Sample records for muscarinic cholinergic receptor

  1. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.

    PubMed

    Verbitsky, M; Rothlin, C V; Katz, E; Elgoyhen, A B

    2000-10-01

    The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.

  2. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  3. Antidepressant Effects of the Muscarinic Cholinergic Receptor Antagonist Scopolamine: A Review

    PubMed Central

    Drevets, Wayne C.; Zarate, Carlos A.; Furey, Maura L.

    2014-01-01

    The muscarinic cholinergic receptor system has been implicated in the pathophysiology of depression, with physiological evidence indicating this system is overactive or hyperresponsive in depression and with genetic evidence showing that variation in genes coding for receptors within this system are associated with higher risk for depression. In studies aimed at assessing whether a reduction in muscarinic cholinergic receptor function would improve depressive symptoms, the muscarinic receptor antagonist scopolamine manifested antidepressant effects that were robust and rapid relative to conventional pharmacotherapies. Here, we review the data from a series of randomized, double-blind, placebo-controlled studies involving subjects with unipolar or bipolar depression treated with parenteral doses of scopolamine. The onset and duration of the antidepressant response are considered in light of scopolamine's pharmacokinetic properties and an emerging literature that characterizes scopolamine's effects on neurobiological systems beyond the cholinergic system that appear relevant to the neurobiology of mood disorders. Scopolamine infused at 4.0 μg/kg intravenously produced robust antidepressant effects versus placebo, which were evident within 3 days after the initial infusion. Placebo-adjusted remission rates were 56% and 45% for the initial and subsequent replication studies, respectively. While effective in male and female subjects, the change in depression ratings was greater in female subjects. Clinical improvement persisted more than 2 weeks following the final infusion. The timing and persistence of the antidepressant response to scopolamine suggest a mechanism beyond that of direct muscarinic cholinergic antagonism. These temporal relationships suggest that scopolamine-induced changes in gene expression and synaptic plasticity may confer the therapeutic mechanism. PMID:23200525

  4. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia

    PubMed Central

    Pavlov, Valentin A.; Ochani, Mahendar; Gallowitsch-Puerta, Margot; Ochani, Kanta; Huston, Jared M.; Czura, Christopher J.; Al-Abed, Yousef; Tracey, Kevin J.

    2006-01-01

    TNF has a critical mediator role in inflammation and is an important therapeutic target. We recently discovered that TNF production is regulated by neural signals through the vagus nerve. Activation of this “cholinergic antiinflammatory pathway” inhibits the production of TNF and other cytokines and protects animals from the inflammatory damage caused by endotoxemia and severe sepsis. Here, we describe a role for central muscarinic acetylcholine receptors in the activation of the cholinergic antiinflammatory pathway. Central muscarinic cholinergic activation by muscarine, the M1 receptor agonist McN-A-343, and the M2 receptor antagonist methoctramine inhibited serum TNF levels significantly during endotoxemia. Centrally administered methoctramine stimulated vagus-nerve activity measured by changes in instantaneous heart-rate variability. Blockade of peripheral muscarinic receptors did not abolish antiinflammatory signaling through the vagus nerve, indicating that peripheral muscarinic receptors on immune cells are not required for the cytokine-regulating activities of the cholinergic antiinflammatory pathway. The role of central muscarinic receptors in activating the cholinergic antiinflammatory pathway is of interest for the use of centrally acting muscarinic cholinergic enhancers as antiinflammatory agents. PMID:16549778

  5. Muscarinic cholinergic and alpha/sub 1/ adrenergic receptors in murine atria: phosphatidylinositol breakdown and receptor interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherer, R.W.

    Upon stimulation of muscarinic cholinergic receptors, there is a decrease in the force of contraction rate of firing in heart, while stimulation of ..cap alpha.. adrenergic receptors causes an increase in the force of contraction with no change in the heart rate. Yet both receptors stimulate the breakdown of phosphatidylinositol (PI). Therefore, the breakdown of PI was examined to determine how the process differed between the two receptor systems. Murine atria, prelabelled with (/sup 3/H)inositol, were stimulated with the muscarinic cholinergic agonists, carbamylcholine (CARB), and oxotremorine (OXO); and with the ..cap alpha.. adrenergic agonists, norepinephrine (NE) and phenylephrine (PE); eithermore » singly or in combination. Breakdown of PI was assessed by measurement of individual inositol phosphates by anion exchange chromatography. Binding of CARB to atrial muscarinic receptors was measured by competition with (/sup 3/H)quinuclidinyl benzilate.« less

  6. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    PubMed

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  7. Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation.

    PubMed

    Daigle, Tanya L; Caron, Marc G

    2012-08-15

    Although G-protein-coupled receptor kinase 2 (GRK2) is the most widely studied member of a family of kinases that has been shown to exert powerful influences on a variety of G-protein-coupled receptors, its role in the brain remains largely unknown. Here we report the localization of GRK2 in the mouse brain and generate novel conditional knock-out (KO) mice to assess the physiological importance of this kinase in cholinergic neurons. Mice with the selective deletion of GRK2 in this cell population (ChAT(IRES-cre)Grk2(f/f) KO mice) exhibit reduced behavioral responsiveness to challenge with oxotremorine-M (Oxo-M), a nonselective muscarinic acetylcholine receptor agonist. Specifically, Oxo-M-induced hypothermia, hypolocomotion, and salivation were markedly reduced in these animals, while analgesic responses were unaltered. In contrast, we found that GRK2 deficiency in cholinergic neurons does not alter cocaine-induced psychomotor activation, behavioral sensitization, or conditioned place preference. These results demonstrate that the elimination of GRK2 in cholinergic neurons reduces sensitivity to select muscarinic-mediated behaviors, while dopaminergic effects remain intact and further suggests that GRK2 may selectively impair muscarinic acetylcholine receptor-mediated function in vivo.

  8. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  9. New advances in pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors

    PubMed Central

    Greig, Nigel H.; Reale, Marcella; Tata, Ada Maria

    2016-01-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer’ and Sjogren’s diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  10. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment

    PubMed Central

    Soukup, Ondrej; Winder, Michael; Killi, Uday Kumar; Wsol, Vladimir; Jun, Daniel; Kuca, Kamil; Tobin, Gunnar

    2017-01-01

    Background Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. Methods We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. Results Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. Conclusion Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the

  11. Quantitative in vivo receptor binding. I. Theory and application to the muscarinic cholinergic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Ehrenkaufer, R.L.; Beaucage, S.

    1985-02-01

    A novel approach to in vivo receptor binding experiments is presented which allows direct quantitation of binding site densities. The method is based on an equilibrium model of tracer uptake and is designed to produce a static distribution proportional to receptor density and to minimize possible confounding influences of regional blood flow, blood-brain barrier permeability, and nonspecific binding. This technique was applied to the measurement of regional muscarinic cholinergic receptor densities in rat brain using (/sup 3/H)scopolamine. Specific in vivo binding of scopolamine demonstrated saturability, a pharmacologic profile, and regional densities which are consistent with interaction of the tracer withmore » the muscarinic receptor. Estimates of receptor density obtained with the in vivo method and in vitro measurements in homogenates were highly correlated. Furthermore, reduction in striatal muscarinic receptors following ibotenic acid lesions resulted in a significant decrease in tracer uptake in vivo, indicating that the correlation between scopolamine distribution and receptor density may be used to demonstrate pathologic conditions. We propose that the general method presented here is directly applicable to investigation of high affinity binding sites for a variety of radioligands.« less

  12. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    PubMed

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  13. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed Central

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-01-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene. Images PMID:2825184

  14. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family.

    PubMed

    Gocayne, J; Robinson, D A; FitzGerald, M G; Chung, F Z; Kerlavage, A R; Lentes, K U; Lai, J; Wang, C D; Fraser, C M; Venter, J C

    1987-12-01

    Two cDNA clones, lambda RHM-MF and lambda RHB-DAR, encoding the muscarinic cholinergic receptor and the beta-adrenergic receptor, respectively, have been isolated from a rat heart cDNA library. The cDNA clones were characterized by restriction mapping and automated DNA sequence analysis utilizing fluorescent dye primers. The rat heart muscarinic receptor consists of 466 amino acids and has a calculated molecular weight of 51,543. The rat heart beta-adrenergic receptor consists of 418 amino acids and has a calculated molecular weight of 46,890. The two cardiac receptors have substantial amino acid homology (27.2% identity, 50.6% with favored substitutions). The rat cardiac beta receptor has 88.0% homology (92.5% with favored substitutions) with the human brain beta receptor and the rat cardiac muscarinic receptor has 94.6% homology (97.6% with favored substitutions) with the porcine cardiac muscarinic receptor. The muscarinic cholinergic and beta-adrenergic receptors appear to be as conserved as hemoglobin and cytochrome c but less conserved than histones and are clearly members of a multigene family. These data support our hypothesis, based upon biochemical and immunological evidence, that suggests considerable structural homology and evolutionary conservation between adrenergic and muscarinic cholinergic receptors. To our knowledge, this is the first report utilizing automated DNA sequence analysis to determine the structure of a gene.

  15. Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drayer, B.; Jaszczak, R.; Coleman, E.

    1982-06-01

    An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less

  16. Cooperativity and oligomeric status of cardiac muscarinic cholinergic receptors.

    PubMed

    Park, Paul S-H; Sum, Chi Shing; Pawagi, Asha B; Wells, James W

    2002-04-30

    Muscarinic cholinergic receptors can appear to be more numerous when labeled by [(3)H]quinuclidinylbenzilate (QNB) than by N-[(3)H]methylscopolamine (NMS). The nature of the implied heterogeneity has been studied with M(2) receptors in detergent-solubilized extracts of porcine atria. The relative capacity for [(3)H]NMS and [(3)H]QNB was about 1 in digitonin-cholate, 0.56 in cholate-NaCl, and 0.44 in Lubrol-PX. Adding digitonin to extracts in cholate-NaCl increased the absolute capacity for both radioligands, and the relative capacity increased to near 1. The latency cannot be attributed to a chemically impure radioligand, instability of the receptor, an irreversible effect of NMS, or a failure to reach equilibrium. Binding at near-saturating concentrations of [(3)H]QNB in cholate-NaCl or Lubrol-PX was blocked fully by unlabeled NMS, which therefore appeared to inhibit noncompetitively at sites inaccessible to radiolabeled NMS. Such an effect is inconsistent with the notion of functionally distinct, noninterconverting, and mutually independent sites. Both the noncompetitive effect of NMS on [(3)H]QNB and the shortfall in capacity for [(3)H]NMS can be described quantitatively in terms of cooperative interactions within a receptor that is at least tetravalent; no comparable agreement is possible with a receptor that is only di- or trivalent. The M(2) muscarinic receptor therefore appears to comprise at least four interacting sites, presumably within a tetramer or larger array, and ligands appear to bind in a cooperative manner under at least some conditions.

  17. Generalised smooth-muscle disease with defective muscarinic-receptor function.

    PubMed

    Bannister, R; Hoyes, A D

    1981-03-28

    A patient with widespread smooth-muscle disease presented with chronic intestinal pseudo-obstruction but had in addition defects of the bladder, pupils, sweating, and cardiovascular function. There was no evidence of a primary neural lesion, and minor changes in the muscle did not resemble those of a myopathy. In each organ affected muscarinic cholinergic function was at fault, but instead of supersensitivity to cholinergic drugs, which occurs in postganglionic autonomic neuropathies, there was a lack of response to cholinergic drugs and anticholinesterases. It was therefore concluded that the patient had a new type of defect of muscarinic-receptor function. The cause was unknown, but it may have been an autoimmune disease resembling myasthenia, in which there is a postjunctional defect of muscarinic receptors. In similar cases binding of muscarinic agonists and antagonists should be tested. When antibodies to purified human muscarinic receptors become available different patterns of smooth-muscle defect may be identifiable, enabling the lesion to be defined more precisely.

  18. Pharmacological approaches to targeting muscarinic acetylcholine receptors.

    PubMed

    Matera, Carlo; Tata, Ada M

    2014-01-01

    The presence of cholinergic system markers and muscarinic receptor subtypes in several tissues also of nonneuronal type has been largely demonstrated. Acetylcholine, synthesized in the nervous system, can locally contribute to modulate cell proliferation, survival and apoptosis. Considering that the cholinergic system functions are impaired in a number of disorders, the identification of new drugs regulating these functions appears of great clinical relevance. The possible involvement of muscarinic acetylcholine receptors in different pathologies has been proposed in recent years and is becoming an important area of study. However, the lack of selective muscarinic receptor ligands has for long time limited the therapeutic treatment based on muscarinic receptors as targets. To date, some muscarinic ligands such as xanomeline (patent, US5980933) or cevimeline (patents US4855290, US5571918) have been developed for the treatment of several pathologies (Alzheimer's and Sjogren's diseases). The present review will be focused on the potential effects produced by muscarinic receptor activation in different pathologies, including tumors. In fact, the potential use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that several muscarinic antagonists, already used in the treatment of genitourinary diseases (e.g. darifenacin, patent, US5096890, US6106864), have also been demonstrated to arrest the tumor growth in vivo. Moreover, the contribution of muscarinic receptors to analgesia is also reviewed. Finally, some of the most significant achievements in the field of bitopic/dualsteric ligands will be discussed and the molecules patented so far will be presented.

  19. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate.more » Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.« less

  20. Enhanced sensitivity of muscarinic cholinergic receptor associated with dopaminergic receptor subsensitivity after chronic antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koide, T.; Matsushita, H.

    1981-03-09

    The chronic effects of antidepressant treatment on striatal dopaminergic (DA) and muscarinic cholinergic (mACh) receptors of the rat brain have been examined comparatively in this study using /sup 3/H-spiroperidol (/sup 3/H-SPD) and /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB) as the respective radioactive ligands. Imipramine and desipramine were used as prototype antidepressants. Although a single administration of imipramine or desipramine did not affect each receptor sensitivity, chronic treatment with each drug caused a supersensitivity of mACh receptor subsequent to DA receptor subsensitivity. Furthermore, it has been suggested that anti-mACh properties of imipramine or desipramine may not necessarily be related to the manifestationmore » of mACh receptor supersensitivity and that sustained DA receptor subsensitivity may play some role in the alterations of mACh receptor sensitivity.« less

  1. Myotropic Effects of Cholinergic Muscarinic Agonists and Antagonists in the Beetle Tenebrio molitor L.

    PubMed

    Chowanski, Szymon; Rosinski, Grzegorz

    2017-01-01

    In mammals, the cholinergic nervous system plays a crucial role in neuronal regulation of physiological processes. It acts on cells by two types of receptors - nicotinic and muscarinic receptors. Both signal transmission pathways also operate in the central and peripheral cholinergic nervous system of insects. In our pharmacological experiments, we studied the effects of two muscarinic agonists (carbachol, pilocarpine) and two muscarinic antagonists (atropine, scopolamine) on the muscle contractile activity of visceral organs in the beetle, Tenebrio molitor. Both antagonists, when injected to haemolymph at concentration 10-5 M, caused delayed and prolonged cardioinhibitory effects on heart contractility in ortho- and antidromic phases of heart activity in T. molitor pupa what was observed as negative chrono- and inotropic effects. Agonist of muscarinic receptors - carbachol evoked opposite effect and increased contraction rate but only in antidromic phase. Pilocarpine, the second agonist induced weak negative chronotropic effects in the antiand orthodromic phases of heart activity. However, neither agonists had an effect on semi-isolated beetle heart in vitro. Only atropine at the highest tested concentrations slightly decreased the frequency of myocardial contractions. These suggest the regulation of heart activity by muscarinic system indirectly. The tested compounds also affected the contractility of the oviduct and hindgut, but the responses of these organs were varied and depended on the concentration of the applied compounds. These pharmacological experiments suggest the possible modulation of insect visceral muscle contractility by the cholinergic nervous system and indirectly indicate the presence of muscarinic receptor(s) in the visceral organs of the beetle T. molitor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirvan, M.H.; Pollard, H.B.; Heldman, E.

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretionmore » induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.« less

  3. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  4. Oxotremorine-M potentiates NMDA receptors by muscarinic receptor dependent and independent mechanisms.

    PubMed

    Zwart, Ruud; Reed, Hannah; Sher, Emanuele

    2018-01-01

    Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Nicotinic and muscarinic cholinergic receptors are recruited by acetylcholine-mediated neurotransmission within the locus coeruleus during the organisation of post-ictal antinociception.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Franceschi; Falconi-Sobrinho, Luiz Luciano; Dos Anjos-Garcia, Tayllon; Coimbra, Norberto Cysne

    2016-10-01

    Post-ictal antinociception is characterised by an increase in the nociceptive threshold that accompanies tonic and tonic-clonic seizures (TCS). The locus coeruleus (LC) receives profuse cholinergic inputs from the pedunculopontine tegmental nucleus. Different concentrations (1μg, 3μg and 5μg/0.2μL) of the muscarinic cholinergic receptor antagonist atropine and the nicotinic cholinergic receptor antagonist mecamylamine were microinjected into the LC of Wistar rats to investigate the role of cholinergic mechanisms in the severity of TCS and the post-ictal antinociceptive response. Five minutes later, TCS were induced by systemic administration of pentylenetetrazole (PTZ) (64mg/kg). Seizures were recorded inside the open field apparatus for an average of 10min. Immediately after seizures, the nociceptive threshold was recorded for 130min using the tail-flick test. Pre-treatment of the LC with 1μg, 3μg and 5μg/0.2μL concentrations of both atropine and mecamylamine did not cause a significant effect on seizure severity. However, the same treatments decreased the post-ictal antinociceptive phenomenon. In addition, mecamylamine caused an earlier decrease in the post-ictal antinociception compared to atropine. These results suggest that muscarinic and mainly nicotinic cholinergic receptors of the LC are recruited to organise tonic-clonic seizure-induced antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2013-01-01

    Depolarizing, hyperpolarizing and biphasic muscarinic responses have been described in hippocampal inhibitory interneurons, but the receptor subtypes and activity patterns required to synaptically activate muscarinic responses in interneurons have not been completely characterized. Using optogenetics combined with whole cell patch clamp recordings in acute slices, we measured muscarinic responses produced by endogenously released acetylcholine (ACh) from cholinergic medial septum/diagonal bands of Broca inputs in hippocampal CA1. We found that depolarizing responses required more cholinergic terminal stimulation than hyperpolarizing ones. Furthermore, elevating extracellular ACh with the acetylcholinesterase inhibitor physostigmine had a larger effect on depolarizing versus hyperpolarizing responses. Another subpopulation of interneurons responded biphasically, and periodic release of ACh entrained some of these interneurons to rhythmically burst. M4 receptors mediated hyperpolarizing responses by activating inwardly rectifying K+ channels, whereas the depolarizing responses were inhibited by the nonselective muscarinic antagonist atropine but were unaffected by M1, M4 or M5 receptor modulators. In addition, activation of M4 receptors significantly altered biphasic interneuron firing patterns. Anatomically, interneuron soma location appeared predictive of muscarinic response types but response types did not correlate with interneuron morphological subclasses. Together these observations suggest that the hippocampal CA1 interneuron network will be differentially affected by cholinergic input activity levels. Low levels of cholinergic activity will preferentially suppress some interneurons via hyperpolarization and increased activity will recruit other interneurons to depolarize, possibly because of elevated extracellular ACh concentrations. These data provide important information for understanding how cholinergic therapies will affect hippocampal network function

  7. Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M.

    PubMed

    Chintoh, Araba; Fulton, James; Koziel, Nicole; Aziz, Mariam; Sud, Manu; Yeomans, John S

    2003-08-01

    Mesopontine cholinergic neurons activate dopamine neurons important for reward-seeking and locomotor activity. The present studies tested whether cholinergic receptor blockade in the ventral tegmental area (VTA) altered locomotion induced by scopolamine (3 mg/kg i.p.) or by oxotremorine-M (0.1 microg bilaterally in the VTA). It was predicted that cholinergic blockers in the VTA would attenuate these cholinergic-induced locomotor increases. Locomotor activity was increased by scopolamine and oxotremorine-M administration in all treatments. When dihydro-beta-erythroidine (DHBE), a nicotinic receptor antagonist, was applied in VTA prior to oxotremorine-M, locomotion was reduced to slightly above saline baseline levels, but atropine, a muscarinic antagonist, had no effect. This suggests that the locomotor effect of oxotremorine-M at this dose was mediated mainly via nicotinic, not muscarinic, receptors. Intra-VTA injections of DHBE, however, did not attenuate scopolamine-induced locomotion indicating that scopolamine-induced locomotion is not mediated mainly via VTA cholinergic receptors. In mutant mice with a deletion in the M5 muscarinic receptor gene, scopolamine-induced locomotion was increased versus wild type mice after scopolamine injection. This suggests that the M5 receptor has an inhibitory effect on scopolamine-induced locomotion.

  8. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  9. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  10. Synthesis of dibenzodioxazocines and their effects on cholinesterases and muscarinic cholinergic receptors.

    PubMed

    Gaál, J; Batke, J; Borsodi, A; Rózsa, L; Somogyi, G

    1989-01-01

    A new family of tricyclic compounds, the dibenzodioxazocines were synthesized. These compounds were the following: 2-chloro-12-(2-piperidino-ethyl)-dibenzo d,g 1,3,6 dioxazocine hydrochloride: EGYT-2347, 2-chloro-12-(3-dimethylamino-2-methyl-propyl)-dibenzo [d,g] [1,3,6]-dibenzodioxazocine hydrochloride: EGYT-2509, 2-chloro-12-(3-dimethylamino-propyl)-dibenzo [d,g] [1,3,6] dioxazocine-maleate: EGYT-2474 and 2-chloro-12-2-(4-methyl-piperazino)-ethyl-dibenzo [d,g] [1,3,6]-dioxazocine-dihydrochloride: EGYT-2541. These compounds are inhibitors of both butyryl- and acetylcholinesterase to and they exhibited relatively good anticholinergic properties in receptor binding experiments. The most selective inhibitor of butyrylcholinesterase is the compound EGYT-2347 (Ki = 1.5 x 10(-7) M) which strongly binds to rat brain muscarinic cholinergic receptor (KD = 4.1 x 10(-8) M).

  11. The role of muscarinic cholinergic signaling in cost-benefit decision making

    NASA Astrophysics Data System (ADS)

    Fobbs, Wambura

    Animals regularly face decisions that affect both their immediate success and long term survival. Such decisions typically involve some form of cost-benefit analysis and engage a number of high level cognitive processes, including learning, memory and motivational influences. While decision making has been a focus of study for over a century, it's only in the last 20 years that researchers have begun to identify functional neural circuits that subserve different forms of cost-benefit decision making. Even though the cholinergic system is both functionally and anatomically positioned to modulate cost-benefit decision circuits, the contribution of the cholinergic system to decision making has been little studied. In this thesis, I investigated the cognitive and neural contribution of muscarinic cholinergic signaling to cost-benefit decision making. I, first, re-examined the effects of systemic administration of 0.3 mg/kg atropine on delay and probability discounting tasks and found that blockade of muscarinic acetylcholine receptors by atropine induced suboptimal choices (impulsive and risky) in both tasks. Since the effect on delay discounting was restricted to the No Cue version of the delay discounting task, I concluded that muscarinic cholinergic signaling mediates both forms of cost-benefit decision making and is selectively engaged when decisions require valuation of reward options whose costs are not externally signified. Second, I assessed the impact of inactivating the nucleus basalis (NBM) on both forms decision making and the effect of injecting atropine locally into the orbitofrontal cortex (OFC), basolateral amygdala (BLA), or nucleus accumbens (NAc) core during the No Cue version of the delay discounting task. I discovered that although NBM inactivation failed to affect delay discounting, it induced risk aversion in the probability discounting task; and blockade of intra- NAc core, but not intra-OFC or intra-BLA, muscarinic cholinergic signaling lead to

  12. Muscarinic cholinergic receptor (M2) plays a crucial role in the development of myopia in mice

    PubMed Central

    Barathi, Veluchamy A.; Kwan, Jia Lin; Tan, Queenie S. W.; Weon, Sung Rhan; Seet, Li Fong; Goh, Liang Kee; Vithana, Eranga N.; Beuerman, Roger W.

    2013-01-01

    SUMMARY Myopia is a huge public health problem worldwide, reaching the highest incidence in Asia. Identification of susceptible genes is crucial for understanding the biological basis of myopia. In this paper, we have identified and characterized a functional myopia-associated gene using a specific mouse-knockout model. Mice lacking the muscarinic cholinergic receptor gene (M2; also known as Chrm2) were less susceptible to lens-induced myopia compared with wild-type mice, which showed significantly increased axial length and vitreous chamber depth when undergoing experimental induction of myopia. The key findings of this present study are that the sclera of M2 mutant mice has higher expression of collagen type I and lower expression of collagen type V than do wild-type mice and mice that are mutant for other muscarinic subtypes, and, therefore, M2 mutant mice were resistant to the development of experimental myopia. Pharmacological blockade of M2 muscarinic receptor proteins retarded myopia progression in the mouse. These results suggest for the first time a role of M2 in growth-related changes in extracellular matrix genes during myopia development in a mammalian model. M2 receptor antagonists might thus provide a targeted therapeutic approach to the management of this refractive error. PMID:23649821

  13. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum

    PubMed Central

    Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.

    2008-01-01

    Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313

  14. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    PubMed

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  15. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development ofmore » the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.« less

  16. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    PubMed

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  17. Involvement of the basolateral amygdala in muscarinic cholinergic modulation of extinction memory consolidation

    PubMed Central

    Boccia, Mariano M.; Blake, Mariano G.; Baratti, Carlos M.; McGaugh, James L.

    2009-01-01

    Previous studies have reported that drugs affecting neuromodulatory systems within the basolateral amygdala (BLA), including drugs affecting muscarinic cholinergic receptors, modulate the consolidation of many kinds of training, including contextual fear conditioning (CFC). The present experiments investigated the involvement of muscarinic cholinergic influences within the BLA in modulating the consolidation of CFC extinction memory. Male Sprague Dawley rats implanted with unilateral cannula aimed at the BLA were trained on a CFC task, using footshock stimulation, and 24 and 48 h later were given extinction training by replacing them in the apparatus without footshock. Following each extinction session they received intra-BLA infusions of the cholinergic agonist oxotremorine (10 ng). Immediate post-extinction BLA infusions significantly enhanced extinction but infusions administered 180 min after extinction training did not influence extinction. Thus the oxotremorine effects were time-dependent and not attributable to non-specific effects on retention performance. These findings provide evidence that, as previously found with original CFC learning, cholinergic activation within the BLA modulates the consolidation of CFC extinction. PMID:18706510

  18. Effect of hyperglycaemia on muscarinic M3 receptor expression and secretory sensitivity to cholinergic receptor activation in islets.

    PubMed

    Hauge-Evans, A C; Reers, C; Kerby, A; Franklin, Z; Amisten, S; King, A J; Hassan, Z; Vilches-Flores, A; Tippu, Z; Persaud, S J; Jones, P M

    2014-10-01

    Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes. © 2014 John Wiley & Sons Ltd.

  19. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB.

    PubMed

    Mohamadi, Ali; Martari, Marco; Holladay, Cindy D; Phillips, John A; Mullis, Primus E; Salvatori, Roberto

    2009-07-01

    Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. We hypothesized that mAchR mutations may cause a subset of familial IGHD. After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.

  20. Action of AF64A on rat brain muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eva, C.; Costa, E.

    ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased butmore » its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.« less

  1. Cloning and sequence analysis of the human brain beta-adrenergic receptor. Evolutionary relationship to rodent and avian beta-receptors and porcine muscarinic receptors.

    PubMed

    Chung, F Z; Lentes, K U; Gocayne, J; Fitzgerald, M; Robinson, D; Kerlavage, A R; Fraser, C M; Venter, J C

    1987-01-26

    Two cDNA clones, lambda-CLFV-108 and lambda-CLFV-119, encoding for the beta-adrenergic receptor, have been isolated from a human brain stem cDNA library. One human genomic clone, LCV-517 (20 kb), was characterized by restriction mapping and partial sequencing. The human brain beta-receptor consists of 413 amino acids with a calculated Mr of 46480. The gene contains three potential glucocorticoid receptor-binding sites. The beta-receptor expressed in human brain was homology with rodent (88%) and avian (52%) beta-receptors and with porcine muscarinic cholinergic receptors (31%), supporting our proposal [(1984) Proc. Natl. Acad. Sci. USA 81, 272 276] that adrenergic and muscarinic cholinergic receptors are structurally related. This represents the first cloning of a neurotransmitter receptor gene from human brain.

  2. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    PubMed

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    PubMed

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  4. Involvement of decreased muscarinic receptor function in prepulse inhibition deficits in mice reared in social isolation

    PubMed Central

    Koda, K; Ago, Y; Yano, K; Nishimura, M; Kobayashi, H; Fukada, A; Takuma, K; Matsuda, T

    2011-01-01

    BACKGROUND AND PURPOSE We have previously reported that galantamine, a weak acetylcholinesterase inhibitor, improves prepulse inhibition (PPI) deficits in mice reared in social isolation. ACh receptors are involved in the underlying mechanism of PPI, but whether rearing in social isolation causes dysfunction of the cholinergic system is unknown. In this study, we examined the involvement of muscarinic receptors in the improvement of PPI deficits induced by galantamine, and whether the cholinergic system is altered in mice reared in isolation. EXPERIMENTAL APPROACH Three-week-old male ddY mice were housed in isolated cages for 6 weeks before the initiation of experiments to create PPI deficits. Cholinergic functions were determined by measuring the behavioural and neurochemical responses to nicotinic and muscarinic receptor agonists. KEY RESULTS The improvement by galantamine of social isolation-induced PPI deficits was blocked by scopolamine, a non-selective muscarinic antagonist, and telenzepine, a preferential M1 receptor antagonist. Activation of M1 receptors improved social isolation-induced PPI deficits. Social isolation did not affect choline acetyltransferase and acetylcholinesterase activities in the prefrontal cortex and hippocampus, but it reduced the locomotor-suppressive response to muscarinic agonist oxotremorine, but not to nicotine. The isolation also attenuated the M1 receptor agonist N-desmethylclozapine-induced increase in prefrontal dopamine release. CONCLUSIONS AND IMPLICATIONS Galantamine improves PPI deficits of mice reared in social isolation via activation of M1 receptors. Social isolation reduces the muscarinic, especially M1, receptor function and this is involved in PPI deficits. PMID:20958289

  5. Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction.

    PubMed

    Santini, Edwin; Sepulveda-Orengo, Marian; Porter, James T

    2012-08-01

    There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K(+) channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K(+) channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders.

  6. Muscarinic Receptors Modulate the Intrinsic Excitability of Infralimbic Neurons and Consolidation of Fear Extinction

    PubMed Central

    Santini, Edwin; Sepulveda-Orengo, Marian; Porter, James T

    2012-01-01

    There is considerable interest in identifying pharmacological compounds that could be used to facilitate fear extinction. Recently, we showed that the modulation of M-type K+ channels regulates the intrinsic excitability of infralimbic (IL) neurons and fear expression. As muscarinic acetylcholine receptors inhibit M-type K+ channels, cholinergic inputs to IL may have an important role in controlling IL excitability and, thereby, fear expression and extinction. To test this model, we combined whole-cell patch-clamp electrophysiology and auditory fear conditioning. In prefrontal brain slices, muscarine enhanced the intrinsic excitability of IL neurons by reducing the M-current and the slow afterhyperpolarization, resulting in an increased number of spikes with shorter inter-spike intervals. Next, we examined the role of endogenous activation of muscarinic receptors in fear extinction. Systemic injected scopolamine (Scop) (muscarinic receptor antagonist) before or immediately after extinction training impaired recall of extinction 24-h later, suggesting that muscarinic receptors are critically involved in consolidation of extinction memory. Similarly, infusion of Scop into IL before extinction training also impaired recall of extinction 24-h later. Finally, we demonstrated that systemic injections of the muscarinic agonist, cevimeline (Cev), given before or immediately after extinction training facilitated recall of extinction the following day. Taken together, these findings suggest that cholinergic inputs to IL have a critical role in modulating consolidation of fear extinction and that muscarinic agonists such as Cev might be useful for facilitating extinction memory in patients suffering from anxiety disorders. PMID:22510723

  7. Activation of cholinergic receptors blocks non-adrenergic non-cholinergic contractions in the rat urinary bladder

    PubMed Central

    Henry Lai, H.; Smith, Christopher P.; Munoz, Alvaro; Boone, Timothy B.; Szigeti, Gyula P.; Somogyi, George T.

    2008-01-01

    In the present study, the plasticity of the non-adrenergic non-cholinergic (NANC) response was investigated. Isolated rat bladder strips were electrically stimulated and the evoked contractions were isometrically recorded. The NANC part of the contractions were unmasked by applying 500 nM 4-DAMP, a potent muscarinic antagonist. Treatment of the bladder strips with 10 μM carbachol (a cholinergic agonist) increased the muscle tone but did not alter the neurally evoked contractions. However, carbachol decreased: (1) the NANC response from 74.6% to 33.3% of control and (2) the purinergic contractile response to α,β methylene ATP (α,β mATP) (10 μM) from 97.0% to 43.4% (p<0.05). Treatment with the cholinesterase inhibitor eserine (10 μM) also significantly decreased the NANC response to 21.1% (p<0.0001). The purinergic receptor antagonist suramin (100μM) did not affect the neurally evoked contractions, however; subsequent addition of 4-DAMP decreased the contractions to 31%. Activation of the smooth muscle cholinergic receptors (with carbachol or eserine) and purinergic receptors (with α,β mATP) decreased the NANC contractions and the direct contractile response to α,β mATP. When the electrically evoked contractions were facilitated by the L-type Ca2+ channel activator, Bay-K 8644 the subsequent application of 4-DAMP did not unmask inhibited NANC contractions. We conclude that activation of muscarinic receptors by cholinergic agonist, carbachol or by endogenous acetylcholine (ACh) induce a cascade of events that leads to diminished purinergic response and consequently an inhibition of the bladder NANC response. PMID:18755252

  8. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  9. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  10. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  11. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  12. Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and (/sup 3/H)quinuclidinyl benzilate in pigeon brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, M.; Agrawal, A.K.; Gopal, K.

    Single exposure of endosulfan (5 mg/kg) to pigeons (Columbia livia) caused neuronal hyperexcitability as evidence by spike discharges of 200-500 ..mu..V in the electroencephalograms (EEG) from the telencephalon and hyperstriatum, but there was not effect on the ectostriatal area. Cholinergic (muscarinic) receptor binding study using (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) as a specific ligand indicated that a single exposure to 5 mg/kg of endosulfan caused a significant increase in (/sup 3/H)QNB binding to the striatal membrane. Behavior study further indicated that a single dose of 200 ..mu..g/kg of oxotremorine produced a significant induction in the tremor in endosulfan-pretreated pigeons. Themore » results of this behavioral and biochemical study indicate the involvement of a cholinergic (muscarinic) transmitter system in endosulfan-induced neurotoxicity.« less

  13. Role of cholinergic receptors in memory retrieval depends on gender and age of memory.

    PubMed

    Rashid, Habiba; Mahboob, Aamra; Ahmed, Touqeer

    2017-07-28

    The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Expression of cholinergic, insulin, vitamin D receptors and GLUT 3 in the brainstem of streptozotocin induced diabetic rats: effect of treatment with vitamin D₃.

    PubMed

    Peeyush Kumar, T; Paul, Jes; Antony, Sherin; Paulose, C S

    2011-11-01

    Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that B(max) of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D₃ receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D₃ and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D₃ treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D₃ in managing neurological disorders associated with diabetes.

  15. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  16. A comparison of β-adrenoceptors and muscarinic cholinergic receptors in tissues of brown bullhead catfish (Ameiurus nebulosus) from the black river and old woman creek, Ohio

    USGS Publications Warehouse

    Steevens, Jeffery A.; Baumann, Paul C.; Jones, Susan B.

    1996-01-01

    β-Adrenoceptors (βARs) and muscarinic cholinergic receptors were measured in brain, gill, and heart tissues of brown bullhead catfish exposed to polycyclic aromatic hydrocarbons in the Black River, Ohio, USA, and were compared to values from Old Woman Creek, Ohio, a reference site. A decreased number of βARs were found in the gill from Black River fish, possibly indicating a compensatory response subsequent to chemical stress.

  17. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  18. [Lesions in the pars compacta substantiae nigra and the subthalamic nucleus modify the density of muscarinic receptors in different nuclei of the basal ganglia].

    PubMed

    Blanco-Lezcano, L; Rocha-Arrieta, L L; Martínez-Martí, L; Alvarez-González, L; Pavón-Fuentes, N; Macías-González, R; Serrano-Sánchez, T; Rosillo-Martí, J C; Coro-Grave de Peralta, Y; Bauza-Calderín, Y; Briones, M

    Several studies that has focused to the dopaminergic transmission in the basal ganglia in parkinsonian condition, but only a few article has taking into account the imbalance between dopaminergic and cholinergic transmission. To evaluate the muscarinic cholinergic receptors density in SNc and PPN in the 6-OHDA model. Were organized five experimental groups in correspondence to the place of the lesion: I. Non treated rats, II. 6-OHDA lesion in SNc, III. 6-OHDA lesion in SNc + quinolinic acid lesion in NST, IV. Sham operated rats, V. Quinolinic acid in STN. Were obtained coronal sections of 20 microm thickness of SNc and PPN from rats and in these sections was evaluated the muscarinic receptors density through autoradiographic technique with [3H]quinuclidinylbenzilate (QNB) (1.23 nM). The muscarinic antagonist atropine (1 microM) was utilized as non-specific union. The density was evaluated in both hemispheres and the density optical was converted in fentomolas/mg of tissue with base to values obtained from tritium standards. Significant diminution of the muscarinic receptors density was found in the SNc ipsilateral to the 6-OHDA lesion from experimental groups II (t=2.76; p<0.05) and III (t=4.06; p<0.05). In the group V, was seen a significant increase of muscarinic receptor density in the SNc ipsilateral to the 6-OHDA lesion. The comparison between experimental groups evidenced significant differences among them (F=13.13; p<0.001) with a significant decrease in the density from SNc of groups II and III and significant increase in the density from SNc of group V in comparison of the others groups. In relation to PPN, muscarinic receptors density from right PPN ipsilateral to the 6-OHDA lesion, shown significant differences (F=3.93; p<0.01) between the experimental groups with a significant increase of this variable in the group II. These results signal a modification of cholinergic activity after 6-OHDA lesion. The changes in the muscarinic receptors populations

  19. Pituitary-adrenal responses to oxotremorine and acute stress in male and female M1 muscarinic receptor knockout mice: comparisons to M2 muscarinic receptor knockout mice.

    PubMed

    Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K

    2008-05-01

    Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The

  20. Quantitative in vivo receptor binding. III. Tracer kinetic modeling of muscarinic cholinergic receptor binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.

    1985-10-01

    A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less

  1. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pauly, J.R.; Marks, M.J.; Gross, S.D.

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the numbermore » of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.« less

  2. Differential receptor dependencies: expression and significance of muscarinic M1 receptors in the biology of prostate cancer.

    PubMed

    Mannan Baig, Abdul; Khan, Naveed A; Effendi, Vardah; Rana, Zohaib; Ahmad, H R; Abbas, Farhat

    2017-01-01

    Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.

  3. Sympathetic sprouting drives hippocampal cholinergic reinnervation that prevents loss of a muscarinic receptor-dependent long-term depression at CA3-CA1 synapses.

    PubMed

    Scheiderer, Cary L; McCutchen, Eve; Thacker, Erin E; Kolasa, Krystyna; Ward, Matthew K; Parsons, Dee; Harrell, Lindy E; Dobrunz, Lynn E; McMahon, Lori L

    2006-04-05

    Degeneration of septohippocampal cholinergic neurons results in memory deficits attributable to loss of cholinergic modulation of hippocampal synaptic circuits. A remarkable consequence of cholinergic degeneration is the sprouting of noradrenergic sympathetic fibers from the superior cervical ganglia into hippocampus. The functional impact of sympathetic ingrowth on synaptic physiology has never been investigated. Here, we report that, at CA3-CA1 synapses, a Hebbian form of long-term depression (LTD) induced by muscarinic M1 receptor activation (mLTD) is lost after medial septal lesion. Unexpectedly, expression of mLTD is rescued by sympathetic sprouting. These effects are specific because LTP and other forms of LTD are unaffected. The rescue of mLTD expression is coupled temporally with the reappearance of cholinergic fibers in hippocampus, as assessed by the immunostaining of fibers for VAChT (vesicular acetylcholine transporter). Both the cholinergic reinnervation and mLTD rescue are prevented by bilateral superior cervical ganglionectomy, which also prevents the noradrenergic sympathetic sprouting. The new cholinergic fibers likely originate from the superior cervical ganglia because unilateral ganglionectomy, performed when cholinergic reinnervation is well established, removes the reinnervation on the ipsilateral side. Thus, the temporal coupling of the cholinergic reinnervation with mLTD rescue, together with the absence of reinnervation and mLTD expression after ganglionectomy, demonstrate that the autonomic-driven cholinergic reinnervation is essential for maintaining mLTD after central cholinergic cell death. We have discovered a novel phenomenon whereby the autonomic and central nervous systems experience structural rearrangement to replace lost cholinergic innervation in hippocampus, with the consequence of preserving a form of LTD that would otherwise be lost as a result of cholinergic degeneration.

  4. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  5. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill.

    PubMed

    González, Alfredo; Crittenden, Elizabeth L; García, Dana M

    2004-07-13

    In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl) carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  6. Muscarinic receptors as targets for anti-inflammatory therapy.

    PubMed

    Sales, María Elena

    2010-11-01

    ACh, the main neurotransmitter in the neuronal cholinergic system, is synthesized by pre-ganglionic fibers of the sympathetic and parasympathetic autonomic nervous system and by post-ganglionic parasympathetic fibers. There is increasing experimental evidence that ACh is widely expressed in prokaryotic and eukaryotic non-neuronal cells. The neuronal and non-neuronal cholinergic systems comprise ACh, choline acetyltransferase and cholinesterase, enzymes that synthesize and catabolize ACh, and the nicotinic and muscarinic ACh receptors (nAChRs and mAChRs, respectively), which are the targets for ACh action. This review analyzes the participation of the cholinergic system, particularly through mAChRs, in inflammation, and discusses the role of the different mAChR antagonists that have been used to treat skin inflammatory disorders, asthma and COPD, as well as intestinal inflammation and systemic inflammatory diseases, to assess the potential application of these compounds as therapeutic tools.

  7. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring.

    PubMed

    Pourmotabbed, A; Mahmoodi, G; Mahmoodi, S; Mohammadi-Farani, A; Nedaei, S E; Pourmotabbed, T; Pourmotabbed, T

    2014-10-24

    Occurrence of the epileptic seizures during gestation might affect the neurodevelopment of the fetus resulting in cognitive problems for the child later in life. We have previously reported that prenatal pentylenetetrazol (PTZ)-kindling induces learning and memory deficits in the children born to kindled mothers, later in life but the mechanisms involved in this processes are unknown. The cholinergic system plays a major role in learning and memory. The present study was performed to investigate the possible involvement of central muscarinic cholinergic receptors on learning and memory deficits induced by prenatal PTZ-kindling in male offspring. Pregnant Wistar rats were kindled by repetitive i.p. injection of 25mg/kg of PTZ on day 13 of their pregnancy. The effect of intracerebroventricular (ICV) microinjection of scopolamine and pilocarpine, muscarinic cholinergic receptors antagonist and agonist, respectively on passive-avoidance learning of pups were tested at 12weeks of age using shuttle-box apparatus. Our data showed that the retention latencies of pups that received scopolamine (2 or 3μg) were significantly reduced compared to those received normal saline (p<0.05). Interestingly, post training ICV administration of pilocarpine (2μg) retrieved pups' memory deficits (p<0.001). These results demonstrate for the first time, the importance of the central muscarinic cholinergic receptors in learning and memory deficits in pups born to kindled dams and suggest a central mechanism for the cognitive and memory dysfunction, associated with seizures during pregnancy. Copyright © 2014. Published by Elsevier Ltd.

  8. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM;more » ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.« less

  9. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  10. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of (3H) inositol phosphates in (3H)inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats.more » Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of (3H)QNB (r2 = 0.627) and, particularly, with (3H)pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%.« less

  11. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.

    PubMed

    Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J

    2007-11-01

    The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.

  12. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    PubMed

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  13. Dextran sodium sulphate-induced colitis perturbs muscarinic cholinergic control of colonic epithelial ion transport

    PubMed Central

    Sayer, Brooke; Lu, Jun; Green, Christina; Söderholm, Johan D; Akhtar, Mahmood; McKay, Derek M

    2002-01-01

    Neuronal cholinergic input is an important regulator of epithelial electrolyte transport and hence water movement in the gut. In this study, colitis was induced by treating mice with 4% (w v−1) dextran sodium-sulphate (DSS)-water for 5 days followed by 3 days of normal water. Mid-colonic segments were mounted in Ussing chambers and short-circuit current (Isc, indicates net ion movement) responses to the cholinergic agonist, carbachol (CCh; 10−4 M)±tetrodotoxin, atropine (ATR), hexamethonium (HEX), naloxone or phenoxybenzamine were assessed. Tissues from mice with DSS-induced colitis displayed a drop in Isc in response to CCh (−11.3±3.3 μA/cm2), while those from control mice showed a transient increase in Isc (76.3±13.0 μA/cm2). The ΔIsc in colon from DSS-treated mice was tetrodotoxin-sensitive, atropine-insensitive and was reversed by hexamethonium (HEX+CCh=16.7±7.8 μA/cm2), indicating involvement of a nicotinic receptor. CCh induced a drop in Isc in tissues from controls only when they were pretreated with the cholinergic muscarinic receptor blocker, atropine: ATR+CCh=−21.3±7.0 μA/cm2. Nicotine elicited a drop in Isc in Ussing-chambered colon from both control and DSS-treated mice that was TTX-sensitive. The drop in Isc evoked by CCh challenge of colonic tissue from DSS-treated mice or ATR+CCh challenge of control tissue was not significantly affected by blockade of opiate or α-adrenergic receptors by naloxone or phenoxybenzamine, respectively. The data indicate that DSS-colitis reveals a nicotinic receptor that becomes important in cholinergic regulation of ion transport. PMID:11934821

  14. Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases.

    PubMed

    Fuenzalida, Marco; Pérez, Miguel Ángel; Arias, Hugo R

    2016-01-01

    The cholinergic activity in the brain is fundamental for cognitive functions. The modulatory activity of the neurotransmitter acetylcholine (ACh) is mediated by activating a variety of nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (mAChR). Accumulating evidence indicates that both nAChR and mAChRs can modulate the release of several other neurotransmitters, modify the threshold of long-term plasticity, finally improving learning and memory processes. Importantly, the expression, distribution, and/or function of these systems are altered in several neurological diseases. The aim of this review is to discuss our current knowledge on cholinergic receptors and their regulating synaptic functions and neuronal network activities as well as their use as targets for the development of new and clinically useful cholinergic ligands. These new therapies involve the development of novel and more selective cholinergic agonists and allosteric modulators as well as selective cholinesterase inhibitors, which may improve cognitive and behavioral symptoms, and also provide neuroprotection in several brain diseases. The review will focus on two nAChR receptor subtypes found in the mammalian brain and the most commonly targeted in drug discovery programs for neuropsychiatric disorder, the ligands of α4β2 nAChR and α7 nAChRs.

  15. Regulation of muscarinic acetylcholine receptors in cultured guinea pig pancreatic acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hootman, S.R.; Brown, M.E.; Williams, J.A.

    1986-07-01

    Regulation of muscarinic receptors in cultured guinea pig pancreatic acini was investigated by assessing the effects of cholinergic agonists on binding of (N-methyl-TH)scopolamine ((TH)NMS) and on amylase release. Freshly dispersed acini bound (TH)NMS with a K/sub d/ of 74 pM and a maximal binding level (B/sub max/) of 908 fmol/mg DNA. Carbachol (CCh) stimulated amylase secretion and inhibited (TH)NMS binding. Incubation of acini for 30 min with 0.1 mM CCh decreased the subsequent efficacy of CCh in stimulating amylase release by threefold but had no effect on its potency. In contrast, amylase release in response to cholecystokinin octapeptide (CCK-8) wasmore » not altered by CCh preincubation. (TH)NMS binding to acini was decreased only 15-20% after 30-min incubation with CCh. However, culture of acini with 0.1 mM CCh decreased (TH)NMS binding by 50% at 3-4 h and by 85-90% at 24 h. This decrease was attributable primarily to a reduction in B/sub max/ (TH)NMS binding also was decreased to a similar extent by the cholinergic agonists bethanechol and methacholine but not by other secretagogues. The decrease in antagonist binding induced by CCh was dose dependent, with the IC50, 5.8 M, approximating the EC50 for amylase release, 4.3 M. Cultured of acini for 24 h with CCh abolished subsequent amylase release in response to CCh but not to CCK-8. The results indicate that muscarinic receptor turnover in the pancreatic acinus is regulated by receptor activation and that both a decease in receptor numbers and sensitivity to agonists follows prolonged cholinergic agonist exposure.« less

  16. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memorymore » task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.« less

  17. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats.

    PubMed

    Mendez, Ian A; Gilbert, Ryan J; Bizon, Jennifer L; Setlow, Barry

    2012-12-01

    Alterations in cost-benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost-benefit decision making. The goal of these experiments was to determine how cholinergic signaling is involved in cost-benefit decision making, using a behavioral pharmacological approach. Male Long-Evans rats were trained in either "probability discounting" or "delay discounting" tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes.

  18. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy

    PubMed Central

    Smith, Darrell R.; Frizzi, Katie; Sabbir, Mohammad Golam; Chowdhury, Subir K. Roy; Mixcoatl-Zecuatl, Teresa; Saleh, Ali; Muttalib, Nabeel; Van der Ploeg, Randy; Ochoa, Joseline; Gopaul, Allison; Tessler, Lori; Wess, Jürgen; Jolivalt, Corinne G.

