, Mauro V; Teixeira, Henrique C; Ferreira, Ana Paula

    2012-02-01

    Experimental autoimmune encephalomyelitis (EAE) is a murine autoimmune disease used to study multiple sclerosis (MS), a human inflammatory demyelinating disease of the central nervous system. Genistein, an isoflavonoid phytoestrogenic compound found in soy, is known to reverse clinical signs of EAE. Although genistein has some potential in clinical application, it has some disadvantages related to its chemical structure, such as rapid in vivo metabolism and a fast decline in serum after oral administration. The present work investigates the treatment of EAE by using 7-O-tetradecanoyl-genistein (TDG), a more lipophilic analog of genistein obtained by esterification. The clinical course of EAE was investigated in C57Bl/6 mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG)(35-55) in complete Freund's adjuvant supplemented with Mycobacterium tuberculosis H37RA. After 14 days of MOG immunization, mice were treated with TDG for seven days. Numbers of IL-17-producing cells and Foxp3 by CD4(+) T cells and CTLA-4 expression by CD3(+) T cells from brain were determined by flow cytometry. Levels of IL-6, IFN-γ and IL-10 were evaluated by ELISA. Brain sections were stained by hematoxylin and eosin method. The data obtained indicate that TDG treatment ameliorates the clinical signs of EAE, which correlates with a decrease of IL-17-producing cells and an increase in Foxp3(+)CD4(+) cells in the brain. TDG is also shown to enhance IL-10 production and CTLA-4 expression and to reduce IFN-γ and IL-6. Altogether, these findings suggest an immunomodulatory therapeutic role for TDG in EAE and multiple sclerosis.

  20. A synthetic peptide from the third hypervariable region of major histocompatibility complex class II beta chain as a vaccine for treatment of experimental autoimmune encephalomyelitis.

    PubMed Central

    Topham, D J; Nag, B; Arimilli, S; Sriram, S

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a class II major histocompatibility complex (MHC)-restricted, T-cell-mediated, demyelinating autoimmune disease of the central nervous system and represents a model for human multiple sclerosis. The present study demonstrates that vaccination of SJL/J mice with an 18-amino acid synthetic peptide from the third hypervariable region of the murine class II MHC IAs beta chain (IAs beta 58-75; 18-mer peptide) is capable of eliciting auto-anti-IAs antibodies specific for the IAs beta chain and preventing and treating EAE. A similar approach may be useful in the treatment of human autoimmune diseases in which susceptibility is linked to class II MHC genes. Images PMID:8058747

  1. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  2. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  3. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    PubMed

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.

  4. Dendritic and Synaptic Pathology in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Zhu, Bing; Luo, Liqing; Moore, G. R. Wayne; Paty, Donald W.; Cynader, Max S.

    2003-01-01

    Evidence has shown that excitotoxicity may contribute to the loss of central nervous system axons and oligodendrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Because dendrites and synapses are vulnerable to excitotoxicity, we examined these structures in acute and chronic models of EAE. Immunostaining for microtubule-associated protein-2 showed that extensive dendritic beading occurred in the white matter of the lumbosacral spinal cord (LSSC) during acute EAE episodes and EAE relapses. Retrograde labeling confirmed that most motoneuron dendrites were beaded in the white matter of the LSSC in acute EAE. In contrast, only mild swelling was observed in the gray matter of the LSSC. Dendritic beading showed marked recovery during EAE remission and after EAE recovery. In addition, synaptophysin, synapsin I, and PSD-95 immunoreactivities were significantly reduced in both the gray and white matter of the LSSC during acute EAE episodes and EAE relapses, but showed partial recovery during EAE remission and after EAE recovery. Pathologically, both dendritic beading and the reduction in synaptic protein immunoreactivity were well correlated with inflammatory cell infiltration in the LSSC at different EAE stages. We propose that dendritic and synaptic damage in the spinal cord may contribute to the neurological deficits in EAE. PMID:12707048

  5. Suppression of experimental autoimmune encephalomyelitis by intravenously administered polyclonal immunoglobulins.

    PubMed

    Achiron, A; Mor, F; Margalit, R; Cohen, I R; Lider, O; Miron, S

    2000-11-01

    Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats either by active immunization with myelin basic protein (MBP) or by adoptive transfer using anti-MBP specific CD4(+)T cells. Treatment with human polyclonal immunoglobulins (IgG) effectively suppressed active EAE. Time-dependent experiments demonstrated that the effect of IgG was manifested only when treatment was given immediately after immunization; administration from day 7 after disease induction did not suppress the disease. In the adoptive transfer model of EAE, IgG had no effect in vivo. However, pretreatment in vitro of the antigen-specific T-cells with IgG inhibited their ability to mediate adoptive EAE, as it did in active EAE. Similarly, in vitro IgG pretreatment of the antigen-specific T-cells suppressed the proliferative response to MBP. Fluorescent Activated Cell Sorter (FACS) analysis demonstrated the binding of IgG to activated T-cell lines that was inhibited by soluble Fc molecules. The differential effects of IgG on active EAE and on the adoptive transfer of EAE suggest that IgG in vivo can suppress disease by acting during the early phase of the immune response which involves naive T cells. The inhibition of T-cell proliferation and adoptive transfer of EAE by incubation of T cells in vitro appears to require higher concentrations of IgG than those obtained in vivo. PMID:11040073

  6. Augmenting DAF levels in vivo ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Li, Qing; Huang, Danping; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-09-01

    Recent studies in experimental autoimmune encephalomyelitis (EAE) have found that CNS injury in Daf1(-/-) mice is much greater than in wild types (WTs), suggesting that upregulating DAF levels in vivo might ameliorate disease. To test this, we generated a Daf1 transgenic (Tg) mouse which had elevated DAF levels on its cell surfaces. In by-stand C3b uptake assays, Daf1 Tg mouse erythrocytes took up less C3b on their surfaces than WT erythrocytes. When co-cultured with OT-II CD4(+) T cells together with OVA(323-339) peptide, Daf1 Tg mouse bone marrow derived dendritic cells (BM-DCs) produced less C5a and C3a than WT BM-DCs and stimulated a lesser T cell response. In MOG(35-55) immunization induced EAE model, Daf1 Tg mice exhibited delayed disease onset and decreased clinical scores compared to WTs. Histological analyses showed that there were less inflammation and demyelination in spinal cords in Daf1 Tg mice than those in WTs. In accordance with these results, Daf1 Tg mice had decreased MOG(35-55) specific Th1 and Th17 responses. These data provide further evidence that DAF suppresses autoreactive T cell responses in EAE, and indicate that augmenting its expression levels could be effective therapeutically in treating multiple sclerosis as well as other T cell mediated diseases. PMID:19660813

  7. Bladder Dysfunction in Mice with Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Altuntas, Cengiz Z.; Daneshgari, Firouz; Liu, Guiming; Fabiyi, Adebola; Kavran, Michael; Johnson, Justin M.; Gulen, M. Fatih; Jaini, Ritika; Li, Xiaoxia; Frenkl, Tara L.; Tuohy, Vincent K.

    2009-01-01

    The vast majority of patients with multiple sclerosis (MS) develop bladder control problems including urgency to urinate, urinary incontinence, frequency of urination, and retention of urine. Over 60% of MS patients show detrusor-sphincter dyssynergia, an abnormality characterized by obstruction of urinary outflow as a result of discoordinated contraction of the urethral sphincter muscle and the bladder detrusor muscle. In the current study we examined bladder function in female SWXJ mice with different defined levels of neurological impairment following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of central nervous system inflammation widely used in MS research. We found that EAE mice develop profound bladder dysfunction characterized by significantly increased micturition frequencies and significantly decreased urine output per micturition. Moreover, we found that the severity of bladder abnormalities in EAE mice was directly related to the severity of clinical EAE and neurologic disability. Our study is the first to show and characterize micturition abnormalities in EAE mice thereby providing a most useful model system for understanding and treating neurogenic bladder. PMID:18703233

  8. IL-3 promotes the development of experimental autoimmune encephalitis

    PubMed Central

    Renner, Kerstin; Hermann, Fabian; Riedhammer, Christine; Talke, Yvonne; Schiechl, Gabriela; Gomez, Manuel Rodriguez; Kutzi, Simone; Halbritter, Dagmar; Goebel, Nicole; Brühl, Hilke

    2016-01-01

    Little is known about the role of IL-3 in multiple sclerosis (MS) in humans and in experimental autoimmune encephalomyelitis (EAE). Using myelin oligodendrocyte glycoprotein (MOG) peptide–induced EAE, we show that CD4+ T cells are the main source of IL-3 and that cerebral IL-3 expression correlates with the influx of T cells into the brain. Blockade of IL-3 with monoclonal antibodies, analysis of IL-3 deficient mice, and adoptive transfer of leukocytes demonstrate that IL-3 plays an important role for development of clinical symptoms of EAE, for migration of leukocytes into the brain, and for cerebral expression of adhesion molecules and chemokines. In contrast, injection of recombinant IL-3 exacerbates EAE symptoms and cerebral inflammation. In patients with relapsing-remitting MS (RRMS), IL-3 expression by T cells is markedly upregulated during episodes of relapse. Our data indicate that IL-3 plays an important role in EAE and may represent a new target for treatment of MS. PMID:27734026

  9. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta.

    PubMed

    Graepel, Rabea; Leung, Gabriella; Wang, Arthur; Villemaire, Michelle; Jirik, Frank R; Sharkey, Keith A; McDougall, Jason J; McKay, Derek M

    2013-06-01

    Infection with helminth parasites triggers strong and stereotypic immune responses in humans and mice, which can protect against specific experimentally-induced autoimmune diseases. We have shown that infection with the rat tapeworm, Hymenolepis diminuta, confers a protective effect on FCA-induced joint inflammation. Here, we investigated the effect of a prophylactic infection with H. diminuta on the K/BxN-serum model of polyarthritis in BALB/c mice. Mice were infected with 10 cysticercoids of H. diminuta by oral gavage and 8 days later arthritis was induced by i.p. injection of K/BxN arthritogenic serum. Joint swelling and pain measurements were recorded throughout a 13 day time course. At necropsy, joints and blood serum were collected. K/BxN-treated mice developed joint inflammation in the front paws, hind paws and knees as shown by increased swelling, mechanical allodynia and myeloperoxidase activity. Mice infected with H. diminuta had more severe disease, with increased eosinophil peroxidase activity in their paws and greater inflammatory infiltrate and synovitis in the knee joints. Hymenolepis diminuta-infected mice displayed significant increases in serum levels of C5a and mast cell protease-1 compared with K/BxN-serum only treatment, the latter being indicative of mast cell activation. In contrast to the protective effect of infection with H. diminuta in FCA-induced monoarthritis, infection with this helminth exacerbated K/BxN serum-induced polyarthritis in BALB/c mice. This correlated with increases in C5a and mast cell activation: factors critical in the development of K/BxN-induced arthritis. Thus, while data accumulate from animal models showing that infection with helminth parasites may be beneficial for a variety of auto-inflammatory diseases, our findings demonstrate the potential for helminths to exacerbate disease. Hence care is needed when helminth therapy is translated into a clinical setting.

  10. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.

    PubMed

    Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar

    2016-03-01

    The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system.

  11. CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas.

    PubMed

    Deininger, M H; Zhao, Y; Schluesener, H J

    1999-01-01

    CP-10 (chemotactic protein of m.w. 10,000) is a member of the S100 superfamily of Ca2+ binding peptides, which has potent chemotactic activity for murine and human myeloid cells. Here we report on the generation of monoclonal antibodies against CP-10 and accumulation of CP-10+ cells during experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), uveitis (EAU) and in experimentally transplanted C6 gliomas. During acute inflammation, CP-10 is mainly expressed by large ED1+ monocytic perivascular cells that accumulate at days 11-14. CP-10+ cells are predominantly located in areas of cellular infiltration but are as well found in the meninges and infiltrating the brain parenchyma. In transplanted gliomas, CP-10+ cells are located exclusively within the tumor parenchyma. Using double labeling experiments, other cells participating in the inflammatory reaction were found to express CP-10, like few lymphoblastic W3/13+ cells in the vicinity of the inflammatory infiltrate.

  12. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Gu, Sun Mi; Park, Mi Hee; Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-03-29

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS.

  13. Prevention and Treatment of Experimental Autoimmune Encephalomyelitis by Soluble CD83

    PubMed Central

    Zinser, Elisabeth; Lechmann, Matthias; Golka, Antje; Lutz, Manfred B.; Steinkasserer, Alexander

    2004-01-01

    CD83 is up-regulated on the surface of dendritic cells (DCs) during maturation and has been widely used as a marker for mature DCs. Recently, we reported the recombinant expression of the extracellular immunoglobulin domain of human CD83 (hCD83ext). Using this soluble form of CD83, allogeneic as well as specific cytotoxic T lymphocyte proliferation could be blocked in vitro. Here we report the functional analysis of soluble CD83 in vivo, using murine experimental autoimmune encephalomyelitis (EAE) as a model. Strikingly, only three injections of soluble CD83 prevented the paralysis associated with EAE almost completely. In addition, even when the EAE was induced a second time, CD83-treated mice were protected, indicating a long-lasting suppressive effect. Furthermore, soluble CD83 strongly reduced the paralysis in different therapeutic settings. Most important, even when the treatment was delayed until the disease symptoms were fully established, soluble CD83 clearly reduced the paralyses. In addition, also when EAE was induced a second time, soluble CD83-treated animals showed reduced disease symptoms. Finally, hCD83ext treatment almost completely reduced leukocyte infiltration in the brain and in the spinal cord. In summary, this work strongly supports an immunosuppressive role of soluble CD83, thereby indicating its therapeutic potential in the regulation of immune disorders in vivo. PMID:15289503

  14. A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Carrillo-Salinas, Francisco J.; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A.; Cantarero, Irene; Bellido, María L.; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35–55) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential of VCE

  15. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  16. Role of orexin-A in experimental autoimmune encephalomyelitis.

    PubMed

    Fatemi, Iman; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Sanati, Mohammad Hossein; Roohbakhsh, Ali; Motevalian, Manijeh

    2016-02-15

    The aim of this study was to evaluate the effects of orexin-A (OX-A) on behavioral and pathological parameters and on gene expression of some multiple sclerosis-related peptides in a model of experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous administration of MOG 35-55. Following immunization, the treatment was initiated by using SB.334867 (orexin-1 receptor antagonist) and/or OX-A. Locomotor activity and exploratory behaviors were monitored using open field and T-maze continuous alternation task (T-CAT) respectively. Pain sensitivity was assessed by hot-plate test. Histopathological assessments were performed by H&E staining. The expression of TGF-β, MBP, MMP-9, IL-12, iNOS and MCP-1 were measured using real-time PCR method in lumbar spinal cord. OX-A administration in EAE mice remarkably attenuated the clinical symptoms, increased latency response in hot plate test, inhibited infiltration of inflammatory cells, up-regulated mRNA expression of TGF-β as well as MBP and down-regulated mRNA expression of iNOS, MMP-9 and IL-12. In contrast SB.334867 administration in EAE mice deteriorated the clinical symptoms, decreased the alternation in T-CAT, increased infiltration of inflammatory cells, down-regulated mRNA expression of TGF-β and MBP and up-regulated mRNA expression of iNOS. Results of this study suggest that the orexinergic system might be involved in pathological development of EAE. These findings suggest orexinergic system as a potential target for treatment of multiple sclerosis.

  17. Role of orexin-A in experimental autoimmune encephalomyelitis.

    PubMed

    Fatemi, Iman; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Sanati, Mohammad Hossein; Roohbakhsh, Ali; Motevalian, Manijeh

    2016-02-15

    The aim of this study was to evaluate the effects of orexin-A (OX-A) on behavioral and pathological parameters and on gene expression of some multiple sclerosis-related peptides in a model of experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous administration of MOG 35-55. Following immunization, the treatment was initiated by using SB.334867 (orexin-1 receptor antagonist) and/or OX-A. Locomotor activity and exploratory behaviors were monitored using open field and T-maze continuous alternation task (T-CAT) respectively. Pain sensitivity was assessed by hot-plate test. Histopathological assessments were performed by H&E staining. The expression of TGF-β, MBP, MMP-9, IL-12, iNOS and MCP-1 were measured using real-time PCR method in lumbar spinal cord. OX-A administration in EAE mice remarkably attenuated the clinical symptoms, increased latency response in hot plate test, inhibited infiltration of inflammatory cells, up-regulated mRNA expression of TGF-β as well as MBP and down-regulated mRNA expression of iNOS, MMP-9 and IL-12. In contrast SB.334867 administration in EAE mice deteriorated the clinical symptoms, decreased the alternation in T-CAT, increased infiltration of inflammatory cells, down-regulated mRNA expression of TGF-β and MBP and up-regulated mRNA expression of iNOS. Results of this study suggest that the orexinergic system might be involved in pathological development of EAE. These findings suggest orexinergic system as a potential target for treatment of multiple sclerosis. PMID:26857503

  18. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice.

    PubMed

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B; Mounayar, Marwan; Sackstein, Robert

    2015-05-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here, we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in nonobese diabetic (NOD) mice. Although murine MSCs natively do not express the E-selectin-binding determinant sialyl Lewis(x) (sLe(x) ), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLe(x) display uniquely on cell surface CD44 thereby creating hematopoietic cell E-/L-selectin ligand (HCELL), the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL(+) MSCs showed threefold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL(-) ) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays; however, although engraftment was temporary for both HCELL(+) and HCELL(-) MSCs, administration of HCELL(+) MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL(-) MSCs. Notably, exofucosylation of MSCs generated from CD44(-/-) mice induced prominent membrane expression of sLe(x) , but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. Stem Cells

  19. HCELL Expression on Murine MSC Licenses Pancreatotropism and Confers Durable Reversal of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Abdi, Reza; Moore, Robert; Sakai, Shinobu; Donnelly, Conor B.; Mounayar, Marwan; Sackstein, Robert

    2015-01-01

    Type 1 diabetes (T1D) is an immune-mediated disease resulting in destruction of insulin-producing pancreatic beta cells. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties, garnering increasing attention as cellular therapy for T1D and other immunologic diseases. However, MSCs generally lack homing molecules, hindering their colonization at inflammatory sites following intravenous (IV) administration. Here we analyzed whether enforced E-selectin ligand expression on murine MSCs could impact their effect in reversing hyperglycemia in non-obese diabetic (NOD) mice. Though murine MSCs natively do not express the E-selectin binding determinant sialyl Lewisx (sLex), we found that fucosyltransferase-mediated α(1,3)-exofucosylation of murine MSCs resulted in sLex display uniquely on cell surface CD44 thereby creating HCELL, the E-selectin-binding glycoform of CD44. Following IV infusion into diabetic NOD mice, allogeneic HCELL+ MSCs showed 3-fold greater peri-islet infiltrates compared to buffer-treated (i.e., HCELL−) MSCs, with distribution in proximity to E-selectin-expressing microvessels. Exofucosylation had no effect on MSC immunosuppressive capacity in in vitro assays, however, though engraftment was temporary for both HCELL+ and HCELL− MSCs, administration of HCELL+ MSCs resulted in durable reversal of hyperglycemia, whereas only transient reversal was observed following administration of HCELL− MSCs. Notably, exofucosylation of MSCs generated from CD44−/− mice induced prominent membrane expression of sLex, but IV administration of these MSCs into hyperglycemic NOD mice showed no enhanced pancreatotropism or reversal of hyperglycemia. These findings provide evidence that glycan engineering to enforce HCELL expression boosts trafficking of infused MSCs to pancreatic islets of NOD mice and substantially improves their efficacy in reversing autoimmune diabetes. PMID:25641589

  20. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice.

    PubMed

    Zhou, Yixuan; Yuan, Jingdong; Zhou, Bin; Lee, Austin J; Lee, Albert J; Ghawji, Maher; Yoo, Tai June

    2011-05-01

    Autoimmune inner ear disease is characterized by progressive, bilateral although asymmetric, sensorineural hearing loss. Patients with autoimmune inner ear disease had higher frequencies of interferon-γ-producing T cells than did control subjects tested. Human adipose-derived mesenchymal stem cells (hASCs) were recently found to suppress effector T cells and inflammatory responses and therefore have beneficial effects in various autoimmune diseases. The aim of this study was to examine the immunosuppressive activity of hASCs on autoreactive T cells from the experimental autoimmune hearing loss (EAHL) murine model. Female BALB/c mice underwent β-tubulin immunization to develop EAHL; mice with EAHL were given hASCs or PBS intraperitoneally once a week for 6 consecutive weeks. Auditory brainstem responses were examined over time. The T helper type 1 (Th1)/Th17-mediated autoreactive responses were examined by determining the proliferative response and cytokine profile of splenocytes stimulated with β-tubulin. The frequency of regulatory T (Treg) cells and their suppressive capacity on autoreactive T cells were also determined. Systemic infusion of hASCs significantly improved hearing function and protected hair cells in established EAHL. The hASCs decreased the proliferation of antigen-specific Th1/Th17 cells and induced the production of anti-inflammatory cytokine interleukin-10 in splenocytes. They also induced the generation of antigen-specific CD4(+) CD25(+) Foxp3(+) Treg cells with the capacity to suppress autoantigen-specific T-cell responses. The experiment demonstrated that hASCs are one of the important regulators of immune tolerance with the capacity to suppress effector T cells and to induce the generation of antigen-specific Treg cells.

  1. Fibroblast Cell-Based Therapy for Experimental Autoimmune Diabetes.

    PubMed

    Jalili, Reza B; Zhang, Yun; Hosseini-Tabatabaei, Azadeh; Kilani, Ruhangiz T; Khosravi Maharlooei, Mohsen; Li, Yunyuan; Salimi Elizei, Sanam; Warnock, Garth L; Ghahary, Aziz

    2016-01-01

    Type 1 diabetes (T1D) results from autoimmune destruction of insulin producing β cells of the pancreatic islets. Curbing autoimmunity at the initiation of T1D can result in recovery of residual β cells and consequently remission of diabetes. Here we report a cell-based therapy for autoimmune diabetes in non-obese diabetic (NOD) mice using dermal fibroblasts. This was achieved by a single injection of fibroblasts, expressing the immunoregulatory molecule indoleamine 2,3 dioxygenase (IDO), into peritoneal cavity of NOD mice shortly after the onset of overt hyperglycemia. Mice were then monitored for reversal of hyperglycemia and changes in inflammatory/regulatory T cell profiles. Blood glucose levels dropped into the normal range in 82% of NOD mice after receiving IDO-expressing fibroblasts while all control mice remained diabetic. We found significantly reduced islet inflammation, increased regulatory T cells, and decreased T helper 17 cells and β cell specific autoreactive CD8+ T cells following IDO cell therapy. We further showed that some of intraperitoneal injected fibroblasts migrated to local lymph nodes and expressed co-inhibitory molecules. These findings suggest that IDO fibroblasts therapy can reinstate self-tolerance and alleviate β cell autoreactivity in NOD mice, resulting in remission of autoimmune diabetes. PMID:26765526

  2. Polymerase I pathway inhibitor ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Achiron, Anat; Mashiach, Roi; Zilkha-Falb, Rina; Meijler, Michael M; Gurevich, Michael

    2013-10-15

    Applying high throughput gene expression microarrays we identified that the suppression of polymerase 1 (POL1) pathway is associated with benign course of multiple sclerosis (MS). This finding supports the rationale for direct targeting of the POL1 transcription machinery as an innovative strategy to suppress MS. To evaluate the effects of a specific polymerase I inhibitor (POL1-I) on experimental autoimmune encephalomyelitis (EAE), we immunized female C57BL/6J mice (8 weeks) with MOG35-55/CFA. A new POL1-I was administered at a daily dose of 12.5mg/kg body weight by oral gavage either from the day of immunization until disease onset (EAE score 1.0, immunization model), at disease onset (EAE score=1.0) for the following 14 days (treatment model), or by alternate daily dose of 25.0mg/kg body weight, by oral gavage from the day of immunization for the following 25 days (combined model). POL1-I remarkably suppressed EAE in the immunization model; while in the Vehicle group the onset of EAE occurred on day 10.0±0.4 with maximal clinical score of 3.2±0.2, in the POL1-I treated mice onset was significantly delayed and occurred on day 16.9±1.1 (p=0.001), and maximal disease score 2.0±0.1 was reduced (p=0.004). In the treatment model POL1-I treatment significantly reduced disease activity; maximal score was 2.0±0.5 while in the Vehicle group it reached a mean maximal score of 3.9±0.1, (p=0.0008). In the combined model, POL1-I treatment completely inhibited disease activity. The effect of POL1-I treatment was modulated through decreased expression of POL1 pathway key-related genes LRPPRC, pre-RNA, POLR1D and RRN3 together with activation of P53 dependent apoptosis of CD4+ splenocytes. Our findings demonstrate that POL1 pathway inhibition delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.

  3. Antifungal activity of ajoene on experimental murine paracoccidioidomycosis.

    PubMed

    Maluf, Marcia L F; Takahachi, Gisele; Svidzinski, Terezinha I E; Xander, Patricia; Apitz-Castro, Raphael; Bersani-Amado, Ciomar A; Cuman, Roberto K N

    2008-09-30

    The natural compound ajoene (4,5,9- trithiadodeca-1,6,11-triene 9-oxide) is capable of controlling infection by Paracoccidioides brasiliensis in experimental models. Swiss mice were inoculated with 5.0 x 10e6 cells of the fungus Paracoccidioides brasiliensis Pb18 by intraperitoneal route and treated with ajoene. In weeks 2, 6, 10 and 13 of treatment, levels of anti-Pb antibodies were measured by the ELISA test and the animals were put down and their lungs, livers and spleens removed for histopathological analysis and determination of the number of viable fungus. The results show that experimental murine paracoccidioidomycosis was well established and that ajoene was capable of controlling the evolution of the disease, as it significantly reduced the levels of antibodies from the 10th week of treatment.

  4. Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets.

    PubMed

    Montane, Joel; Bischoff, Loraine; Soukhatcheva, Galina; Dai, Derek L; Hardenberg, Gijs; Levings, Megan K; Orban, Paul C; Kieffer, Timothy J; Tan, Rusung; Verchere, C Bruce

    2011-08-01

    Type 1 diabetes is characterized by destruction of insulin-producing β cells in the pancreatic islets by effector T cells. Tregs, defined by the markers CD4 and FoxP3, regulate immune responses by suppressing effector T cells and are recruited to sites of action by the chemokine CCL22. Here, we demonstrate that production of CCL22 in islets after intrapancreatic duct injection of double-stranded adeno-associated virus encoding CCL22 recruits endogenous Tregs to the islets and confers long-term protection from autoimmune diabetes in NOD mice. In addition, adenoviral expression of CCL22 in syngeneic islet transplants in diabetic NOD recipients prevented β cell destruction by autoreactive T cells and thereby delayed recurrence of diabetes. CCL22 expression increased the frequency of Tregs, produced higher levels of TGF-β in the CD4+ T cell population near islets, and decreased the frequency of circulating autoreactive CD8+ T cells and CD8+ IFN-γ–producing T cells. The protective effect of CCL22 was abrogated by depletion of Tregs with a CD25-specific antibody. Our results indicate that islet expression of CCL22 recruits Tregs and attenuates autoimmune destruction of β cells. CCL22-mediated recruitment of Tregs to islets may be a novel therapeutic strategy for type 1 diabetes. PMID:21737880

  5. The tick saliva immunosuppressor, Salp15, contributes to Th17-induced pathology during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Juncadella, Ignacio J.; Bates, Tonya C.; Suleiman, Reem; Monteagudo-Mera, Andrea; Olson, Chris M.; Navasa, Nicolás; Olivera, Elias R.; Osborne, Barbara A.; Anguita, Juan

    2010-01-01

    Summary Salp15 is a tick saliva protein that inhibits CD4+ T cell differentiation through its interaction with CD4. The protein inhibits early signaling events during T cell activation and IL-2 production. Because murine experimental autoimmune encephalomyelitis development is mediated by central nervous system-infiltrating CD4+ T cells that are specific for myelin-associated proteins, we sought to determine whether the treatment of mice with Salp15 during EAE induction would prevent the generation of proinflammatory T cell responses and the development of the disease. Surprisingly, Salp15-treated mice developed more severe EAE than control animals. The treatment of EAE-induced mice with the tick saliva protein did not result in increased infiltration of T cells to the central nervous system, indicating that Salp15 had not affected the permeability of the blood-brain barrier. Salp15 treatment did not affect the development of antibody responses against the eliciting peptide or the presence of IFNγ in the sera. The treatment with Salp15 resulted, however, in the increased differentiation of Th17 cells in vivo, as evidenced by higher IL-17 production from PLP139-151-specific CD4+ T cells isolated from the central nervous system and the periphery. In vitro, Salp15 was able to induce the differentiation of Th17 cells in the presence of IL-6 and the absence of TGFβ These results suggest that a conductive milieu for the differentiation of Th17 cells can be achieved by restriction of the production of IL-2 during T cell differentiation, a role that may be performed by TGFβ and other immunosuppressive agents. PMID:20920474

  6. Changes in Soluble CD18 in Murine Autoimmune Arthritis and Rheumatoid Arthritis Reflect Disease Establishment and Treatment Response

    PubMed Central

    Kragstrup, Tue Wenzel; Jalilian, Babak; Keller, Kresten Krarup; Zhang, Xianwei; Laustsen, Julie Kristine; Stengaard-Pedersen, Kristian; Hetland, Merete Lund; Hørslev-Petersen, Kim; Junker, Peter; Østergaard, Mikkel; Hauge, Ellen-Margrethe; Hvid, Malene; Vorup-Jensen, Thomas; Deleuran, Bent

    2016-01-01

    Introduction In rheumatoid arthritis (RA) immune activation and presence of autoantibodies may precede clinical onset of disease, and joint destruction can progress despite remission. However, the underlying temporal changes of such immune system abnormalities in the inflammatory response during treat-to-target strategies remain poorly understood. We have previously reported low levels of the soluble form of CD18 (sCD18) in plasma from patients with chronic RA and spondyloarthritis. Here, we study the changes of sCD18 before and during treatment of early RA and following arthritis induction in murine models of rheumatoid arthritis. Methods The level of sCD18 was analyzed with a time-resolved immunoflourometric assay in 1) plasma from early treatment naïve RA patients during a treat-to-target strategy (the OPERA cohort), 2) plasma from chronic RA patients, 3) serum from SKG and CIA mice following arthritis induction, and 4) supernatants from synovial fluid mononuclear cells (SFMCs) and peripheral blood mononuclear cells (PBMCs) from 6 RA patients cultured with TNFα or adalimumab. Results Plasma levels of sCD18 were decreased in chronic RA patients compared with early RA patients and in early RA patients compared with healthy controls. After 12 months of treatment the levels in early RA patients were similar to healthy controls. This normalization of plasma sCD18 levels was more pronounced in patients with very early disease who achieved an early ACR response. Plasma sCD18 levels were associated with radiographic progression. Correspondingly, the serum level of sCD18 was decreased in SKG mice 6 weeks after arthritis induction compared with healthy littermates. The sCD18 levels in both SKG and CIA mice exhibited a biphasic course after arthritis induction with an initial increase above baseline followed by a decline. Shedding of CD18 from RA SFMC and RA PBMC cultures was increased by TNFα and decreased by adalimumab. Conclusions The plasma sCD18 levels were altered

  7. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development.

    PubMed

    Kavrochorianou, Nadia; Evangelidou, Maria; Markogiannaki, Melina; Tovey, Michael; Thyphronitis, George; Haralambous, Sylva

    2016-01-01

    Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2-ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6(+) CD4(+) T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4(+) T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis.

  8. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development.

    PubMed

    Kavrochorianou, Nadia; Evangelidou, Maria; Markogiannaki, Melina; Tovey, Michael; Thyphronitis, George; Haralambous, Sylva

    2016-01-01

    Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2-ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6(+) CD4(+) T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4(+) T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis. PMID:26232452

  9. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis.

    PubMed

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul; Kim, Ho-Youn; Cho, Mi-La

    2015-10-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist-knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4(+)CD25(+)Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor-related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  10. IL-12p40 Homodimer Ameliorates Experimental Autoimmune Arthritis

    PubMed Central

    Lee, Seon-Yeong; Jung, Young Ok; Kim, Doo-Jin; Kang, Chang-Min; Moon, Young-Mee; Heo, Yu-Jung; Oh, Hye-Jwa; Park, Seong-Jeong; Yang, Se-Hwan; Kwok, Seung Ki; Ju, Ji-Hyeon; Park, Sung-Hwan; Sung, Young Chul

    2015-01-01

    IL-23 is the key cytokine that induces the expansion of Th17 cells. It is composed of p19 and p40 subunits of IL-12. The p40 subunit binds competitively to the receptor of IL-23 and blocks its activity. Our aim was to assess the preventive and therapeutic effect of the IL-12p40 homodimer (p40)2 subunit in autoimmune arthritis animal models. In the current study, using IL-1R antagonist–knockout mice and a collagen-induced arthritis model, we investigated the suppressive effect of (p40)2 on inflammatory arthritis. We demonstrated that the recombinant adenovirus-expressing mouse (p40)2 model prevented the development of arthritis when given before the onset of arthritis. It also decreased the arthritis index and joint erosions in the mouse model if transferred after arthritis was established. (p40)2 inhibited the production of inflammatory cytokines and Ag-specific T cell proliferation. It also induced CD4+CD25+Foxp3 regulatory T (Treg) cells in vitro and in vivo, whereas the generation of retinoic acid receptor–related organ receptor γt and Th17 cells was suppressed. The induction of Treg cells and the suppression of Th17 cells were mediated via activated STAT5 and suppressed STAT3. Our data suggest that (p40)2 suppressed inflammatory arthritis successfully. This could be a useful therapeutic approach in autoimmune arthritis to regulate the Th17/Treg balance and IL-23 signaling. PMID:26324771

  11. Galactosylation of IgG1 modulates FcγRIIB-mediated inhibition of murine autoimmune hemolytic anemia.

    PubMed

    Yamada, Kazunori; Ito, Kiyoaki; Furukawa, Jun-Ichi; Nakata, Junichiro; Alvarez, Montserrat; Verbeek, J Sjef; Shinohara, Yasuro; Izui, Shozo

    2013-12-01

    Murine immune effector cells express three different stimulatory FcγRs (FcγRI, FcγRIII and FcγRIV) and one inhibitory receptor, FcγRIIB. Competitive engagement of stimulatory and inhibitory FcγRs has been shown to be critical for the development of immune complex-mediated inflammatory disorders. Because of the previous demonstration that FcγRIIB was unable to inhibit FcγRIII-mediated autoimmune hemolytic anemia induced by 105-2H IgG1 anti-RBC mAb, we reevaluated the regulatory role of FcγRIIB on the development of anemia using two additional IgG1 anti-RBC mAbs (34-3C and 3H5G1) and different 34-3C IgG subclass-switch variants. We were able to induce a more severe anemia in FcγRIIB-deficient mice than in FcγRIIB-sufficient mice after injection of 34-3C and 3H5G1 IgG1, but not 105-2H IgG1. Structural analysis of N-linked oligosaccharides attached to the CH2 domain revealed that 105-2H was poorly galactosylated as compared with the other mAbs, while the extent of sialylation was comparable between all mAbs. In addition, we observed that a more galactosylated 105-2H variant provoked more severe anemia in FcγRIIB-deficient mice than FcγRIIB-sufficient mice. In contrast, the development of anemia induced by three non-IgG1 subclass variants of the 34-3C mAb was not down-regulated by FcγRIIB, although they were more galactosylated than its IgG1 variant. These data indicate that FcγRIIB-mediated inhibition of autoimmune hemolytic anemia is restricted to the IgG1 subclass and that galactosylation, but not sialylation, of IgG1 (but not other IgG subclasses) is critical for the interaction with FcγR, thereby determining the pathogenic potential of IgG1 autoantibodies.

  12. Treatment with anti-CD86 costimulatory molecule prevents the autoimmune lesions in murine Sjögren's syndrome (SS) through up-regulated Th2 response

    PubMed Central

    Saegusa, K; Ishimaru, N; Yanagi, K; Haneji, N; Nishino, M; Azuma, M; Saito, I; Hayashi, Y

    2000-01-01

    Intraperitoneal administration with anti-CD86 (B7.2) MoAb into the murine model for primary SS in NFS/sld mutant mice resulted in dramatically inhibitory effects on the development of autoimmune lesions, while no significant effects were observed when the mice were administered with anti-CD80 (B7.1) MoAb. We found that spleen cells in the murine SS model treated with anti-CD86 MoAb showed a significant impairment of autoantigen-specific T cell proliferation. T cell activation markers (CD44high, CD45RBlow, Mel-14low) were significantly down-regulated in the spleen cells gated on CD4 in anti-CD86-treated mice. We detected a higher level of cytokine production of IL-4 from splenic T cells in anti-CD86-treated mice, but not of IL-2, and interferon-gamma (IFN-γ), compared with those in the anti-CD80- and PBS-treated SS model. Moreover, serum autoantibody production against α-fodrin autoantigen was almost entirely suppressed in anti-CD86-treated mice. These data provide strong evidence that in autoimmune exocrinopathy resembling SS in NFS/sld mutant mice, the CD86 costimulatory molecule plays a crucial role in the initiation and subsequent progression of Th1-mediated autoimmunity in the salivary and lacrimal glands. PMID:10632675

  13. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)

    PubMed Central

    Klaren, Rachel E.; Motl, Robert W.; Woods, Jeffrey A.; Miller, Stephen D.

    2015-01-01

    Exercise training has improved many outcomes in “clinical” research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying “basic” pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  14. Disintegration of the spatial organization of behavior in experimental autoimmune dementia.

    PubMed

    Eilam, D; Szechtman, H; Faigon, M; Dubovik, V; Feldon, J; Michaelson, D M

    1993-09-01

    Experimental autoimmune dementia is a rat model designed to examine the potential role of anti-cholinergic neurons antibodies in neuronal degeneration in dementia and Alzheimer's disease. We have previously shown that sera of patients with Alzheimer's disease contain antibodies which bind specifically to the high molecular weight neurofilament protein of the purely cholinergic electromotor neurons of Torpedo. Production of such antibodies in experimental autoimmune dementia rats by prolonged immunization with the Torpedo cholinergic high molecular weight neurofilament subunit results in accumulation of antibodies in the septum and hippocampus of the immunized rats, in a marked decrease in the density of forebrain cholinergic neurons, and in memory deficits. In the present study we characterized the open-field behavior of experimental autoimmune dementia rats, and examined whether, like in dementia, the spatiotemporal organization of their behavior is impaired. The results obtained revealed that experimental autoimmune dementia rats travel shorter distances; explore a smaller part of the open-field; and perform less round-trips to the key location--the home base--in reference to which their behavior is normally organized. The shrinkage of the explored space and the reduced number of round trips are independent of the amount of locomotion and represent a deterioration in the organization of behavior in time and space. These behavioral changes are specific to the anti-cholinergic immune response of experimental autoimmune dementia rats as they are not observed in rats which were immunized with chemically heterogeneous high molecular weight neurofilament subunit.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Dual Roles of IFN-γ and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine

    PubMed Central

    Syu, Bi-Jhen; Loh, Chia-En; Hsueh, Yu-Hsin; Gershwin, M. Eric; Chuang, Ya-Hui

    2016-01-01

    Primary biliary cirrhosis (PBC) is a progressive autoimmune liver disease with a long natural history. The pathogenesis of PBC is thought to be orchestrated by Th1 and/or Th17. In this study, we investigated the role of CD4+ helper T subsets and their cytokines on PBC using our previous established murine model of 2-OA-OVA immunization. We prepared adeno-associated virus (AAV)-IFN-γ and AAV-IL-4 and studied their individual influences on the natural history of autoimmune cholangitis in this model. Administration of IFN-γ significantly promotes recruitment and lymphocyte activation in the earliest phases of autoimmune cholangitis but subsequently leads to downregulation of chronic inflammation through induction of the immunosuppressive molecule IL-30. In contrast, the administration of IL-4 does not alter the initiation of autoimmune cholangitis, but does contribute to the exacerbation of chronic liver inflammation and fibrosis. Thus Th1 cells and IFN-γ are the dominant contributors in the initiation phase of this model but clearly may have different effects as the disease progress. In conclusion, better understanding of the mechanisms by which helper T cells function in the natural history of cholangitis is essential and illustrates that precision medicine may be needed for patients with PBC at various stages of their disease process. PMID:27721424

  16. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection

    PubMed Central

    Pitarokoili, Kalliopi; Ambrosius, Björn; Meyer, Daniela; Schrewe, Lisa; Gold, Ralf

    2015-01-01

    Background Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system. Methods and Findings Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN. Conclusions We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies. PMID:26618510

  17. Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Radtke, Daniel; Lacher, Sonja M; Szumilas, Nadine; Sandrock, Lena; Ackermann, Jochen; Nitschke, Lars; Zinser, Elisabeth

    2016-04-01

    The small adaptor protein growth factor receptor-bound protein 2 (Grb2) modulates and integrates signals from receptors on cellular surfaces in inner signaling pathways. In murine T cells, Grb2 is crucial for amplification of TCR signaling. T cell-specific Grb2(fl/fl) Lckcre(tg) Grb2-deficient mice show reduced T cell numbers due to impaired negative and positive selection. In this study, we found that T cell numbers in Grb2(fl/fl) CD4cre(tg) mice were normal in the thymus and were only slightly affected in the periphery. Ex vivo analysis of CD4(+) Th cell populations revealed an increased amount of Th1 cells within the CD4(+) population of Grb2(fl/fl) CD4cre(tg) mice. Additionally, Grb2-deficient T cells showed a greater potential to differentiate into Th17 cells in vitro. To test whether these changes in Th cell differentiation potential rendered Grb2(fl/fl) CD4cre(tg) mice more prone to inflammatory diseases, we used the murine Th1 cell- and Th17 cell-driven model of experimental autoimmune encephalomyelitis (EAE). In contrast to our expectations, Grb2(fl/fl) CD4cre(tg) mice developed a milder form of EAE. The impaired EAE disease can be explained by the reduced proliferation rate of Grb2-deficient CD4(+) T cells upon stimulation with IL-2 or upon activation by allogeneic dendritic cells, because the activation of T cells by dendritic cells and the subsequent T cell proliferation are known to be crucial factors for the induction of EAE. In summary, Grb2-deficient T cells show defects in T cell development, increased Th1 and Th17 cell differentiation capacities, and impaired proliferation after activation by dendritic cells, which likely reduce the clinical symptoms of EAE.

  18. Bindarit retards renal disease and prolongs survival in murine lupus autoimmune disease.

    PubMed

    Zoja, C; Corna, D; Benedetti, G; Morigi, M; Donadelli, R; Guglielmotti, A; Pinza, M; Bertani, T; Remuzzi, G

    1998-03-01

    As an alternative to classical immunosuppressants in experimental lupus nephritis, we looked at bindarit, 2-methyl-2-[[1-phenylmethyl)-1H-indazol-3-y1]methoxy]propanoic acid, a novel molecule devoid of immunosuppressive effects, which selectively reduces chronic inflammation in rat adjuvant arthritis. Two groups of NZB/W mice (N = 55 for each group) were given bindarit, (50 mg/kg/day p.o.) or vehicle starting at 2 months of age. Mice were sacrificed at 2, 6, 8 and 10 months or used for survival studies. Bindarit delayed the onset of proteinuria (% proteinuric mice, bindarit vs. vehicle, 6 months: 0 vs. 33% and 8 months: 7% vs. 60%, P < 0.005; 10 months: 53% vs. 80%) and significantly (P < 0.05) protected from renal function impairment (serum BUN, bindarit vs. vehicle: 8 months, 30 +/- 3 vs. 127 +/- 42; 10 months, 53 +/-5 vs. 140 +/- 37 mg/dl). Appearance of anti-DNA antibodies was retarded and survival significantly (P < 0.0001) prolonged by bindarit (% survival, bindarit vs. vehicle: 8 months, 100% vs. 80%; 10 months, 87% vs. 40%; 12 months, 27% vs. 20%). Bindarit significantly limited glomerular hypercellularity, interstitial inflammation and tubular damage. Renal expression of monocyte chemoattractant protein (MCP-1) mRNA (Northern blot) markedly increased (7 - 12-fold in 8- 10-month-old mice vs. 2-month-old) during the progression of nephritis in association with mononuclear cell infiltration. Bindarit completely prevented MCP-1 up-regulation. In another series of experiments, bindarit (0.25% and 0.5% medicated diet, N = 16 for each group) when started at 4.5 months of age in NZB/W mice improved survival in respect to untreated mice (N = 17) in a dose-dependent manner (% survival: 8 months, 94% and 100%, respectively, vs. 47%; 10 months, 75% and 100% vs. 35%; 12 months, 31% and 75% vs. 12%). Survival was even more prolonged when bindarit (0.5% medicated diet) was combined with a low dose of methylprednisolone (1.5 mg/kg i.p.), which that only partially modifies

  19. Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis

    PubMed Central

    Sestak, Joshua O; Sullivan, Bradley P; Thati, Sharadvi; Northrup, Laura; Hartwell, Brittany; Antunez, Lorena; Forrest, M Laird; Vines, Charlotte M; Siahaan, Teruna J; Berkland, Cory

    2014-01-01

    Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy. PMID:26015953

  20. Cellular basis of the genetic susceptibility of murine experimental allergic encephalomyelitis

    SciTech Connect

    Binder, T.A.; Greiner, D.L.; Goldschneider, I.

    1986-03-01

    Murine experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease that resembles human multiple sclerosis. The authors have investigated the cellular basis of the genetic predisposition and resistance of inbred strains of mice to EAE using an adoptive transfer system between two H-2 compatible, Thy 1 antigen disparate strains of mice. Genetically EAE susceptible SJL/J strain mice (H-2/sup s/, Thy 1.2) and resistant B10.S Thy 1.1 (H-2/sub s/, Thy 1.1) strain mice were lethally irradiated (700R) and reconstituted with 5-10 x 10/sup 6/ bone marrow cells from either SJL/J or congenic B10.S (Thy 1.1 or Thy 1.2) donors. After 30-45 days, more than 95% of the thymocytes and 75% of the peripheral T cells in the chimeras were of donor origin. These lymphohemopoietic chimeras were then sensitized in their hind footpads with porcine myelin basic protein in complete Freund's adjuvant containing M. tuberculosis H/sub 37/RA, followed at 24 and 72 hours by i.v. injection of B. pertussis. Clinical signs of EAE developed in unirradiated SJL/J, but not B10.S, controls, and in irradiated B10.S and SJL/J recipients of SJL/J, but not B10.S, bone marrow. These results indicate that bone marrow cells can transfer the predisposition to EAE from genetically susceptible to genetically resistant mouse strains. The cellular component in the bone marrow that is responsible for the transfer of the genetic susceptibility to EAE is under investigation.

  1. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  2. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Lino, Andreia C; Motrich, Ruben D; Godoy, Gloria J; Demengeot, Jocelyne; Rivero, Virginia E

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  3. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Lino, Andreia C; Motrich, Ruben D; Godoy, Gloria J; Demengeot, Jocelyne; Rivero, Virginia E

    2016-09-14

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence.

  4. The multiple sclerosis risk gene IL22RA2 contributes to a more severe murine autoimmune neuroinflammation.

    PubMed

    Laaksonen, H; Guerreiro-Cacais, A O; Adzemovic, M Z; Parsa, R; Zeitelhofer, M; Jagodic, M; Olsson, T

    2014-10-01

    Single-nucleotide polymorphisms close to IL22RA2, coding for the soluble interleukin (IL)-22-binding protein (IL-22BP), are strongly and reproducibly associated with multiple sclerosis (MS), but there is little data on how this molecule may affect neuroinflammation. Here, we have studied the mouse ortholog in C57BL/6 wild-type and Il22ra2-deficient mice in the context of experimental autoimmune encephalomyelitis (myelin oligodendrocyte glycoprotein-EAE). In wild-type mice, we demonstrated changes in the levels of transcripts for IL-22, the signaling IL-22 receptor and IL-22BP in lymphoid tissues at the time of T-cell priming and in the inflamed central nervous system (CNS). Because IL-22BP is known to antagonize IL-22 signaling, a primarily pro-inflammatory cytokine, we hypothesized that the Il22ra2-deficient mice would have more severe EAE. Paradoxically, the knockout mice displayed a less severe disease course, less demyelination and less infiltration of immune cells in the CNS. The most straightforward interpretation of our findings is that lack of IL-22BP leads to a higher availability of IL-22, which in the case of CNS inflammation, surprisingly acts in a protective fashion. Thus, deletion of the ortholog of the MS risk gene Il22ra2 in mice has beneficial effects on EAE, which may be considered in new therapeutic strategies for treating neuroinflammation.

  5. Dysregulation of the hypothalamic-pituitary-gonadal axis in experimental autoimmune encephalomyelitis and multiple sclerosis.

    PubMed

    Foster, Scott C; Daniels, Crystal; Bourdette, Dennis N; Bebo, Bruce F

    2003-07-01

    The ability of sex hormones to regulate cytokine production is well established, but the ability of cytokines to regulate sex hormone production has only begun to be investigated. We measured sex hormones in mice with passive experimental autoimmune encephalomyelitis (EAE) and in multiple sclerosis (MS) patients with sexual dysfunction. Abnormally low serum testosterone levels were found in male mice with EAE and in male MS patients, while serum estrogen levels in female mice with EAE were normal. An inverse relationship between cytokine and testosterone levels in male mice with EAE, coupled with an increase in serum luteinizing hormone (LH) levels, suggests that inflammatory cytokines suppress testosterone production by a direct effect on testicular Leydig cells. Gender differences in the sensitivity of the hypothalamic-pituitary-gonadal (HPG) axis to inflammation may be an important factor regulating the duration and severity of central nervous system (CNS) autoimmunity.

  6. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches.

  7. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination

    PubMed Central

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  8. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  9. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody

    PubMed Central

    Bing, S J; Ha, D; Ahn, G; Cho, J; Kim, A; Park, S K; Yu, H S; Jee, Y

    2015-01-01

    Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220+ B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35–55] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease. PMID:25619397

  10. Caffeic acid phenethyl ester lessens disease symptoms in an experimental autoimmune uveoretinitis mouse model.

    PubMed

    Choi, Jae-Hyeog; Roh, Kug-Hwan; Oh, Hana; Park, Sol-Ji; Ha, Sung-Min; Kang, Mi Seon; Lee, Ji-Hyun; Jung, So Young; Song, Hyunkeun; Yang, Jae Wook; Park, SaeGwang

    2015-05-01

    Experimental autoimmune uveoretinitis (EAU) is an autoimmune disease that models human uveitis. Caffeic acid phenethyl ester (CAPE), a phenolic compound isolated from propolis, possesses anti-inflammatory and immunomodulatory properties. CAPE demonstrates therapeutic potential in several animal disease models through its ability to inhibit NF-κB activity. To evaluate these therapeutic effects in EAU, we administered CAPE in a model of EAU that develops after immunization with interphotoreceptor retinal-binding protein (IRBP) in B10.RIII and C57BL/6 mice. Importantly, we found that CAPE lessened the severity of EAU symptoms in both mouse strains. Notably, treated mice exhibited a decrease in the ocular infiltration of immune cell populations into the retina; reduced TNF-α, IL-6, and IFN-γ serum levels: and inhibited TNF-α mRNA expression in retinal tissues. Although CAPE failed to inhibit IRBP-specific T cell proliferation, it was sufficient to suppress cytokine, chemokine, and IRBP-specific antibody production. In addition, retinal tissues isolated from CAPE-treated EAU mice revealed a decrease in NF-κB p65 and phospho-IκBα. The data identify CAPE as a potential therapeutic agent for autoimmune uveitis that acts by inhibiting cellular infiltration into the retina, reducing the levels of pro-inflammatory cytokines, chemokine, and IRBP-specific antibody and blocking NF-κB pathway activation. PMID:25795054

  11. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE.

