Sample records for muscle activation levels

  1. Increased visfatin levels are associated with higher disease activity in anti-Jo-1-positive myositis patients.

    PubMed

    Hulejová, Hana; Kryštůfková, Olga; Mann, Heřman; Klein, Martin; Pavlíčková, Klára; Zámečník, Josef; Vencovský, Jiří; Šenolt, Ladislav

    2016-01-01

    The aim of this study was to evaluate serum levels of visfatin in anti-Jo-1-positive myositis patients, its expression in muscle tissue and to investigate potential relationships between visfatin, B-cell activating factor of the TNF family (BAFF), disease activity and anti-Jo-1 autoantibody levels. Serum levels of visfatin and BAFF were measured in 38 anti-Jo-1 positive myositis patients and 35 healthy subjects. Disease activity was evaluated by myositis disease activity assessment tool (MYOACT) using visual analogue scales (VAS) and by serum muscle enzymes. Visfatin expression was evaluated by immunohistochemistry in muscle tissue of myositis patients (n=10) and compared with non-inflammatory control muscle tissue samples from patients with myasthenia gravis (n=5). Serum visfatin and BAFF levels were significantly higher in myositis patients compared to healthy subjects and were associated with clinical muscle activity assessed by VAS. Only serum BAFF levels, but not visfatin levels, positively correlated with muscle enzyme concentrations and anti-Jo1 antibody levels. There was a positive correlation between visfatin and BAFF serum levels in myositis patients but a negative correlation was observed in healthy subjects. Visfatin expression was up-regulated in endomysial and perimysial inflammatory infiltrates of muscle tissue from myositis patients. Up-regulation of visfatin in myositis muscle tissue and an association between increased visfatin levels and muscle disease activity evaluated by MYOACT in anti-Jo-1 positive myositis patients could support possible role of visfatin in the pathogenesis of myositis.

  2. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; hide

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different animals during normal cage activity.

  3. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    PubMed

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  4. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  5. Effects of aging and calorie restriction on rat skeletal muscle glycogen synthase and glycogen phosphorylase

    PubMed Central

    Montori-Grau, Marta; Minor, Robin; Lerin, Carles; Allard, Joanne; Garcia-Martinez, Celia; de Cabo, Rafael; Gómez-Foix, Anna M.

    2016-01-01

    Calorie restriction’s (CR) effects on age-associated changes in glycogen-metabolizing enzymes were studied in rat soleus (SOL) and tibialis anterior (TA) muscles. Old (24 months) compared to young (6 months) rats maintained ad libitum on a standard diet had reduced glycogen synthase (GS) activity, lower muscle GS protein levels, increased phosphorylation of GS at site 3a with less activation in SOL. Age-associated impairments in GS protein and activation-phosphorylation were also shown in TA. There was an age-associated reduction in glycogen phosphorylase (GP) activity level in SOL, while brain/muscle isoforms (B/M) of GP protein levels were higher. GP activity and protein levels were preserved, but GP was inactivated in TA with age. Glycogen content was unchanged in both muscles. CR did not alter GS or GP activity/protein levels in young rats. CR hindered age-related decreases in GS activity/protein, unrelated to GS mRNA levels, and GS inactivation-phosphorylation; not on GP. In older rats, CR enhanced glycogen accumulation in SOL. Short-term fasting did not recapitulate CR effects in old rats. Thus, the predominant age-associated impairments on skeletal muscle GS and GP activities occur in the oxidative SOL muscle of rats, and CR can attenuate the loss of GS activity/activation and stimulate glycogen accumulation. PMID:19341787

  6. Intra-session repeatability of lower limb muscles activation pattern during pedaling.

    PubMed

    Dorel, Sylvain; Couturier, Antoine; Hug, François

    2008-10-01

    Assessment of intra-session repeatability of muscle activation pattern is of considerable relevance for research settings, especially when used to determine changes over time. However, the repeatability of lower limb muscles activation pattern during pedaling is not fully established. Thus, we tested the intra-session repeatability of the activation pattern of 10 lower limb muscles during a sub-maximal cycling exercise. Eleven triathletes participated to this study. The experimental session consisted in a reference sub-maximal cycling exercise (i.e. 150 W) performed before and after a 53-min simulated training session (mean power output=200+/-12 W). Repeatability of EMG patterns was assessed in terms of muscle activity level (i.e. RMS of the mean pedaling cycle and burst) and muscle activation timing (i.e. onset and offset of the EMG burst) for the 10 following lower limb muscles: gluteus maximus (GMax), semimembranosus (SM), Biceps femoris (BF), vastus medialis (VM), rectus femoris (RF), vastus lateralis (VL), gastrocnemius medianus (GM) and lateralis (GL), soleus (SOL) and tibialis anterior (TA). No significant differences concerning the muscle activation level were found between test and retest for all the muscles investigated. Only VM, SOL and TA showed significant differences in muscle activation timing parameters. Whereas ICC and SEM values confirmed this weak repeatability, cross-correlation coefficients suggest a good repeatability of the activation timing parameters for all the studied muscles. Overall, the main finding of this work is the good repeatability of the EMG pattern during pedaling both in term of muscle activity level and muscle activation timing.