    2017-01-01

    Sensory neurons have the capacity to produce, release, and respond to acetylcholine (ACh), but the functional role of cholinergic systems in adult mammalian peripheral sensory nerves has not been established. Here, we have reported that neurite outgrowth from adult sensory neurons that were maintained under subsaturating neurotrophic factor conditions operates under cholinergic constraint that is mediated by muscarinic receptor–dependent regulation of mitochondrial function via AMPK. Sensory neurons from mice lacking the muscarinic ACh type 1 receptor (M1R) exhibited enhanced neurite outgrowth, confirming the role of M1R in tonic suppression of axonal plasticity. M1R-deficient mice made diabetic with streptozotocin were protected from physiological and structural indices of sensory neuropathy. Pharmacological blockade of M1R using specific or selective antagonists, pirenzepine, VU0255035, or muscarinic toxin 7 (MT7) activated AMPK and overcame diabetes-induced mitochondrial dysfunction in vitro and in vivo. These antimuscarinic drugs prevented or reversed indices of peripheral neuropathy, such as depletion of sensory nerve terminals, thermal hypoalgesia, and nerve conduction slowing in diverse rodent models of diabetes. Pirenzepine and MT7 also prevented peripheral neuropathy induced by the chemotherapeutic agents dichloroacetate and paclitaxel or HIV envelope protein gp120. As a variety of antimuscarinic drugs are approved for clinical use against other conditions, prompt translation of this therapeutic approach to clinical trials is feasible. PMID:28094765

  19. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably lessmore » effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.« less

  20. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer's disease therapy.

    PubMed

    Verma, Stuti; Kumar, Ashwini; Tripathi, Timir; Kumar, Awanish

    2018-04-16

    Alzheimer's disease (AD) has become the primary cause of dementia. It shows a progressive cognitive dysfunction with degenerating neurons. Acetylcholine receptors (AChRs) propagate the cognitive ability and it consists of two primary members namely muscarinic (mAChRs) and nicotinic receptors (nAChRs). Where mAChRs is G-protein coupled receptor, (nAChRs) are ligand-gated ion channels. The conventional therapeutic regimen for AD consists of three acetylcholinestearse inhibitors while a single NMDA receptor antagonist. Researchers around the globe are developing new and modifying the existing AChRs agonists to develop lead candidates with lower risk to benefit ratio where benefits clearly outweigh the adverse events. We have searched PubMed, MEDLINE, Google scholar, Science Direct and, Web of Science with keywords "Muscarinic/Nicotinic acetylcholine receptor, agonists and, AD". The literature search included articles written in English. Scientific relevance for clinical studies, basic science studies is eligibility criteria for articles referred in this paper. M1 is the primary muscarinic subtype while α7 is the primary nAChR subtype that is responsible for cognition and memory and these two have been the major recent experimental targets for mAChR agonist strategy. The last cholinergic receptor agonist to enter phase 3 trial was EVP-6124 (Enceniclin) but was withdrawn due to severe gastrointestinal adverse effects. We aim to present an overview of the efforts and achievements in targeting Muscarinic and Nicotinic acetylcholine receptor in the current review for development of better AD therapeutics. © 2018 Royal Pharmaceutical Society.

  1. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    PubMed

    Segu, Luis; Lecomte, Marie-José; Wolff, Mathieu; Santamaria, Julie; Hen, René; Dumuis, Aline; Berrard, Sylvie; Bockaert, Joël; Buhot, Marie-Christine; Compan, Valérie

    2010-03-04

    Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4)), but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4) knock-out (KO) and wild-type (WT) mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4) control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4). Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg) to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4) KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT), the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4) KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4) KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4) to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4) aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4) mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  2. In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat.

    PubMed

    Killi, Uday K; Wsol, Vladimir; Soukup, Ondrej; Kuca, Kamil; Winder, Michael; Tobin, Gunnar

    2014-02-01

    Obidoxime, a weak acetylcholine-esterase (AChE) inhibitor, exerts muscarinic receptor antagonism with a significant muscarinic M2 receptor selective profile. The current examinations aimed to determine the functional significance of muscarinic M2 receptors in the state of AChE inhibition, elucidating muscarinic M2 and M3 receptor interaction. In the in vitro examinations, methacholine evoked concentration-dependent bladder contractile and atrial frequency inhibitory responses. Although atropine abolished both, methoctramine (1 μmol/L) only affected the cholinergic response in the atrial preparations. However, in the presence of methoctramine, physostigmine, an AChE inhibitor, increased the basal tension of the bladder strip preparations (+68%), as well as the contractile responses to low concentrations of methacholine (< 5 μmol/L; +90-290%). In contrast to physostigmine, obidoxime alone raised the basal tension (+58%) and the responses to low concentrations of methacholine (< 5 μmol/L; +80-450%). Physostigmine concentration-dependently increased methacholine-evoked responses, similarly to obidoxime at low concentrations. However, at large concentrations (> 5 μmol/L), obidoxime, because of its unselective muscarinic receptor antagonism, inhibited the methacholine bladder responses. In conclusion, the current results show that muscarinic M2 receptors inhibit muscarinic M3 receptor-evoked contractile responses to low concentrations of acetylcholine in the synaptic cleft. The muscarinic M2 and M3 receptor crosstalk could be a counteracting mechanism in the treatment of AChE inhibition when using reactivators, such as obidoxime. © 2013 Wiley Publishing Asia Pty Ltd.

  3. Evaluation of levetiracetam effects on pilocarpine-induced seizures: cholinergic muscarinic system involvement.

    PubMed

    Oliveira, A A; Nogueira, C R A; Nascimento, V S; Aguiar, L M V; Freitas, R M; Sousa, F C F; Viana, G S B; Fonteles, M M F

    2005-09-16

    Levetiracetam (LEV) is a new antiepileptic drug effective as adjunctive therapy for partial seizures. It displays a unique pharmacological profile against experimental models of seizures, including pilocarpine-induced seizures in rodents. Aiming to clarify if anticonvulsant activity of LEV occurs due to cholinergic alterations, adult male mice received LEV injections before cholinergic agonists' administration. Pretreatment with LEV (30-200 mg/kg, i.p.) increased the latencies of seizures, but decreased status epilepticus and death on the seizure model induced by pilocarpine, 400 mg/kg, s.c. (P400). LEV (LEV200, 200 mg/kg, i.p.) pretreatment also reduced the intensity of tremors induced by oxotremorine (0.5 mg/kg, i.p). [3H]-N-methylscopolamine-binding assays in mice hippocampus showed that LEV200 pretreatment reverts the downregulation on muscarinic acetylcholine receptors (mAChR), induced by P400 administration, bringing back these density values to control ones (0.9% NaCl, i.p.). However, subtype-specific-binding assays revealed that P400- and LEV-alone treatments result in M1 and M2 subtypes decrease, respectively. The agonist-like behavior of LEV on the inhibitory M2 mAChR subtype, observed in this work, could contribute to explain the reduction on oxotremorine-induced tremors and the delay on pilocarpine-induced seizures, by an increase in the attenuation of neuronal activity mediated by the M1 receptors.

  4. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost–benefit decision making tasks in rats

    PubMed Central

    Mendez, Ian A.; Gilbert, Ryan J.; Bizon, Jennifer L.

    2012-01-01

    Rationale Alterations in cost–benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost–benefit decision making. Objectives The goal of these experiments was to determine how cholinergic signaling is involved in cost–benefit decision making, using a behavioral pharmacological approach. Methods Male Long-Evans rats were trained in either “probability discounting” or “delay discounting” tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. Results In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. Conclusions These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes. PMID:22760484

  5. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder.

    PubMed

    Andersson, M; Aronsson, P; Doufish, D; Lampert, A; Tobin, G

    2012-09-25

    Functional studies have shown altered cholinergic mechanisms in the inflamed bladder, which partly depend on muscarinic receptor-induced release of nitric oxide (NO). The current study aimed to characterize which muscarinic receptor subtypes that are involved in the regulation of the nitrergic effects in the bladder cholinergic response during cystitis. For this purpose, in vitro examinations of carbachol-evoked contractions of inflamed and normal bladder preparations were performed. The effects of antagonists with different selectivity for the receptor subtypes were assessed on intact and urothelium-denuded bladder preparations. In preparations from cyclophosphamide (CYP; in order to induce cystitis) pre-treated rats, the response to carbachol was about 75% of that of normal preparations. Removal of the urothelium or administration of a nitric oxide synthase inhibitor re-established the responses in the inflamed preparations. Administration of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) inhibited the carbachol-induced contractile responses of preparations from CYP pre-treated rats less potently than controls. Pirenzepine and p-fluoro-hexahydro-sila-diphenidol (pFHHSiD) affected the carbachol-induced contractile responses to similar extents in preparations of CYP pre-treated and control rats. However, the Schild slopes for the three antagonists were all significantly different from unity in the preparations from CYP pre-treated rats. Again, L-NNA or removal of the urothelium eliminated any difference compared to normal preparations. This study confirms that muscarinic receptor stimulation in the inflamed rat urinary bladder induces urothelial release of NO, which counteracts detrusor contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Carbachol dimers as homobivalent modulators of muscarinic receptors.

    PubMed

    Matucci, Rosanna; Nesi, Marta; Martino, Maria Vittoria; Bellucci, Cristina; Manetti, Dina; Ciuti, Elisa; Mazzolari, Angelica; Dei, Silvia; Guandalini, Luca; Teodori, Elisabetta; Vistoli, Giulio; Romanelli, Maria Novella

    2016-05-15

    A series of homodimers of the well-known cholinergic agonist carbachol have been synthesized, showing the two agonist units symmetrically connected through a methylene chain of variable length. The new compounds have been tested on the five cloned muscarinic receptors (hM1-5) expressed in CHO cells by means of equilibrium binding studies, showing an increase in affinity by rising the number of methylene units up to 7 and 9. Functional experiments on guinea-pig ileum and assessment of ERK1/2 phosphorylation on hM1, hM2 and hM3 on CHO cells have shown that the new compounds are endowed with muscarinic antagonistic properties. Kinetic binding studies have revealed that some of the tested compounds are able to slow the rate of dissociation of NMS, suggesting a bitopic behavior. Docking simulations, performed on the hM1 and hM2 receptors, give a sound rationalization of the experimental data revealing how these compounds are able to interact with both orthosteric and allosteric binding sites depending on the length of their connecting chain. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Muscarinic agonists for the treatment of cognition in schizophrenia.

    PubMed

    Sellin, Angela K; Shad, Mujeeb; Tamminga, Carol

    2008-11-01

    It is widely accepted that cholinergic activity at muscarinic receptors is required to maintain cognitive functions, including learning and memory. Memory domains are especially impaired in schizophrenia, which may explain difficulties in psychosocial rehabilitation of individuals with this illness. However, little is known about the mechanism of this impairment. To understand our current knowledge, we reviewed the literature since 1990 via a PubMed search for the terms "muscarinic", "schizophrenia", "cognition", "memory", "learning", and "agonist" in combination. We found 89 basic science/laboratory studies, case reports/series, case-control studies, cross-sectional studies, standardized controlled animal trials, standardized controlled human trials, and reviews. Although further research is required to fully understand the neuropharmacology of the cholinergic system in cognitive function in schizophrenia, we have examined the data currently available. In general, these data suggest that agonist activity at acetylcholine muscarinic type 1 (M1) receptors would enhance memory and learning in schizophrenia. We present an overview of likely side effects of muscarinic agonists. We outline the anticholinergic activity of several available antipsychotics and review the available M1 muscarinic agonists.

  8. Cholinergic regulation of fear learning and extinction.

    PubMed

    Wilson, Marlene A; Fadel, Jim R

    2017-03-01

    Cholinergic activation regulates cognitive function, particularly long-term memory consolidation. This Review presents an overview of the anatomical, neurochemical, and pharmacological evidence supporting the cholinergic regulation of Pavlovian contextual and cue-conditioned fear learning and extinction. Basal forebrain cholinergic neurons provide inputs to neocortical regions and subcortical limbic structures such as the hippocampus and amygdala. Pharmacological manipulations of muscarinic and nicotinic receptors support the role of cholinergic processes in the amygdala, hippocampus, and prefrontal cortex in modulating the learning and extinction of contexts or cues associated with threat. Additional evidence from lesion studies and analysis of in vivo acetylcholine release with microdialysis similarly support a critical role of cholinergic neurotransmission in corticoamygdalar or corticohippocampal circuits during acquisition of fear extinction. Although a few studies have suggested a complex role of cholinergic neurotransmission in the cellular plasticity essential for extinction learning, more work is required to elucidate the exact cholinergic mechanisms and physiological role of muscarinic and nicotinic receptors in these fear circuits. Such studies are important for elucidating the role of cholinergic neurotransmission in disorders such as posttraumatic stress disorder that involve deficits in extinction learning as well as for developing novel therapeutic approaches for such disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Acute Effects of Muscarinic M1 Receptor Modulation on AβPP Metabolism and Amyloid-β Levels in vivo: A Microdialysis Study.

    PubMed

    Welt, Tobias; Kulic, Luka; Hoey, Sarah E; McAfoose, Jordan; Späni, Claudia; Chadha, Antonella Santuccione; Fisher, Abraham; Nitsch, Roger M

    2015-01-01

    Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-β (Aβ) production by shifting endoproteolytic amyloid-β protein precursor (AβPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aβ production in awake and freely moving AβPP transgenic mice. By combining intracerebral microdialysis with retrodialysis, we determined hippocampal Aβ concentrations during simultaneous pharmacological modulation of brain M1 receptor function. Infusion with a M1 receptor agonist AF102B resulted in a rapid reduction of interstitial fluid (ISF) Aβ levels while treatment with the M1 antagonist dicyclomine increased ISF Aβ levels reaching significance within 120 minutes of treatment. The reduction in Aβ levels was associated with PKCα and ERK activation resulting in increased levels of the α-secretase ADAM17 and a shift in AβPP processing toward the non-amyloidogenic processing pathway. In contrast, treatment with the M1 receptor antagonist dicyclomine caused a decrease in levels of phosphorylated ERK that was independent of PKCα, and led to an elevation of β-secretase levels associated with increased amyloidogenic AβPP processing. The results of this study demonstrate rapid effects of in vivo M1 receptor modulation on the ISF pool of Aβ and suggest that intracerebral microdialysis with retrodialysis is a useful technical approach for monitoring acute treatment effects of muscarinic receptor modulators on AβPP/Aβ metabolism.

  10. Interactions between scopolamine and muscarinic cholinergic agonists or cholinesterase inhibitors on spatial alternation performance in rats.

    PubMed

    Shannon, H E; Bemis, K G; Hendrix, J C; Ward, J S

    1990-12-01

    The effects on working memory of the muscarinic cholinergic agonists oxotremorine, arecoline, RS86 and pilocarpine, and the cholinesterase inhibitors physostigmine and tetrahydroaminoacadine were investigated in male F344 rats. Working memory was assessed by behavior maintained under a spatial alternation schedule of food presentation in which the interval between trials was varied from 2 to 32 sec. Under control conditions the percentage of correct responses decreased as the retention interval was varied from 2 to 32 sec. Administered alone the cholinergic agonists oxotremorine (0.01-0.1 mg/kg), arecoline (3-30 mg/kg), RS86 (0.3-3 mg/kg) and pilocarpine (0.3-3.0 mg/kg), and the cholinesterase inhibitors physostigmine (0.01-0.1 mg/kg) and tetrahydroaminoacridine (0.3-3.0 mg/kg) either had no effect on or produced dose-related deficits in working memory and decreases in response rates. The muscarinic antagonist scopolamine (0.1 mg/kg) produced retention interval-dependent decreases in the percentage of correct responding and rates of responding. The cholinergic agonists and tetrahydroaminoacridine failed to reverse the effects of scopolamine. However, physostigmine produced a dose-dependent reversal of the working-memory deficits and response-rate decreasing effects of scopolamine. The present results are consistent with the interpretation that drugs which primarily enhance M2 muscarinic cholinergic transmission are ineffective in enhancing working memory or in reversing scopolamine-induced deficits in working memory.

  11. Cholinergic inhibition of adrenergic neurosecretion in the rabbit iris-ciliary body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumblatt, J.E.; North, G.T.

    The prejunctional effects of cholinergic agents on release of norepinephrine from sympathetic nerve endings were investigated in the isolated, superfused rabbit iris-ciliary body. Stimulation-evoked release of /sup 3/H-norepinephrine was inhibited by the cholinergic agonists methacholine, oxotremorine, muscarine, carbamylcholine and acetylcholine (plus eserine), but was unmodified by pilocarpine or nicotine. Agonist-induced inhibition was antagonized selectively by atropine, indicating a muscarinic response. Atropine alone markedly enhanced norepinephrine release, revealing considerable tonic activation of prejunctional cholinergic receptors in this system. Prejunctional inhibition by carbamylcholine was found to completely override the facilitative action of forskolin or 8-bromo-cyclic AMP on neurotransmitter release. Cholinergic and alphamore » 2-adrenergic effects on neurosecretion were non-additive, suggesting that the underlying receptors coexist at neurotransmitter release sites.« less

  12. Muscarinic Acetylcholine Receptor Localization and Activation Effects on Ganglion Response Properties

    PubMed Central

    Renna, Jordan M.; Amthor, Franklin R.; Keyser, Kent T.

    2010-01-01

    Purpose. The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. Methods. RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. Results. RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. Conclusions. The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases. PMID:20042645

  13. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  14. Anticholinesterase Effects on Number and Function of Brain Muscarinic Receptors and Central Cholinergic Activity: Drug Intervention.

    DTIC Science & Technology

    1986-04-11

    Leudee NWI 5th England 18. brain;striatum;hippocampus;cortex;brainstem;rat;hydrophilic drugs;hydrophobic drugs; oxotremorine ;physostigmine;choline...challenged with oxotremorine , marked cross-tolerance to the ACh-increasing action f the muscarinic receptor agonist was induced in both striatum and...responses except for slight tremor.A Fig. 2 shows the dose-response curves of the muscarinic agonists oxotremorine and the butynyl base, McN-A-343, a

  15. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    NASA Technical Reports Server (NTRS)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  16. Muscarinic Acetylcholine Receptors in Macaque V1 Are Most Frequently Expressed by Parvalbumin-Immunoreactive Neurons

    PubMed Central

    Disney, Anita A.; Aoki, Chiye

    2010-01-01

    Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004

  17. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  18. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    PubMed

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  19. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  20. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  1. Cholinergic agonists increase intracellular calcium concentration in frog vestibular hair cells.

    PubMed

    Ohtani, M; Devau, G; Lehouelleur, J; Sans, A

    1994-11-01

    Acetylcholine (ACh) is usually considered to be the neurotransmitter of the efferent vestibular system. The nature and the localization of cholinergic receptors have been investigated on frog isolated vestibular hair cells (VHCs), by measuring variations of intracellular calcium concentration ([Ca2+]i), using calcium sensitive dye fura-2. Focal iontophoretic ACh (1 M, 300 nA.40 ms) application induced a rapid increase in [Ca2+]i, reaching a peak in 20 s and representing about 5-fold the resting level (from 61 +/- 6 to 320 +/- 26 nM). Applications of muscarinic agonists as methacholine and carbachol induced weaker calcium responses (from 78 +/- 25 to 238 +/- 53 nM) than the one obtained with ACh applications. These muscarinic agonists were efficient only in precise zones. Desensitization of muscarinic receptors to successive stimulations was significant. Perfusion of nicotine or 1,1-dimethyl-4-phenyl-piperazinium (DMPP), a nicotinic agonist, induced an increase in [Ca2+]i only in some cells (4/28 with DMPP). These results indicated the presence of cholinergic receptors on frog VHCs: muscarinic receptors were more responsive than nicotinic receptors. Presence of muscarinic and nicotinic receptors in the membrane of VHCs could indicate different modulations of VHCs activity mediated by [Ca2+]i and involving an efferent control which represents a central regulation of the vestibular afferent message.

  2. Nematode cholinergic pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissuralmore » motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.« less

  3. Plasticity of non-adrenergic non-cholinergic bladder contractions in rats after chronic spinal cord injury

    PubMed Central

    Lai, H. Henry; Munoz, Alvaro; Smith, Christopher P.; Boone, Timothy B.; Somogyi, George T.

    2011-01-01

    The purpose of this study was to examine the pharmacologic plasticity of cholinergic, non-adrenergic non-cholinergic (NANC), and purinergic contractions in neurogenic bladder strips from spinal cord injured (SCI) rats. Bladder strips were harvested from female rats three to four weeks after T9–T10 spinal cord transection. The strips were electrically stimulated using two experimental protocols to compare the contribution of muscarinic and NANC/purinergic contractions in the presence and the absence of carbachol or muscarine. The endpoints of the study were: (1) percent NANC contraction that was unmasked by the muscarinic antagonist 4-DAMP, and (2) P2X purinergic contraction that was evoked by α,β–methylene ATP. NANC contraction accounted for 78.5% of the neurally evoked contraction in SCI bladders. When SCI bladder strips were treated with carbachol (10 µM) prior to 4-DAMP (500 nM), the percent NANC contraction decreased dramatically to only 13.1% of the neurally evoked contraction (p=0.041). This was accompanied by a substantial decrease in α,β–methylene ATP evoked P2X contraction, and desensitization of purinergic receptors (the ratio of subsequent over initial P2X contraction decreased from 97.2% to 42.1%, p=0.0017). Sequential activation of the cholinergic receptors with carbachol (or with muscarine in neurally intact bladders) and unmasking of the NANC response with 4-DAMP switched the neurally evoked bladder contraction from predominantly NANC to predominantly cholinergic. We conclude that activation of muscarinic receptors (with carbachol or muscarine) blocks NANC and purinergic contractions in neurally intact or in SCI rat bladders. The carbachol-induced inhibition of the NANC contraction is expressed more in SCI bladders compared to neurally intact bladders. Along with receptor plasticity, this change in bladder function may involve P2X-independent mechanisms. PMID:21689735

  4. Choline as an agonist: determination of its agonistic potency on cholinergic receptors.

    PubMed

    Ulus, I H; Millington, W R; Buyukuysal, R L; Kiran, B K

    1988-07-15

    These experiments examined the potency of choline as a cholinergic agonist at both muscarinic and nicotinic receptors in rat brain and peripheral tissues. Choline stimulated the contraction of isolated smooth muscle preparations of the stomach fundus, urinary bladder and trachea and reduced the frequency of spontaneous contractions of the right atrium at high micromolar and low millimolar concentrations. The potency of choline to elicit a biological response varied markedly among these tissues; EC50 values ranged between 0.41 mM in the fundus to 14.45 mM in the atrium. Choline also displaced [3H]quinuclidinyl benzilate binding in a concentration-dependent manner although, again, its potency varied among different brain regions (Ki = 1.2 to 3.5 mM) and peripheral tissues (Ki = 0.28 to 3.00 mM). Choline exhibited a comparable affinity for nicotinic receptors. It stimulated catecholamine release from the vascularly perfused adrenal gland (EC50 = 1.3 mM) and displaced L-[3H]nicotine binding to membrane preparations of brain and peripheral tissues (Ki = 0.38 to 1.17 mM). However, the concentration of choline required to bind to cholinergic receptors in most tissues was considerably higher than serum levels either in controls (8-13 microM) or following the administration of choline chloride (200 microM). These results clearly demonstrate that choline is a weak cholinergic agonist. Its potency is too low to account for the central nervous system effects produced by choline administration, although the direct activation of cholinergic receptors in several peripheral tissues may explain some of its side effects.

  5. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  6. Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex

    PubMed Central

    Tsuneoka, Yousuke; Yoshida, Sachine; Adachi‐Akahane, Satomi; Ito, Masanori; Kuroda, Masaru; Funato, Hiromasa

    2018-01-01

    Abstract The medial prefrontal cortex (mPFC) has been considered to participate in many higher cognitive functions, such as memory formation and spatial navigation. These cognitive functions are modulated by cholinergic afferents via muscarinic acetylcholine receptors. Previous pharmacological studies have strongly suggested that the M1 receptor (M1R) is the most important subtype among muscarinic receptors to perform these cognitive functions. Actually, M1R is abundant in mPFC. However, the proportion of somata containing M1R among cortical cellular types, and the precise intracellular localization of M1R remain unclear. In this study, to clarify the precise immunolocalization of M1R in rat mPFC, we examined three major cellular types, pyramidal neurons, inhibitory neurons, and astrocytes. M1R immunopositivity signals were found in the majority of the somata of both pyramidal neurons and inhibitory neurons. In pyramidal neurons, strong M1R immunopositivity signals were usually found throughout their somata and dendrites including spines. On the other hand, the signal strength of M1R immunopositivity in the somata of inhibitory neurons significantly varied. Some neurons showed strong signals. Whereas about 40% of GAD67‐immunopositive neurons and 30% of parvalbumin‐immunopositive neurons (PV neurons) showed only weak signals. In PV neurons, M1R immunopositivity signals were preferentially distributed in somata. Furthermore, we found that many astrocytes showed substantial M1R immunopositivity signals. These signals were also mainly distributed in their somata. Thus, the distribution pattern of M1R markedly differs between cellular types. This difference might underlie the cholinergic modulation of higher cognitive functions subserved by mPFC. PMID:29424434

  7. Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine.

    PubMed

    Dall, Camilla; Weikop, Pia; Dencker, Ditte; Molander, Anna C; Wörtwein, Gitta; Conn, P Jeffrey; Fink-Jensen, Anders; Thomsen, Morgane

    2017-07-01

    Cocaine addiction is a chronic brain disease affecting neurotransmission. Muscarinic cholinergic receptors modulate dopaminergic signaling in the reward system, and muscarinic receptor stimulation can block direct reinforcing effects of cocaine. Here, we tested the hypothesis that specific muscarinic M 4 receptor stimulation can attenuate the discriminative stimulus effects and conditioned rewarding effects of cocaine, measures believed to predict the ability of cocaine and cocaine-associated cues to elicit relapse to drug taking. We tested the M 4 -selective positive allosteric modulators VU0152100 and VU0467154 in a drug discrimination assay and a conditioned place preference assay, including extinction and reinstatement of place preference. Specificity of the cocaine discrimination effect was verified using knockout mice lacking either M 1 or M 4 receptors (M 1 -/- , M 4 -/- ). We also replicated previous findings in cocaine-induced locomotor hyperactivity and striatal dopamine microdialysis assays. VU0152100 attenuated the discriminative stimulus effect of cocaine in wild-type mice and M 1 -/- mice, but not in M 4 -/- mice, without affecting rates of responding. As previously shown with VU0152100, VU0467154 almost eliminated cocaine-induced hyperactivity and striatal dopamine efflux. VU0467154 failed to attenuate acquisition of cocaine-conditioned place preference, but facilitated extinction and prevented reinstatement of the conditioned place preference. These findings further support the notion that M 4 receptors are promising targets for the treatment of cocaine addiction, by showing that results can be replicated using distinct ligands, and that in addition to blocking reinforcing effects of cocaine relevant to ongoing drug taking, M 4 positive allosteric modulators can also attenuate subjective and conditioned effects relevant to relapse. Copyright © 2017. Published by Elsevier B.V.

  8. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Haesung; Yee, S.; Geddes, J.

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({supmore » 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.« less

  9. The character of sleep disturbances produced by multiple administrations of atropine the antagonist of brain muscarinic cholinergic system.

    PubMed

    Maglakelidze, N T; Chkhartishvili, E V; Mchedlidze, O M; Dzadzamiia, Sh Sh; Nachkebiia, N G

    2012-03-01

    Modification of brain muscarinic cholinergic system normal functioning can be considered as an appropriate strategy for the study of its role in sleep-wakefulness cycle basic mechanisms in general and in the course/maintenance of PS in particular. For this aim systemic application of muscarinic cholinoreceptors antagonists is significant because it gives possibility to modify functioning all of known five sub-types of muscarinic cholinoreceptors and to study the character of sleep disturbances in these conditions. Problem is very topical because the question about the intimate aspects of BMChS involvement in PS maintaining mechanisms still remains unsolved. In cats Atropine systemic administration was made once daily at 10:00 a.m. and continuous EEG registration of sleep-wakefulness cycle ultradian structure, lasting for 10 hour daily, was started immediately. In sum each animal received anti-muscarinic drugs for 12 times. Thereafter drug administrations were ceased and EEG registration of sleep-wakefulness cycle ultradian structure was continued during 10 consecutive days. On the basis of results obtained in these conditions we can conclude that brain muscarinic cholinergic system normal functioning is significant for basic mechanisms of sleep-wakefulness cycle. During wakefulness, at the level of neocortex and hippocampus, MChS supports only EEG activation, while it is one of the main factors in PS triggering and maintaining mechanisms.

  10. Participation of muscarinic receptors in memory consolidation in passive avoidance learning.

    PubMed

    Dobryakova, Yulia V; Gurskaya, Olga; Markevich, Vladimir A

    2014-01-01

    It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24 h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was chosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill.

  11. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    PubMed Central

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  12. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability.

    PubMed

    Parent, Marc A; Amarante, Linda M; Swanson, Kyra; Laubach, Mark

    2015-01-01

    The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability.

  13. Cholinergic modulation of neuronal excitability in the rat suprachiasmatic nucleus.

    PubMed

    Yang, Jyh-Jeen; Wang, Yu-Ting; Cheng, Pi-Cheng; Kuo, Yeh-Jung; Huang, Rong-Chi

    2010-03-01

    The central cholinergic system regulates both the circadian clock and sleep-wake cycle and may participate in the feedback control of vigilance states on neural excitability in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigate the mechanisms for cholinergic modulation of SCN neuron excitability. Cell-attached recordings indicate that the nonspecific cholinergic agonist carbachol (CCh) inhibited 55% and excited 21% SCN neurons, leaving 24% nonresponsive. Similar response proportions were produced by two muscarinic receptor [muscarinic acetylcholine receptor (mAChR)] agonists, muscarine and McN-A-343 (M1/4 agonist), but not by two nicotinic receptor (nAChR) agonists, nicotine and choline (alpha7-nAChR agonist), which, however, produced similar response proportions. Whole cell and perforated-patch recordings indicate that CCh inhibition of firing was mediated by membrane hyperpolarization due to activation of background K(+) currents, which were sensitive to submillimolar concentrations of Ba(2+) and to millimolar concentrations of TEA. RT-PCR analysis demonstrated the presence of mRNA for M1 to M5 mAChRs in SCN. The CCh-induced hyperpolarization and activation of background K(+) currents were blocked by M4 antagonists and to a lesser degree by M1 antagonists but were insensitive to the antagonists for M2 or M3, suggesting the involvement of M4 and M1 mAChRs in mediating CCh inhibition of firing. CCh enhancement of firing was mediated by membrane depolarization, as a result of postsynaptic inhibition of background K(+) currents. The multiple actions of cholinergic modulation via multiple receptors and ion channels may allow acetylcholine to finely control SCN neuron excitability in different physiological settings.

  14. Functional significance of muscarinic receptor expression within the proximal and distal rat vagina.

    PubMed

    Basha, Maureen; Labelle, Edward F; Northington, Gina M; Wang, Tanchun; Wein, Alan J; Chacko, Samuel

    2009-11-01

    Information regarding the role of cholinergic nerves in mediating vaginal smooth muscle contraction is sparse, and in vitro studies of the effects of muscarinic agonists on vaginal smooth muscle are discrepant. The goal of this study was to determine the expression of muscarinic receptors in the vaginal wall of the rat. In addition, we sought to determine the effect of the muscarinic receptor agonist carbachol on contractility and inositol phosphate production of the proximal and distal rat vaginal muscularis. RT-PCR analysis indicated that both M(2) and M(3) receptor transcripts were expressed within the proximal and distal rat vagina. Carbachol dose-dependently (10(-7)-10(-4) M) contracted the rat vaginal muscularis with a greater maximal contractile response in the proximal vagina (P < 0.01) compared with the distal vagina. The contractile responses of the rat vaginal muscularis to carbachol were dose dependently inhibited by the M(3) antagonist para-fluoro-hexahydrosiladefenidol, and a pK(B) of 7.78 and 7.95 was calculated for the proximal and distal vagina, respectively. Inositol phosphate production was significantly increased in both regions of the vagina following 20-min exposure to 50 muM carbachol with higher levels detected in the proximal vagina compared with the distal (P < 0.05). Preliminary experiments indicated the presence of M(2) and M(3) receptors in the human vaginal muscularis as well as contraction of human vaginal muscularis to carbachol, indicating that our animal studies are relevant to human tissue. Our results provide strong evidence for the functional significance of M(3) receptor expression in the vaginal muscularis.

  15. Functional significance of muscarinic receptor expression within the proximal and distal rat vagina

    PubMed Central

    Basha, Maureen; LaBelle, Edward F.; Northington, Gina M.; Wang, Tanchun; Wein, Alan J.

    2009-01-01

    Information regarding the role of cholinergic nerves in mediating vaginal smooth muscle contraction is sparse, and in vitro studies of the effects of muscarinic agonists on vaginal smooth muscle are discrepant. The goal of this study was to determine the expression of muscarinic receptors in the vaginal wall of the rat. In addition, we sought to determine the effect of the muscarinic receptor agonist carbachol on contractility and inositol phosphate production of the proximal and distal rat vaginal muscularis. RT-PCR analysis indicated that both M2 and M3 receptor transcripts were expressed within the proximal and distal rat vagina. Carbachol dose-dependently (10−7–10−4 M) contracted the rat vaginal muscularis with a greater maximal contractile response in the proximal vagina (P < 0.01) compared with the distal vagina. The contractile responses of the rat vaginal muscularis to carbachol were dose dependently inhibited by the M3 antagonist para-fluoro-hexahydrosiladefenidol, and a pKB of 7.78 and 7.95 was calculated for the proximal and distal vagina, respectively. Inositol phosphate production was significantly increased in both regions of the vagina following 20-min exposure to 50 μM carbachol with higher levels detected in the proximal vagina compared with the distal (P < 0.05). Preliminary experiments indicated the presence of M2 and M3 receptors in the human vaginal muscularis as well as contraction of human vaginal muscularis to carbachol, indicating that our animal studies are relevant to human tissue. Our results provide strong evidence for the functional significance of M3 receptor expression in the vaginal muscularis. PMID:19741053

  16. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  17. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  18. The selective M1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility.

    PubMed

    Ragozzino, Michael E; Artis, Sonja; Singh, Amritha; Twose, Trevor M; Beck, Joseph E; Messer, William S

    2012-03-01

    Various neurodegenerative diseases and psychiatric disorders are marked by alterations in brain cholinergic function and cognitive deficits. Efforts to alleviate such deficits have been limited by a lack of selective M(1) muscarinic agonists. 5-(3-Ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine hydrochloride (CDD-0102A) is a partial agonist at M(1) muscarinic receptors with limited activity at other muscarinic receptor subtypes. The present studies investigated the effects of CDD-0102A on working memory and strategy shifting in rats. CDD-0102A administered intraperitoneally 30 min before testing at 0.1, 0.3, and 1 mg/kg significantly enhanced delayed spontaneous alternation performance in a four-arm cross maze, suggesting improvement in working memory. In separate experiments, CDD-0102A had potent enhancing effects on learning and switching between a place and visual cue discrimination. Treatment with CDD-0102A did not affect acquisition of either a place or visual cue discrimination. In contrast, CDD-0102A at 0.03 and 0.1 mg/kg significantly enhanced a shift between a place and visual cue discrimination. Analysis of the errors in the shift to the place or shift to the visual cue strategy revealed that in both cases CDD-0102A significantly increased the ability to initially inhibit a previously relevant strategy and maintain a new, relevant strategy once selected. In anesthetized rats, the minimum dose required to induce salivation was approximately 0.3 mg/kg i.p. Salivation increased with dose, and the estimated ED(50) was 2.0 mg/kg. The data suggest that CDD-0102A has unique memory and cognitive enhancing properties that might be useful in the treatment of neurological disorders at doses that do not produce adverse effects such as salivation.

  19. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  20. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  1. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    PubMed

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  2. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD).

    PubMed

    Javad-Moosavi, Bibi-Zahra; Vaezi, Gholamhassan; Nasehi, Mohammad; Haeri-Rouhani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2017-10-03

    Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. According to this study, CA1 cholinergic muscarinic receptors play an important role in

  3. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    PubMed

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  4. Muscarinic receptors in gastric mucosa are increased in peptic ulcer disease.

    PubMed Central

    Pfeiffer, A; Krömer, W; Friemann, J; Ruge, M; Herawi, M; Schätzl, M; Schwegler, U; May, B; Schatz, H

    1995-01-01

    Muscarinic receptors stimulate the secretion of acid pepsinogen and mucous in gastric mucosa. Whether muscarinic receptors are involved in the pathogenesis of benign gastric disease is unknown. Receptor changes in these conditions were therefore sought. An autoradiographic technique was developed to determine quantitatively muscarinic receptors in microtome sections of biopsy specimens obtained during gastroscopy. Muscarinic receptor density was mean (SEM) 18.4 (1.2) fmol/mg protein in the corpus and 8.9 (0.7) fmol/mg protein in the antrum (n = 53). Neither chronic nor active gastritis was associated with receptor changes in the antrum but chronic gastritis was associated with a receptor loss in the corpus. Patients with acute or recent duodenal or antral ulcers (n = 23) had significantly higher levels of muscarinic receptors in the corpus than controls (n = 25) (22.2 (1.5) v 16.9 (1.7) fmol/mg protein respectively (p < 0.025). These results suggest that muscarinic M3 receptor is overexpressed in duodenal ulcer disease and may play a part in its pathogenesis. Images Figure 2 PMID:7615265

  5. Cholinergic regulation of the vasopressin neuroendocrine system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The medianmore » eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.« less

  6. MOLECULAR PROBES FOR MUSCARINIC RECEPTORS: FUNCTIONALIZED CONGENERS OF SELECTIVE MUSCARINIC ANTAGONISTS

    PubMed Central

    Jacobson, Kenneth A.; Fischer, Bilha; van Rhee, A. Michiel

    2012-01-01

    Summary The muscarinic agonist oxotremorine and the tricyclic muscarinic antagonists pirenzepine and telenzepine have been derivatized using a functionalized congener approach for the purpose of synthesizing high affinity ligand probes that are suitable for conjugation with prosthetic groups, for receptor cross-linking, fluorescent and radioactive detection, etc. A novel fluorescent conjugate of TAC (telenzepine amine congener), an n-decylamino derivative of the ml-selective antagonist, with the fluorescent trisulfonated pyrene dye Cascade Blue may be useful for assaying the receptor as an alternative to radiotracers. In a rat m3 receptor mutant containing a single amino acid substitution in the sixth transmembrane domain (Asn507 to Ala) the parent telenzepine lost 636-fold in affinity, while TAC lost only 27-fold. Thus, the decylamino group of TAC stabilizes the bound state and thus enhances potency by acting as a distal anchor in the receptor binding site. We have built a computer-assisted molecular model of the transmembrane regions of muscarinic receptors based on homology with the G-protein coupled receptor rhodopsin, for which a low resolution structure is known. We have coordinated the antagonist pharmacophore (tricyclic and piperazine moieties) with residues of the third and seventh helices of the rat m3 receptor. Although the decylamino chain of TAC is likely to be highly flexible and may adopt many conformations, we located one possible site for a salt bridge formation with the positively charged −NH3+ group, i.e. Asp113 in helix II. PMID:10188781

  7. Cholinergic drugs as therapeutic tools in inflammatory diseases: participation of neuronal and non-neuronal cholinergic systems.

    PubMed

    Sales, María Elena

    2013-01-01

    Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) from acetylcoenzime A and choline. This reaction occurs not only in pre-ganglionic fibers of the autonomic nervous system and post-ganglionic parasympathetic nervous fibers but also in non neuronal cells. This knowledge led to expand the role of ACh as a neurotransmitter and to consider it as a "cytotransmitter" and also to evaluate the existence of a non-neuronal cholinergic system comprising ACh, ChAT, acetylcholinesterase, and the nicotinic and muscarinic ACh receptors, outside the nervous system. This review analyzes the participation of cholinergic system in inflammation and discusses the role of different muscarinic and nicotinic drugs that are being used to treat skin inflammatory disorders, asthma, and chronic obstructive pulmonary disease as well as, intestinal inflammation and systemic inflammatory diseases, among others, to assess the potential application of these compounds as therapeutic tools.

  8. Muscarinic Cholinergic Modulation of Long-Lasting Synaptic Plasticity in the Rat Dentate Gyrus

    DTIC Science & Technology

    1990-12-14

    ability to block GABAB-mediated responses, which are PTx-sensitive. The effects of the GABAg receptor agonist baclofen on evoked responses were analyzed...both in slices previously exposed to 10/iM muscarine (n=4), and nonexposed slices (n=2). The disinhibitory effects of baclofen usually seen in...20 min washout of muscarine always preceeded the baclofen exposure, to allow for washout of muscarine. There were no differences in the responses to

  9. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of muscarinic antagonists on ZENK expression in the chicken retina.

    PubMed

    Bitzer, Michaela; Kovacs, Beatrix; Feldkaemper, Marita; Schaeffel, Frank

    2006-03-01

    Muscarinic antagonists, particularly atropine, can inhibit myopia development in several animal models and also in children. However, the biochemical basis of the inhibition of axial eye growth remains obscure, and there are doubts whether muscarinic receptors are involved at all. Experiments in chickens and monkeys have shown that the synthesis of the transcription factor ZENK, also named Egr-1, in retinal glucagon amacrine cells is strongly associated with inhibition of axial eye growth (assumed to create a STOP signal). We have tested whether the muscarinic antagonists atropine, pirenzepine, oxyphenonium, gallamine, MT-3, himbacine, and 4-DAMP can stimulate ZENK expression so that the drugs' inhibitory effect on myopia development could be explained by an enhanced STOP signal. Because it is known that intravitreal quisqualic acid (QA) eliminates most cholinergic neurons in the retina within 6 or 7 days, in a second set of experiments, we tested whether these antagonists could still stimulate ZENK production, 6 days after QA was applied. Muscarinic antagonists, injected intravitreally at various concentrations, affected ZENK synthesis in various and unpredictable ways. Pirenzepine, oxyphenonium, and MT-3 increased the proportion of glucagon cells that were ZENK-immunoreactive, whereas himbacine decreased that proportion, and gallamine and 4-DAMP had no significant effect. Atropine caused an upregulation of ZENK only if all positive amacrine and bipolar cells were counted and therefore appeared to affect primarily cells other than glucagon amacrines. The pattern of results remained unchanged after ablation of most cholinergic neurons by QA. Our results suggest that at least some muscarinic antagonists do not activate cells that synthesize ZENK when they inhibit axial eye growth. Therefore, in line with other studies they also cast doubt on the assumption that muscarinic transmission is crucial, and they suggest that muscarinic antagonists may inhibit myopia

  11. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  12. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans.

    PubMed

    Ellis, Julia R; Ellis, Kathryn A; Bartholomeusz, Cali F; Harrison, Ben J; Wesnes, Keith A; Erskine, Fiona F; Vitetta, Luis; Nathan, Pradeep J

    2006-04-01

    Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimer's disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.

  13. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats.

    PubMed

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P

    2013-04-01

    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  14. Muscarinic acetylcholine receptor activation blocks long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses via cannabinoid signaling.

    PubMed

    Rinaldo, Lorenzo; Hansel, Christian

    2013-07-02

    Muscarinic acetylcholine receptors (mAChRs) are known to modulate synaptic plasticity in various brain areas. A signaling pathway triggered by mAChR activation is the production and release of endocannabinoids that bind to type 1 cannabinoid receptors (CB1R) located on synaptic terminals. Using whole-cell patch-clamp recordings from rat cerebellar slices, we have demonstrated that the muscarinic agonist oxotremorine-m (oxo-m) blocks the induction of presynaptic long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell synapses in a CB1R-dependent manner. Under control conditions, LTP was induced by delivering 120 PF stimuli at 8 Hz. In contrast, no LTP was observed when oxo-m was present during tetanization. PF-LTP was restored when the CB1R antagonist N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251) was coapplied with oxo-m. Furthermore, the suppressive effect of oxo-m on PF-LTP was abrogated by the GDP analog GDP-β-S (applied intracellularly), the phospholipase C inhibitor U-73122, and the diacylglycerol lipase inhibitor tetrahydrolipstatin (THL), suggesting that cannabinoid synthesis results from the activation of Gq-coupled mAChRs present on Purkinje cells. The oxo-m-mediated suppression of LTP was also prevented in the presence of the M3 receptor antagonist DAU 5884, and was absent in M1/M3 receptor double-KO mice, identifying M3 receptors as primary oxo-m targets. Our findings allow for the possibility that cholinergic signaling in the cerebellum--which may result from long-term depression (LTD)-related disinhibition of cholinergic neurons in the vestibular nuclei--suppresses presynaptic LTP to prevent an up-regulation of transmitter release that opposes the reduction of postsynaptic responsiveness. This modulatory capacity of mAChR signaling could promote the functional penetrance of LTD.

  15. Muscarinic Receptors Modulate Dendrodendritic Inhibitory Synapses to Sculpt Glomerular Output

    PubMed Central

    Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus

    2015-01-01

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. PMID:25855181

  16. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    PubMed

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  17. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism

    PubMed Central

    Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.

    2010-01-01

    Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621

  18. Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.

    PubMed

    Betterton, Ruth T; Broad, Lisa M; Tsaneva-Atanasova, Krasimira; Mellor, Jack R

    2017-06-01

    Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enhances the intrinsic excitability of pyramidal neurons and suppresses both excitatory and inhibitory synaptic transmission, but the net modulatory effect on gamma oscillations is not known. Here, we find that the power, but not frequency, of optogenetically induced gamma oscillations in the CA3 region of mouse hippocampal slices is enhanced by low concentrations of the broad-spectrum cholinergic agonist carbachol but reduced at higher concentrations. This bidirectional modulation of gamma oscillations is replicated within a mathematical model by neuronal depolarisation, but not by reducing synaptic conductances, mimicking the effects of muscarinic M1 receptor activation. The predicted role for M1 receptors was supported experimentally; bidirectional modulation of gamma oscillations by acetylcholine was replicated by a selective M1 receptor agonist and prevented by genetic deletion of M1 receptors. These results reveal that acetylcholine release in CA3 of the hippocampus modulates gamma oscillation power but not frequency in a bidirectional and dose-dependent manner by acting primarily through muscarinic M1 receptors. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  20. Role of muscarinic receptors in the regulation of immune and inflammatory responses

    PubMed Central

    Razani-Boroujerdi, Seddigheh; Behl, Muskaan; Hahn, Fletcher F.; Pena-Philippides, Juan Carlos; Hutt, Julie; Sopori, Mohan L.

    2008-01-01

    Leukocytes contain both nicotinic and muscarinic receptors, and while activation of nicotinic receptors suppresses immune/inflammatory responses, the role of muscarinic receptors in immunity is unclear. We examined the effects of a muscarinic receptor antagonist (atropine) and agonist (oxotremorine), administered chronically through miniosmotic pumps, on immune/inflammatory responses in the rat. Results show that while oxotremorine stimulated, atropine inhibited the antibody and T-cell proliferative responses. Moreover, atropine also suppressed the turpentine-induced leukocytic infiltration and tissue injury, and inhibited chemotaxis of leukocytes toward neutrophil and monocyte/lymphocyte chemoattractants. Thus, activation of nicotinic and muscarinic receptors has opposite effects on the immune/inflammatory responses. PMID:18190972

  1. Differential Effects of Systemic Cholinergic Receptor Blockade on Pavlovian Incentive Motivation and Goal-Directed Action Selection

    PubMed Central

    Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T

    2014-01-01

    Reward-seeking actions can be guided by external cues that signal reward availability. For instance, when confronted with a stimulus that signals sugar, rats will prefer an action that produces sugar over a second action that produces grain pellets. Action selection is also sensitive to changes in the incentive value of potential rewards. Thus, rats that have been prefed a large meal of sucrose will prefer a grain-seeking action to a sucrose-seeking action. The current study investigated the dependence of these different aspects of action selection on cholinergic transmission. Hungry rats were given differential training with two unique stimulus-outcome (S1-O1 and S2-O2) and action-outcome (A1-O1 and A2-O2) contingencies during separate training phases. Rats were then given a series of Pavlovian-to-instrumental transfer tests, an assay of cue-triggered responding. Before each test, rats were injected with scopolamine (0, 0.03, or 0.1 mg/kg, intraperitoneally), a muscarinic receptor antagonist, or mecamylamine (0, 0.75, or 2.25 mg/kg, intraperitoneally), a nicotinic receptor antagonist. Although the reward-paired cues were capable of biasing action selection when rats were tested off-drug, both anticholinergic treatments were effective in disrupting this effect. During a subsequent round of outcome devaluation testing—used to assess the sensitivity of action selection to a change in reward value—we found no effect of either scopolamine or mecamylamine. These results reveal that cholinergic signaling at both muscarinic and nicotinic receptors mediates action selection based on Pavlovian reward expectations, but is not critical for flexibly selecting actions using current reward values. PMID:24370780

  2. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  3. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

    PubMed

    Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S

    2013-09-01

    Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Control of Insulin Secretion by Cholinergic Signaling in the Human Pancreatic Islet

    PubMed Central

    Molina, Judith; Rodriguez-Diaz, Rayner; Fachado, Alberto; Jacques-Silva, M. Caroline

    2014-01-01

    Acetylcholine regulates hormone secretion from the pancreatic islet and is thus crucial for glucose homeostasis. Little is known, however, about acetylcholine (cholinergic) signaling in the human islet. We recently reported that in the human islet, acetylcholine is primarily a paracrine signal released from α-cells rather than primarily a neural signal as in rodent islets. In this study, we demonstrate that the effects acetylcholine produces in the human islet are different and more complex than expected from studies conducted on cell lines and rodent islets. We found that endogenous acetylcholine not only stimulates the insulin-secreting β-cell via the muscarinic acetylcholine receptors M3 and M5, but also the somatostatin-secreting δ-cell via M1 receptors. Because somatostatin is a strong inhibitor of insulin secretion, we hypothesized that cholinergic input to the δ-cell indirectly regulates β-cell function. Indeed, when all muscarinic signaling was blocked, somatostatin secretion decreased and insulin secretion unexpectedly increased, suggesting a reduced inhibitory input to β-cells. Endogenous cholinergic signaling therefore provides direct stimulatory and indirect inhibitory input to β-cells to regulate insulin secretion from the human islet. PMID:24658304

  5. Muscarinic Receptor Binding in Rat Bladder Urothelium and Detrusor Muscle by Intravesical Solifenacin.

    PubMed

    Ito, Yoshihiko; Kashiwabara, Michishi; Yoshida, Akira; Hikiyama, Eriko; Onoue, Satomi; Yamada, Shizuo

    2016-01-01

    Solifenacin is an antimuscarinic agent used to treat symptoms of overactive bladder. Pharmacologically significant amounts of solifenacin were excreted in the urine of humans taking a clinical dose of this drug. The aim of this study is to measure muscarinic receptor binding in the bladder urothelium and detrusor muscles of rats following the intravesical instillation of solifenacin. Muscarinic receptors were measured by radioreceptor assay using [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS), a selective radioligand of muscarinic receptors. Solifenacin showed concentration-dependent inhibition of specific [(3)H]NMS binding in the bladder urothelium and detrusor muscle of rats, with no significant difference in Ki values or Hill coefficients between these tissues. Following the intravesical instillation of solifenacin, there was significant muscarinic receptor binding (increase in Kd for specific [(3)H]NMS binding) in the bladder urothelium and detrusor muscle of rats. Similar bladder muscarinic receptor binding was observed by the intravesical instillation of oxybutynin, but not with trospium. In conclusion, the present study has demonstrated that solifenacin binds muscarinic receptors not only in the detrusor muscle but also in the bladder urothelium with high affinity. These bladder muscarinic receptors may be significantly affected by solifenacin excreted in the urine.