  12. Targeting Non-classical Myelin Epitopes to Treat Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wang, Xiaohua; Zhang, Jintao; Baylink, David J.; Li, Chih-Huang; Watts, Douglas M.; Xu, Yi; Qin, Xuezhong; Walter, Michael H.; Tang, Xiaolei

    2016-01-01

    Qa-1 epitopes, the peptides that bind to non-classical major histocompatibility complex Ib Qa-1 molecules and are recognized by Qa-1-restricted CD8+ regulatory T (Treg) cells, have been identified in pathogenic autoimmune cells that attack myelin sheath in experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis [MS]). Additionally, immunization with such epitopes ameliorates the EAE. However, identification of such epitopes requires knowledge of the pathogenic autoimmune cells which are largely unknown in MS patients. Hence, we asked whether the CD8+ Treg cells could directly target the myelin sheath to ameliorate EAE. To address this question, we analyzed Qa-1 epitopes in myelin oligodendrocyte glycoprotein (MOG that is a protein in myelin sheath). Here, we report identification of a MOG-specific Qa-1 epitope. Immunization with this epitope suppressed ongoing EAE, which was abrogated by CD8+ T cell depletion. Additionally, the epitope immunization activated the epitope-specific CD8+ T cells which specifically accumulated in the CNS-draining cervical lymph nodes. Finally, CD8+ T cells primed by the epitope immunization transferred EAE suppression. Hence, this study reveals a novel regulatory mechanism mediated by the CD8+ Treg cells. We propose that immunization with myelin-specific HLA-E epitopes (human homologues of Qa-1 epitopes) is a promising therapy for MS. PMID:27796368

  13. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis

    PubMed Central

    Kalyvas, Athena; Baskakis, Constantinos; Magrioti, Victoria; Constantinou-Kokotou, Violetta; Stephens, Daren; López-Vales, Rubèn; Lu, Jian-Qiang; Yong, V. Wee; Dennis, Edward A.; Kokotos, George

    2009-01-01

    The phospholipase A2 (PLA2) superfamily hydrolyzes phospholipids to release free fatty acids and lysophospholipids, some of which can mediate inflammation and demyelination, hallmarks of the CNS autoimmune disease multiple sclerosis. The expression of two of the intracellular PLA2s (cPLA2 GIVA and iPLA2 GVIA) and two of the secreted PLA2s (sPLA2 GIIA and sPLA2 GV) are increased in different stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We show using small molecule inhibitors, that cPLA2 GIVA plays a role in the onset, and iPLA2 GVIA in the onset and progression of EAE. We also show a potential role for sPLA2 in the later remission phase. These studies demonstrate that selective inhibition of iPLA2 can ameliorate disease progression when treatment is started before or after the onset of symptoms. The effects of these inhibitors on lesion burden, chemokine and cytokine expression as well as on the lipid profile provide insights into their potential modes of action. iPLA2 is also expressed by macrophages and other immune cells in multiple sclerosis lesions. Our results therefore suggest that iPLA2 might be an excellent target to block for the treatment of CNS autoimmune diseases, such as multiple sclerosis. PMID:19218359

  14. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU)

    PubMed Central

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases. PMID:27196432

  15. Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis.

    PubMed

    Yan, Ling-Chen; Bi, En-Guang; Lou, Yang-Tong; Wu, Xiao-Dong; Liu, Zhi-Duo; Zou, Jia; Zhou, Jia; Wang, Yuan; Ma, Zhao; Lin, Guo-Mei; Sun, Shu-Hui; Bian, Chao; Chen, Ai-Zhong; Yao, Zhu-Jun; Sun, Bing

    2010-01-01

    Sinomenine (SIN) is an alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating autoimmune diseases. Due to its poor efficiency, the large-dose treatment presents some side effects and limits its further applications. In this study, we used chemical modification to improve the therapeutic effect of SIN in vitro and in vivo. A new derivative of sinomenine, named 1032, demonstrates significantly improved immunosuppressive activity over that of its parent natural compound (SIN). In an experimental autoimmune encephalomyelitis (EAE) model, 1032 significantly reduced encephalitogenic T cell responses and induced amelioration of EAE, which outcome was related to its selective inhibitory effect on the production of IL-17. By contrast, SIN treatment only led to a moderate alleviation of EAE severity and the expression level of IL-17 was not significantly reduced. Furthermore, 1032 exhibited suppression of Th17, but not Treg, cell differentiation, a result probably related to its inhibitory effect on IkappaB-alpha degradation as well as on IL-6 and TNF-alpha secretion in BMDCs. We speculate that 1032 as a novel anti-inflammatory agent may target DC to block IL-6 production, which in turn would terminate Th17 cell development. Thus, SIN derivative 1032 presents considerable potential in new drug development for treating autoimmune and inflammatory disease. PMID:20004644

  16. IL-21R signaling is critical for induction of spontaneous experimental autoimmune encephalomyelitis

    PubMed Central

    Lee, Youjin; Mitsdoerffer, Meike; Xiao, Sheng; Gu, Guangxiang; Sobel, Raymond A.; Kuchroo, Vijay K.

    2015-01-01

    IL-17–producing CD4+ T cells (Th17 cells) have well-described pathogenic roles in tissue inflammation and autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE); however, the involvement of IL-21 in these processes has remained controversial. While IL-21 is an essential autocrine amplification factor for differentiation of Th17 cells, the loss of IL-21 or IL-21 receptor (IL-21R) does not protect mice from actively induced EAE. Here, we utilized a transgenic EAE mouse model, in which T and B cells overexpress receptors for myelin oligodendrocyte glycoprotein (MOG) (referred to as 2D2xTH mice), and demonstrated that IL-21 is critical for the development of a variant form of spontaneous EAE in these animals. Il21r deletion in 2D2xTH mice reduced the incidence and severity of spontaneous EAE, which was associated with a defect in Th17 cell generation. Moreover, IL-21R deficiency limited IL-23R expression on Th17 cells and inhibited expression of key molecules involved in the generation of pathogenic Th17 cells. Conversely, loss of IL-23R in 2D2xTH mice resulted in complete resistance to the development of spontaneous EAE. Our data identify a previously unappreciated role for IL-21 in EAE and reveal that IL-21–mediated signaling supports generation and stabilization of pathogenic Th17 cells and development of spontaneous autoimmunity. PMID:26413871

  17. Correlation between experimental human and murine skin sensitization induction thresholds.

    PubMed

    Api, Anne Marie; Basketter, David; Lalko, Jon

    2015-01-01

    Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the "EC3" value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).

  18. The complement inhibitor FUT-175 suppresses T cell autoreactivity in experimental autoimmune encephalomyelitis.

    PubMed

    Li, Qing; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-08-01

    Several recent studies have shown that interacting antigen presenting cells and/or T cells produced complement activation products C5a and C3a, are integrally involved in T-cell activation, and promote the generation of myelin oligodendrocyte glycoprotein (MOG(35-55))-specific interferon-gamma and interleukin-17-producing T cells in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. In this study, we tested whether FUT-175, a clinical pharmaceutical that has been shown to inhibit the formation of C3/C5 convertases, can attenuate myelin-specific T-cell responses, as well as disease severity in experimental autoimmune encephalomyelitis. In vitro, FUT-175 inhibited local C5a/C3a production by antigen presenting cell-T-cell complexes and attenuated MOG(35-55)-specific Th1 and Th17 responses with little nonspecific cytotoxicity. In vivo administration of FUT-175 delayed experimental autoimmune encephalomyelitis disease onset, lowered clinical scores, decreased central nervous system inflammation, and reduced demyelination. The FUT-175-treated mice exhibited decreased numbers of MOG(35-55)-specific interferon-gamma- and interleukin-17-producing T cells. In addition, results from the FUT-175 treatment of naive recipients of adoptively transferred splenocytes from MOG(35-55)-immunized mice suggested that the effect of FUT-175 was on MOG-specific cellular responses and not on anti-MOG antibodies. These results argue that complement regulators, which inhibit C5a/C3a production, may have therapeutic efficacy in multiple sclerosis and in other clinical conditions in which T cells drive disease pathogenesis. PMID:19608865

  19. Experimental Autoimmune Myasthenia Gravis (EAMG): from immunochemical characterization to therapeutic approaches.

    PubMed

    Fuchs, Sara; Aricha, Revital; Reuveni, Debby; Souroujon, Miriam C

    2014-11-01

    Myasthenia Gravis (MG) is an organ-specific autoimmune disease. In high percentage of patients there are autoantibodies to the nicotinic acetylcholine receptor (AChR) that attack AChR on muscle cells at the neuromuscular junction, resulting in muscle weakness. Experimental Autoimmune Myasthenia Gravis (EAMG) is an experimental model disease for MG. EAMG is induced in several animal species by immunization with acetylcholine receptor (AChR), usually isolated from the electric organ of electric fish, which is a rich source for this antigen. Our lab has been involved for several decades in research of AChR and of EAMG. The availability of an experimental autoimmune disease that mimics in many aspects the human disease, provides an excellent model system for elucidating the immunological nature and origin of MG, for studying various existing treatment modalities and for attempting the development of novel treatment approaches. In this review in honor of Michael Sela and Ruth Arnon, we report first on our early pioneering contributions to research on EAMG. These include the induction of EAMG in several animal species, early attempts for antigen-specific treatment for EAMG, elicitation and characterization of monoclonal antibodies and anti-idiotypic antibodies, measuring humoral and cellular AChR-specific immune responses in MG patient and more. In the second part of the review we discuss more recent studies from our lab towards developing and testing novel treatment approaches for myasthenia. These include antigen-dependent treatments aimed at specifically abrogating the humoral and cellular anti-AChR responses, as well as immunomodulatory approaches that could be used either alone, or in conjunction with antigen-specific treatments, or alternatively, serve as steroid-sparing agents.

  20. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    PubMed

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  1. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS.

  2. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis.

    PubMed

    Ringheim, Garth E; Lee, Lan; Laws-Ricker, Lynn; Delohery, Tomas; Liu, Li; Zhang, Donghui; Colletti, Nicholas; Soos, Timothy J; Schroeder, Kendra; Fanelli, Barbara; Tian, Nian; Arendt, Christopher W; Iglesias-Bregna, Deborah; Petty, Margaret; Ji, Zhongqi; Qian, George; Gaur, Rajula; Weinstock, Daniel; Cavallo, Jean; Telsinskas, Juventas; McMonagle-Strucko, Kathleen

    2013-01-01

    Teriflunomide is an oral disease-modifying therapy recently approved in several locations for relapsing-remitting multiple sclerosis. To gain insight into the effects of teriflunomide, immunocyte population changes were measured during progression of experimental autoimmune encephalomyelitis in Dark Agouti rats. Treatment with teriflunomide attenuated levels of spinal cord-infiltrating T cells, natural killer cells, macrophages, and neutrophils. Teriflunomide also mitigated the disease-induced changes in immune cell populations in the blood and spleen suggesting an inhibitory effect on pathogenic immune responses. PMID:24198809

  3. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Huang, Qiling; Ma, Xiaomeng; Zhu, Dong Liang; Chen, Li; Jiang, Ying; Zhou, Linli; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-07-15

    Total glucosides of peony (TGP), an active compound extracted from the roots of Paeonia lactiflora Pall, has wide pharmacological effects on nervous system. Here we examined the effects of TGP on experimental autoimmune encephalomyelitis (EAE), an established model of multiple sclerosis (MS). The results showed that TGP can reduce the severity and progression of EAE in C57 BL/6 mice. In addition, TGP also down-regulated the Th1/Th17 inflammatory response and prevented the reduced expression of brain-derived neurotrophic factor and 2',3'-cyclic nucleotide 3'-phosphodiesterase of EAE. These findings suggest that TGP could be a potential therapeutic agent for MS. PMID:26025060

  4. Effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters of lymphocytes in intact animals and animals with experimental autoimmune process.

    PubMed

    Robinson, M V; Mel'nikova, E V; Trufakin, V A

    2014-11-01

    The effects of dipeptidyl peptidase IV inhibitor sitagliptin on immunological parameters were studied in animals with experimental autoimmune process. The effects of the drug administered in preventive (before manifestation of autoimmune processes) and therapeutic (after manifestation of autoimmune process) modes were studied. PMID:25408522

  5. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.

    PubMed

    Schaffert, Hanne; Pelz, Andreas; Saxena, Abhishek; Losen, Mario; Meisel, Andreas; Thiel, Andreas; Kohler, Siegfried

    2015-05-01

    The role of Th17 cells in the pathogenesis of autoantibody-mediated diseases is unclear. Here, we assessed the contribution of Th17 cells to the pathogenesis of experimental autoimmune myasthenia gravis (EAMG), which is induced by repetitive immunizations with Torpedo californica acetylcholine receptor (tAChR). We show that a significant fraction of tAChR-specific CD4(+) T cells is producing IL-17. IL-17(ko) mice developed fewer or no EAMG symptoms, although the frequencies of tAChR-specific CD4(+) T cells secreting IL-2, IFN-γ, or IL-21, and the percentage of FoxP3(+) Treg cells were similar to WT mice. Even though the total anti-tAChR antibody levels were equal, the complement fixating IgG2b subtype was reduced in IL-17(ko) as compared to WT mice. Most importantly, pathogenic anti-murine AChR antibodies were significantly lower in IL-17(ko) mice. Furthermore, we confirmed the role of Th17 cells in EAMG pathogenesis by the reconstitution of TCR β/δ(ko) mice with WT or IL-17(ko) CD4(+) T cells. In conclusion, we show that the level of IgG2b and the loss of B-cell tolerance, which results in pathogenic anti-murine AChR-specific antibodies, are dependent on IL-17 production by CD4(+) T cells. Thus, we describe here for the first time how Th17 cells are involved in the induction of classical antibody-mediated autoimmunity. PMID:25676041

  6. Prophylactic effect of probiotics on the development of experimental autoimmune myasthenia gravis.

    PubMed

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4(+) T cells into CD4(+)Foxp3(+) regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis.

  7. Investigation of the impact of the common animal facility contaminant murine norovirus on experimental murine cytomegalovirus infection.

    PubMed

    Doom, Carmen M; Turula, Holly M; Hill, Ann B

    2009-09-30

    Murine norovirus (MNV) is a recently discovered pathogen that has become a common contaminant of specific pathogen-free mouse colonies. MNV-1 induces a robust interferon-beta response and causes histopathology in some mouse strains, suggesting that it may impact other mouse models of infection. Despite many concerns about MNV-1 contamination, there is little information about its impact on immune responses to other infections. This study addresses whether MNV-1 infection has an effect on a model of murine cytomegalovirus (MCMV) infection. Exposure to MNV-1 resulted in a decreased CD8 T cell response to immunodominant MCMV epitopes in both BALB/c and C57BL/6 mice. However, MNV-1 did not impact MCMV titers in either mouse strain, nor did it stimulate reactivation of latent MCMV. These data suggest that while MNV-1 has a mild impact on the immune response to MCMV, it is not likely to affect most experimental outcomes in immunocompetent mice in the MCMV model.

  8. Tumor vascularity and hematogenous metastasis in experimental murine intraocular melanoma.

    PubMed Central

    Grossniklaus, H E

    1998-01-01

    PURPOSE: The purpose of this study is to test the hypothesis that primary tumor vascularity in a murine model of intraocular melanoma positively correlates with the development and hematogenous spread of metastasis. METHODS: Forty 12-week-old C57BL6 mice were inoculated in either the anterior chamber (AC) or posterior compartment (PC) of 1 eye with 5 x 10(5) cells/microL of Queens tissue culture melanoma cells. The inoculated eye was enucleated at 2 weeks; the mice were sacrificed at 4 weeks postinoculation, and necropsies were performed. The enucleated eyes were examined for histologic and ultrastructural features, including relationship of tumor cells to tumor vascular channels, vascular pattern, and mean vascular density. RESULTS: Melanoma grew and was confined to the eye in 12 of 20 AC eyes and 10 of 20 PC eyes. Histologic and electron microscopic examination showed tumor invasion into vascular channels. Five of 12 AC tumors (42%) and 8 of 10 PC tumors (80%) metastasized. All of the AC tumors, but none of the PC tumors, that distantly metastasized also metastasized to ipsilateral cervical lymph nodes (P = .00535). There was no statistically significant difference of vascular pattern between the melanomas that did and did not metastasize to lungs in the PC group (P = .24), although there was a significant difference in the AC group (P = .02). Tumors with high-grade vascular patterns were more likely to metastasize than tumors with low-grade vascular patterns in the AC group. The mean vascular density positively correlated with the presence and number of metastases in both groups (P = .0000 and P < .001, respectively). There was no statistically significant difference of vascular pattern and mean vascular density for AC versus PC melanoma (P = .97). CONCLUSIONS: The rate of metastasis in this murine intraocular melanoma model positively correlates with primary tumor vascularity. The melanoma metastasizes via invasion of tumor vascular channels. AC melanoma also

  9. Experimental autoimmune uveoretinitis in the RCS rat: the influence of photoreceptor degeneration on disease expression.

    PubMed Central

    Atkinson, E G; Edelsten, C; Kasp, E; Dumonde, D C

    1992-01-01

    S-antigen induced experimental autoimmune uveoretinitis (EAU) was produced in the Royal College of Surgeons (RCS) strain of rat which develops a photoreceptor dystrophy within 2 weeks of birth. Animals were sensitised at 60, 90, and 105 days of age: all animals developed disease, but onset was significantly delayed in older (105 day) animals compared with those aged 60 days at sensitisation (p 0.003). Disease was characterised by the early development of complete serous retinal detachment which resolved in a few days: the prevalence of retinal detachment was increased to 80% in dystrophic animals compared with 10% in the congenic, non-dystrophic controls (p < 0.001). Anterior uveitis was seen in 17/30 control strain eyes, but in none of 30 dystrophic eyes (p < 0.001). Genetically determined photoreceptor and retinal pigment epithelium dysfunction in the RCS rat, which may involve the local accumulation of altered S-antigen, predisposes the dystrophic strain to display an acute retinal detachment in the early stages of EAU. This phenomenon illustrates how biochemical dysfunction of a target organ may influence susceptibility, form, and severity of an experimental autoimmune disease. Images PMID:1420062

  10. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis.

    PubMed

    Bernardes, Danielle; Brambilla, Roberta; Bracchi-Ricard, Valerie; Karmally, Shaffiat; Dellarole, Anna; Carvalho-Tavares, Juliana; Bethea, John R

    2016-01-01

    Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease.

  11. Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely.

    PubMed

    Baker, David; Amor, Sandra

    2014-09-01

    Although multiple sclerosis is a uniquely human disease, many pathological features can be induced in experimental autoimmune encephalomyelitis (EAE) models following induction of central nervous system-directed autoimmunity. Whilst it is an imperfect set of models, EAE can be used to identify pathogenic mechanisms and therapeutics. However, the failure to translate many treatments from EAE into human benefit has led some to question the validity of the EAE model. Whilst differences in biology between humans and other species may account for this, it is suggested here that the failure to translate may be considerably influenced by human activity. Basic science contributes to failings in aspects of experimental design and over-interpretation of results and lack of transparency and reproducibility of the studies. Importantly issues in trial design by neurologists and other actions of the pharmaceutical industry destine therapeutics to failure and terminate basic science projects. However animal, particularly mechanism-orientated, studies have increasingly identified useful treatments and provided mechanistic ideas on which most hypothesis-led clinical research is based. Without EAE and other animal studies, clinical investigations will continue to be "look-see" exercises, which will most likely provide more misses than hits and will fail the people with MS that they aim to serve.

  12. Experimental murine amyloidosis: a model system for studying amyloid formation.

    PubMed Central

    Baumal, R.; Wilson, B.; Pass, E.

    1975-01-01

    Myeloma-associated and casein-induced murine amyloidosis were used as models to study the role of lymphocytes and macrophages in amyloid formation. Amyloidosis occurred rarely and in small amounts in Balb/C mice with immunoglobulin (Ig)-producing myeloma tumours but large amounts could be induced by injections of casein. Fluorescent staining of both forms of amyloid deposits by means of anti-casein- and anti-myeloma-amyloid antibodies indicated that they either crossreacted or coexisted. Nor abnormality of Ig biosynthesis was detected in amyloidosis, suggesting that abnormal degradation was responsible for production of the Ig form of amyloid. Although spleen lymphocytes of casein-injected mice with amyloidosis demonstrated diminished cellular immunologic responses, this did not indicate generalized immunologic incompetence. The non-Ig form of amyloid in casein-injected mice was shown to be produced by macrophages, and a technique was developed for increasing the yield of amyloid-containing cells. Images FIG. 1 FIG. 2 FIG. 3 FIG. 6 FIG. 7 FIG. 8 PMID:1080430

  13. Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation.

    PubMed

    Yoshida, Hideyuki; Kimura, Akihiro; Fukaya, Tomohiro; Sekiya, Takashi; Morita, Rimpei; Shichita, Takashi; Inoue, Hiromasa; Yoshimura, Akihiko

    2012-02-10

    Th17 cells, which have been implicated in autoimmune diseases, require STAT3 signaling activated by IL-6 or IL-23 for their development. Other Th1 and Th2 cytokines such as IL-2, IFN-γ and IL-4 strongly suppress Th17 development. Recently, CP-690,550 (tofacitinib), originally developed as a JAK3 inhibitor, has been shown to be effective in phase III clinical trials of rheumatoid arthritis and collagen-induced arthritis (CIA) models, but the precise mechanism of the effect, especially with respect to Th17 cells, is poorly understood. To our surprise, a low dose CP-690,550 was found to accelerate the onset of experimental autoimmune encephalomyelitis (EAE) at a concentration that suppressed CIA. At an early stage after immunization, more IL-17 production was observed in 15mg/kg body weight CP-690,550-treated mice than in untreated mice. In vitro, CP-690,550 inhibited both Th1 and Th2 development, while promoting Th17 differentiation at 10-50nM concentrations. Enhancement of Th17 by CP-690,550 is probably due to suppression of IL-2 signaling, because anti-IL-2 antibodies cancel the Th17-promoting effect of CP-690,550. CP-690,550 selectively inhibited IFN--induced STAT1, IL-4-induced STAT6 and IL-2-induced STAT5 at 3-30nM, while suppression of IL-6-induced STAT3 phosphorylation required a concentration greater than 100nM. In HEK293T cells, CP-690,550 less effectively suppressed JAK1-mediated STAT3 phosphorylation compared with JAK3. These results suggest that CP-690,550 has a different effects among JAKs and STATs, thereby affecting helper T cell differentiation, and murine autoimmune disease models.

  14. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    PubMed Central

    Xue, Haikuo; Ren, Huijun; Zhang, Lei; Sun, Xiaoxu; Wang, Wanhai; Zhang, Shijie; Zhao, Junwei; Ming, Liang

    2016-01-01

    Objective(s): Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. Materials and Methods: Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG), and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results: AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. Conclusion: According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS. PMID:27403263

  15. Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. Methods We studied the immune response to the axonal protein neurofilament light (NF-L) in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. To examine the association between T cells and axonal damage, pathology studies were performed on NF-L immunized mice. The interaction of T cells and axons was analyzed by confocal microscopy of central nervous system tissues and T-cell and antibody responses to immunodominant epitopes identified in ABH (H2-Ag7) and SJL/J (H2-As) mice. These epitopes, algorithm-predicted peptides and encephalitogenic motifs within NF-L were screened for encephalitogenicity. Results Confocal microscopy revealed both CD4+ and CD8+ T cells alongside damaged axons in the lesions of NF-L immunized mice. CD4+ T cells dominated the areas of axonal injury in the dorsal column of spastic mice in which the expression of granzyme B and perforin was detected. Identified NF-L epitopes induced mild neurological signs similar to the observed with the NF-L protein, yet distinct from those characteristic of neurological disease induced with myelin oligodendrocyte glycoprotein. Conclusions Our data suggest that CD4+ T cells are associated with spasticity, axonal damage and neurodegeneration in NF-L immunized mice. In addition, defined T-cell epitopes in the NF-L protein might be involved in the pathogenesis of the disease. PMID:24053384

  16. Silencing miR-146a influences B cells and ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Zhang, JunMei; Jia, Ge; Liu, Qun; Hu, Jue; Yan, Mei; Yang, BaiFeng; Yang, Huan; Zhou, WenBin; Li, Jing

    2015-01-01

    MicroRNAs have been shown to be important regulators of immune homeostasis as patients with aberrant microRNA expression appeared to be more susceptible to autoimmune diseases. We recently found that miR-146a was up-regulated in activated B cells in response to rat acetylcholine receptor (AChR) α-subunit 97-116 peptide, and this up-regulation was significantly attenuated by AntagomiR-146a. Our data also demonstrated that silencing miR-146a with its inhibitor AntagomiR-146a effectively ameliorated clinical myasthenic symptoms in mice with ongoing experimental autoimmune myasthenia gravis. Furthermore, multiple defects were observed after miR-146a was knocked down in B cells, including decreased anti-R97-116 antibody production and class switching, reduced numbers of plasma cells, memory B cells and B-1 cells, and weakened activation of B cells. Previously, miR-146a has been identified as a nuclear factor-κB-dependent gene and predicted to base pair with the tumour necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1) genes to regulate the immune response. However, our study proved that miR-146a inhibition had no effect on the expression of TRAF6 and IRAK1 in B cells. This result suggests that the function of miR-146a in B cells does not involve these two target molecules. We conclude that silencing miR-146a exerts its therapeutic effects by influencing the B-cell functions that contribute to the autoimmune pathogenesis of myasthenia gravis.

  17. Probenecid Application Prevents Clinical Symptoms and Inflammation in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Hainz, Nadine; Wolf, Sandra; Tschernig, Thomas; Meier, Carola

    2016-02-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Neurological impairments are caused by axonal damage due to demyelination and neuroinflammation within the central nervous system. T cells mediate the neuroinflammation. The activation of T cells is induced by the release of adenosine triphosphate and involves purinergic receptors as well as pannexin (Panx) proteins. As Panx1 is expressed on T cells, we here propose that application of probenecid, a known Panx inhibitor, will prevent the onset of clinical symptoms in a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE) model. EAE-induced mice received daily injections of probenecid. Disease scores, T cell numbers, and microglia activation were compared between experimental groups. Probenecid treatment resulted in lower disease scores as compared to EAE animals. Probenecid-treated animals also displayed fewer inflammatory lesions. Microglia activation was not altered by treatment. In conclusion, probenecid prevented the onset of EAE. PMID:26276126

  18. Ureaplasma urealyticum Causes Hyperammonemia in an Experimental Immunocompromised Murine Model

    PubMed Central

    Wang, Xiaohui; Karau, Melissa J.; Greenwood-Quaintance, Kerryl E.; Block, Darci R.; Mandrekar, Jayawant N.; Cunningham, Scott A.

    2016-01-01

    Hyperammonemia syndrome is an often fatal complication of lung transplantation which has been recently associated with Ureaplasma infection. It has not been definitely established that Ureaplasma species can cause hyperammonemia. We established a novel immunocompromised murine model of Ureaplasma urealyticum infection and used it to confirm that U. urealyticum can cause hyperammonemia. Male C3H mice were pharmacologically immunosuppressed with mycophenolate mofetil, tacrolimus and oral prednisone for seven days, and then challenged intratracheally (IT) and/or intraperitoneally (IP) with 107 CFU U. urealyticum over six days, while continuing immunosuppression. Spent U. urealyticum-free U9 broth was used as a negative control, with uninfected immunocompetent mice, uninfected immunosuppressed mice, and infected immunocompetent mice serving as additional controls. Plasma ammonia concentrations were compared using Wilcoxon ranks sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent U9 broth (n = 14) (range 155–330 μmol/L) were similar to those of normal mice (n = 5), uninfected immunosuppressed mice (n = 5), and U. urealyticum IT/IP challenged immunocompetent mice (n = 5) [range 99–340 μmol/L, p = 0.60]. However, immunosuppressed mice challenged with U. urealyticum IT/IP (n = 20) or IP (n = 15) had higher plasma ammonia concentrations (range 225–945 μmol/L and 276–687 μmol/L, respectively) than those challenged IT/IP with spent U9 broth (p<0.001). U. urealyticum administered IT/IP or IP causes hyperammonemia in mice pharmacologically immunosuppressed with a regimen similar to that administered to lung transplant recipients. PMID:27537683

  19. Ureaplasma urealyticum Causes Hyperammonemia in an Experimental Immunocompromised Murine Model.

    PubMed

    Wang, Xiaohui; Karau, Melissa J; Greenwood-Quaintance, Kerryl E; Block, Darci R; Mandrekar, Jayawant N; Cunningham, Scott A; Patel, Robin

    2016-01-01

    Hyperammonemia syndrome is an often fatal complication of lung transplantation which has been recently associated with Ureaplasma infection. It has not been definitely established that Ureaplasma species can cause hyperammonemia. We established a novel immunocompromised murine model of Ureaplasma urealyticum infection and used it to confirm that U. urealyticum can cause hyperammonemia. Male C3H mice were pharmacologically immunosuppressed with mycophenolate mofetil, tacrolimus and oral prednisone for seven days, and then challenged intratracheally (IT) and/or intraperitoneally (IP) with 107 CFU U. urealyticum over six days, while continuing immunosuppression. Spent U. urealyticum-free U9 broth was used as a negative control, with uninfected immunocompetent mice, uninfected immunosuppressed mice, and infected immunocompetent mice serving as additional controls. Plasma ammonia concentrations were compared using Wilcoxon ranks sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent U9 broth (n = 14) (range 155-330 μmol/L) were similar to those of normal mice (n = 5), uninfected immunosuppressed mice (n = 5), and U. urealyticum IT/IP challenged immunocompetent mice (n = 5) [range 99-340 μmol/L, p = 0.60]. However, immunosuppressed mice challenged with U. urealyticum IT/IP (n = 20) or IP (n = 15) had higher plasma ammonia concentrations (range 225-945 μmol/L and 276-687 μmol/L, respectively) than those challenged IT/IP with spent U9 broth (p<0.001). U. urealyticum administered IT/IP or IP causes hyperammonemia in mice pharmacologically immunosuppressed with a regimen similar to that administered to lung transplant recipients. PMID:27537683

  20. Effects of Zileuton on the Development of Autoimmune Myocarditis in an Experimental Rat Model

    PubMed Central

    Odemis, Ender; Turkay, Sadi; Koca, Cemile; Kiyici, Halil; Karadag, Ahmet; Bayrak, Reyhan; Mete, Emin; Catal, Ferhat; Yigitoglu, Ramazan

    2007-01-01

    Background: Myocarditis is associated with high morbidity and mortality in childhood, but the pathogenesis of this disease is still unclear. Current knowledge indicates that complex immunopathogenic mechanisms are involved. It is understood that leukotrienes play an important role in the inflammation associated with asthma, and recent reports indicate that leukotrienes participate in immune processes and in autoimmunity. Objective: The aim of this study was to assess the role of leukotriene synthesis in the development of myocardial inflammation and necrosis during myocarditis. Methods: The effect of zileuton, a leukotriene synthesis inhibitor, was assessed in an experimental model of autoimmune myocarditis in rats. Healthy adult (10-week-old) male Wistar albino rats were randomly divided into 3 groups. Groups A and B received injections of 1.0 mg porcine cardiac myosin to induce autoimmune myocarditis and group C (the control group) received phosphate-buffered saline. Group B also received zileuton by oral gavage at 100 mg/kg · d−1. Myocardial inflammation was assessed biochemically via serum concentrations of creatine kinase MB subunit (CK-MB) and troponin T. Cardiac tissue was assessed macroscopically (0 = no inflammation; 1 = a small discolored focus; 2 = diffuse discolored areas covering less than half of the cardiac surface; 3 = diffuse discolored areas covering more than half of the cardiac surface) and microscopically (0 = no inflammation; 1 = ⪯5% infiltration; 2 = 5% to <10% infiltration; 3 = 10% to < 20% infiltration; 4 = >20% infiltration). Results: Twenty-four rats were divided equally into 3 groups. All rats survived the duration of the study. After 21 days, all rats were euthanized. No significant differences were found between groups A and B in terms of serum concentrations of CK-MB or troponin T. The microscopic pathology score was significantly lower in group B (myosin + zileuton) than in group A (myosin only) (0.12 [0.35] vs 1.25 [1.03]; P

  1. Experimental murine chronic hepatitis: results following intrahepatic inoculation of human uveitis mycoplasma-like organisms.

    PubMed Central

    Johnson, L. A.; Wirostko, E.; Wirostko, B. M.

    1993-01-01

    Mycoplasma-like organisms (MLO) are non-cultivated intracellular cell-wall deficient pathogenic bacteria with a distinctive ultrastructural appearance. Diagnosis of MLO disease depends on finding the organisms in parasitized cells using a transmission electron microscope. MLO are a well studied cause of transmissible chronic plant disease responsive to antibiotics. MLO have recently been found to cause human chronic uveitis, orbital, and retinal disease with autoimmune features. Ophthalmic leucocytes in these patients display MLO parasitization. Inoculation of human uveitis MLO into mouse eyelids produced chronic uveitis. MLO also disseminated to produce randomly distributed lethal systemic disease including chronic hepatitis. MLO parasitized leucocytes were present in all disease sites. Direct intrahepatic inoculation of human hepatic pathogens is a simple and efficient technique to produce murine hepatitis. This report describes the delayed onset widespread inflammatory liver disease produced by direct intrahepatic inoculation of human chronic uveitis MLO in 12 of 20 mice versus 0 in 40 controls (P < 0.05). The liver disease was accompanied by elevated serum SGOT levels, splenomegaly, and accelerated mortality. All 12 inflamed livers displayed MLO parasitized leucocytes versus 0 of 10 control livers. The resemblance of human chronic active hepatitis, massive hepatic necrosis, and post-necrotic cirrhosis to the MLO induced murine liver disease, the role of molecular biologic techniques in the detection and classification of those bacteria, and in therapy of MLO disease are discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8398804

  2. Ulinastatin attenuates experimental autoimmune encephalomyelitis by enhancing anti-inflammatory responses.

    PubMed

    Feng, Ming; Shu, Yaqing; Yang, Yu; Zheng, Xueping; Li, Rui; Wang, Yuge; Dai, Yongqiang; Qiu, Wei; Lu, Zhengqi; Hu, Xueqiang

    2014-01-01

    Multiple sclerosis (MS) is a common inflammatory and demyelinating neurological disease. Experimental autoimmune encephalomyelitis (EAE), an animal model of MS, has been widely used to test MS treatment methods. Ulinastatin (UTI), a drug used to treat acute inflammatory disorders, has been tested in animal models of autoimmune inflammatory diseases, such as ulcerative colitis and crescentic glomerulonephritis. We recently found that UTI has a neuroprotective effect on EAE by reducing oligodendrocyte apoptosis and demyelination. The anti-inflammatory effects of UTI on EAE/MS, however, have never been investigated. We have therefore evaluated the anti-inflammatory effects of UTI in EAE and explored the mechanisms underlying this effect. EAE was induced in mice with and without UTI treatment. Inflammation and demyelination of spinal cords were evaluated by staining with hematoxylin and eosin and with Luxol fast blue, respectively. Inflammatory markers in serum were analyzed by the Luminex method, and spinal cords were evaluated by immunofluorescence and Western blotting. UTI significantly lowered the clinical and pathological scores and the serum concentrations of the inflammatory cytokines interleukin (IL)-1β, IL-6, and matrix metal protease-9 (MMP-9). UTI also reduced the expression of tumor necrosis factor-alpha (TNF-α)/nuclear factor kappaB (NF-κB)/inducible nitric oxide synthase (iNOS) proteins and decreased CD11b(+) cells in spinal cord lesions. UTI may protect against EAE in mice by suppressing inflammatory responses. We think that UTI might be a potential therapeutic agent for MS.

  3. Gestational Hypothyroidism Increases the Severity of Experimental Autoimmune Encephalomyelitis in Adult Offspring

    PubMed Central

    Albornoz, Eduardo A.; Carreño, Leandro J.; Cortes, Claudia M.; Gonzalez, Pablo A.; Cisternas, Pablo A.; Cautivo, Kelly M.; Catalán, Tamara P.; Opazo, M. Cecilia; Eugenin, Eliseo A.; Berman, Joan W.; Bueno, Susan M.; Kalergis, Alexis M.

    2013-01-01

    Background: Maternal thyroid hormones play a fundamental role in appropriate fetal development during gestation. Offspring that have been gestated under maternal hypothyroidism suffer cognitive impairment. Thyroid hormone deficiency during gestation can significantly impact the central nervous system by altering the migration, differentiation, and function of neurons, oligodendrocytes, and astrocytes. Given that gestational hypothyroidism alters the immune cell ratio in offspring, it is possible that this condition could result in higher sensitivity for the development of autoimmune diseases. Methods: Adult mice gestated under hypothyroidism were induced with experimental autoimmune encephalomyelitis (EAE). Twenty-one days after EAE induction, the disease score, myelin content, immune cell infiltration, and oligodendrocyte death were evaluated. Results: We observed that mice gestated under hypothyroidism showed higher EAE scores after disease induction during adulthood compared to mice gestated in euthyroidism. In addition, spinal cord sections of mice gestated under hypothyroidism that suffered EAE in adulthood showed higher demyelination, CD4+ and CD8+ infiltration, and increased oligodendrocyte death. Conclusions: These results show for the first time that a deficiency in maternal thyroid hormones during gestation can influence the outcome of a central nervous system inflammatory disease, such as EAE, in their offspring. These data strongly support evaluating thyroid hormones in pregnant women and treating hypothyroidism during pregnancy to prevent increased susceptibility to inflammatory diseases in the central nervous system of offspring. PMID:23777566

  4. Traditional Chinese medicine Yisui Tongjing relieved neural severity in experimental autoimmune neuritis rat model

    PubMed Central

    Zhang, Erli; Li, Mingquan; Zhao, Jianjun; Dong, Yuxiang; Yang, Xueqin; Huang, Jingbo

    2016-01-01

    Objective To study the effect of Yisui Tongjing (YSTJ) prescription on motor nerve conduction velocity (MNCV) and microstructure of the sciatic nerve in experimental autoimmune neuritis (EAN) rats, the Guillain–Barré syndrome classic animal models. Materials and methods In this study, we established an EAN model in Lewis rats by immunization. We evaluated the potential clinical application of a traditional Chinese medicine YSTJ by intragastric administration and compared its effect with immunoglobulin. The sciatic MNCV was measured by electrophysiology experiment. Hematoxylin–eosin staining and transmission electron microscope analysis were used to determine the pathologically morphological changes before and after YSTJ application. Results We found that application of YSTJ could significantly alleviate the clinical signs in EAN rats. The treatment also increased MNCV in the sciatic nerve compared to that in the untreated nerve. Demyelination in the sciatic nerve in EAN rats was significantly ameliorated, and newly generated myelinated nerve fibers were observed with treatment of high dose of YSTJ. Conclusion This study showed that the traditional Chinese medicine YSTJ was likely to serve as a therapeutic medicine in autoimmune neuropathies, providing an effective and economic means to the treatment of Guillain–Barré syndrome. PMID:27729792

  5. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes. PMID:7515330

  6. Delayed-type hypersensitivity response in experimental autoimmune neuritis treated with peptide-coupled spleen cells.

    PubMed

    Gregorian, S K; Rostami, A

    1994-04-01

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory disease of the peripheral nervous system that is characterized by demyelination and mononuclear cell infiltration. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. Recently, we showed that SP-26, when coupled to syngeneic spleen cells and administered intravenously, provided an effective means of inducing tolerance by inhibiting the clinical signs, decreased proliferative response of lymphoid cells to SP-26 and histological changes of EAN. However, our current data indicate that, despite tolerance induction in these Lewis rats, the antigen-specific delayed-type hypersensitivity (DTH) response to SP-26 remained intact. Furthermore, interferon (IFN)-gamma production by spleen cells of tolerized rats were unchanged as compared to EAN rats. The in vitro proliferation of T lymphocytes from tolerized rats stimulated by SP-26 was reduced as compared to EAN controls but was enhanced upon addition of exogenous interleukin-2. Thus, reduction in EAN clinical signs does not necessarily indicate a decrease in DTH response and IFN-gamma production in EAN Lewis rats. The implication of this finding in regard to immunoregulatory mechanism of DTH response is discussed. PMID:7512578

  7. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    PubMed Central

    Herrmann, Martin M.; Barth, Silvia; Greve, Bernhard; Schumann, Kathrin M.; Bartels, Andrea

    2016-01-01

    ABSTRACT After encounter with a central nervous system (CNS)-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1) rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J) mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions. PMID:27519689

  8. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  9. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway

    PubMed Central

    Zhang, Yuan; Li, Xing; Ciric, Bogoljub; Ma, Cun-Gen; Gran, Bruno; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2015-01-01

    Natural compounds derived from medicinal plants have long been considered a rich source of novel therapeutic agents. Baicalin (Ba) is a bioactive flavonoid compound derived from the root of Scutellaria baicalensis, an herb widely used in traditional medicine for the treatment of various inflammatory diseases. In this study, we investigate the effects and mechanism of action of Ba in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Ba treatment effectively ameliorated clinical disease severity in myelin oligodendrocyte glycoprotein (MOG)35–55 peptide-induced EAE, and reduced inflammation and demyelination of the central nervous system (CNS). Ba reduced infiltration of immune cells into the CNS, inhibited expression of proinflammatory molecules and chemokines, and prevented Th1 and Th17 cell differentiation via STAT/NFκB signaling pathways. Further, we showed that SOCS3 induction is essential to the effects of Ba, given that the inhibitory effect of Ba on pathogenic Th17 responses was largely abolished when SOCS3 signaling was knocked down. Taken together, our findings demonstrate that Ba has significant potential as a novel anti-inflammatory agent for therapy of autoimmune diseases such as MS. PMID:26616302

  10. Critical role of activation induced cytidine deaminase in experimental autoimmune encephalomyelitis.

    PubMed

    Sun, Yonglian; Peng, Ivan; Senger, Kate; Hamidzadeh, Kajal; Reichelt, Mike; Baca, Miriam; Yeh, Ronald; Lorenzo, Maria N; Sebrell, Andrew; Dela Cruz, Christopher; Tam, Lucinda; Corpuz, Racquel; Wu, Jiansheng; Sai, Tao; Roose-Girma, Merone; Warming, Søren; Balazs, Mercedesz; Gonzalez, Lino C; Caplazi, Patrick; Martin, Flavius; Devoss, Jason; Zarrin, Ali A

    2013-03-01

    Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder caused by chronic inflammation and demyelination within the central nervous system (CNS). Clinical studies in MS patients have demonstrated efficacy with B cell targeted therapies such as anti-CD20. However, the exact role that B cells play in the disease process is unclear. Activation Induced cytidine deaminase (AID) is an essential enzyme for the processes of antibody affinity maturation and isotype switching. To evaluate the impact of affinity maturation and isotype switching, we have interrogated the effect of AID-deficiency in an animal model of MS. Here, we show that the severity of experimental autoimmune encephalomyelitis (EAE) induced by the extracellular domain of human myelin oligodendrocyte glycoprotein (MOG1-125) is significantly reduced in Aicda deficient mice, which, unlike wild-type mice, lack serum IgG to myelin associated antigens. MOG specific T cell responses are comparable between wild-type and Aicda knockout mice suggesting an active role for antigen experienced B cells. Thus affinity maturation and/or class switching are critical processes in the pathogenesis of EAE. PMID:23167594

  11. Critical role of activation induced cytidine deaminase in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    2013-01-01

    Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder caused by chronic inflammation and demyelination within the central nervous system (CNS). Clinical studies in MS patients have demonstrated efficacy with B cell targeted therapies such as anti-CD20. However, the exact role that B cells play in the disease process is unclear. Activation Induced cytidine deaminase (AID) is an essential enzyme for the processes of antibody affinity maturation and isotype switching. To evaluate the impact of affinity maturation and isotype switching, we have interrogated the effect of AID-deficiency in an animal model of MS. Here, we show that the severity of experimental autoimmune encephalomyelitis (EAE) induced by the extracellular domain of human myelin oligodendrocyte glycoprotein (MOG1-125) is significantly reduced in Aicda deficient mice, which, unlike wild-type mice, lack serum IgG to myelin associated antigens. MOG specific T cell responses are comparable between wild-type and Aicda knockout mice suggesting an active role for antigen experienced B cells. Thus affinity maturation and/or class switching are critical processes in the pathogenesis of EAE. PMID:23167594

  12. Aurora kinase a regulates m1 macrophage polarization and plays a role in experimental autoimmune encephalomyelitis.

    PubMed

    Ding, Lixia; Gu, Haijuan; Gao, Xiaoming; Xiong, Sidong; Zheng, Biao

    2015-04-01

    Macrophage polarization is a dynamic and integral process of tissue inflammation and remodeling. Here we demonstrate an important role of Aurora kinase A in the regulation of inflammatory M1 macrophage polarization. We found that there was an elevated expression of Aurora-A in M1 macrophages and inhibition of Aurora-A by small molecules or specific siRNA selectively led to the suppression of M1 polarization, sparing over the M2 macrophage differentiation. At the molecular level, we found that the effects of Aurora-A in M1 macrophages were mediated through the down-regulation of NF-κB pathway and subsequent IRF5 expression. In an autoimmune disease model, experimental autoimmune encephalitis (EAE), treatment with Aurora kinase inhibitor blocked the disease development and shifted the macrophage phenotype from inflammatory M1 to anti-inflammatory M2. Thus, this study reveals a novel function of Aurora-A in controlling the polarization of macrophages, and modification of Aurora-A activity may lead to a new therapeutic approach for chronic inflammatory diseases.

  13. Delayed-type hypersensitivity response in experimental autoimmune neuritis treated with peptide-coupled spleen cells.

    PubMed

    Gregorian, S K; Rostami, A

    1994-04-01

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory disease of the peripheral nervous system that is characterized by demyelination and mononuclear cell infiltration. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. Recently, we showed that SP-26, when coupled to syngeneic spleen cells and administered intravenously, provided an effective means of inducing tolerance by inhibiting the clinical signs, decreased proliferative response of lymphoid cells to SP-26 and histological changes of EAN. However, our current data indicate that, despite tolerance induction in these Lewis rats, the antigen-specific delayed-type hypersensitivity (DTH) response to SP-26 remained intact. Furthermore, interferon (IFN)-gamma production by spleen cells of tolerized rats were unchanged as compared to EAN rats. The in vitro proliferation of T lymphocytes from tolerized rats stimulated by SP-26 was reduced as compared to EAN controls but was enhanced upon addition of exogenous interleukin-2. Thus, reduction in EAN clinical signs does not necessarily indicate a decrease in DTH response and IFN-gamma production in EAN Lewis rats. The implication of this finding in regard to immunoregulatory mechanism of DTH response is discussed.

  14. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes.

  15. Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis.

    PubMed

    Luo, Bangwei; Jiang, Man; Yang, Xiaofeng; Zhang, Zhiyuan; Xiong, Jian; Schluesener, Hermann J; Zhang, Zhiren; Wu, Yuzhang

    2013-08-01

    Experimental autoimmune neuritis (EAN), an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system, is characterized by self-limitation. Here we investigated the regulation and contribution of erythropoietin (EPO) in EAN self-limitation. In EAN sciatic nerves, hypoxia, and protein and mRNA levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, EPO and EPO receptor (EPOR) were induced in parallel at disease peak phase but reduced at recovery periods. Further, the deactivation of HIF reduced EAN-induced EPO/EPOR upregulation in EAN, suggesting the central contribution of HIF to EPO/EPOR induction. The deactivation of EPOR signalling exacerbated EAN progression, implying that endogenous EPO contributed to EAN recovery. Exogenous EPO treatment greatly improved EAN recovery. In addition, EPO was shown to promote Schwann cell survival and myelin production. In EAN, EPO treatment inhibited lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3(+)/CD4(+) regulatory T cells and decrease of IFN-γ(+)/CD4(+) Th1 cells. Furthermore, EPO inhibited inflammatory macrophage activation and promoted its phagocytic activity. In summary, our data demonstrated that EPO was induced in EAN by HIF and contributed to EAN recovery, and endogenous and exogenous EPO could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that EPO contributes to the self-recovery of EAN and could be a potent candidate for treatment of autoimmune neuropathies. PMID:23603807

  16. Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity

    PubMed Central

    Thessen Hedreul, Melanie; Möller, Steffen; Stridh, Pernilla; Gupta, Yask; Gillett, Alan; Daniel Beyeen, Amennai; Öckinger, Johan; Flytzani, Sevasti; Diez, Margarita; Olsson, Tomas; Jagodic, Maja

    2013-01-01

    The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation. PMID:23900079

  17. A Case for Regulatory B Cells in Controlling the Severity of Autoimmune-Mediated Inflammation in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

    PubMed Central

    Ray, Avijit; Mann, Monica K.; Basu, Sreemanti; Dittel, Bonnie N.

    2010-01-01

    Multiple sclerosis (MS) is considered to be a T cell-mediated autoimmune disease that results in the presence of inflammatory lesions/plaques associated with mononuclear cell infiltrates, demyelination and axonal damage within the central nervous system (CNS). To date, FDA approved therapies in MS are thought to largely function by modulation of the immune response. Since autoimmune responses require many arms of the immune system, the direct cellular mechanisms of action of MS therapeutics are not definitively known. The mouse model of MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in deciphering the mechanism of action of MS drugs. In addition, EAE has been widely used to study the contribution of individual components of the immune system in CNS autoimmunity. In this regard, the role of B cells in EAE has been studied in mice deficient in B cells due to genetic ablation and following depletion with a B cell-targeted monoclonal antibody (mAb) (anti-CD20). Both strategies have indicated that B cells regulate the extent of EAE clinical disease and in their absence disease is exacerbated. Thus a new population of “regulatory B cells” has emerged. One reoccurring component of regulatory B cell function is the production of IL-10, a pleiotropic cytokine with potent anti-inflammatory properties. B cell depletion has also indicated that B cells, in particular antibody production, play a pathogenic role in EAE. B cell depletion in MS using a mAb to CD20 (rituximab) has shown promising results. In this review, we will discuss the current thinking on the role of B cells in MS drawing from knowledge gained in EAE studies and clinical trials using therapeutics that target B cells. PMID:21145597

  18. Vibsanin B preferentially targets HSP90β, inhibits interstitial leukocyte migration, and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Ye, Bai-Xin; Deng, Xu; Shao, Li-Dong; Lu, Ying; Xiao, Run; Liu, Yi-Jie; Jin, Yi; Xie, Yin-Yin; Zhao, Yan; Luo, Liu-Fei; Ma, Shun; Gao, Ming; Zhang, Lian-Ru; He, Juan; Zhang, Wei-Na; Chen, Yi; Xia, Cheng-Feng; Deng, Min; Liu, Ting-Xi; Zhao, Qin-Shi; Chen, Sai-Juan; Chen, Zhu

    2015-05-01

    Interstitial leukocyte migration plays a critical role in inflammation and offers a therapeutic target for treating inflammation-associated diseases such as multiple sclerosis. Identifying small molecules to inhibit undesired leukocyte migration provides promise for the treatment of these disorders. In this study, we identified vibsanin B, a novel macrocyclic diterpenoid isolated from Viburnum odoratissimum Ker-Gawl, that inhibited zebrafish interstitial leukocyte migration using a transgenic zebrafish line (TG:zlyz-enhanced GFP). We found that vibsanin B preferentially binds to heat shock protein (HSP)90β. At the molecular level, inactivation of HSP90 can mimic vibsanin B's effect of inhibiting interstitial leukocyte migration. Furthermore, we demonstrated that vibsanin B ameliorates experimental autoimmune encephalomyelitis in mice with pathological manifestation of decreased leukocyte infiltration into their CNS. In summary, vibsanin B is a novel lead compound that preferentially targets HSP90β and inhibits interstitial leukocyte migration, offering a promising drug lead for treating inflammation-associated diseases.