  7. Feasible Muscle Activation Ranges Based on Inverse Dynamics Analyses of Human Walking

    PubMed Central

    Simpson, Cole S.; Sohn, M. Hongchul; Allen, Jessica L.; Ting, Lena H.

    2015-01-01

    Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle’s activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements. PMID:26300401

  8. Muscle activity, time to fatigue, and maximum task duration at different levels of production standard time

    PubMed Central

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah

    2015-01-01

    [Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to “normal”, “hard” and “very hard”. Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders. PMID:26311974

  9. Examination of contraction-induced muscle pain as a behavioral correlate of physical activity in women with and without fibromyalgia.

    PubMed

    Umeda, Masataka; Corbin, Lisa W; Maluf, Katrina S

    2015-01-01

    This study aimed to compare muscle pain intensity during a sustained isometric contraction in women with and without fibromyalgia (FM), and examine the association between muscle pain and self-reported levels of physical activity. Fourteen women with FM and 14 healthy women completed the study, where muscle pain ratings (MPRs) were obtained every 30 s during a 3 min isometric handgrip task at 25% maximal strength, and self-reported physical activity was quantified using the Baecke Physical Activity Questionnaire. Women with FM were less physically active than healthy controls. During the isometric contraction, MPR progressively increased in both groups at a comparable rate, but women with FM generally reported a greater intensity of muscle pain than healthy controls. Among all women, average MPR scores were inversely associated with self-reported physical activity levels. Women with FM exhibit augmented muscle pain during isometric contractions and reduced physical activity than healthy controls. Furthermore, contraction-induced muscle pain is inversely associated with physical activity levels. These observations suggest that augmented muscle pain may serve as a behavioral correlate of reduced physical activity in women with FM. Implications for Rehabilitation Women with fibromyalgia experience a greater intensity of localized muscle pain in a contracting muscle compared to healthy women. The intensity of pain during muscle contraction is inversely associated with the amount of physical activity in women with and without fibromyalgia. Future studies should determine whether exercise adherence can be improved by considering the relationship between contraction-induced muscle pain and participation in routine physical activity.

  10. Trunk muscle recruitment patterns in simulated precrash events.

    PubMed

    Ólafsdóttir, Jóna Marín; Fice, Jason B; Mang, Daniel W H; Brolin, Karin; Davidsson, Johan; Blouin, Jean-Sébastien; Siegmund, Gunter P

    2018-02-28

    To quantify trunk muscle activation levels during whole body accelerations that simulate precrash events in multiple directions and to identify recruitment patterns for the development of active human body models. Four subjects (1 female, 3 males) were accelerated at 0.55 g (net Δv = 4.0 m/s) in 8 directions while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal oblique, iliocostalis, and multifidus muscles at the L2-L3 level. Muscle activity evoked by the perturbations was normalized by each muscle's isometric maximum voluntary contraction (MVC) activity. Spatial tuning curves were plotted at 150, 300, and 600 ms after acceleration onset. EMG activity remained below 40% MVC for the three time points for most directions. At the 150- and 300 ms time points, the highest EMG amplitudes were observed during perturbations to the left (-90°) and left rearward (-135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior muscles. These preliminary results suggest that trunk muscle activity may be directionally tuned at the acceleration level tested here. Although data from more subjects are needed, these preliminary data support the development of modeled trunk muscle recruitment strategies in active human body models that predict occupant responses in precrash scenarios.

  11. Long-term high-level exercise promotes muscle reinnervation with age.

    PubMed

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra

    2014-04-01

    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.

  12. Muscular patterns and activation levels of auxiliary breathing muscles and thorax movement in classical singing.

    PubMed

    Pettersen, Viggo

    2005-01-01

    The aim of this paper is to present an overview of the findings in seven studies exploring muscular patterns and muscle activation levels in selected muscles by classical singers. In addition, the relationship of these muscles to thorax (TX) movement was investigated. Loading levels and respiratory phasing of upper trapezius (TR), sternocleidomastoideus (STM) and the scalenes (SC) were investigated in vocalization tasks with variation in vocal loudness and pitch. Further, muscle activity in the posterior neck (PN) was investigated in inhalation and phonation and, finally, TR, intercostal (INT), lateral abdominal (OBL) and anterior abdominal (RC) muscle loading in student and professional singers was examined. Muscle activity was recorded by use of an ambulatory four-channel monitoring system (Physiometer PHY 400, Premed, Norway). TX movement was traced with two strain gauge sensors (RES-117) placed around the upper TX and lower TX. A phasing of upper TR activity to INT and OBL activity was discovered, all muscles supporting the expiration phase. During phonation, TR contributes in the compression of the upper TX, thus serving as an accessory muscle of expiration. TR activity is reduced with short breathing cycles and is mostly inactive in simplified speaking tasks. During phonation, professional opera singers activate the expiratory-phased TR, INT, OBL and RC muscles to higher levels than student singers do. STM and SC show correlated activity patterns during inhalation and phonation by classical singers. During demanding singing, expiratory-phased STM and SC activity peaks produce a counterforce to the compression of upper TX at high pitches. As breathing demands are lowered, STM and SC activity are reduced and attain inspiratory phasing. Substantial muscle activity is observed in PN during inhalation and phonation. EMG biofeedback performed on TR and STM have a secondary effect of lowering EMG activity in PN. (c) 2005 S. Karger AG, Basel

  13. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  14. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology.