  6. Oxotremorine suppresses thalamocortical oscillations via thalamic muscarinic acetylcholine receptors.

    PubMed

    Puoliväli, J; Jäkälä, P; Koivisto, E; Riekkinen, P

    1998-12-01

    We investigated whether the local intrathalamic infusion of a muscarinic acetylcholine receptor agonist (oxotremorine) at either the reticular nucleus of thalamus (NRT) or the ventroposteromedial nucleus of thalamus (VPM) suppresses thalamocortically generated neocortical high-voltage spindles (HVSs). In addition, we studied whether the intracerebroventricular (ICV) infusion of a selective muscarinic M2 acetylcholine receptor antagonist (methoctramine) could block the suppression of HVSs induced by either systemic (IP) administration of an anticholinesterase drug [tetrahydroaminoacridine (THA)] or ICV infusion of oxotremorine in rats. Intrathalamic administration of oxotremorine at 3 and 15 microg in the NRT, and at 15 microg in the VPM suppressed HVSs. ICV oxotremorine at 30 and 100 microg and IP THA at 3 mg/kg decreased HVSs. ICV methoctramine at 100 microg increased HVSs and completely blocked the decrease in HVSs produced by oxotremorine 100 microg and THA 3 mg/kg. The results suggest that activation of muscarinic M2 acetylcholine receptors in thalamic nuclei (NRT and VPM) can suppress thalamocortical oscillations and that ICV or systemically administered drugs that activate either directly (oxotremorine and methoctramine) or indirectly (THA) the muscarinic M2 acetylcholine receptors may modulate neocortical HVSs via the thalamus.

  7. Muscarinic receptor-mediated excitation of rat intracardiac ganglion neurons.

    PubMed

    Hirayama, Michiko; Ogata, Masanori; Kawamata, Tomoyuki; Ishibashi, Hitoshi

    2015-08-01

    Modulation of the membrane excitability of rat parasympathetic intracardiac ganglion neurons by muscarinic receptors was studied using an amphotericin B-perforated patch-clamp recording configuration. Activation of muscarinic receptors by oxotremorine-M (OxoM) depolarized the membrane, accompanied by repetitive action potentials. OxoM evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca(2+) markedly increased the OxoM-induced current (IOxoM). The inward IOxoM in the absence of extracellular Ca(2+) was fully inhibited by removal of extracellular Na(+), indicating the involvement of non-selective cation channels. The IOxoM was inhibited by organic cation channel antagonists including SKF-96365 and ML-204. The IOxoM was antagonized by muscarinic receptor antagonists with the following potency: 4-DAMP > pirenzepine = darifenacin > methoctramine. Muscarinic toxin 7 (MT-7), a highly selective inhibitor for M1 receptor, produced partial inhibition of the IOxoM. In the presence of MT-7, concentration-inhibition curve of the M3-preferring antagonist darifenacin was shifted to the left. These results suggest the contribution of M1 and M3 receptors to the OxoM response. The IOxoM was inhibited by U-73122, a phospholipase C inhibitor. The membrane-permeable IP3 receptor blocker xestospongin C also inhibited the IOxoM. Furthermore, pretreatment with thapsigargin and BAPTA-AM inhibited the IOxoM, while KN-62, a blocker of Ca(2+)/calmodulin-dependent protein kinase II, had no effect. These results suggest that the activation mechanism involves a PLC pathway, release of Ca(2+) from intracellular Ca(2+) stores and calmodulin. The cation channels activated by muscarinic receptors may play an important role in neuronal membrane depolarization in rat intracardiac ganglion neurons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Pharmacological profiles of the subtypes of muscarinic cholinoceptors that mediate aggregation of pigment in the melanophores of two species of catfish.

    PubMed

    Hayashi, H; Fujii, R

    1994-06-01

    Using selective antagonists, including pirenzepine, adiphenine, AF-DX 116, gallamine, and 4-DAMP, we attempted to characterize the muscarinic cholinoceptors on the melanophores of the translucent glass catfish Kryptopterus bicirrhis and the mailed catfish Corydoras paleatus. The M3 receptor-selective antagonist, 4-DAMP, potently inhibited the acetylcholine-induced aggregation of pigment in both species. It appeared, therefore, that the receptors that mediated the cholinergically evoked aggregation of melanosomes in these species were of the M3 muscarinic subtype.

  9. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human.

    PubMed

    Disney, Anita A; Reynolds, John H

    2014-04-01

    Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex. Copyright © 2013 Wiley Periodicals, Inc.

  10. Role of muscarinic receptor antagonists in urgency and nocturia.

    PubMed

    Michel, Martin C; de la Rosette, Jean J M C H

    2005-09-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms of incontinence and frequency. In recent studies, selected muscarinic antagonists, including darifenacin, solifenacin, tolterodine and trospium, significantly reduced the number of urgency episodes per day relative to placebo. While some data raise the possibility that certain of these agents may be more effective than others in this regard, this variability in their effect on urgency needs to be confirmed in future studies. Moreover, it remains to be determined whether counting the number of urgency episodes or assessing the subjective intensity of the sensation of urgency more adequately reflects patient needs and therapeutic efficacy. For nocturia, muscarinic receptor antagonists have only inconsistently shown statistically greater effects than placebo. This inconsistency may relate to the multifactorial nature of nocturia, which even in patients with OAB can have many causes, not all of which may respond/be sensitive to muscarinic receptor antagonism.

  11. Inhibition of m3 muscarinic acetylcholine receptors by local anaesthetics

    PubMed Central

    Hollmann, Markus W; Ritter, Carsten H; Henle, Philipp; de Klaver, Manuela; Kamatchi, Ganesan L; Durieux, Marcel E

    2001-01-01

    Muscarinic m1 receptors are inhibited by local anaesthetics (LA) at nM concentrations. To elucidate in more detail the site(s) of LA interaction, we compared these findings with LA effects on m3 muscarinic receptors. We expressed receptors in Xenopus oocytes. Using two-electrode voltage clamp, we measured the effects of lidocaine, QX314 (permanently charged) and benzocaine (permanently uncharged) on Ca2+-activated Cl−-currents (ICl(Ca)), elicited by acetyl-β-methylcholine bromide (MCh). We also characterized the interaction of lidocaine with [3H]-quinuclydinyl benzylate ([3H]-QNB) binding to m3 receptors. Antisense-injection was used to determine the role of specific G-protein α subunits in mediating the inhibitory effects of LA. Using chimeric receptor constructs we investigated which domains of the muscarinic receptors contribute to the binding site for LA. Lidocaine inhibited m3-signalling in a concentration-dependent, reversible, non-competitive manner with an IC50 of 370 nM, approximately 21 fold higher than the IC50 (18 nM) reported for m1 receptors. Intracellular inhibition of both signalling pathways by LA was similar, and dependent on the Gq- protein α subunit. In contrast to results reported for the m1 receptor, the m3 receptor lacks the major extracellular binding site for charged LA. The N-terminus and third extracellular loop of the m1 muscarinic receptor molecule were identified as requirements to obtain extracellular inhibition by charged LA. PMID:11325812

  12. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    PubMed Central

    Yu, C.-J.; Debski, E. A.

    2008-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 μM) and bicuculline (25 μM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 μM). Muscarinic receptor-mediated responses, induced by carbachol (100 μM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input. PMID:12676145

  13. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    PubMed

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  14. Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    PubMed Central

    Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration. C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis. Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups. The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest. PMID:22384146

  15. Muscarinic type 2 receptors in the lateral dorsal tegmental area modulate cocaine and food seeking behavior in rats.

    PubMed

    Shabani, S; Foster, R; Gubner, N; Phillips, T J; Mark, G P

    2010-10-13

    The cholinergic input from the lateral dorsal tegmental area (LDTg) modulates the dopamine cells of the ventral tegmental area (VTA) and plays an important role in cocaine taking. Specific pharmacological agents that block or stimulate muscarinic receptors in the LDTg change acetylcholine (ACh) levels in the VTA. Furthermore, manipulations of cholinergic input in the VTA can change cocaine taking. In the current study, the ACh output from the LDTg was attenuated by treatment with the selective muscarinic type 2 (M2) autoreceptor agonist oxotremorine.sesquifumarate (OxoSQ). We hypothesized that OxoSQ would reduce the motivation of rats to self-administer both natural and drug rewards. Animals were tested on progressive ratio (PR) schedules of reinforcement for food pellets and cocaine. On test days, animals on food and on cocaine schedules were bilaterally microinjected prior to the test. Rats received either LDTg OxoSQ infusions or LDTg artificial cerebrospinal fluid (aCSF) infusions in a within-subjects design. In addition, infusions were delivered into a dorsal brain area above the LDTg as an anatomical control region. OxoSQ microinjection in the LDTg, compared to aCSF, significantly reduced both the number of self-administered pellets and cocaine infusions during the initial half of the session; this reduction was dose-dependent. OxoSQ microinjections into the area just dorsal to the LDTg had no significant effect on self-administration of food pellets or cocaine. Animals were also tested in locomotor activity chambers for motor effects following the above microinjections. Locomotor activity was mildly increased by OxoSQ microinjection into the LDTg during the initial half of the session. Overall, these data suggest that LDTg cholinergic neurons play an important role in modifying the reinforcing value of natural and drug rewards. These effects cannot be attributed to significant alterations of locomotor behavior and are likely accomplished through LDTg

  16. Batrachotoxin Changes the Properties of the Muscarinic Receptor in Rat Brain and Heart: Possible Interaction(s) between Muscarinic Receptors and Sodium Channels

    NASA Astrophysics Data System (ADS)

    Cohen-Armon, Malca; Kloog, Yoel; Henis, Yoav I.; Sokolovsky, Mordechai

    1985-05-01

    The effects of Na+-channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors in homogenates of rat brain and heart were studied. BTX enhanced the affinity for the binding of the agonists carbamoylcholine and acetylcholine to the muscarinic receptors in brainstem and ventricle, but not in the cerebral cortex. Analysis of the data according to a two-site model for agonist binding indicated that the effect of BTX was to increase the affinity of the agonists to the high-affinity site. Guanyl nucleotides, known to induce interconversion of high-affinity agonist binding sites to the low-affinity state, canceled the effect of BTX on carbamoylcholine and acetylcholine binding. BTX had no effect on the binding of the agonist oxotremorine or on the binding of the antagonist [3H]-N-methyl-4-piperidyl benzilate. The local anesthetics dibucaine and tetracaine antagonized the effect of BTX on the binding of muscarinic agonists at concentrations known to inhibit the activation of Na+ channels by BTX. On the basis of these findings, we propose that in specific tissues the muscarinic receptors may interact with the BTX binding site (Na+ channels).

  17. Regulation of Brain Muscarinic Receptors by Protein Kinase C

    DTIC Science & Technology

    1991-06-21

    esters or to high concentrations of muscarinic agonists. Neuronal mouse neuroblastoma cells maintained in culture (clone N1E - 115 ) were used as a...E.E. El-Fakahany: Inhibition of Cyclic AMP Formation in N1E - 115 Neuroblastoma Cells is Mediated by a Noncardiac M2 Muscarinic Receptor Subtype...Receptor-Mediated Second Messenger Responses in N1E - 115 Neuroblastoma Cells. Journal of Neurochemistry. 53, 1300-1308, 1989. 15. McKinney, M., D

  18. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    PubMed Central

    Castro, Juciane Maria de Andrade; Resende, Rodrigo R.; Florsheim, Esther; Albuquerque, Layra Lucy; Lino-dos-Santos-Franco, Adriana; Gomes, Eliane; Tavares de Lima, Wothan; de Franco, Marcelo; Ribeiro, Orlando Garcia

    2013-01-01

    Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation. PMID:23691511

  19. Behavioral impact of neurotransmitter-activated GPCRs: Muscarinic and GABAB receptors regulate C. elegans locomotion

    PubMed Central

    Dittman, Jeremy S; Kaplan, Joshua M

    2008-01-01

    Neurotransmitter released from presynaptic terminals activates both ligand-gated ion channels (ionotropic receptors) and a variety of G protein-coupled receptors (GPCRs). These neurotransmitter receptors are expressed on both pre- and postsynaptic cells. Thus, each neurotransmitter acts on multiple receptor classes, generating a large repertoire of physiological responses. The impact of many ionotropic receptors on neuronal activity and behavior has been clearly elucidated; however, much less is known about how neurotransmitter-gated GPCRs regulate neurons and circuits. In C. elegans, both Acetylcholine (ACh) and GABA are released in the nerve cord and mediate fast neuromuscular excitation and inhibition during locomotion. Here we identify a muscarinic receptor (GAR-2) and the GABAB receptor dimer (GBB-1/2) that detect synaptically released ACh and GABA, respectively. Both GAR-2 and GBB-1/2 inhibited cholinergic motor neurons when ACh and GABA levels were enhanced. Loss of either GPCR resulted in movement defects, suggesting that these receptors are activated during locomotion. When the negative feedback provided by GAR-2 was replaced with positive feedback, animals became highly sensitive to ACh levels and locomotion was severely impaired. Thus, conserved GPCRs act in the nematode motor circuit to provide negative feedback and to regulate locomotory behaviors that underlie navigation. PMID:18614679

  20. Sexual dimorphism in the volume of song control nuclei in European starlings: assessment by a Nissl stain and autoradiography for muscarinic cholinergic receptors.

    PubMed

    Bernard, D J; Casto, J M; Ball, G F

    1993-08-22

    Previous studies have found that the volume of several song control nuclei is larger in male songbirds than in female songbirds. The degree of this volumetric sex difference within a given species appears to be systematically related to the degree of the behavioral sex difference. The largest volumetric differences have been reported in species in which the male sings and the female sings little, if at all, and the smallest sex differences in volume have been reported in species in which males and females both sing in nearly equal amounts. We compared the volume of three song control nuclei in male and female European starlings (Sturnus vulgaris), a species in which females are known to sing, though at a much lower rate than males. We investigated the volume of hyperstriatum ventrale, pars caudale, nucleus robustus archistriatalis, and area X of the lobus parolfactorius as defined with the use of a Nissl stain. In addition, we measured the volume of area X as defined by the density of muscarinic cholinergic receptors visualized by in vitro receptor autoradiographic methods. The volumes of all three of the song nuclei, as defined by Nissl staining, are significantly larger in males than in females. For area X, Nissl staining and receptor autoradiography indicate the same significant volumetric sex difference. The three nuclei are approximately one and one half to two times larger in males than in females, a degree of dimorphism that is intermediate to those reported for other species. Previous investigations of sex differences in the avian vocal control system have used only Nissl stains to define nuclear volumes. We demonstrate in this paper that receptor autoradiography can be used to assess dimorphisms in nuclear volume. Broad application of this approach to a number of neurotransmitter receptor systems will better characterize the dimorphisms in the song system, and therefore will provide greater insight into the neuroanatomical and neurochemical control of

  1. Differences in cholinergic responses from outer hair cells of rat and guinea pig.

    PubMed

    Chen, C; LeBlanc, C; Bobbin, R P

    1996-09-01

    A cholinergic receptor on outer hair cells (OHC) in guinea pig cochlea induces a K+ current when it is activated by acetylcholine and suberyldicholine but not by nicotine or muscarine (Bobbin, 1995). This unusual receptor may contain an alpha 9-subunit. However, the pharmacology of the alpha 9-subunit cloned from rat and expressed in Xenopus oocytes does not completely match that obtained for the ACh receptor in guinea pig OHCs. The response to 1,1-dimethyl-4-phenylpiperazinium (DMPP) is large in guinea pig OHCs and small in oocytes containing receptors of the alpha 9-subunit. Therefore, we compared the effects of cholinergic receptor agonists in rat and guinea pig OHCs using the whole-cell variant of the patch-clamp technique. ACh caused the largest outward K+ current in OHCs from both rat and guinea pig. Carbachol- and suberyldicholine-induced responses were similar in magnitude in OHCs of rat and guinea pig. However, DMPP produced a small response in OHCs from rat and a large response in OHCs from guinea pig. At a concentration of 100 microM, muscarine, oxotremorine M, nicotine and cytisine induced little response in guinea pig OHCs and none in rat OHCs. Results suggest that the ACh receptor on rat OHCs is similar to the alpha 9-subunit-containing receptor expressed in oocytes but different from the ACh receptor on guinea pig OHCs.

  2. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

    PubMed

    Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor

    2016-11-01

    Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.

  3. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  4. Muscarinic Receptors as Targets for Metronomic Therapy in Breast Cancer.

    PubMed

    Sales, María Elena

    2016-01-01

    It is actually known that acetylcholine works as a signaling molecule in non-neuronal cells and tissues, in addition to its neuronal function as neurotransmitter. It can act on two types of receptors nicotinic and muscarinic receptors (mAChRs). The latter belong to the G protein coupled receptor family and there are five subtypes genetically cloned. Their activation triggers classical and non-classical intracellular signals that could be linked to the proliferation of normal and/or transformed cells. The M3 subtype was identified in different types of tumors and its stimulation with agonists triggers cell proliferation, migration, invasion and metastasis. Our laboratory has extensively investigated the expression and function of mAChRs in breast tumors from animal and human origins. We found a profuse expression of mAChRs in breast tumors, but opposite to this, an absence of these receptors in normal breast cells and tissues. The stimulation of mAChRs with the cholinergic agonist carbachol for 20 h increased tumor cell death. Moreover, the combination of subthreshold concentrations of the agonist with paclitaxel potentiates cell death. The usage of low dose chemotherapy with short drug free intervals was named metronomic therapy and it has emerged as a novel regimen for cancer treatment with very low incidence of side effects. Our work and that of others indicate that mAChRs that are over-expressed in different types of tumor cells could be a useful target for metronomic therapy in cancer treatment.

  5. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    PubMed

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  6. Cholinergic and serotonergic modulation of visual information processing in monkey V1.

    PubMed

    Shimegi, Satoshi; Kimura, Akihiro; Sato, Akinori; Aoyama, Chisa; Mizuyama, Ryo; Tsunoda, Keisuke; Ueda, Fuyuki; Araki, Sera; Goya, Ryoma; Sato, Hiromichi

    2016-09-01

    The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu; Cheng, Kunrong; Saxena, Neeraj

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasionmore » of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked

  8. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  9. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) onmore » lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.« less

  10. Modulation of prepulse inhibition through both M1 and M4 muscarinic receptors in mice

    PubMed Central

    Thomsen, Morgane; Wess, Jürgen; Fulton, Brian S.; Fink-Jensen, Anders; Caine, S. Barak

    2014-01-01

    Rationale Muscarinic cholinergic M1 and M4 receptors may participate in schizophrenia's etiology, and have been proposed as targets for antipsychotic medications. Objective Here we investigated the involvement of these receptors in behavioral measures pertinent to schizophrenia using knockout mice lacking M1 receptors (M1−/−), M4 receptors (M4−/−) or both (M1−/−M4−/−). Methods We measured prepulse inhibition of startle (PPI) without drugs, and after treatment with scopolamine (0.32–1.8 mg/kg), xanomeline (3.2 mg/kg) oxotremorine (0.032–0.1 mg/kg), clozapine (1.0–5.6 mg/kg), or haloperidol (0.32–3.2 mg/kg). Results In female (but not male) mice, combined deletion of both M1 and M4 receptors decreased PPI relative to wild-type mice, while knockout of either receptor alone had no significant effect. Scopolamine disrupted PPI in wild-type and M4−/− mice, but not in female M1−/−M4−/− or female M1−/− mice. When administered before scopolamine, xanomeline restored PPI in wild-type mice and M1−/− mice, but not in M4−/− mice. In contrast, pretreatment with oxotremorine increased PPI regardless of genotype. Effects of clozapine and haloperidol on PPI were not hindered by either mutation. Conclusions Deletion of both M1 and M4 receptors can disrupt PPI, suggesting that (at least partially redundant) M1 and M4 receptor-dependent functions are involved in sensorimotor gating mechanisms. PPI-disrupting effects of muscarinic antagonists appeared dependent upon M1 receptor blockade. Our data also suggest that xanomeline exerts antipsychotic-like effects mainly through M4 receptor stimulation, while stimulation of non-M1/M4 subtypes may also have antipsychotic potential. Finally, our results do not support a role of M1/M4 receptors in mediating antipsychotic-like effects of clozapine. PMID:20013114

  11. [Modulation of skeletal muscle contraction by the non-toxic fraction of Buthus occitanus tunetanus venom via the cholinergic receptors].

    PubMed

    Cheikh, A; Cognard, C; Potreau, D; Bescond, J; Raymond, G; El Ayeb, M; Benkhalifa, R

    2007-01-01

    Cholinergic receptors have an essential physiological role in the central nervous system because of their implication in higher functions in the neuromuscular junction within the brain and also in the peripheral nervous system by activating nicotinic (nAChRs) or muscarinic (mAChRs) receptors. Moreover, cholinergic receptors could be recognized by animal toxins isolated from snake venoms or alkaloids having animal or vegetal origin. In this context, we aim to find such molecules in a non toxic venom fraction of Buthus occitanus tunetanus scorpion, M1, which could therefore constitute promising medical tool. We present here a physiological study in skeletal muscle cells that regroups data that have been recently published and some new results reinforcing the last ones. The global effect of M1, was firstly studied on isolated nerve-muscle preparation. In cultured myotubes, we have found that the intracellular calcium increase, induced by M1 was blocked when ryanodine or inositol 1,4,5-triphosphate receptors are inhibited. Moreover, we have shown that M1 application on myotubes, induced a membrane depolarization as seen with acetylcholine. The treatment of myotubes with alpha-bungarotoxin blocked in most parts the depolarization amplitude. Thus, these results confirm the presence of at least one component in M1 active in nAChRs.

  12. Subcellular Distribution of M2-muscarinic Receptors in Relation to Dopaminergic Neurons of the Rat Ventral Tegmental Area

    PubMed Central

    Garzón, Miguel; Pickel, Virginia M.

    2008-01-01

    Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Of the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation, and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles, but showed a more prominent, size-dependent plasmalemmal location in non-dopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses, or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA. PMID:16927256

  13. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.

    PubMed

    Stefanescu, Roxana A; Shore, Susan E

    2017-03-01

    Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N -methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology. NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of

  14. cAMP Catalyzing Phosphodiesterases Control Cholinergic Muscular Activity But Their Inhibition Does Not Enhance 5-HT4 Receptor-Mediated Facilitation of Cholinergic Contractions in the Murine Gastrointestinal Tract

    PubMed Central

    Pauwelyn, Vicky; Lefebvre, Romain A.

    2018-01-01

    Background: As the signal transduction of 5-HT4 receptors on cholinergic neurons innervating smooth muscle is controlled by phosphodiesterase (PDE) 4 in porcine stomach and colon, and human large intestine, the in vivo gastroprokinetic effects of a 5-HT4 receptor agonist might be enhanced by combination with a selective PDE4 inhibitor. The presence of 5-HT4 receptors on cholinergic neurons towards murine gastrointestinal circular muscle was recently shown. If the control of this receptor pathway by PDE4 is also present in mice, this might be a good model for in vivo testing of the combination therapy. Therefore this study investigates the role of cAMP catalyzing PDEs in smooth muscle cell activity and in the intraneuronal signal transduction of the 5-HT4 receptors in the gastrointestinal tract of C57Bl/6J mice. Methods: In circular smooth muscle strips from murine fundus, jejunum, and colon, submaximal cholinergic contractions were induced by either electrical field stimulation (EFS) or by carbachol (muscarinic receptor agonist). The influence of the PDE inhibitors IBMX (non-selective), vinpocetine (PDE1), EHNA (PDE2), cilostamide (PDE3), and rolipram (PDE4) was tested on these contractions and on the facilitating effect of a submaximal concentration of prucalopride (5-HT4 receptor agonist) on EFS-induced contractions. Results: In the three gastrointestinal regions, IBMX and cilostamide concentration-dependently decreased carbachol- as well as EFS-induced contractions. Some inhibitory effect was also observed with rolipram. In the fundus a non-significant trend for an enhancement of the facilitating effect of prucalopride on EFS-induced contractions was observed with IBMX, but none of the selective PDE inhibitors enhanced the facilitating effect of prucalopride in fundus, jejunum or colon. Conclusion: In analogy with the porcine gastrointestinal tract, in murine fundus, jejunum, and colon circular smooth muscle PDE3 is the main regulator of the cAMP turnover, with

  15. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  16. Presynaptic muscarinic control of glutamatergic synaptic transmission.

    PubMed

    Buño, W; Cabezas, C; Fernández de Sevilla, D

    2006-01-01

    The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.

  17. Demonstration of muscarinic and nicotinic receptor binding activities of distigmine to treat detrusor underactivity.

    PubMed

    Harada, Taketsugu; Fushimi, Kazumi; Kato, Aya; Ito, Yoshihiko; Nishijima, Saori; Sugaya, Kimio; Yamada, Shizuo

    2010-01-01

    The present study was undertaken to examine whether distigmine, a therapeutic agent used to treat detrusor underactivity, binds directly to muscarinic and nicotinic receptors. We used radioreceptor binding assays and compared the effects of distigmine with those of neostigmine and donepedil. The inhibitory effect of distigmine on the blood acetylcholinesterase (AChE) activity was significantly weaker than that of neostigmine. Distigmine, neostigmine, and donepezil competed for specific binding sites of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS ) and [(3)H]oxotremorine-M in the bladder, submaxillary gland and cerebral cortex of rats in a concentration-dependent manner, indicating significant binding activity of muscarinic receptors. Distigmine displayed significantly higher affinity for binding sites of [(3)H]oxotremorine-M compared with those of [(3)H]NMS as revealed by large ratios of its K(i) value for [(3)H]NMS to that for [(3)H]oxotremorine-M, suggesting that it has preferential affinity for agonist sites of muscarinic receptors. Distigmine seemed to bind to the agonist sites of muscarinic receptors in a competitive manner. Repeated oral administration of distigmine caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS in the bladder and submaxillary gland but not cerebral cortex. Distigmine also bound to nicotinic receptors in the rat cerebral cortex. In conclusion, distigmine shows direct binding to muscarinic receptors in the rat bladder, and repeated oral administration of distigmine causes downregulation of muscarinic receptors in the rat bladder. The observed direct interaction of distigmine with the bladder muscarinic receptors may partly contribute to the therapeutic and/or side effects seen in the treatment of detrusor underactivity.

  18. Cholinergic manipulations bidirectionally regulate object memory destabilization

    PubMed Central

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage. PMID:25776038

  19. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  20. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    PubMed Central

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  1. Muscarinic acetylcholine receptor in cerebellar cortex participates in acetylcholine-mediated blood depressor response in rats.

    PubMed

    Zhou, Peiling; Zhu, Qingfeng; Liu, Ming; Li, Jing; Wang, Yong; Zhang, Changzheng; Hua, Tianmiao

    2015-04-23

    Our previous investigations have revealed that cerebellar cholinergic innervation is involved in cardiovascular regulation. This study was performed to examine the effects of the muscarinic cholinergic receptor (mAChR) in the cerebellar cortex on blood pressure (BP) modulation in rats. Acetylcholine (ACh, 100mM), nonselective mAChR agonist (oxotremorine M; Oxo-M, 10, 30 and 100mM) and 100mM ACh mixed with nonselective mAChR antagonist atropine (1, 3 and 10mM) were microinjected into the cerebellar cortex of anesthetized rats. Mean arterial pressure (MAP), maximal decreased MAP (MDMAP), and reaction time (duration required for BP to return to basal values) were measured and analyzed. The results showed that Oxo-M dose-dependently decreased MAP, increased MDMAP, and prolonged reaction time, which displayed a homodromous effect of ACh-mediated blood depressor response; meanwhile, atropine concentration-dependently blocked the effect of ACh on the BP regulation. In conclusion, the present study showed for the first time that mAChRs in cerebellar cortex could modulate somatic BP by participation in ACh-mediated depressor response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Immunocytochemical localization of choline acetyltransferase and muscarinic ACh receptors in the antenna during development of the sphinx moth Manduca sexta.

    PubMed

    Clark, Julie; Meisner, Shannon; Torkkeli, Päivi H

    2005-04-01

    Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4-5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4-9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4-5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4-9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.

  3. Cholinergic modulation of dopaminergic neurons in the mouse olfactory bulb.

    PubMed

    Pignatelli, Angela; Belluzzi, Ottorino

    2008-04-01

    Considerable evidence exists for an extrinsic cholinergic influence in the maturation and function of the main olfactory bulb. In this study, we addressed the muscarinic modulation of dopaminergic neurons in this structure. We used different patch-clamp techniques to characterize the diverse roles of muscarinic agonists on identified dopaminergic neurons in a transgenic animal model expressing a reporter protein (green fluorescent protein) under the tyrosine hydroxylase promoter. Bath application of acetylcholine (1 mM) in slices and in enzymatically dissociated cells reduced the spontaneous firing of dopaminergic neurons recorded in cell-attached mode. In whole-cell configuration no effect of the agonist was observed, unless using the perforated patch technique, thus suggesting the involvement of a diffusible second messenger. The effect was mediated by metabotropic receptors as it was blocked by atropine and mimicked by the m2 agonist oxotremorine (10 muM). The reduction of periglomerular cell firing by muscarinic activation results from a membrane-potential hyperpolarization caused by activation of a potassium conductance. This modulation of dopaminergic interneurons may be important in the processing of sensory information and may be relevant to understand the mechanisms underlying the olfactory dysfunctions occurring in neurodegenerative diseases affecting the dopaminergic and/or cholinergic systems.

  4. Learning and Memory Impairments in a Congenic C57BL/6 Strain of Mice That Lacks the M2 Muscarinic Acetylcholine Receptor Subtype

    PubMed Central

    Bainbridge, Natalie K.; Koselke, Lisa R.; Jeon, Jongrye; Bailey, Kathleen R.; Wess, Jürgen; Crawley, Jacqueline N.; Wrenn, Craige C.

    2009-01-01

    The neurotransmitter acetylcholine is an important modulator of cognitive functions including attention, learning, and memory. The actions of acetylcholine are mediated by five distinct muscarinic acetylcholine receptor subtypes (M1-M5). The lack of drugs with a high degree of selectivity for these subtypes has impeded the determination of which subtypes mediate which components of cholinergic neurotransmission relevant to cognitive abilities. The present study examined the behavioral functions of the M2 muscarinic receptor subtype by utilizing congenic C57BL/6 mice possessing a null-mutation in the M2 muscarinic receptor gene (M2−/− mice). Comprehensive assessment of general health and neurological function found no major differences between M2−/− and wild-type (M2+/+) mice. In tests of learning and memory, M2−/− mice were impaired in the acquisition (trials to criterion), but not the retention (72 hr) of a passive avoidance task. In a novel open field, M2−/− mice were impaired in between-sessions, but not within-session habituation. In a holeboard test of spatial memory, M2−/− mice committed more errors in working memory than M2+/+ mice. Reference memory did not differ between the genotypes. M2−/− mice showed no impairments in either cued or contextual fear conditioning. These findings replicate and extend earlier findings in a hybrid strain and solidify the interpretation that the M2 receptor plays a critical role in specific components of cognitive abilities. PMID:18346798

  5. Immunocytochemical localization of muscarinic, adrenergic and AT1 receptors.

    PubMed

    Schulze, W; Fu, M L

    1996-01-01

    By indirect immunofluorescence and post-embedding EM gold technique, the localization of alpha 1-adrenergic, M2-muscarinic and angiotensin II receptor-I (AT1) were determinated. With antipeptide antibodies directed against the second extracellular loops of all three receptors, these receptors were found to be localized at the sarcolemma of adult rat cardiomyocytes and at the surface membranes of cultivated neonatal heart cells. Additionally, M2 receptors were localized along T-tubule membranes of both rat and human adult cardiomyocytes. alpha 1-Adrenergic receptors were found intracellular near the surface of atrial granules (ANF-granules). By using M2 and alpha 1-adrenergic receptor antibodies the strongest fluorescence was found in the right atrium of the rat. Besides the localization in cardiomyocytes, AT1 receptors were also localized in outer plasma membranes and the endoplasmic reticulum of fibroblasts, and the surface of smooth muscle cells of the major arteries and veins. Likewise, the muscarinic M2 receptors were found along the outer membranes of endothelial cells from capillaries and endocardium.

  6. Activation of muscarinic cholinergic receptors on human SH-SY5Y neuroblastoma cells enhances both the influx and efflux of K+ under conditions of hypo-osmolarity.

    PubMed

    Foster, Daniel J; Heacock, Anne M; Keep, Richard F; Fisher, Stephen K

    2008-05-01

    The ability of receptor activation to regulate osmosensitive K+ fluxes (monitored as 86Rb+) in SH-SY5Y neuroblastoma has been examined. Incubation of SH-SY5Y cells in buffers rendered increasingly hypotonic by a reduction in NaCl concentration resulted in an enhanced basal efflux of Rb+ (threshold of release, 200 mOsM) but had no effect on Rb(+) influx. Addition of the muscarinic cholinergic agonist, oxotremorine-M (Oxo-M), potently enhanced Rb+ efflux (EC50 = 0.45 microM) and increased the threshold of release to 280 mOsM. Oxo-M elicited a similarly potent, but osmolarity-independent, enhancement of Rb+ influx (EC50 = 1.35 microM). However, when incubated under hypotonic conditions in which osmolarity was varied by the addition of sucrose to a fixed concentration of NaCl, basal- and Oxo-M-stimulated Rb+ influx and efflux were demonstrated to be dependent upon osmolarity. Basal- and Oxo-M-stimulated Rb+ influx (but not Rb+ efflux) were inhibited by inclusion of ouabain or furosemide. Both Rb+ influx and efflux were inhibited by removal of intracellular Ca2+ and inhibition of protein kinase C activity. In addition to Oxo-M, agonists acting at other cell surface receptors previously implicated in organic osmolyte release enhanced both Rb+ efflux and influx under hypotonic conditions. Oxo-M had no effect on cellular K+ concentration in SH-SY5Y cells under physiologically relevant reductions in osmolarity (0-15%) unless K+ influx was blocked. Thus, although receptor activation enhances the osmosensitive efflux of K+, it also stimulates K+ influx, and the latter permits retention of K+ by the cells.

  7. Regional changes in the cholinergic system in mice lacking monoamine oxidase A.

    PubMed

    Grailhe, Régis; Cardona, Ana; Even, Naïla; Seif, Isabelle; Changeux, Jean-Pierre; Cloëz-Tayarani, Isabelle

    2009-03-30

    Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [(3)H]-hemicholinium-3 ([(3)H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [(3)H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [(125)I]-epibatidine ([(125)I]-Epi), [(125)I]-alpha-bungarotoxin ([(125)I]-BGT), [(3)H]-pirenzepine ([(3)H]-PZR), and [(3)H]-AFDX-384 ([(3)H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.

  8. Using cholinergic M1 receptor positive allosteric modulators to improve memory via enhancement of brain cholinergic communication.

    PubMed

    Chambon, Caroline; Jatzke, Claudia; Wegener, Nico; Gravius, Andreas; Danysz, Wojciech

    2012-12-15

    Benzylquinolone carboxylic acid (BQCA) is a recently described cholinergic muscarinic M(1) receptor positive allosteric modulator having potential as cognitive enhancer in dementia. The present study focused on the characterisation of BQCA's mode of action in relation to positive effects on memory and side-effects in an animal model. To get insight into this mode of action, in vitro receptor potency/left shift experiments in cells stably expressing the rat's M(1) receptor were performed. They revealed an inflection point value of BQCA corresponding to 306nM, and potentiation of the agonist response up to 47-fold in presence of 10μM of BQCA. In vivo, brain microdialysis showed a maximal brain level of 270nM, 40min after i.p. administration at 10mg/kg. Based on in vitro data obtained with this dose, it can be concluded that BQCA reaches brain levels which should potentiate the agonist response about 4-fold. Behavioural data confirmed that BQCA used at 10mg/kg attenuated scopolamine-induced memory deficit in a spontaneous alternation task. Moreover, BQCA showed no side effect at 10mg/kg and above in spontaneous locomotion and salivation tests. The profile of BQCA observed in the present study displays a clear advantage over the M(1)-M(3) agonist cevimeline. The present data show the therapeutic potential of the M(1) receptor positive allosteric modulator BQCA for the treatment of memory deficits observed in Alzheimer's disease. Copyright © 2012. Published by Elsevier B.V.

  9. Muscarinic receptor immunoreactivity in the superior salivatory nucleus neurons innervating the salivary glands of the rat.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji

    2011-07-15

    The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.

    PubMed

    Mahboob, Aamra; Farhat, Syeda Mehpara; Iqbal, Ghazala; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Nabavi, Seyed Mohammad; Ahmed, Touqeer

    2016-04-01

    Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Alzheimer's Disease: Targeting the Cholinergic System

    PubMed Central

    Ferreira-Vieira, Talita H.; Guimaraes, Isabella M.; Silva, Flavia R.; Ribeiro, Fabiola M.

    2016-01-01

    Acetylcholine (ACh) has a crucial role in the peripheral and central nervous systems. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing ACh from acetyl-CoA and choline in the cytoplasm and the vesicular acetylcholine transporter (VAChT) uptakes the neurotransmitter into synaptic vesicles. Following depolarization, ACh undergoes exocytosis reaching the synaptic cleft, where it can bind its receptors, including muscarinic and nicotinic receptors. ACh present at the synaptic cleft is promptly hydrolyzed by the enzyme acetylcholinesterase (AChE), forming acetate and choline, which is recycled into the presynaptic nerve terminal by the high-affinity choline transporter (CHT1). Cholinergic neurons located in the basal forebrain, including the neurons that form the nucleus basalis of Meynert, are severely lost in Alzheimer’s disease (AD). AD is the most ordinary cause of dementia affecting 25 million people worldwide. The hallmarks of the disease are the accumulation of neurofibrillary tangles and amyloid plaques. However, there is no real correlation between levels of cortical plaques and AD-related cognitive impairment. Nevertheless, synaptic loss is the principal correlate of disease progression and loss of cholinergic neurons contributes to memory and attention deficits. Thus, drugs that act on the cholinergic system represent a promising option to treat AD patients. PMID:26813123

  12. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-(4-(2-chloroethylmethylamino)-2-butynyl)-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacitymore » for the muscarinic antagonist, (/sup 3/H)N-methylscopolamine ((/sup 3/H)NMS), was noted without a change in affinity. Similar observations were made in (/sup 3/H)1-3-quinuclidinyl benzilate ((/sup 3/H)-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both (/sup 3/H)NMS and (/sup 3/H)-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of (/sup 3/H)-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 ..mu..M. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity.« less

  13. Lithium modulates the muscarinic facilitation of synaptic plasticity and theta-gamma coupling in the hippocampal-prefrontal pathway.

    PubMed

    Ruggiero, Rafael N; Rossignoli, Matheus T; Lopes-Aguiar, Cleiton; Leite, João P; Bueno-Junior, Lezio S; Romcy-Pereira, Rodrigo N

    2018-06-01

    Mood disorders are associated to functional unbalance in mesolimbic and frontal cortical circuits. As a commonly used mood stabilizer, lithium acts through multiple biochemical pathways, including those activated by muscarinic cholinergic receptors crucial for hippocampal-prefrontal communication. Therefore, here we investigated the effects of lithium on prefrontal cortex responses under cholinergic drive. Lithium-treated rats were anesthetized with urethane and implanted with a ventricular cannula for muscarinic activation, a recording electrode in the medial prefrontal cortex (mPFC), and a stimulating electrode in the intermediate hippocampal CA1. Either of two forms of synaptic plasticity, long-term potentiation (LTP) or depression (LTD), were induced during pilocarpine effects, which were monitored in real time through local field potentials. We found that lithium attenuates the muscarinic potentiation of cortical LTP (<20 min) but enhances the muscarinic potentiation of LTD maintenance (>80 min). Moreover, lithium treatment promoted significant cross-frequency coupling between CA1 theta (3-5 Hz) and mPFC low-gamma (30-55 Hz) oscillations. Interestingly, lithium by itself did not affect any of these measures. Thus, lithium pretreatment and muscarinic activation synergistically modulate the hippocampal-prefrontal connectivity. Because these alterations varied with time, oscillatory parameters, and type of synaptic plasticity, our study suggests that lithium influences prefrontal-related circuits through intricate dynamics, informing future experiments on mood disorders. Copyright © 2018. Published by Elsevier Inc.

  14. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  15. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    PubMed

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  16. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.; Cohen, V.I.; Paek, R.

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less

  17. Acetylcholine receptors in the human retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer ofmore » the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.« less

  18. A novel muscarinic receptor-independent mechanism of KCNQ2/3 potassium channel blockade by Oxotremorine-M.

    PubMed

    Zwart, Ruud; Reed, Hannah; Clarke, Sophie; Sher, Emanuele

    2016-11-15

    Inhibition of KCNQ (Kv7) potassium channels by activation of muscarinic acetylcholine receptors has been well established, and the ion currents through these channels have been long known as M-currents. We found that this cross-talk can be reconstituted in Xenopus oocytes by co-transfection of human recombinant muscarinic M1 receptors and KCNQ2/3 potassium channels. Application of the muscarinic acetylcholine receptor agonist Oxotremorine-methiodide (Oxo-M) between voltage pulses to activate KCNQ2/3 channels caused inhibition of the subsequent KCNQ2/3 responses. This effect of Oxo-M was blocked by the muscarinic acetylcholine receptor antagonist atropine. We also found that KCNQ2/3 currents were inhibited when Oxo-M was applied during an ongoing KCNQ2/3 response, an effect that was not blocked by atropine, suggesting that Oxo-M inhibits KCNQ2/3 channels directly. Indeed, also in oocytes that were transfected with only KCNQ2/3 channels, but not with muscarinic M1 receptors, Oxo-M inhibited the KCNQ2/3 response. These results show that besides the usual muscarinic acetylcholine receptor-mediated inhibition, Oxo-M also inhibits KCNQ2/3 channels by a direct mechanism. We subsequently tested xanomeline, which is a chemically distinct muscarinic acetylcholine receptor agonist, and oxotremorine, which is a close analogue of Oxo-M. Both compounds inhibited KCNQ2/3 currents via activation of M1 muscarinic acetylcholine receptors but, in contrast to Oxo-M, they did not directly inhibit KCNQ2/3 channels. Xanomeline and oxotremorine do not contain a positively charged trimethylammonium moiety that is present in Oxo-M, suggesting that such a charged moiety could be a crucial component mediating this newly described direct inhibition of KCNQ2/3 channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmental exposure to methylmercury: an immunohistochemical study in rat.

    PubMed

    Roda, Elisa; Coccini, Teresa; Acerbi, Davide; Castoldi, Anna; Bernocchi, Graziella; Manzo, Luigi

    2008-05-01

    The developing central nervous system (CNS) is a target of the environmental toxicant methylmercury (MeHg), and the cerebellum seems the most susceptible tissue in response to this neurotoxicant. The cholinergic system is essential for brain development, acting as a modulator of neuronal proliferation, migration and differentiation processes; its muscarinic receptors (MRs) play pivotal roles in regulating important basic physiologic functions. By immunohistochemistry, we investigated the effects of perinatal (GD7-PD21) MeHg (0.5 mg/kg bw/day in drinking water) administration on cerebellum of mature (PD36) and immature (PD21) rats, evaluating the: (i) M2- and M3-MR expression; (ii) presence of gliosis; (iii) cytoarchitecture alterations. Regarding to M2-MRs, we showed that: at PD21, MeHg-treated animals did not display any differences compared to controls, while, at PD36 there was a significant increase of M2-immunopositive Bergmann cells in the molecular layer (ML), suggesting a MeHg-related cytotoxic effect. Similarly to M2-MRs, at PD21 the M3-MRs were not affected by MeHg, while, at PD36 a lacking immunoreactivity of the granular layer (IGL) was observed after MeHg treatment. In MeHg-treated rats, at both developmental points, we showed reactive gliosis, e.g. a significant increase in Bergmann glia of the ML and astrocytes of the IGL, identified by their expression of glial fibrillar acidic protein. No MeHg-related effects on Purkinje cells were detected neither at weaning nor at puberty. These findings suggest: (i) a delayed MeHg exposure-related effect on M2- and M3-MRs, (ii) an overt MeHg-related cytotoxic effect on cerebellar oligodendroglia, e.g. reactive gliosis, (iii) a selective vulnerability of granule cells and Purkinje neurons to MeHg, with the latter that remain unharmed.

  20. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  1. Heterologous desensitization of muscarinic receptors by P2Z purinoceptors in rat parotid acinar cells.

    PubMed

    Fukushi, Y

    1999-01-01

    We studied the heterologous desensitization of muscarinic receptors by ATP in fura-2-loaded rat parotid acinar cells. Exposure to ATP or 3'-o-(4-benzoyl) benzoyl-ATP shortened the duration and decreased the magnitude of acetylcholine-induced Ca2+ release from intracellular Ca2+ stores in a dose-dependent manner. The shortening was observed only in an early stage of desensitization (within 20 s), whereas the decrease in the magnitude of the response was dependent upon the time the cells were exposed to the nucleotides. Atropine induced a profound shortening during the progressive decrease in the magnitude of acetylcholine-induced Ca2+ release. 3'-o-(4-Benzoyl) benzoyl-ATP did not induce an increase in the cytosolic Ca2+ concentration when the cells were incubated in the Ca2+- and Na+-free medium, but it did induce a strong desensitization of muscarinic receptors. The specific protein kinase C inhibitor bisindoylmaleimide resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. Phorbol 12-myristate 13-acetate potentiated the desensitization of muscarinic receptors. Ceramides that prevent the activation of phospholipase D resensitized the 3'-o-(4-benzoyl) benzoyl-ATP-treated muscarinic receptors. These results suggest that ATP, acting through P2Z purinoceptor-mediated phospholipase D, may produce a Ca2+-independent protein kinase C. Heterologous desensitization of muscarinic receptors by protein kinase C may shorten the duration and decrease the magnitude of acetylcholine-induced Ca2+ release.

  2. Action of cholinergic poisons on the central nervous system and effectiveness of potential antidotes. Annual report 1 Jul 81-30 Jun 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, F.; Nelson, S.

    The research aim was to determine the effects of soman, related organophosphate toxins and potential antidotes on brain regional functions in rats: The (/sup 14/C)-2-deoxyglucose procedure (2-DG) was used for mapping brain regional glucose use. Quantitative autoradiography was used for muscarinic and nicotinic cholinergic receptors. The 2-DG procedure gives a quantitative measure of glucose utilization in brain regions and is in index of the 'functional activity' in brain regions and systems. Values were determined in controls, rats with soman induced seizures, seizures induced by convulsants (DFP, strychnine, picrotoxin, pentylenetetrazol, penicillin) and soman pretreated with TAB. Brain regional cholinergic receptor mapsmore » were prepared and some regional muscarinic and nicotinic receptor densities have been quantified. Soman (112 micrograms/kg i.m.) causes strong, continuous seizures and a dramatic (2-6 fold) increase in the rate of glucose use in 10 major brain regions. Most intense increases were in septum, substants nigra reticularis and outer layer of hippcampal dendata gyrus. The overt seizures of rats induced by convulsants DFP, strychnine, picrotoxin, pentylenetetrazol and penicillin (in hippocampus) were strikingly different from that of rats with soman seizures. High doses (2X LD50) of soman in rats protected with TAB caused a 50% depression of glucose use in most brain regions. The effects of repeated soman exposure on muscarinic and nicotinic receptors are under study.« less

  3. Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors.

    PubMed

    Disingrini, Teresa; Muth, Mathias; Dallanoce, Clelia; Barocelli, Elisabetta; Bertoni, Simona; Kellershohn, Kerstin; Mohr, Klaus; De Amici, Marco; Holzgrabe, Ulrike

    2006-01-12

    A novel series of muscarinic receptor ligands of the hexamethonio-type was prepared which contained, on one side, the phthalimidopropane or 1,8-naphthalimido-2,2-dimethylpropane moiety typical for subtype selective allosteric antagonists and, on the other, the acetylenic fragment typical for the nonselective orthosteric muscarinic agonists oxotremorine, oxotremorine-M, and related muscarinic agonists. Binding experiments in M(2) receptors using [(3)H]N-methylscopolamine as an orthosteric probe proved an allosteric action of both groups of hybrids, 7a-10a and 8b-10b. The difference in activity between a-group and b-group hybrids corresponded with the activity difference between the allosteric parent compounds. In M(1)-M(3) muscarinic isolated organ preparations, most of the hybrids behaved as subtype selective antagonists. [(35)S]GTPgammaS binding assays using human M(2) receptors overexpressed in CHO cells revealed that a weak intrinsic efficacy was preserved in 8b-10b. Thus, attaching muscarinic allosteric antagonist moieties to orthosteric muscarinic agonists may lead to hybrid compounds in which functions of both components are mixed.