  19. C-C chemokine receptor type 4 antagonist Compound 22 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Moriguchi, Kota; Miyamoto, Katsuichi; Tanaka, Noriko; Ueno, Rino; Nakayama, Takashi; Yoshie, Osamu; Kusunoki, Susumu

    2016-02-15

    Chemokines and chemokine receptors play important roles in the immune response. We previously reported the pathogenic role of C-C chemokine receptor type 4 (CCR4) in experimental autoimmune encephalomyelitis (EAE). Here, we examined whether CCR4 antagonism modulates the disease course of EAE. Wild-type and CCR4-knockout mice were induced EAE and were administered Compound 22, an antagonist of CCR4. Compound 22 significantly ameliorated the severity of EAE in wild-type mice, but not in the CCR4-knockout mice. Compound 22 inhibited Th1 and Th17 polarization of antigen-induced T-cell responses. Therefore, CCR4 antagonists might be potential therapeutic agents for multiple sclerosis. PMID:26857495

  20. Microglia response in retina and optic nerve in chronic experimental autoimmune encephalomyelitis.

    PubMed

    Horstmann, Lioba; Kuehn, Sandra; Pedreiturria, Xiomara; Haak, Kathrin; Pfarrer, Christiane; Dick, H Burkhard; Kleiter, Ingo; Joachim, Stephanie C

    2016-09-15

    Experimental autoimmune encephalomyelitis (EAE) is a common rodent model for multiple sclerosis (MS). Yet, the long-term consequences for retina and optic nerve (ON) are unknown. C57BL/6 mice were immunized with an encephalitogenic peptide (MOG35-55) and the controls received the carriers or PBS. Clinical symptoms started at day 8, peaked at day 14, and were prevalent until day 60. They correlated with infiltration and demyelination of the ON. In MOG-immunized animals more microglia cells in the ONs and retinas were detected at day 60. Additionally, retinal ganglion cell (RGC) loss was combined with an increased macroglia response. At this late stage, an increased number of microglia was associated with axonal damage in the ON and in the retina with RGC loss. Whether glial activation contributes to repair mechanisms or adversely affects the number of RGCs is currently unclear. PMID:27609273

  1. Gonadotropin-releasing hormone reduces the severity of experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Quintanar, J Luis; Salinas, Eva; Quintanar-Stephano, Andrés

    2011-02-01

    It has been reported that the spinal cord possesses Gonadotropin-releasing hormone (GnRH) receptor and that GnRH has neurotrophic properties. Experimental autoimmune encephalomyelitis (EAE) causes neurodegeneration in spinal cord. Thus, the present study was designed to determine whether administration of GnRH reduces the severity of EAE. The clinical signs of locomotion, axonal morphometry and neurofilaments (NFs) expression were evaluated. Clinical signs remained significantly lower in EAE rats with GnRH administration compared to animals without treatment. Morphometric analysis, there were more axons of larger areas in the spinal cord of EAE+GnRH group compared to EAE animals. Western blot analysis demonstrated that GnRH administration significantly increased the expression of NFs of 68, 160 and 200kDa in the spinal cord of EAE animals. Our results indicate that GnRH administration reduces the severity of EAE in the rat.

  2. Therapeutic effects of mesenchymal stem cells administered at later phase of recurrent experimental autoimmune uveitis

    PubMed Central

    Zhao, Ping-Ting; Zhang, Ling-Jun; Shao, Hui; Bai, Ling-Ling; Yu, Bo; Su, Chang; Dong, Li-Jie; Liu, Xun; Li, Xiao-Rong; Zhang, Xiao-Min

    2016-01-01

    AIM To test the therapeutic effects of delayed treatment of mesenchymal stem cells (MSCs) in recurrent experimental autoimmune uveitis (rEAU). METHODS The efficacy of different regimens of MSC administration in rEAU were tested by evaluation of clinical and pathological intraocular inflammation, as well as retinal structural and functional integrity using optical coherence tomography (OCT) and electroretinogram (ERG). The retinal sections were also immunostained with antibodies to glial fibrillary acidic protein (GFAP) and rhodopsin (RHO). RESULTS Delayed treatment of MSCs effectively alleviated the severity of intraocular inflammation with relative intact of outer retinal structure and function. Moreover, double therapies with longer interval led to an even better clinical evaluation, as well as a trend of decrease in relapse and amelioration of retinal function. MSC therapies also effectively reduced GFAP expression and increased RHO expression in the retina. CONCLUSION MSC administration can effectively treat developed diseases of rEAU, and multiple therapies can provide additional therapeutic benefits. PMID:27803852

  3. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells?

    PubMed

    Agahozo, Marie Colombe; Peferoen, Laura; Baker, David; Amor, Sandra

    2016-09-01

    MS is widely considered to be a T cell-mediated disease although T cell immunotherapy has consistently failed, demonstrating distinct differences with experimental autoimmune encephalomyelitis (EAE), an animal model of MS in which T cell therapies are effective. Accumulating evidence has highlighted that B cells also play key role in MS pathogenesis. The high frequency of oligoclonal antibodies in the CSF, the localization of immunoglobulin in brain lesions and pathogenicity of antibodies originally pointed to the pathogenic role of B cells as autoantibody producing plasma cells. However, emerging evidence reveal that B cells also act as antigen presenting cells, T cell activators and cytokine producers suggesting that the strong efficacy of anti-CD20 antibody therapy observed in people with MS may reduce disease progression by several different mechanisms. Here we review the evidence and mechanisms by which B cells contribute to disease in MS compared to findings in the EAE model. PMID:27645355

  4. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells?

    PubMed

    Agahozo, Marie Colombe; Peferoen, Laura; Baker, David; Amor, Sandra

    2016-09-01

    MS is widely considered to be a T cell-mediated disease although T cell immunotherapy has consistently failed, demonstrating distinct differences with experimental autoimmune encephalomyelitis (EAE), an animal model of MS in which T cell therapies are effective. Accumulating evidence has highlighted that B cells also play key role in MS pathogenesis. The high frequency of oligoclonal antibodies in the CSF, the localization of immunoglobulin in brain lesions and pathogenicity of antibodies originally pointed to the pathogenic role of B cells as autoantibody producing plasma cells. However, emerging evidence reveal that B cells also act as antigen presenting cells, T cell activators and cytokine producers suggesting that the strong efficacy of anti-CD20 antibody therapy observed in people with MS may reduce disease progression by several different mechanisms. Here we review the evidence and mechanisms by which B cells contribute to disease in MS compared to findings in the EAE model.

  5. The influence of cyclosporin A on experimental autoimmune thyroid disease in the rat

    SciTech Connect

    McGregor, A.M.; Rennie, D.P.; Weetman, A.P.; Hassman, R.A.; Foord, S.M.; Dieguez, C.; Hall, R.

    1983-01-01

    Female PVG/c rats, thymectomised on weaning and given 4 courses of whole body irradiation to a total dose of 1000 rads, developed experimental autoimmune thyroid disease (EAITD) as assessed by histological evidence of thyroiditis and circulating levels of antithyroglobulin antibodies. Hypothyroidism resulted. Induction of the disease was associated with a highly significant fall in T lymphocyte numbers. Eight weeks after their last dose of irradiation the animals commenced treatment with cyclosporin A (10 mg/kg rat/day, intragastrically) and were treated for varying time intervals thereafter. The reversal of the T lymphocyte helper: suppressor ratio on cyclosporin A therapy was associated with a significant improvement in the disease process. The alterations in the T cell subsets and in the disease lasted only as long as the drug was administered and thereafter reverted towards that seen in the control groups of animals receiving no treatment.

  6. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  7. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis.

    PubMed

    Bernardes, Danielle; Brambilla, Roberta; Bracchi-Ricard, Valerie; Karmally, Shaffiat; Dellarole, Anna; Carvalho-Tavares, Juliana; Bethea, John R

    2016-01-01

    Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. PMID:26364732

  8. Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis.

    PubMed

    Gregorian, S K; Clark, L; Heber-Katz, E; Amento, E P; Rostami, A

    1993-09-01

    Neuritogenic T cells specific for SP-26, a synthetic peptide (residue 53-78) of myelin P2 protein that causes experimental autoimmune neuritis (EAN), use the same T cell receptor (TCR) V gene family (V beta 8) that can induce experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Tolerance to autoregulatory T cells may be induced in rats by intravenous (iv) administration of antigen-coupled splenocytes; however, the mechanisms that lead to altered immune reactivity are not well understood. Here we demonstrate that SP-26, when coupled to syngeneic spleen cells and administered iv, either before or after disease induction, markedly inhibited development and expression of clinical signs and histological changes of EAN. The induction of tolerance by this method was peptide-specific and MHC-restricted. We showed previously that T cells involved in EAN utilize the T cell antigen receptor V beta 8, whereas less than 5% of normal rat peripheral T cells express V beta 8. We have examined T lymphocytes from tolerized rats to determine the presence or absence of V beta 8(+)-bearing cells in order to determine the mechanism of tolerance. V beta 8 cells were undetectable by Northern blot analysis in the lymph nodes of unimmunized animals but easily detected in SP-26-primed and tolerized rats. In addition, spleen cells isolated from tolerized animals were anergic and failed to proliferate in response to SP-26, but retained responsiveness to IL-2 and Con A stimulation. Thus, the peptide-specific unresponsiveness that can be induced in rats with EAN, a T-cell-mediated process that is MHC-restricted and utilizes the T cell receptor V beta 8, occurs while V beta 8 transcripts remain readily detectable in spleen and lymph node cells. The detection of V beta 8-bearing T cells requires the development of antibodies specific for this rat surface protein. PMID:7690307

  9. Induction of peripheral tolerance with peptide-specific anergy in experimental autoimmune neuritis.

    PubMed

    Gregorian, S K; Clark, L; Heber-Katz, E; Amento, E P; Rostami, A

    1993-09-01

    Neuritogenic T cells specific for SP-26, a synthetic peptide (residue 53-78) of myelin P2 protein that causes experimental autoimmune neuritis (EAN), use the same T cell receptor (TCR) V gene family (V beta 8) that can induce experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Tolerance to autoregulatory T cells may be induced in rats by intravenous (iv) administration of antigen-coupled splenocytes; however, the mechanisms that lead to altered immune reactivity are not well understood. Here we demonstrate that SP-26, when coupled to syngeneic spleen cells and administered iv, either before or after disease induction, markedly inhibited development and expression of clinical signs and histological changes of EAN. The induction of tolerance by this method was peptide-specific and MHC-restricted. We showed previously that T cells involved in EAN utilize the T cell antigen receptor V beta 8, whereas less than 5% of normal rat peripheral T cells express V beta 8. We have examined T lymphocytes from tolerized rats to determine the presence or absence of V beta 8(+)-bearing cells in order to determine the mechanism of tolerance. V beta 8 cells were undetectable by Northern blot analysis in the lymph nodes of unimmunized animals but easily detected in SP-26-primed and tolerized rats. In addition, spleen cells isolated from tolerized animals were anergic and failed to proliferate in response to SP-26, but retained responsiveness to IL-2 and Con A stimulation. Thus, the peptide-specific unresponsiveness that can be induced in rats with EAN, a T-cell-mediated process that is MHC-restricted and utilizes the T cell receptor V beta 8, occurs while V beta 8 transcripts remain readily detectable in spleen and lymph node cells. The detection of V beta 8-bearing T cells requires the development of antibodies specific for this rat surface protein.

  10. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-01-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710. PMID:27746629

  11. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice.

    PubMed

    Sun, Yafei; Tian, Tian; Gao, Juan; Liu, Xiaoqian; Hou, Huiqing; Cao, Runjing; Li, Bin; Quan, Moyuan; Guo, Li

    2016-03-15

    Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.

  12. Therapeutic effect of recombinant lentiviral vector containing succinate dehydrogenase iron-sulfur protein on the treatment of experimental autoimmunity myocarditis.

    PubMed

    Han, Lina; Wang, Chunxi; Guo, Shuli; Liu, Siyu; Yang, Liming

    2016-08-01

    Cardiac autoimmune reaction takes part in myocarditis, dilated cardiomyopathy and heart failure. Existing literature has confirmed that the occurrence of cardiomyopathy belongs to mitochondrial diseases and is related to the oxidative respiratory chain subunit. The special structure of iron-sulfur protein (ISP) is responsible for the oxidative stress in oxidative phosphorylation, which is also a target that is easily attacked by various damage factors. Using gene therapy technology to restore succinate dehydrogenase iron-sulfur protein (SDISP) function- and thus resume myocardial mitochondria function and myocardial function is hypothesized to alleviate the experimental autoimmunity myocarditis (EAM).

  13. IgG1 deficiency exacerbates experimental autoimmune myasthenia gravis in BALB/c mice.

    PubMed

    Huda, Ruksana; Strait, Richard T; Tüzün, Erdem; Finkelman, Fred D; Christadoss, Premkumar

    2015-04-15

    Myasthenia gravis is an autoimmune disease characterized by muscle weakness due to neuromuscular junction (NMJ) damage by anti-acetylcholine receptor (AChR) auto-antibodies and complement. In experimental autoimmune myasthenia gravis (EAMG), which is induced by immunization with Torpedo AChR in CFA, anti-AChR IgG2b and IgG1 are the predominant isotypes in the circulation. Complement activation by isotypes such as IgG2b plays a crucial role in EAMG pathogenesis; this suggested the possibility that IgG1, which does not activate complement through the classical pathway, may suppress EAMG. In this study, we show that AChR-immunized BALB/c mice genetically deficient for IgG1 produce higher levels of complement-activating isotypes of anti-AChR, especially IgG3 and IgG2a, and develop increased IgG3/IgG2a deposits at the NMJ, as compared to wild type (WT) BALB/c mice. Consistent with this, AChR-immunized IgG1(-/-) BALB/c mice lose muscle strength and muscle AChR to a greater extent than AChR-immunized WT mice. These observations demonstrate that IgG1 deficiency leads to increased severity of EAMG associated with an increase in complement activating IgG isotypes. Further studies are needed to dissect the specific role or mechanism of IgG1 in limiting EAMG and that of EAMG exacerbating role of complement activating IgG3 and IgG2a in IgG1 deficiency. PMID:25867470

  14. Application of dendritic cells stimulated with Trichinella spiralis excretory-secretory antigens alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Sofronic-Milosavljevic, L J; Radovic, I; Ilic, N; Majstorovic, I; Cvetkovic, J; Gruden-Movsesijan, A

    2013-06-01

    The parasitic nematode, Trichinella spiralis (T. spiralis), exerts an immunomodulatory effect on the host immune response through excretory-secretory products (ES L1) released from encysted muscle larvae. Our model of combined T. spiralis infection and experimental autoimmune encephalomyelitis (EAE) in Dark Agouti (DA) rats demonstrated a significant reduction in EAE severity in infected animals. Recently, we have created an immune status characteristic for the live infection by in vivo application of dendritic cells (DCs) stimulated with ES L1 products of T. spiralis muscle larvae. Moreover, these cells were able to ameliorate EAE when applied 7 days before EAE induction. ES L1-stimulated DCs increased production of IL-4, IL-10 and TGF-β, and decreased production of IFN-γ and IL-17, both at the systemic level and in target organs. A significant increase in the proportion of CD4+CD25+Foxp3+ T cells was found among spleen cells, and CNS infiltrates from DA rats treated with ES L1-stimulated DCs before EAE induction, compared to controls injected with unstimulated DCs. Regulatory T cells, together with elevated levels of IL-10 and TGF-β, are most likely involved in restraining the production of Th1 and Th17 cytokines responsible for autoimmunity and thus are responsible for the beneficial effect of ES L1-educated DCs on the course of EAE. Our results show that ES L1 antigen-stimulated DCs are able not only to provoke, but also to sustain anti-inflammatory and regulatory responses regardless of EAE induction, with subsequent amelioration of EAE, or even protection from the disease.

  15. IgG1 deficiency exacerbates experimental autoimmune myasthenia gravis in BALB/c mice.

    PubMed

    Huda, Ruksana; Strait, Richard T; Tüzün, Erdem; Finkelman, Fred D; Christadoss, Premkumar

    2015-04-15

    Myasthenia gravis is an autoimmune disease characterized by muscle weakness due to neuromuscular junction (NMJ) damage by anti-acetylcholine receptor (AChR) auto-antibodies and complement. In experimental autoimmune myasthenia gravis (EAMG), which is induced by immunization with Torpedo AChR in CFA, anti-AChR IgG2b and IgG1 are the predominant isotypes in the circulation. Complement activation by isotypes such as IgG2b plays a crucial role in EAMG pathogenesis; this suggested the possibility that IgG1, which does not activate complement through the classical pathway, may suppress EAMG. In this study, we show that AChR-immunized BALB/c mice genetically deficient for IgG1 produce higher levels of complement-activating isotypes of anti-AChR, especially IgG3 and IgG2a, and develop increased IgG3/IgG2a deposits at the NMJ, as compared to wild type (WT) BALB/c mice. Consistent with this, AChR-immunized IgG1(-/-) BALB/c mice lose muscle strength and muscle AChR to a greater extent than AChR-immunized WT mice. These observations demonstrate that IgG1 deficiency leads to increased severity of EAMG associated with an increase in complement activating IgG isotypes. Further studies are needed to dissect the specific role or mechanism of IgG1 in limiting EAMG and that of EAMG exacerbating role of complement activating IgG3 and IgG2a in IgG1 deficiency.

  16. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    PubMed Central

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  17. Forced Exercise Preconditioning Attenuates Experimental Autoimmune Neuritis by Altering Th1 Lymphocyte Composition and Egress

    PubMed Central

    Calik, Michael W.; Shankarappa, Sahadev A.; Langert, Kelly A.; Stubbs, Evan B.

    2015-01-01

    A short-term exposure to moderately intense physical exercise affords a novel measure of protection against autoimmune-mediated peripheral nerve injury. Here, we investigated the mechanism by which forced exercise attenuates the development and progression of experimental autoimmune neuritis (EAN), an established animal model of Guillain–Barré syndrome. Adult male Lewis rats remained sedentary (control) or were preconditioned with forced exercise (1.2 km/day × 3 weeks) prior to P2-antigen induction of EAN. Sedentary rats developed a monophasic course of EAN beginning on postimmunization day 12.3 ± 0.2 and reaching peak severity on day 17.0 ± 0.3 (N = 12). By comparison, forced-exercise preconditioned rats exhibited a similar monophasic course but with significant (p < .05) reduction of disease severity. Analysis of popliteal lymph nodes revealed a protective effect of exercise preconditioning on leukocyte composition and egress. Compared with sedentary controls, forced exercise preconditioning promoted a sustained twofold retention of P2-antigen responsive leukocytes. The percentage distribution of pro-inflammatory (Th1) lymphocytes retained in the nodes from sedentary EAN rats (5.1 ± 0.9%) was significantly greater than that present in nodes from forced-exercise preconditioned EAN rats (2.9 ± 0.6%) or from adjuvant controls (2.0 ± 0.3%). In contrast, the percentage of anti-inflammatory (Th2) lymphocytes (7–10%) and that of cytotoxic T lymphocytes (∼20%) remained unaltered by forced exercise preconditioning. These data do not support an exercise-inducible shift in Th1:Th2 cell bias. Rather, preconditioning with forced exercise elicits a sustained attenuation of EAN severity, in part, by altering the composition and egress of autoreactive proinflammatory (Th1) lymphocytes from draining lymph nodes. PMID:26186926

  18. Differential effects of polysulfated polysaccharide on experimental encephalomyelitis, proliferation of autoimmune T cells, and inhibition of heparanase activity.

    PubMed

    Hershkoviz, R; Mor, F; Miao, H Q; Vlodavsky, I; Lider, O

    1995-10-01

    The extravasation of activated T lymphocytes through blood vessel walls and their migration to inflammatory loci are associated with secretion of extracellular matrix (ECM)-degrading enzymes, such as heparanase, which degrades heparan sulfate (HS) moieties of the ECM. The HS-degrading activity of heparanase was found to be inhibited by HS and heparin. Since induction of experimental autoimmune encephalomyelitis (EAE) requires extravasation and migration of autoimmune T cells, degradation of ECM by heparanase is expected to be involved in induction of the disease. Herein, we examined whether laminarin sulfate, a polysulfated polysaccharide (PSS) isolated from the cell walls of seaweeds and subjected to chemical sulfation, could inhibit ECM degradation by mammalian heparanase, and could prevent EAE. PSS was a more potent inhibitor of heparanase-mediated degradation of ECM than heparin. In-vivo, PSS, injected once a week, inhibited the severity of actively-induced EAE in rats. However, inhibition of EAE was not due to an overall suppression of autoimmune T cells, since PSS enhanced the proliferation of myelin basic protein (MBP)-specific, encephalitogenic T cells. PSS-activated autoimmune T cells, but not MBP-activated cells, failed to induce EAE in recipient rats. Moreover, rats injected with PSS-activated T cells were resistant to induction of EAE by anti-MBP CD4+ T cells. Thus, PSS may have potential clinical applications in the treatment of autoimmune diseases. PMID:8579728

  19. Comparison of serological tests for the detection of antibody to natural and experimental murine cytomegalovirus.

    PubMed

    Lussier, G; Guénette, D; Descôteaux, J P

    1987-04-01

    Three serological tests, i.e. complement fixation test, indirect immunofluorescent assay, and enzyme-linked immunosorbent assay (ELISA) were compared for sensitivity in the detection and titration of murine cytomegalovirus antibody. The three tests were compared using sera from experimentally inoculated and naturally infected mice bled at intervals from 3 to 140 days postinfection. In the acute infection, complement fixation and indirect immunofluorescent assay tests were of comparable sensitivity for early detection of antibody, whereas the ELISA was less sensitive. In persistent infection, higher titers were recorded with ELISA. Since murine cytomegalovirus has been shown to exert significant effects on the immune response of infected mice, this antigen should be included routinely in viral antibody screening programs.

  20. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  1. Murine metal-induced systemic autoimmunity: baseline and stimulated cytokine mRNA expression in genetically susceptible and resistant strains.

    PubMed

    Häggqvist, B; Hultman, P

    2001-10-01

    Cytokines play an important and complex role in the pathogenesis of systemic autoimmune diseases. In susceptible H-2s mice, inorganic mercury (Hg) induces lymphoproliferation, antinucleolar antibodies against the 34-kDa-protein fibrillarin, and systemic immune-complex (IC) deposits. Here, we report extensive analysis of cytokine mRNA levels in susceptible A.SW (H-2s) and resistant A.TL (H-2tl) mice under unstimulated conditions and during oral treatment with Hg and/or silver nitrate (Ag). Cytokine mRNA expression in lymphoid tissues was assessed using the ribonuclease protection assay and phosphorimaging. Baseline expression of IL-2 and IFN-gamma mRNA was higher in A.SW than in A.TL mice. In A.SW mice, Hg treatment caused early up-regulation of IL-2 and IFN-gamma levels, followed by substantial expression of IL-4 mRNA, which was significant compared to control A.SW and Hg-treated A.TL mice. Hg-exposed A.TL mice exhibited unchanged IFN-gamma, reduced IL-2 and greatly increased IL-10 mRNA expression. Ag-treated A.SW mice, which develop antifibrillarin antibodies (AFA) but exhibit minimal immune activation and no IC deposits, showed an early increase in IL-2 and IFN-gamma mRNA, but only a small and delayed rise in IL-4 mRNA. In conclusion, H-2-linked resistance to Hg-induced AFA is characterized by low constitutive expression of IL-2 and IFN-gamma mRNA, which is not increased by Hg, and a marked increase in IL-10 expression. Conversely, the key features of H-2-linked susceptibility to Hg- and Ag-induced AFA are up-regulation of IL-2, IFN-gamma and IL-4 mRNA expression, and down-regulation of IL-10 expression.

  2. An intrinsic B cell defect is required for the production of autoantibodies in the lpr model of murine systemic autoimmunity

    SciTech Connect

    Sobel, E.S.; Katagiri, T.; Katagiri, K.; Morris, S.C.; Cohen, P.L.; Eisenberg, R.A. )

    1991-06-01

    Mice homozygous for the gene lpr develop marked lymphadenopathy and a spectrum of autoantibodies closely resembling that of human systemic lupus erythematosus. The unusual T cell phenotype of the expanded lymphocyte population and the T-dependence of several antibodies in this strain have suggested that primary T cell abnormalities underlie the autoimmune syndrome. Using double chimeras, we now show that expression of the lpr gene in B cells is absolutely necessary for autoantibody production. Combinations of anti-Thy 1.2 + C' treated bone marrow from congenic strains of C57BL/6 mice, differing only at the immunoglobulin heavy chain (Igh) and lpr loci, were transferred into lethally irradiated B6/lpr mice. Double chimerism was documented by allotype-specific surface IgD and IgM immunofluorescence assay of peripheral blood and by allotype-specific enzyme-linked immunosorbent assay for total IgM in serum. Despite the presence of both +/+ and lpr B cells, IgM and IgG2a anti-chromatin as well as IgM anti-IgG were entirely the products of lpr B cells. Total serum IgG2a and IgG1 were also dominated by the lpr phenotype but not to the same extent. A similar experiment using B6/lpr-Igha recipients confirmed these findings. Additional experiments in which B6/lpr recipients were infused with ratios of donor bone marrow favoring B6.C20 +/+ over B6/lpr showed that even though +/+ B cells were overrepresented, autoantibodies were only of the lpr allotype. In addition, in the presence of lpr B cells, normal B cells showed little response to an exogenous, T cell-dependent antigen. The data thus indicate that lpr B cells manifest an intrinsic abnormality which is essential for autoantibody production in the lpr model.

  3. Modulation of the expression of integrins on glial cells during experimental autoimmune encephalomyelitis. A central role for TNF-alpha.

    PubMed Central

    Previtali, S. C.; Archelos, J. J.; Hartung, H. P.

    1997-01-01

    Integrins comprise a group of adhesion receptors involved in cell-cell and cell-extracellular matrix interactions. Evidence is accumulating that integrins expressed on mononuclear cells play a central role in the induction of autoimmune diseases of the central nervous system. The effects of integrins on glial cell behavior, myelination, and angiogenesis suggest that they may also have a role in resolving inflammation in the nervous system and in promoting tissue repair. We investigated the temporospatial expression of integrins in the rat central nervous system during the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. A higher expression of alpha v- and beta 4-integrin subunits in astrocytes and alpha 2 integrin in oligodendrocytes was observed in active lesions of experimental autoimmune encephalomyelitis, in comparison with controls. Proinflammatory cytokines, primarily TNF-alpha, also enhanced alpha v, beta 4, and alpha 2 expression in purified glial cells ex vivo. Furthermore, we observed that the expression of some integrin subunits was modulated in the cerebral vasculature during inflammation. Our results suggest an active role for glial and vascular integrins in the regulation of autoimmune diseases of the central nervous system, opening an avenue for new potential immunotherapies. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 9 PMID:9358769

  4. Beneficial lactobacilli: effects on the vaginal tract in a murine experimental model.

    PubMed

    De Gregorio, Priscilla Romina; Juárez Tomás, María Silvina; Santos, Viviana; Nader-Macías, María Elena Fatima

    2012-11-01

    Vaginal probiotics containing lactic acid bacteria with activity towards pathogenic microorganisms that cause urogenital tract infections have been proposed as a valid strategy for their prophylaxis and therapy. A murine experimental model was set up to evaluate the colonization capability of beneficial human lactobacilli and their effects on the mouse vaginal mucosa and innate immune cells. Five Lactobacillus strains were intravaginally inoculated into previously estrogenized BALB/c mice. The significance of the effects observed in the vaginal tract was determined by analysis of variance using the general linear model. The numbers of viable vaginal lactobacilli were significantly higher at proestrous-estrous than those at the metaestrous-diestrous phase and decreased markedly on the days after inoculation. Lactobacilli inoculation did not cause cytological or histological modifications of the murine vaginal tract. Moreover, the intravaginal administration of Lactobacillus salivarius CRL (Centro de Referencia para Lactobacilos culture collection) 1328 and Lactobacillus gasseri CRL 1263 did not affect the amounts of granulocytes and macrophages present in vaginal washings. In conclusion, the results demonstrate that vaginal lactobacilli did not produce adverse effects on the murine vaginal tract. Therefore, they could be proposed as safe probiotic candidates to promote a balanced microbiota in the urogenital tract.

  5. A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium

    PubMed Central

    Valdez-Jasso, Daniela; Simon, Marc A; Champion, Hunter C; Sacks, Michael S

    2012-01-01

    Although right-ventricular function is an important determinant of cardio-pulmonary performance in health and disease, right ventricular myocardium mechanical behaviour has received relatively little attention. We present a novel experimental method for quantifying the mechanical behaviour of transmurally intact, viable right-ventricular myocardium. Seven murine right ventricular free wall (RVFW) specimens were isolated and biaxial mechanical behaviour measured, along with quantification of the local transmural myofibre and collagen fibre architecture. We developed a complementary strain energy function based method to capture the average biomechanical response. Overall, murine RVFW revealed distinct mechanical anisotropy. The preferential alignment of the myofibres and collagen fibres to the apex-to-outflow-tract direction was consistent with this also being the mechanically stiffer axis. We also observed that the myofibre and collagen fibre orientations were remarkably uniform throughout the entire RVFW thickness. Thus, our findings indicate a close correspondence between the tissue microstructure and biomechanical behaviour of the RVFW myocardium, and are a first step towards elucidating the structure–function of non-contracted murine RVFW myocardium in health and disease. PMID:22848044

  6. SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-04-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.

  7. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats.

    PubMed

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats ("EAE" group). 2- "N. sativa + EAE" group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- "EAE + N. sativa" group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE.

  8. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  9. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  10. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Desbiens, Louisane; Lapointe, Catherine; Gharagozloo, Marjan; Mahmoud, Shaimaa; Pejler, Gunnar; Gris, Denis; D'Orléans-Juste, Pedro

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35-55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  11. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

    PubMed

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-09-18

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.

  12. Effects of exercise in a relapsing-remitting model of experimental autoimmune encephalomyelitis.

    PubMed

    Klaren, Rachel E; Stasula, Ulana; Steelman, Andrew J; Hernandez, Jessica; Pence, Brandt D; Woods, Jeffrey A; Motl, Robert W

    2016-10-01

    Previous research has examined the effects of exercise in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. However, all previous studies have utilized a chronic model of EAE, with exercise delivered prior to or immediately after induction of EAE. To our knowledge, no study has examined the effects of exercise delivered during a remission period after initial disease onset in a relapsing-remitting model of EAE (RR-EAE). The current study examines the effects of both voluntary wheel running and forced treadmill exercise on clinical disability and hippocampal brain-derived neurotrophic factor (BDNF) in SJL mice with RR-EAE. The results demonstrate no significant effects of exercise delivered during remission after initial disease onset on clinical disability scores or levels of hippocampal BDNF in mice with RR-EAE. Furthermore, our results demonstrate no significant increase in citrate synthase activity in the gastrocnemius and soleus muscles of mice in the running wheel or treadmill conditions compared with the sedentary condition. These results suggest that the exercise stimuli might have been insufficient to elicit differences in clinical disability or hippocampal BDNF among treatment conditions. © 2016 Wiley Periodicals, Inc. PMID:27312674

  13. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    PubMed

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  14. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment

    PubMed Central

    ROBINSON, ANDREW P.; HARP, CHRISTOPHER T.; NORONHA, AVERTANO; MILLER, STEPHEN D.

    2014-01-01

    While no single model can exactly recapitulate all aspects of multiple sclerosis (MS), animal models are essential in understanding the induction and pathogenesis of the disease and to develop therapeutic strategies that limit disease progression and eventually lead to effective treatments for the human disease. Several different models of MS exist, but by far the best understood and most commonly used is the rodent model of experimental autoimmune encephalomyelitis (EAE). This model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. Mouse models are most frequently used because of the inbred genotype of laboratory mice, their rapid breeding capacity, the ease of genetic manipulation, and availability of transgenic and knockout mice to facilitate mechanistic studies. Although not all therapeutic strategies for MS have been developed in EAE, all of the current US Food and Drug Administration (FDA)-approved immunomodulatory drugs are effective to some degree in treating EAE, a strong indicator that EAE is an extremely useful model to study potential treatments for MS. Several therapies, such as glatiramer acetate (GA: Copaxone), and natalizumab (Tysabri), were tested first in the mouse model of EAE and then went on to clinical trials. Here we discuss the usefulness of the EAE model in understanding basic disease pathophysiology and developing treatments for MS as well as the potential drawbacks of this model. PMID:24507518

  15. C-reactive protein directly suppresses T helper 1 cell differentiation and alleviates experimental autoimmune encephalomyelitis

    PubMed Central

    Zhang, Lin; Liu, Shan-Hui; Wright, Tyler T.; Shen, Zhi-Yuan; Li, Hai-Yun; Zhu, Wei; Potempa, Lawrence A.; Ji, Shang-Rong; Szalai, Alexander J.; Wu, Yi

    2015-01-01

    Human C-reactive protein (CRP) is a serum soluble pattern recognition receptor (PRR) that serves as a marker of inflammation and directly contributes to innate immunity. Herein we show that human CRP also directly contributes to adaptive immunity, i.e. native CRP binds specifically to human Jurkat T cells and to mouse naïve CD4+ T cells and modulates their T helper (Th) 1 and Th2 responses. In vitro both exogenously added (purified) and endogenously expressed (via transfection) human CRP inhibited Th1 differentiation and augmented Th2 differentiation of naïve CD4+ T cells. In vivo for human CRP transgenic (CRPtg) compared to wild type mice, a lesser proportion of the T cells recovered from the spleens of healthy animals were Th1 cells. Moreover in both CRPtg mice and in wild type mice treated with human CRP, during myelin oligodendrocyte glycoprotein peptide induced experimental autoimmune encephalomyelitis both the Th1 cell response and disease severity were inhibited. These pattern recognition-independent actions of CRP directly on T cells highlights the potential for this soluble PRR to act as a tonic regulator of immunity, shaping global adaptive immune responses during both homeostasis and disease. PMID:25917100

  16. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS.

  17. Prostaglandin I2 Signaling Drives Th17 Differentiation and Exacerbates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Zhou, Weisong; Dowell, Dustin R.; Huckabee, Matthew M.; Newcomb, Dawn C.; Boswell, Madison G.; Goleniewska, Kasia; Lotz, Matthew T.; Toki, Shinji; Yin, Huiyong; Yao, Songyi; Natarajan, Chandramohan; Wu, Pingsheng; Sriram, Subramaniam; Breyer, Richard M.; FitzGerald, Garret A.; Peebles, R. Stokes

    2012-01-01

    Background Prostaglandin I2 (PGI2), a lipid mediator currently used in treatment of human disease, is a critical regulator of adaptive immune responses. Although PGI2 signaling suppressed Th1 and Th2 immune responses, the role of PGI2 in Th17 differentiation is not known. Methodology/Principal Findings In mouse CD4+CD62L+ naïve T cell culture, the PGI2 analogs iloprost and cicaprost increased IL-17A and IL-22 protein production and Th17 differentiation in vitro. This effect was augmented by IL-23 and was dependent on PGI2 receptor IP signaling. In mouse bone marrow-derived CD11c+ dendritic cells (BMDCs), PGI2 analogs increased the ratio of IL-23/IL-12, which is correlated with increased ability of BMDCs to stimulate naïve T cells for IL-17A production. Moreover, IP knockout mice had delayed onset of a Th17-associated neurological disease, experimental autoimmune encephalomyelitis (EAE), and reduced infiltration of IL-17A-expressing mononuclear cells in the spinal cords compared to wild type mice. These results suggest that PGI2 promotes in vivo Th17 responses. Conclusion The preferential stimulation of Th17 differentiation by IP signaling may have important clinical implications as PGI2 and its analogs are commonly used to treat human pulmonary hypertension. PMID:22590492

  18. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2.

    PubMed

    Ji, Zhe; Fan, Zhiqin; Zhang, Ying; Yu, Ronghuan; Yang, Haihua; Zhou, Chenghua; Luo, Jia; Ke, Zun-Ji

    2014-09-01

    Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.

  19. γδ T cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis.

    PubMed

    Blink, Sarah E; Caldis, Matthew W; Goings, Gwendolyn E; Harp, Christopher T; Malissen, Bernard; Prinz, Immo; Xu, Dan; Miller, Stephen D

    2014-07-01

    γδ T cells are resident in cerebrospinal fluid and central nervous system (CNS) lesions of multiple sclerosis (MS) patients, but as multifaceted cells exhibiting innate and adaptive characteristics, their function remains unknown. Previous studies in experimental autoimmune encephalomyelitis (EAE) are contradictory and identified these cells as either promoting or suppressing disease pathogenesis. This study examines distinct γδ T cell subsets during EAE and indicates they mediate differential functions in CNS inflammation and demyelination resulting in pathogenesis or protection. We identified two γδ subsets in the CNS, Vγ1(+) and Vγ4(+), with distinct cytokine profiles and tissue specificity. Anti-γδ T cell receptor (TCR) monoclonal antibody (mAb) administration results in activation and downregulation of surface TCR, rendering the cells undetectable, but with opposing effects: anti-Vγ4 treatment exacerbates disease whereas anti-Vγ1 treatment is protective. The Vγ4(+) subset produces multiple pro-inflammatory cytokines including high levels of IL-17, and accounts for 15-20% of the interleukin-17 (IL-17) producing cells in the CNS, but utilize a variant transcriptional program than CD4(+) Th17 cells. In contrast, the Vγ1 subset produces CCR5 ligands, which may promote regulatory T cell differentiation. γδ T cell subsets thus play distinct and opposing roles during EAE, providing an explanation for previous reports and suggesting selective targeting to optimize regulation as a potential therapy for MS.

  20. Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging.

    PubMed

    Baeten, Kurt; Hendriks, Jerome Ja; Hellings, Niels; Theunissen, Evi; Vanderlocht, Joris; Ryck, Leen De; Gelan, Jan; Stinissen, Piet; Adriaensens, Peter

    2008-03-01

    Macrophages are considered to be the predominant effector cells in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Ultra small particles of iron oxide (USPIO) can be used to detect macrophage infiltrates in the CNS with magnetic resonance imaging (MRI). Here, we investigated whether the kinetics of lesion formation in EAE can be visualised by altering the time point of USPIO injection and the time interval between particle injection and MRI. When USPIO are systemically injected 24 h before MRI, hypo intense regions are detected in different brain regions depending on the disease stage. These regions correspond to sites of macrophage infiltration. A more complete visualisation of sites of inflammation is accomplished by USPIO injection at disease onset and postponing MRI to top of disease. This study demonstrates that the distribution pattern and amount of inflammatory lesions detected with USPIO, depends on timing of USPIO administration and subsequent MRI. These findings are important for a correct application and interpretation of USPIO dependent contrast imaging of CNS inflammation.

  1. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  2. LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice

    PubMed Central

    Sun, Jun-Jun; Ren, Qing-Guo; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients. PMID:26383267

  3. Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis*

    PubMed Central

    Kurnellas, Michael P.; Brownell, Sara E.; Su, Leon; Malkovskiy, Andrey V.; Rajadas, Jayakumar; Dolganov, Gregory; Chopra, Sidharth; Schoolnik, Gary K.; Sobel, Raymond A.; Webster, Jonathan; Ousman, Shalina S.; Becker, Rachel A.; Steinman, Lawrence; Rothbard, Jonathan B.

    2012-01-01

    To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions. PMID:22955287

  4. Treatment with Vitamin D/MOG Association Suppresses Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Chiuso-Minicucci, Fernanda; Ishikawa, Larissa Lumi Watanabe; Mimura, Luiza Ayumi Nishiyama; Fraga-Silva, Thais Fernanda de Campos; França, Thais Graziela Donegá; Zorzella-Pezavento, Sofia Fernanda Gonçalves; Marques, Camila; Ikoma, Maura Rosane Valerio; Sartori, Alexandrina

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development. PMID:25965341

  5. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Casamassa, Antonella; La Rocca, Claudia; Sokolow, Sophie; Herchuelz, Andre; Matarese, Giuseppe; Annunziato, Lucio; Boscia, Francesca

    2016-07-01

    The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137. PMID:27120265

  6. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor

    PubMed Central

    Kaye, Joel; Piryatinsky, Victor; Birnberg, Tal; Hingaly, Tal; Raymond, Emanuel; Kashi, Rina; Amit-Romach, Einat; Caballero, Ignacio S.; Towfic, Fadi; Ator, Mark A.; Rubinstein, Efrat; Laifenfeld, Daphna; Orbach, Aric; Shinar, Doron; Marantz, Yael; Grossman, Iris; Knappertz, Volker; Hayden, Michael R.; Laufer, Ralph

    2016-01-01

    Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington’s disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR−/− mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases. PMID:27671624

  7. Complement activation and expression during chronic relapsing experimental autoimmune encephalomyelitis in the Biozzi ABH mouse.

    PubMed

    Ramaglia, V; Jackson, S J; Hughes, T R; Neal, J W; Baker, D; Morgan, B P

    2015-06-01

    Chronic relapsing experimental autoimmune encephalomyelitis (crEAE) in mice recapitulates many of the clinical and histopathological features of human multiple sclerosis (MS), making it a preferred model for the disease. In both, adaptive immunity and anti-myelin T cells responses are thought to be important, while in MS a role for innate immunity and complement has emerged. Here we sought to test whether complement is activated in crEAE and important for disease. Disease was induced in Biozzi ABH mice that were terminated at different stages of the disease to assess complement activation and local complement expression in the central nervous system. Complement activation products were abundant in all spinal cord areas examined in acute disease during relapse and in the progressive phase, but were absent in early disease remission, despite significant residual clinical disease. Local expression of C1q and C3 was increased at all stages of disease, while C9 expression was increased only in acute disease; expression of the complement regulators CD55, complement receptor 1-related gene/protein y (Crry) and CD59a was reduced at all stages of the disease compared to naive controls. These data show that complement is activated in the central nervous system in the model and suggest that it is a suitable candidate for exploring whether anti-complement agents might be of benefit in MS.

  8. Breast regression protein-39 is not required for experimental autoimmune encephalomyelitis induction.

    PubMed

    Cantó, Ester; Espejo, Carmen; Costa, Carme; Montalban, Xavier; Comabella, Manuel

    2015-10-01

    Increasing evidence points to a role for chitinase 3-like 1 (CHI3L1) in multiple sclerosis (MS). Here, we aimed to explore the potential involvement of CHI3L1 in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). EAE was induced by immunization with MOG 35-55 peptide in wild-type (WT) and knock-out (KO) mice for breast regression protein 39 (BRP-39), the mouse homologue of human CHI3L1. Immunological responses in splenocytes were assessed by means of polyclonal and antigen-specific proliferation assays. Central nervous system pathology and chitinase gene expression were also investigated. BRP-39 expression was increased in WT MOG 35-55-immunized mice compared to saline-immunized controls. No differences were found between WT and BRP-39 KO mice regarding EAE clinical course, day of disease onset, mortality rate, splenocyte proliferative responses or histopathological findings. These results do not support a role of BRP-39 in the pathogenesis of EAE.

  9. Functional and Pathogenic Differences of Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Domingues, Helena S.; Mues, Marsilius; Lassmann, Hans; Wekerle, Hartmut; Krishnamoorthy, Gurumoorthy

    2010-01-01

    Background There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature. Methods and Findings CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype. Conclusions Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce

  10. Coagulopathy triggered autoimmunity: experimental antiphospholipid syndrome in factor V Leiden mice

    PubMed Central

    2013-01-01

    Background We investigated interactions between genetically and autoimmune-mediated coagulopathies by inducing experimental antiphospholipid syndrome (eAPS) in mice carrying the factor V Leiden (FVL) mutation. Methods eAPS was induced in heterozygous and homozygous FVL transgenic mice (C57BL/6 background) by immunization with β2-glycoprotein I (β2-GPI). Autoantibody levels were measured at 1 and 5 months post-immunization. Mice were tested at 4 months post-immunization for behavior and cognitive function in the staircase, elevated plus-maze, and swim T-maze tests. Brains were removed and analyzed by immunohistochemistry for inflammatory markers and neurodegenerative processes. Results A single immunization with β2-GPI induced significantly higher and longer-lasting immune responses, and this was dependent on the number of FVL alleles. At 1 and 5 months post-immunization, levels of antibodies rose from 1.17 ± 0.07 to 1.62 ± 0.17 (optical density units; ODU) in homozygous FVL mice, compared with stable levels of 0.59 ± 0.17 and 0.48 ± 0.16 ODU in heterozygous FVL mice and a drop from 1.62 ± 0.21 to 0.61 ± 0.13 ODU in wild-type mice. Behavioral and cognitive clinical features of eAPS were also correlated with FVL allele load, as assessed by the elevated plus-maze (altered anxiety), staircase (hyperactivity and higher exploration), and swim T-maze (impaired learning) tests. Histological studies identified significant neurodegenerative changes in both grey and white matter in the eAPS-FVL brains. In spite of the potential interaction of two prothrombotic disease states, there were no ischemic lesions seen in this group. Conclusions The results indicate that genetically mediated coagulopathies increase the risk of developing coagulation-targeted autoimmune responses, and suggest the importance of antibody-mediated neurodegenerative processes in the brain in APS. PMID:23566870

  11. Platelet-Activating Factor Receptors Mediate Excitatory Postsynaptic Hippocampal Injury in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Geathers, Jasmine S.; Allan, Kevin C.; Gelbard, Harris A.

    2016-01-01

    Gray matter degeneration contributes to progressive disability in multiple sclerosis (MS) and can occur out of proportion to measures of white matter disease. Although white matter pathology, including demyelination and axon injury, can lead to secondary gray matter changes, we hypothesized that neurons can undergo direct excitatory injury within the gray matter independent of these. We tested this using a model of experimental autoimmune encephalomyelitis (EAE) with hippocampal degeneration in C57BL/6 mice, in which immunofluorescent staining showed a 28% loss of PSD95-positive excitatory postsynaptic puncta in hippocampal area CA1 compared with sham-immunized controls, despite preservation of myelin and VGLUT1-positive excitatory axon terminals. Loss of postsynaptic structures was accompanied by appearance of PSD95-positive debris that colocalized with the processes of activated microglia at 25 d after immunization, and clearance of debris was followed by persistently reduced synaptic density at 55 d. In vitro, addition of activated BV2 microglial cells to hippocampal cultures increased neuronal vulnerability to excitotoxic dendritic damage following a burst of synaptic activity in a manner dependent on platelet-activating factor receptor (PAFR) signaling. In vivo treatment with PAFR antagonist BN52021 prevented PSD95-positive synapse loss in hippocampi of mice with EAE but did not affect development of EAE or local microglial activation. These results demonstrate that postsynaptic structures can be a primary target of injury within the gray matter in autoimmune neuroinflammatory disease, and suggest that this may occur via PAFR-mediated modulation of activity-dependent synaptic physiology downstream of microglial activation. SIGNIFICANCE STATEMENT Unraveling gray matter degeneration is critical for developing treatments for progressive disability and cognitive impairment in multiple sclerosis (MS). In a mouse model of MS, we show that neurons can undergo injury

  12. Thrombin mutant W215A/E217A treatment improves neurological outcome and attenuates central nervous system damage in experimental autoimmune encephalomyelitis.

    PubMed

    Verbout, Norah G; Yu, Xiaolin; Healy, Laura D; Phillips, Kevin G; Tucker, Erik I; Gruber, András; McCarty, Owen J T; Offner, Halina

    2015-02-01

    Multiple sclerosis (MS) is a neuroinflammatory disease characterized by demyelination and axonal damage of the central nervous system. The pathogenesis of MS has also been linked to vascular inflammation and local activation of the coagulation system, resulting in perivascular fibrin deposition. Treatment of experimental autoimmune encephalomyelitis (EAE), a model of human MS, with antithrombotic and antiinflammatory activated protein C (APC) reduces disease severity. Since recombinant APC (Drotecogin alfa), originally approved for the treatment of severe sepsis, is not available for human MS studies, we tested the hypothesis that pharmacologic activation of endogenous protein C could likewise improve the outcome of EAE. Mice were immunized with murine myelin oligodendrocyte glycoprotein (MOG) peptides and at the onset of EAE symptoms, were treated every other day with either WE thrombin (25 μg/kg; i.v.), a selective recombinant protein C activator thrombin analog, or saline control. Mice were monitored for changes in disease score until euthanized for ex vivo analysis of inflammation. Administration of WE thrombin significantly ameliorated clinical severity of EAE, reduced inflammatory cell infiltration and demyelination, suppressed the activation of macrophages comprising the CD11b + population and reduced accumulation of fibrin (ogen) in the spinal cord. These data suggest that symptomatic MS may respond to a treatment strategy that involves temporal pharmacological enhancement of endogenous APC generation. PMID:24810631

  13. Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis.

    PubMed

    Esaki, Yoshiyasu; Li, Youxian; Sakata, Daiji; Yao, Chengcan; Segi-Nishida, Eri; Matsuoka, Toshiyuki; Fukuda, Kazuhiko; Narumiya, Shuh

    2010-07-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS). Although prostaglandin (PG) concentrations are increased in cerebrospinal fluid of MS patients, the role of PGs in MS is unknown. We examined this issue by subjecting mice deficient in each PG receptor type or subtype to EAE induction and using agonists or antagonists selective for each of the four PGE receptor (EP) subtypes. Among PG receptor-deficient mice, only EP4(-/-) mice manifested significant suppression of EAE, which was mimicked in wild-type mice and to a greater extent, in EP2(-/-) mice by administration of the EP4 antagonist ONO-AE3-208 during the immunization phase. EP4 antagonism during immunization also suppressed the generation of antigen-specific T helper (Th) 1 and Th17 cells in wild-type mice and to a greater extent, in EP2(-/-) mice. ONO-AE3-208 administration at EAE onset had little effect on disease severity, and its administration throughout the experimental period did not cause significant reduction of the peak of disease, suggesting that, in addition to its facilitative action during the immunization phase, EP4 exerts a preventive action in the elicitation phase. Administration of the EP4 agonist ONO-AE1-329 at EAE onset delayed and suppressed disease progression as well as inhibited the associated increase in permeability of the blood-brain barrier. Thus, PGE(2) exerts dual functions in EAE, facilitating Th1 and Th17 cell generation redundantly through EP4 and EP2 during immunization and attenuating invasion of these cells into the brain by protecting the blood-brain barrier through EP4.