    PubMed

    Rabey, Karyne N; Green, David J; Taylor, Andrea B; Begun, David R; Richmond, Brian G; McFarlin, Shannon C

    2015-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual's past behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology

    PubMed Central

    Rabey, Karyne N.; Green, David J.; Taylor, Andrea B.; Begun, David R.; Richmond, Brian G.; McFarlin, Shannon C.

    2014-01-01

    The ability to make behavioural inferences from skeletal remains is critical to understanding the lifestyles and activities of past human populations and extinct animals. Muscle attachment site (enthesis) morphology has long been assumed to reflect muscle strength and activity during life, but little experimental evidence exists to directly link activity patterns with muscle development and the morphology of their attachments to the skeleton. We used a mouse model to experimentally test how the level and type of activity influences forelimb muscle architecture of spinodeltoideus, acromiodeltoideus, and superficial pectoralis, bone growth rate and gross morphology of their insertion sites. Over an 11-week period, we collected data on activity levels in one control group and two experimental activity groups (running, climbing) of female wild-type mice. Our results show that both activity type and level increased bone growth rates influenced muscle architecture, including differences in potential muscular excursion (fibre length) and potential force production (physiological cross-sectional area). However, despite significant influences on muscle architecture and bone development, activity had no observable effect on enthesis morphology. These results suggest that the gross morphology of entheses is less reliable than internal bone structure for making inferences about an individual’s past behaviour. PMID:25467113

  16. bioLights: light emitting wear for visualizing lower-limb muscle activity.

    PubMed

    Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki

    2010-01-01

    Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation.

  17. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The effect of different physical activity levels on muscle fiber size and type distribution of lumbar multifidus. A biopsy study on low back pain patient groups and healthy control subjects.

    PubMed

    Mazis, N; Papachristou, D J; Zouboulis, P; Tyllianakis, M; Scopa, C D; Megas, P

    2009-12-01

    Previous studies examining the multifidus fiber characteristics among low back pain (LBP) patients have not considered the variable of physical activity. The present study sought to investigate the muscle fiber size and type distribution of the lumbar multifidus muscle among LBP patient groups with different physical activity levels and healthy controls. Sixty-four patients were assigned to one of three groups named according to the physical activity level, determined for each patient by the International Physical Activity Questionnaire. These were low (LPA), medium (MPA) and high (HPA) physical activity groups. A control group comprising of 17 healthy individuals was also recruited. Muscle biopsy samples were obtained from the multifidus muscle at the level L4-L5. contrast with the control group, LBP patient groups showed a significantly higher Type II fiber distribution as well as reduced diameter in both fiber types (P<0.05). The physical activity level did not have an effect on multifidus characteristics since no significant differences were observed in fiber type and diameter (P>0.05) among LPA, MPA and HPA patient groups. Various pathological conditions were detected which were more pronounced in LBP groups compared to the control (P<0.05). Males had a larger fiber diameter compared to females for both fiber types (P<0.05). The results showed that the level of physical activity did not affect muscle fiber size and type distribution among LBP patients groups. These findings suggest that not only inactivity but also high physical activity levels can have an adverse effect on the multifidus muscle fiber characteristics.

  19. From the motor cortex to the movement and back again.

    PubMed

    Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I

    2017-01-01

    The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.

  20. Hip and trunk muscles activity during nordic hamstring exercise.

    PubMed

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-04-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21-36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t -test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles ( P <0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward ( r =0.687) and upward motions ( r =0.753) ( P <0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk.

  1. Hip and trunk muscles activity during nordic hamstring exercise

    PubMed Central

    Narouei, Shideh; Imai, Atsushi; Akuzawa, Hiroshi; Hasebe, Kiyotaka; Kaneoka, Koji

    2018-01-01

    The nordic hamstring exercise (NHE) is a dynamic lengthening hamstring exercise that requires trunk and hip muscles activation. Thigh muscles activation, specifically hamstring/quadriceps contractions has been previously examined during NHE. Trunk and hip muscles activity have not been enough studied. The aim of this study was to analyze of hip and trunk muscles activity during NHE. Surface electromyography (EMG) and kinematic data were collected during NHE. Ten healthy men with the age range of 21–36 years performed two sets of two repetitions with downward and upward motions each of NHE. EMG activity of fifteen trunk and hip muscles and knee kinematic data were collected. Muscle activity levels were calculated through repeated measure analysis of variance in downward and upward motions, through Paired t-test between downward and upward motions and gluteus maximus to erector spine activity ratio (Gmax/ES ratio) using Pearson correlation analyses were evaluated. Semitendinosus and biceps femoris muscles activity levels were the greatest in both motions and back extensors and internal oblique muscles activity were greater than other muscles (P<0.05). The decreased Gmax/ES ratio was significantly related to peak knee extension angle in downward (r=0.687) and upward motions (r=0.753) (P<0.05). These findings indicate the importance of synergistic muscles and trunk muscles coactivation in eccentric and concentric hamstrings contractions. It could be important for early assessment of subjects with hamstring injury risk. PMID:29740557

  2. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.