  4. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M sub 2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, A.; Rochlitz, H.; Herz, A.

    The muscarinic receptor system involved in hydrogen production by enriched rat gastric parietal cells was investigated. Muscarinic receptor density determined by (N-methyl-{sup 3}H)scopolamine binding was 8,100/cell. The receptor appeared to be of the M{sub 2} muscarinic receptor subtype, since it had a low affinity (K{sub d} 189 nM) for the M{sub 1} receptor antagonist pirenzepine compared with atropine. Receptor activation by carbachol rapidly augmented levels of polyphosphoinositides, indicating an activation of phospholipase C. The dose-response relations for the increase in inositol phosphates closely paralleled the binding of carbachol to muscarinic receptors. The inositol phosphate response was antagonized by pirenzepine withmore » a K{sub i} of 177 nM. the stimulation of inositol phosphate levels by carbachol correlated well with the stimulation of ({sup 14}C)aminopyrine uptake, determine as an index of acid secretion. The muscarinic agonists oxotremorine, pilocarpine, and bethanechol elicited partial increases in inositol phosphates at maximal drug concentrations, and these partial increases correlated with their ability to stimulate ({sup 14}C)aminopyrine uptake. These data indicate that inositolpolyphosphates may be a second messenger of M{sub 2} receptors stimulating acid secretion.« less

  5. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  6. Muscarinic receptor subtypes involved in carbachol-induced contraction of mouse uterine smooth muscle.

    PubMed

    Kitazawa, Takio; Hirama, Ryuichi; Masunaga, Kozue; Nakamura, Tatsuro; Asakawa, Koichi; Cao, Jinshan; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Wess, Jürgen; Taneike, Tetsuro

    2008-06-01

    Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via

  7. Laminar distribution of cholinergic- and serotonergic-dependent plasticity within kitten visual cortex.

    PubMed

    Kojic, L; Gu, Q; Douglas, R M; Cynader, M S

    2001-02-28

    Both cholinergic and serotonergic modulatory projections to mammalian striate cortex have been demonstrated to be involved in the regulation of postnatal plasticity, and a striking alteration in the number and intracortical distribution of cholinergic and serotonergic receptors takes place during the critical period for cortical plasticity. As well, agonists of cholinergic and serotonergic receptors have been demonstrated to facilitate induction of long-term synaptic plasticity in visual cortical slices supporting their involvement in the control of activity-dependent plasticity. We recorded field potentials from layers 4 and 2/3 in visual cortex slices of 60--80 day old kittens after white matter stimulation, before and after a period of high frequency stimulation (HFS), in the absence or presence of either cholinergic or serotonergic agonists. At these ages, the HFS protocol alone almost never induced long-term changes of synaptic plasticity in either layers 2/3 or 4. In layer 2/3, agonist stimulation of m1 receptors facilitated induction of long-term potentiation (LTP) with HFS stimulation, while the activation of serotonergic receptors had only a modest effect. By contrast, a strong serotonin-dependent LTP facilitation and insignificant muscarinic effects were observed after HFS within layer 4. The results show that receptor-dependent laminar stratification of synaptic modifiability occurs in the cortex at these ages. This plasticity may underly a control system gating the experience-dependent changes of synaptic organization within developing visual cortex.

  8. Airborne fine particulate matter causes murine bronchial hyperreactivity via MAPK pathway-mediated M3 muscarinic receptor upregulation.

    PubMed

    Wang, Rong; Xiao, Xue; Shen, Zhenxing; Cao, Lei; Cao, Yongxiao

    2017-02-01

    Regarding the human health effects, airborne fine particulate matter 2.5 (PM 2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM 2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM 2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M 3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM 2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M 3 muscarinic receptors in bronchi of PM 2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM 2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM 2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM 2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017. © 2016 Wiley Periodicals, Inc.

  9. Cholinergic innervation of human mesenteric lymphatic vessels.

    PubMed

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  10. The cholinergic anti-inflammatory pathway: An innovative treatment strategy for neurological diseases.

    PubMed

    Han, Bin; Li, Xiuping; Hao, Junwei

    2017-06-01

    Acetylcholine (ACh), as a classical neurotransmitter, regulates the neuronal network in response to internal and external stimuli. In recent decades, the biology of ACh has been endowed with unparalleled new insights, especially with respect to cholinergic anti-inflammatory properties in non-neuronal cells. In fact, a mechanism frequently referred to as the "cholinergic anti-inflammatory pathway" has been termed to describe interactions between the central nervous system (CNS) and the immune system via vagus nerve. As well documented, immune cells express choline acetyltransferase, a direct synthetase for ACh, and other corresponding cholinergic components. Alternatively, the ACh released from immune cells or cholinergic neurons modulates immune function in an autocrine/paracrine manner by acting on its receptors. Moreover, muscarinic or nicotinic ACh receptors on various immune cells and CNS glial cells administer the work of their respective agonists, causing functional and biochemical changes. In this review, we focus on the anti-inflammatory benefits of non-neuronal and neuronal ACh as a means of providing new insights into treating inflammation-related neurological diseases, as exemplified by those described herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  12. Effects of neonatal handling on the basal forebrain cholinergic system of adult male and female rats.

    PubMed

    Pondiki, S; Stamatakis, A; Fragkouli, A; Philippidis, H; Stylianopoulou, F

    2006-10-13

    Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.

  13. Characterization of the novel positive allosteric modulator, LY2119620, at the muscarinic M(2) and M(4) receptors.

    PubMed

    Croy, Carrie H; Schober, Douglas A; Xiao, Hongling; Quets, Anne; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    The M(4) receptor is a compelling therapeutic target, as this receptor modulates neural circuits dysregulated in schizophrenia, and there is clinical evidence that muscarinic agonists possess both antipsychotic and procognitive efficacy. Recent efforts have shifted toward allosteric ligands to maximize receptor selectivity and manipulate endogenous cholinergic and dopaminergic signaling. In this study, we present the pharmacological characterization of LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy] thieno[2,3-b]pyridine-2-carboxamide), a M(2)/M(4) receptor-selective positive allosteric modulator (PAM), chemically evolved from hits identified through a M4 allosteric functional screen. Although unsuitable as a therapeutic due to M(2) receptor cross-reactivity and, thus, potential cardiovascular liability, LY2119620 surpassed previous congeners in potency and PAM activity and broadens research capabilities through its development into a radiotracer. Characterization of LY2119620 revealed evidence of probe dependence in both binding and functional assays. Guanosine 5'-[γ-(35)S]-triphosphate assays displayed differential potentiation depending on the orthosteric-allosteric pairing, with the largest cooperativity observed for oxotremorine M (Oxo-M) LY2119620. Further [(3)H]Oxo-M saturation binding, including studies with guanosine-5'-[(β,γ)-imido]triphosphate, suggests that both the orthosteric and allosteric ligands can alter the population of receptors in the active G protein-coupled state. Additionally, this work expands the characterization of the orthosteric agonist, iperoxo, at the M(4) receptor, and demonstrates that an allosteric ligand can positively modulate the binding and functional efficacy of this high efficacy ligand. Ultimately, it was the M(2) receptor pharmacology and PAM activity with iperoxo that made LY2119620 the most suitable allosteric partner for the M(2) active-state structure recently solved

  14. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinicallymore » induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.« less

  15. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  16. Memory Enhancement Induced by Post-Training Intrabasolateral Amygdala Infusions of [beta]-Adrenergic or Muscarinic Agonists Requires Activation of Dopamine Receptors: Involvement of Right, but Not Left, Basolateral Amygdala

    ERIC Educational Resources Information Center

    LaLumiere, Ryan T.; McGaugh, James L.

    2005-01-01

    Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation…

  17. Regulation of Neuronal Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1989-01-01

    N1E - 115 cells with pertussis toxin blocks mAChR-mediated inhibition of adenylate cyclase but not mAChR-mediated stimulation of PI turnover...determine the effects of electrical depolarization on muscarinic acetylcholine receptors (mAChR) in the cultured neuroblastoma cell line, N E- 115 ...evidence that Gi and Go may differentially regulate cellular signaling mechanisms, these results suggest that depolarization may regulate specific

  18. Effects of systemic cholinergic antagonism on reinforcer devaluation in macaques.

    PubMed

    Waguespack, Hannah F; Málková, Ludise; Forcelli, Patrick A; Turchi, Janita

    2018-06-21

    The capacity to adjust actions based on new information is a vital cognitive function. An animal's ability to adapt behavioral responses according to changes in reward value can be measured using a reinforcer devaluation task, wherein the desirability of a given object is reduced by decreasing the value of the associated food reinforcement. Elements of the neural circuits serving this ability have been studied in both rodents and nonhuman primates. Specifically, the basolateral amygdala, orbitofrontal cortex, nucleus accumbens, and mediodorsal thalamus have each been shown to play a critical role in the process of value updating, required for adaptive goal selection. As these regions receive dense cholinergic input, we investigated whether systemic injections of non-selective nicotinic or muscarinic acetylcholine receptor antagonists, mecamylamine and scopolamine, respectively, would impair performance on a reinforcer devaluation task. Here we demonstrate that in the presence of either a nicotinic or muscarinic antagonist, animals are able to shift their behavioral responses in an appropriate manner, suggesting that disruption of cholinergic neuromodulation is not sufficient to disrupt value updating, and subsequent goal selection, in rhesus macaques. Published by Elsevier B.V.

  19. A specific multi-nutrient formulation enhances M1 muscarinic acetylcholine receptor responses in vitro.

    PubMed

    Savelkoul, Paul J M; Janickova, Helena; Kuipers, Almar A M; Hageman, Robert J J; Kamphuis, Patrick J; Dolezal, Vladimir; Broersen, Laus M

    2012-02-01

    Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn™ Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn™ Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific

  20. Bright light does not alter muscarinic receptor binding parameters.

    PubMed

    Giroux, M L; Malatynska, E; Dilsaver, S C

    1991-03-01

    Seasonal Affective Disorders (SADs) are disorders of mood characterized by recurrent episodes of illness with a fixed relationship to season. Winter depression is characterized by recurrent onset of depression in the fall or winter followed by spontaneous recovery in the spring. This syndrome is responsive to treatment with bright light. The pathophysiology of depressive disorders may involve central muscarinic mechanisms. This possibility led to a series of physiological studies. The authors now report that contrary to expectation, treatment with bright light did not decrease the density of muscarinic receptors in either the hypothalamus or striatum.

  1. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  2. Detection of muscarinic receptors in the human lung using PET.

    PubMed

    Visser, T J; van Waarde, A; van der Mark, T W; Kraan, J; Ensing, K; Willemsen, A T; Elsinga, P H; Vaalburg, W

    1999-08-01

    The characterization of pulmonary muscarinic receptors with PET is still in its infancy. Because approximately 70% of the lungs consists of air and pulmonary muscarinic receptor densities are low, ligands with high receptor affinity are required to obtain reasonable signal-to-noise ratios on PET images. Therefore, the potent 11C-labeled muscarinic antagonist N-methyl-piperidin-4-yl 2-cyclohexyl-2-hydroxy-2-phenylacetate methiodide ([R]-VC-002) was developed. We administered this radioligand to four healthy human volunteers to examine its suitability for studying pulmonary muscarinic receptors in vivo. [11C]VC-002 (185 MBq, specific activity > 7.4 TBq/mmol) was intravenously injected on 2 separate days, with an interval of at least 1 wk. On the first day the volunteers were not pretreated, but on the second day they received the anticholinergic glycopyrronium bromide (Robinul; 2 x 0.1 mg intravenous) 25 and 30 min before the injection of the radiopharmaceutical. C[15O]O scans (approximately 740 MBq [20 mCi] by inhalation) were acquired before the receptor scan to calculate pulmonary blood volume. On PET images of the thorax, the lungs were clearly visible. After the volunteer was pretreated with glycopyrronium bromide, pulmonary uptake of the radioligand was reduced to 32%+/-12% of the control value at 60 min postinjection and the lungs could no longer be seen. (R)-[11C]-VC-002 was rapidly cleared from plasma and was slowly metabolized during the time course (60 min) of the PET scan. The fraction of radioligand representing parent compound decreased from 99.9% at the time of injection to 82% at 40-60 min postinjection, both in the presence and absence of Robinul. Pulmonary tissue-to-plasma ratios, calculated on a count-per-minute-per-gram basis, reached a plateau value of 17.8+/-1.2 at 40-50 min postinjection. [11C]VC-002 appears to be suitable for in vivo studies of pulmonary cholinoceptors.

  3. Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning.

    PubMed

    Pang, Min-Hee; Kim, Nam-Soo; Kim, Il-Hwan; Kim, Hyun; Kim, Hyun-Taek; Choi, June-Seek

    2010-09-01

    Although cholinergic mechanisms have been widely implicated in learning and memory processes, few studies have investigated the specific contribution of hippocampal cholinergic transmission during trace fear conditioning, a form of associative learning involving a temporal gap between two stimuli. Microinfusions of scopolamine, a muscarinic receptor antagonist, into the dorsal hippocampus (DH) produced dose-dependent impairment in the acquisition and expression of a conditioned response (CR) following trace fear conditioning with a tone conditioned stimulus (CS) and a footshock unconditioned stimulus (US) in rats. The same infusions, however, had no effect on delay conditioning, general activity, pain sensitivity or attentional modulation. Moreover, scopolamine infusions attenuated phosphorylation of extracellular signal-regulated kinase (ERK) in the amygdala, indicating that cholinergic signals in the DH are important for trace fear conditioning. Taken together, the current study provides evidence that cholinergic neurotransmission in the DH is essential for the cellular processing of CS-US association in the amygdala when the two stimuli are temporally disconnected. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Influence of urothelial or suburothelial cholinergic receptors on bladder reflexes in chronic spinal cord injured cats.

    PubMed

    Ungerer, Timothy D; Kim, Kyoungeun A; Daugherty, Stephanie L; Roppolo, James R; Tai, Changfeng; de Groat, William C

    2016-11-01

    The effects of intravesical administration of a muscarinic receptor agonist (oxotremorine-M, OXO-M) and antagonist (atropine methyl nitrate, AMN) and of a nicotinic receptor agonist (nicotine) and antagonist (hexamethonium, C 6 ) on reflex bladder activity were investigated in conscious female chronic spinal cord injured (SCI) cats using cystometry. OXO-M (50μM) decreased bladder capacity (BC) for triggering micturition contractions, increased maximal micturition pressure (MMP), increased frequency and area under the curve of pre-micturition contractions (PMC-AUC). Nicotine (250μM) decreased BC, increased MMP, but did not alter PMC-AUC. The effects of OXO-M on BC and PMC-AUC were suppressed by intravesical administration of AMN (50-100μM), and the effects of nicotine were blocked by hexamethonium (1mM). Antagonists infused intravesically alone did not alter reflex bladder activity. However, AMN (0.2mg/kg, subcutaneously) decreased PMC-AUC. 8-OH-DPAT (0.5mg/kg, s.c.), a 5-HT 1A receptor agonist, suppressed the OXO-M-induced decrease in BC but not the enhancement of PMC-AUC. These results indicate that activation of cholinergic receptors located near the lumenal surface of the bladder modulates two types of reflex bladder activity (i.e., micturition and pre-micturition contractions). The effects may be mediated by activation of receptors on suburothelial afferent nerves or receptors on urothelial cells which release transmitters that can in turn alter afferent excitability. The selective action of nicotine on BC, while OXO-M affects both BC and PMC-AUC, suggests that micturition reflexes and PMCs are activated by different populations of afferent nerves. The selective suppression of the OXO-M effect on BC by 8-OH-DPAT without altering the effect on PMCs supports this hypothesis. The failure of intravesical administration of either AMN or hexamethonium alone to alter bladder activity indicates that cholinergic receptors located near the lumenal surface do not

  5. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain

    PubMed Central

    Ismail, Nyla; Robinson, Gene E.; Fahrbach, Susan E.

    2006-01-01

    Honey bees begin life working in the hive. At ≈3 weeks of age, they shift to visiting flowers to forage for pollen and nectar. Foraging is a complex task associated with enlargement of the mushroom bodies, a brain region important in insects for certain forms of learning and memory. We report here that foraging bees had a larger volume of mushroom body neuropil than did age-matched bees confined to the hive. This result indicates that direct experience of the world outside the hive causes mushroom body neuropil growth in bees. We also show that oral treatment of caged bees with pilocarpine, a muscarinic agonist, induced an increase in the volume of the neuropil similar to that seen after a week of foraging experience. Effects of pilocarpine were blocked by scopolamine, a muscarinic antagonist. Our results suggest that signaling in cholinergic pathways couples experience to structural brain plasticity. PMID:16373504

  6. Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets.

    PubMed

    Miranda, Rosiane A; Agostinho, Aryane R; Trevenzoli, Isis H; Barella, Luiz F; Franco, Claudinéia C S; Trombini, Amanda B; Malta, Ananda; Gravena, Clarice; Torrezan, Rosana; Mathias, Paulo C F; de Oliveira, Júlio C

    2014-01-01

    Impaired pancreatic beta cell function and insulin secretion/action are a link between obesity and type 2 diabetes, which are worldwide public health burdens. We aimed to characterize the muscarinic acetylcholine receptor (mAChR) M1-M4 subtypes in isolated pancreatic islets from pre-diabetic obese rats that had been treated neonatally with monosodium L-glutamate (MSG). At 90 days of age, both the MSG and the control groups underwent biometric and biochemical evaluation. Anti-muscarinic drugs were used to study mAChR function either in vivo or in vitro. The results demonstrated that atropine treatment reduced insulin secretion in the MSG-treated and control groups, whereas treatment with an M2mAChR-selective antagonist increased secretion. Moreover, the insulinostatic effect of an M3mAChR-selective antagonist was significantly higher in the MSG-treated group. M1mAChR and M3mAChR expression was increased in the MSG-obese group by 55% and 73%, respectively. In contrast, M2mAChR expression decreased by 25% in the MSG group, whereas M4mAChR expression was unchanged. Functional changes in and altered content of the mAChR (M1-M4) subtypes are pivotal to the demand for high pancreatic beta cell insulin secretion in MSG-obese rats, which is directly associated with vagal hyperactivity and peripheral insulin resistance. © 2014 S. Karger AG, Basel.

  7. Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists

    PubMed Central

    Akk, Gustav; Auerbach, Anthony

    1999-01-01

    The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)carbamylcholine (5.1)>oxotremorine M (0.6)>nicotine (0.5)>muscarine (0.15).Rat neuronal α4β2 nAChR can be activated by all of the agonists. However, detailed kinetic analysis was impossible because the recordings lacked clusters representing the activity of a single receptor complex. Thus, the number of channels in the patch was unknown and the activation rate constants could not be determined.Considering both receptor affinity and agonist efficacy, muscarine and oxotremorine are significant agonists of muscle-type nAChR. The results are discussed in terms of structure-function relationships at the nAChR transmitter binding site. PMID:10602325

  8. Muscarinic regulation of Kenyon cell dendritic arborizations in adult worker honey bees

    PubMed Central

    Dobrin, Scott E.; Herlihy, J. Daniel; Robinson, Gene E.; Fahrbach, Susan E.

    2011-01-01

    The experience of foraging under natural conditions increases the volume of mushroom body neuropil in worker honey bees. A comparable increase in neuropil volume results from treatment of worker honey bees with pilocarpine, an agonist for muscarinic-type cholinergic receptors. A component of the neuropil growth induced by foraging experience is growth of dendrites in the collar region of the calyces. We show here, via analysis of Golgi-impregnated collar Kenyon cells with wedge arborizations, that significant increases in standard measures of dendritic complexity were also found in worker honey bees treated with pilocarpine. This result suggests that signaling via muscarinic-type receptors promotes the increase in Kenyon cell dendritic complexity associated with foraging. Treatment of worker honey bees with scopolamine, a muscarinic inhibitor, inhibited some aspects of dendritic growth. Spine density on the Kenyon cell dendrites varied with sampling location, with the distal portion of the dendritic field having greater total spine density than either the proximal or medial section. This observation may be functionally significant because of the stratified organization of projections from visual centers to the dendritic arborizations of the collar Kenyon cells. Pilocarpine treatment had no effect on the distribution of spines on dendrites of the collar Kenyon cells. PMID:21262388

  9. Muscarinic receptors acting at pre- and post-synaptic sites differentially regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons.

    PubMed

    Kuroiwa, Mahomi; Hamada, Miho; Hieda, Eriko; Shuto, Takahide; Sotogaku, Naoki; Flajolet, Marc; Snyder, Gretchen L; Hendrick, Joseph P; Fienberg, Allen; Nishi, Akinori

    2012-12-01

    Muscarinic receptors, activated by acetylcholine, play critical roles in the functional regulation of medium spiny neurons in the striatum. However, the muscarinic receptor signaling pathways are not fully elucidated due to their complexity. In this study, we investigated the function of muscarinic receptors in the striatum by monitoring DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa) phosphorylation at Thr34 (the PKA-site) using mouse striatal slices. Treatment of slices with a non-selective muscarinic receptor agonist, oxotremorine (10 μM), rapidly and transiently increased DARPP-32 phosphorylation. The increase in DARPP-32 phosphorylation was completely abolished either by a dopamine D(1) receptor antagonist (SCH23390), tetrodotoxin, genetic deletion of M5 receptors, muscarinic toxins for M1 and M4 receptors, or 6-hydroxydopamine lesioning of dopaminergic neurons, whereas it was enhanced by nicotine. Analysis in D(1)-DARPP-32-Flag/D(2)-DARPP-32-Myc transgenic mice revealed that oxotremorine increases DARPP-32 phosphorylation selectively in D(1)-type/striatonigral, but not in D(2)-type/striatopallidal, neurons. When D(1) and D(2) receptors were blocked by selective antagonists to exclude the effects of released dopamine, oxotremorine increased DARPP-32 Thr34 phosphorylation only in D(2)-type/striatopallidal neurons. This increase required activation of M1 receptors and was dependent upon adenosine A(2A) receptor activity. The results demonstrate that muscarinic receptors, especially M5 receptors, act at presynaptic dopaminergic terminals, regulate the release of dopamine in cooperation with nicotinic receptors, and activate D(1) receptor/DARPP-32 signaling in the striatonigral neurons. Muscarinic M1 receptors expressed in striatopallidal neurons interact with adenosine A(2A) receptors and activate DARPP-32 signaling. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse.

    PubMed

    Yang, C; Brown, R E

    2014-01-31

    Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons play an important role in feeding, mood control and stress responses. One important feature of their activity across the sleep-wake cycle is their reduced firing during rapid-eye-movement (REM) sleep which stands in stark contrast to the wake/REM-on discharge pattern of brainstem cholinergic neurons. A prominent model of REM sleep control posits a reciprocal interaction between these cell groups. 5-HT inhibits cholinergic neurons, and activation of nicotinic receptors can excite DRN 5-HT neurons but the cholinergic effect on inhibitory inputs is incompletely understood. Here, in vitro, in DRN brain slices prepared from GAD67-GFP knock-in mice, a brief (3 min) bath application of carbachol (50 μM) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in GFP-negative, putative 5-HT neurons but did not affect miniature (tetrodotoxin-insensitive) IPSCs. Carbachol had no direct postsynaptic effect. Thus, carbachol likely increases the activity of local GABAergic neurons which synapse on 5-HT neurons. Removal of dorsal regions of the slice including the ventrolateral periaqueductal gray (vlPAG) region where GABAergic neurons projecting to the DRN have been identified, abolished the effect of carbachol on sIPSCs whereas the removal of ventral regions containing the oral region of the pontine reticular nucleus (PnO) did not. In addition, carbachol directly excited GFP-positive, GABAergic vlPAG neurons. Antagonism of both muscarinic and nicotinic receptors completely abolished the effects of carbachol. We suggest cholinergic neurons inhibit DRN 5-HT neurons when acetylcholine levels are lower i.e. during quiet wakefulness and the beginning of REM sleep periods, in part via excitation of muscarinic and nicotinic receptors located on local vlPAG and DRN GABAergic neurons. Higher firing rates or burst firing of cholinergic neurons associated with attentive wakefulness or phasic REM sleep periods

  11. The Cholinergic Agonist Carbachol Increases the Frequency of Spontaneous GABAergic Synaptic Currents in Dorsal Raphe Serotonergic Neurons in the Mouse

    PubMed Central

    Yang, Chun; Brown, Ritchie E.

    2013-01-01

    Dorsal raphe nucleus (DRN) serotonin (5-HT) neurons play an important role in feeding, mood control and stress responses. One important feature of their activity across the sleep-wake cycle is their reduced firing during rapid-eye-movement (REM) sleep which stands in stark contrast to the wake/REM-on discharge pattern of brainstem cholinergic neurons. A prominent model of REM sleep control posits a reciprocal interaction between these cell groups. 5-HT inhibits cholinergic neurons, and activation of nicotinic receptors can excite DRN 5-HT neurons but the cholinergic effect on inhibitory inputs is incompletely understood. Here, in vitro, in DRN brain slices prepared from GAD67-GFP knock-in mice, a brief (3 min) bath application of carbachol (50 μM) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in GFP-negative, putative serotonin neurons but did not affect miniature (tetrodotoxin-insensitive) IPSCs. Carbachol had no direct postsynaptic effect. Thus, carbachol likely increases the activity of local GABAergic neurons which synapse on 5-HT neurons. Removal of dorsal regions of the slice including the ventrolateral periaqueductal gray (vlPAG) region where GABAergic neurons projecting to the DRN have been identified, abolished the effect of carbachol on sIPSCs whereas removal of ventral regions containing the oral region of the pontine reticular nucleus (PnO) did not. In addition, carbachol directly excited GFP-positive, GABAergic vlPAG neurons. Antagonism of both muscarinic and nicotinic receptors completely abolished the effects of carbachol. We suggest cholinergic neurons inhibit DRN 5-HT neurons when acetylcholine levels are lower i.e. during quiet wakefulness and the beginning of REM sleep periods, in part via excitation of muscarinic and nicotinic receptors located on local vlPAG and DRN GABAergic neurons. Higher firing rates or burst firing of cholinergic neurons associated with attentive wakefulness or phasic REM sleep periods

  12. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras.

    PubMed

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly 'layered' with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice.

  13. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras

    PubMed Central

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C.; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W.

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras -/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras -/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras -/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras -/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras -/- males were increased, and Mras -/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras -/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  14. [The extraneuronal cholinergic system of the skin. Basic facts and clinical relevance].

    PubMed

    Kurzen, H

    2004-05-01

    Acetylcholine (ACh) is a prototypical neurotransmitter that has recently been recognized to occur extraneuronally in a large variety of cells. ACh and its nicotinic and muscarinic receptors are produced in the epidermis and in the adnexal structures of the skin in a highly complicated pattern. They are also produced in melanocytes, fibroblasts, endothelial cells and immune cells. Through autocrine, paracrine and endocrine mechanisms, the cholinergic system is involved in the basic functions of the skin, such as keratinocyte differentiation, epidermal barrier formation, sweating, sebum production, blood circulation, angiogenesis and a variety of immune reactions. Hence diseases like acne vulgaris, vitiligo, psoriasis, pemphigus vulgaris and atopic dermatitis may be influenced. The exploration of the extraneuronal cholinergic system of the skin has only just begun.

  15. The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease☆

    PubMed Central

    Dale, Philippa R; Cernecka, Hana; Schmidt, Martina; Dowling, Mark R; Charlton, Steven J; Pieper, Michael P; Michel, Martin C

    2014-01-01

    Muscarinic receptor antagonists and β-adrenoceptor agonists are used in the treatment of obstructive airway disease and overactive bladder syndrome. Here we review the pharmacological rationale for their combination. Muscarinic receptors and β-adrenoceptors are physiological antagonists for smooth muscle tone in airways and bladder. Muscarinic agonism may attenuate β-adrenoceptor-mediated relaxation more than other contractile stimuli. Chronic treatment with one drug class may regulate expression of the target receptor but also that of the opposing receptor. Prejunctional β2-adrenoceptors can enhance neuronal acetylcholine release. Moreover, at least in the airways, muscarinic receptors and β-adrenoceptors are expressed in different locations, indicating that only a combined modulation of both systems may cause dilatation along the entire bronchial tree. While all of these factors contribute to a rationale for a combination of muscarinic receptor antagonists and β-adrenoceptor agonists, the full value of such combination as compared to monotherapy can only be determined in clinical studies. PMID:24682092

  16. Autoantibodies against Muscarinic Receptors in Breast Cancer: Their Role in Tumor Angiogenesis

    PubMed Central

    Lombardi, María Gabriela; Negroni, María Pía; Pelegrina, Laura Tatiana; Castro, María Ester; Fiszman, Gabriel L.; Azar, María Eugenia; Morgado, Carlos Cresta; Sales, María Elena

    2013-01-01

    The presence of autoantibodies in cancer has become relevant in recent years. We demonstrated that autoantibodies purified from the sera of breast cancer patients activate muscarinic acetylcholine receptors in tumor cells. Immunoglobulin G (IgG) from breast cancer patients in T1N0Mx stage (tumor size≤2 cm, without lymph node metastasis) mimics the action of the muscarinic agonist carbachol stimulating MCF-7 cell proliferation, migration and invasion. Angiogenesis is a central step in tumor progression because it promotes tumor invasion and metastatic spread. Vascular endothelial growth factor-A (VEGF-A) is the main angiogenic mediator, and its levels have been correlated with poor prognosis in cancer. The aim of the present work was to investigate the effect of T1N0Mx-IgG on the expression of VEGF-A, and the in vivo neovascular response triggered by MCF-7 cells, via muscarinic receptor activation. We demonstrated that T1N0Mx-IgG (10−8 M) and carbachol (10−9 M) increased the constitutive expression of VEGF-A in tumor cells, effect that was reverted by the muscarinic antagonist atropine. We also observed that T1N0Mx-IgG and carbachol enhanced the neovascular response produced by MCF-7 cells in the skin of NUDE mice. The action of IgG or carbachol was reduced in the presence of atropine. In conclusion, T1N0Mx-IgG and carbachol may promote VEGF-A production and neovascularization induced by breast tumor cells via muscarinic receptors activation. These effects may be accelerating breast tumor progression. PMID:23460876

  17. Cholinergic Modulation of Visual Attention and Working Memory: Dissociable Effects of Basal Forebrain 192-IgG-Saporin Lesions and Intraprefrontal Infusions of Scopolamine

    ERIC Educational Resources Information Center

    Chudasama, Yogita; Dalley, Jeffrey W.; Nathwani, Falgyni; Bouger, Pascale; Robbins, Trevor W.

    2004-01-01

    Two experiments examined the effects of reductions in cortical cholinergic function on performance of a novel task that allowed for the simultaneous assessment of attention to a visual stimulus and memory for that stimulus over a variable delay within the same test session. In the first experiment, infusions of the muscarinic receptor antagonist…

  18. Cardiopulmonary Arrest and Resuscitation Disrupts Cholinergic Anti-Inflammatory Processes: A Role for Cholinergic α7 Nicotinic Receptors

    PubMed Central

    Morris, John S.; Karelina, Kate; Weil, Zachary M.; Zhang, Ning; Al-Abed, Yousef; Brothers, Holly M.; Wenk, Gary L.; Pavlov, Valentin A.; Tracey, Kevin J.; DeVries, A. Courtney

    2011-01-01

    Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1β, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame. PMID:21368056

  19. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  20. Muscarinic Receptor Activation Protects Cells from Apoptotic Effects of DNA Damage, Oxidative Stress, and Mitochondrial Inhibition*

    PubMed Central

    De Sarno, Patrizia; Shestopal, Svetlana A.; King, Taj D.; Zmijewska, Anna; Song, Ling; Jope, Richard S.

    2006-01-01

    The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50–200 μm H2O2 caused the activation of caspase-3 beginning after 2–3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H2O2-inducedcaspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H2O2 or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate

  1. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors.

    PubMed

    Ahumada, Juan; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington; Fuenzalida, Marco

    2013-12-01

    The precise timing of pre-postsynaptic activity is vital for the induction of long-term potentiation (LTP) or depression (LTD) at many central synapses. We show in synapses of rat CA1 pyramidal neurons in vitro that spike timing dependent plasticity (STDP) protocols that induce LTP at glutamatergic synapses can evoke LTD of inhibitory postsynaptic currents or STDP-iLTD. The STDP-iLTD requires a postsynaptic Ca(2+) increase, a release of endocannabinoids (eCBs), the activation of type-1 endocananabinoid receptors and presynaptic muscarinic receptors that mediate a decreased probability of GABA release. In contrast, the STDP-iLTD is independent of the activation of nicotinic receptors, GABAB Rs and G protein-coupled postsynaptic receptors at pyramidal neurons. We determine that the downregulation of presynaptic Cyclic adenosine monophosphate/protein Kinase A pathways is essential for the induction of STDP-iLTD. These results suggest a novel mechanism by which the activation of cholinergic neurons and retrograde signaling by eCBs can modulate the efficacy of GABAergic synaptic transmission in ways that may contribute to information processing and storage in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  2. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain.

    PubMed

    Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid

    2017-01-01

    Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which

  3. Comparison of (/sup 3/H)pirenzepine and (/sup 3/H)quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    The properties of (/sup 3/H)quinuclidinylbenzilate ( (/sup 3/H)QNB) binding and (/sup 3/H)pirenzepine ( (/sup 3/H)PZ) binding to various regions of rat brain were compared. (/sup 3/H)PZ appeared to bind with high affinity to a single site, with a Kd value of approximately 15 nM in the cerebral cortex. The rank order of potencies of muscarinic drugs to inhibit binding of either (/sup 3/H)QNB or (/sup 3/H)PZ was QNB greater than atropine . scopolamine greater than pirenzepine greater than oxotremorine greater than bethanechol. Muscarinic antagonists (except PZ) inhibited both (/sup 3/H)PZ and (/sup 3/H)QNB binding with Hill coefficients of approximately 1.more » PZ inhibited (/sup 3/H)QNB binding in cortex with a Hill coefficient of 0.7, but inhibited (/sup 3/H)PZ binding with a Hill coefficient of 1.0. Hill coefficients for agonists were less than 1. The density of (/sup 3/H)PZ binding sites was approximately half the density of (/sup 3/H)QNB binding sites in cortex, striatum and hippocampus. In pons-medulla and cerebellum, the densities of (/sup 3/H)PZ binding sites were 20 and 0%, respectively, relative to the densities of (/sup 3/H)QNB binding sites. When unlabeled PZ was used to compete for (/sup 3/H)QNB binding, the relative number of high-affinity PZ binding sites in cortex, pons and cerebellum agreed with the relative number of (/sup 3/H)PZ binding sites in those regions. The binding of (/sup 3/H)PZ and (/sup 3/H)QNB was nonadditive in cortex. GTP inhibited high-affinity oxotremorine binding, but not PZ binding. Together, these data suggest that (/sup 3/H)PZ binds to a subset of (/sup 3/H)QNB binding sites. Whether this subset reflects the existence of subtypes of muscarinic receptors or is a consequence of coupling to another membrane protein remains to be seen.« less

  4. Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices

    PubMed Central

    Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin

    2013-01-01

    The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462

  5. Central cholinergic regulation of respiration: nicotinic receptors

    PubMed Central

    Shao, Xuesi M; Feldman, Jack L

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of α4* nAChRs in the preBötzinger Complex (preBötC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBötC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic α4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS. PMID:19498418

  6. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    PubMed Central

    Bali, Zsolt K.; Nagy, Lili V.; Hernádi, István

    2017-01-01

    The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA) and acetylcholine (ACh). Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA) to assess the contribution of muscarinic ACh receptor (mAChR) or α7 nicotinic ACh receptor (nAChR) receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline. PMID:28928637

  7. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  8. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  9. M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: Findings obtained with muscarinic-receptor knockout mouse.

    PubMed

    Takeuchi, Tadayoshi; Tanaka, Keisuke; Nakajima, Hidemitsu; Matsui, Minoru; Azuma, Yasu-Taka

    2007-01-01

    The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.

  10. Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes.

    PubMed

    Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo

    2007-12-15

    A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.

  11. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    PubMed

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  12. Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque

    PubMed Central

    Disney, Anita A; Alasady, Hussein A; Reynolds, John H

    2014-01-01

    Background In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. Aims The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. Materials and methods We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. Results and conclusion We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals. PMID:24944872

  13. Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque.

    PubMed

    Disney, Anita A; Alasady, Hussein A; Reynolds, John H

    2014-05-01

    In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals.

  14. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  15. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Sun, Bingfa; Feng, Dan

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  16. Cholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches

    PubMed Central

    Jordan, Larry M.; McVagh, J. R.; Noga, B. R.; Cabaj, A. M.; Majczyński, H.; Sławińska, Urszula; Provencher, J.; Leblond, H.; Rossignol, Serge

    2014-01-01

    Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our

  17. Competition between calcium-activated K+ channels determines cholinergic action on firing properties of basolateral amygdala projection neurons.

    PubMed

    Power, John M; Sah, Pankaj

    2008-03-19

    Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.

  18. Cholinergic Receptor Substrates of Neuronal Plasticity and Learning

    DTIC Science & Technology

    1992-01-29

    cortical binding of 3H- oxotremorine (OXO), a ligand having high affinity for M2 muscarinic receptors, are described in a manuscript by Vogt, Gabriel...of 1H Oxotremorine co-incubated with Pirenzepine (OXO-M/PZ) throughout the course of training in three thalamic nudei. -L As in the case of training

  19. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  20. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    PubMed

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  1. Desensitization and Down Regulation of Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1988-06-22

    function, in vitro. This technique offers an easy method to obtain intact differentiated brain cells with minimal diffusion barriers. Preincubation of...neuroblastoma cells (clone NIE- 115 ). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one...mouse neuroblastoma NlE- 115 cells, and in other tissues, mediated an increase in phosphoinositide hydrolysis. Diacylglycerol is one of the important

  2. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    PubMed

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Colonic inflammation increases the contribution of muscarinic M2 receptors to carbachol-induced contraction of the rat colon.

    PubMed

    Jragh, Dina M; Khan, Islam; Oriowo, Mabayoje A

    2011-01-01

    Carbachol-induced contraction of the rat colon is impaired in rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. The main objective of this study was to examine the effect of colitis on the expression and function of muscarinic (M) receptor subtypes in the rat colon. Rats (n = 80) were treated with TNBS and used 5 days later for measurement of contractility, myeloperoxidase activity, histology and expression of muscarinic receptor isoforms using Western blot analysis. Carbachol produced concentration-dependent contractions of colonic segments from control (n = 40) and TNBS-treated (n = 40) rats with no significant difference in potency. However, the maximum response to carbachol was significantly reduced in colon segments of TNBS-treated rats. The selective muscarinic receptor antagonists 4-diphenylacetoxy-N-methyl piperidine (4-DAMP, M(3)), pirenzepine (M(1)) and methoctramine (M(2)) antagonized carbachol-induced contraction in control (9.1 ± 0.1, 6.7 ± 0.3 and 6.0 ± 0.1, respectively) and TNBS-treated rats (9.2 ± 0.2, 6.9 ± 0.2, 6.7 ± 0.2). The -logK(B) values in control rats are consistent with an action of carbachol on muscarinic M(3) receptors. There was no significant difference in -logK(B) values for 4-DAMP and pirenzepine in control and TNBS-treated rats, but methoctramine was fivefold more potent in TNBS-treated rats, possibly indicating an increased contribution of muscarinic M(2) receptors to carbachol-induced contraction in the inflamed colon. The expression of M(2) receptors was also significantly increased in colon segments from TNBS-treated rats, confirming the increased role of muscarinic M(2) receptors in the inflamed colon. The data show that while only M(3) receptors appeared to mediate carbachol-induced contraction in control segments, expression of both M(2) and M(3) receptors was increased in the inflamed rat colon. Copyright © 2011 S. Karger AG, Basel.

  4. Tyrosine Phosphorylation Determines Afterdischarge Initiation by Regulating an Ionotropic Cholinergic Receptor.

    PubMed

    White, Sean H; Sturgeon, Raymond M; Gu, Yueling; Nensi, Alysha; Magoski, Neil S

    2018-02-21

    Changes to neuronal activity often involve a rapid and precise transition from low to high excitability. In the marine snail, Aplysia, the bag cell neurons control reproduction by undergoing an afterdischarge, which begins with synaptic input releasing acetylcholine to open an ionotropic cholinergic receptor. Gating of this receptor causes depolarization and a shift from silence to continuous action potential firing, leading to the neuroendocrine secretion of egg-laying hormone and ovulation. At the onset of the afterdischarge, there is a rise in intracellular Ca 2+ , followed by both protein kinase C (PKC) activation and tyrosine dephosphorylation. To determine whether these signals influence the acetylcholine ionotropic receptor, we examined the bag cell neuron cholinergic response both in culture and isolated clusters using whole-cell and/or sharp-electrode electrophysiology. The acetylcholine-induced current was not altered by increasing intracellular Ca 2+ via voltage-gated Ca 2+ channels, clamping intracellular Ca 2+ with exogenous Ca 2+ buffers, or activating PKC with phorbol esters. However, lowering phosphotyrosine levels by inhibiting tyrosine kinases both reduced the cholinergic current and prevented acetylcholine from triggering action potentials or afterdischarge-like bursts. In other systems, acetylcholine receptors are often modulated by multiple signals, but bag cell neurons appear to be more restrictive in this regard. Prior work finds that, as the afterdischarge proceeds, tyrosine dephosphorylation leads to biophysical alterations that promote persistent firing. Because this firing is subsequent to the cholinergic input, inhibiting the acetylcholine receptor may represent a means of properly orchestrating synaptically induced changes in excitability. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. 5-HT4 receptors facilitate cholinergic neurotransmission throughout the murine gastrointestinal tract.

    PubMed

    Pauwelyn, V; Lefebvre, R A

    2017-08-01

    In the gastrointestinal tract of several species, facilitating 5-HT 4 receptors were proposed on myenteric cholinergic neurons innervating smooth muscle by in vitro study of the effect of the selective 5-HT 4 receptor agonist prucalopride on submaximal cholinergic contractions. This was not yet established in the murine gastrointestinal tract. In circular smooth muscle strips from murine fundus, jejunum and colon, contractions were induced by electrical field stimulation in the presence of guanethidine, L-NAME and for colon also MRS 2500. Submaximal contractions were induced to study the influence of prucalopride. Electrical field stimulation at reduced voltage induced reproducible submaximal neurogenic and cholinergic contractions as the contractions were abolished by tetrodotoxin and atropine. Hexamethonium had no systematic inhibitory effect but mecamylamine reduced the responses, suggesting that part of the cholinergic response is due to activation of preganglionic neurons. Prucalopride concentration-dependently increased the submaximal cholinergic contractions in the three tissue types, reaching maximum from 0.03 μmol/L onwards. The facilitation in the different series with 0.03 μmol/L prucalopride ranged from 41% to 104%, 30% to 76% and 24% to 74% in fundus, jejunum, and colon, respectively. The effect of 0.03 μmol/L prucalopride was concentration-dependently inhibited by GR 113808. In the murine gastrointestinal tract, activation of 5-HT 4 receptors with prucalopride enhances cholinergic contractions, illustrating facilitation of myenteric cholinergic neurotransmission. The degree of enhancement with prucalopride is of similar magnitude as previously reported in other species, but the effective concentrations are lower than those needed in the gastrointestinal tract of other species. © 2017 John Wiley & Sons Ltd.

  6. Chotosan, a kampo formula, ameliorates chronic cerebral hypoperfusion-induced deficits in object recognition behaviors and central cholinergic systems in mice.

    PubMed

    Zhao, Qi; Murakami, Yukihisa; Tohda, Michihisa; Obi, Ryosuke; Shimada, Yutaka; Matsumoto, Kinzo

    2007-04-01

    We previously demonstrated that the Kampo formula chotosan (CTS) ameliorated spatial cognitive impairment via central cholinergic systems in a chronic cerebral hypoperfusion (P2VO) mouse model. In this study, the object discrimination tasks were used to determine if the ameliorative effects of CTS on P2VO-induced cognitive deficits are a characteristic pharmacological profile of this formula, with the aim of clarifying the mechanisms by which CTS enhances central cholinergic function in P2VO mice. The cholinesterase inhibitor tacrine (THA) and Kampo formula saikokeishito (SKT) were used as controls. P2VO impaired object discrimination performance in the object recognition, location, and context tests. Daily administration of CTS (750 mg/kg, p.o.) and THA (2.5 mg/kg, i.p.) improved the object discrimination deficits, whereas SKT (750 mg/kg, p.o.) did not. In ex vivo assays, tacrine but not CTS or SKT inhibited cortical cholinesterase activity. P2VO reduced the mRNA expression of m(3) and m(5) muscarinic receptors and choline acetyltransferase but not that of other muscarinic receptor subtypes in the cerebral cortex. Daily administration of CTS and THA but not SKT reversed these expression changes. These results suggest that CTS and THA improve P2VO-induced cognitive impairment by normalizing the deficit of central cholinergic systems and that the beneficial effect on P2VO-induced cognitive deficits is a distinctive pharmacological characteristic of CTS.

  7. L-689,660, a novel cholinomimetic with functional selectivity for M1 and M3 muscarinic receptors.

    PubMed Central

    Hargreaves, R. J.; McKnight, A. T.; Scholey, K.; Newberry, N. R.; Street, L. J.; Hutson, P. H.; Semark, J. E.; Harley, E. A.; Patel, S.; Freedman, S. B.

    1992-01-01

    1. L-689,660, 1-azabicyclo[2.2.2]octane, 3-(6-chloropyrazinyl)maleate, a novel cholinomimetic, demonstrated high affinity binding (pKD (apparent) 7.42) at rat cerebral cortex muscarinic receptors. L-689,660 had a low ratio (34) of pKD (apparent) values for the displacement of binding of the antagonist ([3H]-N-methylscopolamine ([3H]-NMS) compared with the displacement of the agonist [3H]-oxotremorine-M ([3H]-Oxo-M), in rat cerebral cortex. Low NMS/Oxo-M ratios have been shown previously to be a characteristic of compounds that are low efficacy partial agonists with respect to stimulation of phosphatidyl inositol turnover in the cerebral cortex. 2. L-689,660 showed no muscarinic receptor subtype selectivity in radioligand binding assays but showed functional selectivity in pharmacological assays. At M1 muscarinic receptors in the rat superior cervical ganglion, L-689,660 was a potent (pEC50 7.3 +/- 0.2) full agonist in comparison with (+/-)-muscarine. At M3 receptors in the guinea-pig ileum myenteric plexus-longitudinal muscle or in trachea, L-689,660 was again a potent agonist (pEC50 7.5 +/- 0.2 and 7.7 +/- 0.3 respectively) but had a lower maximum response than carbachol. In contrast L-689,660 was an antagonist at M2 receptors in guinea-pig atria (pA2 7.2 (95% confidence limits 7, 7.4)) and at muscarinic autoreceptors in rat hippocampal slices. 3. The putative M1-selective muscarinic agonist, AF102B (cis-2-methylspiro-(1,3-oxathiolane 5,3')-quinuclidine hydrochloride) was found to have a profile similar to L-689,660 but had up to 100 times less affinity in binding and functional assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422595

  8. Ventricular, but not atrial, M2-muscarinic receptors increase in the canine pacing-overdrive model of heart failure.

    PubMed

    Wilkinson, M; Giles, A; Armour, J A; Cardinal, R

    1996-01-01

    To investigate the effects of heart failure induced by chronic rapid ventricular pacing (six weeks) on canine atrial and ventricular muscarinic receptors. Dogs (n = 4) were fitted with a bipolar pacing electrode connected to a Medtronic pacemaker set at 240 stimuli/min. Pacing was maintained for six weeks. Tissue samples obtained from the left atrium and ventral wall of the left ventricle were frozen at -70 degrees C. Control tissue was obtained from normal dogs (n = 6) following anesthesia and thoracotomy. M2-muscarinic receptors were characterized and quantified in tissue micropunches using the hydrophilic ligand [3H] N-methyl-scopolamine (NMS). Cardiac tissue bound [3H] NMS with the specificity of an M2 subtype. Tachycardia-induced heart failure did not affect atrial muscarinic receptors but signify left ventricular myocytes (control 160.0 +/- 10.0 fmol/mg protein versus heart failure 245.0 +/- 25.0 fmol/mg protein; P < 0.01). Canine ventricular muscarinic receptors display a specificity for the M2 subtype. In contrast to previous work, tachycardia-induced heart failure was accompanied by an increase (+ 53%) in ventricular, but not atrial, M2 receptors compared with normal dogs.

  9. Gender dependent contribution of muscarinic receptors in memory retrieval under sub-chronic stress.

    PubMed

    Rashid, Habiba; Ahmed, Touqeer

    2018-05-15

    Stress induces retrograde amnesia in humans and rodents. Muscarinic antagonism under normal physiological conditions causes gender dependent impairment in episodic memory retrieval. We aimed to explore the gender dependent role of muscarinic receptors in memory retrieval under sub-chronic stress condition. Male and female mice were trained for Morris water maze test and contextual fear conditioning, followed by 3 h restraint stress per day for five days. Stress was either given alone or in combination with a daily subcutaneous injection of scopolamine (1 mg/kg) or donepezil (1 mg/kg). Control mice were given saline without any stress. Sub-chronic stress (induced for five days) impaired spatial memory retrieval in males (P < 0.005) but not in females (P > 0.05). Stress induced spatial memory recall deficit in male mice was independent of muscarinic receptor activity (P > 0.05). However, stress induced contextual fear memory recall impairment was reversed by donepezil treatment in male (P < 0.005) and female (P < 0.0001) mice. These findings suggest that differential role of muscarinic activity in retrieving different types of memories under stress depends on gender of subjects. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  11. Carbachol induces Ca(2+)-dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts.