  14. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.

    PubMed

    Van Kaer, Luc; Wu, Lan; Parekh, Vrajesh V

    2015-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease that causes demyelination of neurons in the central nervous system. Traditional therapies for MS have involved anti-inflammatory and immunosuppressive drugs with significant side effects that often only provide short-term relief. A more desirable outcome of immunotherapy would be to protect against disease before its clinical manifestation or to halt disease after its initiation. One attractive approach to accomplish this goal would be to restore tolerance by targeting immunoregulatory cell networks. Although much of the work in this area has focused on CD4(+) Foxp3(+) regulatory T cells, other studies have investigated natural killer T (NKT) cells, a subset of T cells that recognizes glycolipid antigens in the context of the CD1d glycoprotein. Studies with human MS patients have revealed alterations in the numbers and functions of NKT cells, which have been partially supported by studies with the experimental autoimmune encephalomyelitis model of MS. Additional studies have shown that activation of NKT cells with synthetic lipid antigens can, at least under certain experimental conditions, protect mice against the development of MS-like disease. Although mechanisms of this protection remain to be fully investigated, current evidence suggests that it involves interactions with other immunoregulatory cell types such as regulatory T cells and immunosuppressive myeloid cells. These studies have provided a strong foundation for the rational design of NKT-cell-based immunotherapies for MS that induce tolerance while sparing overall immune function. Nevertheless, additional pre-clinical and clinical studies will be required to bring this goal to fruition.

  15. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance.

    PubMed

    Álvarez-Sánchez, Nuria; Cruz-Chamorro, Ivan; López-González, Antonio; Utrilla, José C; Fernández-Santos, José M; Martínez-López, Alicia; Lardone, Patricia J; Guerrero, Juan M; Carrillo-Vico, Antonio

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS), is triggered by myelin-specific Th1 and Th17 cells. The immunomodulatory activities of melatonin have been shown to be beneficial under several conditions in which the immune system is exacerbated. Here, we sought to elucidate the basis of the melatonin protective effect on EAE by characterizing the T effector/regulatory responses, particularly those of the memory cell subsets. Melatonin was tested for its effect on Th1, Th17 and T regulatory (Treg) cells in the lymph nodes and CNS of immunodominant peptide of myelin oligodendrocyte glycoprotein (pMOG)-immunized and EAE mice, respectively. The capacity of melatonin to ameliorate EAE as well as modifying both T cell response and effector/regulatory balance was surveyed. T cell memory subsets and CD44, a key activation marker involved in the EAE pathogenesis, were also examined. Melatonin protected from EAE by decreasing peripheral and central Th1/Th17 responses and enhancing both the Treg frequency and IL-10 synthesis in the CNS. Melatonin reduced the T effector memory population and its pro-inflammatory response and regulated CD44 expression, which was decreased in T effector cells and increased in Tregs. The alterations in the T cell subpopulations were associated with a reduced mononuclear infiltration (CD4 and CD11b cells) of the melatonin-treated mice CNS. For the first time, we report that melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses, effects that might be partially mediated by CD44. This immunomodulatory effect on EAE suggests that melatonin may represent an effective treatment option for MS.

  16. A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance

    PubMed Central

    Spandidos, Athanasia; Wang, Xiaowei; Wang, Huajun; Dragnev, Stefan; Thurber, Tara; Seed, Brian

    2008-01-01

    Background Quantitative polymerase chain reaction (QPCR) is a widely applied analytical method for the accurate determination of transcript abundance. Primers for QPCR have been designed on a genomic scale but non-specific amplification of non-target genes has frequently been a problem. Although several online databases have been created for the storage and retrieval of experimentally validated primers, only a few thousand primer pairs are currently present in existing databases and the primers are not designed for use under a common PCR thermal profile. Results We previously reported the implementation of an algorithm to predict PCR primers for most known human and mouse genes. We now report the use of that resource to identify 17483 pairs of primers that have been experimentally verified to amplify unique sequences corresponding to distinct murine transcripts. The primer pairs have been validated by gel electrophoresis, DNA sequence analysis and thermal denaturation profile. In addition to the validation studies, we have determined the uniformity of amplification using the primers and the technical reproducibility of the QPCR reaction using the popular and inexpensive SYBR Green I detection method. Conclusion We have identified an experimentally validated collection of murine primer pairs for PCR and QPCR which can be used under a common PCR thermal profile, allowing the evaluation of transcript abundance of a large number of genes in parallel. This feature is increasingly attractive for confirming and/or making more precise data trends observed from experiments performed with DNA microarrays. PMID:19108745

  17. Carbon nanospheres mediated delivery of nuclear matrix protein SMAR1 to direct experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Chemmannur, Sijo V; Bhagat, Prasad; Mirlekar, Bhalchandra; Paknikar, Kishore M; Chattopadhyay, Samit

    2016-01-01

    Owing to the suppression of immune responses and associated side effects, steroid based treatments for inflammatory encephalitis disease can be detrimental. Here, we demonstrate a novel carbon nanosphere (CNP) based treatment regime for encephalomyelitis in mice by exploiting the functional property of the nuclear matrix binding protein SMAR1. A truncated part of SMAR1 ie, the DNA binding domain was conjugated with hydrothermally synthesized CNPs. When administered intravenously, the conjugate suppressed experimental animal encephalomyelitis in T cell specific conditional SMAR1 knockout mice (SMAR−/−). Further, CNP-SMAR1 conjugate delayed the onset of the disease and reduced the demyelination significantly. There was a significant decrease in the production of IL-17 after re-stimulation with MOG. Altogether, our findings suggest a potential carbon nanomaterial based therapeutic intervention to combat Th17 mediated autoimmune diseases including experimental autoimmune encephalomyelitis. PMID:27274234

  18. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    PubMed

    Fu, Weisi; Taylor, Bradley K

    2015-05-19

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.

  19. Activation of Cannabinoid CB2 receptors Reduces Hyperalgesia in an Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis

    PubMed Central

    Fu, Weisi; Taylor, Bradley K.

    2015-01-01

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. 4 weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10–100 μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1–3 μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis. PMID:25849525

  20. Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis.

    PubMed

    Pomié, Céline; Vicente, Rita; Vuddamalay, Yirajen; Lundgren, Brita Ardesjö; van der Hoek, Mark; Enault, Geneviève; Kagan, Jérémy; Fazilleau, Nicolas; Scott, Hamish S; Romagnoli, Paola; van Meerwijk, Joost P M

    2011-07-26

    Mutations in the gene encoding the transcription factor autoimmune regulator (AIRE) are responsible for autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome. AIRE directs expression of tissue-restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE deficiency leads to impaired deletion of autospecific T-cell precursors. However, a potential role for AIRE in the function of regulatory T-cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8(+)CD28(low) phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. Here we show that CD8(+)CD28(low) regulatory T lymphocytes from AIRE-deficient mice are transcriptionally and phenotypically normal and exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T-cell population.

  1. Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis

    PubMed Central

    Buhler, Lillian A; Samara, Ramsey; Guzman, Esther; Wilson, Carole L; Krizanac-Bengez, Liljana; Janigro, Damir; Ethell, Douglas W

    2009-01-01

    Background Metalloproteinase inhibitors can protect mice against experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Matrix metalloproteinase-9 (MMP-9) has been implicated, but it is not clear if other MMPs are also involved, including matrilysin/MMP-7 – an enzyme capable of cleaving proteins that are essential for blood brain barrier integrity and immune suppression. Results Here we report that MMP-7-deficient (mmp7-/-) mice on the C57Bl/6 background are resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG). Brain sections from MOG-primed mmp7-/-mice did not show signs of immune cell infiltration of the CNS, but MOG-primed wild-type mice showed extensive vascular cuffing and mononuclear cell infiltration 15 days after vaccination. At the peak of EAE wild-type mice had MMP-7 immuno-reactive cells in vascular cuffs that also expressed the macrophage markers Iba-1 and Gr-1, as well as tomato lectin. MOG-specific proliferation of splenocytes, lymphocytes, CD4+ and CD8+ cells were reduced in cells isolated from MOG-primed mmp7-/- mice, compared with MOG-primed wild-type mice. However, the adoptive transfer of splenocytes and lymphocytes from MOG-primed mmp7-/- mice induced EAE in naïve wild-type recipients, but not naïve mmp7-/- recipients. Finally, we found that recombinant MMP-7 increased permeability between endothelial cells in an in vitro blood-brain barrier model. Conclusion Our findings suggest that MMP-7 may facilitate immune cell access or re-stimulation in perivascular areas, which are critical events in EAE and multiple sclerosis, and provide a new therapeutic target to treat this disorder. PMID:19267908

  2. GABAergic Agonists Modulate the Glutamate Release from Frontal Cortex Synaptosomes of Rats with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Fernández Hurst, Nicolás; Chanaday, Natalí L; Roth, German A

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease that mimics many of the clinical and pathological features of multiple sclerosis. We have previously described a significant diminution in the GABAergic regulation of glutamate release from synaptosomes of EAE rats isolated during the acute stage of the disease. In order to explore the possible metabolic pathways responsible for this alteration, in this work we evaluate the direct effect of different GABAergic agonists on the glutamate release and concomitant synapsin I phosphorylation in synaptosomes from the frontal cortex of control and EAE animals. The results show that GABA as well as the GABA receptor agonists Muscimol (GABAA agonist) and Baclofen (GABAB agonist) caused a decrease in glutamate release in control rats paralleled by a similar reduction in synapsin I phosphorylation. Meanwhile synaptosomes from EAE animals are responsive only to Baclofen with respect to nontreated EAE synaptosomes, since glutamate release from the synaptosomes treated with Muscimol was similar to that observed in EAE rat synaptosomes which was already reduced as consequence of the disease. In the case of the benzodiazepines Diazepam and Clonazepam (GABAA allosteric agonists), both of them induced a reduction in glutamate release in synaptosomes from the CFA rats, effect that was only observed in synaptosomes of EAE rats treated with Clonazepam. In all cases both benzodiazepines showed a higher effect on synapsin I phosphorylation than in glutamate release. These results indicate that the extent of GABAergic modulation of presynaptic terminals depends on the type of agonist employed and this regulation is altered in the frontal cortex during the acute phase of EAE with respect to control animals. PMID:26631092

  3. Altered cognitive-emotional behavior in early experimental autoimmune encephalitis--cytokine and hormonal correlates.

    PubMed

    Acharjee, Shaona; Nayani, Nausheen; Tsutsui, Mio; Hill, Matthew N; Ousman, Shalina S; Pittman, Quentin J

    2013-10-01

    Multiple sclerosis (MS) is often associated with co-morbid behavioural and cognitive impairments; however the presence of these symptoms does not necessarily correlate with neurological damage. This suggests that an alternate mechanism may subserve these impairments relative to motor deficits. We investigated whether these abnormalities could be studied in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In myelin oligodendrocyte glycoprotein peptide (MOG35-55)-induced EAE mice, no motor deficits were observed until d9 after immunization. This enabled us to carry out a series of neurobehavioral tests during the presymptomatic stage, between d6 and d8 post-immunization. EAE mice spent more time in the outer zone in an open field test and in the closed arms of an elevated plus maze and, showed decreased latency for immobility in the tail suspension and forced swim tests and reduced social interaction compared with controls. These results are indicative of anxiety- and depression- like behavior. In addition, EAE mice appeared to exhibit memory impairment compared to controls based on their reduced time spent in the target quadrant in the Morris water maze and their faster memory extinction in the fear conditioning test. No demyelination, microglial activation or astrogliosis was observed in the brain at this early stage. Transcript analysis by RT-PCR from d6 to d8 brain revealed elevated interleukin (IL)-1β and TNF-α in the hypothalamus but not in the amygdala or hippocampus of EAE mice. Lastly, plasma corticosterone levels increased in EAE mice compared to controls. In conclusion, emotional and cognitive deficits are observed in EAE prior to demyelination and are associated with elevated IL-1β and TNF-α in the hypothalamus and changes in the hypothalamic-pituitary-adrenal axis. PMID:23886782

  4. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J

    2015-09-01

    Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. PMID:26033473

  5. A new modified animal model of myosin-induced experimental autoimmune myositis enhanced by defibrase

    PubMed Central

    Wen-Jing, Luo; Hong-Hua, Li; Xiang-Hui, Lu; Jie-Xiao, Liu

    2015-01-01

    Introduction We investigated the effect of defibrase (a proteolytic enzyme extraction of Agkistrodon halys venom) on experimental autoimmune myositis (EAM) in guinea pigs and explored the option of using a modified pig model of EAM to enhance the study of this disease. Material and methods Guinea pigs were divided into 3 groups: group A (control group) was immunized with complete Freund adjuvant (CFA), then received 6 injections of saline weekly; group B (EAM group) was immunized with partially purified rabbit myosin emulsified with CFA, then received an injection of saline; group C (EAM + defibrase group) was immunized with purified rabbit myosin emulsified with CFA, then received an injection of defibrase. The animals were observed for their general health condition and the body weight was measured daily. Plasma levels of fibrinogen and creatine kinase (CK) were determined. Muscle tissues were examined histologically. Results After immunizations for 6 weeks, incidence of EAM in groups A, B and C was 0 (0/7), 83.3% (10/12) and 100% (15/15), respectively. Guinea pigs with EAM presented angeitis symptoms of muscle weakness. Histological analysis revealed a significant difference. Muscles with EAM had scattered or diffuse inflammatory manifestations, which are also common pathological features of human idiopathic polymyositis (IPM). Defibrase-treated animals displayed extensive inflammation and fiber necrosis compared with the EAM group (histological score: 2.80 ±1.15 vs. 1.88 ±1.32, p < 0.05). Severity of inflammation of group B was mainly mild to moderate; 16.7% (2/12) of animals developed severe inflammation. Incidence of severe inflammation with a score up to 4 in group C was 40% (6/15). Conclusions Defibrase can exacerbate myosin-induced EAM; thus a new modified model was generated. PMID:26788090

  6. Digoxin Inhibits Induction of Experimental Autoimmune Uveitis in Mice, but Causes Severe Retinal Degeneration

    PubMed Central

    Hinshaw, Samuel J. H.; Ogbeifun, Osato; Wandu, Wambui S.; Lyu, Cancan; Shi, Guangpu; Li, Yichao; Qian, Haohua; Gery, Igal

    2016-01-01

    Purpose Digoxin, a major medication for heart disease, was recently reported to have immunosuppressive capacity. Here, we determined the immunosuppressive capacity of digoxin on the development of experimental autoimmune uveitis (EAU) and on related immune responses. Methods The B10.A mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) and were treated daily with digoxin or vehicle control. On postimmunization day 14, the mouse eyes were examined histologically, while spleen cells were tested for cytokine production in response to IRBP and purified protein derivative. The immunosuppressive activity of digoxin was also tested in vitro, by its capacity to inhibit development of Th1 or Th17 cells. To investigate the degenerative effect of digoxin on the retina, naïve (FVB/N × B10.BR)F1 mice were similarly treated with digoxin and tested histologically and by ERG. Results Treatment with digoxin inhibited the development of EAU, as well as the cellular response to IRBP. Unexpectedly, treatment with digoxin suppressed the production of interferon-γ to a larger extent than the production of interleukin 17. Importantly, digoxin treatment induced severe retinal degeneration, determined by histologic analysis with thinning across all layers of the retina. Digoxin treatment also induced dose-dependent vision loss monitored by ERG on naïve mice without induction of EAU. Conclusions Treatment of mice with digoxin inhibited the development of EAU and cellular immune response to IRBP. However, the treatment induced severe damage to the retina. Thus, the use of digoxin in humans should be avoided due to its toxicity to the retina. PMID:27028065

  7. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    PubMed Central

    Ho, Peggy P.; Steinman, Lawrence

    2016-01-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid–FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4+ T cells and CD19+ B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8+ T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA– or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  8. Targeted GAS6 Delivery to the CNS Protects Axons from Damage during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gruber, Ross C.; Ray, Alex K.; Johndrow, Christopher T.; Guzik, Hillary; Burek, Dominika; de Frutos, Pablo García

    2014-01-01

    Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31+ neurofilament immunoreactivity, significantly fewer SMI32+ axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6−/− mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32+ axonal swellings and Iba1+ microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6−/− spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination. PMID:25471571

  9. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  10. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J

    2015-09-01

    Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease.

  11. Tissue plasminogen activator involvement in experimental autoimmune myasthenia gravis: aggravation and therapeutic potential.

    PubMed

    Gur-Wahnon, Devorah; Mizrachi, Tehila; Wald-Altman, Shane; Al-Roof Higazi, Abd; Brenner, Talma

    2014-08-01

    Tissue plasminogen activator (tPA), a component of the PA/plasmin system, is elevated in inflammatory areas and plays a role in inflammatory neurological disorders. In the present study we explored the involvement of tPA and the potential immunomodulatory activity of tPA in experimental autoimmune myasthenia gravis (EAMG). Mice deficient in tPA (tPA(-/-)) present with a markedly more severe disease than wild type EAMG mice. In an attempt to treat EAMG with an 18aa peptide derived from the PA system inhibitor (PAI-1), designed to tether out the endogenous inhibitor, a significant suppression of disease severity was demonstrated. The more severe disease in tPA(-/-) mice was accompanied by a higher level of anti-AChR antibodies and increased expression of B-cell markers. In view of the essential role of B-cell activating factor (BAFF) in B-cell maturation, the expression of BAFF family components was tested. An increase in BAFF and BAFF receptor was observed in EAMG tPA(-/-) mice, whereas BCMA expression was reduced, consistent with the increased level of pathogenic antibodies and the more severe disease. Given the importance of T regulatory cells (Tregs) in EAMG, they were evaluated and their number was reduced in tPA(-/-) mice, in which EAMG was aggravated, whereas following PAI-1dp treatment, Tregs were replenished and the disease was ameliorated. The results show the involvement of tPA in EAMG, implying a protective role for tPA in EAMG pathogenesis. The amelioration of EAMG by PAI-1dp treatment suggests that the PA system may be considered a potential site for therapeutic intervention in neuroimmune diseases.

  12. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis.

    PubMed Central

    Massa, P T; ter Meulen, V; Fontana, A

    1987-01-01

    In search of a phenotypic marker determining genetically controlled susceptibility to delayed-type hypersensitivity (DTH) reactions in the brain--in particular, experimental autoimmune encephalomyelitis (EAE)--we have compared the gamma-interferon (IFN-gamma) induction of Ia molecules on astrocytes and macrophages from rat and mouse strains that are susceptible or resistant to this disease. We focused on Ia expression because DTH reactions to self or foreign antigens are largely mediated by lymphocytes restricted by class II (Ia) antigens of the major histocompatibility complex (MHC). Our data demonstrate that Lewis (fully susceptible) and Brown Norway (BN) (fully resistant) rats are very different in that Lewis astrocytes express much higher levels of Ia than BN astrocytes. Similar data were obtained from an analysis of EAE-susceptible and -resistant mouse strains (SJL and BALB/c, respectively), which suggests that this phenomenon may be universal and not limited to only one mammalian species. At least one gene responsible for Ia hyperinduction is located outside the rat RT-1 or the mouse MHC locus. Animals congenic at the RT-1 or MHC locus of the resistant strain but with background genes of the susceptible strain exhibit intermediate levels of Ia compared to fully resistant and susceptible rodents, which fits well with the reduced EAE susceptibility of these congenic animals. Furthermore, hyperinduction of Ia is astrocyte specific, since peritoneal macrophages of susceptible and resistant strains exhibit identical profiles of Ia induction. Thus, astrocyte Ia hyperinducibility may be a major strain- and tissue-specific factor that contributes to Ia-restricted DTH reactions in the brain. Images PMID:3495802

  13. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease.

  14. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice.

    PubMed

    Jhun, JooYeon; Lee, Seung Hoon; Byun, Jae-Kyeong; Jeong, Jeong-Hee; Kim, Eun-Kyung; Lee, Jennifer; Jung, Young-Ok; Shin, Dongyun; Park, Sung Hwan; Cho, Mi-La

    2015-08-01

    Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant synthesized in human body. This enzyme promotes immune system function and can be used as a dietary supplement. Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. RA results in severe destruction of cartilage and disability. This study aimed to investigate the effect of CoQ10 on inflammation and Th17 cell proliferation on an experimental rheumatoid arthritis (RA) mice model. CoQ10 or cotton seed oil as control was orally administrated once a day for seven weeks to mice with zymosan-induced arthritis (ZIA). Histological analysis of the joints was conducted using immunohistochemistry. Germinal center (GC) B cells, Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. mRNA expression was measured by real-time PCR and protein levels were estimated by enzyme-linked immunosorbent assay (ELISA). Flow cytometric analysis (FACS) was used to evaluate Th17 cells and Treg cells. CoQ10 mitigated the severity of ZIA and decreased serum immunoglobulin concentrations. CoQ10 also reduced RANKL-induced osteoclastogenesis, inflammatory mediators and oxidant factors. Th17/Treg axis was reciprocally controlled by CoQ10 treatment. Moreover, CoQ10 treatment on normal mouse and human cells cultured in Th17 conditions decreased the number of Th17 cells and enhanced the number of Treg cells. CoQ10 alleviates arthritis in mice with ZIA declining inflammation, Th17 cells and osteoclast differentiation. These findings suggest that CoQ10 can be a potential therapeutic substance for RA.

  15. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sankavaram, Sreenivasa R.; Svensson, Mikael A.; Olsson, Tomas; Brundin, Lou; Johansson, Clas B.

    2015-01-01

    Background It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss. Aim In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei. Results Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis), we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord. Conclusion This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy

  16. Role of ethanolamine phosphate in the hippocampus of rats with acute experimental autoimmune encephalomyelitis.

    PubMed

    Aguado-Llera, D; Puebla-Jiménez, L; Barrios, V; Hernández-Pinto, A; Arilla-Ferreiro, E

    2011-01-01

    Here, we assessed the effects of acute experimental autoimmune encephalomyelitis (EAE) on the rat hippocampal somatostatinergic system and whether administration of an ethanolamine phosphate salt could prevent the appearance of the clinical signs and the impairment of the somatostatinergic system in this pathological condition. Female Lewis rats were injected in both hindlimb footpads with myelin basic protein from guinea pig brain and complete Freund's adjuvant and were sacrificed when limp tail (grade 1 EAE) or severe hindlimb paralysis (grade 3 EAE) were observed. One group was injected daily with ethanolamine phosphate, starting two days prior to immunization and for 15 days thereafter. The animals were sacrificed 15 days post-immunization. Acute EAE in grade 3 increased anti-myelin basic protein antibodies in rat serum as well as tumor necrosis factor-α and interferon-γ levels in hippocampal extracts. In addition, it decreased the somatostatin receptor density, somatostatin receptor subtype 2 mRNA and protein content, and the inhibitory effect of somatostatin on adenylyl cyclase activity in the hippocampus. The protein levels of the inhibitory G protein subunits αi(1-3), the G protein-coupled receptor kinase isoforms 2, 5 and 6, the phosphorylated cyclic AMP-binding protein and the somatostatin-like immunoreactivity content were unaltered in this brain area. Acute EAE in grade 1 did not modify any of these parameters. Ethanolamine phosphate administration prevented the clinical expression of acute EAE as well as the decrease in the somatostatin receptor density, somatostatin receptor subtype 2 expression and the capacity of somatostatin to inhibit adenylyl cyclase activity at the time-period studied. Furthermore, it blunted the rise in serum anti-myelin basic protein antibodies and hippocampal interferon-γ and tumor necrosis factor-α levels. Altogether, these data suggest that ethanolamine phosphate might provide protection against acute EAE.

  17. Pain in experimental autoimmune encephalitis: a comparative study between different mouse models

    PubMed Central

    2012-01-01

    Background Pain can be one of the most severe symptoms associated with multiple sclerosis (MS) and develops with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE) mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55 peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the spinal cord and investigated functional changes in the peripheral nerves using electrophysiology. Methods We analyzed thermal and mechanical sensitivity of the hindpaw in both EAE models during the whole disease course. Qualitative and quantitative immunohistochemical analysis of pain-related molecules and plasticity-related genes was performed on spinal cord sections at different timepoints during the disease course. Moreover, we investigated functional changes in the peripheral nerves using electrophysiology. Results Mice in both EAE models developed thermal hyperalgesia during the chronic phase of the disease. However, whereas SJL mice developed marked mechanical allodynia over the chronic phase of the disease, C57BL/6 mice developed only minor mechanical allodynia over the onset and peak phase of the disease. Interestingly, the magnitude of glial changes in the spinal cord was stronger in SJL mice than in C57BL/6 mice and their time course matched the temporal profile of mechanical hypersensitivity. Conclusions Diverse EAE models bearing genetic, clinical and histopathological heterogeneity, show different profiles of sensory and pathological changes and thereby enable studying the mechanistic basis

  18. Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis.

    PubMed

    Gruber, Ross C; Ray, Alex K; Johndrow, Christopher T; Guzik, Hillary; Burek, Dominika; de Frutos, Pablo García; Shafit-Zagardo, Bridget

    2014-12-01

    Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination. PMID:25471571

  19. Modulation of experimental autoimmune uveitis with formosanin-C in guinea pigs.

    PubMed

    Wu, R T; Lin, W J; Chiang, H C; Horng, L Y; Chung, Y M

    1990-01-01

    Formosanin-C, a diosgenin saponin, was isolated from a perennial herb, Paris formosana Hayata (Liliaceae) which has been used as a folk remedy for snake bite and as an anti-inflammatory or anti-neoplastic agent. Its effect on the development of S-antigen-induced experimental autoimmune uveitis (EAU) in guinea pigs was studied. Guinea pigs treated with formosanin-C (1.5 mg/kg/2 days and 0.5 mg/kg/2 days) were compared with untreated guinea pigs in regard to the development of EAU, lymphocytic proliferative responses, and anti-S-antigen serum antibodies. The higher dosage of formosanin-C (1.5 mg/kg) obviously delayed the onset of EAU. Treatment of this drug, 1.5 mg/kg and 0.5 mg/kg doses, significantly inhibited the specific lymphocytic response of lymph node and spleen cells to S-antigen. On the contrary, treatment in 1.5 mg/kg dose significantly increased the response of lymph node and spleen cells to the polyclonal T cell mitogen, phytohemagglutinin (PHA). Treatment with formosanin-C in both the 1.5 mg/kg and 0.5 mg/kg doses had a minimal effect on the lymphocytic response of lymph node to concanavalin-A (ConA), while a noticeable suppressive effect on the response of spleen cells to ConA was observed in the 1.5 mg/kg dose. This agent in 1.5 mg/kg and 0.5 mg/kg doses significantly inhibited the anti-S-antigen antibody production by days 14 and 18 postimmunization. This study suggests that formosanin-C, an immunomodulator, may offer a new approach to modulate the development of EAU. PMID:2097314

  20. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response.

    PubMed

    Kwon, Ho-Keun; Kim, Gi-Cheon; Kim, Young; Hwang, Won; Jash, Arijita; Sahoo, Anupama; Kim, Jung-Eun; Nam, Jong Hee; Im, Sin-Hyeog

    2013-03-01

    The immunomodulatory effect of probiotics has been shown mainly in gastro-intestinal immune disorders and little information is available on the inflammation of central nervous system. Recently we reported that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental inflammatory disorders. In this study, we evaluated the prophylactic and therapeutic effects of IRT5 probiotics in experimental autoimmune encephalomyelitis (EAE), a T cell mediated inflammatory autoimmune disease of the central nervous system. Pretreatment of IRT5 probiotics before disease induction significantly suppressed EAE development. In addition, treatment with IRT5 probiotics to the ongoing EAE delayed the disease onset. Administration of IRT5 probiotics inhibited the pro-inflammatory Th1/Th17 polarization, while inducing IL10(+) producing or/and Foxp3(+) regulatory T cells, both in the peripheral immune system and at the site of inflammation. Collectively, our data suggest that IRT5 probiotics could be applicable to modulate T cell mediated neuronal autoimmune diseases, including multiple sclerosis.

  1. B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system.

    PubMed

    Pierson, Emily R; Stromnes, Ingunn M; Goverman, Joan M

    2014-02-01

    The efficacy of rituximab treatment in multiple sclerosis has renewed interest in the role of B cells in CNS autoimmunity. In this study, we show that B cells are the predominant MHC class II(+) subset in the naive CNS in mice, and they constitutively express proinflammatory cytokines. Incidence of experimental autoimmune encephalomyelitis induced by adoptive transfer was significantly reduced in C3HeB/Fej μMT (B cell-deficient) mice, suggesting an important role for CNS B cells in initiating inflammatory responses. Initial T cell infiltration of the CNS occurred normally in μMT mice; however, lack of production of T cell cytokines and other immune mediators indicated impaired T cell reactivation. Subsequent recruitment of immune cells from the periphery driven by this initial T cell reactivation did not occur in μMT mice. B cells required exogenous IL-1β to reactivate Th17 but not Th1 cells in vitro. Similarly, reactivation of Th1 cells infiltrating the CNS was selectively impaired compared with Th17 cells in μMT mice, causing an increased Th17/Th1 ratio in the CNS at experimental autoimmune encephalomyelitis onset and enhanced brain inflammation. These studies reveal an important role for B cells within the CNS in reactivating T cells and influencing the clinical manifestation of disease.

  2. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors

    PubMed Central

    Parker, Jacqueline N.; Gillespie, G. Yancey; Love, Cammy E.; Randall, Suzanne; Whitley, Richard J.; Markert, James M.

    2000-01-01

    Genetically engineered, neuroattenuated herpes simplex viruses (HSVs) expressing various cytokines can improve survival when used in the treatment of experimental brain tumors. These attenuated viruses have both copies of γ134.5 deleted. Recently, we demonstrated increased survival of C57BL/6 mice bearing syngeneic GL-261 gliomas when treated with an engineered HSV expressing IL-4, as compared with treatment with the parent construct (γ134.5−) alone or with a virus expressing IL-10. Herein, we report construction of a conditionally replication-competent mutant expressing both subunits of mIL-12 (M002) and its evaluation in a syngeneic neuroblastoma murine model. IL-12 induces a helper T cell subset type 1 response, which may induce more durable antitumor effects. In vitro studies showed that, when infected with M002, both Vero cells and murine Neuro-2a neuroblastoma cells produced physiologically relevant levels of IL-12 heterodimers, as determined by ELISA. M002 was cytotoxic for Neuro-2a cells and human glioma cell lines U251MG and D54MG. Neurotoxicity studies, as defined by plaque-forming units/LD50, performed in HSV-1-sensitive A/J strain mice found that M002 was not toxic even at high doses. When evaluated in an intracranial syngeneic neuroblastoma murine model, median survival of M002-treated animals was significantly longer than the median survival of animals treated with R3659, the parent γ134.5− mutant lacking any cytokine gene insert. Immunohistochemical analysis of M002-treated tumors identified a pronounced influx of CD4+ T cells and macrophages as well as CD8+ cells when compared with an analysis of R3659-treated tumors. We conclude that M002 produced a survival benefit via oncolytic effects combined with immunologic effects meditated by helper T cells of subset type 1. PMID:10681459

  3. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte

  4. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    PubMed

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  5. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest that green tea component epigallocatechin-3-gallate (EGCG) may have a beneficial effect in reducing the pathogenesis of autoimmune diseases; however, the underlying mechanism(s) are not well understood. In this study, we determined the effect of EGCG on the development of experiment...

  6. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  7. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Bae, Dae-Kwon; Park, Dongsun; Lee, Sun Hee; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Shin, Kyungha; Choi, Ehn-Kyoung; Kim, Gonhyung; Hong, Jin Tae; Kim, Seung U.

    2016-01-01

    Since multiple sclerosis (MS) is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs) with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG-) induced experimental autoimmune encephalomyelitis (EAE) model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse) were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP). The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS. PMID:27429621

  8. Spatial reference memory deficits precede motor dysfunction in an experimental autoimmune encephalomyelitis model: the role of kallikrein-kinin system.

    PubMed

    Dutra, Rafael C; Moreira, Eduardo L G; Alberti, Thaís B; Marcon, Rodrigo; Prediger, Rui D; Calixto, João B

    2013-10-01

    Multiple sclerosis (MS) is a progressive T cell-mediated autoimmune demyelinating inflammatory disease of the central nervous system (CNS). Although it is recognized that cognitive deficits represent a manifestation of the disease, the underlying pathogenic mechanisms remain unknown. Here we provide evidence of spatial reference memory impairments during the pre-motor phase of experimental autoimmune encephalomyelitis (EAE) in mice. Specifically, these cognitive deficits were accompanied by down-regulation of choline acetyltransferase (ChAT) mRNA expression on day 5 and 11 post-immunization, and up-regulation of inflammatory cytokines in the hippocampus and prefrontal cortex. Moreover, a marked increase in B1R mRNA expression occurred selectively in the hippocampus, whereas protein level was up-regulated in both brain areas. Genetic deletion of kinin B1R attenuated cognitive deficits and cholinergic dysfunction, and blocked mRNA expression of both IL-17 and IFN-γ in the prefrontal cortex, lymph node and spleen of mice subjected to EAE. The discovery of kinin receptors, mainly B1R, as a target for controlling neuroinflammatory response, as well as the cognitive deficits induced by EAE may foster the therapeutic exploitation of the kallikrein-kinin system (KKS), in particular for the treatment of autoimmune disorders, such as MS, mainly during pre-symptomatic phase. PMID:23777652

  9. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases. PMID:26440666

  10. A plasmin-activatable thrombin inhibitor reduces experimental thrombosis and assists experimental thrombolysis in murine models.

    PubMed

    Sheffield, W P; Eltringham-Smith, L J; Gataiance, S; Bhakta, V

    2015-05-01

    The leech protein hirudin is a potent natural thrombin inhibitor. Its potential as an antithrombotic agent is limited by its promotion of bleeding. We attempted to modify this profile by positioning albumin and a plasmin cleavage site on its N-terminus, in recombinant protein HSACHV3 [comprising hirudin variant 3 (HV3) fused to the C-terminus of human serum albumin (HSA) via a plasmin cleavage site (C)], Previously we showed that HSACHV3 inhibited thrombin in a plasmin-dependent manner, and that, unlike HV3, it did not increase bleeding in vivo when administered to mice. Here we tested HSACHV3 for the ability to reduce thrombosis and assist enzymatic thrombolysis in animal models. Intravenous administration of HSACHV3, but not a control protein lacking the plasmin cleavage site (HSAHV3), reduced thrombus weight by 2.1-fold in the ferric chloride-injured mouse vena cava. Similarly, thrombi formed in a rabbit jugular vein stasis model were 1.7-fold lighter in animals treated with HSACHV3 compared to those receiving HSAHV3. Administration of 60 mg/kg body weight HSACHV3 prolonged the time to occlusion in the ferric chloride-injured mouse carotid artery by threefold compared to vehicle controls, while equimolar HSAHV3 had no effect. HSACHV3 had no ability to restore flow to the murine carotid arteries occluded by ferric chloride treatment, but combining HSACHV3 (60 mg/kg) with recombinant mutant tissue plasminogen activator (TNKase) significantly reduced the time to restore patency to the artery compared to TNKase alone. Unlike unfused HV3, HSACHV3 did not increase bleeding in a mouse liver laceration model. Our results show that HSACHV3 acts as an antithrombotic agent that does not promote bleeding and which speeds the time to flow restoration when used as an adjunct to pharmacological thrombolysis in animal models. PMID:25481811

  11. Short- and long-term effects of T-cell modulating agents in experimental autoimmunity.

    PubMed

    Mellergård, Johan; Havarinasab, Said; Hultman, Per

    2004-03-15

    Due to the easy and reliable induction of a disease condition with many of the features present in human autoimmunity, mercury-induced autoimmunity (mHgAI) in rodents is a favourable autoimmune model. Genetically susceptible (H-2(s)) mice develop in response to mercury (Hg) a systemic autoimmune condition with antinucleolar antibodies (ANoA) targeting the protein fibrillarin, transient polyclonal B-cell activation, hyperimmunoglobulinemia, and systemic immune-complex (IC) deposits. In order to study the short- and long-term effects of treatment with immunomodulating agents on the disease parameters in HgAI, groups of B10.S (H-2(s)) mice were given 6 mg HgCl(2)/l drinking water for 22 weeks. Three weeks initial treatment with cyclosporin A (CyA), a high dose of tacrolimus (HD tacrolimus), or anti-CD4 monoclonal antibody (a-CD4) inhibited induction of ANoA and IC deposit by Hg. This effect persisted for the subsequent 19 weeks when the mice were only treated with Hg. Initial treatment with anti-IL-4 monoclonal antibody (a-IL-4) for 3 weeks inhibited induction of IgE and IC deposits by Hg, but not ANoA. However, subsequent treatment with Hg without a-IL-4 for 19 weeks induced IC deposits. The T-cell modulating agents aggravated some of the HgAI disease parameters: a-CD4 stimulated the polyclonal B-cell activation, a-IL-4 increased the IgG antichromatin antibody response, and a low dose of tacrolimus (LD tacrolimus) enhanced the ANoA, the polyclonal B-cell activation, and the IC deposits. We conclude that a short initial treatment with a-CD4 or CyA efficiently protects against induction of systemic autoimmunity for an extended period of time. However, some of the T-cell modulating agents, especially a low dose of tacrolimus, aggravate autoimmune manifestations not only during ongoing treatment, but also after treatment with these agents has ceased.

  12. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis.

    PubMed

    Benedek, Gil; Zhang, Jun; Bodhankar, Sheetal; Nguyen, Ha; Kent, Gail; Jordan, Kelley; Manning, Dustin; Vandenbark, Arthur A; Offner, Halina

    2016-04-15

    Sex hormones promote immunoregulatory effects on multiple sclerosis. The current study evaluated estrogen effects on regulatory B cells and resident CNS microglia during experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of multiple regulatory B cell markers indicative of IL-10 dependent as well as IFN-γ dependent pathways. Moreover, although estrogen pretreatment of EAE mice inhibited the infiltration of pro-inflammatory cells into the CNS, it enhanced the frequency of regulatory B cells and M2 microglia. Our study suggests that estrogen has a broad effect on the development of regulatory B cells during EAE, which in turn could promote neuroprotection. PMID:27049561

  13. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis.

    PubMed

    Benedek, Gil; Zhang, Jun; Bodhankar, Sheetal; Nguyen, Ha; Kent, Gail; Jordan, Kelley; Manning, Dustin; Vandenbark, Arthur A; Offner, Halina

    2016-04-15

    Sex hormones promote immunoregulatory effects on multiple sclerosis. The current study evaluated estrogen effects on regulatory B cells and resident CNS microglia during experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of multiple regulatory B cell markers indicative of IL-10 dependent as well as IFN-γ dependent pathways. Moreover, although estrogen pretreatment of EAE mice inhibited the infiltration of pro-inflammatory cells into the CNS, it enhanced the frequency of regulatory B cells and M2 microglia. Our study suggests that estrogen has a broad effect on the development of regulatory B cells during EAE, which in turn could promote neuroprotection.

  14. Alpha-2,3-sialyltransferase enhances Neisseria gonorrhoeae survival during experimental murine genital tract infection.

    PubMed

    Wu, Hong; Jerse, Ann E

    2006-07-01

    The addition of host-derived sialic acid to Neisseria gonorrhoeae lipooligosaccharide is hypothesized to be an important mechanism by which gonococci evade host innate defenses. This hypothesis is based primarily on in vitro assays of complement-mediated and phagocytic killing. Here we report that a nonpolar alpha-2,3-sialyltransferase (lst) mutant of N. gonorrhoeae was significantly attenuated in its capacity to colonize the lower genital tract of 17-beta estradiol-treated female BALB/c mice during competitive infection with the wild-type strain. Genetic complementation of the lst mutation restored recovery of the mutant to wild-type levels. Studies with B10.D2-HC(o)H2(d)H(2)-T18c/OSN (C5-deficient) mice showed that attenuation of the lst mutant was not due to increased sensitivity to complement-mediated bacteriolysis, a result that is consistent with recently reported host restrictions in the complement cascade. However, Lst-deficient gonococci were killed more rapidly than sialylated wild-type gonococci following intraperitoneal injection into normal mice, which is consistent with sialylation conferring protection against killing by polymorphonuclear leukocytes (PMNs). As reported for human PMNs, sialylated gonococci were more resistant to killing by murine PMNs, and sialylation led to reduced association with and induction of a weaker respiratory burst in PMNs from estradiol-treated mice. In summary, these studies suggest sialylation confers a survival advantage to N. gonorrhoeae in mice by increasing resistance to PMN killing. This report is the first direct demonstration that alpha-2,3-sialyltransferase contributes to N. gonorrhoeae pathogenesis in an in vivo model. This study also validates the use of experimental murine infection to study certain aspects of gonococcal pathogenesis. PMID:16790783

  15. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2).

    PubMed

    Matsubara, V H; Silva, E G; Paula, C R; Ishikawa, K H; Nakamae, A E M

    2012-04-01

    The aim of this study is to evaluate the oral colonization by Candida albicans in experimental murine immunosuppressed DBA/2 and treatment with probiotic bacteria. To achieve these objectives, 152 DBA/2-immunosuppressed mice were orally inoculated with a suspension of C. albicans containing 10(8) viable yeast cells, the animals were treated with nystatin or with the probiotics (Lactobacillus acidophilus and Lactobacillus rhamnosus). Evaluations were performed by Candida count from oral mucosa swabbing. The oral mucosa colonization by C. albicans started at day 1 after inoculation, remained maximal from day 3 until day 7, and then decreased significantly. Probiotics reduced the C. albicans colonization significantly on the oral mucosa in comparison with the untreated animal group. In the group treated with L. rhamnosus, the reduction in yeast colonization was significantly higher compared with that of the group receiving nystatin. Immunosuppressed animal model DBA/2 is a relevant model for experimental Candida oral colonization, and the treatment with probiotics in this model may be an effective alternative to prevent it.

  16. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    SciTech Connect

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C. )

    1989-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.

  17. Experimental Demyelination and Remyelination of Murine Spinal Cord by Focal Injection of Lysolecithin

    PubMed Central

    Keough, Michael B.; Jensen, Samuel K.; Yong, V. Wee

    2015-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system characterized by plaque formation containing lost oligodendrocytes, myelin, axons, and neurons. Remyelination is an endogenous repair mechanism whereby new myelin is produced subsequent to proliferation, recruitment, and differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes, and is necessary to protect axons from further damage. Currently, all therapeutics for the treatment of multiple sclerosis target the aberrant immune component of the disease, which reduce inflammatory relapses but do not prevent progression to irreversible neurological decline. It is therefore imperative that remyelination-promoting strategies be developed which may delay disease progression and perhaps reverse neurological symptoms. Several animal models of demyelination exist, including experimental autoimmune encephalomyelitis and curprizone; however, there are limitations in their use for studying remyelination. A more robust approach is the focal injection of toxins into the central nervous system, including the detergent lysolecithin into the spinal cord white matter of rodents. In this protocol, we demonstrate that the surgical procedure involved in injecting lysolecithin into the ventral white matter of mice is fast, cost-effective, and requires no additional materials than those commercially available. This procedure is important not only for studying the normal events involved in the remyelination process, but also as a pre-clinical tool for screening candidate remyelination-promoting therapeutics. PMID:25867716

  18. Oral Tolerance Induction in Experimental Autoimmune Encephalomyelitis with Candida utilis Expressing the Immunogenic MOG35-55 Peptide.

    PubMed

    Buerth, Christoph; Mausberg, Anne K; Heininger, Maximilian K; Hartung, Hans-Peter; Kieseier, Bernd C; Ernst, Joachim F

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease that attacks myelinated axons in the central nervous system. Induction of oral tolerance is a potent mechanism to prevent autoimmunity. The food yeast Candida utilis was used to test the therapeutic potential of oral tolerance induction in an animal model of human multiple sclerosis (MS). We constructed a C. utilis strain, which displays a fusion peptide composed of the encephalitogenic MOG35-55 peptide and the C. utilis Gas1 cell wall protein on its surface.By immunizing mice with MOG35-55 peptide experimental autoimmune encephalomyelitis (EAE) was induced in a mouse model. Feeding of mice with C. utilis that expresses MOG35-55 peptide on its surface was started seven days prior to immunization and was continued for ten days. Control animals were treated with wild-type fungus or left untreated. Untreated mice developed first clinical symptoms ten days post immunization (p. i.) with an ascending paralysis reaching maximal clinical disability at day 18 to 20 p. i.. Treatment with the wild-type strain demonstrated comparable clinical symptoms. In contrast, oral gavage of MOG35-55-presenting fungus ameliorated the development of EAE. In addition, incidence as well as maximal clinical disease severity were significantly reduced. Interestingly, reduction of disease severity also occurred in animals treated with heat-inactivated C. utilis cells indicating that tolerance induction was independent of fungal viability. Better disease outcome correlated with reduced demyelination and cellular inflammation in the spinal cord, lower T cell proliferation against rechallenge with MOG35-55 and more regulatory T cells in the lymph nodes. Our data demonstrate successful that using the food approved fungus C. utilis presenting the immunogenic MOG35-55 peptide on its surface induced an oral tolerance against this epitope in EAE. Further studies will reveal the nature and extent of an anti-inflammatory environment established by the

  19. Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis

    PubMed Central

    Didonna, Alessandro; Cekanaviciute, Egle; Oksenberg, Jorge R.; Baranzini, Sergio E.

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by focal lymphocytic infiltration, demyelination and neurodegeneration. Despite the recent advances in understanding MS molecular basis, no reliable biomarkers have been identified yet to monitor disease progression. Our group has previously reported that low levels of TOB1 in CD4+ T cells are strongly associated with a higher risk of MS conversion in individuals experiencing an initial demyelinating event. Consistently, Tob1 ablation in mice exacerbates the clinical phenotype of the MS model experimental autoimmune encephalomyelitis (EAE). To shed light on Tob1 molecular functions in the immune system, we have conducted the first cell-based transcriptomic analysis in Tob1−/− and wildtype mice upon EAE. Next-generation sequencing was employed to characterize the changes in gene expression in T and B cells at pre- and post-symptomatic EAE stages. Remarkably, we found only modest overlap among the different genetic signatures, suggesting that Tob1 may control distinct genetic programs in the different cytotypes. This hypothesis was corroborated by gene ontology and global interactome analyses, which highlighted specific cellular pathways in each cellular subset before and after EAE induction. In summary, our work pinpoints a multifaceted activity of Tob1 in both homeostasis and disease progression. PMID:27546286

  20. Overexpression of the Dominant-Negative Form of Interferon Regulatory Factor 1 in Oligodendrocytes Protects against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Ren, Zhihua; Wang, Yan; Tao, Duan; Liebenson, David; Liggett, Thomas; Goswami, Rajendra; Clarke, Robert; Stefoski, Dusan

    2011-01-01

    Interferon regulatory factor 1 (IRF-1) is a transcription factor that has been implicated in the pathogenesis of the human autoimmune demyelinating disease multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The goal of the present study was to directly examine the role of IRF-1 in oligodendrocyte injury and inflammatory demyelination. For the purpose of this study, we generated a transgenic mouse line (CNP/dnIRF-1) that overexpresses the dominant-negative form of IRF-1 (dnIRF1) specifically in oligodendrocytes. CNP/dnIRF-1 mice exhibited no phenotypic abnormalities but displayed suppressed IRF-1 signaling in oligodendrocytes. The major finding of our study was that the CNP/dnIRF-1 mice, compared with the wild-type mice, were protected against EAE, a phenomenon associated with significant reduction of inflammatory demyelination and with oligodendrocyte and axonal preservation. The observed protection was related to suppressed IRF-1 signaling and impaired expression of immune and proapoptotic genes in oligodendrocytes. No significant differences in the peripheral immune responses between the wild-type and the CNP/dnIRF-1 mice were identified throughout the experiments. This study indicates that IRF-1 plays a critical role in the pathogenesis of EAE by mediating oligodendrocyte response to inflammation and injury. It also suggests that oligodendrocytes are actively involved in the neuroimmune network, and that exploring oligodendrocyte-related pathogenic mechanisms, in addition to the conventional immune-based ones, may have important therapeutic implications in MS. PMID:21653838

  1. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  2. Preventive and therapeutic effects of adenanthin on experimental autoimmune encephalomyelitis by inhibiting NF-κB signaling.

    PubMed

    Yin, Qian-Qian; Liu, Chuan-Xu; Wu, Ying-Li; Wu, Shao-Fang; Wang, Yan; Zhang, Xia; Hu, Xiao-Juan; Pu, Jian-Xin; Lu, Ying; Zhou, Hu-Chen; Wang, Hong-Lin; Nie, Hong; Sun, Han-Dong; Chen, Guo-Qiang

    2013-09-01

    Adenanthin, a diterpenoid isolated from the leaves of Isodon adenanthus, has been reported to possess antileukemic activity through targeting peroxiredoxin I/II. However, its other potential activities remain to be explored. Using myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, we report in this study that adenanthin exerts efficaciously preventive and therapeutic effects on EAE accompanied by significant restriction of infiltration of inflammatory cells and demyelination in CNS. Adenanthin-presented immunomodulatory effects on EAE are correlated with suppressed proliferation of MOG35-55-reactive T cells, decreased Th1 and Th17 cells, increased regulatory T cell populations, decreased production of serum proinflammatory cytokines, and reduced stimulatory capacity of APCs, which might be mediated by its inhibitory action on NF-κB signaling pathway. Our results propose that, as a novel NF-κB inhibitor, adenanthin has potent immunomodulatory activity for the treatment of multiple sclerosis and possibly other autoimmune disorders. PMID:23964105

  3. IL-10 derived from CD1dhiCD5⁺ B cells regulates experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2015-12-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. In our previous study, adoptive transfer of CD1d(hi)CD5(+) B cells expanded in vivo by GM-CSF prevented and suppressed experimental autoimmune myasthenia gravis (EAMG). The goal of this study was to further examine the role and mechanism of IL-10 in the regulatory function of B10 cells in EAMG. We found that only IL-10 competent CD1d(hi)CD5(+) B cells sorted from WT mice, but not IL-10 deficient CD1d(hi)CD5(+) B cells exhibited regulatory function in vitro and in vivo. Adoptive transfer of IL-10 competent CD1d(hi)CD5(+) B cells led to higher frequency of Tregs and B10 cells, and low levels of proinflammatory cytokines and autoantibody production. We conclude that IL-10 production within CD1d(hi)CD5(+) B cells plays an important role in immune regulation of EAMG. PMID:26616882

  4. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-02-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood-brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139-151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  5. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  6. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  7. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice.