    PubMed

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.

  3. Mathematical Model Of Nerve/Muscle Interaction

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1990-01-01

    Phasic Excitation/Activation (PEA) mathematical model simulates short-term nonlinear dynamics of activation and control of muscle by nerve. Includes electronic and mechanical elements. Is homeomorphic at level of its three major building blocks, which represent motoneuron, dynamics of activation of muscle, and mechanics of muscle.

  4. Human muscle fascicle behavior in agonist and antagonist isometric contractions.

    PubMed

    Simoneau, Emilie M; Longo, Stefano; Seynnes, Olivier R; Narici, Marco V

    2012-01-01

    The aim of this study was to compare, at a given level of electromyographic (EMG) activity, the behavior of dorsiflexor and plantarflexor muscles as assessed via their architecture (pennation angle and fiber length) during agonist or antagonist isometric contractions. Real-time ultrasonography and EMG activity of gastrocnemius medialis (GM) and tibialis anterior (TA) muscles were obtained while young males performed ramp isometric contractions in dorsi- and plantarflexion. For both muscles, at a similar level of EMG activity, fiber length was longer, and pennation angle was smaller, during antagonist than during agonist contractions. These results indicate that, at similar levels of EMG activity, GM and TA muscles elicit a higher mechanical output while acting as an antagonist. These findings have important implications for muscle function testing. They show that estimation of antagonistic force using the common method based on the EMG/net torque relationship yields underestimated values. Copyright © 2011 Wiley Periodicals, Inc.

  5. Cardiovascular control during concomitant dynamic leg exercise and static arm exercise in humans

    PubMed Central

    Strange, S

    1999-01-01

    Skeletal muscle blood flow is thought to be determined by a balance between sympathetic vasoconstriction and metabolic vasodilatation. The purpose of this study was to assess the importance of high levels of sympathetic vasoconstrictor activity in control of blood flow to human skeletal muscle during dynamic exercise.Muscle sympathetic nerve activity to the exercising leg was increased by static or static ischaemic arm exercise added to on-going dynamic leg exercise. Ten subjects performed light (20 W) or moderate (40 W) dynamic knee extension for 6 min with one leg alone or concomitant with bilateral static handgrip at 20% of maximal voluntary contraction force with or without forearm muscle ischaemia or post-exercise forearm muscle ischaemia.Muscle sympathetic nerve activity was measured by microneurography (peroneal nerve) and leg muscle blood flow by a constant infusion thermodilution technique (femoral vein).Activation of an exercise pressor reflex from the arms, causing a 2- to 4-fold increase in muscle sympathetic nerve activity and a 15–32% increase in mean arterial blood pressure, did not affect blood flow to the dynamically exercising leg muscles at any level of leg exercise. Leg vascular conductance was reduced in line with the higher perfusion pressure.The results demonstrate that the vasoconstrictor effects of high levels of muscle sympathetic nerve activity does not affect blood flow to human skeletal muscle exercising at moderate intensities. One question remaining is whether the observed decrease in muscle vascular conductance is the result of sympathetic vasoconstriction or metabolic autoregulation of muscle blood flow. PMID:9831733

  6. Abdominal muscle activity during a standing long jump.

    PubMed

    Okubo, Yu; Kaneoka, Koji; Shiina, Itsuo; Tatsumura, Masaki; Miyakawa, Shumpei

    2013-08-01

    Experimental laboratory study. To measure the activation patterns (onset and magnitude) of the abdominal muscles during a standing long jump using wire and surface electromyography. Activation patterns of the abdominal muscles, especially the deep muscles such as the transversus abdominis (TrA), have yet to be examined during full-body movements such as jumping. Thirteen healthy men participated. Wire electrodes were inserted into the TrA with the guidance of ultrasonography, and surface electrodes were attached to the skin overlying the rectus abdominis (RA) and external oblique (EO). Electromyographic signals and video images were recorded while each subject performed a standing long jump. The jump task was divided into 3 phases: preparation, push-off, and float. For each muscle, activation onset relative to the onset of the RA and normalized muscle activation levels (percent maximum voluntary contraction) were analyzed during each phase. Comparisons between muscles and phases were assessed using 2-way analyses of variance. The onset times of the TrA and EO relative to the onset of the RA were -0.13 ? 0.17 seconds and -0.02 ? 0.07 seconds, respectively. Onset of TrA activation was earlier than that of the EO. The activation levels of all 3 muscles were significantly greater during the push-off phase than during the preparation and float phases. Consistent with previously published trunk-perturbation studies in healthy persons, the TrA was activated prior to the RA and EO. Additionally, the highest muscle activation levels were observed during the push-off phase.