    PubMed

    Iwanaga, Koichi; Murata, Takahisa; Okada, Muneyoshi; Hori, Masatoshi; Ozaki, Hiroshi

    2009-07-01

    Intestinal myofibroblasts (IMFs) that exist adjacent to the basement membrane of intestines have contractility and contribute to physical barriers of the intestine. Nerve endings distribute adjacent to IMFs, suggesting neurotransmitters may influence IMFs motility; however, there is no direct evidence showing the interaction. Here, we isolated IMFs from rat colon and investigated the effect of acetylcholine on IMFs contractility. In the collagen gel contraction assay, carbachol (1 - 10 microM) and the muscarinic receptor agonist bethanechol (30 - 300 microM) dose-dependently induced IMFs contraction. Pretreatment with the muscarinic receptor antagonist atropine (1 - 10 nM) inhibited carbachol-induced contraction. In RT-PCR, mRNA expression of all muscarinic receptor subtypes (M(1) - M(5)) was detected in IMFs. Subsequently we found pretreatment with the muscarinic M(2) receptor antagonist 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) (10 and 30 nM) or the muscarinic M(3) receptor antagonist 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) (3 and 10 nM) dose-dependently inhibited carbachol-induced contraction. In Ca(2+) measurement, 1 - 10 microM carbachol and 30 - 300 microM bethanechol elevated the intracellular Ca(2+) concentration ([Ca(2+)](i)) in IMFs. Atropine (10 nM) eliminated carbachol-induced [Ca(2+)](i) elevation. The Ca(2+)-channel blocker LaCl(3) (3 microM) abolished carbachol-induced [Ca(2+)](i) elevation and contraction. Furthermore, AF-DX116 and 4-DAMP dose-dependently inhibited the carbachol-induced [Ca(2+)](i) elevation. These observations suggest that acetylcholine elicits Ca(2+)-dependent IMF contraction through muscarinic M(2) and M(3) receptors.

  12. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlegel, J.R.; Kriegstein, A.R.

    1987-11-22

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure withmore » no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.« less

  13. Muscarinic receptors mediate cold stress-induced detrusor overactivity in type 2 diabetes mellitus rats.

    PubMed

    Imamura, Tetsuya; Ishizuka, Osamu; Ogawa, Teruyuki; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Nakazawa, Masaki; Gautam, Sudha Silwal; Nishizawa, Osamu

    2014-10-01

    This study determined if muscarinic receptors could mediate the cold stress-induced detrusor overactivity induced in type 2 diabetes mellitus rats. Ten-week-old female Goto-Kakizaki diabetic rats (n = 12) and Wister Kyoto non-diabetic rats (n = 12) were maintained on a high-fat diet for 4 weeks. Cystometric investigations of the unanesthetized rats were carried out at room temperature (27 ± 2°C) for 20 min. They were intravenously administered imidafenacin (0.3 mg/kg, n = 6) or vehicle (n = 6). After 5 min, the rats were transferred to a low temperature (4 ± 2°C) for 40 min where the cystometry was continued. The rats were then returned to room temperature for the final cystometric measurements. Afterwards, expressions of bladder muscarinic receptor M3 and M2 messenger ribonucleic acids and proteins were assessed by reverse transcription polymerase chain reaction and immunohistochemistry. In non-diabetic Wister Kyoto rats, imidafenacin did not reduce cold stress-induced detrusor overactivity. In diabetic Goto-Kakizaki rats, just after transfer to a low temperature, the cold stress-induced detrusor overactivity in imidafenacin-treated rats was reduced compared with vehicle-treated rats. Within the urinary bladders, the ratio of M3 to M2 receptor messenger ribonucleic acid in the diabetic Goto-Kakizaki rats was significantly higher than that of the non-diabetic Wister Kyoto rats. The proportion of muscarinic M3 receptor-positive area within the detrusor in diabetic Goto-Kakizaki rats was also significantly higher than that in non-diabetic Wister Kyoto rats. Imidafenacin partially inhibits cold stress-induced detrusor overactivity in diabetic Goto-Kakizaki rats. In this animal model, muscarinic M3 receptors partially mediate cold stress-induced detrusor overactivity. © 2014 The Japanese Urological Association.

  14. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  15. Distinct pathways of ERK activation by the muscarinic agonists pilocarpine and carbachol in a human salivary cell line.

    PubMed

    Lin, Alan L; Zhu, Bing; Zhang, WanKe; Dang, Howard; Zhang, Bin-Xian; Katz, Michael S; Yeh, Chih-Ko

    2008-06-01

    Cholinergic-muscarinic receptor agonists are used to alleviate mouth dryness, although the cellular signals mediating the actions of these agents on salivary glands have not been identified. We examined the activation of ERK1/2 by two muscarinic agonists, pilocarpine and carbachol, in a human salivary cell line (HSY). Immunoblot analysis revealed that both agonists induced transient activation of ERK1/2. Whereas pilocarpine induced phosphorylation of the epidermal growth factor (EGF) receptor, carbachol did not. Moreover, ERK activation by pilocarpine, but not carbachol, was abolished by the EGF receptor inhibitor AG-1478. Downregulation of PKC by prolonged treatment of cells with the phorbol ester PMA diminished carbachol-induced ERK phosphorylation but had no effect on pilocarpine responsiveness. Depletion of intracellular Ca2+ ([Ca2+]i by EGTA did not affect ERK activation by either agent. In contrast to carbachol, pilocarpine did not elicit [Ca2+]i mobilization in HSY cells. Treatment of cells with the muscarinic receptor subtype 3 (M3) antagonist N-(3-chloropropyl)-4-piperidnyl diphenylacetate decreased ERK responsiveness to both agents, whereas the subtype 1 (M1) antagonist pirenzepine reduced only the carbachol response. Stimulation of ERKs by pilocarpine was also decreased by M3, but not M1, receptor small interfering RNA. The Src inhibitor PP2 blocked pilocarpine-induced ERK activation and EGF receptor phosphorylation, without affecting ERK activation by carbachol. Our results demonstrate that the actions of pilocarpine and carbachol in salivary cells are mediated through two distinct signaling mechanisms-pilocarpine acting via M3 receptors and Src-dependent transactivation of EGF receptors, and carbachol via M1/M3 receptors and PKC-converging on the ERK pathway.

  16. Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds.

    PubMed

    Horenstein, Nicole A; Quadri, Marta; Stokes, Clare; Shoaib, Mohammed; Papke, Roger L

    2017-10-03

    The use of betel quid is the most understudied major addiction in the world. The neuropsychological activity of betel quid has been attributed to alkaloids of Areca catechu. With the goal of developing novel addiction treatments, we evaluate the muscarinic and nicotinic activity of the four major Areca alkaloids: arecoline, arecaidine, guvacoline, and guvacine and four structurally related compounds. Acetylcholine receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Both arecoline- and guvacoline-activated muscarinic acetylcholine receptors (mAChR), while only arecoline produced significant activation of nicotinic AChR (nAChR). We characterized four additional arecoline-related compounds, seeking an analog that would retain selective activity for a α4* nAChR, with diminished effects on mAChR and not be a desensitizer of α7 nAChR. We show that this profile is largely met by isoarecolone. Three additional arecoline analogs were characterized. While the quaternary dimethyl analog had a broad range of activities, including activation of mAChR and muscle-type nAChR, the methyl analog only activated a range of α4* nAChR, albeit with low potency. The ethyl analog had no detectable cholinergic activity. Evidence indicates that α4* nAChR are at the root of nicotine addiction, and this may also be the case for betel addiction. Our characterization of isoarecolone and 1-(4-methylpiperazin-1-yl) ethanone as truly selective α4*nAChR selective partial agonists with low muscarinic activity may point toward a promising new direction for the development of drugs to treat both nicotine and betel addiction. Nearly 600 million people use Areca nut, often with tobacco. Two of the Areca alkaloids are muscarinic acetylcholine receptor agonists, and one, arecoline, is a partial agonist for the α4* nicotinic acetylcholine receptors (nAChR) associated with tobacco addiction. The profile of arecoline activity suggested its potential to be used as a

  17. Cholinergic regulation of the evoked quantal release at frog neuromuscular junction

    PubMed Central

    Nikolsky, Eugeny E; Vyskočil, František; Bukharaeva, Ella A; Samigullin, Dmitry; Magazanik, Lev G

    2004-01-01

    The effects of cholinergic drugs on the quantal contents of the nerve-evoked endplate currents (EPCs) and the parameters of the time course of quantal release (minimal synaptic latency, main modal value of latency histogram and variability of synaptic latencies) were studied at proximal, central and distal regions of the frog neuromuscular synapse. Acetylcholine (ACh, 5 × 10−4 m), carbachol (CCh, 1 × 10−5 m) or nicotine (5 × 10−6 m) increased the numbers of EPCs with long release latencies mainly in the distal region of the endplate (90–120 μm from the last node of Ranvier), where the synchronization of transmitter release was the most pronounced. The parameters of focally recorded motor nerve action potentials were not changed by either ACh or CCh. The effects of CCh and nicotine on quantal dispersion were reduced substantially by 5 × 10−7 m (+)tubocurarine (TC). The muscarinic agonists, oxotremorine and the propargyl ester of arecaidine, as well as antagonists such as pirenzepine, AF-DX 116 and methoctramine, alone or in combination, did not affect the dispersion of the release. Muscarinic antagonists did not block the dispersion action of CCh. Cholinergic drugs either decreased the quantal content mo (muscarinic agonist, oxotremorine M, and nicotinic antagonist, TC), or decreased mo and dispersed the release (ACh, CCh and nicotine). The effects on mo were not related either to the endplate region or to the initial level of release dispersion. It follows that the mechanisms regulating the amount and the time course of transmitter release are different and that, among other factors, they are altered by presynaptic nicotinic receptors. PMID:15254150

  18. Grid cell spatial tuning reduced following systemic muscarinic receptor blockade

    PubMed Central

    Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.

    2014-01-01

    Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379

  19. The lymphocytic cholinergic system and its contribution to the regulation of immune activity.

    PubMed

    Kawashima, Koichiro; Fujii, Takeshi

    2003-12-26

    Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.

  20. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion.

    PubMed

    Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep; Raufman, Jean-Pierre

    2011-05-01

    Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.

  1. Muscarinic receptor agonists stimulate human colon cancer cell migration and invasion

    PubMed Central

    Belo, Angelica; Cheng, Kunrong; Chahdi, Ahmed; Shant, Jasleen; Xie, Guofeng; Khurana, Sandeep

    2011-01-01

    Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion. PMID:21273532

  2. Deficits in acetylcholine homeostasis, receptors and behaviors in choline transporter heterozygous mice.

    PubMed

    Bazalakova, M H; Wright, J; Schneble, E J; McDonald, M P; Heilman, C J; Levey, A I; Blakely, R D

    2007-07-01

    Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.

  3. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    PubMed

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes.

  5. Reductions of {sup 56}Fe heavy-particle irradiation-induced deficits in striatal muscarinic receptor sensitivity by selective cross-activation/inhibition of second-messenger systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, J.A.; Villalobos-Molina, R.; Rabin, B.M.

    Recent experiments have revealed radiation-induced losses of sensitivity of rodent neostriatal muscarinic receptors to stimulation by cholinergic agonists that appears as reduction in oxotremorine enhancement of K{sup +}-evoked dopamine release. These losses were postulated to be the result of radiation-induced alterations early in phosphoinositide-mediated signal transduction. Additional findings indicated that if the ligand-receptor-G protein interface was bypassed no radiation deficits were seen. In the present study, radiation-induced deficits in K{sup +}-evoked dopamine release were examined in perifused striatal tissue obtained from rats exposed to 0,0.1 or 1.0 Gy of {sup 56}Fe particles. Results showed that these deficits could be reducedmore » by co-applying combinations of various pharmacological agents that were known to have differential effects on various second messengers such as 1,4,5-inositoltrisphosphate (IP{sub 3}). Combinations included oxotremorine-carbachol, and either oxotremorine or carbachol with arginine vasopressin or arachidonic acid. These results are discussed in terms of putative radiation-induced changes in receptor-containing membranes which alter receptor-G protein coupling/uncoupling. 49 refs., 4 figs.« less

  6. Scopolamine and amphetamine produce similar decision-making deficits on a rat gambling task via independent pathways.

    PubMed

    Silveira, Mason M; Malcolm, Emma; Shoaib, Mohammed; Winstanley, Catharine A

    2015-03-15

    Disorders characterized by disturbed cholinergic signaling, such as schizophrenia, exhibit impaired performance on measures of real-world cost/benefit decision-making. Whether the cholinergic system contributes to the choice deficits observed is currently unknown. We therefore determined the effects of broad-acting agonists and antagonists at the nicotinic and muscarinic receptor on decision making, as measured by the rodent gambling task (rGT). Given the anatomical and functional connectivity of the cholinergic and dopaminergic systems, we also sought to modulate amphetamine's previously reported effect on rGT performance via the cholinergic system. Male rats were trained on the rGT, during which animals chose from four different options. The optimal strategy on the rGT is to favor options associated with smaller immediate rewards and less punishment/loss. Impulsive action was also measured by recording the number of premature responses made. Performance on the rGT was assessed following acute treatment with the muscarinic receptor agonist oxotremorine, the muscarinic receptor antagonist scopolamine, nicotine, and the nicotinic receptor antagonist mecamylamine. Similar to the effect produced by amphetamine, muscarinic receptor antagonism with scopolamine (0.1mg/kg) impaired decision making, albeit to a lesser degree. Prior muscarinic agonism with oxotremorine was unable to attenuate amphetamine's effects on rGT performance. Oxotremorine, nicotine, and mecamylamine did not affect the choice profile. We therefore conclude that modulation of the muscarinic, but not nicotinic, receptor system can affect decision making under conditions of risk and uncertainty. Such findings contribute to a broader understanding of the cognitive deficits observed in disorders in which cholinergic signaling is compromised. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation.

    PubMed

    Romero-Fernandez, Wilber; Borroto-Escuela, Dasiel O; Alea, Mileidys Perez; Garcia-Mesa, Yoelvis; Garriga, Pere

    2011-12-01

    The human M(3) muscarinic acetylcholine receptor is present in both the central and peripheral nervous system, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases. We suggested a possible N-glycosylation map for the M(3) muscarinic receptor expressed in COS-7 cells. Here, we examined the role that N-linked glycans play in the folding and in the cell surface trafficking of this receptor. The five potential asparagine-linked glycosylation sites in the muscarinic receptor were mutated and transiently expressed in COS-7 cells. The elimination of N-glycan attachment sites did not affect the cellular expression levels of the receptor. However, proper receptor localization to the plasma membrane was affected as suggested by reduced [(3)H]-N-methylscopolamine binding. Confocal microscopy confirmed this observation and showed that the nonglycosylated receptor was primarily localized in the intracellular compartments. The mutant variant showed an increase in phosphorylation of the α-subunit of eukaryote initiation factor 2, and other well-known endoplasmic reticulum stress markers of the unfolded protein response pathway, which further supports the proposal of the improper intracellular accumulation of the nonglycosylated receptor. The receptor devoid of glycans showed more susceptibility to events that culminate in apoptosis reducing cell viability. Our findings suggest up-regulation of pro-apoptotic Bax protein, down-regulation of anti-apoptotic Bcl-2, and cleavage of caspase-3 effectors. Collectively, our data provide experimental evidence of the critical role that N-glycan chains play in determining muscarinic receptor distribution, localization, as well as cell integrity. © The Author 2011. Published by Oxford University Press. All rights reserved.

  8. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain.

    PubMed

    Schliebs, R; Liebmann, A; Bhattacharya, S K; Kumar, A; Ghosal, S; Bigl, V

    1997-02-01

    Although some promising results have been achieved by acetylcholinesterase inhibitors, an effective therapeutic intervention in Alzheimer's disease still remains an important goal. Sitoindosides VII-X, and withaferin-A, isolated from aqueous methanol extract from the roots of cultivated varieties of Withania somnifera (known as Indian Ginseng), as well as Shilajit, a pale-brown to blackish brown exudation from steep rocks of the Himalaya mountain, are used in Indian medicine to attenuate cerebral functional deficits, including amnesia, in geriatric patients. The present investigation was conducted to assess whether the memory-enhancing effects of plant extracts from Withania somnifera and Shilajit are owing to neurochemical alterations of specific transmitter systems. Therefore, histochemistry to analyse acetylcholinesterase activity as well as receptor autoradiography to detect cholinergic, glutamatergic and GABAergic receptor subtypes were performed in brain slices from adult male Wistar rats, injected intraperitoneally daily with an equimolar mixture of sitoindosides VII-X and withaferin-A (prepared from Withania somnifera) or with Shilajit, at doses of 40 mg/kg of body weight for 7 days. Administration of Shilajit led to reduced acetylcholinesterase staining, restricted to the basal forebrain nuclei including medial septum and the vertical limb of the diagonal band. Systemic application of the defined extract from Withania somnifera, however, led to differential effects on AChE activity in basal forebrain nuclei: slightly enhanced AChE activity was found in the lateral septum and globus pallidus, whereas in the vertical diagonal band AChE activity was reduced following treatment with sitoindosides VII-X and withaferin-A. These changes were accompanied by enhanced M1-muscarinic cholinergic receptor binding in lateral and medial septum as well as in frontal cortices, whereas the M2-muscarinic receptor binding sites were increased in a number of cortical regions

  9. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  10. Induction of Anti-Hebbian LTP in CA1 Stratum Oriens Interneurons: Interactions between Group I Metabotropic Glutamate Receptors and M1 Muscarinic Receptors

    PubMed Central

    Savary, Etienne; Kullmann, Dimitri M.; Miles, Richard

    2015-01-01

    An anti-Hebbian form of LTP is observed at excitatory synapses made with some hippocampal interneurons. LTP induction is facilitated when postsynaptic interneurons are hyperpolarized, presumably because Ca2+ entry through Ca2+-permeable glutamate receptors is enhanced. The contribution of modulatory transmitters to anti-Hebbian LTP induction remains to be established. Activation of group I metabotropic receptors (mGluRs) is required for anti-Hebbian LTP induction in interneurons with cell bodies in the CA1 stratum oriens. This region receives a strong cholinergic innervation from the septum, and muscarinic acetylcholine receptors (mAChRs) share some signaling pathways and cooperate with mGluRs in the control of neuronal excitability. We therefore examined possible interactions between group I mGluRs and mAChRs in anti-Hebbian LTP at synapses which excite oriens interneurons in rat brain slices. We found that blockade of either group I mGluRs or M1 mAChRs prevented the induction of anti-Hebbian LTP by pairing presynaptic activity with postsynaptic hyperpolarization. Blocking either receptor also suppressed long-term effects of activation of the other G-protein coupled receptor on interneuron membrane potential. However, no crossed blockade was detected for mGluR or mAchR effects on interneuron after-burst potentials or on the frequency of miniature EPSPs. Paired recordings between pyramidal neurons and oriens interneurons were obtained to determine whether LTP could be induced without concurrent stimulation of cholinergic axons. Exogenous activation of mAChRs led to LTP, with changes in EPSP amplitude distributions consistent with a presynaptic locus of expression. LTP, however, required noninvasive presynaptic and postsynaptic recordings. SIGNIFICANCE STATEMENT In the hippocampus, a form of NMDA receptor-independent long-term potentiation (LTP) occurs at excitatory synapses made on some inhibitory neurons. This is preferentially induced when postsynaptic

  11. Genetic deletion of CB1 receptors improves non-associative learning.

    PubMed

    Degroot, Aldemar; Salhoff, Craig; Davis, Richard J; Nomikos, George G

    2005-07-01

    Habituation (a form of non-associative learning) was measured by assessing locomotion in novel activity monitors in CB1 receptor knockout mice and juxtaposed to habituation measured in muscarinic M2, M4, and double M2/M4 receptor knockout mice. M2 and M2/M4, but not M4, receptor knockout mice appeared to have an impaired ability to habituate, whereas CB1 receptor knockout mice showed enhanced habituation compared to wild-type animals. We conclude that CB1 receptor gene invalidation improves habituation tentatively through an increase in cholinergic neurotransmission.

  12. Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.

    PubMed

    Foster, Daniel J; Wilson, Jermaine M; Remke, Daniel H; Mahmood, M Suhaib; Uddin, M Jashim; Wess, Jürgen; Patel, Sachin; Marnett, Lawrence J; Niswender, Colleen M; Jones, Carrie K; Xiang, Zixiu; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey

    2016-09-21

    Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The muscarinic inhibition of the potassium M-current modulates the action-potential discharge in the vestibular primary-afferent neurons of the rat.

    PubMed

    Pérez, C; Limón, A; Vega, R; Soto, E

    2009-02-18

    There is consensus that muscarinic and nicotinic receptors expressed in vestibular hair cells and afferent neurons are involved in the efferent modulation of the electrical activity of the afferent neurons. However the underlying mechanisms of postsynaptic control in neurons are not well understood. In our work we show that the activation of muscarinic receptors in the vestibular neurons modulates the potassium M-current modifying the activity of afferent neurons. Whole-cell patch-clamp recordings were made on vestibular-afferent neurons isolated from Wistar rats (postnatal days 7-10) and held in primary culture (18-24 h). The M-current was studied during its deactivation after depolarizing voltage-clamp pulses. In 68% of the cells studied, those of larger capacitance, the M-current antagonists linopirdine and XE-991 reduced the amplitude of the M-current by 54%+/-7% and 50%+/-3%. The muscarinic-receptor agonist oxotremorine-M also significantly reduced the M-current by 58%+/-12% in the cells. The action of oxotremorine-M was blocked by atropine, thus indicating its cholinergic nature. The erg-channel blocker E-4031 did not significantly modify the M-current amplitude. In current-clamp experiments, linopirdine, XE-991, and oxotremorine-M modified the discharge response to current pulses from single spike to multiple spiking, reducing the adaptation of the electrical discharge. Our results indicate that large soma-size cultured vestibular-afferent neurons (most probably calyx-bearing neurons) express the M-current and that the modulation of this current by activation of muscarinic-receptor reduces its spike-frequency adaptation.

  14. Caveolin-1: Functional Insights into Its Role in Muscarine- and Serotonin-Induced Smooth Muscle Constriction in Murine Airways

    PubMed Central

    Keshavarz, Maryam; Schwarz, Heike; Hartmann, Petra; Wiegand, Silke; Skill, Melanie; Althaus, Mike; Kummer, Wolfgang; Krasteva-Christ, Gabriela

    2017-01-01

    An increased bronchoconstrictor response is a hallmark in the progression of obstructive airway diseases. Acetylcholine and 5-hydroxytryptamine (5-HT, serotonin) are the major bronchoconstrictors. There is evidence that both cholinergic and serotonergic signaling in airway smooth muscle (ASM) involve caveolae. We hypothesized that caveolin-1 (cav-1), a structural protein of caveolae, plays an important regulatory role in ASM contraction. We analyzed airway contraction in different tracheal segments and extra- and intrapulmonary bronchi in cav-1 deficient (cav-1−/−) and wild-type mice using organ bath recordings and videomorphometry of methyl-beta-cyclodextrin (MCD) treated and non-treated precision-cut lung slices (PCLS). The presence of caveolae was investigated by electron microscopy. Receptor subtypes driving 5-HT-responses were studied by RT-PCR and videomorphometry after pharmacological inhibition with ketanserin. Cav-1 was present in tracheal epithelium and ASM. Muscarine induced a dose dependent contraction in all airway segments. A significantly higher Emax was observed in the caudal trachea. Although, caveolae abundancy was largely reduced in cav-1−/− mice, muscarine-induced airway contraction was maintained, albeit at diminished potency in the middle trachea, in the caudal trachea and in the bronchus without changes in the maximum efficacy. MCD-treatment of PLCS from cav-1−/− mice reduced cholinergic constriction by about 50%, indicating that cholesterol-rich plasma domains account for a substantial portion of the muscarine-induced bronchoconstriction. Notably, cav-1-deficiency fully abrogated 5-HT-induced contraction of extrapulmonary airways. In contrast, 5-HT-induced bronchoconstriction was fully maintained in cav-1-deficient intrapulmonary bronchi, but desensitization upon repetitive stimulation was enhanced. RT-PCR analysis revealed 5-HT1B, 5-HT2A, 5-HT6, and 5-HT7 receptors as the most prevalent subtypes in the airways. The 5-HT

  15. Effects of fenoterol on beta-adrenoceptor and muscarinic M2 receptor function in bovine tracheal smooth muscle.

    PubMed

    De Vries, B; Roffel, A F; Kooistra, J M; Meurs, H; Zaagsma, J

    2001-05-11

    Prolonged (18 h) incubation of isolated bovine tracheal smooth muscle with the beta2-adrenoceptor agonist fenoterol (10 microM) induced desensitization of isoprenaline-induced adenylyl cyclase activity in bovine tracheal smooth muscle membranes, characterized by a 25% decrease in maximal effect (Emax) (P < 0.05), while the sensitivity to the agonist (pEC50) was unchanged. The Emax value of isoprenaline-induced smooth muscle relaxation of submaximal methacholine-induced contractile tones was similarly reduced by about 25% (P < 0.001), while the pEC50 value was diminished by 1.0 log unit (P < 0.001). As determined by 30 microM gallamine-induced muscarinic M2 receptor antagonism and pertussis toxin-induced inactivation of G(i alpha), muscarinic M2 receptor-mediated functional antagonism did not play a role in isoprenaline-induced relaxation of bovine tracheal smooth muscle contracted by methacholine, both in control and in 18-h fenoterol-treated tissue. In line with these observations, we found no enhanced muscarinic M2 receptor-mediated inhibition of 1 microM forskolin-stimulated adenylyl cyclase activity after 18-h fenoterol treatment. These data indicate that 18-h fenoterol treatment of bovine tracheal smooth muscle induces beta2-adrenoceptor desensitization and reduced functional antagonism of methacholine-induced contraction by beta-adrenoceptor agonists, without a change of muscarinic M2 receptor function.

  16. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Volatile anesthetics interfere with muscarinic receptor-g protein interactions in rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, B.L.

    The influence of halothane and enflurane (0.5-8%) on muscarinic receptor binding in rat atrium was studied using (/sup 3/H) methylscopolamine ((/sup 3/H)MS). Anesthetic-gas mixtures were blown over membrane suspensions for 20 min before and during the binding assays. Halothane and enflurane increased the affinity of cardiac muscarinic receptors for (/sup 3/H)MS by slowing the rate of dissociation. These anesthetics did not affect the affinity of the receptor for carbamylcholine, but significantly reduced the sensitivity of agonist binding to regulation by guanine nucleotides. For example, the fraction of receptors displaying high affinity agonist binding was decreased by a GTP analog frommore » 0.64 to 0.43 in the absence, but only to 0.52 in the presence of 2% halothane. The binding of a radiolabeled agonist, (/sup 3/H)oxotremorine-M, was reduced by 50% by halothane, while its sensitivity to guanine nucleotides was reduced by at least 100 fold. The diminution of the guanine nucleotide effect may reflect a stabilization of the receptor-G proteincomplex due to either a direct action on the receptor complex or to an alteration of the physical state of the membrane. It is also possible that the ability of the G protein to bind guanine nucleotides is adversely affected by anesthetic agents.« less

  18. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calciummore » concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor.« less

  19. Muscarinic Acetylcholine Receptors Act in Synergy to Facilitate Learning and Memory

    ERIC Educational Resources Information Center

    Leaderbrand, Katherine; Chen, Helen J.; Corcoran, Kevin A.; Guedea, Anita L.; Jovasevic, Vladimir; Wess, Jurgen; Radulovic, Jelena

    2016-01-01

    Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on…

  20. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    PubMed

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  1. Localization of cholinergic innervation and neurturin receptors in adult mouse heart and expression of the neurturin gene.

    PubMed

    Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B

    2006-10-01

    Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.

  2. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    PubMed

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    PubMed

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  5. Evidence of paired M2 muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less

  6. The effect of indomethacin on the muscarinic induced contractions in the isolated normal guinea pig urinary bladder.

    PubMed

    Rahnama'i, Mohammad S; van Koeveringe, Gommert A; van Kerrebroeck, Philip E V; de Wachter, Stefan G G

    2013-02-07

    To investigate the effect of prostaglandin depletion by means of COX-inhibition on cholinergic enhanced spontaneous contractions. The urethra and bladder of 9 male guinea pigs (weight 270-300 g) were removed and placed in an organ bath with Krebs' solution. A catheter was passed through the urethra through which the intravesical pressure was measured. The muscarinic agonist arecaidine, the non-selective COX inhibitor indomethacin, and PGE2 were subsequently added to the organ bath. The initial average frequency and amplitude of spontaneous contractions in the first 2 minutes after arecaidine application were labelled F(ini) and P(ini), respectively. The steady state frequency (F(steady)) and amplitude (P(steady)) were defined as the average frequency and amplitude during the 5 minutes before the next wash out. Application of 1 μM PGE2 increased the amplitude of spontaneous contractions without affecting frequency. 10 μM of indomethacin reduced amplitude but not frequency.The addition of indomethacin did not alter F(ini) after the first application (p = 0.7665). However, after the second wash, F(ini) was decreased (p = 0.0005). F(steady), P(steady) and P(ini) were not significantly different in any of the conditions. These effects of indomethacin were reversible by PGE2 addition.. Blocking PG synthesis decreased the cholinergically stimulated autonomous contractions in the isolated bladder. This suggests that PG could modify normal cholinergically evoked response. A combination of drugs inhibiting muscarinic receptors and PG function or production can then become an interesting focus of research on a treatment for overactive bladder syndrome.

  7. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    PubMed

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  8. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    PubMed

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  9. The effects of oxotremorine, epibatidine, atropine, mecamylamine and naloxone in the tail-flick, hot-plate, and formalin tests in the naked mole-rat (Heterocephalus glaber).

    PubMed

    Dulu, Thomas D; Kanui, Titus I; Towett, Philemon K; Maloiy, Geoffrey M; Abelson, Klas S P

    2014-01-01

    The naked mole-rat (Heterocephalus glaber) is a promising animal model for the study of pain mechanisms, therefore a thorough characterization of this species is essential. The aim of the present study was to establish the naked mole-rat as a model for studying the cholinergic receptor system in antinociception by investigating the involvement of muscarinic, nicotinic and opioid receptors in nociceptive tests in this species. The effects of systemic administration of the muscarinic receptor agonist oxotremorine and the nicotinic receptor agonist epibatidine were investigated in the tail-flick, the hot-plate, and the formalin tests. The effects of co-administration of the muscarinic receptor antagonist atropine, the nicotinic receptor antagonist mecamylamine, and the opioid receptor antagonist naloxone were also investigated. Oxotremorine and epibatidine induced a significant, dose-dependent antinociceptive effect in the tail-flick, hot-plate, and formalin tests, respectively. The effects of oxotremorine and epibatidine were blocked by atropine and mecamylamine, respectively. In all three nociceptive tests, naloxone in combination with oxotremorine or epibatidine enhanced the antinociceptive effects of the drugs. The present study demonstrated that stimulation of muscarinic and nicotinic receptors produces antinociceptive effects in the naked-mole rat. The reversal effect of atropine and mecamylamine suggests that this effect is mediated by cholinergic receptors. As naloxone increases the antinociceptive effects of cholinergic agonists, it is suggested that the cholinergic antinociception acts via a gateway facilitated by opioid receptor blockage; however, the precise interaction between these receptor systems needs further investigation.

  10. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.

    PubMed

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-03-26

    Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain

  11. The effects of perinatal choline supplementation on hippocampal cholinergic development in rats exposed to alcohol during the brain growth spurt.

    PubMed

    Monk, Bradley R; Leslie, Frances M; Thomas, Jennifer D

    2012-08-01

    Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M(1) and M(2/4) muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human third trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30 through 33, and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first 2 days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M(1) receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M(2/4) receptor density, an effect mitigated by choline supplementation. In fact, M(2/4) receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic

  12. The Effects of Perinatal Choline Supplementation on Hippocampal Cholinergic Development in Rats Exposed to Alcohol During the Brain Growth Spurt

    PubMed Central

    Monk, Bradley R.; Leslie, Frances M.; Thomas, Jennifer D.

    2012-01-01

    Prenatal alcohol exposure leads to long-lasting cognitive and attention deficits, as well as hyperactivity. Using a rat model, we have previously shown that perinatal supplementation with the essential nutrient, choline, can reduce the severity of some fetal alcohol effects, including hyperactivity and deficits in learning and memory. In fact, choline can mitigate alcohol-related learning deficits even when administered after developmental alcohol exposure, during the postnatal period. However, it is not yet known how choline is able to mitigate alcohol-related behavioral alterations. Choline may act by altering cholinergic signaling in the hippocampus. This study examined the effects of developmental alcohol exposure and perinatal choline supplementation on hippocampal M1 and M2/4 muscarinic receptors. Sprague-Dawley rat pups were orally intubated with ethanol (5.25 mg/kg/day) from postnatal days (PD) 4-9, a period of brain development equivalent to the human 3rd trimester; control subjects received sham intubations. From PD 4-30, subjects were injected s.c. with choline chloride (100 mg/kg/day) or saline vehicle. Open field activity was assessed from PD 30-33 and brain tissue was collected on PD 35 for autoradiographic analysis. Ethanol-exposed subjects were more active compared to controls during the first two days of testing, an effect attenuated with choline supplementation. Developmental alcohol exposure significantly decreased the density of muscarinic M1 receptors in the dorsal hippocampus, an effect that was not altered by choline supplementation. In contrast, developmental alcohol exposure significantly increased M2/4 receptor density, an effect mitigated by choline supplementation. In fact, M2/4 receptor density of subjects exposed to alcohol and treated with choline did not differ significantly from that of controls. These data suggest that developmental alcohol exposure can cause long-lasting changes in the hippocampal cholinergic system and that

  13. The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia.

    PubMed

    Cropley, Vanessa L; Scarr, Elizabeth; Fornito, Alex; Klauser, Paul; Bousman, Chad A; Scott, Rodney; Cairns, Murray J; Tooney, Paul A; Pantelis, Christos; Dean, Brian

    2015-11-30

    Previous research has demonstrated that individuals with schizophrenia who are homozygous at the c.267C>A single nucleotide polymorphism (rs2067477) within the cholinergic muscarinic M1 receptor (CHRM1) perform less well on the Wisconsin Card Sorting Test (WCST) than those who are heterozygous. This study sought to determine whether variation in the rs2067477 genotype was associated with differential changes in brain structure. Data from 227 patients with established schizophrenia or schizoaffective disorder were obtained from the Australian Schizophrenia Research Bank. Whole-brain voxel-based morphometry was performed to compare regional grey matter volume (GMV) between the 267C/C (N=191) and 267C/A (N=36) groups. Secondary analyses tested for an effect of genotype on cognition (the WCST was not available). Individuals who were homozygous (267C/C) demonstrated significantly reduced GMV in the right precentral gyrus compared to those who were heterozygous (267C/A). These preliminary results suggest that the rs2067477 genotype is associated with brain structure in the right precentral gyrus in individuals with schizophrenia/schizoaffective disorder. Future studies are required to replicate these results and directly link the volumetric reductions with specific cognitive processes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.

    PubMed

    Erostegui, C; Norris, C H; Bobbin, R P

    1994-04-01

    Acetylcholine (ACh) is the major neurotransmitter released from the efferent fibers in the cochlea onto the outer hair cells (OHCs). The type of ACh receptor on OHCs and the events subsequent to receptor activation are unclear. Therefore we studied the effect of agonists and antagonists of the ACh receptor on isolated OHCs from the guinea pig. OHCs were recorded from in whole cell voltage and current clamp configuration. ACh induced an increase in outward K+ current (IACh) which hyperpolarized the OHCs. No desensitization to ACh application was observed. Cs+ replaced K+ in carrying the IACh. The IACh is Ca(2+)-dependent, time and voltage sensitive, and different from the IKCa induced by depolarization of the membrane potential. When tested at 100 microM, several agonists also induced outward current responses (acetylcholine > suberyldicholine > or = carbachol > DMPP) whereas nicotine, cytisine and muscarine did not. The IACh response to 10 microM ACh was blocked by low concentrations of traditional and non-traditional-nicotinic antagonists (strychnine > curare > bicuculline > alpha-bungarotoxin > thimethaphan) and by higher concentrations of muscarinic antagonists (atropine > 4-DAMP > AF-DX 116 > pirenzepine). Pharmacologically, the ACh receptor on OHCs is nicotinic.

  15. Signaling Pathways of Purinergic Receptors and Their Interactions with Cholinergic and Adrenergic Pathways in the Lacrimal Gland

    PubMed Central

    Hodges, Robin R.

    2016-01-01

    Abstract Purpose: Purinergic receptors play a key role in the function of the lacrimal gland (LG) as P1 purinergic receptors A1, A2A, and A2B, P2X1–7 receptors, and many of the P2Y receptors are expressed. Methods: This review examines the current knowledge of purinergic receptors in the LG as well as the signaling pathways activated by these receptors. Results: These receptors are expressed on the acinar, ductal, and myoepithelial cells. Considerable crosstalk exists between the pathways activated by P2X7 receptors with those activated by M3 muscarinic or α1D adrenergic receptors. The mechanism of the crosstalk between P2X7 and M3 muscarinic receptors differs from that of the crosstalk between P2X7 and α1D adrenergic receptors. Conclusions: Understanding purinergic receptors and how they modulate protein secretion could play a key role in normal and pathological responses of the LG. PMID:27463365

  16. New analogues of oxotremorine and oxotremorine-M: estimation of their in vitro affinity and efficacy at muscarinic receptor subtypes.

    PubMed

    Barocelli, E; Ballabeni, V; Bertoni, S; Dallanoce, C; De Amici, M; De Micheli, C; Impicciatore, M

    2000-06-30

    Two subsets of tertiary amines (1a-6a) and methiodides (1b-6b) with a structural resemblance to oxotremorine and oxotremorine-M were tested at rabbit vas deferens (M1), guinea pig left atrium (M2), guinea pig ileum and urinary bladder (M3) muscarinic receptor subtypes. The pharmacological profile of the derivatives under study has been discussed by evaluating their potency, affinity and efficacy as well as the regional differences in muscarinic receptor occupancy.

  17. Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway.

    PubMed

    Jiang, Ling; Kosenko, Anastasia; Yu, Clinton; Huang, Lan; Li, Xuejun; Hoshi, Naoto

    2015-11-15

    Neuronal excitability is strictly regulated by various mechanisms, including modulation of ion channel activity and trafficking. Stimulation of m1 muscarinic acetylcholine receptor (also known as CHRM1) increases neuronal excitability by suppressing the M-current generated by the Kv7/KCNQ channel family. We found that m1 muscarinic acetylcholine receptor stimulation also triggers surface transport of KCNQ subunits. This receptor-induced surface transport was observed with KCNQ2 as well as KCNQ3 homomeric channels, but not with Kv3.1 channels. Deletion analyses identified that a conserved domain in a proximal region of the N-terminal tail of KCNQ protein is crucial for this surface transport--the translocation domain. Proteins that bind to this domain were identified as α- and β-tubulin and collapsin response mediator protein 2 (CRMP-2; also known as DPYSL2). An inhibitor of casein kinase 2 (CK2) reduced tubulin binding to the translocation domain, whereas an inhibitor of glycogen synthase kinase 3 (GSK3) facilitated CRMP-2 binding to the translocation domain. Consistently, treatment with the GSK3 inhibitor enhanced receptor-induced KCNQ2 surface transport. M-current recordings from neurons showed that treatment with a GSK3 inhibitor shortened the duration of muscarinic suppression and led to over-recovery of the M-current. These results suggest that m1 muscarinic acetylcholine receptor stimulates surface transport of KCNQ channels through a CRMP-2-mediated pathway. © 2015. Published by The Company of Biologists Ltd.

  18. Activation of M1 muscarinic receptors triggers transmitter release from rat sympathetic neurons through an inhibition of M-type K+ channels.

    PubMed

    Lechner, Stefan G; Mayer, Martina; Boehm, Stefan

    2003-12-15

    Acetylcholine has long been known to excite sympathetic neurons via M1 muscarinic receptors through an inhibition of M-currents. Nevertheless, it remained controversial whether activation of muscarinic receptors is also sufficient to trigger noradrenaline release from sympathetic neurons. In primary cultures of rat superior cervical ganglia, the muscarinic agonist oxotremorine M inhibited M-currents with half-maximal effects at 1 microM and induced the release of previously incorporated [3H]noradrenaline with half-maximal effects at 10 microM. This latter action was not affected by the nicotinic antagonist mecamylamine which, however, abolished currents through nicotinic receptors elicited by high oxotremorine M concentrations. Ablation of the signalling cascades linked to inhibitory G proteins by pertussis toxin potentiated the release stimulating effect of oxotremorine M, and the half-maximal concentration required to stimulate noradrenaline release was decreased to 3 microM. Pirenzepine antagonized the inhibition of M-currents and the induction of release by oxotremorine M with identical apparent affinity, and both effects were abolished by the muscarinic toxin 7. These results indicate that one muscarinic receptor subtype, namely M1, mediates these two effects. Retigabine, which enhances M-currents, abolished the release induced by oxotremorine M, but left electrically induced release unaltered. Moreover, retigabine shifted the voltage-dependent activation of M-currents by about 20 mV to more negative potentials and caused 20 mV hyperpolarisations of the membrane potential. In the absence of retigabine, oxotremorine M depolarised the neurons and elicited action potential discharges in 8 of 23 neurons; in its presence, oxotremorine M still caused equal depolarisations, but always failed to trigger action potentials. Action potential waveforms caused by current injection were not affected by retigabine. These results indicate that the inhibition of M-currents is

  19. LY2033298, a positive allosteric modulator at muscarinic M₄ receptors, enhances inhibition by oxotremorine of light-induced phase shifts in hamster circadian activity rhythms.

    PubMed

    Gannon, Robert L; Millan, Mark J

    2012-11-01

    Entrainment of circadian rhythms to the light-dark cycle is essential for restorative sleep, and abnormal sleep timing is implicated in central nervous system (CNS) disorders like depression, schizophrenia, and Alzheimer's disease. Many transmitters, including acetylcholine, that exerts its actions via muscarinic receptors modulate the suprachiasmatic nucleus, the master pacemaker. Since positive allosteric modulators of muscarinic M(4) receptors are candidates for treatment of mood and cognitive deficits of CNS disorders, it is important to evaluate their circadian actions. The effects of intraperitoneally applied muscarinic agents on circadian wheel-running rhythms were measured employing hamsters, a model organism for studying activity rhythms. Systemic administration of the muscarinic receptor agonist oxotremorine (0.01-0.04 mg/kg) inhibited light-induced phase delays and advances of hamster circadian wheel-running rhythms. The M₄ positive allosteric modulator, LY2033298 (10-40 mg/kg), had no effect on light-induced phase shifts when administered alone, yet significantly enhanced (at 20 mg/kg) the inhibitory influence of oxotremorine on light-induced phase delays. In addition, the muscarinic receptor antagonist, scopolamine, which was without effect on light-induced phase shifts when administered alone (0.001-0.1 mg/kg), antagonized (at 0.1 mg/kg) the inhibitory effect of oxotremorine and LY2033298 on light-induced phase delays. These results are the first to demonstrate that systemically applied muscarinic receptor agonists modulate circadian activity rhythms, and they also reveal a specific role for M₄ receptors. It will be of importance to evaluate circadian actions of psychotropic drugs acting via M₄ receptors, since they may display beneficial properties under pathological conditions.

  20. Effect of a muscarinic M3 receptor agonist on gastric motility.

    PubMed

    Chiba, Toshimi; Kudara, Norihiko; Sato, Masaki; Inomata, Masaaki; Orii, Seishi; Suzuki, Kazuyuki

    2007-11-01

    Muscarinic M3 receptors exist in the gastrointestinal wall in humans and the muscarinic M3 agonist cevimeline hydrochloride (Evoxac) is a candidate therapeutic agent for the treatment of xerostomia in Sjögren's syndrome. However, M3 receptor agonists are not known to show efficacy for diseases associated with abnormal gastrointestinal motility. Herein the effects are reported of cevimeline on gastric motility in two patients with non-ulcer dyspepsia. The patients both received long-term proton pump inhibitor therapy for 6 months, but their symptoms persisted. Then cevimeline was administered orally for 8 weeks at 30 mg three times daily (90 mg/day) and their dyspepsia symptoms improved. Electrogastrography was performed to examine gastric motility before and after administration of the M3 agonist. The fasting or nocturnal wave rate was significantly increased after administration compared with before administration, but no significant postprandial changes were seen. No adverse effects of cevimeline were observed. This drug might be a candidate therapeutic agent for non-ulcer dyspepsia. Because its postprandial effects on gastrointestinal motility are unclear, a dose-finding clinical study should be performed in the future.

  1. Agonist-Antagonist Interaction at the Cholinergic Receptor of Denervated Diaphragm,

    DTIC Science & Technology

    A study has been made of the cholinergic receptor induced by chronic denervation in the rat diaphragm. The agonists acetylcholine, carbachol and...muscle cells. Supramaximally effective doses of agonists caused desensitization of the preparation; however, there was no cross tachyphylaxis between acetylcholine and carbachol . (Author)

  2. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias

    PubMed Central

    Heiss, Jaime; Zhang, Danhui; Quik, Maryka

    2016-01-01

    L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice expressing cre-recombinase under the control of the choline acetyltransferase promoter (ChAT-Cre) were lesioned by unilateral injection of 6-hydroxydopamine. AAV5-ChR2-eYFP or AAV5-control-eYFP was injected into the dorsolateral striatum, and optical fibers implanted. After stable virus expression, mice were treated with L-dopa. They were then subjected to various stimulation protocols for 2 h and LIDs rated. Continuous stimulation with a short duration optical pulse (1-5 ms) enhanced LIDs. This effect was blocked by the general muscarinic acetylcholine receptor (mAChR) antagonist atropine indicating it was mAChR-mediated. By contrast, continuous stimulation with a longer duration optical pulse (20 ms to 1 s) reduced LIDs to a similar extent as nicotine treatment (~50%). The general nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine blocked the decline in LIDs with longer optical pulses showing it was nAChR-mediated. None of the stimulation regimens altered LIDs in control-eYFP mice. Lesion-induced motor impairment was not affected by optical stimulation indicating that cholinergic transmission selectively regulates LIDs. Longer pulse stimulation increased the number of c-Fos expressing ChAT neurons, suggesting that changes in this immediate early gene may be involved. These results demonstrate that striatal cholinergic interneurons play a critical role in LIDs and support the idea that nicotine treatment reduces LIDs via nAChR desensitization. PMID:26921469

  3. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.

    PubMed

    Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen

    2006-06-01

    One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.

  4. Altered coupling of muscarinic acetylcholine receptors in pancreatic acinar carcinoma of rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, J.L.; Warren, J.R.

    The structure and function of muscarinic acetylcholine receptors (mAChR) in acinar carcinoma cells have been compared to mAChR in normal pancreatic acinar cells. Similar 80 kD proteins identified by SDS-PAGE of tumor and normal mAChR affinity-labeled with the muscarinic antagonist /sup 3/H-propylbenzilyl-choline mustards, and identical binding of the antagonist N-methylscopolamine to tumor and normal cells (K/sub D/approx.4x10/sup -10/ M), indicate conservation of mAChR proteins in carcinoma cells. Carcinoma mAChR display homogeneous binding of the agonists carbamylcholine (CCh), K/sub D/approx.3x10/sup -5/ M, and oxotremorine (Oxo), K/sub D/approx.x10/sup -6/ M, whereas normal cells display heterogeneous binding, with a minor component of highmore » affinity interactions for CCh, K/sub D/approx.3x10/sup -6/ M, and Oxo, K/sub D/approx.2x/sup -17/ M, and a major component of low affinity interactions for CCh, K/sub D/approx.1x10/sup -4/ M, and Oxo, K/sub D/approx.2x10/sup -5/ M. Both carcinoma and normal cells exhibit concentration-dependent CCh-stimulated increase in cytosolic free Ca/sup 2 +/, as measured by intracellular Quin 2 fluorescence and /sup 45/Ca/sup 2 +/ efflux. However, carcinoma cells demonstrate 50% maximal stimulation of intracellular Ca/sup 2 +/ release at a CCh concentration (EC/sub 50/approx.6x10/sup -7/ M) one log below that observed for normal cells. The authors propose an altered coupling of mAChR to intracellular Ca/sup 2 +/ homeostasis in carcinoma cells, which is manifest as a single activated receptor state for agonist binding, and increased sensitivity to muscarinic receptor stimulation of Ca/sup 2 +/ release.« less

  5. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    PubMed

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. An Inotropic Action Caused by Muscarinic Receptor Subtype 3 in Canine Cardiac Purkinje Fibers

    PubMed Central

    Urushidani, Tetsuro; Tachibana, Shigehiro

    2013-01-01

    Objective. The objective of this study was to investigate the inotropic mechanisms and the related muscarinic receptor subtype of acetylcholine (ACh) in canine cardiac Purkinje fibers. Materials and Methods. Isolated Purkinje fiber bundles were used for the measurement of contraction. The receptor subtype was determined using PCR and real-time PCR methods. Results. ACh evoked a biphasic response with a transient negative inotropic effect followed by a positive inotropic effect in a concentration-dependent manner. The biphasic inotropic actions of ACh were inhibited by the pretreatment with atropine. Caffeine inhibited the positive inotropic effect of ACh. ACh increased inositol-1,4,5-trisphosphate content in the Purkinje fibers, which was abolished by atropine. Muscarinic subtypes 2 (M2) and 3 (M3) mRNAs were detected in the canine Purkinje fibers albeit the amount of M3 mRNA was smaller than M2 mRNA. M1 mRNA was not detected. Conclusion. These results suggest that the positive inotropic action of ACh may be mediated by the activation of IP3 receptors through the stimulation of M3 receptors in the canine cardiac Purkinje fibers. PMID:24260719

  7. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy.

    PubMed

    Scullion, Sarah E; Barker, Gareth R I; Warburton, E Clea; Randall, Andrew D; Brown, Jonathan T

    2018-02-26

    Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tau P301L . We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.