  8. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; Lombardo, Giovanni Enrico; Ulaszewska, Maria Malgorzata; Mattivi, Fulvio; Bramanti, Placido; Mazzon, Emanuela; Navarra, Michele

    2015-06-01

    In the last 20 years, wine phenolic compounds have received increasing interest since several epidemiological studies have suggested associations between regular consumption of moderate amount of wine and prevention of certain chronic pathologies, such as neurodegenerative diseases. This study was aimed to investigate the possible neuroprotective role of a polyphenolic white grape juice extract (WGJe) in an experimental mice model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS) in vivo. EAE mimics the main features of MS, including paralysis, weight loss, demyelination, central nervous system (CNS) inflammation and blood-brain barrier (BBB) breakdown. Our study demonstrated that oral administration of WGJe (20 and 40 mg/kg/day) may exert neuroprotective effects against MS, diminishing both clinical signs and histological score typical of disease (lymphocytic infiltration and demyelination). In particular, by western blot, histological evaluations and immunolocalization of the main markers of inflammation, oxidative stress and apoptosis (TNF-α, iNOS, Nitrotyrosine, PARP, Foxp3, Bcl-2, Caspase 3 and DNA fragmentation), we documented that WGJe counteracts the alteration of all these inflammatory and oxidative pathway, without any apparent sign of toxicity. On these bases, we propose this natural product as putative novel helpful tools for the prevention of autoimmune and neurodegenerative diseases such as MS. WGJe could have considerable implication for future therapies of MS, and this study may represents the starting point for further investigation on the role of WGJe in neuroinflammation. PMID:25863350

  9. Pivotal Functions of Plasmacytoid Dendritic Cells in Systemic Autoimmune Pathogenesis.

    PubMed

    Cao, Wei

    2014-04-22

    Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I interferon-producing cells during viral infection. Over the past decade, the aberrant production of interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated in the pathogenesis of systemic lupus erythematosus and recognized as a general feature underlying other autoimmune diseases. On top of imperative studies on human pDCs, the functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the progression of autoimmunity have been unraveled recently from investigations with several experimental lupus models. This article reviews correlating information obtained from human in vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.

  10. IL-35 and Autoimmunity: a Comprehensive Perspective.

    PubMed

    Choi, Jinjung; Leung, Patrick S C; Bowlus, Christopher; Gershwin, M Eric

    2015-12-01

    Interleukin 35 (IL-35) is the most recently identified member of the IL-12 family of cytokines and offers the potential to be a target for new therapies for autoimmune, inflammatory, and infectious diseases. Similar to other members of the IL-12 family including IL-12, IL-23, and IL-27, IL-35 is composed of a heterodimer of α and β chains, which in the case of IL-35 are the p35 and Epstein-Barr virus-induced gene 3 (EBI3) proteins. However, unlike its proinflammatory relatives, IL-35 has immunosuppressive effects that are mediated through regulatory T and B cells. Although there are limited data available regarding the role of IL-35 in human autoimmunity, several murine models of autoimmunity suggest that IL-35 may have potent effects in regulating immunoreactivity via IL-10-dependent mechanisms. We suggest that similar effects are operational in human disease and IL-35-directed therapies hold significant promise. In particular, we emphasize that IL-35 has immunosuppressive ability that are mediated via regulatory T and B cells that are IL-10 dependent. Further, although deletion of IL-35 does not result in spontaneous breach of tolerance, recombinant IL-35 can improve autoimmune responses in several experimental models.

  11. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  12. Contrasting Roles of Islet Resident Immunoregulatory Macrophages and Dendritic Cells in Experimental Autoimmune Type 1 Diabetes

    PubMed Central

    Thornley, Thomas B.; Ma, Lingzhi; Chipashvili, Vaja; Aker, Jonathan E.; Korniotis, Sarantis; Csizmadia, Eva; Strom, Terry B.; Koulmanda, Maria

    2016-01-01

    The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D. PMID:26943809

  13. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  14. Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder

    PubMed Central

    Cannet, Arnaud; Akhoundi, Mohammad; Michel, Gregory; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Leishmaniasis is a vector-borne disease that is transmitted by sandflies and caused by obligate intracellular protozoa of the genus Leishmania. In the present study, we carried out a screening on the experimental infection of Phlebotomus pernioucus by bioluminescent Leishmania infantum using murine model and artificial feeder. We developed a real-time polymerase chain reaction (RT-PCR)-based method to determine individually the number of Leishmania promastigotes fed by infected flies. Among 1840 new emerged female sand flies, 428 were fed on the infected mice. After their death, they were analysed individually by RT-PCR. Our results demonstrated just a single Leishmania positive female at sixth day post meal. A total of 1070 female sand flies were exposed in contact with artificial feeder containing the human blood with two different quantities of Leishmania parasites: 2.106/mL and 1.107/mL. A blood meal including 1.107/mL LUC-promastigotes was proposed to 270 females and 75 (28%) flies were engorged. Among them, 44 (59%) were positive by RT-PCR analysis, with a relative average of 50551 Leishmania parasites. In case of blood feeding of females with 2.106/mL promastigotes, 57 out of 800 (7%) females succeed to feed from artificial feeder which 22 (39%) were positive with a relative average of 6487 parasites. PMID:27439032

  15. Vinegar Treatment Prevents the Development of Murine Experimental Colitis via Inhibition of Inflammation and Apoptosis.

    PubMed

    Shen, Fengge; Feng, Jiaxuan; Wang, Xinhui; Qi, Zhimin; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Wang, Chao; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-02-10

    This study investigated the preventive effects of vinegar and acetic acid (the active component of vinegar) on ulcerative colitis (UC) in mice. Vinegar (5% v/v) or acetic acid (0.3% w/v) treatment significantly reduced the disease activity index and histopathological scores, attenuated body weight loss, and shortened the colon length in a murine experimental colitis model induced by dextran sulfate sodium (DSS). Further mechanistic analysis showed that vinegar inhibited inflammation through suppressing Th1 and Th17 responses, the NLRP3 inflammasome, and MAPK signaling activation. Vinegar also inhibited endoplasmic reticulum (ER) stress-mediated apoptosis in the colitis mouse model. Surprisingly, pretreatment with vinegar for 28 days before DSS induction increased levels of the commensal lactic acid-producing or acetic acid-producing bacteria, including Lactobacillus, Bifidobacteria, and Enterococcus faecalis, whereas decreased Escherichia coli levels were found in the feces of mice. These results suggest that vinegar supplementation might provide a new dietary strategy for the prevention of UC.

  16. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    SciTech Connect

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. )

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  17. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition.

    PubMed

    Guo, Wenjie; Hu, Shasha; Elgehama, Ahmed; Shao, Fenli; Ren, Ren; Liu, Wen; Zhang, Wenjing; Wang, Xinlei; Tan, Renxiang; Xu, Qiang; Sun, Yang; Jiao, Ruihua

    2015-10-01

    In the present study, the effect of Fumigaclavine C, a fungal metabolite, on murine experimental colitis induced by dextran sulfate sodium (DSS) and its possible mechanism were examined in vivo and vitro. Oral administration of Fumigaclavine C dose-dependently attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic scores of musco was also significantly reduced by Fumigaclavine C treatment. Protein and mRNA levels of DSS-induced pro-inflammatory cytokines in colon, including TNF-α, IL-1β and IL-17A, were markedly suppressed by Fumigaclavine C. At the same time, decreased activation of caspase-1 in peritoneal macrophages was detected in Fumigaclavine C -treated mice which suggested that the NLRP3 inflammasome activation was suppressed. Furthermore, in the LPS plus ATP cell model, we found that Fumigaclavine C dose-dependent inhibited IL-1β release and caspase-1 activation. Taken together, our results demonstrate the ability of Fumigaclavine C to inhibit NLRP3 inflammasome activation and give some evidence for its potential use in the treatment of inflammatory bowel diseases. PMID:26320672

  18. Leuprolide acetate, a GnRH agonist, improves experimental autoimmune encephalomyelitis: a possible therapy for multiple sclerosis.

    PubMed

    Guzmán-Soto, Irene; Salinas, Eva; Hernández-Jasso, Irma; Quintanar, J Luis

    2012-10-01

    Gonadotrophin-releasing hormone (GnRH), a well known hypothalamic neuropeptide, has been reported to possess neurotrophic properties. Leuprolide acetate, a synthetic analogue of GnRH is considered to be a very safe and tolerable drug and it has been used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. The present study was designed to determine whether Leuprolide acetate administration, exerts neurotrophic effects on clinical signs, body weight gain, neurofilaments (NFs) and myelin basic protein (MBP) expression, axonal morphometry and cell infiltration in spinal cord of experimental autoimmune encephalomyelitis (EAE) rats. In this work, we have found that Leuprolide acetate treatment decreases the severity of clinical signs of locomotion, induces a significantly greater body weight gain, increases the MBP and NFs expression, axonal area and cell infiltration in EAE animals. These results suggest the use of this agonist as a potential therapeutic approach for multiple sclerosis.

  19. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  20. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  1. Expression of E-Selectin, P-Selectin, and Intercellular Adhesion Molecule-1 during Experimental Murine Listeriosis

    PubMed Central

    López, Santiago; Prats, Neus; Marco, Alberto Jesús

    1999-01-01

    The expression of adhesion molecules E-selectin, P-selectin, and intercellular adhesion molecule-1 (ICAM-1) was immunohistochemically investigated during the course of experimental murine listeriosis. Infection was monitored by microbiological count of blood, liver, and spleen. After an early generalized expression of P-selectin and ICAM-1, a later regulation occurred specifically to areas of inflammation. Expression of E-selectin was faint and inconstantly detected in all of the studied organs. In the liver, typical lesions of murine listeriosis were related to the expression of ICAM-1 on sinusoidal endothelial cells and the biliary system and to the de novo expression of P-selectin in hepatic portal vessels. Inflammation in the spleen was related to the expression of ICAM-1 on red pulp sinusoidal cells, especially in the marginal sinus. High endothelial venules of inflamed lymph nodes also expressed P-selectin and ICAM-1. Lesions in the central nervous system appeared on day 3 after infection as a pyogranulomatous leptomeningitis associated with an intense expression of P-selectin and ICAM-1 in meningeal vessels, especially those in the hippocampal sulcus, suggesting a way through which inflammation initially reach the central nervous system during experimental murine listeriosis. Leptomeningitis was followed by the presence of ventriculitis, which was related to the up-regulation of ICAM-1 on choroid plexus epithelial cells, periventricular vessels and ependymal cells. Up-regulation of P-selectin and ICAM-1 during experimental murine listeriosis could play an important role in the recruitment of leukocytes, especially to the liver, lymphoid organs, and central nervous system. PMID:10514421

  2. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  3. Macrophage Activation Associated with Chronic Murine Cytomegalovirus Infection Results in More Severe Experimental Choroidal Neovascularization

    PubMed Central

    Cousins, Scott W.; Espinosa-Heidmann, Diego G.; Miller, Daniel M.; Pereira-Simon, Simone; Hernandez, Eleut P.; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D.

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication. PMID:22570607

  4. St. John's wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud

    2016-05-01

    Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.

  5. Novel pathogenic epitopes of myelin oligodendrocyte glycoprotein induce experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Delarasse, Cecile; Smith, Paul; Baker, David; Amor, Sandra

    2013-12-01

    Myelin oligodendrocyte glycoprotein (MOG), a minor protein of the central nervous system myelin, is recognized as a potential target in multiple sclerosis and neuromyelitis optica. The extracellular domain of MOG is commonly used in a wide range of mouse strains and other animals to induce experimental autoimmune encephalomyelitis (EAE), an autoimmune animal model of multiple sclerosis, because it is a target for antibody-mediated attack. Previous studies, using selected peptides, have indicated that MOG(35-55) peptide is an encephalitogenic epitope in C57BL/6 (H-2(b)) mice. A more systematic analysis of both T-cell and B-cell responses following immunization of C57BL/6 mice with either recombinant extracellular mouse MOG protein (1-116) or with overlapping peptides spanning the whole sequence of MOG, before assessment of responses to 15 mer and 23 mer peptides was undertaken. The studies identified T-cell responses within the MOG(35-55) (extracellular domain) but also two new immunogenic and encephalitogenic T-cell epitopes within residues MOG(113-127), MOG(120-134) (localized in the transmembrane region) and MOG(183-197) (in the second hydrophobic MOG domain). In addition, residue MOG(113-127) was found to be a B-cell epitope, suggesting that this may be a useful adjunct for the induction of EAE as well as for immunological studies in C57BL/6 mice, which are increasingly being used to study immune function through the use of transgenic and gene knockout technology.

  6. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Huarte, Eduardo; Jun, SangMu; Rynda-Apple, Agnieszka; Golden, Sara; Jackiw, Larissa; Hoffman, Carol; Maddaloni, Massimo; Pascual, David W

    2016-06-15

    Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE. PMID:27194787

  7. Reduction of inflammation and preservation of neurological function by anti-CD52 therapy in murine experimental autoimmune encephalomyelitis.

    PubMed

    Turner, Michael J; Pang, Petti T; Chretien, Nathalie; Havari, Evis; LaMorte, Michael J; Oliver, Julian; Pande, Nilesh; Masterjohn, Elizabeth; Carter, Karen; Reczek, David; Brondyk, William; Roberts, Bruce L; Kaplan, Johanne M; Siders, William M

    2015-08-15

    Alemtuzumab, a monoclonal antibody directed against human CD52, is used in the treatment of MS. To characterize the impact of anti-CD52 administration, a monoclonal antibody to mouse CD52 (anti-muCD52) was generated and evaluated in EAE mouse models of MS. A single course of anti-muCD52 provided a therapeutic benefit accompanied by a reduction in the frequency of autoreactive T lymphocytes and production of pro-inflammatory cytokines. Examination of the CNS revealed a decrease in infiltrating lymphocytes, demyelination and axonal loss. Electrophysiological assessment showed preservation of axonal conductance in the spinal cord. These findings suggest that anti-CD52 therapy may help preserve CNS integrity.

  8. Human and animal spongiform encephalopathies are the result of chronic autoimmune attack in the CNS: a novel medical theory supported by overwhelming experimental evidence.

    PubMed

    Zhu, B T

    2005-04-01

    Spongiform encephalopathies, also called "prion diseases", are fatal degenerative diseases of the central nervous system which can occur in animals (such as the "mad cow disease" in cattle) and also in humans. This paper presents a novel medical theory concerning the pathogenic mechanisms for various human and animal spongiform encephalopathies. It is hypothesized that various forms of prion diseases are essentially autoimmune diseases, resulting from chronic autoimmune attack of the central nervous system. A key step in the pathogenic process leading towards the development of spongiform encephalopathies involves the production of specific autoimmune antibodies against the disease-causing prion protein (PrPsc) and possibly other immunogenic macromolecules present in the brain. As precisely explained in this paper, the autoimmune antibodies produced against PrPsc are responsible for the conversion of the normal cellular prion protein (PrPc) to PrPsc, for the accumulation of PrPsc in the brain and other peripheral tissues, and also for the initiation of an antibody-mediated chronic autoimmune attack of the central nervous system neurons, which would contribute to the development of characteristic pathological changes and clinical symptoms associated with spongiform encephalopathies. The validity and correctness of the proposed theory is supported by an overwhelming body of experimental observations that are scattered in the biomedical literature. In addition, the theory also offers practical new strategies for early diagnosis, treatment, and prevention of various human and animal prion diseases. PMID:15736062

  9. An increase in tolerogenic dendritic cell and natural regulatory T cell numbers during experimental autoimmune encephalomyelitis in Rras-/- mice results in attenuated disease.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Miller, Nichole M; Chan, Andrew M; Dittel, Bonnie N

    2014-06-01

    R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC II(low) DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCII(low) DC with tolerogenic potential.

  10. Experimental autoimmune insulitis. Induction by T lymphocytes specific for a peptide of proinsulin.

    PubMed Central

    Griffin, A. C.; Zhao, W.; Wegmann, K. W.; Hickley, W. F.

    1995-01-01

    Type I diabetes, an autoimmune disease that occurs in humans and animals, is characterized by the destruction of insulin-secreting islet beta-cells of the pancreas. Antibodies directed toward multiple islet protein can be detected before diagnosis of type I diabetes; however, the identity of the inciting autoantigen(s) that targets beta-cells for destruction has not been defined. Autorecognition of many self-proteins by CD4+ T lymphocytes is restricted by the products of class II immune response genes of the major histocompatibility complex (MHC), and in human type I diabetes such a MHC association has been described. The present study uses a rat MHC class II (RT1.Bl) peptide binding motif to predict potentially autoreactive CD4+ T cell epitopes in two key islet beta-cell constituents: the enzyme glutamic acid decarboxylase (GAD) and the insulin precursor hormone proinsulin (PI). Seventeen-amino-acid-long peptide fragments of GAD and PI containing the binding motif were synthesized and used to generate peptide-specific, MHC class II-restricted, CD4+ T cell lines. Once established, the T cell lines specific for rat islet GAD and PI were adoptively transferred to naive, MHC-compatible rats. At 10 days after transfer, insulitis had developed in rats receiving PI-specific T cells, whereas no insulitis was observed in pancreata of rats receiving GAD-specific T cells. Of particular interest is the finding that the pathogenic T cell epitope identified in PI spans the endogenous cleavage site between the B-chain and C-peptide of insulin. Moreover, the PI-specific T cells were able to react specifically with material produced in vitro by a rat insulinoma cell line. These results demonstrate that pathogenic T cell epitopes can be located in portions of molecules that are subsequently degraded during normal enzymatic processing. As PI is found highest concentrations in the beta-cells of pancreatic islets, it is possible that this molecule and not its individual degradation

  11. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  12. Matrine downregulates IL-33/ST2 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis.

    PubMed

    Zhao, Xiaoyu; Zhang, Xiaojian; Lv, Ying; Xu, Yuming; Li, Menglong; Pan, Qingxia; Chu, Yaojuan; Liu, Nan; Zhang, Guang-Xian; Zhu, Lin

    2016-10-01

    Interleukin (IL)-33 is a recently described member of the IL-1 family and functions as a ligand for ST2, a member of the IL-1 receptor family. The role of IL-33/ST2 axis in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), remains controversial. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to suppress clinical EAE and CNS inflammation. However, the underlying immunoregulatory mechanisms have not been fully elucidated, and whether this effect of MAT is through inhibiting the function of the IL-33/ST2 axis is not known. In this study, we investigated the relationship between the therapeutic effects of MAT and IL-33/ST2 expression. MAT treatment successfully attenuated severe clinical deficit and histopathological changes, compared to untreated controls. While IL-33/ST2 mRNA expression was largely increased in spinal cord of EAE rats compared to naïve rats, this expression was significantly inhibited in rats treated with MAT. These results were further confirmed by their protein levels tested with immunohistochemistry. Together, our study demonstrates that MAT treatment regulates the inflammatory IL-33/ST2 axis, thus being a novel mechanism underlying the effect of MAT.

  13. Matrine downregulates IL-33/ST2 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis.

    PubMed

    Zhao, Xiaoyu; Zhang, Xiaojian; Lv, Ying; Xu, Yuming; Li, Menglong; Pan, Qingxia; Chu, Yaojuan; Liu, Nan; Zhang, Guang-Xian; Zhu, Lin

    2016-10-01

    Interleukin (IL)-33 is a recently described member of the IL-1 family and functions as a ligand for ST2, a member of the IL-1 receptor family. The role of IL-33/ST2 axis in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), remains controversial. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to suppress clinical EAE and CNS inflammation. However, the underlying immunoregulatory mechanisms have not been fully elucidated, and whether this effect of MAT is through inhibiting the function of the IL-33/ST2 axis is not known. In this study, we investigated the relationship between the therapeutic effects of MAT and IL-33/ST2 expression. MAT treatment successfully attenuated severe clinical deficit and histopathological changes, compared to untreated controls. While IL-33/ST2 mRNA expression was largely increased in spinal cord of EAE rats compared to naïve rats, this expression was significantly inhibited in rats treated with MAT. These results were further confirmed by their protein levels tested with immunohistochemistry. Together, our study demonstrates that MAT treatment regulates the inflammatory IL-33/ST2 axis, thus being a novel mechanism underlying the effect of MAT. PMID:27562326

  14. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    PubMed Central

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  15. A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord.

    PubMed

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Suh, Sang Won; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35-55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α 4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression. PMID:24592383

  16. A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord.

    PubMed

    Li, Lan; Wu, Guang; Choi, Bo Young; Jang, Bong Geom; Kim, Jin Hee; Sung, Gi Ho; Cho, Jae Youl; Suh, Sang Won; Park, Hyoung Jin

    2014-01-01

    The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35-55) in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α 4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  17. Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity.

    PubMed

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2013-09-01

    The endoplasmic reticulum transmembrane protein, Unc93b1, is essential for trafficking of endosomal TLRs from the endoplasmic reticulum to endosomes. A genetic defect in the human UNC93B1 gene is associated with immunodeficiency. However, systemic lupus erythematosus (SLE) patients express increased levels of the UNC93B1 protein in B cells. Because SLE in patients and certain mouse models exhibits a sex bias and increased serum levels of type I interferons in patients are associated with the disease activity, we investigated whether the female sex hormone estrogen (E2) or type I interferon signaling could up-regulate the expression of the murine Unc93b1 gene. We found that steady-state levels of Unc93b1 mRNA and protein were measurably higher in immune cells (CD3(+), B220(+), CD11b(+) and CD11c(+)) isolated from C57BL/6 (B6) females than age-matched males. Moreover, treatment of CD11b(+) and B220(+) cells with E2 or interferons (IFN-α, IFN-β or IFN-γ) significantly increased the levels of Unc93b1 mRNA and protein. Accordingly, a deficiency of estrogen receptor-α or STAT1 expression in immune cells decreased the expression levels of the Unc93b1 protein. Interestingly, levels of Unc93b1 protein were appreciably higher in B6.Nba2 lupus-prone female mice compared with age-matched B6 females. Furthermore, increased expression of the interferon- and E2-inducible p202 protein in a murine macrophage cell line (RAW264.7) increased the levels of the Unc93b1 protein, whereas knockdown of p202 expression reduced the levels. To our knowledge, our observations demonstrate for the first time that activation of interferon and estrogen signaling in immune cells up-regulates the expression of murine Unc93b1. PMID:23728775

  18. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis.

    PubMed

    Huang, Hai-Peng; Pan, Hong; Wang, Hong-Feng

    2016-03-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  19. Autoimmunity in Immunodeficiency

    PubMed Central

    Todoric, Krista; Koontz, Jessica B.; Mattox, Daniel; Tarrant, Teresa K.

    2013-01-01

    Primary immunodeficiencies (PID) comprise a diverse group of clinical disorders with varied genetic defects. Paradoxically, a substantial proportion of PID patients develop autoimmune phenomena in addition to having increased susceptibility to infections from their impaired immunity. Although much of our understanding comes from data gathered through experimental models, there are several well-characterized PID that have improved our knowledge of the pathways that drive autoimmunity. The goals of this review will be to discuss these immunodeficiencies and to review the literature with respect to the proposed mechanisms for autoimmunity within each put forth to date. PMID:23591608

  20. Persistent Macrophage/Microglial Activation and Myelin Disruption after Experimental Autoimmune Encephalomyelitis in Tissue Inhibitor of Metalloproteinase-1-Deficient Mice

    PubMed Central

    Crocker, Stephen J.; Whitmire, Jason K.; Frausto, Ricardo F.; Chertboonmuang, Parntip; Soloway, Paul D.; Whitton, J. Lindsay; Campbell, Iain L.

    2006-01-01

    Increased leukocyte trafficking into the parenchyma during inflammatory responses in the central nervous system (CNS) is facilitated by the extracellular proteolytic activities of matrix metalloproteinases that are regulated, in part, by the endogenous tissue inhibitors of metalloproteinases (TIMPs). In experimental autoimmune encephalomyelitis (EAE), TIMP-1 gene expression is induced in astrocytes surrounding inflammatory lesions in the CNS. The physiological importance of this temporal and spatial relationship is not clear. Herein, we have addressed the functional role of TIMP-1 in a myelin oligodendrocyte glycoprotein (MOG35-55)-induced model of EAE using TIMP-1-deficient (TIMP-1−/−) C57BL/6 mice. Although CD4+ T-cell immune responses to myelin in wild-type (WT) and TIMP-1−/− mice were similar, analysis of CNS tissues from TIMP-1−/− mice after EAE revealed more severe myelin pathology than that of WT mice. This disruption of myelin was associated with both increased lymphocyte infiltration and microglial/macrophage accumulation in the brain parenchyma. These findings suggest that induction of TIMP-1 by astrocytes during EAE in WT mice represents an inherent cytoprotective response that mitigates CNS myelin injury through the regulation of both immune cell infiltration and microglial activation. PMID:17148673

  1. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo

    PubMed Central

    Boggio, Elena; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases. PMID:27478856

  2. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    PubMed Central

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  3. Intranasal delivery of FSD-C10, a novel Rho kinase inhibitor, exhibits therapeutic potential in experimental autoimmune encephalomyelitis

    PubMed Central

    Li, Yan-Hua; Yu, Jie-Zhong; Liu, Chun-Yun; Zhang, Hui; Zhang, Hai-Fei; Yang, Wan-Fang; Li, Jun-Lian; Feng, Qian-Jin; Feng, Ling; Zhang, Guang-Xian; Xiao, Bao-Guo; Ma, Cun-Gen

    2014-01-01

    Viewing multiple sclerosis (MS) as both neuroinflammation and neurodegeneration has major implications for therapy, with neuroprotection and neurorepair needed in addition to controlling neuroinflammation in the central nervous system (CNS). While Fasudil, an inhibitor of Rho kinase (ROCK), is known to suppress experimental autoimmune encephalomyelitis (EAE), an animal model of MS, it relies on multiple, short-term injections, with a narrow safety window. In this study, we explored the therapeutic effect of a novel ROCK inhibitor FSD-C10, a Fasudil derivative, on EAE. An important advantage of this derivative is that it can be used via non-injection routes; intranasal delivery is the preferred route because of its efficient CNS delivery and the much lower dose compared with oral delivery. Our results showed that intranasal delivery of FSD-C10 effectively ameliorated the clinical severity of EAE and CNS inflammatory infiltration and promoted neuroprotection. FSD-C10 effectively induced CNS production of the immunoregulatory cytokine interleukin-10 and boosted expression of nerve growth factor and brain-derived neurotrophic factor proteins, while inhibiting activation of p-nuclear factor-κB/p65 on astrocytes and production of multiple pro-inflammatory cytokines. In addition, FSD-C10 treatment effectively induced CD4+ CD25+, CD4+ FOXP3+ regulatory T cells. Together, our results demonstrate that intranasal delivery of the novel ROCK inhibitor FSD-C10 has therapeutic potential in EAE, through mechanisms that possibly involve both inhibiting CNS inflammation and promoting neuroprotection. PMID:24749492

  4. Novel Function of Extracellular Matrix Protein 1 in Suppressing Th17 Cell Development in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing

    2016-08-15

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. Although Th17 cells are important for disease induction, Th2 cells are inhibitory in this process. In this article, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of EAE. Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further study of the mechanism revealed that ECM1 could interact with αv integrin on dendritic cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 cell differentiation at an early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited the Th17 cell response and EAE induction in ECM1 transgenic mice. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 cell differentiation in the EAE model, suggesting that ECM1 may have the potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685

  5. Dehydrodiconiferyl alcohol (DHCA) modulates the differentiation of Th17 and Th1 cells and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Lee, Junghun; Choi, Jinyong; Lee, Wonwoo; Ko, Kyeongryang; Kim, Sunyoung

    2015-12-01

    Dehydrodiconiferyl alcohol (DHCA), originally isolated from the stems of Cucurbita moschata, has previously been shown to exhibit anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts (MEFs) (Lee et al., 2012). Here, we investigated whether synthetic DHCA could suppress the CD4 T helper 17 (Th17)-mediated production of the interleukin (IL)-17 protein. The results from RT-qPCR suggest that DHCA-mediated down-regulation of IL-17 occurred at the transcriptional level by suppressing the expression of RAR-related orphan receptor (ROR)γt, the master transcription factor involved in the differentiation of Th17 cells. Furthermore, such inhibition was mediated by the suppression of NF-κB activity. DHCA also inhibited the Th1-mediated production of interferon (IFN) γ by controlling the expression of a key transcription factor known to regulate the production of this cytokine, T-bet. In the mouse experimental autoimmune encephalomyelitis (EAE) model, DHCA showed significant therapeutic effects by inhibiting the infiltration of immune cells into the spinal cords, decreasing the differentiation of pathogenic Th17 and Th1 cells, suppressing the expression of various pro-inflammatory cytokines, and eventually ameliorating the clinical symptoms of EAE mice. Taken together, our data indicate that DHCA may be a potential candidate as an agent for the control of Th17 and Th1-mediated inflammatory diseases.

  6. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  7. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  8. Mannosylated self-peptide inhibits the development of experimental autoimmune encephalomyelitis via expansion of nonencephalitogenic T cells.

    PubMed

    Kel, Junda M; Slütter, Bram; Drijfhout, Jan Wouter; Koning, Frits; Nagelkerken, Lex

    2008-07-01

    Tolerance to experimental autoimmune encephalomyelitis (EAE) in SJL mice can be induced by immunization with a mannosylated form of the proteolipid protein (M-PLP139-151), despite the presence of CFA. The state of tolerance is characterized by poor delayed-type hypersensitivity responses and the absence of clinical EAE symptoms. In vivo monitoring of CFSE-labeled PLP139-151-specific TCR-transgenic (5B6) T cells revealed that immunization with M-PLP139-151 increases the clonal expansion of 5B6 T cells that do not develop full effector functions. Moreover, nonfunctional T cells obtained from M-PLP139-151-immunized mice showed poor blastogenesis and were unable to transfer EAE to naïve recipients. Nevertheless, the in vitro production of cytokines and chemokines associated with EAE was unaffected. Importantly, tolerance induced by M-PLP139-151 was abrogated by the administration of pertussis toxin, resulting in EAE development. Our results suggest that M-PLP139-151 inhibits EAE development by affecting the differentiation of T cells into encephalitogenic effector cells.

  9. The immunomodulator AS101suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang

    2014-01-01

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323

  10. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo.

    PubMed

    Boggio, Elena; Dianzani, Chiara; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Cappellano, Giuseppe; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Comi, Cristoforo; Dianzani, Umberto; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α 4 β 1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases. PMID:27478856

  11. The leukotriene B{sub 4} receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis

    SciTech Connect

    Kihara, Yasuyuki; Yokomizo, Takehiko; Kunita, Akiko; Morishita, Yasuyuki; Fukayama, Masashi; Ishii, Satoshi; Shimizu, Takao

    2010-04-09

    Leukotriene B{sub 4} (LTB{sub 4}) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB{sub 4}. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and T{sub H}1/T{sub H}17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1{sup -/-} mice had delayed onset and less severe symptoms of EAE than BLT1{sup +/+} mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1{sup +/+}, but not BLT1{sup -/-} mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-{gamma}, TNF-{alpha}, IL-17 and IL-6 were impaired in BLT1{sup -/-} cells, as compared with BLT1{sup +/+} cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and T{sub H}1/T{sub H}17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other T{sub H}17-mediated diseases.

  12. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-01-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE. PMID:25182730

  13. Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments.

    PubMed

    Imeri, Faik; Schwalm, Stephanie; Lyck, Ruth; Zivkovic, Aleksandra; Stark, Holger; Engelhardt, Britta; Pfeilschifter, Josef; Huwiler, Andrea

    2016-06-01

    The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited. PMID:26808312

  14. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-01-01

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  15. A silent exonic SNP in kdm3a affects nucleic acids structure but does not regulate experimental autoimmune encephalomyelitis.

    PubMed

    Gillett, Alan; Bergman, Petra; Parsa, Roham; Bremges, Andreas; Giegerich, Robert; Jagodic, Maja

    2013-01-01

    Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures. PMID:24312603

  16. Single-Step Grafting of Aminooxy-Peptides to Hyaluronan: A Simple Approach to Multifunctional Therapeutics for Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sestak, Joshua.; Mullins, Meagan; Northrup, Laura; Thati, Shara; Siahaan, Teruna; Berkland, Cory

    2013-01-01

    The immune response to antigens is directed in part by the presence or absence of costimulatory signals. The ability to coincidently present both antigen and, for example, a peptide that inhibits or activates the costimulatory pathway, would be a valuable tool for tolerization or immunization, respectively. A simple reaction scheme utilizing oxime chemistry was identified as a means to efficiently conjugate different peptide species to hyaluronan. Peptides synthesized with an aminooxy N-terminus reacted directly to hyaluronan under slightly acidic aqueous conditions without the need for a catalyst. The resulting oxime bond was found to rapidly hydrolyze at pH 2 releasing peptide, but was stable at higher pH values (5.5 and 7). Two different peptide species, a multiple sclerosis antigen (PLP) and an ICAM-1 ligand (LABL) known to block immune cell stimulation, were functionalized with the aminooxy end group. These peptides showed similar reactivity to hyaluronan and were conjugated in an equimolar ratio. The resulting hyaluronan with grafted PLP and LABL significantly inhibited disease in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Aminooxy-peptides facilitate simple synthesis of multifunctional hyaluronan graft polymers, thus enabling novel approaches to antigen-specific immune modulation. PMID:23541930

  17. Interphotoreceptor retinoid binding protein is a potent tolerogen in Lewis rat: suppression of experimental autoimmune uveoretinitis is retinal antigen specific

    PubMed Central

    Laliotou, B.; Liversidge, J.; Forrester, J.; Dick, A.

    1997-01-01

    AIMS—Administration of unfractionated retinal antigen(s) (retinal extract, RE) suppresses RE induced experimental autoimmune uveoretinitis (EAU) and offers a potential therapeutic alternative to non-specific immunosuppressive therapies for posterior uveitis and autoimmune diseases. S-Ag and interphotoreceptor retinoid binding protein (IRBP) are two major autoantigens within soluble RE. It was aimed to assess, firstly, as has previously been shown with S-Ag, if IRBP can induce intranasal tolerance and, secondly, the contribution of both these major autoantigens to tolerance induction by whole RE.
METHODS—Animals were tolerised by intranasal administration with S-Ag or IRBP, either alone or in combination, or RE before immunisation with either IRBP or RE. Control animals were administered nasally either PBS or MBP. Daily clinical responses were recorded biomicroscopically and histological grades were obtained using a semiquantitative scoring system. Weekly serum antibody levels to retinal antigens were measured by ELISA and delayed hypersensitivity responses (DTH) were assessed by skin reactivity to intradermal inoculation with retinal or non-specific antigens.
RESULTS—Microgram doses of IRBP successfully suppressed both clinically and histologically IRBP induced EAU. This suppression was accompanied by reduced antigen specific DTH reactivity but maintained T cell dependent (IgG2a) antibody responses. Furthermore, combined S-Ag and IRBP administration afforded equal suppression of RE induced EAU when compared with RE therapy alone. Suppression of RE induced EAU was not achieved with administration of a non-retinal specific autoantigen, MBP. Although individually, both S-Ag and IRBP suppressed RE induced EAU, whole RE was unable to protect against IRBP induced disease.
CONCLUSIONS—Intranasal administration of IRBP suppressed IRBP induced EAU in the Lewis rat. S-Ag and IRBP are the major contributors to the tolerogenicity within RE, despite the known

  18. Cysticercosis vaccine: cross protecting immunity with T. solium antigens against experimental murine T. crassiceps cysticercosis.

    PubMed

    Sciutto, E; Fragoso, G; Trueba, L; Lemus, D; Montoya, R M; Diaz, M L; Govezensky, T; Lomeli, C; Tapia, G; Larralde, C

    1990-11-01

    Vaccination of mice with an antigen extract from Taenia solium cysticerci induced protection against challenge with T. crassiceps cysticerci as successfully as did antigen extracts from T. crassiceps. Vaccination was more effective in male than in female mice and in the resistant strain (BALB/B) more so than in the susceptible strain (BALB/c). While only the resistant strain was completely protected by vaccination, the parasite load of the susceptible strain was significantly reduced by vaccination. Cross immunity between the human and murine parasites establishes murine T. crassiceps cysticercosis as a convenient laboratory model in which to test promising T. solium antigens aimed at vaccine development against T. solium cysticercosis. Further, results point to strong interactions of the immune system with sexual and histocompatibility factors in the host's dealing with cysticercosis.

  19. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis

    PubMed Central

    Giacoppo, Sabrina; Soundara Rajan, Thangavelu; De Nicola, Gina Rosalinda; Iori, Renato; Bramanti, Placido; Mazzon, Emanuela

    2016-01-01

    Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. PMID:27784989

  20. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis.

    PubMed

    Kim, Yejin; Kim, Tae Wan; Park, Yun Seong; Jeong, Eui Man; Lee, Dong-Sup; Kim, In-Gyu; Chung, Hum; Hwang, Young-Il; Lee, Wang Jae; Yu, Hyeong Gon; Kang, Jae Seung

    2016-01-01

    IL-22 is a pro- and anti-inflammatory cytokine that is mainly produced by T cells and NK cells. Recent studies have reported the increased number of IL-22 producing T cells in patients with autoimmune noninfectious uveitis; however, the correlation between IL-22 and uveitis remains unclear. In this study, we aimed to determine the specific role of IL-22 and its receptor in the pathogenesis of uveitis. Serum concentration of IL-22 was significantly increased in uveitis patients. IL-22Rα was expressed in the retinal pigment epithelial cell line, ARPE-19. To examine the effect of IL-22, ARPE-19 was treated with recombinant IL-22. The proliferation of ARPE-19 and the production of monocyte chemoattractant protein (MCP)-1 from ARPE-19 were clearly elevated. IL-22 induced MCP-1 which facilitated the migration of inflammatory cells. Moreover, IL-22 increased the IL-22Rα expression in ARPE-19 through the activation of PI3K/Akt. Experimental animal models of uveitis induced by interphotoreceptor retinoid binding protein 1-20 (IRBP1-20) exhibited elevation of hyperplasia RPE and IL-22 production. When CD4+ T cells from the uveitis patients were stimulated with IRBP1-20, the production of IL-22 definitely increased. In addition, we examine the regulatory role of cysteamine, which has an anti-inflammatory role in the cornea, in uveitis through the down-regulation of IL-22Rα expression. Cysteamine effectively suppressed the IRBP1-20-induced IL-22Rα expression and prevented the development of IRBP1-20-induced uveitis in the experimental animal model. These finding suggest that IL-22 and its receptor have a crucial role in the development and pathogenesis of uveitis by facilitating inflammatory cell infiltration, and that cysteamine may be a useful therapeutic drug in treating uveitis by down-regulating IL-22Rα expression in RPE. PMID:27166675

  1. The Role of Interleukin-22 and Its Receptor in the Development and Pathogenesis of Experimental Autoimmune Uveitis

    PubMed Central

    Park, Yun Seong; Jeong, Eui Man; Lee, Dong-Sup; Kim, In-Gyu; Chung, Hum; Hwang, Young-il; Lee, Wang Jae; Yu, Hyeong Gon; Kang, Jae Seung

    2016-01-01

    IL-22 is a pro- and anti-inflammatory cytokine that is mainly produced by T cells and NK cells. Recent studies have reported the increased number of IL-22 producing T cells in patients with autoimmune noninfectious uveitis; however, the correlation between IL-22 and uveitis remains unclear. In this study, we aimed to determine the specific role of IL-22 and its receptor in the pathogenesis of uveitis. Serum concentration of IL-22 was significantly increased in uveitis patients. IL-22Rα was expressed in the retinal pigment epithelial cell line, ARPE-19. To examine the effect of IL-22, ARPE-19 was treated with recombinant IL-22. The proliferation of ARPE-19 and the production of monocyte chemoattractant protein (MCP)-1 from ARPE-19 were clearly elevated. IL-22 induced MCP-1 which facilitated the migration of inflammatory cells. Moreover, IL-22 increased the IL-22Rα expression in ARPE-19 through the activation of PI3K/Akt. Experimental animal models of uveitis induced by interphotoreceptor retinoid binding protein 1–20 (IRBP1-20) exhibited elevation of hyperplasia RPE and IL-22 production. When CD4+ T cells from the uveitis patients were stimulated with IRBP1-20, the production of IL-22 definitely increased. In addition, we examine the regulatory role of cysteamine, which has an anti-inflammatory role in the cornea, in uveitis through the down-regulation of IL-22Rα expression. Cysteamine effectively suppressed the IRBP1-20-induced IL-22Rα expression and prevented the development of IRBP1-20-induced uveitis in the experimental animal model. These finding suggest that IL-22 and its receptor have a crucial role in the development and pathogenesis of uveitis by facilitating inflammatory cell infiltration, and that cysteamine may be a useful therapeutic drug in treating uveitis by down-regulating IL-22Rα expression in RPE. PMID:27166675

  2. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice.

    PubMed

    Yun, Jaesuk; Gu, Sun Mi; Yun, Hyung Mun; Son, Dong Ju; Park, Mi Hee; Lee, Moon Soon; Hong, Jin Tae

    2015-12-01

    Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord. PMID:26564962

  3. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis – in the perspective of inflammasomes

    PubMed Central

    Inoue, Makoto; Shinohara, Mari L

    2013-01-01

    Inflammasomes in innate immune cells mediate the induction of inflammation by sensing microbes and pathogen-associated/damage-associated molecular patterns. Inflammasomes are also known to be involved in the development of some human and animal autoimmune diseases. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is currently the most fully characterized inflammasome, although a limited number of studies have demonstrated its role in demyelinating autoimmune diseases in the central nervous system of humans and animals. Currently, the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), is known to be induced by the NLRP3 inflammasome through enhanced recruitment of inflammatory immune cells in the central nervous system. On the other hand, interferon-β (IFNβ), a first-line drug to treat MS, inhibits NLRP3 inflammasome activation, and ameliorates EAE. The NLRP3 inflammasome is indeed a factor capable of inducing EAE, but it is dispensable when EAE is induced by aggressive disease induction regimens. In such NLRP3 inflammasome-independent EAE, IFN-β treatment is generally not effective. This might therefore be one mechanism that leads to occasional failures of IFN-β treatment in EAE, and possibly, in MS as well. In the current review, we discuss inflammasomes and autoimmunity; in particular, the impact of the NLRP3 inflammasome on MS/EAE, and on IFN-β therapy. PMID:23360426

  4. Introduction to immunology and autoimmunity.

    PubMed Central

    Smith, D A; Germolec, D R

    1999-01-01

    Autoimmune disease occurs when the immune system attacks self-molecules as a result of a breakdown of immunologic tolerance to autoreactive immune cells. Many autoimmune disorders have been strongly associated with genetic, infectious, and/or environmental predisposing factors. Comprising multiple disorders and symptoms ranging from organ-specific to systemic, autoimmune diseases include insulin-dependent diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, scleroderma, thyroiditis, and multiple sclerosis. There are also implications of autoimmune pathology in such common health problems as arteriosclerosis, inflammatory bowel disease, schizophrenia, and certain types of infertility. Largely of unknown etiology, autoimmune disorders affect approximately 3% of the North American and European populations, > 75% of those affected being women. This discussion provides a brief introduction to the immune system and tolerance maintenance, an overview of selected autoimmune diseases and possible mechanisms of immune autoreactivity, and a review of experimental autoimmune models. PMID:10502528

  5. Autoimmune epilepsy.

    PubMed

    Greco, Antonio; Rizzo, Maria Ida; De Virgilio, Armando; Conte, Michela; Gallo, Andrea; Attanasio, Giuseppe; Ruoppolo, Giovanni; de Vincentiis, Marco

    2016-03-01

    Despite the fact that epilepsy is the third most common chronic brain disorder, relatively little is known about the processes leading to the generation of seizures. Accumulating data support an autoimmune basis in patients with antiepileptic drug-resistant seizures. Besides, recent studies show that epilepsy and autoimmune disease frequently co-occur. Autoimmune epilepsy is increasingly recognized in the spectrum of neurological disorders characterized by detection of neural autoantibodies in serum or spinal fluid and responsiveness to immunotherapy. An autoimmune cause is suspected based on frequent or medically intractable seizures and the presence of at least one neural antibody, inflammatory changes indicated in serum or spinal fluid or on MRI, or a personal or family history of autoimmunity. It is essential that an autoimmune etiology be considered in the initial differential diagnosis of new onset epilepsy, because early immunotherapy assures an optimal outcome for the patient.

  6. Autoimmune hepatitis.

    PubMed

    Roberts, E A

    1995-01-01

    Autoimmune hepatitis can present as either acute or chronic disease in children. Clinical and laboratory features, including association with extrahepatic autoimmune syndromes and prompt response to immunosuppressive treatment, circulating autoantibodies and hypergammaglobulinemia, suggest an immune etiology. However, the disease mechanism remains uncertain. Different types of autoimmune hepatitis are defined on the basis of which autoantibodies are present: anti-smooth muscle (type 1), anti-liver/kidney microsomal (type 2), or anti-soluble liver antigen (type 3). Diseases which may be clinically similar to autoimmune hepatitis must be excluded before the diagnosis of autoimmune hepatitis is established: Wilson's disease, primary sclerosing cholangitis, chronic hepatitis B or C, and drug-induced liver disease are among the most important entities. Corticosteroids alone or with azathioprine constitute the usual treatment for autoimmune hepatitis. Although some children achieve a complete remission, or even recovery, and can stop immunosuppressive treatment, others required low-dose prednisone treatment indefinitely.

  7. Autoimmune epilepsy.

    PubMed

    Greco, Antonio; Rizzo, Maria Ida; De Virgilio, Armando; Conte, Michela; Gallo, Andrea; Attanasio, Giuseppe; Ruoppolo, Giovanni; de Vincentiis, Marco

    2016-03-01

    Despite the fact that epilepsy is the third most common chronic brain disorder, relatively little is known about the processes leading to the generation of seizures. Accumulating data support an autoimmune basis in patients with antiepileptic drug-resistant seizures. Besides, recent studies show that epilepsy and autoimmune disease frequently co-occur. Autoimmune epilepsy is increasingly recognized in the spectrum of neurological disorders characterized by detection of neural autoantibodies in serum or spinal fluid and responsiveness to immunotherapy. An autoimmune cause is suspected based on frequent or medically intractable seizures and the presence of at least one neural antibody, inflammatory changes indicated in serum or spinal fluid or on MRI, or a personal or family history of autoimmunity. It is essential that an autoimmune etiology be considered in the initial differential diagnosis of new onset epilepsy, because early immunotherapy assures an optimal outcome for the patient. PMID:26626229

  8. [Autoimmune hepatitis].

    PubMed

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  9. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns

    PubMed Central

    2013-01-01

    Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein

  10. The mechanisms and applications of T cell vaccination for autoimmune diseases: a comprehensive review.

    PubMed

    Huang, Xin; Wu, Haijing; Lu, Qianjin

    2014-10-01

    Autoimmune diseases (ADs) are a spectrum of diseases originating from loss of immunologic self-tolerance and T cell abnormal autoreactivity, causing organ damage and death. However, the pathogenic mechanism of ADs remains unclear. The current treatments of ADs include nonsteroidal anti-inflammatory drugs (NSAIDS), antimalarials, corticosteroids, immunosuppressive drugs, and biological therapies. With the need to prevent side effects resulting from current treatments and acquire better clinical remission, developing a novel pharmaceutical treatment is extremely urgent. The concept of T cell vaccination (TCV) has been raised as the finding that immunization with attenuated autoreactive T cells is capable of inducing T cell-dependent inhibition of autoimmune responses. TCV may act as an approach to control unwanted adaptive immune response through eliminating the autoreactive T cells. Over the past decades, the effect of TCV has been justified in several animal models of autoimmune diseases including experimental autoimmune encephalomyelitis (EAE), murine autoimmune diabetes in nonobese diabetic (NOD) mice, collagen-induced arthritis (CIA), and so on. Meanwhile, clinical trials of TCV have confirmed the safety and efficacy in corresponding autoimmune diseases ranging from multiple sclerosis (MS) to systemic lupus erythematosus (SLE). This review aims to summarize the ongoing experimental and clinical trials and elucidate possible molecule mechanisms of TCV.

  11. Myelin ultrastructure of sciatic nerve in rat experimental autoimmune neuritis model and its correlation with associated protein expression

    PubMed Central

    Yuan, Xiao-Jing; Wei, Yu-Jun; Ao, Qiang; Gong, Kai; Wang, Jian-Yong; Sun, Qiang-San; Zhang, Ling; Zheng, Zun-Cheng; Chen, Lin

    2015-01-01

    To explore the relationship of peripheral nerve ultrastructure and its associated protein expression in experimental autoimmune neuritis (EAN). EAN was established in Lewis rats using an emulsified mixture of P0 peptide 180-199, Mycobacterium tuberculosis, and incomplete Freund’s adjuvant. Rats immunized with saline solution were used as a control group. Sciatic nerve ultrastructure and immunofluorescence histopathology were measured at the neuromuscular severity peak on day 18 post-induction. Cell-specific protein markers were used for immunofluorescence histopathology staining to characterize sciatic nerve cells: CD3 (T cell), Iba-1 (microglia), S100 (myelin), and neurofilament 200 (axon). The results showed that swelling of the myelin lamellae, vesicular disorganization, separation of the myelin lamellae, and an attenuation or disappearance of the axon were observed by transmission electron microscopy in the EAN group. CD3 and Iba-1 increased significantly in the structures characterized by separation or swelling of the myelin lamellae, and increased slightly in the structures characterized by vesicular of the myelin lamellae, S100 decreased in the structures characterized by vesicular disorganization or separation of the myelin lamellae. And neurofilament 200 decreased in the structures characterized by separation of the myelin lamellae. Furthermore, we found that Iba1 were positive in the myelin sheath, and overlapped with S100, which significantly indicated that Schwann cells played as macrophage-like cells during the disease progression of ENA. Our findings may be a significant supplement for the knowledge of EAN model, and may offer a novel sight on the treatment of Guillain-Barré syndrome. PMID:26339349

  12. Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis.

    PubMed

    de Bruin, N M W J; Schmitz, K; Schiffmann, S; Tafferner, N; Schmidt, M; Jordan, H; Häußler, A; Tegeder, I; Geisslinger, G; Parnham, M J

    2016-03-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely-used rodent model for multiple sclerosis (MS), but a single model can hardly capture all features of MS. We investigated whether behavioral parameters in addition to clinical motor function scores could be used to assess treatment efficacy during score-free intervals in the relapsing-remitting EAE model in SJL/J mice. We studied the effects of the clinical reference compounds FTY720 (fingolimod, 0.5mg/kg/day) and dimethyl fumarate (DMF, 20-30 mg/kg/day) on clinical scores in several rodent EAE models in order to generate efficacy profiles. SJL/J mice with relapsing-remitting EAE were studied using behavioral tests, including rotarod, gait analysis, locomotor activity and grip strength. SJL/J mice were also examined according to Crawley's sociability and preference for social novelty test. Prophylactic treatment with FTY720 prevented clinical scores in three of the four EAE rodent models: Dark Agouti (DA) and Lewis rats and C57BL/6J mice. Neither prophylactic nor late-therapeutic treatment with FTY720 reduced clinical scores or reversed deficits in the rotarod test in SJL/J mice, but we observed effects on motor functions and sociability in the absence of clinical scores. Prophylactic treatment with FTY720 improved the gait of SJL/J mice whereas late-therapeutic treatment improved manifestations of reduced social (re)cognition or preference for social novelty. DMF was tested in three EAE models and did not improve clinical scores at the dose used. These data indicate that improvements in behavioral deficits can occur in absence of clinical scores, which indicate subtle drug effects and may have translational value for human MS. PMID:26692368

  13. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis.