  7. Association between leg strength and muscle cross-sectional area of the quadriceps femoris with the physical activity level in octogenarians.

    PubMed

    Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe

    2016-06-03

    Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness.  To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly.  Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used.  There were significant differences between sexes in muscle area (p<0.001) in the Chair Stand Test (p=0.028) and the walk index (p=0.029), with higher values in men. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, p<0.005, and r=0.522, p<0.001, respectively) and the total weekly activity index (r=0.430, p<0.005, and r=0.519, p<0.001, respectively). In the multiple linear regression models for the total weekly activity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable.  Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.

  8. Oblique abdominal muscle activity in response to external perturbations when pushing a cart.

    PubMed

    Lee, Yun-Ju; Hoozemans, Marco J M; van Dieën, Jaap H

    2010-05-07

    Cyclic activation of the external and internal oblique muscles contributes to twisting moments during normal gait. During pushing while walking, it is not well understood how these muscles respond to presence of predictable (cyclic push-off forces) and unpredictable (external) perturbations that occur in pushing tasks. We hypothesized that the predictable perturbations due to the cyclic push-off forces would be associated with cyclic muscle activity, while external perturbations would be counteracted by cocontraction of the oblique abdominal muscles. Eight healthy male subjects pushed at two target forces and two handle heights in a static condition and while walking without and with external perturbations. For all pushing tasks, the median, the static (10th percentile) and the peak levels (90th percentile) of the electromyographic amplitudes were determined. Linear models with oblique abdominal EMGs and trunk angles as input were fit to the twisting moments, to estimate trunk stiffness. There was no significant difference between the static EMG levels in pushing while walking compared to the peak levels in pushing while standing. When pushing while walking, the additional dynamic activity was associated with the twisting moments, which were actively modulated by the pairs of oblique muscles as in normal gait. The median and static levels of trunk muscle activity and estimated trunk stiffness were significantly higher when perturbations occurred than without perturbations. The increase baseline of muscle activity indicated cocontraction of the antagonistic muscle pairs. Furthermore, this cocontraction resulted in an increased trunk stiffness around the longitudinal axis. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Individual muscle control using an exoskeleton robot for muscle function testing.

    PubMed

    Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa

    2010-08-01

    Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.

  10. The effect of arm weight support on upper limb muscle synergies during reaching movements

    PubMed Central

    2014-01-01

    Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS. PMID:24594139

  11. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly.

    PubMed

    Garcia, Patrícia A; Dias, João M D; Dias, Rosângela C; Santos, Priscilla; Zampa, Camila C

    2011-01-01

    to evaluate the relationship between lower extremity muscle function, calf circumference (CC), handgrip strength (HG), functional mobility and level of physical activity among age groups (65-69, 70-79, 80+) of older adults (men and women) and to identify the best parameter for screening muscle function loss in the elderly. 81 community-dwelling elderly (42 women and 39 men) participated. Walking speed (Multisprint Kit), HG (Jamar dynamometer), hip, knee and ankle muscle function (Biodex isokinetic dynamometer), level of physical activity (Human Activity Profile) and CC (tape measure) were evaluated. ANOVA, Pearson correlation and ROC curves were used for statistical analysis. Dominant CC (34.9±3 vs 37.7±3.6), habitual (1.1±0.2 vs 1.2±0.2) and fast (1.4±0.3 vs 1.7±0.3) walking speed, HG (23.8±7.5 vs 31.8±10.3), average peak torque and average hip, knee and ankle power (p<0.05) were lower for the 80+ group than for the 65-69 year-olds. There were no differences in physical activity level among age groups. Moderate significant correlations were found between muscle function parameters, walking speed and HG; a fair degree of relationship was found between muscle function parameters, CC and level of physical activity (p<0.05). The ROC curve analysis suggested a cutoff point of 14.51 Kgf for screening muscle function loss in elderly women (p=0.03). This study demonstrated an association between muscle function, HG and fast walking speed, a decrease in these parameters with age and the possibility of using HG to screen for muscle function of the lower extremities.

  12. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P < 0.05). At higher activity levels (exceeding 20 and 50% of the peak activity), the duty time of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.05). There was no difference in the duty time of the anterior temporalis muscle at any muscle activity level. The percentage of type IIA fibers of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.01) and the opposite was true with regard to type IIB fibers (P < 0.05). The cross-sectional area of type IIX and type IIB fibers of the superficial masseter muscle was significantly smaller in the soft-diet group than in the hard-diet group (P < 0.05). There was no difference in the muscle fiber composition and the cross-sectional area of the anterior belly of the digastric and anterior temporalis muscles. In conclusion, for the jaw muscles of male rats reared on a soft diet, the slow-to-fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  13. Influence of pressure changes on recruitment pattern and neck muscle activities during Cranio-Cervical Flexion Tests (CCFTs).