  8. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells.

    PubMed

    Inoue, Masumi; Harada, Keita; Matsuoka, Hidetada; Nakamura, Jun; Warashina, Akira

    2012-09-15

    Muscarinic receptors are expressed in the adrenal medullary (AM) cells of various mammals, but their physiological roles are controversial. Therefore, the ionic mechanism for muscarinic receptor-mediated depolarization and the role of muscarinic receptors in neuronal transmission were investigated in dissociated guinea-pig AM cells and in the perfused guinea-pig adrenal gland. Bath application of muscarine induced an inward current at -60 mV. This inward current was partially suppressed by quinine with an IC(50) of 6.1 μM. The quinine-insensitive component of muscarine-induced currents changed the polarity at -78 mV and was inhibited by bupivacaine, a TWIK-related acid-sensitive K(+) (TASK) channel inhibitor. Conversely, the current-voltage relationship for the bupivacaine-insensitive component of muscarine currents showed a reversal potential of -5 mV and a negative slope below -40 mV. External application of La(3+) had a double action on muscarine currents of both enhancement and suppression. Immunoblotting and immunocytochemistry revealed expression of TASK1 channels and cononical transient receptor potential channels 1, 4, 5, and 7 in guinea-pig AM cells. Retrograde application of atropine reversibly suppressed transsynaptically evoked catecholamine secretion from the adrenal gland. The results indicate that muscarinic receptor stimulation in guinea-pig AM cells induces depolarization through inhibition of TASK channels and activation of nonselective cation channels and that muscarinic receptors are involved in neuronal transmission from the splanchnic nerve.

  9. Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Nakamura, Jun; Warashina, Akira

    2012-01-01

    Muscarinic receptors are expressed in the adrenal medullary (AM) cells of various mammals, but their physiological roles are controversial. Therefore, the ionic mechanism for muscarinic receptor-mediated depolarization and the role of muscarinic receptors in neuronal transmission were investigated in dissociated guinea-pig AM cells and in the perfused guinea-pig adrenal gland. Bath application of muscarine induced an inward current at −60 mV. This inward current was partially suppressed by quinine with an IC50 of 6.1 μM. The quinine-insensitive component of muscarine-induced currents changed the polarity at −78 mV and was inhibited by bupivacaine, a TWIK-related acid-sensitive K+ (TASK) channel inhibitor. Conversely, the current-voltage relationship for the bupivacaine-insensitive component of muscarine currents showed a reversal potential of −5 mV and a negative slope below −40 mV. External application of La3+ had a double action on muscarine currents of both enhancement and suppression. Immunoblotting and immunocytochemistry revealed expression of TASK1 channels and cononical transient receptor potential channels 1, 4, 5, and 7 in guinea-pig AM cells. Retrograde application of atropine reversibly suppressed transsynaptically evoked catecholamine secretion from the adrenal gland. The results indicate that muscarinic receptor stimulation in guinea-pig AM cells induces depolarization through inhibition of TASK channels and activation of nonselective cation channels and that muscarinic receptors are involved in neuronal transmission from the splanchnic nerve. PMID:22744007

  10. Curcumin restores diabetes induced neurochemical changes in the brain stem of Wistar rats.

    PubMed

    Kumar, Peeyush T; George, Naijil; Antony, Sherin; Paulose, Cheramadathikudiyil Skaria

    2013-02-28

    Diabetes mellitus, when poorly controlled, leads to debilitating central nervous system (CNS) complications including cognitive deficits, somatosensory and motor dysfunction. The present study investigated curcumin's potential in modulating diabetes induced neurochemical changes in brainstem. Expression analysis of cholinergic, insulin receptor and GLUT-3 in the brainstem of streptozotocin (STZ) induced diabetic rats were studied. Radioreceptor binding assays, gene expression studies and immunohistochemical analysis were done in the brainstem of male Wistar rats. Our result showed that Bmax of total muscarinic and muscarinic M3 receptors were increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. mRNA level of muscarinic M3, α7-nicotinic acetylcholine, insulin receptors, acetylcholine esterase, choline acetyltransferase and GLUT-3 significantly increased and M1 receptor decreased in the brainstem of diabetic rats. Curcumin and insulin treatment restored the alterations and maintained all parameters to near control. The results show that diabetes is associated with significant reduction in brainstem function coupled with altered cholinergic, insulin receptor and GLUT-3 gene expression. The present study indicates beneficial effect of curcumin in diabetic rats by regulating the cholinergic, insulin receptor and GLUT-3 in the brainstem similar to the responses obtained with insulin therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  12. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  13. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    PubMed

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hydrostatic pressure and muscarinic receptors are involved in the release of inflammatory cytokines in human bladder smooth muscle cells.

    PubMed

    Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang

    2017-06-01

    Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.

  15. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences.

    PubMed Central

    Belvisi, M. G.; Patacchini, R.; Barnes, P. J.; Maggi, C. A.

    1994-01-01

    1. Exogenous tachykinins modulate cholinergic neurotransmission in rabbit and guinea-pig airways. We have investigated the effect of selective tachykinin receptor agonists and antagonists on cholinergic neurotransmission evoked by electrical field stimulation (EFS) of bronchial rings in rabbit, guinea-pig and human airways in vitro to assess which type of tachykinin receptor is mediating this facilitatory effect. 2. Bronchial rings were set up for isometric tension recording. Contractile responses to EFS (60 V, 0.4 ms, 2 Hz for 10 s every min) and exogenous acetylcholine (ACh) were obtained and the effects of selective tachykinin agonists and antagonists were investigated. 3. In rabbit bronchi the endogenous tachykinins, substance P (SP) and neurokinin A (NKA) (10 nM) potentiated cholinergic responses to EFS (by 287.6 +/- 121%, P < 0.01 and 181.4 +/- 56.5%, P < 0.001 respectively). 4. The NK1 receptor selective agonist, [Sar9]SP sulphone (10 nM) evoked a maximal facilitatory action on cholinergic responses of 334.9 +/- 63% (P < 0.01) (pD2 = 8.5 +/- 0.06) an effect which was blocked by the selective NK1-receptor antagonist, CP 96,345 (100 nM) (P < 0.05) but not by the NK2 receptor antagonist, MEN 10,376 (100 nM). The NK2 receptor selective agonist, [beta Ala8]NKA(4-10) (10 nM), produced a maximum enhancement of 278 +/- 83.5% (P < 0.01) (pD2 = 8.7 +/- 0.1) an effect which was blocked by MEN 10,376 (100 nM) (P < 0.05) and not by CP 96,345. [MePhe7]NKB, an NK3 receptor selective agonist was without effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7516799

  16. Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder.

    PubMed

    Ogoda, Masaki; Ito, Yoshihiko; Fuchihata, Yusuke; Onoue, Satomi; Yamada, Shizuo

    2016-05-01

    Muscarinic and purinergic (P2X) receptors play critical roles in bladder urothelium under physiological and pathological conditions. Aim of present study was to characterize these receptors in rat bladder urothelium and detrusor muscle using selective radioligands of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS) and αβ-methylene ATP [2,8-(3)H]tetrasodium salt ([(3)H]αβ-MeATP). Similar binding parameters for each radioligand were observed in urothelium and detrusor muscle. Pretreatment with N-(2-chloroethyl)-4-piperidinyl diphenylacetate (4-DAMP mustard) mustard revealed co-existence of M2 and M3 receptors, with the number of M2 receptors being larger in the urothelium and detrusor muscle. Intravesical administration of imidafenacin and Dpr-P-4 (N → O) (active metabolite of propiverine) displayed significant binding of muscarinic receptors in the urothelium and detrusor muscle. The treatment with cyclophosphamide (CYP) or resiniferatoxin (RTX) resulted in a significant decrease in maximal number of binding sites (Bmax) for [(3)H]NMS and/or [(3)H]αβ-MeATP in the urothelium and detrusor muscle. These results demonstrated that 1) pharmacological characteristics of muscarinic and P2X receptors in rat bladder urothelium were similar to those in the detrusor muscle, 2) that densities of these receptors were significantly altered by pretreatments with CYP and RTX, and 3) that these receptors may be pharmacologically affected by imidafenacin and Dpr-P-4 (N → O) which are excreted in the urine. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease.

    PubMed

    Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L

    2016-12-17

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.

  18. Cholinergic dysfunctions and enhanced oxidative stress in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats.

    PubMed

    Ansari, Reyaz W; Shukla, Rajendra K; Yadav, Rajesh S; Seth, Kavita; Pant, Aditya B; Singh, Dhirendra; Agrawal, Ashok K; Islam, Fakhrul; Khanna, Vinay K

    2012-11-01

    This study is focused on understanding the mechanism of neurobehavioral toxicity of lambda-cyhalothrin, a new generation type II synthetic pyrethroid in developing rats following their exposure from post-lactational day (PLD)22 to PLD49 and investigate whether neurobehavioral alterations are transient or persistent. Post-lactational exposure to lambda-cyhalothrin (1.0 or 3.0 mg/kg body weight, p.o.) affected grip strength and learning activity in rats on PLD50 and the persistent impairment of grip strength and learning was observed at 15 days after withdrawal of exposure on PLD65. A decrease in the binding of muscarinic-cholinergic receptors in frontocortical, hippocampal, and cerebellar membranes associated with decreased expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus was observed following exposure to lambda-cyhalothrin on PLD50 and PLD65. Exposure to lambda-cyhalothrin was also found to increase the expression of growth-associated protein-43 in hippocampus of rats on PLD50 and PLD65 as compared to controls. A significant increase in lipid peroxidation and protein carbonyl levels and decreased levels of reduced glutathione and activity of superoxide dismutase, catalase, and glutathione peroxidase in brain regions of lambda-cyhalothrin exposed rats were distinctly observed indicating increased oxidative stress. Inhibition of ChAT and AChE activity may cause down-regulation of muscarinic-cholinergic receptors consequently impairing learning activity in developing rats exposed to lambda-cyhalothrin. The data further indicate that long-term exposure to lambda-cyhalothrin at low doses may be detrimental and changes in selected behavioral and neurochemical end points may persist if exposure to lambda-cyhalothrin continues.

  19. Role of interstitial cells of Cajal in the generation and modulation of motor activity induced by cholinergic neurotransmission in the stomach.

    PubMed

    Zhang, R-X; Wang, X-Y; Chen, D; Huizinga, J D

    2011-09-01

    Interstitial cells of Cajal (ICC) are intimately linked to the enteric nervous system and a better understanding of the interactions between the two systems is going to advance our understanding of gut motor control. The objective of the present study was to investigate the role of ICC in the generation of gastric motor activity induced by cholinergic neurotransmission. Gastric motor activity was evoked through activation of intrinsic cholinergic neural activity, in in vitro muscle strips by electrical field stimulation, in the in vitro whole stomach by distension and in vivo by fluoroscopy after gavaging the stomach with barium sulfate. The cholinergic activity was assessed as that component of the effect of the stimulus that was sensitive to atropine. These experiments were carried out in wild-type and Ws/Ws rats that have few intramuscular ICC (ICC-IM) in the stomach. Under all three experimental conditions, cholinergic activity was prominent in both wild-type and W mutant rats providing evidence against the hypothesis that cholinergic neurotransmission to smooth muscle is primarily mediated by ICC-IM. Strong cholinergic activity in Ws/Ws rats was not due to upregulation of muscarinic receptors in ICC but possibly in smooth muscle of the antrum. Pacemaker ICC play a prominent role in the expression of motor activity induced by cholinergic activity and our data suggest that cholinergic neurotransmission to ICC affects the pacemaker frequency. © 2011 Blackwell Publishing Ltd.

  20. [Non-neuronal effects of muscarinic antagonists in the prophylaxis of stress].

    PubMed

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    We have studied the stress-limiting role of the immune reaction initiated by cholinergic antagonists and the influence of these drugs on the dynamics of antibody formation in the spleen and the blood serum corticosterone level. The protective effect of immune reaction initiated by methacine (muscarinic receptor antagonist) or hexamethonium (nicotinic receptor antagonist) in prevention of stress gastric ulcer in rats (induced by water immersion stress, WIS) was estimated upon administration of the drugs for 5 days (local response) or 14 days (systemic response) prior to WIS. The pharmacological effects of drugs were estimated upon their administration 30 minutes prior to WIS. It is shown that, if cholinergic antagonists affect the systemic immune response the induction of WIS at this level of immune reaction leads to the effective prevention of stress gastric ulcer. The administration of methacine (but not hexamethonium) 14 days prior to WIS effectively reduces gastric lesions up to 1.0 +/- 0.1 arbitrary units in comparison to 3.6 + 0.2 arbitrary units in the control group. Under effective prophylaxis, the number of antibody-forming cells (AFC/10(6) of splenocytes) and corticosterone concentration are close to their basal level, while under stress conditions, these parameters significantly increase up to 870 +/- 21 and 350 +/- 4 vs. 100 +/- 17 and 107 +/- 6 in the control group, accordingly. It is established that both methacine and hexamethonium remain immunologically active for 28 days and more: the maximum amount of AFC upon administration of hexamethonium and methacine was on the 5th day and 14th day, respectively. Thus, determination of the drug influence on the systemic immune response allows one to predict the non-neuronal effects of cholinergic antagonists and, in this way, to affect the pathogenesis of stress gastric ulcer. Estimation of the AFC response and corticosterone level after WIS shows the efficacy ofprophylaxis of the gastric stress lesion.

  1. Influence of volatile anesthetics on muscarinic receptor adenylate cyclase coupling in brain and heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, B.L.

    In the present study, the influence of four volatile anesthetics (enflurane, isoflurane, diethyl ether, and chloroform) on (1) muscarinic receptor binding parameters and (2) muscarnic regulation of adenylate cyclase activity was examined using membranes isolated from rat brain and heart. Membranes were equilibrated with each of the four anesthetics for 30 minutes and then during the binding assay. The data obtained can be summarized as follows: (1) volatile anesthetics increased receptor affinity for a radiolabeled antagonists, ({sup 3}H)N-methylscopolamine (({sup 3}H)MS), by decreasing its rate of dissociation in brain stem, but not in cardiac, membranes, (2) volatile anesthetics decreased high affinitymore » ({sup 3}H)Oxotremorine-M binding, (3) volatile anesthetics depressed or eliminated the guanine nucleotide sensitivity of agonist binding. The influence of volatile anesthetics on muscarinic regulation of adenylate cyclase enzyme activity was studied using {alpha}({sup 32}P)ATP as the substrate.« less

  2. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation

    PubMed Central

    2017-01-01

    Abstract We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABAA or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABAARs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABAAR and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia. PMID:29302615

  3. [Anti-cholinergic effect of Pluchea ovalis (pers.) Dc. (asteraceae) root extract on isolated Wistar rat tracheae].

    PubMed

    Agbonon, A; Aklikokou, K; Kwashie, E-G; Gbéassor, M

    2004-09-01

    Ethanolic extract of Pluchea ovalis roots inhibit acetylcholine-induced bronchoconstriction observed in asthma. To understand the mechanism of P. ovalis root extract on airway smooth muscle contraction, we investigated the anti-cholinergic effect of the ethanolic extract on isolated isolated tracheae of the Wistar rat. For this purpose, three experimental conditions of incubation were used: idomethacin, indomethacin+propranolol or indomethacin+propranolo+ promethazine. The extract was applied in all three conditions at 0.25 mg/ml for 10 minutes prior to cumulative doses of acetylcholine (10(-8) to 5.10(-4) g/ml). The extract reduced acetylcholine-induced contraction and could have an antagonistic effect on muscarinic receptors of the rat trachea.

  4. Muscarinic-agonist and guanine nucleotide stimulation of myo-inositol trisphosphate formation in membranes isolated from bovine iris sphincter smooth muscle: effects of short-term cholinergic desensitization.

    PubMed

    Honkanen, R E; Abdel-Latif, A A

    1989-01-01

    The effect of short-term cholinergic desensitization on muscarinic acetylcholine receptor (mAChR)-mediated activation of phospholipase C was investigated in membranes isolated from the bovine iris sphincter smooth muscle. Membranes prepared from normal or desensitized muscles, prelabeled with either [3H]myo-inositol or 32P from [gamma-32P]ATP, were incubated with a hydrolysis-resistant analogue of GTP, GTP gamma S, or GTP gamma S plus carbachol (CCh), and the production of [3H]myo-inositol 1,4,5-trisphosphate (IP3) and the breakdown of polyphosphoinositides were assessed. In normal membranes, GTP (greater than or equal to 1 mM), GTP gamma S (greater than 10 microM) and GTP gamma S (1 microM) plus CCh (10 microM), but not GDP or GDP beta S, increased phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and IP3 production. GTP gamma S increased IP3 accumulation in a time- and dose-dependent manner, and CCh, which had no effect on phospholipase C activity in the absence of GTP gamma S, potentiated the effects of GTP gamma S. The effect of CCh plus GTP gamma S on IP3 production was inhibited by atropine, had an absolute requirement for nM amounts of Ca2+ and was not affected by pertussis toxin. At higher concentrations (greater than 1 microM), Ca2+ alone induced PIP2 hydrolysis. Short-term exposure (less than 60 min) of the muscle to CCh (100 microM) did not affect the total number (Bmax) of mAChRs nor their affinity (KD) for [3H]-N-methylscopolamine. Desensitization did, however, result in: (1) a loss of the CCh-high affinity binding state of the sphincter mAChRs in a manner analogous to that produced by GTP gamma S; (2) a loss of the ability of GTP gamma S to affect CCh binding to the receptors; and (3) an attenuation of the GTP gamma S plus CCh-stimulated PIP2 hydrolysis. In conclusion, the data presented suggest that, in the iris smooth muscle, G-proteins are involved in the coupling of mAChRs to phospholipase C and that short-term cholinergic desensitization

  5. Cholinergic modulation of the parafacial respiratory group

    PubMed Central

    Boutin, Rozlyn C. T.; Alsahafi, Zaki

    2016-01-01

    Key points This study investigates the effects of cholinergic transmission on the expiratory oscillator, the parafacial respiratory group (pFRG) in urethane anaesthetized adult rats.Local inhibition of the acetyl cholinesterase enzyme induced activation of expiratory abdominal muscles and active expiration.Local application of the cholinomimetic carbachol elicited recruitment of late expiratory neurons, expiratory abdominal muscle activity and active expiration. This effect was antagonized by local application of the muscarinic antagonists scopolamine, J104129 and 4DAMP.We observed distinct physiological responses between the more medial chemosensitive region of the retrotrapezoid nucleus and the more lateral region of pFRG.These results support the hypothesis that pFRG is under cholinergic neuromodulation and the region surrounding the facial nucleus contains a group of neurons with distinct physiological roles. Abstract Active inspiration and expiration are opposing respiratory phases generated by two separate oscillators in the brainstem: inspiration driven by a neuronal network located in the preBötzinger complex (preBötC) and expiration driven by a neuronal network located in the parafacial respiratory group (pFRG). While continuous activity of the preBötC is necessary for maintaining ventilation, the pFRG behaves as a conditional expiratory oscillator, being silent in resting conditions and becoming rhythmically active in the presence of increased respiratory drive (e.g. hypoxia, hypercapnia, exercise and through release of inhibition). Recent evidence from our laboratory suggests that expiratory activity in the principal expiratory pump muscles, the abdominals, is modulated in a state‐dependent fashion, frequently occurring during periods of REM sleep. We hypothesized that acetylcholine, a neurotransmitter released in wakefulness and REM sleep by mesopontine structures, contributes to the activation of pFRG neurons and thus acts to promote the

  6. Frontal Decortication and Adaptive Changes in Striatal Cholinergic Neurons: Neuropharmacological and Behavioral Implications

    DTIC Science & Technology

    1990-09-28

    the muscarinic cholinergic agonist oxotremorine (OT’O) in the striatulm. Frontal decortication did not affect the activation of phosphoinositjde...Congress abstracts 3 List of abbreviations: ACh, acetylcholine; C h A T cholitie-o-acetyl/transferase; OTMVN, oxotremorine ; OXI, oxirucetam:, SDHACU

  7. Responses to central oxotremorine and scopolamine support the cholinergic control of male mating behavior in hamsters.

    PubMed

    Floody, Owen R; Lusk, Laina G

    2013-04-01

    The responses of hamsters to intracranial injections of the cholinergic agonist oxotremorine (OXO) implicate cholinergic mechanisms in the medial preoptic area (MPOA) in the control of male mating behavior. To extend these observations, we ran three studies of responses to cholinergic drugs delivered singly or in combination to the vicinity of the MPOA. The first tested responses to OXO, confirming its ability to reduce the postejaculatory interval. The second complemented the first by examining responses to MPOA microinjections of the cholinergic antagonist scopolamine (SCO). These caused several changes revolving around intromission. These included increases in intromission frequency and ejaculation latency. They also included a change in the patterning of intromissions, marked by continuous strings without the usual separation by dismounts. The final study resembled the others in examining the effects of MPOA injections of OXO and SCO but focused on the ability of each drug to antagonize responses to the other. Most of the responses to OXO and SCO individually replicated earlier findings, though the measures examined here also permitted the description of effects on some noncopulatory sexual behaviors, specifically the male's inspection of the female. However, the most interesting results may be those suggesting asymmetry in the responses to the addition of the second drug: Whereas responses to OXO tended to be antagonized by SCO, OXO was less effective at counteracting responses to SCO. Though the explanation of this asymmetry is not completely clear, it is consistent with previous suggestions of differences in the affinities of these drugs for subtypes of muscarinic receptors. Therefore, it suggests that the cholinergic synapses and circuits controlling distinct elements of male behavior could differ in their dependence on these receptors. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction.

    PubMed

    Miwa, Julie M; Lester, Henry A; Walz, Andreas

    2012-08-01

    The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.

  10. Muscarinic Receptor Occupancy and Cognitive Impairment: A PET Study with [11C](+)3-MPB and Scopolamine in Conscious Monkeys

    PubMed Central

    Yamamoto, Shigeyuki; Nishiyama, Shingo; Kawamata, Masahiro; Ohba, Hiroyuki; Wakuda, Tomoyasu; Takei, Nori; Tsukada, Hideo; Domino, Edward F

    2011-01-01

    The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43–59 and 65–89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11–24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described. PMID:21430646

  11. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131.

    PubMed

    Soultanova, Aichurek; Voigt, Anja; Chubanov, Vladimir; Gudermann, Thomas; Meyerhof, Wolfgang; Boehm, Ulrich; Kummer, Wolfgang

    2015-11-01

    The thymus is the site of T cell maturation which includes positive selection in the cortex and negative selection in the medulla. Acetylcholine is locally produced in the thymus and cholinergic signaling influences the T cell development. We recently described a distinct subset of medullary epithelial cells in the murine thymus which express the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT) and components of the canonical taste transduction cascade, i.e. transient receptor potential melastatin-like subtype 5 channel (TRPM5), phospholipase Cβ(2), and Gα-gustducin. Such a chemical phenotype is characteristic for chemosensory cells of mucosal surfaces which utilize bitter receptors for detection of potentially hazardous compounds and cholinergic signaling to initiate avoidance reflexes. We here demonstrate mRNA expression of bitter receptors Tas2r105, Tas2r108, and Tas2r131 in the murine thymus. Using a Tas2r131-tauGFP reporter mouse we localized the expression of this receptor to cholinergic cells expressing the downstream elements of the taste transduction pathway. These cells are distinct from the medullary thymic epithelial cells which promiscuously express tissue-restricted self-antigens during the process of negative selection, since double-labeling immunofluorescence showed no colocalization of autoimmune regulator (AIRE), the key mediator of negative selection, and TRPM5. These data demonstrate the presence of bitter taste-sensing signaling in cholinergic epithelial cells in the thymic medulla and opens a discussion as to what is the physiological role of this pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.

    PubMed

    Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin

    2017-03-22

    The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to

  13. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection

    PubMed Central

    Hetrick, Vaughn L.; Berke, Joshua D.

    2017-01-01

    The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex

  14. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    PubMed Central

    Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.

    2016-01-01

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310

  15. [Modulation of the cholinergic system during inflammation].

    PubMed

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    This review describes the effects of realization of the central and peripheral "cholinergic antiinflammatory pathway" in a model of endotoxic and anaphylactic shock. Under endotoxic shock conditions, a pharmacological correction by means of the central m-cholinomimetic action (electrical stimulation of the distal ends of nervus vagus after bilateral cervical vagotomy, surgical implantation of the stimulant devise, activation of efferent vagal neurons by means of muscarinic agonist) is directed toward the elimination of LPS-induced hypotension. During the anaphylaxis, peripheral effects of the cholinergic system induced by blocking m-AChR on the target cells (neuronal and non-neuronal lung cells) and acetylcholinesterase inhibition are related to suppression of the bronchoconstrictor response. The role of immune system in the pathogenesis of endotoxic shock is associated with the production of proinflammatory cytokines by macrophages, increase in IgM concentration, and complement activation, while the role in the pathogenesis of anaphylactic shock is associated with IgE, IgG1 augmentation. Effects of B cell stimulation may be important in hypoxia and in the prophylaxis of stress ulcers and other diseases. Plasma proteins can influence the effects of the muscarinic antagonist methacine: IgG enhance its action while albumin and CRP abolish it.

  16. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties.

    PubMed

    Kennedy, D O; Wake, G; Savelev, S; Tildesley, N T J; Perry, E K; Wesnes, K A; Scholey, A B

    2003-10-01

    Melissa officinalis (Lemon balm) is a herbal medicine that has traditionally been attributed with memory-enhancing properties, but which is currently more widely used as a mild sedative and sleep aid. In a previous study it was demonstrated that a commercial Melissa extract led to dose-specific increases in calmness, and dose-dependent decrements in timed memory task performance. However, the extract utilized in that study did not exhibit in vitro cholinergic receptor-binding properties. The current study involved an initial screening of samples of M. officinalis for human acetylcholinesterase inhibition and cholinergic receptor-binding properties. The cognitive and mood effects of single doses of the most cholinergically active dried leaf were then assessed in a randomized, placebo-controlled, double-blind, balanced crossover study. Following the in vitro analysis, 20 healthy, young participants received single doses of 600, 1000, and 1600 mg of encapsulated dried leaf, or a matching placebo, at 7-day intervals. Cognitive performance and mood were assessed predose and at 1, 3, and 6 h postdose using the Cognitive Drug Research computerized assessment battery and Bond-Lader visual analog scales, respectively. In vitro analysis of the chosen extract established IC(50) concentrations of 0.18 and 3.47 mg ml(-1), respectively, for the displacement of [(3)H]-(N)-nicotine and [(3)H]-(N)-scopolamine from nicotinic and muscarinic receptors in the human cerebral cortex tissue. However, no cholinesterase inhibitory properties were detected. The most notable cognitive and mood effects were improved memory performance and increased 'calmness' at all postdose time points for the highest (1600 mg) dose. However, while the profile of results was overwhelmingly favorable for the highest dose, decrements in the speed of timed memory task performance and on a rapid visual information-processing task increased with decreasing dose. These results suggest that doses of Melissa

  17. Cholinergic Neurotransmission: Function and Dysfunction, International Cholinergic Symposium (8th) Held at Montreal (Quebec) on 26-30 July 1992

    DTIC Science & Technology

    1992-12-31

    receptor were decreased. In the presence of nicotine 1.0pM, the Kd values of rat cerebral muscarinic receptor bound with its agonist P3H] oxotremorine -M...inhibitory effects of GTPrS on [1 3H] oxotremorine -M binding were potentiated.It is suggsted that the binding properties of brain muscarinic receptor...interval) the dose-response curves of M-agonists arecoline and oxotremorine for producing salivation shifted leftward. Above demonstrated phenomena

  18. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  19. Significance of Cholinergic and Peptidergic Nerves in Stress-Induced Ulcer and MALT Lymphoma Formation.

    PubMed

    Nakamura, Masahiko; Overby, Anders; Uehara, Akina; Oda, Masaya; Takahashi, Shinichi; Murayama, Somay Y; Matsui, Hidenori

    2017-10-30

    Backgound: The role of enteric nerves has previously been demonstrated in the formation of several gastric diseases. In the present review, the significance of the cholinergic nerves in stress-induced ulcer formation as well as the importance of substance P in the formation of gastric MALT lymphoma is discussed. The stress-induced ulcer was induced by the plaster bandage methods in rats. The gastric MALT lymphoma was formed by the peroral infection of gastric mucosal homogenate of the infected mouse in C57BL/6 mice. For the stress-induced ulcer, the distribution of the cholinergic nerves and muscarinic acetylcholine receptors was investigated by acetylcholinesterase histochemistry and autoradiography of water soluble compounds using 3H-quinuclidinyl benzilate was performed. To the MALT lymphoma study, the distribution of the substance P and effect of substance P antagonist, spantide II, was investigated by immunohistochemical studies. The stress induced ulcer formation was shown to be related to the hyperactivity of the cholinergic nerves. The gastric MALT lymphoma was shown to be related to the increased localization of substance P. Stress-induced ulceration as a model of hyperactivity of the cholinergic nerves was proved to be a useful approach, while substance P and its role in MALT lymphoma formation may serve as a tool to clarify the neuroimmune modulation of chronic infectious diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Neutrophil Recruitment and Articular Hyperalgesia in Antigen-Induced Arthritis are Modulated by the Cholinergic Anti-Inflammatory Pathway.

    PubMed

    Kanashiro, Alexandre; Talbot, Jhimmy; Peres, Raphael S; Pinto, Larissa G; Bassi, Gabriel S; Cunha, Thiago M; Cunha, Fernando Q

    2016-11-01

    The cholinergic anti-inflammatory pathway (CAP) is a complex neuroimmune mechanism triggered by the central nervous system to regulate peripheral inflammatory responses. Understanding the role of CAP in the pathogenesis of rheumatoid arthritis (RA) could help develop new therapeutic strategies for this disease. Therefore, we investigated the participation of this neuroimmune pathway on the progression of experimental arthritis. Using antigen-induced arthritis (AIA) model, we investigated in mice the effects of vagotomy or the pharmacological treatments with hexamethonium (peripheral nicotinic receptor antagonist), methylatropine (peripheral muscarinic receptor antagonist) or neostigmine (peripheral acetylcholinesterase inhibitor) on AIA progression. Unilateral cervical vagotomy was performed 1 week before the immunization protocol with methylated bovine serum albumin (mBSA), while drug administration was conducted during the period of immunization. On day 21, 6 hr after the challenge with mBSA injection in the femur-tibial joint, the local neutrophil migration and articular mechanical hyperalgesia were assessed. Herein, we observed that vagotomy or blockade of peripheral nicotinic (but not muscarinic) receptors exacerbated the clinical parameters of this disease. Moreover, peripheral acetylcholinesterase inhibition by neostigmine treatment promoted a reduction of neutrophil recruitment in the knee joint and articular hyperalgesia. Our results demonstrated that peripheral activation of CAP modulates experimental arthritis, providing a pre-clinical evidence of a potential therapeutic strategy for RA. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  1. Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness

    PubMed Central

    Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.

    2017-01-01

    Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102

  2. Agonist activation of cytosolic Ca2+ in subfornical organ cells projecting to the supraoptic nucleus

    NASA Technical Reports Server (NTRS)

    Johnson, R. F.; Beltz, T. G.; Sharma, R. V.; Xu, Z.; Bhatty, R. A.; Johnson, A. K.

    2001-01-01

    The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.

  3. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation.

    PubMed

    Toossi, Hanieh; Del Cid-Pellitero, Esther; Jones, Barbara E

    2017-01-01

    We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABA A or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABA A Rs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABA A R and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia.

  4. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin.

    PubMed

    Ferreira, G; Meurisse, M; Tillet, Y; Lévy, F

    2001-01-01

    The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective

  5. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens

    PubMed Central

    2017-01-01

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  6. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Muscarinic receptors mediate the endocrine-disrupting effects of an organophosphorus insecticide in zebrafish.

    PubMed

    Santos da Rosa, João Gabriel; Alcântara Barcellos, Heloísa Helena de; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Kalichak, Fabiana; Koakoski, Gessi; Acosta Oliveira, Thiago; Idalencio, Renan; Frandoloso, Rafael; Piato, Angelo L; José Gil Barcellos, Leonardo

    2017-07-01

    The glucocorticoid cortisol, the end product of hypothalamus-pituitary-interrenal axis in zebrafish (Danio rerio), is synthesized via steroidogenesis and promotes important physiological regulations in response to a stressor. The failure of this axis leads to inability to cope with environmental challenges preventing adaptive processes in order to restore homeostasis. Pesticides and agrichemicals are widely used, and may constitute an important class of environmental pollutants when reach aquatic ecosystems and nontarget species. These chemical compounds may disrupt hypothalamus-pituitary-interrenal axis by altering synthesis, structure or function of its constituents. We present evidence that organophosphorus exposure disrupts stress response by altering the expression of key genes of the neural steroidogenesis, causing downregulation of star, hsp70, and pomc genes. This appears to be mediated via muscarinic receptors, since the muscarinic antagonist scopolamine blocked these effects. © 2017 Wiley Periodicals, Inc.

  8. Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.

    DTIC Science & Technology

    1984-06-01

    after addition of the muscarinic agonist oxotremorine . Presynaptic Ach receptors were first reported to occur on nor- adrenergic terminals...muscarinic agonist, oxotremorine , reduced the output of [3H,-Ach by only 20% (Paper IV, Figure 4). This is a strong indication for the existence of...presynaptic muscarinic receptors, which modulate the release of Ach. The oxotremorine reduced release of [3H]-Ach upon stimulation was not mediated by a

  9. Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of nippostrongylus brasiliensis through induction of Th2 cytokines

    USDA-ARS?s Scientific Manuscript database

    Despite increased appreciation for the role of nicotinic receptors in the modulation of and response to inflammation, the contribution of muscarinic receptors to mucosal homeostasis, clearance of enteric pathogens, and modulation of immune cell function remains relatively undefined. Uninfected and N...

  10. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder.

    PubMed

    Pak, K J; Ostrom, R S; Matsui, M; Ehlert, F J

    2010-05-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg(-1)) 2-24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC(50) value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 microM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M(2) function is enhanced following streptozotocin treatment.

  11. Quantitative mRNA analysis of muscarinic acetylcholine receptors in the intestine of dairy cows with spontaneous caecal dilatation-dislocation.

    PubMed

    Ontsouka, E C; Steiner, A; Bruckmaier, R M; Blum, J W; Meylan, M

    2009-05-01

    Muscarinic receptors mediate acetylcholine-induced muscular contractions. In this study, mRNA levels of muscarinic receptor subtypes 2 and 3 (M(2) and M(3)) in the ileum, caecum, proximal loop of the ascending colon (PLAC) and external loop of the spiral colon (ELSC) were determined by quantitative polymerase chain reaction in seven cows with caecal dilatation-dislocation (CDD) and seven healthy control cows. Levels of M(2) were significantly lower in the caecum, PLAC and ELSC and levels of M(3) were significantly lower in the ileum, caecum, PLAC and ELSC of cows with CDD compared to healthy cows (P<0.05). Down-regulation of M(3) may play a role in the pathogenesis of CDD.

  12. Influence of differentiation on muscarinic receptors in N1E 115 neuroblastoma cells.

    PubMed

    Buyse, M A; Lefebvre, R A; Fraeyman, N H

    1989-01-01

    The effect of inducing morphological differentiation in N1E 115 mouse neuroblastoma cells on the number of muscarinic receptors and the ligand binding affinity was investigated using the lipophylic quinuclidinyl benzylate and the hydrophylic N-methylscopolamine as tritiated ligands. Induction of morphological differentiation was accompanied by a two- to three-fold increase of the number of receptors when assayed in a broken cell preparation; the ligand binding affinity was unaffected by differentiation. Using intact cells, this increase was not paralleled by a similar increase in binding sites accessible for N-methylscopolamine, which binds preferentially to extracellular sites.

  13. Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*

    PubMed Central

    Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.

    2014-01-01

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280

  14. Targeting cholinesterase inhibitor poisoning with a novel blocker against both nicotinic and muscarinic receptors.

    PubMed

    Luo, Wangqian; Ge, Xulin; Cui, Wenyu; Wang, Hai

    2010-08-01

    Clinicians have been treating poisoning by acetylcholinesterase inhibitors (ChEI) for more than half a century. However, the current atropine-centered therapy still cannot protect completely against all ChEIs, and poisoning by ChEIs is fatal in more than 20% of cases. Various solutions that try to enhance atropine's antimuscarinic effects have been used, but these fail to increase the antidotal effect, and their too potent muscarinic antagonism may produce incapacitating side effects. We hypothesized that, in the treatment of ChEI poisoning, the high death rate may not be attributed to the insufficient muscarinic antagonism but to the lack of nicotinic antagonism. To test this hypothesis, we designed and synthesized benthiactzine, a drug that blocks both muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors (nAChRs). A specific [(3)H]quinuclidinyl benzilate-binding assay showed that benthiactzine was much weaker than atropine in binding to five different mAChR subtypes or to mAChRs expressed in 14 different tissues. Electrophysiological measures were used to identify and characterize benthiactzine's antinicotinic effect on three typical neuronal nAChRs subtypes, alpha4beta2, alpha4beta4, and alpha7, which are expressed heterogenously in SH-EP1 cells. Finally, benthiactzine afforded better protection than atropine against the most lethal ChEI, VX or sarin, in a mouse model. These results indicate that the antidotal effect may not be directly related to the antidote's antimuscarinic effect and that the antinicotinic effect may provide additional protection against ChEI poisoning. This new drug may benefit future antidote discovery.

  15. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  16. Urothelial/lamina propria spontaneous activity and the role of M3 muscarinic receptors in mediating rate responses to stretch and carbachol.

    PubMed

    Moro, Christian; Uchiyama, Jumpei; Chess-Williams, Russ

    2011-12-01

    To investigate the effects of tissue stretch and muscarinic receptor stimulation on the spontaneous activity of the urothelium/lamina propria and identify the specific receptor subtype mediating these responses. Isolated strips of porcine urothelium with lamina propria were set up for in vitro recording of contractile activity. Muscarinic receptor subtype-selective antagonists were used to identify the receptors influencing the contractile rate responses to stretch and stimulation with carbachol. Isolated strips of urothelium with lamina propria developed spontaneous contractions (3.7 cycles/min) that were unaffected by tetrodotoxin, Nω-nitro-L-arginine, or indomethacin. Carbachol (1 μM) increased the spontaneous contractile rate of these tissue strips by 122% ± 27% (P < .001). These responses were significantly depressed in the presence of the M3-selective muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (10-30 nM) but were not affected by the M1-selective antagonist pirenzepine (30-100 nM) or the M2-selective antagonist methoctramine (0.1-1 μM). Stretching of the tissue also caused an increase in the spontaneous contractile rate, and these responses were abolished by atropine (1 μM) and low concentrations of 4-diphenylacetoxy-N-methylpiperidine methiodide (10 nM). Darifenacin, oxybutynin, tolterodine, and solifenacin (1 μM) all significantly depressed the frequency responses to carbachol (1 μM). The urothelium with the lamina propria exhibits a spontaneous contractile activity that is increased during stretch. The mechanism appears to involve endogenous acetylcholine release acting on M3 muscarinic receptors. Anticholinergic drugs used clinically depress the responses of these tissues, and this mechanism might represent an additional site of action for these drugs in the treatment of bladder overactivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    PubMed

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  18. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells.

    PubMed

    Cong, Xin; Zhang, Yan; Li, Jing; Mei, Mei; Ding, Chong; Xiang, Ruo-Lan; Zhang, Li-Wei; Wang, Yun; Wu, Li-Ling; Yu, Guang-Yan

    2015-06-15

    The epithelial cholinergic system plays an important role in water, ion and solute transport. Previous studies have shown that activation of muscarinic acetylcholine receptors (mAChRs) regulates paracellular transport of epithelial cells; however, the underlying mechanism is still largely unknown. Here, we found that mAChR activation by carbachol and cevimeline reduced the transepithelial electrical resistance (TER) and increased the permeability of paracellular tracers in rat salivary epithelial SMG-C6 cells. Carbachol induced downregulation and redistribution of claudin-4, but not occludin or ZO-1 (also known as TJP1). Small hairpin RNA (shRNA)-mediated claudin-4 knockdown suppressed, whereas claudin-4 overexpression retained, the TER response to carbachol. Mechanistically, the mAChR-modulated claudin-4 properties and paracellular permeability were triggered by claudin-4 phosphorylation through ERK1/2 (also known as MAPK3 and MAPK1, respectively). Mutagenesis assay demonstrated that S195, but not S199, S203 or S207, of claudin-4, was the target for carbachol. Subsequently, the phosphorylated claudin-4 interacted with β-arrestin2 and triggered claudin-4 internalization through the clathrin-dependent pathway. The internalized claudin-4 was further degraded by ubiquitylation. Taken together, these findings suggested that claudin-4 is required for mAChR-modulated paracellular permeability of epithelial cells through an ERK1/2, β-arrestin2, clathrin and ubiquitin-dependent signaling pathway. © 2015. Published by The Company of Biologists Ltd.

  19. Roles of threonine 192 and asparagine 382 in agonist and antagonist interactions with M1 muscarinic receptors

    PubMed Central

    Huang, Xi-Ping; Nagy, Peter I; Williams, Frederick E; Peseckis, Steven M; Messer, William S

    1999-01-01

    Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala.HM1 wild-type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H-(R)-QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors.The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors.Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen-bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor. PMID:10188986

  20. Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells.

    PubMed

    Shigemoto, T; Ohmori, H

    1990-01-01

    , glutamate and bradykinin did not induce Ca2+ responses in the hair cell. 8. ACh induced hyperpolarization of the hair cell membrane under current clamp, most probably by the activation of Ca2+ activated K+ conductance. Therefore, a cholinergic muscarinic receptor may mediate the inhibitory effects of efferent innervation observed in hair cells.

  1. Effects of novel muscarinic M3 receptor ligand C1213 in pulmonary arterial hypertension models.

    PubMed

    Ahmed, Mohamed; VanPatten, Sonya; Lakshminrusimha, Satyan; Patel, Hardik; Coleman, Thomas R; Al-Abed, Yousef

    2016-12-01

    Pulmonary hypertension (PH) is a complex disease comprising a pathologic remodeling and thickening of the pulmonary vessels causing an after load on the right heart ventricle that can result in ventricular failure. Triggered by oxidative stress, episodes of hypoxia, and other undetermined causes, PH is associated with poor outcomes and a high rate of morbidity. In the neonate, this disease has a similar etiology but is further complicated by the transition to breathing after birth, which requires a reduction in vascular resistance. Persistent pulmonary hypertension of the newborn (PPHN) is one form of PH that is frequently unresponsive to current therapies including inhaled nitric oxide (due to lack of proper absorption and diffusion), and other therapeutics targeting signaling mediators in vascular endothelium and smooth muscle. The need for novel agents, which target distinct pathways in pulmonary hypertension, remains. Herein, we investigated the therapeutic effects of novel muscarinic receptor ligand C1213 in models of PH We demonstrated that via M3 muscarinic receptors, C1213 induced activating- eNOS phosphorylation (serine-1177), which is known to lead to nitric oxide (NO) production in endothelial cells. Using signaling pathway inhibitors, we discovered that AKT and calcium signaling contributed to eNOS phosphorylation induced by C1213. As expected for an eNOS-stimulating agent, in ex vivo and in vivo models, C1213 triggered pulmonary vasodilation and induced both pulmonary artery and systemic blood pressure reductions demonstrating its potential value in PH and PPHN In brief, this proof-of-concept study provides evidence that an M3 muscarinic receptor functionally selective ligand stimulates downstream pathways leading to antihypertensive effects using in vitro, ex vivo, and in vivo models of PH. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    PubMed Central

    Pak, K. J.; Ostrom, R. S.; Matsui, M.

    2010-01-01

    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment. PMID:20349044

  3. Preclinical to Human Translational Pharmacology of the Novel M1 Positive Allosteric Modulator MK-7622.

    PubMed

    Uslaner, Jason M; Kuduk, Scott D; Wittmann, Marion; Lange, Henry S; Fox, Steve V; Min, Chris; Pajkovic, Natasa; Harris, Dawn; Cilissen, Caroline; Mahon, Chantal; Mostoller, Kate; Warrington, Steve; Beshore, Douglas C

    2018-06-01

    The current standard of care for treating Alzheimer's disease is acetylcholinesterase inhibitors, which nonselectively increase cholinergic signaling by indirectly enhancing activity of nicotinic and muscarinic receptors. These drugs improve cognitive function in patients, but also produce unwanted side effects that limit their efficacy. In an effort to selectively improve cognition and avoid the cholinergic side effects associated with the standard of care, various efforts have been aimed at developing selective M 1 muscarinic receptor activators. In this work, we describe the preclinical and clinical pharmacodynamic effects of the M 1 muscarinic receptor-positive allosteric modulator, MK-7622. MK-7622 attenuated the cognitive-impairing effects of the muscarinic receptor antagonist scopolamine and altered quantitative electroencephalography (qEEG) in both rhesus macaque and human. For both scopolamine reversal and qEEG, the effective exposures were similar between species. However, across species the minimum effective exposures to attenuate the scopolamine impairment were lower than for qEEG. Additionally, there were differences in the spectral power changes produced by MK-7622 in rhesus versus human. In sum, these results are the first to demonstrate translation of preclinical cognition and target modulation to clinical effects in humans for a selective M 1 muscarinic receptor-positive allosteric modulator. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.

    PubMed

    Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W

    2014-08-29

    G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Muscarinic acetylcholine M4 receptors play a critical role in oxotremorine-induced DARPP-32 phosphorylation at threonine 75 in isolated medium spiny neurons.

    PubMed

    Liu, Liqun; Huang, Yuqi; Huang, Qing; Zhao, Zhe; Yu, Jianqiang; Wang, Liyun

    2017-05-01

    Dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) play essential roles in dopamine (DA) transmission in the striatum. It is suggested that a link exists between muscarinic acetylcholine receptors (mAChRs) and DA/DARPP-32 signaling, but the molecular mechanisms mediating this relationship have not been elucidated. The predominant mAChRs subtypes in the striatum are M 1 and M 4 . In this study, we investigated the functions of these two receptors, particularly M 4 , in regulating cAMP production and DARPP-32 phosphorylation in rat striatal medium spiny neurons (MSNs). We used time-resolved fluorescence resonance energy transfer, immunofluorescence confocal microscopy, and western blot assays. In cultured intact MSNs, we confirmed that muscarinic M 1 and M 4 receptors were highly expressed. Notably, M 4 receptors were co-expressed with D 1 receptors in only a portion of the cultured MSNs. The nonselective muscarinic agonist oxotremorine M (OX) slightly enhanced cAMP production, but this effect was independent of M 1 or M 4 receptors. However, OX directly participated in DARPP-32 phosphorylation, phosphorylating DARPP-32 at Thr75 (the CDK5 site) and concomitantly de-phosphorylating DARPP-32 at Thr34 (the PKA site) in virtually cultured MSNs, whereas APO phosphorylated DARPP-32 at both Thr34 and Thr75. The OX-induced time-dependent increase in DARPP-32 phosphorylation at Thr75 was accompanied by increased p35 and CDK5 activity. Specifically, elevated immunoreactivity for phospho-DARPP-32-Thr75 and p35 was detected in M 4 receptor-expressing MSNs. Both genetic knockdown and pharmacologic inhibition of M 4 receptors with MT3, an M 4 receptor-selective antagonist, decreased the OX-induced DARPP-32-Thr75 phosphorylation in MSNs. These results indicate that the M 4 muscarinic receptor plays a critical role in modulating phosphorylation of DARPP-32-Thr75 in MSNs. The results suggest that M 4 receptor activation acts antagonistically with dopamine D 1 -like

  6. Nicotinic receptor abnormalities in the cerebellar cortex in autism.

    PubMed

    Lee, M; Martin-Ruiz, C; Graham, A; Court, J; Jaros, E; Perry, R; Iversen, P; Bauman, M; Perry, E

    2002-07-01

    Autism is a common developmental disorder associated with structural and inferred neurochemical abnormalities of the brain. Cerebellar abnormalities frequently have been identified, based on neuroimaging or neuropathology. Recently, the cholinergic neurotransmitter system has been implicated on the basis of nicotinic receptor loss in the cerebral cortex. Cerebellar cholinergic activities were therefore investigated in autopsy tissue from a series of autistic individuals. The presynaptic cholinergic enzyme, choline acetyltransferase, together with nicotinic and muscarinic receptor subtypes were compared in the cerebellum from age-matched mentally retarded autistic (eight), normal control (10) and non-autistic mentally retarded individuals (11). The nicotinic receptor binding the agonist epibatidine (the high affinity receptor subtype, consisting primarily of alpha3 and alpha4, together with beta2 receptor subunits) was significantly reduced by 40-50% in the granule cell, Purkinje and molecular layers in the autistic compared with the normal group (P < 0.05). There was an opposite increase (3-fold) in the nicotinic receptor binding alpha-bungarotoxin (to the alpha7 subunit) which reached significance in the granule cell layer (P < 0.05). These receptor changes were paralleled by a significant reduction (P < 0.05) and non-significant increase, respectively, of alpha4 and alpha7 receptor subunit immunoreactivity measured using western blotting. Immunohistochemically loss of alpha(4 )reactivity was apparent from Purkinje and the other cell layers, with increased alpha7 reactivity in the granule cell layer. There were no significant changes in choline acetyltransferase activity, or in muscarinic M1 and M2 receptor subtypes in autism. In the non-autistic mentally retarded group, the only significant abnormality was a reduction in epibatidine binding in the granule cell and Purkinje layers. In two autistic cases examined histologically, Purkinje cell loss was observed in

  7. Muscarinic receptor activation potentiates the effect of spinal cord stimulation on pain-related behavior in rats with mononeuropathy.