    PubMed

    Dahl, Lisa Cm; Nasa, Zeyad; Chung, JieYu; Niego, Be'eri; Tarlac, Volga; Ho, Heidi; Galle, Adam; Petratos, Steven; Lee, Jae Young; Alderuccio, Frank; Medcalf, Robert L

    2016-01-01

    Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE. PMID:27427941

  14. Secondary B Cell Receptor Diversification Is Necessary for T Cell Mediated Neuro-Inflammation during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Galicia, Georgina; Boulianne, Bryant; Pikor, Natalia; Martin, Alberto; Gommerman, Jennifer L.

    2013-01-01

    Background Clinical studies of B cell depletion in Multiple Sclerosis (MS) have revealed that B Lymphocytes are involved in the neuro-inflammatory process, yet it remains unclear how B cells can exert pro- and anti-inflammatory functions during MS. Experimental Autoimmune Encephalomyelitis (EAE) is an animal model of MS whereby myelin-specific T cells become activated and subsequently migrate to the Central Nervous System (CNS) where they perform pro-inflammatory functions such as cytokine secretion. Typically EAE is induced by immunization of mice of a susceptible genetic background with peptide antigen emulsified in Complete Freund's Adjuvant. However, novel roles for B-lymphocytes in EAE may also be explored by immunization with full-length myelin oligodendrocyte glycoprotein (MOG) that contains the B cell conformational epitope. Here we show that full length MOG immunization promotes a chronic disease in mice that depends on antigen-driven secondary diversification of the B cell receptor. Methods Activation-Induced Deaminase (AID) is an enzyme that is essential for antigen-driven secondary diversification of the B cell receptor. We immunized AID−/− mice with the extracellular domain (amino acids 1–120) of recombinant human MOG protein (rhMOG) and examined the incidence and severity of disease in AID−/− versus wild type mice. Corresponding with these clinical measurements, we also evaluated parameters of T cell activation in the periphery and the CNS as well as the generation of anti-MOG antibodies (Ab). Conclusions AID−/− mice exhibit reduced severity and incidence of EAE. This suggests that the secondary diversification of the B cell receptor is required for B cells to exert their full encephalogenic potential during rhMOG-induced EAE, and possibly also during MS. PMID:23613859

  15. Protective effects of matrine on experimental autoimmune encephalomyelitis via regulation of ProNGF and NGF signaling.

    PubMed

    Zhu, Lin; Pan, Qing-xia; Zhang, Xiao-Jian; Xu, Yu-Ming; Chu, Yao-juan; Liu, Nan; Lv, Peng; Zhang, Guang-Xian; Kan, Quan-Cheng

    2016-04-01

    Inflammation, demyelination, oligodendrocyte (OLG) death, and axonal degeneration are primary characteristics of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). OLGs generate myelin sheaths that surround axons, while damage to OLGs leads to demyelination and neurological functional deficit. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to effectively ameliorate clinical signs in EAE. Its therapeutic mechanism has, however, not been completely elucidated. In the present study, we found that MAT retarded the disease process, attenuated the clinical severity of EAE rats, ameliorated inflammation and demyelination, and suppressed the apoptosis of OLGs in the central nervous system (CNS) of EAE rats. In addition, MAT markedly blocked increased expression of the proNGF-p75(NTR) death signaling complex, which is known to mediate OLG death in EAE animals. At the same time, MAT also prevented a decrease in the levels of NGF and its receptor TrkA, which together mediate the cell survival pathway and differentiation of OLGs. ProNGF, NGF, and the downstream effector proteins play an important role in the growth, differentiation, and apoptosis of OLGs as well as the reparative response to neuronal damage. These findings thus indicate that MAT improves clinical severity of EAE in part by reducing OLG apoptosis via restoring the ratios of proNGF:NGF and the respective receptors p75(NTR):TrkA in vivo. Taken together, these results suggest that MAT may be a promising agent for MS treatment based on its protective effect on OLGs. PMID:26681653

  16. Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Lin, Yifeng; Stone, Sarrabeth; Cvetanovic, Marija; Lin, Wensheng

    2016-01-01

    Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE. PMID:27466819

  17. Protective effects of matrine on experimental autoimmune encephalomyelitis via regulation of ProNGF and NGF signaling.

    PubMed

    Zhu, Lin; Pan, Qing-xia; Zhang, Xiao-Jian; Xu, Yu-Ming; Chu, Yao-juan; Liu, Nan; Lv, Peng; Zhang, Guang-Xian; Kan, Quan-Cheng

    2016-04-01

    Inflammation, demyelination, oligodendrocyte (OLG) death, and axonal degeneration are primary characteristics of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). OLGs generate myelin sheaths that surround axons, while damage to OLGs leads to demyelination and neurological functional deficit. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to effectively ameliorate clinical signs in EAE. Its therapeutic mechanism has, however, not been completely elucidated. In the present study, we found that MAT retarded the disease process, attenuated the clinical severity of EAE rats, ameliorated inflammation and demyelination, and suppressed the apoptosis of OLGs in the central nervous system (CNS) of EAE rats. In addition, MAT markedly blocked increased expression of the proNGF-p75(NTR) death signaling complex, which is known to mediate OLG death in EAE animals. At the same time, MAT also prevented a decrease in the levels of NGF and its receptor TrkA, which together mediate the cell survival pathway and differentiation of OLGs. ProNGF, NGF, and the downstream effector proteins play an important role in the growth, differentiation, and apoptosis of OLGs as well as the reparative response to neuronal damage. These findings thus indicate that MAT improves clinical severity of EAE in part by reducing OLG apoptosis via restoring the ratios of proNGF:NGF and the respective receptors p75(NTR):TrkA in vivo. Taken together, these results suggest that MAT may be a promising agent for MS treatment based on its protective effect on OLGs.

  18. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Muhallab, Saad; Dahlman, Ingrid; Wallström, Erik

    2005-04-01

    The major histocompatibility complex (MHC) regulates multiple sclerosis (MS) and its model experimental autoimmune encephalomyelitis (EAE). We created four new intra-MHC recombinant rat strains, between the MHC haplotypes RT1(n) (BN) and RT1(l) (LEW) on the LEW background, to define disease regulation and localization within the MHC. Immunization with recombinant myelin oligodendrocyte glycoprotein (a.a.1-125; MOG)/IFA induced EAE in strains expressing the MHC class II allele RT1.B(n), whereas strains expressing the RT1.B(l) were resistant. In myelin basic protein peptide (MBP(GP)63-88)/CFA-induced EAE, RT1.B(l) expressing strains were susceptible whereas strains expressing the RT1.B(n) were resistant. High levels of antigen-specific IFN-gamma secreting lymphoid cells and antigen-specific serum IgG antibodies were only recorded in rats with an MHC class II allele that permitted MOG- or MBP-EAE, respectively. Genetically, we localized the MHC regulation of the investigated EAE models to the central part of the MHC, containing the MHC class II (RT1.B/D) and the centromeric parts of the MHC class III. No influences were evident from the classical MHC class I (RT1.A), the telomeric parts of the MHC class III or the non-classical MHC class I (RT1.C/E/M) in contrast to previous reports. The MHC class II haplotype-specific regulation of EAE induced with two different CNS antigens demonstrates a strikingly specific MHC-association even within the same target organ. PMID:15748954

  19. Alterations in creatine metabolism observed in experimental autoimmune myocarditis using ex vivo proton magic angle spinning MRS.

    PubMed

    Muench, Frédéric; Retel, Joren; Jeuthe, Sarah; O h-Ici, Darach; van Rossum, Barth; Wassilew, Katharina; Schmerler, Patrick; Kuehne, Titus; Berger, Felix; Oschkinat, Hartmut; Messroghli, Daniel R

    2015-12-01

    Experimental autoimmune myocarditis (EAM) in rodents is an accepted model of myocarditis and dilated cardiomyopathy (DCM). Altered metabolism is thought to play an important role in the pathogenesis of DCM and heart failure (HF). Study of the metabolism may provide new diagnostic information and insights into the mechanisms of myocarditis and HF. Proton MRS ((1)H-MRS) has not yet been used to study the changes occurring in myocarditis and subsequent HF. We aimed to explore the changes in creatine metabolism using this model and compare them with the findings in healthy animals. Myocardial function of male young Lewis rats with EAM was quantified by performing left ventricular ejection fraction (LVEF) analysis in short-axis cine images throughout the whole heart. Inflammatory cellular infiltrate was assessed by immunohistochemistry. Myocardial tissue was analyzed using ex vivo proton magic angle spinning MRS ((1)H-MAS-MRS). Myocarditis was confirmed histologically by the presence of an inflammatory cellular infiltrate and CD68 positive staining. A significant increase in the metabolic ratio of Tau/tCr (taurine/total creatine) obtained by (1)H-MAS-MRS was observed in myocarditis compared with healthy controls (21 d acute EAM, 4.38 (±0.23); 21 d control, 2.84 (±0.08); 35 d chronic EAM, 4.47 (±0.83); 35 d control, 2.59 (±0.38); P < 0.001). LVEF was reduced in diseased animals (EAM, 55.2% (±11.3%); control, 72.6% (±3.8%); P < 0.01) and correlated with Tau/tCr ratio (R = 0.937, P < 0.001). Metabolic alterations occur acutely with the development of myocarditis. Myocardial Tau/tCr ratio as detected by (1)H-MRS correlates with LVEF and is able to differentiate between healthy myocardium and myocardium from rats with EAM.

  20. EphA4 Receptor Tyrosine Kinase Is a Modulator of Onset and Disease Severity of Experimental Autoimmune Encephalomyelitis (EAE)

    PubMed Central

    Gresle, Melissa M.; Jonas, Anna; Kemper, Dennis; Doherty, William; Fabri, Louis J.; Owczarek, Catherine M.; Pearse, Martin; Boyd, Andrew W.; Kilpatrick, Trevor J.; Butzkueven, Helmut; Turnley, Ann M.

    2013-01-01

    The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE), axonal degeneration and reactive gliosis are prominent clinical features, we hypothesised that endogenous EphA4 could play a role in modulating EAE. EAE was induced in EphA4 knockout and wildtype mice using MOG peptide immunisation and clinical severity and histological features of the disease were then compared in lumbar spinal cord sections. EphA4 knockout mice exhibited a markedly less severe clinical course than wildtype mice, with a lower maximum disease grade and a slightly later onset of clinical symptoms. Numbers of infiltrating T cells and macrophages, the number and size of the lesions, and the extent of astrocytic gliosis were similar in both genotypes; however, EphA4 knockout mice appeared to have decreased axonal pathology. Blocking of EphA4 in wildtype mice by administration of soluble EphA4 (EphA4-Fc) as a decoy receptor following induction of EAE produced a delay in onset of clinical symptoms; however, most mice had clinical symptoms of similar severity by 22 days, indicating that EphA4 blocking treatment slowed early EAE disease evolution. Again there were no apparent differences in histopathology. To determine whether the role of EphA4 in modulating EAE was CNS mediated or due to an altered immune response, MOG primed T cells from wildtype and EphA4 knockout mice were passively transferred into naive recipient mice and both were shown to induce disease of equivalent severity. These results are consistent with a non-inflammatory, CNS specific, deleterious effect of EphA4 during neuroinflammation that results in axonal pathology. PMID:23390555

  1. Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model

    PubMed Central

    2013-01-01

    Background Multiple sclerosis (MS) is often accompanied by optic nerve inflammation. And some patients experience permanent vision loss. We examined if the grade of optic nerve infiltration and demyelination affects the severity of clinical signs in an experimental autoimmune encephalomyelitis (EAE) model. The loss of retinal ganglion cells (RGC) and alterations in glia activity were also investigated. Methods C57BL/6 mice were immunized with peptide MOG35-55 in complete Freund’s adjuvant (CFA) and controls received PBS in CFA. Then 23 days post immunization eyes were prepared for flatmounts and stained with Nissl to evaluated neuronal density. Clinical EAE symptoms as well as cell infiltration and demyelination in the optic nerve were examined. Retinal sections were stained with hematoxylin and eosin and silver stain. Immunohistochemistry was used to label RGCs (Brn-3a), apoptotic cells (caspase 3), macroglia (glial fibrillary acidic protein (GFAP)), microglia (Iba1), macrophages (F 4/80) and interleukin-6 (IL-6) secretion. Results EAE symptoms started at day 8 and peaked at day 15. Cell infiltrations (P = 0.0047) and demyelination (P = 0.0018) of EAE nerves correlated with the clinical score (r > 0.8). EAE led to a significant loss of RGCs (P< 0.0001). Significantly more caspase 3+ cells were noted in these animals (P = 0.0222). They showed an increased expression of GFAP (P< 0.0002) and a higher number of microglial cells (P< 0.0001). Also more macrophages and IL-6 secretion were observed in EAE mice. Conclusions MOG immunization leads to optic neuritis and RGC loss. EAE severity is related to the severity of optic nerve inflammation and demyelination. EAE not only affects activation of apoptotic signals, but also causes a glial response in the retina. PMID:24090415

  2. The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice.

    PubMed

    Jiang, Ying; Zou, Yan; Chen, Shaoqiong; Zhu, Cansheng; Wu, Aimin; Liu, Yingying; Ma, Lili; Zhu, Dongliang; Ma, Xiaomeng; Liu, Mei; Kang, Zhuang; Pi, Rongbiao; Peng, Fuhua; Wang, Qing; Chen, Xiaohong

    2013-10-01

    Donepezil is a potent and selective acetylcholinesterase inhibitor. It has been reported to restore cognitive performance in multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) mice, an established model of MS. However, there are no reports about the anti-inflammatory effects of donepezil on EAE. In this study, the donepezil treatments on EAE mice were initiated at day 7 post immunization (7 p.i., subclinical periods, early donepezil treatment) and day 13 p.i. (clinical periods, late donepezil treatment) with the dosage of 1, 2 and 4 mg/kg/d respectively and the treatments persisted throughout the experiments. Blood-brain barrier (BBB) permeability was detected by Evan's blue content, the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9, Akt and phosphorylated Akt (p-Akt) as well as nerve growth factor (NGF) and its precursor form (proNGF) in the brains of EAE mice were detected by Western blot, and the levels of interferon-γ and interleukin-4 in the splenocytes culture supernatants and brains of EAE mice were evaluated by ELISA. The results showed that the 2 mg/kg/d late donepezil treatment was the optimal dosage and could ameliorate clinical and pathological parameters, improve magnetic resonance imaging outcomes, reduce the permeability of BBB, inhibit the production of MMP-2 and MMP-9, modulate the expression of NGF and proNGF, increase Th2 bias and the phosphorylation of Akt in the brains of EAE mice. Our data suggested that the anti-inflammatory effects of donepezil may be a novel mechanism on treating EAE and provided further insights to understand the donepezil's neuroprotective activities in MS.

  3. Changes of extracellular space volume and tortuosity in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis.

    PubMed

    Simonová, Z; Svoboda, J; Orkand, P; Bernard, C C; Lassmann, H; Syková, E

    1996-01-01

    Three diffusion parameters of nervous tissue, extracellular space (ECS) volume fraction (alpha), tortuosity (gamma) and non-specific uptake (k') of tetramethylammonium (TMA+), were studied in the spinal cord of rats during experimental autoimmune encephalomyelitis (EAE). The three parameters were determined in vivo from concentration-time profiles of TMA+ using ion-selective microelectrodes. EAE was induced by injection of guinea-pig myelin basic protein (MBP), which resulted in typical morphological changes in the CNS tissue, namely inflammatory reaction, astrogliosis, blood-brain barrier (BBB) damage and paralysis. EAE was accompanied by a statistically significant increase of alpha (mean +/- S.E.M.) in the dorsal horn from 0.21 +/- 0.01 to 0.28 +/- 0.02, in the intermediate region from 0.22 +/- 0.01 to 0.33 +/- 0.02, in the ventral horn from 0.23 +/- 0.01 to 0.47 +/- 0.02 and in white matter from 0.18 +/- 0.03 to 0.30 +/- 0.03. There were significant decreases in tortuosity in the dorsal horn and in the intermediate region and decreases in non-specific uptake in the intermediate region and in the ventral horn. Although the inflammatory reaction and the astrogliosis preceded and greatly outlasted the neurological symptoms, the BBB damage had a similar time course. Moreover, there was a close correlation between the changes in extracellular space diffusion parameters and the manifestation of neurological signs. We suggest that the expansion of the extracellular space alters the diffusion properties in the spinal cord. This may affect synaptic as well as non-synaptic transmission, intercellular communication and recovery from acute EAE, and may contribute to the manifestation of neurological signs in EAE rats.

  4. Ultrastructural and immunocytochemical studies of smooth muscle cells in iris arterioles of rats with experimental autoimmune uveoretinitis.

    PubMed

    Wang, J; Essner, E; Shichi, H

    1994-12-01

    In this study, we report on the ultrastructural and immunocytochemical changes that occur in smooth muscle cells of iris arterioles in S-antigen-induced experimental autoimmune uveoretinitis (EAU). The inflammatory phase (8-10 days postimmunization) was marked by infiltration of lymphocytes and polymorphonuclear leukocytes and monocytes in the iris stroma and perivascular tissue. Smooth muscle cells became hypertrophic with an 11.5-fold average increase in cell volume compared with control cells. In some of the cells, there was a marked increase in endoplasmic reticulum, ribosomes, and Golgi elements and a concomitant decrease in myofilaments, similar to that reported previously (Wang et al., Curr. Eye Res. 13, 747-754, 1994). However, the majority of hypertrophic smooth muscle cells showed only a slight increase in these synthetic organelles while retaining large amounts of myofilaments. There was no evidence for the migration or mitosis of the hypertrophic cells. Immunogold (IG) labeling of hypertrophic smooth muscle cells revealed changes in the immunoreactivity of several antigens. Labeling density for type I collagen increased progressively between 8 and 10 days, while that of decorin was slightly increased at 8 days and decreased at 10 days postimmunization. IG labeling for an alpha-actin isoform was significantly increased during the 8-10 day period, while that of beta-actin isoform was decreased. The results suggest that hypertrophic smooth muscle cells do not fully modulate to the kind of synthetic phenotype described in aortic smooth muscle cells. The significance of the transition in immunoreactivity from alpha- to beta-actin isoform is not known although it may reflect an increased synthetic state of muscle cells. The increased immunoreactivity of type I collagen and the changes in decorin, on the other hand, suggest that smooth muscle cells in EAU may be involved in remodeling of the extracellular matrix.

  5. Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis.

    PubMed

    de Bruin, N M W J; Schmitz, K; Schiffmann, S; Tafferner, N; Schmidt, M; Jordan, H; Häußler, A; Tegeder, I; Geisslinger, G; Parnham, M J

    2016-03-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely-used rodent model for multiple sclerosis (MS), but a single model can hardly capture all features of MS. We investigated whether behavioral parameters in addition to clinical motor function scores could be used to assess treatment efficacy during score-free intervals in the relapsing-remitting EAE model in SJL/J mice. We studied the effects of the clinical reference compounds FTY720 (fingolimod, 0.5mg/kg/day) and dimethyl fumarate (DMF, 20-30 mg/kg/day) on clinical scores in several rodent EAE models in order to generate efficacy profiles. SJL/J mice with relapsing-remitting EAE were studied using behavioral tests, including rotarod, gait analysis, locomotor activity and grip strength. SJL/J mice were also examined according to Crawley's sociability and preference for social novelty test. Prophylactic treatment with FTY720 prevented clinical scores in three of the four EAE rodent models: Dark Agouti (DA) and Lewis rats and C57BL/6J mice. Neither prophylactic nor late-therapeutic treatment with FTY720 reduced clinical scores or reversed deficits in the rotarod test in SJL/J mice, but we observed effects on motor functions and sociability in the absence of clinical scores. Prophylactic treatment with FTY720 improved the gait of SJL/J mice whereas late-therapeutic treatment improved manifestations of reduced social (re)cognition or preference for social novelty. DMF was tested in three EAE models and did not improve clinical scores at the dose used. These data indicate that improvements in behavioral deficits can occur in absence of clinical scores, which indicate subtle drug effects and may have translational value for human MS.

  6. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis

    PubMed Central

    Dahl, Lisa CM; Nasa, Zeyad; Chung, JieYu; Niego, Be’eri; Tarlac, Volga; Ho, Heidi; Galle, Adam; Petratos, Steven; Lee, Jae Young; Alderuccio, Frank; Medcalf, Robert L.

    2016-01-01

    Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE. PMID:27427941

  7. Prevention and therapy of experimental autoimmune neuritis by an antibody against T cell receptors-alpha/beta.

    PubMed

    Jung, S; Krämer, S; Schluesener, H J; Hünig, T; Toyka, K; Hartung, H P

    1992-06-15

    The mAb R73 directed to the TCR-alpha/beta of rat lymphocytes was tested for its therapeutic potential during the effector phase of experimental autoimmune neuritis (EAN) in Lewis rats. EAN can be actively induced by immunization with bovine peripheral nerve myelin, bovine P2 protein, or a peptide containing its neuritogenic epitope and serves as a model of the human Guilain-Barré syndrome. Adoptive transfer of activated P2-specific T lymphocytes also produces the monophasic disease (AT-EAN) characterized by inflammation and demyelination of peripheral nerves and highlights the central role of T lymphocytes in the pathogenesis of EAN. A single administration of the mAb R73 immediately after injection of activated P2-specific T line cells completely prevented the development of clinical and electrophysiologic signs of EAN in most animals and greatly alleviated the disease in the others. In further experiments mAb R73 was applied after the appearance of first clinical signs of EAN actively induced by immunization with a neuritogenic peptide or bovine peripheral nerve myelin. In both cases the anti-TCR-alpha/beta mAb reversed clinical signs of EAN and prevented the development of peripheral nerve dysfunction. In vivo and in vitro data suggest that impairment of Ag recognition and T cell function by occupancy of the TCR and R73-induced TCR-modulation rather than depletion of TCR-alpha/beta-bearing lymphocytes is the decisive mechanism underlying suppression of EAN that is apparent already within 48 h of the first R73 injection. PMID:1376340

  8. Experimental evidence that mutated-self peptides derived from mitochondrial DNA somatic mutations have the potential to trigger autoimmunity.

    PubMed

    Chen, Lina; Duvvuri, Bhargavi; Grigull, Jörg; Jamnik, Roni; Wither, Joan E; Wu, Gillian E

    2014-08-01

    Autoimmune disease is a critical health concern, whose etiology remains enigmatic. We hypothesized that immune responses to somatically mutated self proteins could have a role in the development of autoimmune disease. IFN-γ secretion by T cells stimulated with mitochondrial peptides encoded by published mitochondrial DNA was monitored to test the hypothesis. Human peripheral blood mononuclear cells (PBMCs) of healthy controls and autoimmune patients were assessed for their responses to the self peptides and mutated-self peptides differing from self by one amino acid. None of the self peptides but some of the mutated-self peptides elicited an immune response in healthy controls. In some autoimmune patients, PBMCs responded not only to some of the mutated-self peptides, but also to some of the self peptides, suggesting that there is a breach of self-tolerance in these patients. Although PBMCs from healthy controls failed to respond to self peptides when stimulated with self, the mutated-self peptide could elicit a response to the self peptide upon re-stimulation in vitro, suggesting that priming with mutated-self peptides elicits a cross-reactive response with self. The data raise the possibility that DNA somatic mutations are one of the events that trigger and/or sustain T cell responses in autoimmune diseases.

  9. Autoimmune epilepsy.

    PubMed

    Britton, Jeffrey

    2016-01-01

    Seizures are a common manifestation of autoimmune limbic encephalitis and multifocal paraneoplastic disorders. Accumulating evidence supports an autoimmune basis for seizures in the absence of syndromic manifestations of encephalitis. The autoimmune epilepsies are immunologically mediated disorders in which recurrent seizures are a primary and persistent clinical feature. When other etiologies have been excluded, an autoimmune etiology is suggested in a patient with epilepsy upon detection of neural autoantibodies and/or the presence of inflammatory changes on cerebrospinal fluid (CSF) or magnetic resonance imaging. In such patients, immunotherapy may be highly effective, depending on the particular autoimmune epilepsy syndrome present. In this chapter, several autoimmune epilepsy syndromes are discussed. First, epilepsies secondary to other primary autoimmune disorders will be discussed, and then those associated with antibodies that are likely to be pathogenic, such as voltage-gated potassium channel-complex and N-methyl-d-aspartate receptor, gamma-aminobutyric acid A and B receptor antibodies. For each syndrome, the typical clinical, imaging, electroencephaloram, CSF, and serologic features, and pathophysiology and treatment are described. Finally, suggested guidelines for the recognition, evaluation, and treatment of autoimmune epilepsy syndromes are provided. PMID:27112680

  10. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs.

    PubMed

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-08-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. PMID:25796590

  11. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis.

    PubMed

    Choi, Eun Wha; Shin, Il Seob; Park, So Young; Yoon, Eun Ji; Kang, Sung Keun; Ra, Jeong Chan; Hong, Sung Hwa

    2014-01-01

    Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.

  12. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis.

    PubMed

    Jackson, D P; Percy, D H; Morris, V L

    1984-09-01

    When Wistar Furth rats are inoculated intracerebrally with the murine hepatitis virus JHM they often develop a demyelinating disease with resulting hind leg paralysis. Using an RNA transfer procedure and hybridization kinetic analysis, the virus-specific RNA in these rats was characterized. The pattern of JHM-specific RNA varied with individual infections of Wistar Furth rats. However, two species of JHM-specific RNA, the nucleocapsid and a 2.1-2.4 X 10(6)-Da RNA species were generally present. A general decrease in JHM-specific RNA in brains and spinal cord samples taken later than 20 days postinoculation was observed; however, JHM-specific RNA persisted in the spinal cord longer than in the brain of these rats.

  13. Tumor necrosis factor alpha signaling in the development of experimental murine pre-hepatic portal hypertension

    PubMed Central

    Theodorakis, Nicholas G; Wang, Yining N; Wu, Jianmin; Maluccio, Mary A; Skill, Nicholas J

    2010-01-01

    The cytokine tumor necrosis factor alpha (TNFa) has previously been identified in the development of portal hypertension (PHT) by facilitating portal venous and systemic hyperemia. TNFa is reported to contribute to hyperemia via endothelial nitric oxide synthase (eNOS) induction and nitric oxide (NO) production. This study examines this hypothesis by utilizing TNFa receptor knockout mice and a murine model of pre-hepatic PHT. Plasma TNFa and NOx and tissue TNFa mRNA levels were determined in wild-type mice 0-7d post induction of pre-hepatic PHT by partial portal vein ligation (PVL). TNFa receptor knockout mice also received PVL or sham surgery and splenic pulp pressure, abdominal aortic flow and portal-systemic shunting were recorded 7d following. Portal pressure and systemic hyperemia developed rapidly following PVL. Plasma NOx was increased temporarily 2-3 days following PVL and returned to baseline by day 7. Circulating TNFa was below detectable limits of the ELISA used, as such no increase was observed. Hepatic and vascular TNFa mRNA levels were transiently changed after PVL otherwise there was no significant change. TNFa receptor targeted gene deletion did not ameliorate plasma NOx following PVL and had no effect on the development of PHT. TNFa receptor signaling plays no detectable role in the development of systemic hyperemia in the murine model of pre-hepatic PHT. Consequently, increased TNFa observed in intra-hepatic inflammatory models (CCl4) and in patients is probably related to inflammation associated with intra-hepatic pathology. Alternatively, TNFa may be signaling via a TNFa receptor independent mechanism. PMID:21383890

  14. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future.

  15. Role of Sortilin in Models of Autoimmune Neuroinflammation.

    PubMed

    Reuter, Eva; Weber, Juliane; Paterka, Magdalena; Ploen, Robert; Breiderhoff, Tilman; van Horssen, Jack; Willnow, Thomas E; Siffrin, Volker; Zipp, Frauke

    2015-12-15

    The proneurotrophin receptor sortilin is a protein with dual functions, being involved in intracellular protein transport, as well as cellular signal transduction. The relevance of the receptor for various neuronal disorders, such as dementia, seizures, and brain injury, is well established. In contrast, little is known about the role of sortilin in immune cells and inflammatory diseases. The aim of our study was to elucidate the distribution of sortilin in different immune cell types in mice and humans and to analyze its function in autoimmune CNS inflammation. Sortilin was expressed most profoundly in murine and human macrophages and dendritic cells and to a much lesser extent in B and T cells. In dendritic cells, sortilin had an impact on Ag processing. Accordingly, sortilin was highly expressed by infiltrated perivascular myeloid cells, mainly in vessel cuffs, in the CNS of patients suffering from multiple sclerosis, the most common inflammatory autoimmune disease of the CNS. Yet, sortilin gene-targeted mice (Sort1(-/-)) and chimeras deficient in sortilin in the immune system were as susceptible as wild-type littermates to T cell-dependent experimental autoimmune encephalomyelitis. Considering our results and recent data from other investigators, we conclude that the proneurotrophin receptor sortilin plays a role in innate, rather than in adaptive, immune processes and, thus, not in autoimmune neuroinflammation. PMID:26566674

  16. Autoimmune gastritis: historical antecedents, outstanding discoveries, and unresolved problems.

    PubMed

    Whittingham, Senga; Mackay, Ian R

    2005-01-01

    The earliest recorded history of autoimmune gastritis can be traced to 1849 in London, when Thomas Addison described "a very remarkable form of anemia" later called pernicious (fatal) anemia (PA). This was followed by the recognition of a gastric mucosal defect suspected to have a nutritional basis, the discovery of the megaloblast that characterized the anemia, the insufficiency of a dietary extrinsic factor characterized as vitamin B12 (cobalamin), and a gastric-secreted intrinsic factor. Treatment with vitamin B12 proved curative. The link between PA and gastritis and atrophy was first confirmed histologically after immediate fixation of the stomach postmortem and later, in the 1940s, by peroral tube biopsy. The causes of gastritis remained enigmatic until the era of autoimmunity, when autoantibodies were detected first to gastric intrinsic factor and then to gastric parietal cells. Hints of a dichotomy in pathogenesis of gastritis were crystallized by the description in 1973 of Type A (Autoimmune) and Type B (later, Bacterial) gastritis. Clarification was enhanced by identification in Type A gastritis of the autoantigen of the parietal cell antibody, by the alpha and beta subunits of gastric H+/K+ ATPase, and by the highly informative experimental murine model of postneonatal thymectomy autoimmune gastritis, and in Type B of the causative role of gastric infection with Helicobacter pylori (H. pylori). A denouement will require a full understanding of (1) the origin and pathogenetic contribution of antibody to intrinsic factor; (2) the connection, if any, between H. pylori infection and Type A autoimmune gastritis; and (3) the genetic contributions to gastritis, whether due to autoimmunity or to H. pylori infection.

  17. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues.

    PubMed

    Barthelmes, Julia; Tafferner, Nadja; Kurz, Jennifer; de Bruin, Natasja; Parnham, Michael J; Geisslinger, Gerd; Schiffmann, Susanne

    2016-01-01

    Multiple sclerosis is presumed to be an inflammatory autoimmune disease, which is characterized by lesion formation in the central nervous system (CNS) resulting in cognitive and motor impairment. Experimental autoimmune encephalomyelitis (EAE) is a useful animal model of MS, because it is also characterized by lesion formation in the CNS, motor impairment and is also driven by autoimmune and inflammatory reactions. One of the EAE models is induced with a peptide derived from the myelin oligodendrocyte protein (MOG)35-55 in mice. The EAE mice develop a progressive disease course. This course is divided into three phases: the preclinical phase (day 0 - 9), the disease onset (day 10 - 11) and the acute phase (day 12 - 14). MS and EAE are induced by autoreactive T cells that infiltrate the CNS. These T cells secrete chemokines and cytokines which lead to the recruitment of further immune cells. Therefore, the immune cell distribution in the spinal cord during the three disease phases was investigated. To highlight the time point of the disease at which the activation/proliferation/accumulation of T cells, B cells and monocytes starts, the immune cell distribution in lymph nodes, spleen and blood was also assessed. Furthermore, the levels of several cytokines (IL-1β, IL-6, IL-23, TNFα, IFNγ) in the three disease phases were determined, to gain insight into the inflammatory processes of the disease. In conclusion, the data provide an overview of the functional profile of immune cells during EAE pathology.

  18. Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cells Induces a Switch from Classical to Atypical Symptoms in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E.; Figueroa, Fernando E.; Fuentealba, Rodrigo A.; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis. PMID:25838828

  19. Autoimmune hepatitis

    MedlinePlus

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  20. Autoimmune disorders

    MedlinePlus

    ... tissue and antigens. As a result, the body sets off a reaction that destroys normal tissues. The exact cause of autoimmune disorders is unknown. One theory is that some microorganisms (such as bacteria or ...

  1. Autoimmune Epilepsy.

    PubMed

    Toledano, Michel; Pittock, Sean J

    2015-06-01

    Seizures are recognized as a common manifestation of autoimmune limbic encephalitis and multifocal paraneoplastic disorders, but accumulating evidence supports an autoimmune basis for seizures in the absence of syndromic manifestations of encephalitis. Autoimmune encephalitis and epilepsy have been linked to neural-specific autoantibodies targeting both intracellular and plasma membrane antigens. The detection of these antibodies can serve as a diagnostic marker directing physicians toward specific cancers and can assist in therapeutic decision-making, but are not necessary to establish the diagnosis. Response to an immunotherapy trial can support the diagnosis and help establish prognosis. Early recognition is important because expedited diagnosis can facilitate recovery. In this review, the authors summarize the clinical presentation, pathophysiology, and management of autoimmune epilepsies for which neural antigen-specific autoantibodies serve as diagnostic aids. PMID:26060904

  2. Autoimmune hepatitis.

    PubMed

    Heneghan, Michael A; Yeoman, Andrew D; Verma, Sumita; Smith, Alastair D; Longhi, Maria Serena

    2013-10-26

    Autoimmune hepatitis is a disease of the hepatic parenchyma that can present in acute or chronic forms. In common with many autoimmune diseases, autoimmune hepatitis is associated with non-organ-specific antibodies in the context of hepatic autoimmunity. This dichotomy has made definition of a unifying hypothesis in the pathophysiology of the disease difficult, although data from the past 8 years have drawn attention to the role of regulatory T cells. Several triggers have been identified, and the disease arises in genetically susceptible individuals. Clinical and biochemical remission is achievable in up to 85% of cases. For the remaining patients, alternative immunosuppression strategies are an option. Liver transplantation provides an excellent outcome for patients with acute liver failure or complications of end-stage liver disease, including hepatocellular carcinoma. Variant or overlapping syndromes are worthy of consideration when unexpected disease features arise.

  3. Pathobiology of human RH strain induced experimental toxoplasmosis in murine model.

    PubMed

    Sudan, Vikrant; Tewari, A K; Singh, Harkirat; Singh, R

    2016-09-01

    Of late, toxoplasmosis has gained immense importance as an opportunist parasite in immunocompromised patients. In immunocompromised subjects, the disease is supposed to occur in acute form and causes acute toxoplasmic encephalitis. However, the exact pathogenesis of other vital organs, particularly in acute form of infection, is still a matter of debate. Therefore, an attempt was made to study the pathogenesis of acute form of toxoplasmosis using cryopreserved human RH strain of the parasite in murine models. For this, 100 tachyzoites were given to individual mice and upon the setup of acute form of infection, the mice were euthanized and the organs were processed for histopathology. Histopathology revealed tachyzoites in liver only while severe necrosis due to multiplication of tachyzoites were visible in liver, spleen, lungs and brain. Kidneys and heart appeared more or less normal. Finally, the pathology of disease in these organs is described in detail. The present research has generated some vital information regarding necrotic changes in tissues due to acute toxoplasmosis and will defiantly help the researchers in the better understanding of disease particularly in humans and putting up of suitable treatment regime for human subjects infected with acute toxoplasmosis. PMID:27605794

  4. Cardiac-Specific YAP Activation Improves Cardiac Function and Survival in an Experimental Murine MI Model

    PubMed Central

    Lin, Zhiqiang; von Gise, Alexander; Zhou, Pingzhu; Gu, Fei; Ma, Qing; Jiang, Jiangming; Yau, Allan L.; Buck, Jessica N.; Gouin, Katryna A.; van Gorp, Pim R. R.; Zhou, Bin; Chen, Jinghai; Seidman, Jonathan G.; Wang, Da-zhi; Pu, William T.

    2014-01-01

    Rationale Yes-Associated Protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte (CM) proliferation. Objective We hypothesized that YAP activation after myocardial infarction would preserve cardiac function and improve survival. Methods and Results We used a cardiac-specific, inducible expression system to activate YAP in adult mouse heart. Activation of YAP in adult heart promoted CM proliferation and did not deleteriously affect heart function. Furthermore, YAP activation after myocardial infarction (MI) preserved heart function and reduced infarct size. Using adeno-associated virus subtype 9 (AAV9) as a delivery vector, we expressed human YAP in the adult murine myocardium immediately after MI. We found that AAV9:hYAP significantly improved cardiac function and mouse survival. AAV9:hYAP did not exert its salutary effects by reducing CM apoptosis. Rather, AAV9:hYAP stimulated adult CM proliferation. Gene expression profiling indicated that AAV9:hYAP stimulated expression of cell cycle genes and promoted a less mature cardiac gene expression signature. Conclusions Cardiac specific YAP activation after MI mitigated myocardial injury, improved cardiac function, and enhanced survival. These findings suggest that therapeutic activation of YAP or its downstream targets, potentially through AAV-mediated gene therapy, may be a strategy to improve outcome after MI. PMID:24833660

  5. Vaccine potential of plasma bead-based dual antigen delivery system against experimental murine candidiasis.

    PubMed

    Ahmad, Ejaj; Zia, Qamar; Fatima, Munazza Tamkeen; Owais, Mohammad; Saleemuddin, Mohammed

    2015-11-01

    The development of prophylactic anti-candidal vaccine comprising the Candida albicans cytosolic proteins (Cp) as antigen and plasma beads (PB) prepared from plasma as sustained delivery system, is described. The immune-prophylactic potential of various PBs-based dual antigen delivery systems, co-entrapping Cp pre-entrapped in PLGA microspheres were tested in the murine model. Induction of cell mediated immunity was measured by assaying DTH and NO production as well as in vitro proliferation of lymphocytes derived from the immunized animals. Expression of surface markers on APCs (CD80, CD86) and T-cells (CD4+, CD8+) was also evaluated. Humoral immune response was studied by measuring circulating anti-Cp antibodies and their subclasses. When the prophylactic efficacy of the vaccines was tested in mice challenged with virulent C. albicans, the PB-based formulation (PB-PLGA-Cp vaccine) was found to be most effective in the generation of desirable immune response, in terms of suppression of fungal load and facilitating the survival of the immunized animals.

  6. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    PubMed

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.

  7. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    PubMed

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. PMID:22688334

  8. Monoclonal Immunoglobulin G1 Directed against Aspergillus fumigatus Cell Wall Glycoprotein Protects against Experimental Murine Aspergillosis†

    PubMed Central

    Chaturvedi, Ashok K.; Kavishwar, A.; Keshava, G. B. Shiva; Shukla, P. K.

    2005-01-01

    Most of the biological functions related to pathogenicity and virulence reside in the fungal cell wall, which, being the outermost part of the cell, mediates the host-fungus interplay. For these reasons much effort has focused on the discovery of useful inhibitors of cell wall glucan, chitin, and mannoprotein biosynthesis. In the absence of a wide-spectrum, safe, and potent antifungal agent, a new strategy for antifungal therapy is directed towards the development of monoclonal antibodies (MAbs). In the present study the MAb A9 (immunoglobulin G1 [IgG1]) was identified from hybridomas raised in BALB/c mice immunized with cell wall antigen of Aspergillus fumigatus. The immunoreactive epitopes for this IgG1 MAb appeared to be associated with a peptide moiety, and indirect immunofluorescence microscopy revealed its binding to the cell wall surface of hyphae as well as with swollen conidia. MAb A9 inhibited hyphal development as observed by MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (25.76%), reduced the duration of spore germination, and exerted an in vitro cidal effect against Aspergillus fumigatus. The in vivo protective efficacy of MAb A9 was also evaluated in a murine model of invasive aspergillosis, where a reduction in CFU (>4 log10 units) was observed in kidney tissue of BALB/c mice challenged with A. fumigatus (2 × 105 CFU/ml) and where enhanced mean survival times (19.5 days) compared to the control (7.1 days) and an irrelevant MAb (6.1 days) were also observed. PMID:16148172

  9. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models.

    PubMed

    Parra Millán, R; Jiménez Mejías, M E; Sánchez Encinales, V; Ayerbe Algaba, R; Gutiérrez Valencia, A; Pachón Ibáñez, M E; Díaz, C; Pérez Del Palacio, J; López Cortés, L F; Pachón, J; Smani, Y

    2016-08-01

    Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P < 0.05) compared with those for colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P < 0.05] and 2 μg/ml versus 3.4 μg/ml [P < 0.05], respectively). LPC treatment combined with colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both

  10. The potential role of retroviruses in autoimmunity.

    PubMed

    Yu, Philipp

    2016-01-01

    In the last 20 years research in Immunology underwent fundamental changes. Most importantly, the identification of the key role of innate immune pattern recognition receptors (PRRs) that recognize evolutionarily conserved molecular patterns on infectious pathogens. This results in priming of innate immune cells, which in turn activate and direct the adaptive immune response. Progress in innate immune recognition instigated the current working hypothesis, that recognition of endogenous ligands by PRRs results in innate immune cell activation (autoinflammation) or activation of adaptive cells, with self-reactive antigen receptors (autoimmunity). In particular, nucleic acid-sensing innate immune receptors seem to be prime candidates for a mechanistic understanding of autoreactive activation of the immune system. However, it remains uncertain what the actual source of nucleic acid ligands is and what other signals are needed to drive activation of autoreactive innate immune cells and break self-tolerance of the adaptive immune system. Here, I will review our present understanding about whether the infection with exogenous retroviruses or the reactivation of endogenous retroviruses might play an etiological role in certain autoimmune conditions of humans and murine experimental models.

  11. Development and evaluation of quantitative-competitive PCR for quantitation of coxsackievirus B3 RNA in experimentally infected murine tissues.

    PubMed

    Reetoo, K N; Osman, S A; Illavia, S J; Banatvala, J E; Muir, P

    1999-10-01

    A method is described for quantitation of enterovirus RNA in experimentally infected murine tissues. Viral RNA was extracted from tissue samples and amplified by reverse transcriptase PCR in the presence of an internal standard RNA. The ratio of PCR product derived from viral RNA and internal standard RNA was then determined using specific probes in a post-PCR electrochemiluminescent hybridization assay. This provided an estimate of the viral RNA copy number in the original sample, and detection of PCR product derived from internal standard RNA validated sample processing and amplification procedures. RNA copy number correlated with viral infectivity of cell culture-derived virus, and one tissue culture infective dose was found to contain approximately 10(3) genome equivalents. The ratio of RNA copy number to infectivity in myocardial tissue taken from mice during the acute phase of coxsackievirus B3 myocarditis was more variable ranging from 10(4)-10(7), and was dependent on the stage of infection, reflecting differential rates of clearance for viral RNA and viral infectivity. The assay is rapid, and could facilitate investigations which currently rely upon enterovirus quantitation by titration in cell culture. This would be useful for experimental studies of viral pathogenesis, prophylaxis and antiviral therapy.

  12. Interferon-beta treatment of experimental autoimmune encephalomyelitis leads to rapid nonapoptotic termination of T cell infiltration.

    PubMed

    Schmidt, J; Stürzebecher, S; Toyka, K V; Gold, R

    2001-07-01

    We investigated the possible mechanisms how interferon (IFN)-beta may control T cell infiltration in the CNS in experimental autoimmune encephalomyelitis (EAE). Adoptive transfer (AT) EAE was induced in groups of six female Lewis rats. Animals were treated with 3 x 10(5) units of recombinant rat IFN-beta s.c. once at 18 hr, or with 10 mg/kg methylprednisolone (MP) i.v. twice at 18 and 6 hr prior to dissection, or with a combination of both. T cell apoptosis was detected by immunohistochemistry on paraffin sections of spinal cord, using morphological criteria and TUNEL staining. Double labeling of immune cells was done for tumor necrosis factor (TNF)-alpha and metalloproteinase (MMP) 2. Disruption of the blood-brain barrier (BBB) was visualized by staining for albumin. In severe EAE, an increase of T cell apoptosis was seen after IFN-beta alone (all data presented as mean +/- SD: 24.5% +/- 2.2%, P < 0.05, vs. 19.4% +/- 3.1% in controls), and in combination with MP (29.4% +/- 7.3%, P < 0.05 vs. controls). Only the combination therapy decreased T cell infiltration (53.9 +/- 17.7 cells/mm(2), P < 0.05, vs. 99.5 +/- 35.2 cells/mm2 in controls). In moderate EAE, the rate of T cell apoptosis was slightly increased after IFN-beta (21.2% +/- 5.2% vs. 17.4% +/- 5.0% in controls), whereas MP alone (25.5% +/- 3.5%, P < 0.01 vs. controls) and the combination therapy (22.4% +/- 4.8%, P < 0.05 vs. controls) had a clear augmenting effect. IFN-beta tended to decrease T cell infiltration (46.1 +/- 12.7 cells/mm2) compared to controls (59.2 +/- 18.5 cells/mm2). The rate of TNF-alpha-expressing T cells was significantly decreased by IFN-beta and in combination with MP. Also, TNF-alpha expression in macrophages was significantly reduced by IFN-beta and by the combination therapy. The rate of MMP2-expressing macrophages was lower after IFN-beta but clearly decreased only in combination with MP. BBB disruption was ameliorated after IFN-beta but significantly only in combination with MP

  13. Autoimmune encephalopathies

    PubMed Central

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  14. Complement and autoimmunity.

    PubMed

    Ballanti, Eleonora; Perricone, Carlo; Greco, Elisabetta; Ballanti, Marta; Di Muzio, Gioia; Chimenti, Maria Sole; Perricone, Roberto

    2013-07-01

    The complement system is a component of the innate immune system. Its main function was initially believed to be limited to the recognition and elimination of pathogens through direct killing or stimulation of phagocytosis. However, in recent years, the immunoregulatory functions of the complement system were demonstrated and it was determined that the complement proteins play an important role in modulating adaptive immunity and in bridging innate and adaptive responses. When the delicate mechanisms that regulate this sophisticated enzymatic system are unbalanced, the complement system may cause damage, mediating tissue inflammation. Dysregulation of the complement system has been involved in the pathogenesis and clinical manifestations of several autoimmune diseases, such as systemic lupus erythematosus, vasculitides, Sjögren's syndrome, antiphospholipid syndrome, systemic sclerosis, dermatomyositis, and rheumatoid arthritis. Complement deficiencies have been associated with an increased risk to develop autoimmune disorders. Because of its functions, the complement system is an attractive therapeutic target for a wide range of diseases. Up to date, several compounds interfering with the complement cascade have been studied in experimental models for autoimmune diseases. The main therapeutic strategies are inhibition of complement activation components, inhibition of complement receptors, and inhibition of membrane attack complex. At present, none of the available agents was proven to be both safe and effective for treatment of autoimmune diseases in humans. Nonetheless, data from preclinical studies and initial clinical trials suggest that the modulation of the complement system could constitute a viable strategy for the treatment of autoimmune conditions in the decades to come.

  15. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye.

    PubMed

    Xiao, Bing; Wang, Yu; Reinach, Peter S; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei

    2015-01-01

    Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren's Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland

  16. Dynamic Ocular Surface and Lacrimal Gland Changes Induced in Experimental Murine Dry Eye

    PubMed Central

    Xiao, Bing; Wang, Yu; Reinach, Peter S.; Ren, Yueping; Li, Jinyang; Hua, Shanshan; Lu, Huihui; Chen, Wei

    2015-01-01

    Dry eye disease can be a consequence of lacrimal gland insufficiency in Sjögren’s Syndrome or increased tear film evaporation despite normal lacrimal gland function. To determine if there is a correlation between severity effects in these models and underlying pathophysiological responses, we compared the time dependent changes in each of these parameters that occur during a 6 week period. Dry eye was induced in 6-week-old female C57BL/6 mice by exposing them to an Intelligently Controlled Environmental System (ICES). Sixty mice were housed in ICES for 1, 2, 4 and 6 weeks respectively. Twelve were raised in normal environment and received subcutaneous injections of scopolamine hydrobromide (SCOP) 3 times daily for 5 days. Another sixty mice were housed in a normal environment and received no treatment. Corneal fluorescein staining along with corneal MMP-9 and caspase-3 level measurements were performed in parallel with the TUNEL assay. Interleukin-17(IL-17), IL-23, IL-6, IL-1, TNF-α, IFN-γ and TGF-β2 levels were estimated by real-time PCR measurements of conjunctival and lacrimal gland samples (LGs). Immunohistochemistry of excised LGs along with flow cytometry in cervical lymph nodes evaluated immune cell infiltration. Light and transmission electron microscopy studies evaluated LGs cytoarchitectural changes. ICES induced corneal epithelial destruction and apoptosis peaked at 2 weeks and kept stable in the following 4 weeks. In the ICES group, lacrimal gland proinflammatory cytokine level increases were much lower than those in the SCOP group. In accord with the lower proinflammatory cytokine levels, in the ICES group, lacrimal gland cytosolic vesicular density and size exceeded that in the SCOP group. ICES and SCOP induced murine dry eye effects became progressively more severe over a two week period. Subsequently, the disease process stabilized for the next four weeks. ICES induced local effects in the ocular surface, but failed to elicit lacrimal gland

  17. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis.

    PubMed

    Yang, Xue; Yan, Jun; Feng, Juan

    2016-01-15

    Tanshinone IIA (TSIIA), one of the major bioactive components of the traditional Chinese herb Salvia miltiorrhiza, has been reported to have both anti-inflammatory and immunoregulatory effects. The effect of treatment with TSIIA in multiple sclerosis, an autoimmune inflammatory neurodegenerative disease, however, remains poorly understood. In the present study, experimental autoimmune encephalomyelitis (EAE), a classical experimental model of MS, was used to investigate the therapeutic effect of TSIIA. TSIIA attenuated motor dysfunction and improved inflammation and demyelination associated with EAE in a dose-dependent manner. TSIIA also significantly reduced the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule-1 (Iba-1), and protected the integrity of the blood-brain barrier (BBB) by increasing the expression of critical endothelial tight junction (TJ) proteins. TSIIA also inhibited the expression of some adhesion molecules and chemokines, which are considered to be critical for adhesion of immune cells and migration across the BBB. TSIIA was thus shown to be effective in the treatment of EAE through preventing the infiltration of immune cells into the CNS, strengthening the integrity of the BBB and decreasing the numbers of adhesion molecules and chemokines.

  18. Proteomic analysis of rat plasma with experimental autoimmune uveitis based on label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS).