    PubMed

    Park, Junhyung; Hur, Jingang; Ko, Taesung

    2015-01-01

    The muscle activity of the deep cervical flexors is emphasized more than that of the superficial cervical flexors, and it has been reported that functional disorders of the longuscolli are found in patients who experience neck pain. The objective of this study was to analyze the recruitment patterns and muscle activities of the cervical flexors during Cranio-Cervical Flexion Tests (CCFTs) through real-time ultrasonography and surface electromyography with a view to presenting appropriate pressure levels for deep cervical flexor exercise protocols based on the results of the analysis. The twenty subjects without neck pain were trained until they became accustomed to CCFTs, and the pressure level was increased gradually from 20 mmHg to 40 mmHg by increasing the pressure level 5 mmHg at a time. Real-time ultrasonography images of the longuscolli and the sternocleidomastoid were taken to measure the amounts of changes in the thicknesses of these muscles, and surface electromyography was implemented to observe the muscle activity of the sternocleidomastoid. The measured value is RMS. According to the results of the ultrasonography, the muscle thicknesses of both the longuscolli and the sternocleidomastoid showed significant increases, as the pressure increased up to 40 mmHg (p< 0.05). The differences in the muscle thicknesses at all individual pressure levels showed significant increases (p< 0.05). According to the results of the electromyography, the muscle activity of the sternocleidomastoid gradually increased as the pressure increased up to 40 mmHg, the increases were significant between 20 mmHg and 25 mmHg, between 30 mmHg and 35 mmHg (p< 0.05). The pressure levels of exercise methods at which the muscle activity of the deep cervical flexors is maximally increased and the muscle activity of the superficial cervical flexors is minimally increased are 25 mmHg-30 mmHg.

  14. Force estimation from ensembles of Golgi tendon organs

    NASA Astrophysics Data System (ADS)

    Mileusnic, M. P.; Loeb, G. E.

    2009-06-01

    Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.

  15. Muscle Activity in Upper-Body Single-Joint Resistance Exercises with Elastic Resistance Bands vs. Free Weights

    PubMed Central

    Bergquist, Ronny; Iversen, Vegard Moe; Mork, Paul J; Fimland, Marius Steiro

    2018-01-01

    Abstract Elastic resistance bands require little space, are light and portable, but their efficacy has not yet been established for several resistance exercises. The main objective of this study was to compare the muscle activation levels induced by elastic resistance bands versus conventional resistance training equipment (dumbbells) in the upper-body resistance exercises flyes and reverse flyes. The level of muscle activation was measured with surface electromyography in 29 men and women in a cross-over design where resistance loadings with elastic resistance bands and dumbbells were matched using 10-repetition maximum loadings. Elastic resistance bands induced slightly lower muscle activity in the muscles most people aim to activate during flyes and reverse flies, namely pectoralis major and deltoideus posterior, respectively. However, elastic resistance bands increased the muscle activation level substantially in perceived ancillary muscles, that is deltoideus anterior in flyes, and deltoideus medius and trapezius descendens in reverse flyes, possibly due to elastic bands being a more unstable resistance modality. Overall, the results show that elastic resistance bands can be considered a feasible alternative to dumbbells in flyes and reverse flyes. PMID:29599855

  16. Passive and Active Contributions to Glenohumeral Stability

    DTIC Science & Technology

    2001-10-25

    physiological muscle contraction during free arm suspension and proportional to muscle physiological cross- sectional area [15] (Phys Load); ditto...of muscle contraction around GH-joint. Stiffness of the GH capsuloligamentous structure, which is the ratio of the force required to stretch the...important active stabilizer in inferior stability. Our results also suggested that low-level muscle activity (2% of maximum muscle contraction ), representing

  17. Physical activity opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension.

    PubMed

    Nyberg, M; Mortensen, S P; Hellsten, Y

    2013-03-01

    Endothelin-1 has potent constrictor and proliferative activity in vascular smooth muscle, and essential hypertension and aging are associated with increased endothelin-1-mediated vasoconstrictor tone. The aim of this study was to investigate the effect of physical activity, hypertension and age on endothelin-1 levels in plasma and skeletal muscle and endothelin receptors in skeletal muscle in human subjects. In study 1, normotensive (46 ± 1 years, n = 11) and hypertensive (47 ± 1 years, n = 10) subjects were studied before and after 8 weeks of aerobic exercise training. In study 2, young (23 ± 1 years, n = 8), older lifelong sedentary (66 ± 2 years, n = 8) and older lifelong endurance-trained (62 ± 2 years, n = 8) subjects were studied in a cross-sectional design. Skeletal muscle and plasma endothelin-1 levels were increased with age and plasma endothelin-1 levels were higher in hypertensive than normotensive individuals. Eight weeks of exercise training normalized plasma endothelin-1 levels in the hypertensive subjects and increased the protein expression of the ET(A) receptor in skeletal muscle of normotensive subjects. Similarly, individuals that had performed lifelong physical activity had similar plasma and muscle endothelin-1 levels as the young controls and had higher ET(A) receptor levels. Our findings suggest that aerobic exercise training opposes the age-related increase in skeletal muscle and plasma endothelin-1 levels and normalizes plasma endothelin-1 levels in individuals with essential hypertension. This effect may explain some of the beneficial effects of training on the cardiovascular system in older and hypertensive subjects. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  18. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  19. Influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women