    PubMed

    Song, Zhiyang; Meyerson, Björn A; Linderoth, Bengt

    2008-05-02

    Spinal cord stimulation (SCS) has proven to be a valuable treatment in neuropathic pain. Our previous animal experiments performed on rat models of SCS and ensuing clinical trials have demonstrated that intrathecal (i.t.) administration of subeffective doses of certain drugs may enhance the pain relieving effect of SCS in cases with unsatisfactory SCS outcome. Recently, an augmented release of spinal acetylcholine acting on muscarinic receptors has been shown to be one of the mechanisms involved in SCS. The present study was performed to examine whether cold hypersensitivity and heat hyperalgesia in rats with partial sciatic nerve injuries can be attenuated by SCS in the same way as tactile hypersensitivity and to explore a possibly synergistic effect of SCS and a muscarinic receptor agonist, oxotremorine. Rats with signs of neuropathy were subjected to SCS applied in awake, freely moving condition. Oxotremorine was administered intrathecally. Tactile, cold and heat sensitivities were assessed by using von Frey filaments, cold spray and focused radiant heat, respectively. Oxotremorine i.t. dose-dependently suppressed the tactile hypersensitivity. SCS markedly increased withdrawal thresholds (WTs), withdrawal latencies and cold scores. When combining SCS with a subeffective dose of oxotremorine i.t., the suppressive effect of SCS on the pain-related symptoms was dramatically enhanced in rats failing to obtain a satisfactory effect with SCS alone. In conclusion, the combination of SCS and a drug with selective muscarinic receptor agonistic properties could be an optional therapy, when SCS per se has proven inefficient.

  8. Identification of four areas each enriched in a unique muscarinic receptor subtype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.

    The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC{sub 50} values and Hill coefficients for the inhibition of the binding of 0.2 nM ({sup 3}H)-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrusmore » receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine.« less

  9. Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors.

    PubMed

    Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S

    2017-06-05

    Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms

    PubMed Central

    Woods, S; Clarke, NN; Layfield, R; Fone, KCF

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT6 receptors are abundant in the hippocampus, nucleus accumbens and striatum, supporting their role in learning and memory. Selective 5-HT6 receptor antagonists produce pro-cognitive effects in several learning and memory paradigms while 5-HT6 receptor agonists have been found to enhance and impair memory. EXPERIMENTAL APPROACH The conditioned emotion response (CER) paradigm was validated in rats. Then we examined the effect of the 5-HT6 receptor antagonist, EMD 386088 (10 mg·kg−1, i.p.), and agonists, E-6801 (2.5 mg·kg−1, i.p.) and EMD 386088 (5 mg·kg−1, i.p.) on CER-induced behaviour either alone or after induction of memory impairment by the muscarinic receptor antagonist, scopolamine (0.3 mg·kg−1, i.p) or the NMDA receptor antagonist, MK-801 (0.1 mg·kg−1, i.p). KEY RESULTS Pairing unavoidable foot shocks with a light and tone cue during CER training induced a robust freezing response, providing a quantitative index of contextual memory when the rat was returned to the shock chamber 24 h later. Pretreatment (−20 min pre-training) with scopolamine or MK-801 reduced contextual freezing 24 h after CER training, showing production of memory impairment. Immediate post-training administration of 5-HT6 receptor antagonist, SB-270146, and agonists, EMD 386088 and E-6801, had little effect on CER freezing when given alone, but all significantly reversed scopolamine- and MK-801-induced reduction in freezing. CONCLUSION AND IMPLICATIONS Both the 5-HT6 receptor agonists and antagonist reversed cholinergic- and glutamatergic-induced deficits in associative learning. These findings support the therapeutic potential of 5-HT6 receptor compounds in the treatment of cognitive dysfunction, such as seen in Alzheimer's disease and schizophrenia. PMID:22568655

  11. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization.

    PubMed

    Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E

    1999-07-01

    Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become

  12. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    ERIC Educational Resources Information Center

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  13. Conformational changes in the M2 muscarinic receptor induced by membrane voltage and agonist binding

    PubMed Central

    Navarro-Polanco, Ricardo A; Galindo, Eloy G Moreno; Ferrer-Villada, Tania; Arias, Marcelo; Rigby, J Ryan; Sánchez-Chapula, José A; Tristani-Firouzi, Martin

    2011-01-01

    Abstract The ability to sense transmembrane voltage is a central feature of many membrane proteins, most notably voltage-gated ion channels. Gating current measurements provide valuable information on protein conformational changes induced by voltage. The recent observation that muscarinic G-protein-coupled receptors (GPCRs) generate gating currents confirms their intrinsic capacity to sense the membrane electrical field. Here, we studied the effect of voltage on agonist activation of M2 muscarinic receptors (M2R) in atrial myocytes and how agonist binding alters M2R gating currents. Membrane depolarization decreased the potency of acetylcholine (ACh), but increased the potency and efficacy of pilocarpine (Pilo), as measured by ACh-activated K+ current, IKACh. Voltage-induced conformational changes in M2R were modified in a ligand-selective manner: ACh reduced gating charge displacement while Pilo increased the amount of charge displaced. Thus, these ligands manifest opposite voltage-dependent IKACh modulation and exert opposite effects on M2R gating charge displacement. Finally, mutations in the putative ligand binding site perturbed the movement of the M2R voltage sensor. Our data suggest that changes in voltage induce conformational changes in the ligand binding site that alter the agonist–receptor interaction in a ligand-dependent manner. Voltage-dependent GPCR modulation has important implications for cellular signalling in excitable tissues. Gating current measurement allows for the tracking of subtle conformational changes in the receptor that accompany agonist binding and changes in membrane voltage. PMID:21282291

  14. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  15. Receptor activated bladder and spinal ATP release in neurally intact and chronic spinal cord injured rats

    PubMed Central

    Salas, Nilson A.; Somogyi, George T.; Gangitano, David A.; Boone, Timothy B.; Smith, Christopher P.

    2009-01-01

    Neurally intact (NI) rats and chronic spinal cord injured (SCI) rats were studied to determine how activation of mechanosensory or cholinergic receptors in the bladder urothelium evokes ATP release from afferent terminals in the bladder as well as in the spinal cord. Spinal cord transection was performed at the T9-T10 level 2–3 weeks prior to the experiment and a microdialysis fiber was inserted in the L6-S1 lumbosacral spinal cord. Mechanically evoked (i.e. 10cm/w bladder pressure) ATP release into the bladder lumen was approximately 6.5 fold higher in SCI compared to NI rats (p<0.05). Intravesical carbachol (CCh) induced a significantly greater release of ATP in the bladder from SCI as compared to NI rats (3424.32 ± 1255.57 vs. 613.74 ± 470.44 pmol/ml, respectively, p<0.05). However, ATP release in NI or SCI rats to intravesical CCh was not affected by the muscarinic antagonist atropine (Atr). Spinal release of ATP to bladder stimulation with 10cm/w pressure was 5-fold higher in SCI compared to NI rats (p<0.05). CCh also induced a significantly greater release of spinal ATP in SCI rats compared to controls (4.3 ± 0.9 vs. 0.90 ± 0.15 pmol, p < 0.05). Surprisingly, the percent inhibitory effect of Atr on CCh-induced ATP release was significantly less in SCI as compared to NI rats (49% vs. 89%, respectively). SCI induces a dramatic increase in intravesical pressure and cholinergic receptor evoked bladder and spinal ATP release. Muscarinic receptors do not mediate intravesical CCh induced ATP release into the bladder lumen in NI or SCI rats. In NI rats sensory muscarinic receptors are the predominant mechanism by which CCh induces ATP release from primary afferents within the lumbosacral spinal cord. Following SCI, however, nicotinic or purinergic receptor mechanisms become active, as evidenced by the fact that Atr was only partially effective in inhibiting CCh-induced spinal ATP release. PMID:17067723

  16. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging.

    PubMed

    Sultzer, David L; Melrose, Rebecca J; Riskin-Jones, Hannah; Narvaez, Theresa A; Veliz, Joseph; Ando, Timothy K; Juarez, Kevin O; Harwood, Dylan G; Brody, Arthur L; Mandelkern, Mark A

    2017-04-01

    To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[ 18 F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: r s  = -0.55, p = 0.008; right: r s  = -0.50, p = 0.02; N = 22) and hippocampus (left: r s  = -0.65, p = 0.001; right: r s  = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: r s  = -0.50, p = 0.01; right: r s  = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score. Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target. Published by Elsevier Inc.

  17. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  18. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors.

    PubMed

    Nunes, Eric J; Randall, Patrick A; Podurgiel, Samantha; Correa, Mercè; Salamone, John D

    2013-11-01

    Mesolimbic dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation and effort-related processes. Although nucleus accumbens (NAc) DA depletions or antagonism leave aspects of appetite and primary food motivation intact, rats with impaired DA transmission reallocate their instrumental behavior away from food-reinforced tasks with high response requirements, and instead select less effortful food-seeking behaviors. Previous work showed that adenosine A2A antagonists can reverse the effects of DA D2 antagonists on effort-related choice, and that stimulation of adenosine A2A receptors produces behavioral effects that are similar to those induced by DA antagonism. The present review summarizes the literature on the role of NAc DA and adenosine in effort-related processes, and also presents original data on the effects of local stimulation of muscarinic acetylcholine receptors in NAc core. Local injections of the muscarinic agonist pilocarpine directly into NAc core produces shifts in effort-related choice behavior similar to those induced by DA antagonism or A2A receptor stimulation, decreasing lever pressing but increasing chow intake in rats responding on a concurrent fixed ratio/chow feeding choice task. In contrast, injections into a neostriatal control site dorsal to the NAc were ineffective. The actions of pilocarpine on this task were attenuated by co-administration of the muscarinic antagonist scopolamine. Thus, drugs that act on DA, adenosine A2A, and muscarinic receptors regulate effort-related choice behavior, which may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, fatigue or anergia that can be observed in depression and other disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Muscarinic Ca2+ responses resistant to muscarinic antagonists at perisynaptic Schwann cells of the frog neuromuscular junction.

    PubMed Central

    Robitaille, R; Jahromi, B S; Charlton, M P

    1997-01-01

    1. Acetylcholine causes a rise of intracellular Ca2+ in perisynaptic Schwann cells (PSCs) of the frog neuromuscular junction. The signalling pathway was characterized using the fluorescent Ca2+ indicator fluo-3 and fluorescence microscopy. 2. Nicotinic antagonists had no effect on Ca2+ responses evoked by ACh and no Ca2+ responses were evoked with the nicotinic agonist nicotine. The muscarinic agonists muscarine and oxotremorine-M induced Ca2+ signals in PSCs. 3. Ca2+ responses remained unchanged when extracellular Ca2+ was removed, indicating that they are due to the release of Ca2+ from internal stores. Incubation with pertussis toxin did not alter the Ca2+ signals induced by muscarine, but did block depression of transmitter release induced by adenosine and prevented Ca2+ responses in PSCs induced by adenosine. 4. The general muscarinic antagonists atropine, quinuclidinyl benzilate and N-methyl-scopolamine failed to block Ca2+ responses to muscarinic agonists. Atropine (at 20,000-fold excess concentration) also failed to reduce the proportion of cells responding to a threshold muscarine concentration sufficient to cause responses in less than 50% of cells. Only the allosteric, non-specific blocker, gallamine (1-10 microM) was effective in blocking muscarine-induced Ca2+ responses. 5. In preparations denervated 7 days prior to experiments, low concentrations of atropine reversibly and completely blocked Ca2+ responses to muscarine. 6. The lack of blockade by general muscarinic antagonists in innervated, in situ preparations suggests that muscarinic Ca2+ responses at PSCs are not mediated by any of the five known muscarinic receptors or that post-translational modification prevented antagonist binding. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:9365908

  20. Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex.

    PubMed

    Major, Alex J; Vijayraghavan, Susheel; Everling, Stefan

    2018-01-31

    Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers. SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can

  1. Separating Analgesia from Reward within the Ventral Tegmental Area

    PubMed Central

    Schifirneţ, Elena; Bowen, Scott E.; Borszcz, George S.

    2014-01-01

    Activation of the dopaminergic mesolimbic reward circuit that originates in the ventral tegmental area (VTA) is postulated to preferentially suppress emotional responses to noxious stimuli, and presumably contributes to the addictive liability of strong analgesics. VTA dopamine neurons are activated via cholinergic afferents and microinjection of carbachol (cholinergic agonist) into VTA is rewarding. Here, we evaluated regional differences within VTA in the capacity of carbachol to suppress rats' affective response to pain (vocalization afterdischarges, VADs) and to support conditioned place preference (CPP) learning. As carbachol is a non-specific agonist, muscarinic and nicotinic receptor involvement was assessed by administering atropine (muscarinic antagonist) and mecamylamine (nicotinic antagonist) into VTA prior to carbachol treatment. Unilateral injections of carbachol (4 μg) into anterior VTA (aVTA) and posterior VTA (pVTA) suppressed VADs and supported CPP; whereas, injections into midVTA failed to effect either VADs or CPP. These findings corroborate the hypothesis that the neural substrates underlying affective analgesia and reward overlap. However, the extent of the overlap was only partial. Whereas both nicotinic and muscarinic receptors contributed to carbachol-induced affective analgesia in aVTA, only muscarinic receptors mediated the analgesic action of carbachol in pVTA. The rewarding effects of carbachol are mediated by the activation of both nicotinic and muscarinic receptors in both aVTA and pVTA. The results indicate that analgesia and reward are mediated by separate cholinergic mechanisms within pVTA. Nicotinic receptor antagonism within pVTA failed to attenuate carbachol-induced analgesia, but prevented carbachol-induced reward. As addictive liability of analgesics stem from their rewarding properties, the present findings suggest that these processes can be neuropharmacologically separated within pVTA. PMID:24434773

  2. Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2009-04-01

    Previous work provided indirect evidence that the neurotrophic factor neurturin (NRTN) is required for normal cholinergic innervation of the heart. This study used nrtn knockout (KO) and wild-type (WT) mice to determine the effect of nrtn deletion on cardiac cholinergic innervation and function in the adult heart. Immunohistochemistry, confocal microscopy, and quantitative image analysis were used to directly evaluate intrinsic cardiac neuronal development. Atrial acetylcholine (ACh) levels were determined as an indirect index of cholinergic innervation. Cholinergic function was evaluated by measuring negative chronotropic responses to right vagal nerve stimulation in anaesthetized mice and responses of isolated atria to muscarinic agonists. KO hearts contained only 35% the normal number of cholinergic neurons, and the residual cholinergic neurons were 15% smaller than in WT. Cholinergic nerve density at the sinoatrial node was reduced by 87% in KOs, but noradrenergic nerve density was unaffected. Atrial ACh levels were substantially lower in KO mice (0.013 +/- 0.004 vs. 0.050 +/- 0.011 pmol/microg protein; P < 0.02) as expected from cholinergic neuron and nerve fibre deficits. Maximum bradycardia evoked by vagal stimulation was reduced in KO mice (38 +/- 6% vs. 69 +/- 3% decrease at 20 Hz; P < 0.001), and chronotropic responses took longer to develop and fade. In contrast to these deficits, isolated atria from KO mice had normal post-junctional sensitivity to carbachol and bethanechol. These findings demonstrate that NRTN is essential for normal cardiac cholinergic innervation and cholinergic control of heart rate. The presence of residual cardiac cholinergic neurons and vagal bradycardia in KO mice suggests that additional neurotrophic factors may influence this system.

  3. Elevated Hippocampal Cholinergic Neurostimulating Peptide precursor protein (HCNP-pp) mRNA in the amygdala in major depression.

    PubMed

    Bassi, Sabrina; Seney, Marianne L; Argibay, Pablo; Sibille, Etienne

    2015-04-01

    The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N = 16 pairs; males: N = 12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N = 6 pairs; males: N = 6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p < 0.0001), but not males, and of UCMS-exposed mice (males and females; p = 0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p = 0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p < 0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. M1-muscarinic receptors promote fear memory consolidation via phospholipase C and the M-current.

    PubMed

    Young, Matthew B; Thomas, Steven A

    2014-01-29

    Neuromodulators released during and after a fearful experience promote the consolidation of long-term memory for that experience. Because overconsolidation may contribute to the recurrent and intrusive memories of post-traumatic stress disorder, neuromodulatory receptors provide a potential pharmacological target for prevention. Stimulation of muscarinic receptors promotes memory consolidation in several conditioning paradigms, an effect primarily associated with the M1 receptor (M1R). However, neither inhibiting nor genetically disrupting M1R impairs the consolidation of cued fear memory. Using the M1R agonist cevimeline and antagonist telenzepine, as well as M1R knock-out mice, we show here that M1R, along with β2-adrenergic (β2AR) and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA). We also demonstrate that fear memory consolidation in the BLA is mediated in part by neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and is known to be inhibited by muscarinic receptors. Manipulating the M-current by administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine reverses the effects on consolidation caused by manipulating β2AR, D5R, M1R, and PLC. Finally, we show that cAMP and protein kinase A (cAMP/PKA) signaling relevant to this stage of consolidation is upstream of these neuromodulators and PLC, suggesting an important presynaptic role for cAMP/PKA in consolidation. These results support the idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a critical mechanism for promoting consolidation well after acquisition has occurred.

  5. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  6. Discrimination of putative M1 and M2 muscarinic receptor subtypes in rat brain by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Creese, I.

    1986-03-01

    The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealedmore » a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.« less

  7. Electrophysiological evidence showing muscarinic agonist-antagonist activities of N-desmethylclozapine using hippocampal excitatory and inhibitory neurons.

    PubMed

    Sugawara, Yuto; Kikuchi, Yui; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2016-07-01

    The atypical antipsychotic clozapine is widely used for treatment-resistant schizophrenic patients. Clozapine and its major active metabolite, N-desmethylclozapine (NDMC), have complex pharmacological properties, and interact with various neurotransmitter receptors. There are several biochemical studies reporting that NDMC exhibits a partial agonist profile at the human recombinant M1 muscarinic receptors. However, direct electrophysiological evidence showing the ability of NDMC to activate native M1 receptors in intact neurons is poor. Using rat hippocampal neurons, we previously demonstrated that activation of muscarinic receptors by a muscarinic agonist, oxotremorine M (oxo-M), induces a decrease in outward K(+)current at -40mV. In the present study, using this muscarinic current response we assessed agonist and antagonist activities of clozapine and NDMC at native muscarinic receptors in intact hippocampal excitatory and inhibitory neurons. Suppression of the oxo-M-induced current response by the M1 antagonist pirenzepine was evident only in excitatory neurons, while the M3 antagonist darifenacin was effective in both types of neurons. Muscarinic agonist activity of NDMC was higher than that of clozapine, higher in excitatory neurons than in inhibitory neurons, sensitive to pirenzepine, and partially masked when co-applied with clozapine. Muscarinic antagonist activity of clozapine as well as NDMC was not different between excitatory and inhibitory neurons, but clozapine was more effective than NDMC. These results demonstrate that NDMC has the ability to activate native M1 receptors expressed in hippocampal excitatory neurons, but its agonist activity might be limited in clozapine-treated patients because of the presence of excessive clozapine with muscarinic antagonist activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The allosteric site regulates the voltage sensitivity of muscarinic receptors.

    PubMed

    Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas

    2018-01-01

    Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Low levels of muscarinic M1 receptor-positive neurons in cortical layers III and V in Brodmann areas 9 and 17 from individuals with schizophrenia.

    PubMed

    Scarr, Elizabeth; Hopper, Shaun; Vos, Valentina; Seo, Myoung Suk; Everall, Ian Paul; Aumann, Timothy Douglas; Chunam, Gursharan; Dean, Brian

    2018-05-30

    Results of neuroimaging and postmortem studies suggest that people with schizophrenia may have lower levels of muscarinic M1 receptors (CHRM1) in the cortex, but not in the hippocampus or thalamus. Here, we use a novel immunohistochemical approach to better understand the likely cause of these low receptor levels. We determined the distribution and number of CHRM1-positive (CHRM1+) neurons in the cortex, medial dorsal nucleus of the thalamus and regions of the hippocampus from controls ( n = 12, 12 and 5, respectively) and people with schizophrenia ( n = 24, 24 and 13, respectively). Compared with controls, levels of CHRM1+ neurons in people with schizophrenia were lower on pyramidal cells in layer III of Brodmann areas 9 (-44%) and 17 (-45%), and in layer V in Brodmann areas 9 (-45%) and 17 (-62%). We found no significant differences in the number of CHRM1+ neurons in the medial dorsal nucleus of the thalamus or in the hippocampus. Although diagnostic cohort sizes were typical for this type of study, they were relatively small. As well, people with schizophrenia were treated with antipsychotic drugs before death. The loss of CHRM1+ pyramidal cells in the cortex of people with schizophrenia may underpin derangements in the cholinergic regulation of GABAergic activity in cortical layer III and in cortical/subcortical communication via pyramidal cells in layer V.

  10. The contributions of muscarinic receptors and changes in plasma aldosterone levels to the anti-hypertensive effect of Tulbaghia violacea

    PubMed Central

    2013-01-01

    Background Tulbaghia violacea Harv. (Alliaceae) is used to treat various ailments, including hypertension (HTN) in South Africa. This study aims to evaluate the contributions of muscarinic receptors and changes in plasma aldosterone levels to its anti-hypertensive effect. Methods In the acute experiments, methanol leaf extracts (MLE) of T. violacea (30–120 mg/kg), muscarine (0.16 -10 μg/kg), and atropine (0.02 - 20.48 mg/kg), and/or the vehicle (dimethylsulfoxide (DMSO) and normal saline (NS)) were respectively and randomly administered intravenously in a group of spontaneously hypertensive (SHR) weighing 300 to 350 g and aged less than 5 months. Subsequently, T. violacea (60 mg/kg) or muscarine (2.5 μg/kg) was infused into eight SHRs, 20 min after atropine (5.12 mg/kg) pre-treatment. In the chronic (21 days) experiments, the SHRs were randomly divided into three groups, and given the vehicle (0.2 ml/day of DMSO and NS), T. violacea (60 mg/kg/day) and captopril (10 mg/kg/day) respectively into the peritoneum, to investigate their effects on blood pressure (BP), heart rate (HR), and plasma aldosterone levels. Systolic BP and HR were measured using tail-cuff plethysmography during the intervention. BP and HR were measured via a pressure transducer connecting the femoral artery and the Powerlab at the end of each intervention in the acute experiment; and on day 22 in the chronic experiment. Results In the acute experiments, T. violacea, muscarine, and atropine significantly (p < 0.05) reduced BP dose-dependently. T. violacea and muscarine produced dose-dependent decreases in HR, while the effect of atropine on HR varied. After atropine pre-treatment, dose-dependent increases in BP and HR were observed with T. violacea; while the BP and HR effects of muscarine were nullified. In the chronic experiments, the T. violacea-treated and captropril-treated groups had signicantly lower levels of aldosterone in plasma when compared to vehicle

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, H.V.; Tien, X.Y.; Wallace, L.J.

    Muscarinic receptors involved in the secretory response evoked by electrical stimulation of submucosal neutrons were investigated in muscle-stripped flat sheets of guinea pig ileum set up in flux chambers. Neural stimulation produced a biphasic increase in short-circuit current due to active chloride secretion. Atropine and 4-diphenylacetoxy-N-methylpiperadine methiodide (4-DAMP) (10/sup -7/ M) were more potent inhibitors of the cholinergic phase of the response than was pirenzepine. Dose-dependent increases in base-line short-circuit current were evoked by carbachol and bethanechol; 4-hydroxy-2-butynyl trimethylammonium chloride (McN A343) produced a much smaller effect. Tetrodotoxin abolished the effects of McN A343 but did not alter the responsesmore » of carbachol and bethanechol. McN A343 significantly reduced the cholinergic phase of the neurally evoked response and caused a rightward shift of the carbachol dose-response curve. All muscarinic compounds inhibited (/sup 3/H)quinuclidinyl benzilate binding to membranes from muscosal scrapings, with a rank order of potency of 4-DAMP > pirenzepine > McN A343 > carbachol > bethanechol. These results suggest that acetylcholine released from submucosal neurons mediates chloride secretion by interacting with muscarinic cholinergic receptors that display a high binding affinity for 4-DAMP. Activation of neural muscarinic receptors makes a relatively small contribution to the overall secretory response.« less

  12. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  13. Variation of M3 muscarinic receptor expression in different prostate tissues and its significance.

    PubMed

    Song, Wei; Yuan, Mingzhen; Zhao, Shengtian

    2009-08-01

    To detect the expression of the muscarinic receptor (M receptor) in different prostate tissues and analyze the role of its subtype in prostatic oncogenesis. Thirty-six cases of normal prostate and benign prostatic hyperplasia, and 8 cases of prostatic tumor, were used in this study from the Shandong University, Shandong, China, between 2003-2006. The protein expressions of M1, M2, and M3 receptors in each group were determined by Western-blotting. The gene expressions of the M3 receptor and vascular endothelial growth factors (VEGF) in each group were determined by reverse transcriptase-polymerase chain reaction. The protein and gene expressions of the M3 receptor in the prostatic carcinoma group were higher than that of benign prostatic hyperplasia group (p=0.0001) and normal prostate group (p=0.0001). The M3 receptor and VEGF showed positive straight-line correlations of gene expressions with the 3 groups (r=0.4999, p=0.0001). The M3 receptor may have a close relationship with prostatic oncogenesis.

  14. Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.

    PubMed

    Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars

    2005-11-07

    Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.

  15. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase.

    PubMed

    Español, Alejandro Javier; Salem, Agustina; Rojo, Daniela; Sales, María Elena

    2015-11-01

    Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Topographical distribution of decrements and recovery in muscarinic receptors from rat brains repeatedly exposed to sublethal doses of soman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchill, L.; Pazdernik, T.L.; Jackson, J.L.

    1984-08-01

    (3H)Quinuclidinyl benzilate binding to rat brain muscarinic receptors decreased after repeated exposure to soman, a potent organophosphorus cholinesterase inhibitor. The topographical distribution of this decrement was analyzed by quantitative receptor autoradiography. After 4 weeks of soman, three times a week, quinuclidinyl benzilate binding decreased to 67 to 80% of control in frontal and parietal cortex, caudate-putamen, lateral septum, hippocampal body, dentate gyrus, superior colliculus, nucleus of the fifth nerve, and central grey. Minor or no decreases were observed in thalamic or hypothalamic nuclei, reticular formation, pontine nuclei, inferior colliculus, nucleus of the seventh nerve, and cerebellum. Scatchard analyses of saturationmore » curves using frontal cortex sections from soman-treated rats revealed a decrease in maximal quinuclidinyl benzilate binding from that in control rats and a return toward control levels by 24 days without any significant change in affinity. These brain areas showing significant decrements in muscarinic receptors recovered with a similar time course. An estimate of the time for 50% recovery for some of the brain areas was 14 days for superior colliculus, 16 days for cortex, and 19 days for hippocampal body. The application of quantitative receptor autoradiography to analyze receptor alterations has been valuable in localizing the telencephalon as a region more susceptible to change in receptor concentration.« less

  17. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors TrkA and p75

    PubMed Central

    Hoard, Jennifer L.; Hoover, Donald B.; Mabe, Abigail M.; Blakely, Randy D.; Feng, Ning; Paolocci, Nazareno

    2008-01-01

    Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart express enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e., synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine β-hydroxylase (DBH) and NE transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac neurons (ICNs

  18. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  19. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. 5-HT4 receptor agonists enhance both cholinergic and nitrergic activities in human isolated colon circular muscle.

    PubMed

    Cellek, S; John, A K; Thangiah, R; Dass, N B; Bassil, A K; Jarvie, E M; Lalude, O; Vivekanandan, S; Sanger, G J

    2006-09-01

    Previous studies have demonstrated mixed inhibitory and facilitatory effects of 5-hydroxytryptamine-4 (5-HT(4)) receptor agonists on electrical field stimulation (EFS)-induced responses in human isolated colon. Here we report three types of responses to EFS in human isolated colon circular muscle: monophasic cholinergic contraction during EFS, biphasic response (nitrergic relaxation during EFS followed by cholinergic contraction after termination of EFS) and triphasic response (cholinergic contraction followed by nitrergic relaxation during EFS and a tachykininergic contraction after EFS). The effects of two 5-HT(4) receptor agonists, prucalopride and tegaserod were then investigated on monophasic responses only. Each compound inhibited contractions during EFS in a concentration-dependent manner. In the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) however, prucalopride and tegaserod enhanced the contractions in a concentration-dependent manner. In strips where the tone was elevated with substance-P and treated with scopolamine, EFS-induced relaxations were enhanced by the two agonists. The above observed effects by the two agonists were abolished by 5-HT(4) receptor antagonist SB-204070. The two agonists did not alter the tone raised by substance-P in the presence of scopolamine and l-NAME and did not affect carbachol-induced contractions in the presence of tetrodotoxin. These results suggest that in the circular muscle of human colon, 5-HT(4) receptor agonists simultaneously facilitate the activity of neurones which release the inhibitory and excitatory neurotransmitters, nitric oxide and acetylcholine respectively.

  1. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors

    PubMed Central

    Zaghloul, Nahla; Addorisio, Meghan E.; Silverman, Harold A.; Patel, Hardik L.; Valdés-Ferrer, Sergio I.; Ayasolla, Kamesh R.; Lehner, Kurt R.; Olofsson, Peder S.; Nasim, Mansoor; Metz, Christine N.; Wang, Ping; Ahmed, Mohamed; Chavan, Sangeeta S.; Diamond, Betty; Tracey, Kevin J.; Pavlov, Valentin A.

    2017-01-01

    Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was

  2. M1-Muscarinic Receptors Promote Fear Memory Consolidation via Phospholipase C and the M-Current

    PubMed Central

    Young, Matthew B.

    2014-01-01

    Neuromodulators released during and after a fearful experience promote the consolidation of long-term memory for that experience. Because overconsolidation may contribute to the recurrent and intrusive memories of post-traumatic stress disorder, neuromodulatory receptors provide a potential pharmacological target for prevention. Stimulation of muscarinic receptors promotes memory consolidation in several conditioning paradigms, an effect primarily associated with the M1 receptor (M1R). However, neither inhibiting nor genetically disrupting M1R impairs the consolidation of cued fear memory. Using the M1R agonist cevimeline and antagonist telenzepine, as well as M1R knock-out mice, we show here that M1R, along with β2-adrenergic (β2AR) and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA). We also demonstrate that fear memory consolidation in the BLA is mediated in part by neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and is known to be inhibited by muscarinic receptors. Manipulating the M-current by administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine reverses the effects on consolidation caused by manipulating β2AR, D5R, M1R, and PLC. Finally, we show that cAMP and protein kinase A (cAMP/PKA) signaling relevant to this stage of consolidation is upstream of these neuromodulators and PLC, suggesting an important presynaptic role for cAMP/PKA in consolidation. These results support the idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a critical mechanism for promoting consolidation well after acquisition has occurred. PMID:24478341

  3. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  4. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    PubMed

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Transcriptional response to muscarinic acetylcholine receptor stimulation: regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells.

    PubMed

    Rössler, Oliver G; Henss, Isabell; Thiel, Gerald

    2008-02-01

    Carbachol-mediated activation of type M(3) muscarinic acetylcholine receptors induces the biosynthesis of the transcription factor Egr-1 in human SH-SY5Y neuroblastoma cells involving an activation of extracellular signal-regulated protein kinase. Carbachol triggered the phosphorylation of the ternary complex factor Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, and strikingly enhanced the transcriptional activation potential of Elk-1. Chromatin immunoprecipitation experiments revealed that Elk-1 binds in vivo to the 5'-upstream region of the Egr-1 gene in carbachol-stimulated neuroblastoma cells. Together, these data indicate that Elk-1 connects the intracellular signaling cascade elicited by activation of M(3) muscarinic acetylcholine receptors with the transcription of the Egr-1 gene. Lentiviral-mediated expression of either MAP kinase phosphatase-1 (MKP-1) or a constitutively active mutant of calcineurin A inhibited Egr-1 biosynthesis following carbachol stimulation, indicating that these phosphatases function as shut-off devices of muscarinic acetylcholine receptor signaling. Additionally, carbachol stimulation increased transcription of a chromatin-embedded collagenase promoter/reporter gene, showing that AP-1 activity is enhanced in carbachol-stimulated neuroblastoma. Expression experiments revealed that both MKP-1 and a constitutively active mutant of calcineurin A impaired carbachol-induced upregulation of AP-1 activity. The fact that carbachol stimulation of neuroblastoma cells activates the transcription factors Egr-1 and AP-1 suggests that changes in the gene expression pattern are an integral part of muscarinic acetylcholine receptor signaling.

  6. The interaction of trazodone with rat brain muscarinic cholinoceptors.

    PubMed

    Hyslop, D K; Taylor, D P

    1980-01-01

    The muscarinic receptor binding of trazodone, a new nontricyclic antidepressant, was compared with established tricyclic antidepressants. The ability to inhibit the binding of [3H]-quinuclidinyl benzilate in vitro was used for comparing atropine-like effects. Trazodone was found to have essentially no activity at the muscarinic acetylcholine binding site in comparison to the tricyclic antidepressants.

  7. The interaction of trazodone with rat brain muscarinic cholinoceptors.

    PubMed Central

    Hyslop, D. K.; Taylor, D. P.

    1980-01-01

    The muscarinic receptor binding of trazodone, a new nontricyclic antidepressant, was compared with established tricyclic antidepressants. The ability to inhibit the binding of [3H]-quinuclidinyl benzilate in vitro was used for comparing atropine-like effects. Trazodone was found to have essentially no activity at the muscarinic acetylcholine binding site in comparison to the tricyclic antidepressants. PMID:7470750

  8. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  9. Sympathetic sprouting in visual cortex stimulated by cholinergic denervation rescues expression of two forms of long-term depression at layer 2/3 synapses.

    PubMed

    McCoy, P A; McMahon, L L

    2010-07-14

    Cholinergic innervation of hippocampus and cortex is required for some forms of learning and memory. Several reports have shown that activation of muscarinic m1 receptors induces a long-term depression (mLTD) at glutamate synapses in hippocampus and in several areas of cortex, including perirhinal and visual cortices. This plasticity likely contributes to cognitive function dependent upon the cholinergic system. In rodent models, degeneration of hippocampal cholinergic innervation following lesion of the medial septum stimulates sprouting of adrenergic sympathetic axons, originating from the superior cervical ganglia (SCG), into denervated hippocampal subfields. We previously reported that this adrenergic sympathetic sprouting occurs simultaneously with a reappearance of cholinergic fibers in hippocampus and rescue of mLTD at CA3-CA1 synapses. Because cholinergic neurons throughout basal forebrain degenerate in aging and Alzheimer's disease, it is critical to determine if this compensatory sprouting occurs in other regions impacted by cholinergic cell loss. To this end, we investigated whether lesion of the nucleus basalis magnocellularis (NbM) to cholinergically denervate cortex stimulates adrenergic sympathetic sprouting and the accompanying increase in cholinergic innervation. Further, we assessed whether the presence of sprouting positively correlates with the ability of glutamate synapses in acute visual cortex slices to express mLTD and low frequency stimulation induced LTD (LFS LTD), another cholinergic dependent form of plasticity in visual cortex. We found that both mLTD and LFS LTD are absent in animals when NbM lesion is combined with bilateral removal of the SCG to prevent possible compensatory sprouting. In contrast, when the SCG remain intact to permit sprouting in animals with NbM lesion, cholinergic fiber density is increased concurrently with adrenergic sympathetic sprouting, and mLTD and LFS LTD are preserved. Our findings suggest that autonomic

  10. Muscarinic receptor occupation and receptor activation in the guinea-pig ileum by some acetamides related to oxotremorine.

    PubMed Central

    Ringdahl, B.

    1984-01-01

    The dissociation constants (KD values) and relative efficacies of seven acetamide analogues of oxotremorine, including two enantiomeric pairs, at muscarinic receptors in the guinea-pig isolated ileum were determined. The method used involved analysis of dose-response data before and after fractional inactivation of receptors with propylbenzilylcholine mustard. All of the compounds studied had lower affinities than oxotremorine, but some had substantially higher relative efficacies. Replacement of the pyrrolidine ring of N-methyl-N-(4- pyrrolidino -2- butynyl )acetamide(I), the parent compound in the series, by a dimethylamino or a trimethylammonium group decreased the affinity 32 and 4.5 fold, respectively, whereas the relative efficacy increased 5.7-8.3 times. There was no correlation between relative efficacies and affinities of the compounds. The structural requirements for high affinity and high efficacy appeared to be quite different. PMID:6733356

  11. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  12. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.

    PubMed

    Patel, Kruti R; Bai, Yan; Trieu, Kenneth G; Barrios, Juliana; Ai, Xingbin

    2017-10-01

    Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. © FASEB.

  13. Cholinergic and perfusion brain networks in Parkinson disease dementia.

    PubMed

    Colloby, Sean J; McKeith, Ian G; Burn, David J; Wyper, David J; O'Brien, John T; Taylor, John-Paul

    2016-07-12

    To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Forty-nine participants (25 PDD and 24 elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor-naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. © 2016 American Academy of Neurology.

  14. Cholinergic and perfusion brain networks in Parkinson disease dementia

    PubMed Central

    McKeith, Ian G.; Burn, David J.; Wyper, David J.; O'Brien, John T.; Taylor, John-Paul

    2016-01-01

    Objective: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. Methods: Forty-nine participants (25 PDD and 24 elderly controls) underwent 123I-QNB and 99mTc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). Results: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor–naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. Conclusion: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition. PMID:27306636

  15. Functional changes after prenatal opiate exposure related to opiate receptors' regulated alterations in cholinergic innervation.

    PubMed

    Yanai, Joseph; Huleihel, Rabab; Izrael, Michal; Metsuyanim, Sally; Shahak, Halit; Vatury, Ori; Yaniv, Shiri P

    2003-09-01

    Opioid drugs act primarily on the opiate receptors; they also exert their effect on other innervations resulting in non-opioidergic behavioural deficits. Similarly, opioid neurobehavioural teratogenicity is attested in numerous behaviours and neural processes which hinder the research on the mechanisms involved. Therefore, in order to be able to ascertain the mechanism we have established an animal (mouse) model for the teratogenicity induced by opioid abuse, which focused on behaviours related to specific brain area and innervation. Diacetylmorphine (heroin) and not morphine was applied because heroin exerts a unique action, distinguished from that of morphine. Pregnant mice were exposed to heroin (10 mg/kg per day) and the offspring were tested for behavioural deficits and biochemical alterations related to the septohippocampal cholinergic innervation. Some studies employing the chick embryo were concomitantly added as a control for the confounding indirect variables. Prenatal exposure to heroin in mice induced global hyperactivation both pre- and post-synaptic along the septohippocampal cholinergic innervation, including basal protein kinase C (PKC) activity accompanied by a desensitization of PKC activity in response to cholinergic agonist. Functionally, the heroin-exposed offspring displayed deficits in hippocampus-related behaviours, suggesting deficits in the net output of the septohippocampal cholinergic innervation. Grafting of cholinergic cells to the impaired hippocampus reversed both pre- and post-synaptic hyperactivity, resensitized PKC activity, and restored the associated behaviours to normality. Consistently, correlation studies point to the relative importance of PKC to the behavioural deficits. The chick model, which dealt with imprinting related to a different brain region, confirmed that the effect of heroin is direct. Taken together with studies by others on the effect of prenatal exposure to opioids on the opioidergic innervation and with what

  16. Aging and cholinergic responses in bovine trachealis muscle.

    PubMed Central

    Wills, M.; Douglas, J. S.

    1988-01-01

    1. The relative potencies of muscarinic agonists on bovine tracheal smooth muscle were unchanged as a consequence of aging and were carbachol greater than oxotremorine greater than muscarine greater than pilocarpine greater than McNeil A-343. 2. During aging, the potencies of carbachol, oxotremorine, McNeil A-343 and pilocarpine, but not muscarine, were reduced. 3. Maximal induced tensions to all the agents studied were reduced as a consequence of age. 4. Irreversible antagonism with benzilylcholine mustard showed that agonist efficacy was significantly reduced during aging. 5. Estimated receptor occupancy at the EC50 was significantly greater in tracheal tissues from the mature versus immature cows for every agonist studied. 6. The dissociation constants for full agonists (carbachol, oxotremorine and methacholine) were decreased with maturation while the converse was observed with partial agonists (McNeil A-343, pilocarpine). 7. We conclude that there are significant changes in the properties and coupling of muscarinic receptors during aging. These changes may contribute to the reduced airway reactivity seen in vivo. PMID:3390660

  17. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway.

    PubMed

    Pera, Tonio; Penn, Raymond B

    2014-06-01

    The M3 and M2 muscarinic acetylcholine receptors (mAChRs) and beta-2-adrenoceptors (β2ARs) are important regulators of airway cell function, and drugs targeting these receptors are among the first line drugs in the treatment of the obstructive lung diseases asthma and chronic obstructive lung disease (COPD). Cross-regulation or crosstalk between mAChRs and β2ARs in airway smooth muscle (ASM) helps determine the contractile state of the muscle, thus airway diameter and resistance to airflow. In this review we will detail mAChR and β2AR-signaling and crosstalk, focusing on events in the ASM cell but also addressing the function of these receptors in other cell types that impact airway physiology. We conclude by discussing how recent advances in GPCR pharmacology offer a unique opportunity to fine tune mAChR and β2AR signaling and their crosstalk, and thereby produce superior therapeutics for obstructive lung and other diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of progesterone-carbachol derivative on perfusion pressure and coronary resistance in isolated rat heart: via activation of the M2 muscarinic receptor.

    PubMed

    Figueroa-Valverde, Lauro; Diaz-Cedillo, Francisco; Garcia-Cervera, Elodia; Gomez, Eduardo Pool; Lopez-Ramos, Maria

    2014-01-01

    The present study was designed to investigate the effects of progesterone-carbachol derivative on perfusion pressure and coronary resistance in rats. An additional aim was to identify the molecular mechanisms involved. The Langendorff model was used to measure perfusion pressure and coronary resistance changes in isolated rat heart after progesterone-carbachol derivative alone and after the following compounds; mifepristone (progesterone receptor blocker), yohimbine (α2 adreno-receptor antagonist), ICI 118,551 (selective β2 receptor blocker), atropine (non-selective muscarinic receptor antagonist), methoctramine (antagonist of M2 receptor) and L-NAME (inhibitor of nitric oxide synthase). The results show that progesterone-carbachol derivative [10(-9) mM] significantly decreased perfusion pressure (P=0.005) and coronary resistance (P=0.006) in isolated rat heart. Additionally, the effect of progesterone-carbachol on perfusion pressure [10(-9) to 10(-4) mM] was only blocked in the presence of methoctramine and L-NAME. These data suggest that progesterone derivative exert its effect on perfusion pressure via activation of the M2 muscarinic. In addition, this phenomenon involves stimulation of nitric oxide synthase (NOS).

  19. Cholinergic and behavioral neurotoxicity of carbaryl and cadmium to larval rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Beauvais, S.L.; Jones, S.B.; Parris, J.T.; Brewer, S.K.; Little, E.E.

    2001-01-01

    Pesticides and heavy metals are common environmental contaminants that can cause neurotoxicity to aquatic organisms, impairing reproduction and survival. Neurotoxic effects of cadmium and carbaryl exposures were estimated in larval rainbow trout (RBT; Oncorhynchus mykiss) using changes in physiological endpoints and correlations with behavioral responses. Following exposures, RBT were videotaped to assess swimming speed. Brain tissue was used to measure cholinesterase (ChE) activity, muscarinic cholinergic receptor (MChR) number, and MChR affinity. ChE activity decreased with increasing concentrations of carbaryl but not of cadmium. MChR were not affected by exposure to either carbaryl or cadmium. Swimming speed correlated with ChE activity in carbaryl-exposed RBT, but no correlation occurred in cadmium-exposed fish. Thus, carbaryl exposure resulted in neurotoxicity reflected by changes in physiological and behavioral parameters measured, while cadmium exposure did not. Correlations between behavior and physiology provide a useful assessment of neurotoxicity.

  20. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells

    PubMed Central

    Cheng, Ming; Aronson, Peter S.

    2012-01-01

    Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M3 muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M3 muscarinic receptor, phospholipase C, PKC-δ, and c-Src. PMID:21956166

  1. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  2. A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor.

    PubMed

    Barchad-Avitzur, Ofra; Priest, Michael F; Dekel, Noa; Bezanilla, Francisco; Parnas, Hanna; Ben-Chaim, Yair

    2016-10-04

    G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging. Here, we examine the M2R and describe a voltage sensor that is comprised of tyrosine residues. This voltage sensor is crucial for the voltage dependence of agonist binding to the receptor. The tyrosine-based voltage sensor discovered here constitutes a noncanonical by which membrane proteins may sense voltage. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  4. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  5. Reactive oxygen species potentiate the negative inotropic effect of cardiac M2-muscarinic receptor stimulation.

    PubMed

    Peters, S L; Sand, C; Batinik, H D; Pfaffendorf, M; van Zwieten, P A

    2001-08-01

    The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on the contractile responses of rat isolated left atria to muscarinic receptor stimulation. ROS were generated by means of electrolysis (30 mA, 75 s) of the organ bath fluid. Twenty minutes after the electrolysis period, the electrically paced atria (3 Hz) were stimulated with the adenylyl cyclase activator forskolin (1 microM). Subsequently, cumulative acetylcholine concentration-response curves were constructed (0.01 nM-10 microM). In addition, phosphoinositide turnover and adenylyl cyclase activity under basal and stimulated conditions were measured. For these biochemical experiments we used the stable acetylcholine analogue carbachol. The atria exposed to reactive oxygen species were influenced more potently (pD2 control: 6.2 vs. 7.1 for electrolysis-treated atria, P<0.05) and more effectively (Emax control: 40% vs. 90% reduction of the initial amplitude, P<0.05) by acetylcholine. In contrast, ROS exposure did not alter the responses to adenosine, whose receptor is also coupled via a Gi-protein to adenylyl cyclase. The basal (40% vs. control, P<0.05) as well as the carbachol-stimulated (-85% vs. control, P<0.05) inositol-phosphate formation was reduced in atria exposed to ROS. The forskolin-stimulated adenylyl cyclase activity was identical in both groups but carbachol stimulation induced a more pronounced reduction in adenylyl cyclase activity in the electrolysis-treated atria. Accordingly we may conclude that ROS enhance the negative inotropic response of isolated rat atria to acetylcholine by both a reduction of the positive (inositide turnover) and increase of the negative (adenylyl cyclase inhibition) inotropic components of cardiac muscarinic receptor stimulation. This phenomenon is most likely M2-receptor specific, since the negative inotropic response to adenosine is unaltered by ROS exposure.

  6. The influences of metabotropic receptor activation on cellular signaling and synaptic function in amacrine cells.

    PubMed

    Gleason, Evanna

    2012-01-01

    Amacrine cells receive glutamatergic input from bipolar cells and GABAergic, glycinergic, cholinergic, and dopaminergic input from other amacrine cells. Glutamate, GABA, glycine, and acetylcholine (ACh) interact with ionotropic receptors and it is these interactions that form much of the functional circuitry in the inner retina. However, glutamate, GABA, ACh, and dopamine also activate metabotropic receptors linked to second messenger pathways that have the potential to modify the function of individual cells as well as retinal circuitry. Here, the physiological effects of activating dopamine receptors, metabotropic glutamate receptors, GABAB receptors, and muscarinic ACh receptors on amacrine cells will be discussed. The retina also expresses metabotropic receptors and the biochemical machinery associated with the synthesis and degradation of endocannabinoids and sphingosine-1-phosphate (S1P). The effects of activating cannabinoid receptors and S1P receptors on amacrine cell function will also be addressed. Copyright © Cambridge University Press, 2012

  7. Use of muscarinic agonists in the treatment of Sjögren's syndrome.

    PubMed

    Fox, R I; Konttinen, Y; Fisher, A

    2001-12-01

    Two muscarinic agonists (pilocarpine and cevimeline) have recently been approved for the treatment of symptoms of xerostomia in Sjögren's syndrome (SS). These agents stimulate the M1 and M3 receptors present on salivary glands, leading to increased secretory function. The use of these agents emphasizes the importance of neuroendocrine mechanisms in SS, which is considered an autoimmune disorder. We review recent studies on the release of cytokines and metalloproteinases in SS-affected glands and their influence on the release of and response to neurotransmitters. Also, we review the structure and function of muscarinic receptors as they may relate to SS and the potential use of novel muscarinic agonists in SS. (c)2001 Elsevier Science.

  8. A Threshold Model for Opposing Actions of Acetylcholine on Reward Behavior: Molecular Mechanisms and Implications for Treatment of Substance Abuse Disorders

    PubMed Central

    Grasing, Kenneth

    2016-01-01

    The cholinergic system plays important roles in both learning and addiction. Medications that modify cholinergic tone can have pronounced effects on behaviors reinforced by natural and drug reinforcers. Importantly, enhancing the action of acetylcholine (ACh) in the nucleus accumbens and ventral tegmental area (VTA) dopamine system can either augment or diminish these behaviors. A threshold model is presented that can explain these seemingly contradictory results. Relatively low levels of ACh rise above a lower threshold, facilitating behaviors supported by drugs or natural reinforcers. Further increases in cholinergic tone that rise above a second upper threshold oppose the same behaviors. Accordingly, cholinesterase inhibitors, or agonists for nicotinic or muscarinic receptors, each have the potential to produce biphasic effects on reward behaviors. Pretreatment with either nicotinic or muscarinic antagonists can block drug- or food- reinforced behavior by maintaining cholinergic tone below its lower threshold. Potential threshold mediators include desensitization of nicotinic receptors and biphasic effects of ACh on the firing of medium spiny neurons. Nicotinic receptors with high- and low-affinity appear to play greater roles in reward enhancement and inhibition, respectively. Cholinergic inhibition of natural and drug rewards may serve as mediators of previously described opponent processes. Future studies should evaluate cholinergic agents across a broader range of doses, and include a variety of reinforced behaviors. PMID:27316344

  9. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75.