    PubMed

    Guo, Dadong; Gu, Peiming; Liu, Zhengfeng; Tang, Kai; Du, Yuxiang; Bi, Hongsheng

    2015-01-22

    Uveitis is a severe autoimmune eye disease that can cause intraocular inflammation even lead to severe vision loss, and the occurrence of uveitis can be closely associated with abnormal expression of proteins. However, the abnormally expressed proteins involved in uveitis are not well identified. Using liquid chromatography-tandem mass spectrometry technique, we examined the alterations in proteomic expression profiling in rat plasma specimens related to experimental autoimmune uveitis (EAU) versus normal samples. In addition, the experimental verification was further performed using enzyme-linked immunosorbent assay (ELISA) for abnormally expressed proteins in EAU rat plasma. The results indicate that 62 proteins were upregulated and 106 proteins were downregulated in plasma from EAU rats compared with those in saline-treated samples. In the meantime, we observed that the plasma level of complement component 3 in EAU rats was upregulated versus saline-treated rats (from 92.32μg/mL to 168.92μg/mL), whereas the level of interleukin-1 receptor accessory protein was downregulated (from 1120.97pg/mL to 798.39pg/mL), and these results were highly in agreement with those of mass spectrometry determination. Taken together, our results indicate that liquid chromatography-tandem mass spectrometry analysis possesses a good resolution for peptides in plasma, and the findings will provide the baseline plasma dataset for EAU rats and the relevant information can contribute to future studies on the understanding the mechanism of uveitis.

  19. The autoimmune diseases

    SciTech Connect

    Rose, N.R.; Mackay, I.R.

    1985-01-01

    This book contains 25 chapters. Some of the chapter titles are: Genetic Predisposition to Autoimmune Diseases; Systemic Lupus Erythematosus; Autoimmune Aspects of Rheumatoid Arthritis; Immunology of Insulin-Dependent Diabetes; and Adrenal Autoimmunity and Autoimmune Polyglandular Syndromes.

  20. Grouping Annotations on the Subcellular Layered Interactome Demonstrates Enhanced Autophagy Activity in a Recurrent Experimental Autoimmune Uveitis T Cell Line

    PubMed Central

    Zhao, Yu; Dong, Yucui; Ju, Huanyu; Yang, Jinfeng; Sun, Jianhua; Li, Xia; Ren, Huan

    2014-01-01

    Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse–remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652) between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis. PMID:25116327

  1. Pathogenic Function of Herpesvirus Entry Mediator in Experimental Autoimmune Uveitis by Induction of Th1- and Th17-Type T Cell Responses.

    PubMed

    Sakoda, Yukimi; Nagai, Tomohiko; Murata, Sizuka; Mizuno, Yukari; Kurosawa, Hiromi; Shoda, Hiromi; Morishige, Naoyuki; Yanai, Ryoji; Sonoda, Koh-Hei; Tamada, Koji

    2016-04-01

    Herpesvirus entry mediator (HVEM), a member of the TNFR superfamily, serves as a unique molecular switch to mediate both stimulatory and inhibitory cosignals, depending on its functions as a receptor or ligand interacting with multiple binding partners. In this study, we explored the cosignaling functions of HVEM in experimental autoimmune uveitis (EAU), a mouse model resembling human autoimmune uveitis conditions such as ocular sarcoidosis and Behcet disease. Our studies revealed that EAU severity significantly decreased in HVEM-knockout mice compared with wild-type mice, suggesting that stimulatory cosignals from the HVEM receptor are predominant in EAU. Further studies elucidated that the HVEM cosignal plays an important role in the induction of both Th1- and Th17-type pathogenic T cells in EAU, including differentiation of IL-17-producing αβ(+)γδ(-) conventional CD4(+) T cells. Mice lacking lymphotoxin-like, inducible expression, competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed by T lymphocytes : LIGHT), B- and T-lymphocyte attenuator (BTLA) or both LIGHT and BTLA are also less susceptible to EAU, indicating that LIGHT-HVEM and BTLA-HVEM interactions, two major molecular pathways mediating HVEM functions, are both important in determining EAU pathogenesis. Finally, blocking HVEM cosignals by antagonistic anti-HVEM Abs ameliorated EAU. Taken together, our studies revealed a novel function of the HVEM cosignaling molecule and its ligands in EAU pathogenesis through the induction of Th1- and Th17-type T cell responses and suggested that HVEM-related molecular pathways can be therapeutic targets in autoimmune uveitis. PMID:26912321

  2. The complement system contributes to the pathology of experimental autoimmune encephalomyelitis by triggering demyelination and modifying the antigen-specific T and B cell response.

    PubMed

    Hundgeburth, Lorenz C; Wunsch, Marie; Rovituso, Damiano; Recks, Mascha S; Addicks, Klaus; Lehmann, Paul V; Kuerten, Stefanie

    2013-03-01

    So far, studies of the human autoimmune disease multiple sclerosis (MS) have largely been hampered by the absence of a pathogenic B cell component in its animal model, experimental autoimmune encephalomyelitis (EAE). To overcome this shortcoming, we have previously introduced the myelin basic protein (MBP)-proteolipid protein (PLP) MP4-induced EAE, which is B cell and autoantibody-dependent. Here we show that MP4-immunized wild-type C57BL/6 mice displayed a significantly lower disease incidence when their complement system was transiently depleted by a single injection of cobra venom factor (CVF) prior to immunization. Considering the underlying pathomechanism, our data suggest that the complement system is crucial for MP4-specific antibodies to trigger CNS pathology. Demyelinated lesions in the CNS were colocalized with complement depositions. In addition, B cell deficient JHT mice reconstituted with MP4-reactive serum showed significantly attenuated clinical and histological EAE after depletion of complement by CVF. The complement system was also critically involved in the generation of the MP4-specific T and B cell response: in MP4-immunized wild-type mice treated with CVF the MP4-specific cytokine and antibody response was significantly attenuated compared to untreated wild-type mice. Taken together, we propose two independent mechanisms by which the complement system can contribute to the pathology of autoimmune encephalomyelitis. Our data corroborate the role of complement in triggering antibody-dependent demyelination and antigen-specific T cell immunity and also provide first evidence that the complement system can modify the antigen-specific B cell response in EAE and possibly MS.

  3. The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS)

    PubMed Central

    Al Jumah, Mohammed A.; Abumaree, Mohamed H.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE. PMID:22942767

  4. Utility of the microculture method in non-invasive samples obtained from an experimental murine model with asymptomatic leishmaniasis.

    PubMed

    Allahverdiyev, Adil M; Bagirova, Malahat; Cakir-Koc, Rabia; Elcicek, Serhat; Oztel, Olga Nehir; Canim-Ates, Sezen; Abamor, Emrah Sefik; Yesilkir-Baydar, Serap

    2012-07-01

    The sensitivity of diagnostic methods for visceral leishmaniasis (VL) decreases because of the low number of parasites and antibody amounts in asymptomatic healthy donors who are not suitable for invasive sample acquisition procedures. Therefore, new studies are urgently needed to improve the sensitivity and specificity of the diagnostic approaches in non-invasive samples. In this study, the sensitivity of the microculture method (MCM) was compared with polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescent antibody test (IFAT) methods in an experimental murine model with asymptomatic leishmaniasis. Results showed that the percent of positive samples in ELISA, IFAT, and peripheral blood (PB) -PCR tests were 17.64%, 8.82%, and 5.88%, respectively, whereas 100% positive results were obtained with MCM and MCM-PCR methods. Thus, this study, for the first time, showed that MCM is more sensitive, specific, and economic than other methods, and the sensitivity of PCR that was performed to samples obtained from MCM was higher than sensitivity of the PCR method sampled by PB. PMID:22764296

  5. IgE expression on the surface of B1 and B2 lymphocytes in experimental murine schistosomiasis.

    PubMed

    Oliveira, F L; Aguiar, A M; Borojevic, R; El-Cheikh, M C

    2005-07-01

    In a previous study we monitored the distribution and phenotype expression of B1 cells during the evolution of experimental murine schistosomiasis mansoni and we proposed that the B1 cells were heterogeneous: a fraction which originated in the spleen and followed the migratory pathway to mesenteric ganglia, while the other was the resident peritoneal B1-cell pool. In the present study, we have addressed the question of whether these two B1-lymphocyte populations are involved in the production of the late Ig isotype IgE, which is present in high levels in schistosomal infection. Lymphocyte expression of surface markers and immunoglobulins were monitored by immunofluorescence flow cytometry. Both in the spleen and mesenteric ganglia, the B1 and B2 cells were induced to switch from IgM to IgE in the early Th2-dominated phase of the disease, with an increase of IgE in its later phases. Conversely, peritoneal B1-IgM+ switched to the remaining IgE+ present in high numbers in the peritoneal cavity throughout the disease. We correlated the efficient induction of the expression of late Ig isotypes by B1 cells with high levels of inflammatory cytokines due to the intense host response to the presence of worms and their eggs in the abdominal cavity. In conclusion, B1 cells have a different switch behavior from IgM to IgE indicating that these cell sub-populations depend on the microenvironment.

  6. STAT3 supports experimental K-RasG12D–induced murine myeloproliferative neoplasms dependent on serine phosphorylation

    PubMed Central

    Gough, Daniel J.; Marié, Isabelle J.; Lobry, Camille; Aifantis, Iannis

    2014-01-01

    Juvenile myelomonocytic leukemia, acute myeloid leukemia (AML), and other myeloproliferative neoplasms (MPNs) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of signal transducer and activator of transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine-phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras–dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras–mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine-phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras. PMID:25150294

  7. Ultrastructural Study on Tissue Alterations Caused by Trypanosomatids in Experimental Murine Infections

    PubMed Central

    Finol, Héctor J.; Roschman-González, Antonio

    2014-01-01

    The ultrastructural study in different tissues of mice experimentally infected with isolates of Trypanosoma evansi, Trypanosoma cruzi, and Leishmania mexicana reveals changes in cardiac myocytes, skeletal muscle fibers, and hepatic, adrenal, kidney, and spleen cells. Some of these changes were cytoarchitectural and others consisted of necrosis. Alterations in the microvasculature were also found. The mononuclear cell infiltrate included neutrophils, eosinophils, and macrophages. This work shows that diverse mice tissues are important target for trypanosomatids. PMID:25072046

  8. [Autoimmune encephalitis].

    PubMed

    Günther, Albrecht; Schubert, Julia; Brämer, Dirk; Witte, Otto Wilhelm

    2016-08-01

    Autoimmune encephalitis, an inflammatory disease of the brain, is usually attributed to antibody-mediated damage and dysfunction of neuronal structures. A distinction is made between onconeuronal antibodies (directed against intracellular neuronal antigens with resulting paraneoplastic neurological syndromes) and antibodies directed against neuronal cell surface proteins (with resulting synaptic encephalopathies). Anti-NMDA-Receptor-Encephalitis, the most common form of autoimmune encephalopathy, is characterized by a phased course of disease. Early disease phase involves nonspecific prodromes (fatigue, fever, headache) which lead to family doctor or emergency department consultation. Subsequently, neuropsychiatric behavioural problems, seizures, disturbance of memory and finally coma, dysautonomia and respiratory insufficiency often result in major complications (e.g. status epilepticus) necessitating intensive care treatment. The diagnosis is secured by detection of auto-antibodies in serum or cerebrospinal fluid. An intensive search for tumors is also recommended. The treatment of autoimmune encephalitis comprises of immunomodulatory and immunosuppessive strategies. Tumor therapy is the most important treatment of autoimmune encephalitis by onconeuronal antibodies. PMID:27557073

  9. Environmental Triggers of Autoimmune Thyroiditis

    PubMed Central

    Burek, C. Lynne; Talor, Monica V.

    2009-01-01

    Autoimmune thyroiditis is among the most prevalent of all the autoimmunities. Autoimmune thyroiditis is multifactorial with contributions from genetic and environmental factors. Much information has been published about the genetic predisposition to autoimmune thyroiditis both in experimental animals and humans. There is, in contrast, very little data on environmental agents that can serve as the trigger or autoimmunity in a genetically predisposed host. The best-established environmental factor is excess dietary iodine. Increased iodine consumption is strongly implicated as a trigger for thyroiditis, but only in genetically susceptible individuals. However, excess iodine is not the only environmental agent implicated as a trigger leading to autoimmune thyroiditis. There are a wide variety of other synthetic chemicals that affect the thyroid gland or have the ability to promote immune dysfunction in the host. These chemicals are released into the environment by design, such as in pesticides, or as a by-product of industry. Candidate pollutants include polyaromatic hydrocarbons, polybrominated biphenols, and polychlorinated biphenols, among others. Infections are also reputed to trigger autoimmunity and may act alone or in concert with environmental chemicals. We have utilized a unique animal model, the NOD.H2h4 mouse to explore the influence of iodine and other environmental factors on autoimmune thyroiditis. PMID:19818584

  10. Environmental triggers of autoimmune thyroiditis.

    PubMed

    Burek, C Lynne; Talor, Monica V

    2009-01-01

    Autoimmune thyroiditis is among the most prevalent of all the autoimmunities. Autoimmune thyroiditis is multifactorial with contributions from genetic and environmental factors. Much information has been published about the genetic predisposition to autoimmune thyroiditis both in experimental animals and humans. There is, in contrast, very little data on environmental agents that can serve as the trigger for autoimmunity in a genetically predisposed host. The best-established environmental factor is excess dietary iodine. Increased iodine consumption is strongly implicated as a trigger for thyroiditis, but only in genetically susceptible individuals. However, excess iodine is not the only environmental agent implicated as a trigger leading to autoimmune thyroiditis. There are a wide variety of other synthetic chemicals that affect the thyroid gland or have the ability to promote immune dysfunction in the host. These chemicals are released into the environment by design, such as in pesticides, or as a by-product of industry. Candidate pollutants include polyaromatic hydrocarbons, polybrominated biphenols, and polychlorinated biphenols, among others. Infections are also reputed to trigger autoimmunity and may act alone or in concert with environmental chemicals. We have utilized a unique animal model, the NOD.H2(h4) mouse to explore the influence of iodine and other environmental factors on autoimmune thyroiditis. PMID:19818584

  11. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  12. Effects of ionizing radiation on bone cell differentiation in an experimental murine bone cell model

    NASA Astrophysics Data System (ADS)

    Baumstark-Khan, Christa; Lau, Patrick; Hellweg, Christine; Reitz, Guenther

    During long-term space travel astronauts are exposed to a complex mixture of different radiation types under conditions of dramatically reduced weight-bearing activity. It has been validated that astronauts loose a considerable amount of bone mass at a rate up to one to two percent each month in space. Therapeutic doses of ionizing radiation cause bone damage and increase fracture risks after treatment for head-and-neck cancer and in pelvic irradiation. For low radiation doses, the possibility of a disturbed healing potential of bone was described. Radiation induced damage has been discussed to inflict mainly on immature and healing bone. Little is known about radiation effects on bone remodelling and even less on the combined action of microgravity and radiation. Bone remodelling is a life-long process performed by balanced action of cells from the osteoblast and osteoclast lineages. While osteoblasts differentiate either into bone-lining cells or into osteocytes and play a crucial role in bone matrix synthesis, osteoclasts are responsible for bone resorption. We hypothesize that the balance between bone matrix assembly by osteocytes and bone degradation by osteoclasts is modulated by microgravity as well as by ionizing radiation. To address this, a cell model consisting of murine cell lines with the potential to differentiate into bone-forming osteoblasts (OCT-1, MC3T3-E1 S24, and MC3T3-E1 S4) was used for studying radiation response after exposure to simulated components of cosmic radiation. Cells were exposed to graded doses of 150 kV X-rays, α particles (0.525 MeV/u, 160 keV/µm; PTB, Braunschweig, Germany) and accelerated heavy ions (75 MeV/u carbon, 29 keV/µm; 95 MeV/u argon, 230 keV/µm; GANIL, Caen, France). Cell survival was measured as colony forming ability; cell cycle progression was analyzed via fluorescence-activated cell scanning (FACS) by measurement of the content of propidium iodide-stained DNA, DNA damage was visualized by γH2AX

  13. Autoimmunity in 2015.

    PubMed

    Selmi, Carlo

    2016-08-01

    Compared to the clear trend observed in previous years, the number of peer-reviewed articles published during 2015 and retrieved using the "autoimmunity" key word declined by 4 %, while remaining 5 % of immunology articles. On the other hand, a more detailed analysis of the published articles in leading immunology and autoimmunity journals revealed exciting scenarios, with fascinating lines of evidence being supported by convincing data and likely followed by rapid translational or clinical developments. As examples, the study of the microbiome, the development of new serum or other tissue biomarkers, and a more solid understanding of disease pathogenesis and tolerance breakdown mechanisms have been central issues in the past year. Furthermore and similar to the oncology field, progress in the understanding of single autoimmune condition is becoming most specific with psoriatic and rheumatoid arthritis being ideal paradigms with treatment options diverging after decades of common therapies, as illustrated by IL17-targeting approaches. The ultimate result of these advances is towards personalized medicine with an ideal approach being tailored on a single patient, based on a finely tuned definition of the immunogenetics, epigenetics, microbiome, and biomarkers. Finally, experimental reports suggest that cancer-associated immune mechanisms or the role of T and B cell subpopulations should be better understood in autoimmune diseases. While we hailed the 2014 literature in the autoimmunity world as part of an annus mirabilis, we should not be mistaken in the strong stimulus of research in autoimmunity represented by the 2015 articles that will be summarized in this article. PMID:27422713

  14. Autoimmune disease and pregnancy.

    PubMed

    Jones, W R

    1994-06-01

    Autoimmune diseases are relatively common in women, and tend to occur in the childbearing years. These disorders fall broadly into two groups: (i) Multisystem diseases such as systemic lupus erythematosus (SLE) and related connective tissue disorders (CTD). This group includes the 'pre-clinical' antiphospholipid or lupus obstetric syndrome which may first manifest itself as a pregnancy disorder causing recurrent abortion, fetal death, fetal growth retardation and early onset severe pre-eclampsia. (ii) Tissue- or organ-specific disorders such as autoimmune thrombocytopaenic purpura (ATP), autoimmune thyroid disease (Graves' disease, Hashimoto's autoimmune thyroiditis, and post-postum thyroiditis), autoimmune haemolytic anaemia, and the very rare myasthenia gravis. The study of autoimmune diseases against the background of pregnancy as an experimental system of nature has provided important insights into the nature of the disease processes and the relevance or otherwise of circulating autoantibodies to pathological effects. Thus, for example, if neonatal manifestations of adult disease are causally related to the transfer of autoantibodies across the placenta, they will disappear over a time course consistent with the catabolism of IgG, providing no permanent damage is produced. Conversely, if autoantibodies are demonstrable in the neonate, in the absence of clinical effects, they may only be an epiphenomenon of the maternal disease. In addition, on occasions, disease manifestations may be seen in the baby when the mother shows none. This may occur when the mother is in remission, but still has circulating antibodies, or when she has an occult form of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model

    PubMed Central

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  16. Vaccinia virus Transmission through Experimentally Contaminated Milk Using a Murine Model.

    PubMed

    Rehfeld, Izabelle Silva; Guedes, Maria Isabel Maldonado Coelho; Fraiha, Ana Luiza Soares; Costa, Aristóteles Gomes; Matos, Ana Carolina Diniz; Fiúza, Aparecida Tatiane Lino; Lobato, Zélia Inês Portela

    2015-01-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV), which affects dairy cattle and humans. Previous studies have detected the presence of viable virus particles in bovine milk samples naturally and experimentally contaminated with VACV. However, it is not known whether milk contaminated with VACV could be a route of viral transmission. However, anti-Orthopoxvirus antibodies were detected in humans from BV endemic areas, whom had no contact with affected cows, which suggest that other VACV transmission routes are possible, such as consumption of contaminated milk and dairy products. Therefore, it is important to study the possibility of VACV transmission by contaminated milk. This study aimed to examine VACV transmission, pathogenesis and shedding in mice orally inoculated with experimentally contaminated milk. Thirty mice were orally inoculated with milk containing 107 PFU/ml of VACV, and ten mice were orally inoculated with uncontaminated milk. Clinical examinations were performed for 30 consecutive days, and fecal samples and oral swabs (OSs) were collected every other day. Mice were euthanized on predetermined days, and tissue and blood samples were collected. Nested-PCR, plaque reduction neutralization test (PRNT), viral isolation, histopathology, and immunohistochemistry (IHC) methods were performed on the collected samples. No clinical changes were observed in the animals. Viral DNA was detected in feces, blood, OSs and tissues, at least in one of the times tested. The lungs displayed moderate to severe interstitial lymphohistiocytic infiltrates, and only the heart, tonsils, tongue, and stomach did not show immunostaining at the IHC analysis. Neutralizing antibodies were detected at the 20th and 30th days post infection in 50% of infected mice. The results revealed that VACV contaminated milk could be a route of viral transmission in mice experimentally infected, showing systemic distribution and shedding through feces and oral mucosa, albeit

  17. Role of CD8^+ T Cells in Murine Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Zhang, Sheng-Le; Pernis, Benvenuto

    1992-05-01

    The course of experimental allergic encephalomyelitis (EAE), an animal model for multiple sclerosis, is affected by immunoregulatory T lymphocytes. When animals are immunized with encephalitogenic peptide of myelin basic protein and recover from the first episode of EAE, they become resistant to a second induction of this disease. Animals depleted of CD8^+ T cells by antibody-mediated clearance were used to examine the role of CD8^+ T cells in EAE. These cells were found to be major participants in the resistance to a second induction of EAE but were not essential for spontaneous recovery from the first episode of the disease.

  18. AB036. Effects and its potential mechanisms of Cox-2 inhibitors on ejaculation latency of rat with experimental autoimmune prostatitis

    PubMed Central

    Zheng, Tao; Wang, Rui; Zhang, Tian-Biao; Jia, Dong-Hui; Wang, Chao-Liang; Sun, Yang; Zhang, Wei-Xing

    2016-01-01

    Background To investigate the effects and its potential mechanisms of Cox-2 inhibitors on ejaculation latency of rat with experimental autoimmune prostatitis (EAP). Methods Thirty six male Wistar rats with normal sexual function were screened by using the copulatory test, and were randomly divided into 3 groups: the model group (n=16), the normal control group (n=10) and the celecoxib treatment group (n=10). EAP rat model was established in the model group and the celecoxib treatment group by subcutaneous multiple point’s injection of male prostate gland extract emulsified in an equal volume of Freund’s adjuvant at the 0 and 21th day. Control animals received equal volume of saline. From the 0th day, the celecoxib treatment group was given a gavage of celecoxib (18 mg·kg-1·d-1), the model group and the normal control group were given a gavage of saline (0.1 mL·kg-1·d-1). Eight weeks later, the sexual behavior was investigated by the copulatory test, the morphological change of prostatic tissue was observed by light microscopy after HE staining, cytokines (TNF-α, IL-1β) in serum were detected by ELISA, the levels of 5-HT, 5-HT1A receptor, 5-HT2C receptor and SERT in T13-L2 and L5-S2 spinal cord tissue were detected by immunohistochemical staining and Western Blot. Results In model group, prostatic inflammation was found in 12 rats, and not in another 4 rats. The 4 rats were not included in the statistical analysis. In normal control group, prostatic inflammation was not found. In the celecoxib treatment group, there was a small amount of interstitial infiltration of inflammatory cells in rat’s prostate. In the copulatory test, compared with normal control group, mount latency (ML) and intromission latency (IL) in the model group were significantly prolonged (P<0.05); ejaculation latency (EL) in the model group was significantly shortened (P<0.05). There was no significant difference in these sexual behavior parameters between the normal control group and

  19. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis.

    PubMed

    Magliozzi, Roberta; Columba-Cabezas, Sandra; Serafini, Barbara; Aloisi, Francesca

    2004-03-01

    Given the abnormalities in B-cell activity occurring in the central nervous system (CNS) of patients with multiple sclerosis (MS), we have explored the possibility that CNS inflammation induced in mouse models of experimental autoimmune encephalomyelitis (EAE) triggers expression of molecules that control the development and functional organization of lymphoid follicles, the sites where B-cell responses are initiated. By reverse transcription-polymerase chain reaction (RT-PCR), we find that gene expression of CXCL13, a chemokine involved in B-cell recruitment into lymphoid follicles, and BAFF, a key regulator of B-cell survival, is markedly and persistently upregulated in the CNS of mice with relapsing-remitting and chronic-relapsing EAE. Using immunohistochemical techniques, we also show the presence of lymphoid follicle-like structures containing B cells and a reticulum of CXCL13+ and FDC-M1+ follicular dendritic cells within the meninges of several mice undergoing progressive relapsing EAE. These observations indicate that, under chronic inflammatory conditions, the less immunoprivileged meningeal compartment is the site where ectopic lymphoid follicles preferentially develop and where pathogenic B-cell responses could be sustained in autoimmune disorders of the CNS.

  20. VPAC2 (vasoactive intestinal peptide receptor type 2) receptor deficient mice develop exacerbated experimental autoimmune encephalomyelitis with increased Th1/Th17 and reduced Th2/Treg responses

    PubMed Central

    Wang, Yuqi; Lopez, Robert; Waschek, James

    2014-01-01

    Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two structurally-related neuropeptides with widespread expression in the central and peripheral nervous systems. Although these peptides have been repeatedly shown to exert potent anti-inflammatory actions when administered in animal models of inflammatory disease, mice deficient in VIP and PACAP were recently shown to exhibit different phenotypes (ameliorated and exacerbated, respectively) in response to experimental autoimmune encephalomyelitis (EAE). Therefore, elucidating what are the specific immunoregulatory roles played by each of their receptor subtypes (VPAC1, VPAC2, and PAC1) is critical. In this study, we found that mice with a genetic deletion of VIPR2, encoding the VPAC2 receptor, exhibited exacerbated (MOG35-55)-induced EAE compared to wild type mice, characterized by enhanced clinical and histopathological features, increased proinflammatory cytokines (TNF-α, IL-6, IFN-γ (Th1), and IL-17 (Th17)) and reduced anti-inflammatory cytokines (IL-10, TGFβ, and IL-4 (Th2)) in the CNS and lymph nodes. Moreover, the abundance and proliferative index of lymph node, thymus and CNS CD4+CD25+FoxP3+ Tregs were strikingly reduced in VPAC2-deficient mice with EAE. Finally, the in vitro suppressive activity of lymph node and splenic Tregs from VPAC2-deficient mice was impaired. Overall, our results demonstrate critical protective roles for PACAP and the VPAC2 receptor against autoimmunity, promoting the expansion and maintenance of the Treg pool. PMID:25305591

  1. Mature dendritic cells cause Th17/Treg imbalance by secreting TGF-β1 and IL-6 in the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Lu, Pingxia; Cao, Yingping; Wang, Meihua; Zheng, Peizheng; Hou, Juan; Zhu, Chanhong

    2016-01-01

    Multiple sclerosis (MS) is generally acknowledged to be an autoimmune disease, but its etiology remains unknown. The most intensively studied animal model of MS is experimental autoimmune encephalomyelitis (EAE). Dendritic cells (DCs), the professional antigen presenting cells (APCs), have gained increasing attention because they connect innate and adaptive immunity. The aim of this study was to determine the role of mature DCs in the pathogenesis of EAE. It was found that the number of mature DCs in the EAE spleen increased compared to the control group (p < 0.05). And there was an imbalance between Th17 (effector) and Treg (regulatory) in EAE. The data showed that mature DCs can regulate the differentiation of Th17 and Treg in EAE. In addition, there was a significant difference in secretion of TGF-β1 and IL-6 between mature DCs from mice with EAE and controls. The present data suggest that mature DCs cause an imbalance between Th17 and Treg by secreting TGF-β1 and IL-6 in the pathogenesis of EAE disease. Thus, targeting DC may be an effective strategy for treating MS. PMID:27536199

  2. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice.

    PubMed

    Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li

    2016-10-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. PMID:27500459

  3. Neonatal Induction of Myelin-specific Th1/Th17 Immunity Does Not Result in Experimental Autoimmune Encephalomyelitis and Can Protect Against the Disease in Adulthood

    PubMed Central

    Hofstetter, Harald H.; Kovalovsky, Andra; Shive, Carey L.; Lehmann, Paul V.; Forsthuber, Thomas G.

    2011-01-01

    The neonatal immune system is believed to be biased towards T helper type 2 (Th2) immunity, but under certain conditions neonates can also develop Th1 immune responses. Neonatal Th2 immunity to myelin antigens is not pathogenic and can prevent induction of experimental autoimmune encephalomyelitis (EAE) in adulthood, but the consequences of neonatally induced Th1 immunity to self antigens have remained unresolved. Here, we show that neonatal injection of mice with myelin antigens emulsified in complete Freunds’ adjuvant (CFA) induced vigorous production of IFN-γ and IL-17, but not IL-5, consistent with myelin-specific Th1/Th17 immunity. Importantly, the myelin-specific Th1/Th17 cells persisted in the mice until adulthood without causing symptoms of EAE. Intraperitoneal, but not subcutaneous injection of neonates with myelin antigens protected against induction of EAE as adults. Intraperitoneally injected neonates showed a substantial decrease of the number and avidity of myelin-reactive Th17 cells, suggesting a decrease in IL-17 producing precursor cells as the mechanism of protection from EAE upon reinjection with myelin antigens as adults. The results could provide a rationale for the presence of autoreactive T cells found in healthy human individuals without autoimmune disease. PMID:17482277

  4. AAV8-Mediated Angiotensin-Converting Enzyme 2 Gene Delivery Prevents Experimental Autoimmune Uveitis by Regulating MAPK, NF-κB and STAT3 Pathways

    PubMed Central

    Qiu, Yiguo; Tao, Lifei; Zheng, Shijie; Lin, Ru; Fu, Xinyu; Chen, Zihe; Lei, Chunyan; Wang, Jiaming; Li, Hongwei; Li, Qiuhong; Lei, Bo

    2016-01-01

    Renin angiotensin system (RAS) is a key hormonal system which regulates the cardiovascular function and is implicated in several autoimmune diseases. With the discovery of the angiotensin-converting enzyme 2 (ACE2), a protective axis of RAS namely ACE2/Ang-(1–7)/Mas that counteracts the deleterious ACE/AngII/AT1R axis has been established. This axis is emerging as a novel target to attenuate ocular inflammation. However, the underlying molecular mechanisms remain unclear. We investigated the hypothesis that enhancing the activity of the protective axis of RAS by subretinal delivery of an AAV8 (Y733F)-ACE2 vector would protect against the ocular inflammation in experimental autoimmune uveitis (EAU) mice through regulating the local immune responses. Our studies demonstrated that increased ACE2 expression exerts protective effects on inflammation in EAU mouse by modulating ocular immune responses, including the differentiation of Th1/Th17 cells and the polarization of M1/M2 macrophages; whereas the systemic immune responses appeared not affected. These effects were mediated by activating the Ang-(1–7)/Mas and inhibiting the MAPK, NF-κB and STAT3 signaling pathways. This proof-of-concept study suggests that activation of ocular ACE2/Ang-(1–7)/Mas axis with AAV gene transfer modulates local immune responses and may be a promising, long-lasting therapeutic strategy for refractory and recurrent uveitis, as well as other inflammatory eye diseases. PMID:27558087

  5. The induction of experimental autoimmune myocarditis in mice lacking CD4 or CD8 molecules [corrected] [published erratum appears in J Exp Med 1994 Jan 1;179(1):371

    PubMed Central

    1993-01-01

    Experimental induction of most autoimmune diseases appears to depend on the activation of CD4+ T helper cells, while CD8+ lymphocytes may have a role in disease progression. To study the role of CD4+ and CD8+ T cell subsets in T cell-dependent autoimmunity, mice lacking CD4 or CD8 molecules after gene targeting were injected with cardiac myosin to induce organ specific autoimmune myocarditis. Mice homozygous for the CD8 mutation (CD8-/-) developed significantly more severe disease as compared to CD4+/-CD8+/- controls. Surprisingly, CD4-/- mice developed autoimmune myocarditis with infiltration of TCR alpha beta +CD4-CD8- T cells in the heart tissue and appearance of autoantibodies. These data demonstrate that the lack of CD4+ or CD8+ T cells has no significant influence on the initiation of autoimmune myocarditis. CD4+ and CD8+ cells regulate disease severity and these results may explain the occurrence of autoimmunity in CD4 immunodeficiencies. PMID:8228830

  6. Comparative study of four antifungal drugs in an experimental model of murine cryptococcosis.

    PubMed

    Bava, A J; Iovannitti, C; Negroni, R

    1989-11-01

    A comparative study among amphotericin B, 5-fluorocytosine, itraconazole and fluconazole in the treatment of experimental cryptococcosis in mice, was carried out. Seventy male Balb C mice were inoculated intraperitoneally with 10(7) cells of Cryptococcus neoformans var. neoformans. They were divided in 7 groups of 10 animals each one: 1) treated with fluconazole by gavage at a daily dose of 16 mg/kg; 2) treated with itraconazole by gavage at a daily dose of 16 mg/kg; 3) treated with 5-fluorocytosine by gavage at a daily dose of 300 mg/kg; 4) treated with amphotericin B intraperitoneally at a dose of 6 mg/kg every other day; 5) control animals receiving polietilenglicol 200 by gavage; 6) control animals receiving distilled water by gavage and 7) control animals receiving sterile distilled water by intraperitoneal route. All the treatments started 5 days after the challenge inoculation and they were given for 2 weeks. The following parameters were taken into account: survival time, macroscopic aspect of the organ after the complete autopsy, microscopic investigation of yeasts in brain, lungs, spleen and liver, histopathology studies of these organs, the colony forming units per gram and massive seeding of brain and lungs. The survival index of the different groups was the most efficient method to measure the antifungal compounds activity. Amphotericin B increased significantly the animals survival and modified the histopathologic response in the studied organs. The colony forming units and the massive seeding in brain and lung showed that this antifungal agent is unable of producing the biological cure of this experimental model.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis.

    PubMed Central

    Fattal, E; Rojas, J; Youssef, M; Couvreur, P; Andremont, A

    1991-01-01

    The tissue distribution of ampicillin entrapped in liposomes was studied in normal noninfected mice and showed that ampicillin concentrated mostly in the liver and spleen. Liposomate ampicillin was significantly more effective than free ampicillin in reducing splenic and hepatic bacterial counts in C57BL/Ka nude mice chronically infected with Listeria monocytogenes EGD. It was also significantly more effective than free ampicillin in reducing mortality in C57BL/6 mice acutely infected with Salmonella typhimurium C5. Comparison of the results with those previously obtained in the same experimental models with the same amounts of ampicillin bound to polyisohexylcyanoacrylate nanoparticles showed that liposomes were more effective than nanoparticles (M. Youssef, E. Fattal, M. J. Alonso, L. Roblot-Treupel, J. Sauzières, C. Tancrède, A. Omnès, P. Couvreur, and A. Andremont, Antimicrob. Agents Chemother. 32:1204-1207, 1988) in targeting ampicillin to the spleen but were less effective than nanoparticles in targeting ampicillin to the liver and reducing mortality in acute salmonellosis. PMID:2069386

  8. Heterogeneity of Wild Leishmania major Isolates in Experimental Murine Pathogenicity and Specific Immune Response

    PubMed Central

    Kébaïer, C.; Louzir, H.; Chenik, M.; Salah, A. Ben; Dellagi, K.

    2001-01-01

    Virulence variability was investigated by analyzing the experimental pathogenicity of 19 Leishmania major strains in susceptible BALB/c mice. Twelve strains were isolated from Tunisian patients with zoonotic cutaneous leishmaniasis; seven strains were isolated in Syria (n = 1), Saudi Arabia (n = 2), Jordan (n = 2), or Israel (n = 2). BALB/c mice were injected in the hind footpad with 2 × 106 amastigotes of the various isolates, and lesion progression was recorded weekly for 9 weeks. Interleukin-4 (IL-4) and gamma interferon (IFN-γ) production of lymph node mononuclear cells activated in vitro with parasite antigens were evaluated 5 weeks after infection. We show that disease progression induced by different L. major isolates was largely heterogeneous although reproducible results were obtained when using the same isolate. Interestingly, isolates from the Middle East induced a more severe disease than did the majority of Tunisian isolates. Strains with the highest virulence tend to generate more IL-4 and less IFN-γ in vitro at week 5 postinfection as well as higher levels of early IL-4 mRNA in the lymph node draining the inoculation site at 16 h postinfection. These results suggest that L. major isolates from the field may differ in virulence, which influences the course of the disease induced in mice and the type of immune response elicited by the infected host. PMID:11447167

  9. [Autoimmune hepatitis].

    PubMed

    Marcais, O; Larrey, D

    1994-01-01

    Acute and chronic autoimmune hepatitis are uncommon inflammatory liver diseases, mainly occurring in young women, in association with hypergammaglobulinemia and serum autoantibodies. Different types have been described: type 1 characterized by anti-smooth muscle and anti-nuclear antibodies; type 2 characterized by anti-LKM1 antibodies; type 3 characterized by anti-SLA antibodies. Other types, still not clearly defined, may exist. Autoimmune hepatitis are associated with HLA A1 B8 DR3 and HLA DR4. Without any treatment, the disease leads to cirrhosis and, uncommonly, to fulminant hepatitis. Large doses of corticosteroids usually allow to control the disease. Relapse of hepatitis is frequent after corticosteroid withdrawal. Concomitant administration of immunosuppressive agents such as azathioprine allows to reduce corticosteroid dosage and contributes to maintain the remission of the disease. Liver transplantation may be indicated in cases of severe cirrhosis or fulminant hepatitis.

  10. Macrophage Phenotype in the Ocular Surface of Experimental Murine Dry Eye Disease.

    PubMed

    You, In-Cheon; Coursey, Terry G; Bian, Fang; Barbosa, Flavia L; de Paiva, Cintia S; Pflugfelder, Stephen C

    2015-08-01

    To evaluate the phenotype of macrophages in the cornea and conjunctiva of C57BL/6 mice with induced experimental dry eye. C57BL/6 mice exposed to desiccating stress (DS) were evaluated at 1, 5, and 10 days and C57BL/6 mice maintained in non-stressed environment were used as controls. Whole eyes and adnexa were excised for histology or used for gene expression analysis. Location and phenotype of macrophages infiltrating the cornea and conjunctiva was evaluated by immunofluorescence analysis. Quantitative polymerase chain reaction evaluated macrophage markers and T cell-related and inflammatory cytokine expression in cornea and conjunctiva. Immunofluorescence staining demonstrated that macrophages reside in the conjunctiva of control and dry eye mice and their number did not change with DS. Real-time RT-PCR demonstrated that the level of M1 macrophage marker, iNOS, increased prominently in the conjunctiva at DS 10 days. In contrast, there was a non-significant decrease of the M2 marker Arg1 with DS. The levels of inflammatory cytokine, IL-12a mRNA transcript in the conjunctiva increased significantly at DS1 and decreased at DS5, while levels of IL-18 were significantly increased at DS 10. Macrophages reside in the ocular surface tissues of C57BL/6 mice. Although the number of macrophages in the conjunctiva does not change, evidence of inflammatory M1 activation after desiccating stress was observed. Better understanding of phagocyte diversity and activation in dry eye disease provide a basis for the development of phagocyte-targeted therapeutic strategies.

  11. Efficacy of Lychnopholide Polymeric Nanocapsules after Oral and Intravenous Administration in Murine Experimental Chagas Disease.

    PubMed

    de Mello, Carlos Geraldo Campos; Branquinho, Renata Tupinambá; Oliveira, Maykon Tavares; Milagre, Matheus Marques; Saúde-Guimarães, Dênia Antunes; Mosqueira, Vanessa Carla Furtado; Lana, Marta de

    2016-09-01

    The etiological treatment of Chagas disease remains neglected. The compounds available show several limitations, mainly during the chronic phase. Lychnopholide encapsulated in polymeric nanocapsules (LYC-NC) was efficacious in mice infected with Trypanosoma cruzi and treated by intravenous administration during the acute phase (AP). As the oral route is preferred for treatment of chronic infections, such as Chagas disease, this study evaluated the use of oral LYC-NC in the AP and also compared it with LYC-NC administered to mice by the oral and intravenous routes during the chronic phase (CP). The therapeutic efficacy was evaluated by fresh blood examination, hemoculture, PCR, and enzyme-linked immunosorbent assay (ELISA). The cure rates in the AP and CP were 62.5% and 55.6%, respectively, upon oral administration of LYC-poly(d,l-lactide)-polyethylene glycol nanocapsules (LYC-PLA-PEG-NC) and 57.0% and 30.0%, respectively, with LYC-poly-ε-caprolactone nanocapsules (LYC-PCL-NC). These cure rates were significantly higher than that of free LYC, which did not cure any animals. LYC-NC formulations administered orally during the AP showed cure rates similar to that of benznidazole, but only LYC-NC cured mice in the CP. Similar results were achieved with intravenous treatment during the CP. The higher cure rates obtained with LYC loaded in PLA-PEG-NC may be due to the smaller particle size of these NC and the presence of PEG, which influence tissue diffusion and the controlled release of LYC. Furthermore, PLA-PEG-NC may improve the stability of the drug in the gastrointestinal tract. This work is the first report of cure of experimental Chagas disease via oral administration during the CP. These findings represent a new and important perspective for oral treatment of Chagas disease. PMID:27324760

  12. Systemic Inflammatory Effects of Traumatic Brain Injury, Femur Fracture, and Shock: An Experimental Murine Polytrauma Model

    PubMed Central

    Probst, C.; Mirzayan, M. J.; Mommsen, P.; Zeckey, C.; Tegeder, T.; Geerken, L.; Maegele, M.; Samii, A.; van Griensven, M.

    2012-01-01

    Objective. Despite broad research in neurotrauma and shock, little is known on systemic inflammatory effects of the clinically most relevant combined polytrauma. Experimental investigation in an animal model may provide relevant insight for therapeutic strategies. We describe the effects of a combined injury with respect to lymphocyte population and cytokine activation. Methods. 45 male C57BL/6J mice (mean weight 27 g) were anesthetized with ketamine/xylazine. Animals were subjected to a weight drop closed traumatic brain injury (WD-TBI), a femoral fracture and hemorrhagic shock (FX-SH). Animals were subdivided into WD-TBI, FX-SH and combined trauma (CO-TX) groups. Subjects were sacrificed at 96 h. Blood was analysed for cytokines and by flow cytometry for lymphocyte populations. Results. Mortality was 8%, 13% and 47% for FX-SH, WD-TBI and CO-TX groups (P < 0.05). TNFα (11/13/139 for FX-SH/WD-TBI/CO-TX; P < 0.05), CCL2 (78/96/227; P < 0.05) and IL-6 (16/48/281; P = 0.05) showed significant increases in the CO-TX group. Lymphocyte populations results for FX-SH, WD-TBI and CO-TX were: CD-4 (31/21/22; P = n.s.), CD-8 (7/28/34, P < 0.05), CD-4-CD-8 (11/12/18; P = n.s.), CD-56 (36/7/8; P < 0.05). Conclusion. This study shows that a combination of closed TBI and femur-fracture/ shock results in an increase of the humoral inflammation. More attention to combined injury models in inflammation research is indicated. PMID:22529516

  13. Induction of severe experimental autoimmune neuritis with a synthetic peptide corresponding to the 53-78 amino acid sequence of the myelin P2 protein.

    PubMed

    Rostami, A; Gregorian, S K; Brown, M J; Pleasure, D E

    1990-12-01

    We generated a synthetic peptide (SP-26), corresponding to the amino acid residues 53-78 of bovine P2 protein, which induced severe clinical and pathological characteristics of experimental autoimmune neuritis (EAN) in Lewis rats. Lymph node cell populations from SP-26-immunized rats elicited a proliferative response to the peptide and to the P2 protein. After 16 cycles of antigen stimulation with the peptide, the SP-26 T cell line shows a decreased response to P2, but not to SP-26. Fluorescence-activated cell sorter (FACS) analysis of a SP-26 T cell line indicated the majority of cells to be of CD4+ CD8-. This report demonstrates that the synthetic peptide SP-26 can induce severe EAN in Lewis rats in a dose-dependent manner. Furthermore, specific T cell lines reactive to SP-26 can be generated from the lymph nodes of SP-26-immunized rats. PMID:1699975

  14. Characterization of a Severe Parenchymal Phenotype of Experimental Autoimmune Encephalomyelitis in (C57BL6xB10.PL)F1 Mice

    PubMed Central

    Carrithers, Michael D.; Carrithers, Lisette M.; Czyzyk, Jan; Henegariu, Octavian

    2009-01-01

    We here describe a novel CD4 T cell adoptive transfer model of severe experimental autoimmune encephalomyelitis in (C57BL6xB10.PL)F1 mice. This FI cross developed severe disease characterized by extensive parenchymal spinal cord and brain periventricular white matter infiltrates. In contrast, B10.PL mice developed mild disease characterized by meningeal predominant infiltrates. As determined by cDNA microarray and quantitative real time PCR expression analysis, histologic and flow cytometry analysis of inflammatory infiltrates, and attenuation of disease in class I-deficient and CD8-depleted F1 mice; this severe disease phenotype appears to be regulated by CNS infiltration of CD8 T lymphocytes early in the disease course. PMID:17512611

  15. Vitamin D₃ and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis.

    PubMed

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4⁺ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139-151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D₃ (vitamin D₃), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D₃ and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D₃-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells.

  16. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A.

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  17. Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity.

    PubMed

    Zhang, Min; Li, Xiao-Li; Li, Heng; Wang, Shan; Wang, Cong-Cong; Yue, Long-Tao; Xu, Hua; Zhang, Peng; Chen, Hui; Yang, Bing; Duan, Rui-Sheng

    2016-04-15

    Accumulated evidence demonstrated that Adenosine A2A receptor (A2AR) is involved in the inflammatory diseases. In the present study, we showed that a selective A2AR agonist, CGS21680, exacerbated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin. The exacerbation was accompanied with reduced CD4(+)Foxp3(+) T cells, increased CD4(+)CXCR5(+) T cells, B cells, dendritic cells and antigen-specific autoantibodies, which is possibly due to the inhibition of IL-2 induced by CGS21680. Combined with previous studies, our data indicate that the effects of A2AR stimulation in vivo are variable in different diseases. Caution should be taken in the use of A2AR agonists. PMID:27049573

  18. Prevention of experimental autoimmune encephalomyelitis in DA rats by grafting primary skin fibroblasts engineered to express transforming growth factor-beta1.

    PubMed

    Zargarova, T; Kulakova, O; Prassolov, V; Zharmukhamedova, T; Tsyganova, V; Turobov, V; Ivanov, D; Parfenov, M; Sudomoina, M; Chernajovsky, Y; Favorova, O

    2004-08-01

    To determine whether primary fibroblasts producing latent transforming growth factor beta1 (TGF-beta1) are capable of down-regulating experimental autoimmune encephalomyelitis (EAE), a retroviral vector TGF-beta1-pBabe-neo (-5'UTR) was used for efficient gene transfer into primary skin fibroblasts of DA rats. After heat activation, conditioned medium from the transduced fibroblasts was found to inhibit significantly in vitro proliferation of lymphocytes from lymph nodes of DA rats with EAE. Intraperitoneal administration of TGF-beta1-transduced fibroblasts into DA rats during the priming phase of EAE resulted in a significant reduction in mortality and in the mean clinical and EAE scores versus the control immunized animals treated with non-transduced fibroblasts.

  19. Prevention of experimental autoimmune encephalomyelitis in DA rats by grafting primary skin fibroblasts engineered to express transforming growth factor-β1

    PubMed Central

    Zargarova, T; Kulakova, O; Prassolov, V; Zharmukhamedova, T; Tsyganova, V; Turobov, V; Ivanov, D; Parfenov, M; Sudomoina, M; Chernajovsky, Y; Favorova, O

    2004-01-01

    To determine whether primary fibroblasts producing latent transforming growth factor β1 (TGF-β1) are capable of down-regulating experimental autoimmune encephalomyelitis (EAE), a retroviral vector TGF-β1-pBabe-neo (−5′UTR) was used for efficient gene transfer into primary skin fibroblasts of DA rats. After heat activation, conditioned medium from the transduced fibroblasts was found to inhibit significantly in vitro proliferation of lymphocytes from lymph nodes of DA rats with EAE. Intraperitoneal administration of TGF-β1-transduced fibroblasts into DA rats during the priming phase of EAE resulted in a significant reduction in mortality and in the mean clinical and EAE scores versus the control immunized animals treated with non-transduced fibroblasts. PMID:15270848

  20. Carbon monoxide-releasing molecule-A1 (CORM-A1) improves clinical signs of experimental autoimmune uveoretinitis (EAU) in rats.

    PubMed

    Fagone, Paolo; Mangano, Katia; Mammana, Santa; Cavalli, Eugenio; Di Marco, Roberto; Barcellona, Maria Luisa; Salvatorelli, Lucia; Magro, Gaetano; Nicoletti, Ferdinando

    2015-04-01

    Uveitis is a sight-threatening inflammatory disease of the eye which represents the third leading cause of blindness in the developed countries. The conventional pharmacological treatment includes corticosteroids and immunosuppressive agents, which are limited by their side effects. New therapeutic strategies are thus strongly needed. Exogenously-administered carbon monoxide (CO) may represent an effective treatment for conditions characterized by a dysregulated inflammatory response. Carbon monoxide-releasing molecules (CORMs) are a novel group of compounds capable of carrying and liberating controlled quantities of CO. Among CORMs, CORM-A1 represents the first example of water soluble CO releaser. We show here that CORM-A1 under a late prophylactic regime is able to significantly ameliorate the natural course of experimental autoimmune uveoretinitis, a rodent model of immunoinflammatory posterior uveitis. The present study strongly supports the development of CORM-A1 as a potential new drug for treatment of patients with non-infectious posterior uveitis.

  1. Induction of severe experimental autoimmune neuritis with a synthetic peptide corresponding to the 53-78 amino acid sequence of the myelin P2 protein.

    PubMed

    Rostami, A; Gregorian, S K; Brown, M J; Pleasure, D E

    1990-12-01

    We generated a synthetic peptide (SP-26), corresponding to the amino acid residues 53-78 of bovine P2 protein, which induced severe clinical and pathological characteristics of experimental autoimmune neuritis (EAN) in Lewis rats. Lymph node cell populations from SP-26-immunized rats elicited a proliferative response to the peptide and to the P2 protein. After 16 cycles of antigen stimulation with the peptide, the SP-26 T cell line shows a decreased response to P2, but not to SP-26. Fluorescence-activated cell sorter (FACS) analysis of a SP-26 T cell line indicated the majority of cells to be of CD4+ CD8-. This report demonstrates that the synthetic peptide SP-26 can induce severe EAN in Lewis rats in a dose-dependent manner. Furthermore, specific T cell lines reactive to SP-26 can be generated from the lymph nodes of SP-26-immunized rats.

  2. Leptin augments protective immune responses in murine macrophages and enhances potential of miltefosine against experimental visceral leishmaniasis.