    PubMed Central

    Varella, Larissa Ramalho Dantas; Torres, Vanessa Braga; Angelo, Priscylla Helouyse Melo; Eugênia de Oliveira, Maria Clara; Matias de Barros, Alef Cavalcanti; Viana, Elizabel de Souza Ramalho; Micussi, Maria Thereza de Albuquerque Barbosa Cabral

    2016-01-01

    [Purpose] The aim of the present study was to assess the influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women. [Subjects and Methods] This was an observational analytic cross-sectional study with a sample of 100 postmenopausal women, aged between 45 and 65 years, divided into three groups according to menopausal stage: hysterectomized and early and late postmenopause. Patients were assessed for sociodemographic and gyneco-obstetric factors and subjected to a muscle strength test and perineometry. Descriptive statistics, ANOVA, Kruskal-Wallis and multiple regression were applied. [Results] The results showed homogeneity in sociodemographic and anthropometric characteristics. There was no difference in pelvic floor muscle function among the three groups. Type of delivery, parity and physical activity level showed no influence on muscle function. [Conclusion] The findings demonstrate that parity, type of delivery, and physical activity level had no influence on pelvic floor muscle pressure in postmenopausal women. One hypothesis to explain these results is the fact that the decline in muscle function in postmenopausal women is related to the female aging process. PMID:27134366

  20. Activation of selected shoulder muscles during unilateral wall and bench press tasks under submaximal isometric effort.

    PubMed

    Tucci, Helga T; Ciol, Marcia A; de Araújo, Rodrigo C; de Andrade, Rodrigo; Martins, Jaqueline; McQuade, Kevin J; Oliveira, Anamaria S

    2011-07-01

    Controlled laboratory study. To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation.

  1. The effect of work-related sustained trapezius muscle activity on the development of neck and shoulder pain among young adults.

    PubMed

    Hanvold, Therese N; Wærsted, Morten; Mengshoel, Anne Marit; Bjertness, Espen; Stigum, Hein; Twisk, Jos; Veiersted, Kaj Bo

    2013-07-01

    This study aimed to evaluate if sustained trapezius muscle activity predicts neck and shoulder pain over a 2.5-year period. Forty young adults (15 hairdressers, 14 electricians, 5 students and 6 with various work) were followed during their first years of working life. Self-reported neck and shoulder pain during the last four weeks was assessed seven times over the observational period. Upper-trapezius muscle activity was measured during a full working day by bilateral surface electromyography (EMG) at baseline (winter 2006/7). Sustained trapezius muscle activity was defined as continuous muscle activity with amplitude >0.5% EMGmax lasting >4 minutes. The relative time of sustained muscle activity during the working day was calculated and further classified into low (0-29%), moderate (30-49%) and high (50-100%) level groups. Generalized estimating equations (GEE), adjusted for time, gender, mechanical workload, control-over-work intensity, physical activity, tobacco use, and prior neck and shoulder pain, showed that participants with a high level of sustained muscle activity had a rate of neck and shoulder pain three times higher than the low level group during a 2.5-year period. The association was strongest at the same time and shortly after the EMG measurement, indicating a time-lag of ≤6 months. The results support the hypothesis that sustained trapezius muscle activity is associated with neck and shoulder pain. This association was strongest analyzing cross-sectional and short-term effects.

  2. Age and natural metabolically-intensive behavior affect oxidative stress and antioxidant mechanisms.

    PubMed

    Williams, Jason B; Roberts, Stephen P; Elekonich, Michelle M

    2008-06-01

    Flying honey bees have among the highest mass-specific metabolic rates ever measured, suggesting that their flight muscles may experience high levels of oxidative stress during normal daily activities. We measured parameters of oxidative stress and antioxidant capacity in highly metabolic flight muscle and less active head tissue in cohorts of age-matched nurse bees, which rarely fly, and foragers, which fly several hours per a day. Naturally occurring foraging flight elicited an increase in flight muscle Hsp70 content in both young and old foragers; however catalase and total antioxidant capacity increased only in young flight muscle. Surprisingly, young nurse bees also showed a modest daily increase in Hsp70, catalase levels and antioxidant capacity, and these effects were likely due to collecting the young nurses soon after orientation flights. There were no differences in flight muscle carbonyl content over the course of daily activity and few differences in Hsp70, catalase, total antioxidant capacity and protein carbonyl levels in head tissue regardless of age or activity. In summary, honey bee flight likely produces high levels of reactive oxygen species in flight muscle that, when coupled with age-related decreases in antioxidant activity may be responsible for behavioral senescence and reduced longevity.