    PubMed

    Hoard, J L; Hoover, D B; Mabe, A M; Blakely, R D; Feng, N; Paolocci, N

    2008-09-22

    Half of the cholinergic neurons of human and primate intrinsic cardiac ganglia (ICG) have a dual cholinergic/noradrenergic phenotype. Likewise, a large subpopulation of cholinergic neurons of the mouse heart expresses enzymes needed for synthesis of norepinephrine (NE), but they lack the vesicular monoamine transporter type 2 (VMAT2) required for catecholamine storage. In the present study, we determined the full scope of noradrenergic properties (i.e. synthetic enzymes and transporters) expressed by cholinergic neurons of mouse ICG, estimated the relative abundance of neurons expressing different elements of the noradrenergic phenotype, and evaluated the colocalization of cholinergic and noradrenergic markers in atrial nerve fibers. Stellate ganglia were used as a positive control for noradrenergic markers. Using fluorescence immunohistochemistry and confocal microscopy, we found that about 30% of cholinergic cell bodies contained tyrosine hydroxylase (TH), including the activated form that is phosphorylated at Ser-40 (pSer40 TH). Dopamine beta-hydroxylase (DBH) and norepinephrine transporter (NET) were present in all cholinergic somata, indicating a wider capability for dopamine metabolism and catecholamine uptake. Yet, cholinergic somata lacked VMAT2, precluding the potential for NE storage and vesicular release. In contrast to cholinergic somata, cardiac nerve fibers rarely showed colocalization of cholinergic and noradrenergic markers. Instead, these labels were closely apposed but clearly distinct from each other. Since cholinergic somata expressed several noradrenergic proteins, we questioned whether these neurons might also contain trophic factor receptors typical of noradrenergic neurons. Indeed, we found that all cholinergic cell bodies of mouse ICG, like noradrenergic cell bodies of the stellate ganglia, contained both tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptors. Collectively, these findings demonstrate that mouse intrinsic cardiac

  10. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    PubMed

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia

    PubMed Central

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A.; Quik, Maryka

    2016-01-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos+ D2 MSNs and decreased c-Fos+ non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. PMID:27658674

  12. Highly specific detection of muscarinic M3 receptor, G protein interaction and intracellular trafficking in human detrusor using Proximity Ligation Assay (PLA).

    PubMed

    Berndt-Paetz, Mandy; Herbst, Luise; Weimann, Annett; Gonsior, Andreas; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2018-05-01

    Muscarinic acetylcholine receptors (mAChRs) regulate a number of important physiological functions. Alteration of mAChR expression or function has been associated in the etiology of several pathologies including functional bladder disorders (e.g bladder pain syndrome/interstitial cystitis - BPS/IC). In a previous study we found specific mAChR expression patterns associated with BPS/IC, while correlation between protein and gene expression was lacking. Posttranslational regulatory mechanisms, e.g. altered intracellular receptor trafficking, could explain those differences. In addition, alternative G protein (GP) coupling could add to the pathophysiology via modulation of muscarinic signaling. In our proof-of-principle study, we addressed these questions in situ. We established PLA in combination with confocal laserscanning microscopy (CLSM) and 3D object reconstruction for highly specific detection and analysis of muscarinic 3 receptors (M3), G protein (GP) coupling and intracellular trafficking in human detrusor samples. Paraffin sections of formalin-fixed bladder tissue (FFPE) of BPS/IC patients receiving transurethral biopsy were examined by Cy3-PLA for M3 expression, coupling of M3 to GPs (G αq/11 , G αs , G αi ) and interaction of M3 with endocytic regulator proteins. Membranes were labeled with wheat germ agglutinin-Alexa Fluor ® 488, nuclei were stained with DAPI. Object density and co-localization were analyzed in 3D-reconstruction of high resolution confocal z-stacks. Confocal image stack processing resulted in well demarcated objects. Calculated receptor densities correlated significantly with existing confocal expression data, while significantly improved specificity of M3 detection by PLA was verified using bladder tissue samples from transgenic mice. 50-60% of the M3 receptor complexes were plasma membrane associated in human bladder detrusor. Application of PLA for M3 and GPs allowed visualization of M3-GP interactions and revealed individual GP

  13. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  14. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    PubMed

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Augmentation of neurally evoked cholinergic bronchoconstrictor responses by prejunctional NK2 receptors in the guinea-pig.

    PubMed

    Hey, J A; Danko, G; del Prado, M; Chapman, R W

    1996-02-01

    1. We examined the effect of exogenously administered tachykinins, neurokinin A (NKA), substance P (SP) and neurokinin B (NKB) on neurally mediated cholinergic bronchoconstrictor responses in guinea-pigs. 2. Electrical stimulation of regions in the dorsal medulla oblongata produced a cholinergic bronchospasm that was not affected by depletion of endogenous tachykinins with capsaicin pretreatment (50 mg kg-1, s.c., 1 week earlier) or by pretreatment with the neutral endopeptidase inhibitor, phosphoramidon (3 mg kg-1, i.v.). 3. Infusion of NKA (0.03-0.1 microgram kg-1 min-1), SP (1 microgram kg-1 min-1) or NKB (1 microgram kg-1 min-1) potentiated the bronchoconstrictor response to electrical stimulation of the dorsal medulla. The doses of tachykinins tested were subthreshold for direct activation of airway smooth muscle, because they were devoid of direct bronchoconstrictor effects. The relative rank order potency for augmentation of centrally induced bronchospasm was NKA > NKB approximately SP, suggesting activation of the NK2 receptor subtype. 4. Infusion of NKA, SP and NKB had no effect on bronchoconstrictor responses to i.v. methacholine (1 microgram kg-1) indicating that a prejunctional neural mechanism of action was responsible for the effects on CNS stimulation-induced bronchospasm. 5. Potentiation of the bronchoconstrictor response to dorsal medullary stimulation produced by infusion of NKA was blocked by pretreatment with the NK2 antagonist SR 48968 (1 mg kg-1, i.v.) but not by the NK1 antagoinst CP 96,345 (1 mg kg-1, i.v.). 6. The potentiation of CNS-induced bronchospasm produced by infusion of SP was partially inhibited by CP 96,345 (1 mg kg-1, i.v.) but not by SR 48968 (1 mg kg-1, i.v.). Treatment with combined SR 48968 (1 mg kg-1, i.v.) and CP 96,345 (1 mg kg-1, i.v.) completely blocked the SP-induced potentiation of CNS-stimulated bronchospasm. 7. These results identify an important modulatory role for NK2 receptors, located at prejunctional sites on

  16. Impaired muscarinic type 3 (M3) receptor/PKC and PKA pathways in islets from MSG-obese rats.

    PubMed

    Ribeiro, Rosane Aparecida; Balbo, Sandra Lucinei; Roma, Letícia Prates; Camargo, Rafael Ludemann; Barella, Luiz Felipe; Vanzela, Emerielle Cristine; de Freitas Mathias, Paulo Cesar; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Bonfleur, Maria Lúcia

    2013-07-01

    Monosodium glutamate-obese rats are glucose intolerant and insulin resistant. Their pancreatic islets secrete more insulin at increasing glucose concentrations, despite the possible imbalance in the autonomic nervous system of these rats. Here, we investigate the involvement of the cholinergic/protein kinase (PK)-C and PKA pathways in MSG β-cell function. Male newborn Wistar rats received a subcutaneous injection of MSG (4 g/kg body weight (BW)) or hyperosmotic saline solution during the first 5 days of life. At 90 days of life, plasma parameters, islet static insulin secretion and protein expression were analyzed. Monosodium glutamate rats presented lower body weight and decreased nasoanal length, but had higher body fat depots, glucose intolerance, hyperinsulinemia and hypertrigliceridemia. Their pancreatic islets secreted more insulin in the presence of increasing glucose concentrations with no modifications in the islet-protein content of the glucose-sensing proteins: the glucose transporter (GLUT)-2 and glycokinase. However, MSG islets presented a lower secretory capacity at 40 mM K(+) (P < 0.05). The MSG group also released less insulin in response to 100 μM carbachol, 10 μM forskolin and 1 mM 3-isobutyl-1-methyl-xantine (P < 0.05, P < 0.0001 and P < 0.01). These effects may be associated with a the decrease of 46 % in the acetylcholine muscarinic type 3 (M3) receptor, and a reduction of 64 % in PKCα and 36 % in PKAα protein expressions in MSG islets. Our data suggest that MSG islets, whilst showing a compensatory increase in glucose-induced insulin release, demonstrate decreased islet M3/PKC and adenylate cyclase/PKA activation, possibly predisposing these prediabetic rodents to the early development of β-cell dysfunction.

  17. Evidence of central cholinergic mechanisms in the appearance of affective aggressive behaviour: dissociation of aggression from autonomic and motor phenomena.

    PubMed

    Beleslin, D B; Samardzić, R

    1979-04-11

    Carbachol, muscarine, eserine and neostigmine injected into the cerebral ventricles of conscious cats evoked emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions. The main and the most impressive feature of the gross behavioural effects of intraventricular carbachol, muscarine, eserine and neostigmine in conscious cats was the affective type of aggression. However, neostigmine produced aggressive behaviour only in about one-quarter of the experiments. After intraventricular hemicholinium-3 and triethylcholine carbachol, muscarine, eserine and neostigmine elicited autonomic and motor phenomena. In these cats cholinomimetics and anticholinesterases evoked only slight hissing and snarling. Choline administered into the cerebral ventricles of hemicholinium-3 and triethylcholine-treated cats restored the emotional behaviour with aggression, autonomic and motor phenomena as well as clonic-tonic convulsions to intraventricular carbachol, muscarine, eserine and neostigmine. The restored gross behavioural changes to eserine were almost of the same intensity, while those to carbachol and muscarine were of lesser intensity than in control cats. From these experiments it is concluded that cholinergic neurones are involved in the appearance of the affective type of aggression resulting from intraventricular carbachol, muscarine, eserine and neostigmine.

  18. Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor.

    PubMed

    Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew

    2015-11-01

    Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.

  19. Targeting the Cholinergic System to Develop a Novel Therapy for Huntington's Disease.

    PubMed

    D'Souza, Gary X; Waldvogel, Henry J

    2016-12-15

    In this review, we outline the role of the cholinergic system in Huntington's disease, and briefly describe the dysfunction of cholinergic transmission, cholinergic neurons, cholinergic receptors and cholinergic survival factors observed in post-mortem human brains and animal models of Huntington's disease. We postulate how the dysfunctional cholinergic system can be targeted to develop novel therapies for Huntington's disease, and discuss the beneficial effects of cholinergic therapies in pre-clinical and clinical studies.

  20. Adhesion-Dependent Redistribution of MAP Kinase and MEK Promotes Muscarinic Receptor-Mediated Signaling to the Nucleus

    PubMed Central

    Slack, Barbara E.; Siniaia, Marina S.

    2008-01-01

    The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 hours, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation. PMID:15779001

  1. Expression and Function of the Cholinergic System in Immune Cells

    PubMed Central

    Fujii, Takeshi; Mashimo, Masato; Moriwaki, Yasuhiro; Misawa, Hidemi; Ono, Shiro; Horiguchi, Kazuhide; Kawashima, Koichiro

    2017-01-01

    T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays

  2. IN VITRO EFFECTS OF CHLORPYRIFOS, PARATHION, METHYL PARATHION AND THEIR OXONS ON CARDIAC MUSCARINIC RECEPTOR BINDING IN NEONATAL AND ADULT RATS. (R825811)

    EPA Science Inventory

    Organophosphorus insecticides elicit toxicity by inhibiting acetylcholinesterase. Young animals are generally more sensitive than adults to these toxicants. A number of studies reported that some organophosphorus agents also bind directly to muscarinic receptors, in particular...

  3. Cholinergic and dopaminergic mechanisms involved in the recovery of circadian anticipation by aniracetam in aged rats.

    PubMed

    Tanaka, Yushiro; Kurasawa, Mitsue; Nakamura, Kazuo

    2002-05-01

    We have reported that repeated administration of aniracetam (100 mg/kg p.o.) for 7 consecutive days recovers mealtime-associated circadian anticipatory behavior diminished in aged rats. The present study examines the mode of action underlying the restoration by aniracetam with various types of receptor antagonists. Coadministration of scopolamine (0.1 mg/kg i.p.) or haloperidol (0.1 mg/kg i.p.) for the last 3 days significantly reduced the restorative effects of aniracetam without affecting the timed feeding-induced anticipatory behavior by each receptor antagonist itself. The other receptor antagonists, mecamylamine (3 mg/kg i.p.), 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX, 1 microg/rat i.c.v.) had no effect on either the basal or aniracetam-elicited circadian anticipation. In contrast, ketanserin (1 mg/kg i.p.) itself recovered the diminished anticipatory behavior as aniracetam did, but it did not alter the restorative effects of aniracetam. Among the receptor antagonists tested, NBQX reduced appetite and haloperidol induced circadian hypoactivity. These results suggest that the food-entrainable circadian oscillations or the temporal regulatory system of behavior is modulated by cholinergic, dopaminergic and serotonergic systems. Furthermore, aniracetam may restore the aging-diminished behavioral anticipation by activating muscarinic acetylcholine (ACh) and/or dopamine (DA) D2 receptors through the enhanced release of ACh and/or DA in the brain.

  4. Brain cholinergic alterations in rats subjected to repeated immobilization or forced swim stress on lambda-cyhalothrin exposure.

    PubMed

    Shukla, Rajendra K; Gupta, Richa; Srivastava, Pranay; Dhuriya, Yogesh K; Singh, Anshuman; Chandravanshi, Lalit P; Kumar, Ajay; Siddiqui, M Haris; Parmar, Devendra; Pant, Aditya B; Khanna, Vinay K

    2016-02-01

    Role of immobilization stress (IMS), a psychological stressor and forced swim stress (FSS), a physical stressor was investigated on the neurobehavioral toxicity of lambda-cyhalothrin (LCT), a new generation type-II synthetic pyrethroid. Pre-exposure of rats to IMS (15 min/day) or FSS (3 min/day) for 28 days on LCT (3.0 mg/kg body weight, p.o.) treatment for 3 days resulted to decrease spatial learning and memory and muscle strength associated with cholinergic-muscarinic receptors in frontal cortex and hippocampus as compared to those exposed to IMS or FSS or LCT alone. Decrease in acetylcholinesterase activity, protein expression of ChAT and PKC-β1 associated with decreased mRNA expression of CHRM2, AChE and ChAT in frontal cortex and hippocampus was also evident in rats pre-exposed to IMS or FSS on LCT treatment, compared to rats exposed to IMS or FSS or LCT alone. Interestingly, changes both in behavioral and neurochemical endpoints were marginal in rats subjected to IMS or FSS for 28 days or those exposed to LCT for 3 days alone, compared to controls. The results suggest that stress is an important contributor in LCT induced cholinergic deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Muscarinic Control of MIN6 Pancreatic β Cells Is Enhanced by Impaired Amino Acid Signaling*

    PubMed Central

    Guerra, Marcy L.; Wauson, Eric M.; McGlynn, Kathleen; Cobb, Melanie H.

    2014-01-01

    We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic β cells. Amino acids are unable to activate ERK1/2 in β cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic β cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in β cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in β cells as a mechanism to compensate for amino acid deficiency. PMID:24695728

  6. The guinea pig ileum lacks the direct, high-potency, M(2)-muscarinic, contractile mechanism characteristic of the mouse ileum.

    PubMed

    Griffin, Michael T; Matsui, Minoru; Ostrom, Rennolds S; Ehlert, Frederick J

    2009-10-01

    We explored whether the M(2) muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M(3) muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M(3) selectivity. Then, we used 4-DAMP mustard to inactivate M(3) responses in the guinea pig ileum to attempt to reveal direct, M(2) receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M(2) receptor knockout, and M(3) receptor knockout mice characterized by negative log EC(50) (pEC (50)) values +/- SEM of 6.75 +/- 0.03, 6.26 +/- 0.05, and 6.99 +/- 0.08, respectively. The corresponding E (max) values in wild-type and M(2) receptor knockout mice were approximately the same, but that in the M(3) receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration-response curve of oxotremorine-M in wild-type ileum resembled that of the M(3) knockout mouse in terms of its pEC (50), E (max), and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M(3) responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M(3) knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M(3) response. The guinea pig ileum, therefore, lacks a direct, highly potent, M(2)-contractile component but may have a direct, lower potency M(2) component.

  7. Radiosynthesis and evaluation of novel acetylcholine receptor radioligands

    NASA Astrophysics Data System (ADS)

    Pimlott, Sally L.

    Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made

  8. Modulation of cholinergic functions by serotonin and possible implications in memory: general data and focus on 5-HT(1A) receptors of the medial septum.

    PubMed

    Jeltsch-David, Hélène; Koenig, Julie; Cassel, Jean-Christophe

    2008-12-16

    Cholinergic systems were linked to cognitive processes like attention and memory. Other neurotransmitter systems having minor influence on cognitive functions - as shown by the weakness of the effects of their selective lesions - modulate cholinergic functions. The serotonergic system is such a system. Conjoined functional changes in cholinergic and serotonergic systems may have marked cognitive consequences [Cassel JC, Jeltsch H. Serotoninergic modulation of cholinergic function in the central nervous system: cognitive implications. Neuroscience 1995;69(1):1-41; Steckler T, Sahgal A. The role of serotoninergic-cholinergic interactions in the mediation of cognitive behaviour. Behav Brain Res 1995;67:165-99]. A crucial issue in that concern is the identification of the neuroanatomical and neuropharmacological substrates where functional effects of serotonergic/cholinergic interactions originate. Approaches relying on lesions and intracerebral cell grafting, on systemic drug-cocktail injections, or even on intracerebral drug infusions represent the main avenues on which our knowledge about the role of serotonergic/cholinergic interactions has progressed. The present review will visit some of these avenues and discuss their contribution to what is currently known on the potential or established implication(s) into memory functions of serotonergic/cholinergic interactions. It will then focus on a brain region and a neuropharmacological substrate that have been poorly studied as regards serotonergic modulation of memory functions, namely the medial septum and its 5-HT(1A) receptors. Based on recent findings of our laboratory, we suggest that these receptors, located on both cholinergic and GABAergic septal neurons, take part in a mechanism that controls encoding, to some extent consolidation, but not retrieval, of hippocampal-dependent memories. This control, however, does not occur by the way of an exclusive action of serotonin on cholinergic neurons.

  9. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development.

    PubMed

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A; Cilleros, Victor; Tomàs, Josep

    2017-01-01

    The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M 1 -, M 2 - and M 4 -subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo . Our previous results show that M 1 , M 2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M 1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M 2 receptor is largely independent of both M 1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination.

  10. Presynaptic Muscarinic Acetylcholine Receptors and TrkB Receptor Cooperate in the Elimination of Redundant Motor Nerve Terminals during Development

    PubMed Central

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria A.; Cilleros, Victor; Tomàs, Josep

    2017-01-01

    The development of the nervous system involves the overproduction of synapses but connectivity is refined by Hebbian activity-dependent axonal competition. The newborn skeletal muscle fibers are polyinnervated but, at the end of the competition process, some days later, become innervated by a single axon. We used quantitative confocal imaging of the autofluorescent axons from transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice to investigate the possible cooperation of the muscarinic autoreceptors (mAChR, M1-, M2- and M4-subtypes) and the tyrosine kinase B (TrkB) receptor in the control of axonal elimination after the mice Levator auris longus (LAL) muscle had been exposed to several selective antagonist of the corresponding receptor pathways in vivo. Our previous results show that M1, M2 and TrkB signaling individually increase axonal loss rate around P9. Here we show that although the M1 and TrkB receptors cooperate and add their respective individual effects to increase axonal elimination rate even more, the effect of the M2 receptor is largely independent of both M1 and TrkB receptors. Thus both, cooperative and non-cooperative signaling mechanisms contribute to developmental synapse elimination. PMID:28228723

  11. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    PubMed

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  12. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    PubMed

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  13. Treatment with LPS plus INF-γ induces the expression and function of muscarinic acetylcholine receptors, modulating NIH3T3 cell proliferation: participation of NOS and COX.

    PubMed

    Español, A J; Maddaleno, M O; Lombardi, M G; Cella, M; Martínez Pulido, P; Sales, M E

    2014-11-01

    LPS and IFN-γ are potent stimuli of inflammation, a process in which fibroblasts are frequently involved. We analysed the effect of treatment with LPS plus IFN-γ on the expression and function of muscarinic acetylcholine receptors in NIH3T3 fibroblasts with regards to proliferation of these cells. We also investigated the participation of NOS and COX, and the role of NF-κB in this process. NIH3T3 cells were treated with LPS (10 ng·mL(-1)) plus IFN-γ (0.5 ng·mL(-1)) for 72 h (iNIH3T3 cells). Cell proliferation was evaluated with MTT and protein expression by Western blot analysis. NOS and COX activities were measured by the Griess method and radioimmunoassay respectively. The cholinoceptor agonist carbachol was more effective at stimulating proliferation in iNIH3T3 than in NIH3T3 cells, probably due to the de novo induction of M3 and M5 muscarinic receptors independently of NF-κB activation. iNIH3T3 cells produced higher amounts of NO and PGE2 than NIH3T3 cells, concomitantly with an up-regulation of NOS1 and COX-2, and with the de novo induction of NOS2/3 in inflamed cells. We also found a positive feedback between NOS and COX that could potentiate inflammation. Inflammation induced the expression of muscarinic receptors and, therefore,stimulated carbachol-induced proliferation of fibroblasts. Inflammation also up-regulated the expression of NOS and COX-2, thus potentiating the effect of carbachol on NO and PGE2 production. A positive crosstalk between NOS and COX triggered by carbachol in inflamed cells points to muscarinic receptors as potential therapeutic targets in inflammation. © 2014 The British Pharmacological Society.

  14. Treatment with LPS plus INF-γ induces the expression and function of muscarinic acetylcholine receptors, modulating NIH3T3 cell proliferation: participation of NOS and COX

    PubMed Central

    Español, A J; Maddaleno, M O; Lombardi, M G; Cella, M; Martínez Pulido, P; Sales, M E

    2014-01-01

    Background and Purpose LPS and IFN-γ are potent stimuli of inflammation, a process in which fibroblasts are frequently involved. We analysed the effect of treatment with LPS plus IFN-γ on the expression and function of muscarinic acetylcholine receptors in NIH3T3 fibroblasts with regards to proliferation of these cells. We also investigated the participation of NOS and COX, and the role of NF-κB in this process. Experimental Approach NIH3T3 cells were treated with LPS (10 ng·mL−1) plus IFN-γ (0.5 ng·mL−1) for 72 h (iNIH3T3 cells). Cell proliferation was evaluated with MTT and protein expression by Western blot analysis. NOS and COX activities were measured by the Griess method and radioimmunoassay respectively. Key Results The cholinoceptor agonist carbachol was more effective at stimulating proliferation in iNIH3T3 than in NIH3T3 cells, probably due to the de novo induction of M3 and M5 muscarinic receptors independently of NF-κB activation. iNIH3T3 cells produced higher amounts of NO and PGE2 than NIH3T3 cells, concomitantly with an up-regulation of NOS1 and COX-2, and with the de novo induction of NOS2/3 in inflamed cells. We also found a positive feedback between NOS and COX that could potentiate inflammation. Conclusions and Implications Inflammation induced the expression of muscarinic receptors and, therefore,stimulated carbachol-induced proliferation of fibroblasts. Inflammation also up-regulated the expression of NOS and COX-2, thus potentiating the effect of carbachol on NO and PGE2 production. A positive crosstalk between NOS and COX triggered by carbachol in inflamed cells points to muscarinic receptors as potential therapeutic targets in inflammation. PMID:24990429

  15. Rapid Antidepressant Actions of Scopolamine: Role of Medial Prefrontal Cortex and M1-subtype Muscarinic Acetylcholine Receptors

    PubMed Central

    Navarria, Andrea; Wohleb, Eric S.; Voleti, Bhavya; Ota, Kristie T.; Dutheil, Sophie; Lepack, Ashley E.; Dwyer, Jason M.; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S.

    2015-01-01

    Clinical studies demonstrate that scopolamine, a nonselective muscarinic acetycholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC). The present study extends these findings to determine the role of the mPFC and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. Administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that systemic administration of a selective M1-AChR antagonist, VU0255035 produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions, and found that scopolamine or VU0255035 administration blocked the anhedonic response caused by CUS, an effect that requires chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine, and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. PMID:26102021

  16. Rapid antidepressant actions of scopolamine: Role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors.

    PubMed

    Navarria, Andrea; Wohleb, Eric S; Voleti, Bhavya; Ota, Kristie T; Dutheil, Sophie; Lepack, Ashley E; Dwyer, Jason M; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S

    2015-10-01

    Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Bitopic Binding Mode of an M1 Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes

    PubMed Central

    Bradley, Sophie J.; Molloy, Colin; Bundgaard, Christoffer; Mogg, Adrian J.; Thompson, Karen J.; Dwomoh, Louis; Sanger, Helen E.; Crabtree, Michael D.; Brooke, Simon M.; Sexton, Patrick M.; Felder, Christian C.; Christopoulos, Arthur; Broad, Lisa M.

    2018-01-01

    The realization of the therapeutic potential of targeting the M1 muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in Alzheimer’s disease has prompted the discovery of M1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702 (7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1H-benzimidazol-2-one), described previously as a potent M1 receptor allosteric agonist, which showed procognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702, together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. Although they impart beneficial effects on learning and memory, we conclude that these properties are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data support the notion that “pure” positive allosteric modulators showing selectivity for the M1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses. PMID:29695609

  18. Bitopic Binding Mode of an M1 Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes.

    PubMed

    Bradley, Sophie J; Molloy, Colin; Bundgaard, Christoffer; Mogg, Adrian J; Thompson, Karen J; Dwomoh, Louis; Sanger, Helen E; Crabtree, Michael D; Brooke, Simon M; Sexton, Patrick M; Felder, Christian C; Christopoulos, Arthur; Broad, Lisa M; Tobin, Andrew B; Langmead, Christopher J

    2018-06-01

    The realization of the therapeutic potential of targeting the M 1 muscarinic acetylcholine receptor (mAChR) for the treatment of cognitive decline in Alzheimer's disease has prompted the discovery of M 1 mAChR ligands showing efficacy in alleviating cognitive dysfunction in both rodents and humans. Among these is GSK1034702 (7-fluoro-5-methyl-3-[1-(oxan-4-yl)piperidin-4-yl]-1 H -benzimidazol-2-one), described previously as a potent M 1 receptor allosteric agonist, which showed procognitive effects in rodents and improved immediate memory in a clinical nicotine withdrawal test but induced significant side effects. Here we provide evidence using ligand binding, chemical biology and functional assays to establish that rather than the allosteric mechanism claimed, GSK1034702 interacts in a bitopic manner at the M 1 mAChR such that it can concomitantly span both the orthosteric and an allosteric binding site. The bitopic nature of GSK1034702, together with the intrinsic agonist activity and a lack of muscarinic receptor subtype selectivity reported here, all likely contribute to the adverse effects of this molecule in clinical trials. Although they impart beneficial effects on learning and memory, we conclude that these properties are undesirable in a clinical candidate due to the likelihood of adverse side effects. Rather, our data support the notion that "pure" positive allosteric modulators showing selectivity for the M 1 mAChR with low levels of intrinsic activity would be preferable to provide clinical efficacy with low adverse responses. Copyright © 2018 by The Author(s).

  19. Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway.

    PubMed

    Hong, Elim; Santhakumar, Kirankumar; Akitake, Courtney A; Ahn, Sang Jung; Thisse, Christine; Thisse, Bernard; Wyart, Claire; Mangin, Jean-Marie; Halpern, Marnie E

    2013-12-24

    The habenulo-interpeduncular pathway, a highly conserved cholinergic system, has emerged as a valuable model to study left-right asymmetry in the brain. In larval zebrafish, the bilaterally paired dorsal habenular nuclei (dHb) exhibit prominent left-right differences in their organization, gene expression, and connectivity, but their cholinergic nature was unclear. Through the discovery of a duplicated cholinergic gene locus, we now show that choline acetyltransferase and vesicular acetylcholine transporter homologs are preferentially expressed in the right dHb of larval zebrafish. Genes encoding the nicotinic acetylcholine receptor subunits α2 and β4 are transcribed in the target interpeduncular nucleus (IPN), suggesting that the asymmetrical cholinergic pathway is functional. To confirm this, we activated channelrhodopsin-2 specifically in the larval dHb and performed whole-cell patch-clamp recording of IPN neurons. The response to optogenetic or electrical stimulation of the right dHb consisted of an initial fast glutamatergic excitatory postsynaptic current followed by a slow-rising cholinergic current. In adult zebrafish, the dHb are divided into discrete cholinergic and peptidergic subnuclei that differ in size between the left and right sides of the brain. After exposing adults to nicotine, fos expression was activated in subregions of the IPN enriched for specific nicotinic acetylcholine receptor subunits. Our studies of the newly identified cholinergic gene locus resolve the neurotransmitter identity of the zebrafish habenular nuclei and reveal functional asymmetry in a major cholinergic neuromodulatory pathway of the vertebrate brain.

  20. Spinal α2-adrenergic and muscarinic receptors and the NO release cascade mediate supraspinally produced effectiveness of gabapentin at decreasing mechanical hypersensitivity in mice after partial nerve injury

    PubMed Central

    Takasu, Keiko; Honda, Motoko; Ono, Hideki; Tanabe, Mitsuo

    2006-01-01

    After partial nerve injury, the central analgesic effect of systemically administered gabapentin is mediated by both supraspinal and spinal actions. We further evaluate the mechanisms related to the supraspinally mediated analgesic actions of gabapentin involving the descending noradrenergic system. Intracerebroventricularly (i.c.v.) administered gabapentin (100 μg) decreased thermal and mechanical hypersensitivity in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve. These effects were abolished by intrathecal (i.t.) injection of either yohimbine (3 μg) or idazoxan (3 μg), α2-adrenergic receptor antagonists. Pretreatment with atropine (0.3 mg kg−1, i.p. or 0.1 μg, i.t.), a muscarinic receptor antagonist, completely suppressed the effect of i.c.v.-injected gabapentin on mechanical hypersensitivity, whereas its effect on thermal hypersensitivity remained unchanged. Similar effects were obtained with pirenzepine (0.1 μg, i.t.), a selective M1-muscarinic receptor antagonist, but not with methoctramine (0.1 and 0.3 μg, i.t.), a selective M2-muscarinic receptor antagonist. The cholinesterase inhibitor neostigmine (0.3 ng, i.t.) potentiated only the analgesic effect of i.c.v. gabapentin on mechanical hypersensitivity, confirming spinal acetylcholine release downstream of the supraspinal action of gabapentin. Moreover, the effect of i.c.v. gabapentin on mechanical but not thermal hypersensitivity was reduced by i.t. injection of L-NAME (3 μg) or L-NMMA (10 μg), both of which are nitric oxide (NO) synthase inhibitors. Systemically administered naloxone (10 mg kg−1, i.p.), an opioid receptor antagonist, failed to suppress the analgesic actions of i.c.v. gabapentin, indicating that opioid receptors are not involved in activation of the descending noradrenergic system by gabapentin. Thus, the supraspinally mediated effect of gabapentin on mechanical hypersensitivity involves activation of spinal α2

  1. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits.

    PubMed

    Kimura, Rui; Safari, Mir-Shahram; Mirnajafi-Zadeh, Javad; Kimura, Rie; Ebina, Teppei; Yanagawa, Yuchio; Sohya, Kazuhiro; Tsumoto, Tadaharu

    2014-07-23

    Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons. Copyright © 2014 the authors 0270-6474/14/3410122-12$15.00/0.

  2. Influence of gender and the oestrous cycle on in vitro contractile responses of the rat urinary bladder to cholinergic stimulation

    PubMed Central

    Longhurst, Penelope A; Levendusky, Mark

    2000-01-01

    Experiments were done to determine the influence of gender and the oestrous cycle on rat urinary bladder contractility in response to cholinergic stimulation. Bladder strips from female rats responded to high frequency stimulation with smaller contractile responses than did strips from males, and to low concentrations of carbachol with greater responses. The decreased responsiveness of bladder strips from female rats to electrical field stimulation can be primarily attributed to the rats in the oestrous stage of the oestrous cycle. Bladder strips from female rats in all stages of the oestrous cycle were more sensitive to carbachol than those from males, but there were no differences in sensitivity to electrical field stimulation. The contractile responses of strips from both male and female rats to carbachol were antagonized by muscarinic antagonists with the following rank order of affinity (pA2) estimates: 4-DAMP>>pirenzepine>methoctramine, suggesting that the receptor mediating contraction was the M3 subtype. There were no differences in pA2 values between bladder strips from male and female rats. The data indicate that responsiveness of bladder strips to electrical field stimulation and carbachol is altered in female rats in the oestrous stage of the oestrous cycle. Furthermore, gender influences the sensitivity of rat bladder to muscarinic stimulation. PMID:10991909

  3. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons

    PubMed Central

    Oswald, Manfred J.; Schulz, Jan M.; Kelsch, Wolfgang; Oorschot, Dorothy E.; Reynolds, John N. J.

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg2+-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg2+-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission. PMID:25914618

  4. Potentiation of NMDA receptor-mediated transmission in striatal cholinergic interneurons.

    PubMed

    Oswald, Manfred J; Schulz, Jan M; Kelsch, Wolfgang; Oorschot, Dorothy E; Reynolds, John N J

    2015-01-01

    Pauses in the tonic firing of striatal cholinergic interneurons (CINs) emerge during reward-related learning in response to conditioning of a neutral cue. We have previously reported that augmenting the postsynaptic response to cortical afferents in CINs is coupled to the emergence of a cell-intrinsic afterhyperpolarization (AHP) underlying pauses in tonic activity. Here we investigated in a bihemispheric rat-brain slice preparation the mechanisms of synaptic plasticity of excitatory afferents to CINs and the association with changes in the AHP. We found that high frequency stimulation (HFS) of commissural corticostriatal afferents from the contralateral hemisphere induced a robust long-term depression (LTD) of postsynaptic potentials (PSP) in CINs. Depression of the PSP of smaller magnitude and duration was observed in response to HFS of the ipsilateral white matter or cerebral cortex. In Mg(2+)-free solution HFS induced NMDA receptor-dependent potentiation of the PSP, evident in both the maximal slope and amplitude of the PSP. The increase in maximal slope corroborates previous findings, and was blocked by antagonism of either D1-like dopamine receptors with SCH23390 or D2-like dopamine receptors with sulpiride during HFS in Mg(2+)-free solution. Potentiation of the slower PSP amplitude component was due to augmentation of the NMDA receptor-mediated potential as this was completely reversed on subsequent application of the NMDA receptor antagonist AP5. HFS similarly potentiated NMDA receptor currents isolated by blockade of AMPA/kainate receptors with CNQX. The plasticity-induced increase in the slow PSP component was directly associated with an increase in the subsequent AHP. Thus plasticity of cortical afferent synapses is ideally suited to influence the cue-induced firing dynamics of CINs, particularly through potentiation of NMDA receptor-mediated synaptic transmission.

  5. Remodeling of cardiac cholinergic innervation and control of heart rate in mice with streptozotocin-induced diabetes.

    PubMed

    Mabe, Abigail M; Hoover, Donald B

    2011-07-05

    Cardiac autonomic neuropathy is a frequent complication of diabetes and often presents as impaired cholinergic regulation of heart rate. Some have assumed that diabetics have degeneration of cardiac cholinergic nerves, but basic knowledge on this topic is lacking. Accordingly, our goal was to evaluate the structure and function of cardiac cholinergic neurons and nerves in C57BL/6 mice with streptozotocin-induced diabetes. Electrocardiograms were obtained weekly from conscious control and diabetic mice for 16 weeks. Resting heart rate decreased in diabetic mice, but intrinsic heart rate was unchanged. Power spectral analysis of electrocardiograms revealed decreased high frequency and increased low frequency power in diabetic mice, suggesting a relative reduction of parasympathetic tone. Negative chronotropic responses to right vagal nerve stimulation were blunted in 16-week diabetic mice, but postjunctional sensitivity of isolated atria to muscarinic agonists was unchanged. Immunohistochemical analysis of hearts from diabetic and control mice showed no difference in abundance of cholinergic neurons, but cholinergic nerve density was increased at the sinoatrial node of diabetic mice (16 weeks: 14.9±1.2% area for diabetics versus 8.9±0.8% area for control, P<0.01). We conclude that disruption of cholinergic function in diabetic mice cannot be attributed to a loss of cardiac cholinergic neurons and nerve fibers or altered cholinergic sensitivity of the atria. Instead, decreased responses to vagal stimulation might be caused by a defect of preganglionic cholinergic neurons and/or ganglionic neurotransmission. The increased density of cholinergic nerves observed at the sinoatrial node of diabetic mice might be a compensatory response. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. AFRRI Reports, First Quarter 1994

    DTIC Science & Technology

    1994-06-01

    cholinergic agonists (as assessed by examining oxotremorine enhancement of K+-evoked release of dopamine from neostriatal slices) in animals that had been...protein interface and by comparing the response to oxotremorine -en- hanced K+-evoked release of dopamine. Results showed that al- though oxotremorine ...muscarinic acetylcholine receptors (mAChR)4 to stimula- tion by muscarinic agonists. This latter assessment was made by examining the oxotremorine (OXO

  7. The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats.

    PubMed

    Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2006-12-01

    Chronic stress in rats has been shown to impair learning and memory, and precipitate several affective disorders like depression and anxiety. The mechanisms involved in these stress-induced disorders and the possible reversal are poorly understood, thus limiting the number of drugs available for their treatment. Our earlier studies suggest cholinergic dysfunction as the underlying cause in the behavioral deficits following stress. Muscarinic cholinergic agonist, oxotremorine is demonstrated to have a beneficial effect in reversing brain injury-induced behavioral dysfunction. In this study, we have evaluated the effect of oxotremorine treatment on chronic restraint stress-induced cognitive deficits. Rats were subjected to restraint stress (6 h/day) for 21 days followed by oxotremorine treatment for 10 days. Spatial learning and memory was assessed in a partially baited eight-arm radial maze task. Stressed rats exhibited impairment in performance, with decreased percentage of correct choices and an increase in the number of reference memory errors (RMEs). Oxotremorine treatment (0.1 or 0.2 mg/kg, i.p.) to stressed rats resulted in a significant increase in the percent correct choices and a decrease in the number of RMEs compared with stress as well as the stress+vehicle-treated groups. In the retention test, oxotremorine treated rats committed less RMEs compared with the stress group. Chronic restraint stress decreased acetylcholinesterase (AChE) activity in the hippocampus, frontal cortex and septum, which was reversed by both the doses of oxotremorine. Further, oxotremorine treatment also restored the norepinephrine levels in the hippocampus and frontal cortex. Thus, this study demonstrates the potential of cholinergic muscarinic agonists and the involvement of both cholinergic and noradrenergic systems in the reversal of stress-induced learning and memory deficits.

  8. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    PubMed

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.

  9. The effects of caffeine on the cholinergic system.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Caffeine is a secondary metabolite of tea and coffee plants. It is the active psychostimulant ingredient of widely consumed beverages, chocolate and some drugs as well. The major pathways for caffeine including interaction with adenosine receptors have been identified but caffeine has several minor pathways as well that remain poorly understood including the cholinergic system. Given the role of caffeine in the cholinergic system, some molecular targets have been tracked and a mechanism of its action has been proposed in research studies. However, the biological effect of caffeine on the cholinergic system is not completely understood. The present review focuses on the role of caffeine in the cholinergic system.

  10. Determinants of positive cooperativity between strychnine-like allosteric modulators and N-methylscopolamine at muscarinic receptors.

    PubMed

    Jakubík, Jan; Dolezal, Vladimír

    2006-01-01

    It has been shown previously that the third extracellular loop (o3) and its vicinity play a critical role in allosteric modulation at muscarinic acetylcholine receptors (mAChRs) (Ellis et al., 1993; Krejçí and Tuçek, 2001; Buller et al., 2002). In this study interaction of four chemically related substances (strychnine, its dimethoxy derivate brucine, precursor for synthesis of strychnine Wieland-Gumlich aldehyde (WGA), and precursor for synthesis of alcuronium propargyl-WGA) with orthosteric antagonist N-methylscopolamine (NMS) was investigated on the M3 subtype of mAChRs mutated at the o3 loop.

  11. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    PubMed Central

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  12. Rivastigmine improves isolation rearing-induced prepulse inhibition deficits via muscarinic acetylcholine receptors in mice.

    PubMed

    Higashino, Kosuke; Ago, Yukio; Umeki, Takahiro; Hasebe, Shigeru; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2016-02-01

    The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.

  13. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Bohren, Yohann; Deniau, Jean-Michel; Kemel, Marie-Louise

    2011-01-01

    Motor stereotypy is a key symptom of various disorders such as Tourette's syndrome and punding. Administration of nicotine or cholinesterase inhibitors is effective in treating some of these symptoms. However, the role of cholinergic transmission in motor stereotypy remains unknown. During strong cocaine-induced motor stereotypy, we showed earlier that increased dopamine release results in decreased acetylcholine release in the territory of the dorsal striatum related to the prefrontal cortex. Here, we investigated the role of striatal cholinergic transmission in the arrest of motor stereotypy. Analysis of N-methyl-d-aspartic acid-evoked release of dopamine and acetylcholine during declining intensity of motor stereotypy revealed a dissociation between dopamine and acetylcholine release. Whereas dopamine release remained increased, the inhibition of acetylcholine release decreased, mirroring the time course of motor stereotypy. Furthermore, pharmacological treatments restoring striatal acetylcholine release (raclopride, dopamine D2 antagonist; intraperitoneal or local injection in prefrontal territory of the dorsal striatum) rapidly stopped motor stereotypy. In contrast, pharmacological treatments that blocked the post-synaptic effects of acetylcholine (scopolamine, muscarinic antagonist; intraperitoneal or striatal local injection) or induced degeneration of cholinergic interneurons (AF64A, cholinergic toxin) in the prefrontal territory of the dorsal striatum robustly prolonged the duration of strong motor stereotypy. Thus, we propose that restoration of cholinergic transmission in the prefrontal territory of the dorsal striatum plays a key role in the arrest of motor stereotypy.

  14. Bisquaternary dimers of strychnine and brucine. A new class of potent enhancers of antagonist binding to muscarinic M2 receptors.

    PubMed

    Zlotos, D P; Buller, S; Holzgrabe, U; Mohr, K

    2003-06-12

    Bisquaternary dimers of strychnine and brucine were synthesized and their allosteric effect on muscarinic acetylcholine M(2) receptors was examined. The compounds retarded the dissociation of the antagonist [(3)H]N-methylscopolamine ([(3)H]NMS) from porcine cardiac cholinoceptors. This action indicated ternary complex formation. All compounds exhibited higher affinity to the allosteric site of [(3)H]NMS-occupied M(2) receptors than the monomeric strychnine and brucine, while the positive cooperativity with NMS was fully maintained. SAR studies revealed the unchanged strychnine ring as an important structural feature for high allosteric potency.

  15. Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Li, Jian Hua; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Lu, Huiyan; Deng, Chuxia; Gavrilova, Oksana; Wess, Jürgen

    2008-01-01

    The M(3) muscarinic acetylcholine (ACh) receptor (M(3) mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G(q) family. Recent studies involving the use of newly generated mAChR mutant mice have revealed that the M(3) mAChR plays a key role in regulating many important metabolic functions. Phenotypic analyses of mutant mice that either selectively lacked or overexpressed M(3) receptors in pancreatic beta -cells indicated that beta -cell M(3) mAChRs are essential for maintaining proper insulin release and glucose homeostasis. The experimental data also suggested that strategies aimed at enhancing signaling through beta -cell M(3) mAChRs might be beneficial for the treatment of type 2 diabetes. Recent studies with whole body M(3) mAChR knockout mice showed that the absence of M(3) receptors protected mice against various forms of experimentally or genetically induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M(3) receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

  16. Characterization of a new muscarinic toxin from the venom of the Brazilian coral snake Micrurus lemniscatus in rat hippocampus.

    PubMed

    da Silva, Daniel Coelho; de Medeiros, Wyara Aparecida Araújo; Batista, Isabel de Fátima Correia; Pimenta, Daniel Carvalho; Lebrun, Ivo; Abdalla, Fernando Maurício Francis; Sandoval, Maria Regina Lopes

    2011-12-19

    We have isolated a new muscarinic protein (MT-Mlα) from the venom of the Brazilian coral snake Micrurus lemniscatus. This small protein, which had a molecular mass of 7,048Da, shared high sequence homology with three-finger proteins that act on cholinergic receptors. The first 12 amino acid residues of the N-terminal sequence were determined to be: Leu-Ile-Cys-Phe-Ile-Cys-Phe-Ser-Pro-Thr-Ala-His. The MT-Mlα was able to displace the [(3)H]QNB binding in the hippocampus of rats. The binding curve in competition experiments with MT-Mlα was indicative of two types of [(3)H]QNB-binding site with pK(i) values of 9.08±0.67 and 6.17±0.19, n=4, suggesting that various muscarinic acetylcholine receptor (mAChR) subtypes may be the target proteins of MT-Mlα. The MT-Mlα and the M(1) antagonist pirenzepine caused a dose-dependent block on total [(3)H]inositol phosphate accumulation induced by carbachol. The IC(50) values for MT-Mlα and pirenzepine were, respectively, 33.1 and 2.26 nM. Taken together, these studies indicate that the MT-Mlα has antagonist effect on mAChRs in rat hippocampus. The results of the present study show, for the first time, that mAChRs function is drastically affected by MT-Mlα since it not only has affinity for mAChRs but also has the ability to inhibit mAChRs. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Participation of cholinergic pathways in α-hederin-induced contraction of rat isolated stomach strips.

    PubMed

    Mendel, M; Chłopecka, M; Dziekan, N; Karlik, W; Wiechetek, M

    2012-05-15

    The dry extract of Hedra helix leaves and its main active compounds, predominantly α-hederin and hederacoside C, has been traditionally believed to act spasmolytic. However, it has been recently proved that both, the extract of ivy and triterpenoid saponins, exhibit strong contractile effect on rat isolated stomach smooth muscle strips. It turned out that the most potent contractile agent isolated from the extract of ivy leaves is α-hederin. Thus, it seems reasonable to estimate the mechanism of the contractile effect of this saponin. The presented study was aimed at verifying the participation of cholinergic pathways (muscarinic and nicotine receptors) in α-hederin-induced contraction. The experiments were carried out on rat isolated stomach corpus and fundus strips under isotonic conditions. The preparations were preincubated with either atropine or hexamethonium and then exposed to α-hederin. All results are expressed as the percentage of the response to acetylcholine - a reference contractile agent. The obtained results revealed that the pretreatment of isolated stomach strips (corpus and fundus) with atropine neither prevented nor remarkably reduced the reaction of the preparations to α-hederin. Similarly, if the application of saponin was preceded by the administration of hexamethonium, the strength of the contraction of stomach fundus strips induced by α-hederin was not modified. Concluding, it can be assumed that the cholinergic pathways do not participate in α-hederin-evoked contraction of rat isolated stomach preparations. Copyright © 2012 Elsevier GmbH. All rights reserved.

  18. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory.

    PubMed

    Butcher, Adrian J; Bradley, Sophie J; Prihandoko, Rudi; Brooke, Simon M; Mogg, Adrian; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; Edwards, Jennifer M; Bottrill, Andrew R; Challiss, R A John; Broad, Lisa M; Felder, Christian C; Tobin, Andrew B

    2016-04-22

    Establishing the in vivo activation status of G protein-coupled receptors would not only indicate physiological roles of G protein-coupled receptors but would also aid drug discovery by establishing drug/receptor engagement. Here, we develop a phospho-specific antibody-based biosensor to detect activation of the M1 muscarinic acetylcholine receptor (M1 mAChR) in vitro and in vivo Mass spectrometry phosphoproteomics identified 14 sites of phosphorylation on the M1 mAChR. Phospho-specific antibodies to four of these sites established that serine at position 228 (Ser(228)) on the M1 mAChR showed extremely low levels of basal phosphorylation that were significantly up-regulated by orthosteric agonist stimulation. In addition, the M1 mAChR-positive allosteric modulator, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, enhanced acetylcholine-mediated phosphorylation at Ser(228) These data supported the hypothesis that phosphorylation at Ser(228) was an indicator of M1 mAChR activation. This was further supported in vivo by the identification of phosphorylated Ser(228) on the M1 mAChR in the hippocampus of mice following administration of the muscarinic ligands xanomeline and 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Finally, Ser(228) phosphorylation was seen to increase in the CA1 region of the hippocampus following memory acquisition, a response that correlated closely with up-regulation of CA1 neuronal activity. Thus, determining the phosphorylation status of the M1 mAChR at Ser(228) not only provides a means of establishing receptor activation following drug treatment both in vitro and in vivo but also allows for the mapping of the activation status of the M1 mAChR in the hippocampus following memory acquisition thereby establishing a link between M1 mAChR activation and hippocampus-based memory and learning. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Neurophysiological effects of mistletoe (Viscum album L.) on isolated rat intestines.

    PubMed

    Radenkovic, M; Ivetic, V; Popovic, M; Mimica-Dukic, N; Veljkovic, S

    2006-05-01

    Mistletoe (Viscum album L.) is well known as a medicine from ancient times and the earliest notes. Today it is used as a remedy. The aim of this research was to examine the effects of mistletoe extracts and their components on some neurophysiological parameters in rat intestines. The tonus and contractile responses of isolated intestinal segments (duodenum, ileum and distal colon) were analysed. The experiment was carried out in three groups. In the first group (control group) different concentrations of acetylcholine were added into the organ bath (10-50 nmol/L). In the second group, mistletoe extracts were added into the organ bath with increasing concentrations and in the third group, atropine, a non-selective muscarinic receptor antagonist, was added into the organ bath (concentration 10(-7) mol/L) and after atropine plant extracts were administered. The results obtained suggest that extracts from different parts of mistletoe have neurophysiological effects and change intestinal contractions. The results also suggest that the effects of mistletoe extracts on intestinal contractility act via cholinergic pathways, activating muscarinic receptors in the intestines. However, in order to establish the subtype of receptors, further investigations are necessary where selective antagonists of muscarinic cholinergic receptors should be used. Copyright 2006 John Wiley & Sons, Ltd.