    PubMed

    Shivahare, Rahul; Ali, Wahid; Vishwakarma, Preeti; Natu, S M; Puri, Sunil K; Gupta, Suman

    2015-10-01

    Adverse side effects and drug resistance issues are the two most important drawbacks which influence the widespread use of existing antileishmanial drugs. Use of immune stimulating agent with standard antileishmanial might be helpful to minimize the toxic effect of drug, shorten the dose regimen and delay the emergence of resistance. In the present study, we explored the in vitro immunomodulatory potential of an immunomodulator, leptin with lower concentration of standard drug, miltefosine. The level of Th1/Th2 cytokines, production of nitric oxide and reactive oxygen species and phagocytic activity was assessed by ELISA, Griess reaction and flow cytometric analysis, respectively. Leptin at a concentration of 15μg/mL showed heightened level of Th1 cytokines and nitric oxide generation from murine macrophages (J-774A.1 cells). Leptin (15μg/mL) also reduces the effective concentration of miltefosine by 2-folds from 7.5μM to 3.7μM. When given in conjunction with lower concentration of miltefosine (4μM), leptin (15μg/mL) significantly (***p<0.001) elevated the level of IL-12 (7.7 fold), TNF-α (8.1 fold) and nitric oxide (6.6 fold) along with markedly (***p<0.001) suppressed level of IL-10 and TGF-β when compared with untreated infected macrophages. Leptin plus miltefosine also induces the phagocytic ability (**p<0.01) of macrophages in comparison to leptin alone and miltefosine alone treated groups. These finding illustrate that leptin activates host macrophages to generate protective immune response for the successful elimination of Leishmania parasite at lower concentration of miltefosine and has potential for further exploration in experimental animal model of visceral leishmaniasis (VL).

  3. Reversal of Paralysis and Reduced Inflammation from Peripheral Administration of Amyloid-β in Th1- and Th17-Versions of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Grant, Jacqueline L.; Ghosn, Eliver Eid Bou; Axtell, Robert C.; Herges, Katja; Kuipers, Hedwich F.; Woodling, Nathan S.; Andreasson, Katrin; Herzenberg, Leonard A.; Herzenberg, Leonore A.; Steinman, Lawrence

    2013-01-01

    β-amyloid-42 (Aβ42) and β-amyloid-40 (Aβ40), major components of senile plaque deposits in Alzheimer’s disease (AD), are considered neurotoxic and pro-inflammatory. In multiple sclerosis (MS), Aβ42 is upregulated in brain lesions and damaged axons. Here we found, unexpectedly, that treatment with either Aβ42 or Aβ40 peptides reduced motor paralysis and brain inflammation in four different models of experimental autoimmune encephalomyelitis (EAE) with attenuation of motor paralysis, reduction of inflammatory lesions in the central nervous system (CNS), and suppression of lymphocyte activation. Aβ42 and Aβ40 treatments were effective in reducing ongoing paralysis induced with adoptive transfer of either autoreactive Th1 or Th17 cells. High-dimensional 14-parameter flow cytometry of peripheral immune cell populations after in vivo Aβ42 and Aβ40 treatment revealed substantial modulations in the percentage of lymphoid and myeloid subsets during EAE. Major pro-inflammatory cytokines and chemokines were reduced in the blood following Aβ peptide treatment. Protection conferred by Aβ treatment did not require its delivery to the brain: adoptive transfer with lymphocytes from donors treated with Aβ42 attenuated EAE in WT recipient mice and Aβ deposition in the brain was not detected in treated EAE mice by immunohistochemical analysis. In contrast to the improvement in EAE with Aβ-treatment, EAE was worse in mice with genetic deletion of the amyloid precursor protein. Therefore, in the absence of Aβ there is exacerbated clinical EAE disease progression. Since Aβ42 and Aβ40 ameliorate experimental autoimmune inflammation targeting the CNS, we might now consider its potential anti-inflammatory role in other neuropathological conditions. PMID:22855462

  4. Diet, microbiota and autoimmune diseases.

    PubMed

    Vieira, S M; Pagovich, O E; Kriegel, M A

    2014-05-01

    There is growing evidence that the commensal bacteria in the gastrointestinal tract (the gut microbiota) influence the development of autoimmunity in rodent models. Since humans have co-evolved with commensals for millennia, it is likely that people, who are genetically predisposed to autoimmunity, harbor gut microbial communities that similarly influence the onset and/or severity of disease. Beyond the current efforts to identify such disease-promoting or -preventing commensals ("pathobionts" or "symbionts"), it will be important to determine what factors modulate them. Dietary changes are known to affect both the composition and function of the gut microbial communities, which in turn can alter the innate and adaptive immune system. In this review, we focus on the relationships between diet, microbiota, and autoimmune diseases. We hypothesize that the beneficial and life-prolonging effects of caloric restriction on a variety of autoimmune models including lupus might partly be mediated by its effects on the gut microbiome and associated virome, the collection of all viruses in the gut. We give recent examples of the immunomodulatory potential of select gut commensals and their products or diet-derived metabolites in murine models of arthritis, multiple sclerosis, and type 1 diabetes. Lastly, we summarize the published phenotypes of germ-free mouse models of lupus and speculate on any role of the diet-sensitive microbiome and virome in systemic lupus and the related antiphospholipid syndrome.

  5. Autoimmune Epilepsy

    PubMed Central

    Quek, Amy M. L.; Britton, Jeffrey W.; McKeon, Andrew; So, Elson; Lennon, Vanda A.; Shin, Cheolsu; Klein, Christopher J.; Watson, Robert E.; Kotsenas, Amy L.; Lagerlund, Terrence D.; Cascino, Gregory D.; Worrell, Gregory A.; Wirrell, Elaine C.; Nickels, Katherine C.; Aksamit, Allen J.; Noe, Katherine H.; Pittock, Sean J.

    2013-01-01

    Objective To describe clinical characteristics and immunotherapy responses in patients with autoimmune epilepsy. Design Observational, retrospective case series. Setting Mayo Clinic Health System. Patients Thirty-two patients with an exclusive (n=11) or predominant (n = 21) seizure presentation in whom an autoimmune etiology was suspected (on the basis of neural autoantibody [91%], inflammatory cerebrospinal fluid [31%], or magnetic resonance imaging suggesting inflammation [63%]) were studied. All had partial seizures: 81% had failed treatment with 2 or more anti-epileptic drugs and had daily seizures and 38% had seizure semiologies that were multifocal or changed with time. Head magnetic resonance imaging was normal in 15 (47%) at onset. Electroencephalogram abnormalities included interictal epileptiform discharges in 20; electrographic seizures in 15; and focal slowing in 13. Neural autoantibodies included voltage-gated potassium channel complex in 56% (leucine-rich, glioma-inactivated 1 specific, 14; contactin-associated proteinlike 2 specific, 1); glutamic acid decarboxylase 65 in 22%; collapsin response-mediator protein 5 in 6%; and Ma2, N-methyl-D-aspartate receptor, and ganglionic acetylcholine receptor in 1 patient each. Intervention Immunotherapy with intravenous methylprednisolone; intravenous immune globulin; and combinations of intravenous methylprednisolone, intravenous immune globulin, plasmapheresis, or cyclo-phosphamide. Main Outcome Measure Seizure frequency. Results After a median interval of 17 months (range, 3–72 months), 22 of 27 (81%) reported improvement postimmunotherapy; 18 were seizure free. The median time from seizure onset to initiating immunotherapy was 4 months for responders and 22 months for nonresponders (P<.05). All voltage-gated potassium channel complex antibody–positive patients reported initial or lasting benefit (P<.05). One voltage-gated potassium channel complex antibody–positive patient was seizure free after

  6. [Autoimmune epilepsy].

    PubMed

    Seeck, M; Zacharia, A; Rossetti, A O

    2010-05-01

    There is increasing recognition of an autoimmune origin of pharmacoresistant epileptic disorders. Besides the paraneoplastic limbic encephalopathies (LE), reports of syndromes of non-paraneoplastic LE are increasingly reported in the last 5-10 years. Three antibodies are now relatively well described: Voltage-gated potassium channels (VGKC), glutamic acid decarboxylase (GAD) and N-methyl-D-aspartate receptor-(NMDA) antibodies. We review clinical syndromes, associated imaging and laboratory findings. While most reports arise from adult populations, children and adolescents are also concerned as evidenced by increasing observations. Early recognition is mandatory, since early immunomodulatory treatment appears to be related to significantly better outcome. PMID:20499581

  7. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    PubMed

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.

  8. CD8+ T cells are not necessary for 1α,25-dihydroxyvitamin D3 to suppress experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Meehan, Terrence F.; DeLuca, Hector F.

    2002-01-01

    In addition to its role in calcium and phosphorous homeostasis, 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] appears to be a modulator of the immune system. Administration of 1,25-(OH)2D3 prevents disease in several autoimmune animal models, including experimental autoimmune encephalomyelitis (EAE). The vitamin D receptor is believed to mediate this activity. Among cells of the immune system, CD8+ T cells have the highest levels of the vitamin D receptor. Because CD8+ T cells have been implicated as both suppressors and effectors of the inflammation associated with multiple sclerosis and EAE, we examined the question of whether the 1,25-(OH)2D3 suppression of EAE occurs through a CD8+ T cell-dependent mechanism. To test this hypothesis, mice that are homozygous knockouts for the α chain of the CD8 receptor and have been characterized as lacking functional CD8+ T cells (CD8+ −/−) were provided 1,25-(OH)2D3 in their diet before EAE induction. Although CD8+ −/− mice fed the same diet lacking 1,25-(OH)2D3 have a high incidence of EAE, EAE did not occur in CD8+ −/− mice fed the diet containing 1,25-(OH)2D3. We conclude that CD8+ T cells neither are needed nor do they play a role in the prevention of EAE by 1,25-(OH)2D3. PMID:11929984

  9. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10–60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model

    PubMed Central

    Kap, Y S; van Driel, N; Arends, R; Rouwendal, G; Verolin, M; Blezer, E; Lycke, N; ‘t Hart, B A

    2015-01-01

    Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells that drive tissue inflammation and injury. In this study, we have investigated whether the course of experimental autoimmune encephalomyelitis (EAE) in mice and marmosets can be altered by a potent tolerizing fusion protein. In addition, a multi-parameter immunological analysis was performed in marmosets to assess whether the treatment induces modulation of EAE-associated cellular and humoral immune reactions. The fusion protein, CTA1R9K-hMOG10–60-DD, contains a mutated cholera toxin A1 subunit (CTA1R9K), a dimer of the Ig binding D region of Staphylococcus aureus protein A (DD), and the human myelin oligodendrocyte glycoprotein (hMOG) sequence 10–60. We observed that intranasal application of CTA1R9K-hMOG10–60-DD seems to skew the immune response against myelin oligodendrocyte glycoprotein (MOG) towards a regulatory function. We show a reduced number of circulating macrophages, reduced MOG-induced expansion of mononuclear cells in peripheral blood, reduced MOG-induced production of interleukin (IL)-17A in spleen, increased MOG-induced production of IL-4 and IL-10 and an increased percentage of cells expressing programmed cell death-1 (PD-1) and CC chemokine receptor 4 (CCR4). Nevertheless, the treatment did not detectably change the EAE course and pathology. Thus, despite a detectable effect on relevant immune parameters, the fusion protein failed to influence the clinical and pathological outcome of disease. This result warrants further development and improvement of this specifically targeted tolerance inducing therapy. PMID:25393803

  10. Involvement of Src-suppressed C kinase substrate in experimental autoimmune encephalomyelitis: a link between release of astrocyte proinflammatory factor and oligodendrocyte apoptosis.

    PubMed

    Li, Xiaohong; Yan, Meijuan; Hu, Ling; Sun, Linlin; Zhang, Fupeng; Ji, Huoyan; Jiang, Jing; Wang, Ping; Liu, Haiou; Gao, Ying; Tao, Tao; He, Xingxin; Cheng, Chun; Shen, Aiguo

    2010-07-01

    Src-suppressed C kinase substrate (SSeCKS) is involved in inflammation in the central nervous system (CNS), and plays a role in control of cell signaling and cytoskeletal arrangement. However, the expression and function of SSeCKS and its function in multiple sclerosis (MS) and its common animal model, experimental autoimmune encephalomyelitis (EAE) remained to be elucidated. In the present study, we first reported that SSeCKS was remarkably increased in astrocytes of EAE rats in vivo. TNF-alpha and NO were significantly induced in astrocytes stimulated with LPS/IFN-gamma in vitro, which was blocked in astrocytes transfected with SSeCKS siRNA. These results indicated that SSeCKS played a role in the production of TNF-alpha and NO in astrocytes with inflammatory stimulation. As excessive release of TNF-alpha and NO were major mediators in autoimmune diseases and correlated with oligodendrocyte cell death, we further investigated whether SSeCKS participated in oligodendrocyte apoptosis. Conditioned media (CM) from astrocytes treated with LPS/IFN-gamma decreased oligodendrocyte cell viability, while siRNA targeted to SSeCKS in astrocytes inhibited oligodendrocyte cell death. The results from antibody neutralization and NO inhibition suggested that the oligodendrocyte apoptosis may be due to the production of astrocyte-derived proinflammatory factors (TNF-alpha and NO). These findings revealed that there was a pathogenic interaction between SSeCKS expression in astrocytes and oligodendrocyte apoptosis. Understanding the mechanism of SSeCKS in the pathogenesis of EAE may contribute to the development of new therapeutic strategies against EAE and MS.

  11. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    PubMed Central

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  12. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis

    PubMed Central

    Samuvel, Devadoss J.; Saxena, Nishant; Dhindsa, Jasdeep S.; Singh, Avtar K.; Gill, Gurmit S.; Grobelny, Damian W.; Singh, Inderjit

    2015-01-01

    Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders. PMID:26513477

  13. Autoimmune liver disease panel

    MedlinePlus

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cirrhosis. This group of tests helps your health care provider ...

  14. Sex differences in autoimmune diseases

    PubMed Central

    2011-01-01

    Women are more susceptible to a variety of autoimmune diseases including systemic lupus erythematosus (SLE), multiple sclerosis (MS), primary biliary cirrhosis, rheumatoid arthritis and Hashimoto's thyroiditis. This increased susceptibility in females compared to males is also present in animal models of autoimmune diseases such as spontaneous SLE in (NZBxNZW)F1 and NZM.2328 mice, experimental autoimmune encephalomyelitis (EAE) in SJL mice, thyroiditis, Sjogren's syndrome in MRL/Mp-lpr/lpr mice and diabetes in non-obese diabetic mice. Indeed, being female confers a greater risk of developing these diseases than any single genetic or environmental risk factor discovered to date. Understanding how the state of being female so profoundly affects autoimmune disease susceptibility would accomplish two major goals. First, it would lead to an insight into the major pathways of disease pathogenesis and, secondly, it would likely lead to novel treatments which would disrupt such pathways. PMID:21208397

  15. Diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms

    PubMed Central

    Choi, In Young; Piccio, Laura; Childress, Patra; Bollman, Bryan; Ghosh, Arko; Brandhorst, Sebastian; Suarez, Jorge; Michalsen, Andreas; Cross, Anne H.; Morgan, Todd E.; Wei, Min; Paul, Friedemann; Bock, Markus; Longo, Valter D.

    2016-01-01

    Summary Dietary interventions have not been effective in the treatment of multiple sclerosis (MS). Here we show that periodic 3 day cycles of a fasting mimicking diet (FMD) are effective in ameliorating demyelination and symptoms in a murine experimental autoimmune encephalomyelitis (EAE) model. The FMD reduced clinical severity in all mice, and completely reversed symptoms in 20% of the animals. These improvements were associated with increased corticosterone levels and Treg cell number, reduced levels of pro-inflammatory cytokines, TH1 and TH17 cells, and antigen presenting cells (APCs). Moreover, the FMD promoted oligodendrocyte precursor cell regeneration and remyelination in axons in response to both EAE and cuprizone MS models, supporting its effects on both suppression of autoimmunity and remyelination. We also report preliminary data suggesting that a FMD or a chronic ketogenic diet are safe, feasible and potentially effective in the treatment of relapsing remitting multiple sclerosis (RRMS) patients (NCT01538355). PMID:27239035

  16. Autoimmune pancreatitis.

    PubMed

    Omiyale, Ayodeji Oluwarotimi

    2016-06-01

    Autoimmune pancreatitis (AIP) is a rare, distinct and increasingly recognized form of pancreatitis which has autoimmune features. The international consensus diagnostic criteria (ICDC) for AIP recently described two subtypes; type 1[lymphoplasmacytic sclerosing pancreatitis (LPSP)] and type 2 [idiopathic duct-centric pancreatitis (IDCP) or AIP with granulocytic epithelial lesion (GEL)]. Type 1 is the more common form of the disease worldwide and current understanding suggests that it is a pancreatic manifestation of immunoglobulin G4-related disease (IgG4-RD). In contrast, type 2 AIP is a pancreas-specific disease not associated with IgG4 and mostly without the overt extra-pancreatic organ involvement seen in type 1. The pathogenesis of AIP is not completely understood and its clinical presentation is non-specific. It shares overlapping features with more sinister pathologies such as cancer of the pancreas, which continues to pose a diagnostic challenge for clinicians. The diagnostic criteria requires a variable combination of histopathological, imaging and serological features in the presence of typical extrapancreatic lesions and a predictable response to steroids. PMID:27294040

  17. Autoimmune pancreatitis

    PubMed Central

    2016-01-01

    Autoimmune pancreatitis (AIP) is a rare, distinct and increasingly recognized form of pancreatitis which has autoimmune features. The international consensus diagnostic criteria (ICDC) for AIP recently described two subtypes; type 1[lymphoplasmacytic sclerosing pancreatitis (LPSP)] and type 2 [idiopathic duct-centric pancreatitis (IDCP) or AIP with granulocytic epithelial lesion (GEL)]. Type 1 is the more common form of the disease worldwide and current understanding suggests that it is a pancreatic manifestation of immunoglobulin G4-related disease (IgG4-RD). In contrast, type 2 AIP is a pancreas-specific disease not associated with IgG4 and mostly without the overt extra-pancreatic organ involvement seen in type 1. The pathogenesis of AIP is not completely understood and its clinical presentation is non-specific. It shares overlapping features with more sinister pathologies such as cancer of the pancreas, which continues to pose a diagnostic challenge for clinicians. The diagnostic criteria requires a variable combination of histopathological, imaging and serological features in the presence of typical extrapancreatic lesions and a predictable response to steroids. PMID:27294040

  18. Role of RT6{sup +} T lymphocytes in mercury-induced renal autoimmunity: Experimental manipulations of {open_quotes}susceptible{close_quotes} and {open_quotes}resistant{close_quotes} rats

    SciTech Connect

    Kosuda, L.L.; Hosseinzadeh, H.; Bigazzi, P.E.; Greiner, D.L. |

    1994-12-31

    Brown Norway (BN) rats, {open_quotes}susceptible{close_quotes} to the autoimmune effects of mercury, experience a decrease of peripheral RT6.2{sup +} T lymphocytes after the injection of relatively low doses of mercury chloride. This change coincides with the appearance of circulating autoantibodies to renal antigens (e.g., laminin). Lewis (LEW) rats, {open_quotes}resistant{close_quotes} to the autoimmune effects of mercury, do not show significant decreases of RT6{sup +} T cells. It is possible that BN rats are particularly sensitive to stress induced by mercury and that secretion of adrenocortical hormones decreases levels of RT6{sup +} T cells in this rat strain. Alternatively, mercury may induce a graft-versus-host-like syndrome in BN rats, resulting in higher levels of corticosteroids capable of affecting RT6{sup +} lymphocytes. To eliminate the possible influence of adrenocortical hormones, we have adrenalectomized BN rats prior to administration of mercury. Autoimmune responses to renal antigens were not affected by this experimental manipulation. Similarly, adrenalectomized rats exposed to mercury showed a significant decrease of RT6{sup +} T lymphocytes in cervical lymph nodes. Overall, these observations do not support the hypothesis that increases in adrenocortical hormones play a major role in mercury-induced changes of RT6{sup +} T cells. We have also explored whether experimental depletion of RT6{sup +} T lymphocytes would result in autoimmunity. Gamma irradiation of BN rats led to a decrease of RT6{sup +} T splenocytes, but by itself (i.e., without exposure to mercury) did not cause autoimmune responses to renal antigens. In addition, gamma-irradiated BN rats treated with mercury had autoimmune responses similar to those observed in mercury-treated nonirradiated controls. 38 refs., 4 tabs.

  19. Simultaneous Complement Response via Lectin Pathway in Retina and Optic Nerve in an Experimental Autoimmune Glaucoma Model.

    PubMed

    Reinehr, Sabrina; Reinhard, Jacqueline; Gandej, Marcel; Kuehn, Sandra; Noristani, Rozina; Faissner, Andreas; Dick, H Burkhard; Joachim, Stephanie C

    2016-01-01

    Glaucoma is a multifactorial disease and especially mechanisms occurring independently from an elevated intraocular pressure (IOP) are still unknown. Likely, the immune system contributes to the glaucoma pathogenesis. Previously, IgG antibody depositions and retinal ganglion cell (RGC) loss were found in an IOP-independent autoimmune glaucoma model. Therefore, we investigated the possible participation of the complement system in this model. Here, rats were immunized with bovine optic nerve homogenate antigen (ONA), while controls (Co) received sodium chloride (n = 5-6/group). After 14 days, RGC density was quantified on flatmounts. No changes in the number of RGCs could be observed at this point in time. Longitudinal optic nerve sections were stained against the myelin basic protein (MBP). We could note few signs of degeneration processes. In order to detect distinct complement components, retinas and optic nerves were labeled with complement markers at 3, 7, 14, and 28 days and analyzed. Significantly more C3 and MAC depositions were found in retinas and optic nerves of the ONA group. These were already present at day 7, before RGC loss and demyelination occurred. Additionally, an upregulation of C3 protein was noted via Western Blot at this time. After 14 days, quantitative real-time PCR revealed significantly more C3 mRNA in the ONA retinas. An upregulation of the lectin pathway-associated mannose-serine-protease-2 (MASP2) was observed in the retinas as well as in the optic nerves of the ONA group after 7 days. Significantly more MASP2 in retinas could also be observed via Western Blot analyses at this point in time. No effect was noted in regard to C1q. Therefore, we assume that the immunization led to an activation of the complement system via the lectin pathway in retinas and optic nerves at an early stage in this glaucoma model. This activation seems to be an early response, which then triggers degeneration. These findings can help to develop novel therapy

  20. Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response

    PubMed Central

    Vistica, Barbara P.; Shi, Guangpu; Hinshaw, Samuel J. H.; Xie, Chengsong; Chen, Xi; Klinman, Dennis M.; Cai, Huaibin; Gery, Igal

    2015-01-01

    Background Mutations in LRRK2 are related to certain forms of Parkinson’s disease and, possibly, to the pathogenesis of Crohn’s disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. Methods Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). Results The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. Conclusions Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP

  1. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M; Yong, V Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS.

  2. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M; Yong, V Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS. PMID:26679341

  3. Peptide 53-78 of myelin P2 protein is a T cell epitope for the induction of experimental autoimmune neuritis.

    PubMed

    Rostami, A; Gregorian, S K

    1991-02-01

    We have recently described the clinical and pathological features of experimental autoimmune neuritis (EAN) in Lewis rats inoculated with varying doses of a synthetic peptide corresponding to the amino acid residues 53-78 of bovine P2 protein (SP-26). Immunization with this synthetic peptide was able to induce severe clinical and pathological characteristics of EAN. We are now reporting that, SP-26 T cell lines derived from spleen and lymph node cell populations of such immunized rats, upon being triggered by SP-26, can adoptively transfer severe clinical and histological signs of EAN to naive syngeneic recipients. The disease appears 7-8 days postinoculation of the cells and persist 5-10 days. The pathological features were indistinguishable from SP-26-induced active EAN which appears 12-15 days after sensitization. Examination of the surface phenotype of the cells that were used for the passive transfer of EAN by FACS analysis, showed majority of the cells to be CD4+, Ia+ cells. PMID:1703049

  4. Targeting Experimental Autoimmune Encephalomyelitis Lesions to a Predetermined Axonal Tract System Allows for Refined Behavioral Testing in an Animal Model of Multiple Sclerosis

    PubMed Central

    Kerschensteiner, Martin; Stadelmann, Christine; Buddeberg, Bigna S.; Merkler, Doron; Bareyre, Florence M.; Anthony, Daniel C.; Linington, Christopher; Brück, Wolfgang; Schwab, Martin E.

    2004-01-01

    In multiple sclerosis (MS) the structural damage to axons determines the persistent clinical deficit patients acquire during the course of the disease. It is therefore important to test therapeutic strategies that can prevent or reverse this structural damage. The conventional animal model of MS, experimental autoimmune encephalomyelitis (EAE), typically shows disseminated inflammation in the central nervous system, which leads to a clinical deficit that cannot be directly attributed to a defined tract system. For this reason we have developed a localized EAE model, in which large inflammatory lesions are targeted to the dorsal columns of the spinal cord, an area including the corticospinal tract. These lesions show the pathological hallmarks of MS plaques and lead to reproducible and pronounced deficits in hindlimb locomotion. Because of the anatomical specificity of this technique we can now use highly sensitive behavioral tests that assess the functional integrity of specific axonal tracts. We show that these tests are predictive of the site and extent of a given lesion and are more sensitive for assessing the clinical course than the scales commonly used for disseminated EAE models. We believe that this targeted EAE model will become a helpful new tool for the evaluation of therapeutic approaches for MS that attempt to protect axons or support their repair. PMID:15039233

  5. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  6. Inhibition of nitric oxide synthase initiates relapsing remitting experimental autoimmune encephalomyelitis in rats, yet nitric oxide appears to be essential for clinical expression of disease.

    PubMed

    O'Brien, N C; Charlton, B; Cowden, W B; Willenborg, D O

    2001-11-15

    Myelin basic protein-CFA-induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats is an acute monophasic disease from which animals recover. In this model, spontaneous relapses do not occur and rats develop a resistance to further active reinduction of disease. Previously, we reported that oral administration of the NO synthase inhibitor N-methyl-L-arginine acetate (L-NMA) to recovered rats precipitated a second episode of disease in 100% of animals. Further studies now show that this second clinical episode is actually a chronic relapsing disease that persists for months. This occurs only in rats that have recovered from actively induced EAE and not in rats recovered from passively induced EAE, suggesting the need for a peripheral Ag depot to induce secondary disease. We have also determined that clinical signs of EAE in L-NMA-treated recovered rats do not appear until L-NMA treatment has stopped. This is despite the fact that, at the same time point, CNS inflammatory lesions in symptomless animals receiving L-NMA are qualitatively and quantitatively similar to those with severe disease symptoms from whom L-NMA treatment has been withdrawn. The latter animals have significantly higher levels of reactive nitrogen intermediates in the cerebrospinal fluid than the former group. This study examines the mechanism of reinduction of disease by L-NMA treatment, and the findings suggest a dual role for NO in regulation of pathology in EAE that is dependent on site and timing of NO production. PMID:11698467

  7. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization. PMID:25375337

  8. Protective effect of a novel Rho kinase inhibitor WAR-5 in experimental autoimmune encephalomyelitis by modulating inflammatory response and neurotrophic factors.

    PubMed

    Li, Yan-hua; Yu, Jie-zhong; Xin, Yan-le; Feng, Ling; Chai, Zhi; Liu, Jian-chun; Zhang, Hong-zhen; Zhang, Guang-Xian; Xiao, Bao-guo; Ma, Cun-gen

    2015-10-01

    The Rho-kinase (ROCK) inhibitor Fasudil has proven beneficial in experimental autoimmune encephalomyelitis (EAE). Given the small safety window of Fasudil, we are looking for novel ROCK inhibitors, which have similar or stronger effect on EAE with greater safety. In this study, we report that WAR-5, a Y-27632 derivative, alleviates the clinical symptoms, attenuates myelin damage and reduces CNS inflammatory responses in EAE C57BL/6 mice at an extent similar to Fasudil, while exhibits less vasodilator and adverse reaction in vivo. WAR-5 inhibits ROCK activity, and selectively suppresses the expression of ROCK II in spleen, brain and spinal cord of EAE mice, especially in spinal cord, accompanied by decreased expression of Nogo. WAR-5 also regulates the imbalance of Th1/Th17 T cells and regulatory T cells, inhibits inflammatory microenvironment induced with NF-κB-IL-1β pathway. Importantly, WAR-5 converts M1 toward M2 microglia/macrophages that are positively correlated with BDNF and NT-3 production. Taken together, WAR-5 exhibits therapeutic potential in EAE by more selectively inhibits ROCK II, with a greater safety than Fasudil, and is worthy of further clinical study to clarify its clinical value.

  9. Kirenol Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Differentiation of Th1 and Th17 Cells and Inducing Apoptosis of Effector T Cells

    PubMed Central

    Xiao, Juan; Yang, Rongbing; Yang, Lin; Fan, Xiaohang; Liu, Wenwei; Deng, Wenbin

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is characterized by CNS demyelination mediated by autoreactive T cells. Kirenol, a biologically active substance isolated from Herba Siegesbeckiae, has potent anti-inflammatory activities. Here we investigated effects of kirenol on EAE. Kirenol treatment markedly delayed onset of disease and reduced clinical scores in EAE mice. Kirenol treatment reduced expression of IFN-γ and IL-17A in the serum and proportion of Th1 and Th17 cells in draining lymph nodes. Priming of lymphocytes was reduced and apoptosis of MOG-activated CD4+ T cells was increased in kirenol treated EAE mice. Kirenol treatment of healthy animals did not affect the lymphocytes in these non-immunized mice. Further in vitro studies showed that kirenol inhibited viability of MOG-specific lymphocytes and induced apoptosis of MOG-specific CD4+ T cells in a dose- and time-dependent manner. Kirenol treatment upregulated Bax,downregulated Bcl-2,and increased activation of caspase-3 and release of cytochrome c, indicating that a mitochondrial pathway was involved in kirenol induced apoptosis. Moreover, pretreatment with either a pan-caspase inhibitor z-VAD-fmk or a more specific caspase 3 inhibitor Ac-DEVD-CHO in lymphocytes reduced kirenol induced apoptosis. Our findings implicate kirenol as a useful agent for the treatment of MS. PMID:25762107

  10. Peptide 53-78 of myelin P2 protein is a T cell epitope for the induction of experimental autoimmune neuritis.

    PubMed

    Rostami, A; Gregorian, S K

    1991-02-01

    We have recently described the clinical and pathological features of experimental autoimmune neuritis (EAN) in Lewis rats inoculated with varying doses of a synthetic peptide corresponding to the amino acid residues 53-78 of bovine P2 protein (SP-26). Immunization with this synthetic peptide was able to induce severe clinical and pathological characteristics of EAN. We are now reporting that, SP-26 T cell lines derived from spleen and lymph node cell populations of such immunized rats, upon being triggered by SP-26, can adoptively transfer severe clinical and histological signs of EAN to naive syngeneic recipients. The disease appears 7-8 days postinoculation of the cells and persist 5-10 days. The pathological features were indistinguishable from SP-26-induced active EAN which appears 12-15 days after sensitization. Examination of the surface phenotype of the cells that were used for the passive transfer of EAN by FACS analysis, showed majority of the cells to be CD4+, Ia+ cells.

  11. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    PubMed

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease.

  12. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    NASA Astrophysics Data System (ADS)

    Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo

    2013-02-01

    Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  13. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  14. Genetic complexity of autoimmune myocarditis

    PubMed Central

    Li, Haiyan S.; Ligons, Davinna L.; Rose, Noel R.

    2008-01-01

    Autoimmune myocarditis, a chronic stage of myocardial inflammation, occurs in a small subset of patients after acute cardiotropic viral infection and can lead to dilated cardiomyopathy (DCM). This disease can be recapitulated in susceptible mouse strains by infection with coxsackievirus B3, or by immunization with cardiac myosin or cardiac troponin I. The etiologies of myocarditis are multifactorial and genetically complex. Genetic linkage between susceptibility to myocarditis/DCM and the major histocompatibility complex (MHC) genes have been reported in both humans and experimentally induced mouse models. However, unlike other autoimmune diseases, the non-MHC genes seem to have greater impact than MHC genes on disease susceptibility. Several myocarditis-related non-MHC loci have been identified by our laboratory and others in different models. Most of these loci overlap with other autoimmune disease susceptibility loci, suggesting common or shared genetic traits influencing general autoimmunity. For example, we have demonstrated that Eam1 and Eam 2 may influence disease susceptibility via regulating T cell apoptosis at different developmental stages. Blockade of signaling through specific genes, such as CTLA4, ICOS and PD-1, can either enhance or prevent the development of experimental autoimmune myocarditis, but it remains unclear whether functional polymorphisms in these genes are involved in predisposition to disease. In humans, mutations/deletions in immunologically important genes such as CD45, and genes encoding cardiac proteins, have been reported in patients with recurrent myocarditis or DCM. Identification of genetic polymorphisms controlling autoimmune myocarditis will help us understand the mechanisms underlying autoimmune diseases in general, thereby improving potential therapies in patients. PMID:18190873

  15. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis

    PubMed Central

    Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4+ T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139–151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4+ T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4+ T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met5]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3+ T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4+ T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4+ T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4+ Th effector cell responses in the CNS of

  16. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses

  17. Experimental autoimmune encephalomyelitis: Association with mutual regulation of RelA (p65)/NF-{kappa}B and phospho-I{kappa}B in the CNS

    SciTech Connect

    Hwang, Insun; Ha, Danbee; Ahn, Ginnae; Park, Eunjin; Joo, Haejin; Jee, Youngheun

    2011-07-29

    Highlights: {yields} The phosphorylation of RelA's inhibitory factor I{kappa}B and subsequent RelA activation are important to the disease process of EAE. {yields} The expression of RelA and phospho-I{kappa}B was markedly increased in the initiation and during the progression of EAE. {yields} TPCK-treated EAE mice showed lower incidence of EAE with less severe symptoms and quicker recovery than vehicle-treated EAE mice. {yields} TPCK significantly suppressed the MOG{sub 35-55}-specific T cell proliferation by reducing the production of IFN-{gamma} and IL-17 cytokines in EAE. {yields} The NF-{kappa}B cascade's activity increased gradually with the development of symptoms and brain pathology of EAE. -- Abstract: Recently emerging evidence that the NF-{kappa}B family plays an important role in autoimmune disease has produced very broad and sometimes paradoxical conclusions. In the present study, we elucidated that the activation of RelA (p65) of NF-{kappa}B and I{kappa}B dissociation assumes a distinct role in experimental autoimmune encephalomyelitis (EAE) progression by altering I{kappa}B phosphorylation and/or degradation. In the present study of factors that govern EAE, the presence and immunoreactivity of nuclear RelA and phospho-I{kappa}B were recorded at the initiation and peak stage, and degradation of I{kappa}B{alpha} progressed rapidly at an early stage then stabilized during recovery. The immunoreactivity to RelA and phospho-I{kappa}B occurred mainly in inflammatory cells and microglial cells but only slightly in astrocytes. Subsequently, the blockade of I{kappa}B dissociation from NF-{kappa}B reduced the severity of disease by decreasing antigen-specific T cell response and production of IL-17 in EAE. Thus, blocking the dissociation of I{kappa}B from NF-{kappa}B can be utilized as a strategy to inhibit the NF-{kappa}B signal pathway thereby to reduce the initiation, progression, and severity of EAE.

  18. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  19. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  20. Myeloid Suppressor Cells Induced by Retinal Pigment Epithelial Cells Inhibit Autoreactive T-Cell Responses That Lead to Experimental Autoimmune Uveitis

    PubMed Central

    Tu, Zhidan; Li, Yan; Smith, Dawn; Doller, Catherine; Sugita, Sunao; Chan, Chi-Chao; Qian, Shiguang; Fung, John; Caspi, Rachel R.; Lu, Lina

    2012-01-01

    Purpose. To test whether retinal pigment epithelial (RPE) cells are able to induce myeloid-derived suppressor cell (MDSC) differentiation from bone marrow (BM) progenitors. Methods. BM cells were cocultured with or without RPE cells in the presence of GM-CSF and IL-4. Numbers of resultant MDSCs were assessed by flow cytometry after 6 days of incubation. The ability of the RPE cell–induced MDSCs to inhibit T cells was evaluated by a CFSE-based T-cell proliferation assay. To explore the mechanism by which RPE cells induce MDSC differentiation, PD-L1–deficient RPE cells and blocking antibodies against TGF-β, CTLA-2α, and IL-6 were used. RPE cell-induced MDSCs were adoptively transferred into mice immunized with interphotoreceptor retinoid-binding protein in complete Freund's adjuvant to test their efficacy in suppressing autoreactive T-cell responses in experimental autoimmune uveitis (EAU). Results. RPE cells induced the differentiation of MDSCs. These RPE cell–induced MDSCs significantly inhibited T-cell proliferation in a dose-dependent manner. PD-L1–deficient RPE cells induced MDSC differentiation as efficiently as wild-type RPE cells, and neutralizing TGF-β or CTLA-2α did not alter the numbers of induced MDSCs. However, blocking IL-6 reduced the efficacy of RPE cell–induced MDSC differentiation. Finally, adoptive transfer of RPE cell–induced MDSCs suppressed IRBP-specific T-cell responses that led to EAU. Conclusions. RPE cells induce the differentiation of MDSCs from bone marrow progenitors. Both cell surface molecules and soluble factors are important in inducing MDSC differentiation. PD-L1, TGF-β, and CTLA-2α were not measurably involved in RPE cell–induced MDSC differentiation, whereas IL-6 was important in the process. The induction of MDSCs could be another mechanism by which RPE cells control immune reactions in the retina, and RPE cell–induced MDSCs should be further investigated as a potential approach to therapy for autoimmune

  1. Protection Provided by an Encapsulated Live Attenuated ΔabcBA Strain of Brucella ovis against Experimental Challenge in a Murine Model

    PubMed Central

    Silva, Ana Patrícia C.; Macêdo, Auricélio A.; Silva, Teane M. A.; Ximenes, Luana C. A.; Brandão, Humberto M.; Paixão, Tatiane A.

    2015-01-01

    This study aimed to evaluate the Brucella ovis ΔabcBA strain as a vaccine candidate in the murine model. BALB/c mice were subcutaneously or intraperitoneally immunized with a single dose or three doses of the B. ovis ΔabcBA strain and then were challenged with wild-type B. ovis. Single or multiple immunizations provided only mild protection, with significantly smaller numbers of wild-type B. ovis CFU in the livers of immunized mice but not in the spleens. Encapsulation of B. ovis ΔabcBA significantly improved protection against experimental challenges in both BALB/c and C57BL/6 mice. Furthermore, immunization with encapsulated B. ovis ΔabcBA markedly prevented lesions in the spleens and livers of experimentally challenged mice. These results demonstrated that the encapsulated B. ovis ΔabcBA strain confers protection to mice; therefore, this strain has potential as a vaccine candidate for rams. PMID:25947146

  2. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling.

    PubMed

    Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio

    2016-10-01

    Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation. PMID:27439970

  3. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling.

    PubMed

    Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio

    2016-10-01

    Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation.

  4. Effects of beta 2 adrenergic agonists on axonal injury and mitochondrial metabolism in experimental autoimmune encephalomyelitis rats.

    PubMed

    Zhang, Z W; Qin, X Y; Che, F Y; Xie, G; Shen, L; Bai, Y Y

    2015-01-01

    The primary aims of this study were to investigate mitochondrial metabolism during experimental allergic encephalomyelitis (EAE) animal model axonal injury and to determine the correlation among neurological function scores, pathological changes, and the activities of the BB isoenzyme of creatine kinase (CK-BB), catalase (CAT), and calpain in the brain tissues of EAE rats. Another goal was to preliminarily define the mechanism of mitochondrial metabolism resulting from the effect of beta 2 adrenergic agonists in the process of EAE animal model axonal damage. EAE was induced in specific pathogen free Wistar rats by guinea pig spinal cord homogenate, complete Freund's adjuvant, and pertussis vaccine. We recorded the behavioral change in EAE rats, detected pathological changes in central nervous tissue, and observed the changes of the CK-BB, CAT, and calpain in the EAE rat brain and spinal cord. The results indicated that the average neurologic function score increased in the EAE group compared to that of the controls (P < 0.01). In addition, CAT and CK-BB activities significantly decreased and the calpain activity significantly increased compared with those of the control group (P < 0.05). The decrease of the activity of central nervous CK-BB and CAT content, as well as the increase of calpain activity at the highest time point were considered to be the consequences of EAE. Furthermore, the results revealed that use of salbutamol could alleviate disease symptoms and reduce the recurrence of the EAE disease. PMID:26535670

  5. The Role of Latently Infected B Cells in CNS Autoimmunity

    PubMed Central

    Márquez, Ana Citlali; Horwitz, Marc Steven

    2015-01-01

    The onset of multiple sclerosis (MS) is caused by both genetic and environmental factors. Among the environmental factors, it is believed that previous infection with Epstein–Barr virus (EBV) may contribute in the development of MS. EBV has been associated with other autoimmune diseases, such as systemic lupus erythematous, and cancers like Burkitt’s lymphoma. EBV establishes a life-long latency in B cells with occasional reactivation of the virus throughout the individual’s life. The role played by B cells in MS pathology has been largely studied, yet is not clearly understood. In MS patients, Rituximab, a novel treatment that targets CD20+ B cells, has proven to have successful results in diminishing the number of relapses in remitting relapsing MS; however, the mechanism of how this drug acts has not been clearly established. In this review, we analyze the evidence of how B cells latently infected with EBV might be altering the immune system response and helping in the development of MS. We will also discuss how animal models, such as experimental autoimmune encephalomyelitis (EAE) and murine gammaherpesvirus-68 (γHV-68), can be used as powerful tools in the study of the relationship between EBV, MS, and B cells. PMID:26579121

  6. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis.

    PubMed

    Medicherla, Kanakaraju; Ketkar, Avanee; Sahu, Bidya Dhar; Sudhakar, Godi; Sistla, Ramakrishna

    2016-07-13

    We investigated the anti-inflammatory and anti-colitis effects of Rosmarinus officinalis L. extract (RE) by using both in vitro LPS-activated mouse RAW 264.7 macrophages and in vivo dextran sulfate sodium (DSS)-induced experimental murine colitis and suggested the underlying possible mechanisms. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis was performed to identify the major components present in the RE. The clinical signs, biochemistry, immunoblot, ELISA and histology in colon tissues were assessed in order to elucidate the beneficial effect of RE. RE suppressed the LPS-induced pro-inflammatory cytokine production and the expressions of inflammatory proteins in macrophages. Administration of RE (50 and 100 mg kg(-1)) also significantly reduced the severity of DSS-induced murine colitis, as assessed by the clinical symptoms, colon length and histology. RE administration prevented the DSS-induced activation of p38, ERK and JNK MAPKs, attenuated IκBα phosphorylation and subsequent nuclear translocation and DNA binding of NF-κB (p65). RE also suppressed the COX-2 and iNOS expressions, decreased the levels of TNF-α and IL-6 cytokines and the myeloperoxidase activity in the colon tissue. Histological observation revealed that RE administration alleviated mucosal damage and inflammatory cell infiltration induced by DSS in the colon tissue. Hence, RE could be used as a new preventive and therapeutic food ingredient or as a dietary supplement for inflammatory bowel disease. PMID:27349640

  7. The autoimmune tautology.

    PubMed

    Anaya, Juan-Manuel

    2010-01-01

    Although autoimmune diseases exhibit contrasting epidemiological features, pathology, and clinical manifestations, three lines of evidence demonstrate that these diseases share similar immunogenetic mechanisms (that is, autoimmune tautology). First, clinical evidence highlights the co-occurrence of distinct autoimmune diseases within an individual (that is, polyautoimmunity) and within members of a nuclear family (that is, familial autoimmunity). Second, physiopathologic evidence indicates that the pathologic mechanisms may be similar among autoimmune diseases. Lastly, genetic evidence shows that autoimmune phenotypes might represent pleiotropic outcomes of the interaction of non-specific disease genes.

  8. Helicobacter pylori and skin autoimmune diseases

    PubMed Central

    Magen, Eli; Delgado, Jorge-Shmuel

    2014-01-01

    Autoimmune skin diseases are characterized by dysregulation of the immune system resulting in a loss of tolerance to skin self-antigen(s). The prolonged interaction between the bacterium and host immune mechanisms makes Helicobacter pylori (H. pylori) a plausible infectious agent for triggering autoimmunity. Epidemiological and experimental data now point to a strong relation of H. pylori infection on the development of many extragastric diseases, including several allergic and autoimmune diseases. H. pylori antigens activate cross-reactive T cells and induce autoantibodies production. Microbial heat shock proteins (HSP) play an important role of in the pathogenesis of autoimmune diseases because of the high level of sequence homology with human HSP. Eradication of H. pylori infection has been shown to be effective in some patients with chronic autoimmune urticaria, psoriasis, alopecia areata and Schoenlein-Henoch purpura. There is conflicting and controversial data regarding the association of H. pylori infection with Behçet’s disease, scleroderma and autoimmune bullous diseases. No data are available evaluating the association of H. pylori infection with other skin autoimmune diseases, such as vitiligo, cutaneous lupus erythematosus and dermatomyositis. The epidemiological and experimental evidence for a possible role of H. pylori infection in skin autoimmune diseases are the subject of this review. PMID:24587626

  9. Ovarian autoimmune disease: clinical concepts and animal models

    PubMed Central

    Warren, Bryce D; Kinsey, William K; McGinnis, Lynda K; Christenson, Lane K; Jasti, Susmita; Stevens, Anne M; Petroff, Brian K; Petroff, Margaret G

    2014-01-01

    The ovary is not an immunologically privileged organ, but a breakdown in tolerogenic mechanisms for ovary-specific antigens has disastrous consequences on fertility in women, and this is replicated in murine models of autoimmune disease. Isolated ovarian autoimmune disease is rare in women, likely due to the severity of the disease and the inability to transmit genetic information conferring the ovarian disease across generations. Nonetheless, autoimmune oophoritis is often observed in association with other autoimmune diseases, particularly autoimmune adrenal disease, and takes a toll on both society and individual health. Studies in mice have revealed at least two mechanisms that protect the ovary from autoimmune attack. These mechanisms include control of autoreactive T cells by thymus-derived regulatory T cells, as well as a role for the autoimmune regulator (AIRE), a transcriptional regulator that induces expression of tissue-restricted antigens in medullary thymic epithelial cells during development of T cells. Although the latter mechanism is incompletely defined, it is well established that failure of either results in autoimmune-mediated targeting and depletion of ovarian follicles. In this review, we will address the clinical features and consequences of autoimmune-mediated ovarian infertility in women, as well as the possible mechanisms of disease as revealed by animal models. PMID:25327908

  10. The Synergistic Local Immunosuppressive Effects of Neural Stem Cells Expressing Indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model.

    PubMed

    Lee, Young Eun; An, Jaeyeol; Lee, Kee-Hang; Kim, Sung Su; Song, Hye Jin; Pyeon, Heejang; Nam, Hyun; Kang, Kyeongjin; Joo, Kyeung Min

    2015-01-01

    Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases.

  11. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.

    PubMed

    Liu, Yuanyuan; You, Caiyun; Zhang, Zhuhong; Zhang, Jingkai; Yan, Hua

    2015-12-01

    Optic neuritis associated with multiple sclerosis and its animal model, experimental autoimmune optic neuritis (EAON), is characterized by inflammation, T cell activation, demyelination, and neuronal damage, which might induce permanent vision loss. Elucidating the chronological relationship among the features is critical for treatment of demyelinating optic neuritis. EAON was induced in C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein subcutaneously, and visual function was assessed by flash-visual evoked potential (F-VEP) at days 7, 11, 14, 19, 23, 28 post-immunization. Retinal ganglion cell (RGC) apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick-end labeling. Demyelination and axonal damage were verified with myelin basic protein (MBP) and β-amyloid precursor protein staining, respectively. Real-time polymerase chain reaction quantified IL-17, IL-1β, TGF-β, FoxP3, IL-6, and IL-10 mRNA expression in the optic nerve, as well as FoxP3 and IL-17 staining. Systemic changes of Th17 and Treg cells were tested by flow cytometry in spleen. F-VEP latency was prolonged at 11 days and peaked at 23 days commensurate with demyelination. However, F-VEP amplitude was reduced at 11 days, preceding axon damage, and was exacerbated at 23 days when a peak in RGC apoptosis was detected. Th17 cells up-regulated as early as 7 days and peaked at 11 days, while Treg cells down-regulated inversely compared to Th17 cells change as verified by IL-17 and FoxP3 expression; spleen cell samples were slightly different, demonstrating marked changed at 14 days. Treg/Th17 cell imbalance in the optic nerve precedes and may initiate neuronal damage of axons and RGCs. These changes are commensurate with the appearances of visual dysfunction reflected in F-VEP and hence may offer a novel therapeutic avenue for vision preservation. PMID:26318182

  12. Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells.

    PubMed

    Mitra, Nilesh Kumar; Bindal, Umesh; Eng Hwa, Wong; Chua, Caroline L L; Tan, Chek Ying

    2015-01-01

    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model. PMID:26722389

  13. Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin.

    PubMed

    Liu, X; Mashour, G A; Webster, H F; Kurtz, A

    1998-12-01

    Heparin-binding growth factors have been implicated in central nervous system development, regeneration and pathology. To assess the expression pattern and possible function in multiple sclerosis, the heparin-binding growth factors pleiotrophin (PTN), midkine (MK), basic fibroblast growth factor (FGF-2) and one of its receptors (FGFR1/flg) mRNA and protein levels were examined in an experimental autoimmune encephalomyelitis (EAE) model in the Lewis rat. We assessed the time course of expression of PTN, MK and FGF-2 during EAE and determined the cellular origin of FGF-2 and FGFR1 in normal spinal cord and during inflammatory demyelination. Basal expression of PTN and MK mRNAs in normal spinal cords was significantly upregulated after induction of EAE. MK expression was upregulated two to threefold correlating with disease progression, whereas PTN expression reached peak levels threefold above basal levels during the clinical recovery period. FGF-2 mRNA expression was low in normal spinal cord and dramatically increased in correlation with progressive demyelination. FGF-2 was confined to neurons in normal tissue and shifted dramatically to microglia, paralleling their activation during EAE. Double immunohistochemistry revealed colocalization of FGF-2 to activated microglia/macrophages with strongest expression in the macrophage-rich perivascular core area and microglial expression at the edges of white and gray matter perivascular regions. FGFR1, like its ligand, was induced in activated macrophages/microglia. Growth factor expression in demyelinating diseases could serve several functions, e.g., to modulate the activity of microglia/macrophage in an autocrine fashion, to induce the expression of other factors like insulin-like growth factor 1 or plasminogen activator, which can effect regeneration or degeneration, respectively, and finally to stimulate directly localized proliferation and/or regeneration of oligodendrocytes within the lesion area.

  14. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis.

    PubMed

    Grigorian, Ani; Araujo, Lindsey; Naidu, Nandita N; Place, Dylan J; Choudhury, Biswa; Demetriou, Michael

    2011-11-18

    Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease. PMID:21965673

  15. ASP4058, a Novel Agonist for Sphingosine 1-Phosphate Receptors 1 and 5, Ameliorates Rodent Experimental Autoimmune Encephalomyelitis with a Favorable Safety Profile

    PubMed Central

    Yamamoto, Rie; Okada, Youhei; Hirose, Jun; Koshika, Tadatsura; Kawato, Yuka; Maeda, Masashi; Saito, Rika; Hattori, Kazuyuki; Harada, Hironori; Nagasaka, Yasuhisa; Morokata, Tatsuaki

    2014-01-01

    Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that acts through the members of a family of five G protein-coupled receptors (S1P1–S1P5). S1P1 is a major regulator of lymphocyte trafficking, and fingolimod, whose active metabolite fingolimod phosphate acts as a nonselective S1P receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating the lymphocyte trafficking by inducing down regulation of lymphocyte S1P1. Here, we detail the pharmacological profile of 5-{5-[3-(trifluoromethyl)-4-{