  3. Cricothyroid muscle and thyroarytenoid muscle dominance in vocal register control: preliminary results.

    PubMed

    Kochis-Jennings, Karen Ann; Finnegan, Eileen M; Hoffman, Henry T; Jaiswal, Sanyukta; Hull, Darcey

    2014-09-01

    Headmix and head registers use cricothyroid (CT) muscle dominant voicing, whereas chest and chestmix registers use thyroarytenoid (TA) muscle dominant voicing. Cross-sectional study. CT and TA electromyographic data obtained from five untrained singers and two trained singers were analyzed to determine CT and TA muscle dominance as a function of register. Simultaneous recordings of TA and CT muscle activity and audio were obtained during production of pitch glides and a variety of midrange and upper pitches in chest, chestmix, headmix, and head registers. TA dominant phonation was only observed for chest productions and headmix/head register productions below 300 Hz. All phonation above 300 Hz, regardless of register, showed CT:TA muscle activity ratios that were CT dominant or close to 1, indicating nearly equal CT and TA muscle activity. This was true for all subjects on all vocal tasks. For the subjects sampled in this study, pitch level appeared to have a greater effect on TA and CT muscle dominance than vocal register. Preliminary findings regarding CT and TA dominance and register control do not support the assumption that all chest and chestmix production has greater TA muscle activity than CT muscle activity or that all headmix and head production require greater CT muscle activity than TA muscle activity. The data indicate that pitch level may play a greater role in determining TA and CT dominance than register. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Laughing: a demanding exercise for trunk muscles.

    PubMed

    Wagner, Heiko; Rehmes, Ulrich; Kohle, Daniel; Puta, Christian

    2014-01-01

    Social, psychological, and physiological studies have provided evidence indicating that laughter imposes an increased demand on trunk muscles. It was the aim of this study to quantify the activation of trunk muscles during laughter yoga in comparison with crunch and back lifting exercises regarding the mean trunk muscle activity. Muscular activity during laughter yoga exercises was measured by surface electromyography of 5 trunk muscles. The activation level of internal oblique muscle during laughter yoga is higher compared to the traditional exercises. The multifidus, erector spinae, and rectus abdominis muscles were nearly half activated during laughter yoga, while the activation of the external oblique muscle was comparable with the crunch and back lifting exercises. Our results indicate that laughter yoga has a positive effect on trunk muscle activation. Thus, laughter seems to be a good activator of trunk muscles, but further research is required whether laughter yoga is a good exercise to improve neuromuscular recruitment patterns for spine stability.

  5. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight.

    PubMed

    Ishihara, Akihiko; Fujino, Hidemi; Nagatomo, Fumiko; Takeda, Isao; Ohira, Yoshinobu

    2008-12-01

    Gene expression levels of heat shock proteins (HSPs) in the slow-twitch soleus and fast-twitch plantaris muscles of rats were determined after hindlimb suspension or spaceflight. Male rats were hindlimb-suspended for 14 d or exposed to microgravity for 9 d. The mRNA expression levels of HSP27, HSP70, and HSP84 in the hindlimb-suspended and microgravity-exposed groups were compared with those in the controls. The mRNA expression levels of the 3 HSPs in the soleus muscle under normal conditions were higher compared with those in the plantaris muscle. The mRNA expression levels of the 3 HSPs in the soleus muscle were inhibited by hindlimb suspension and spaceflight. The mRNA expression levels of the 3 HSPs in the plantaris muscle did not change after hindlimb suspension. It is suggested that the mRNA expression levels of the 3 HSPs are regulated by the mechanical and neural activity levels, and therefore the decreased mRNA expression levels of HSPs in the slow-twitch muscle following hindlimb suspension and spaceflight are related to a reduction in the mechanical and neural activity levels.

  6. Nerve-dependent factors regulating transcript levels of glycogen phosphorylase in skeletal muscle.

    PubMed

    Matthews, C C; Carlsen, R C; Froman, B; Tait, R; Gorin, F

    1998-06-01

    1. Muscle glycogen phosphorylase (MGP), the rate-limiting enzyme for glycogen metabolism in skeletal muscle, is neurally regulated. Steady-state transcript levels of the skeletal muscle isozyme of MGP decrease significantly following muscle denervation and after prolonged muscle inactivity with an intact motor nerve. These data suggest that muscle activity has an important influence on MGP gene expression. The evidence to this point, however, does not preclude the possibility that MGP is also regulated by motor neuron-derived trophic factors. This study attempts to distinguish between regulation provided by nerve-evoked muscle contractile activity and that provided by the delivery of neurotrophic factors. 2. Steady-state MGP transcript levels were determined in rat tibialis anterior (TA) muscles following controlled interventions aimed at separating the contributions of contractile activity from axonally transported trophic factors. The innervated TA was rendered inactive by daily epineural injections of tetrodotoxin (TTX) into the sciatic nerve. Sustained inhibition of axonal transport was accomplished by applying one of three different concentrations of the antimicrotubule agent, vinblastine (VIN), to the proximal sciatic nerve for 1 hr. The axonal transport of acetylcholinesterase (AChE) was assessed 7, 14, and 28 days after the single application of VIN. 3. MGP transcript levels normalized to total RNA were reduced by 67% in rat TA, 7 days after nerve section. Daily injection of 2 microg TTX into the sciatic nerve for 7 days eliminated muscle contractile activity and reduced MGP transcript levels by 60%. 4. A single, 1-hr application of 0.10% (w/v) VIN to the sciatic nerve reduced axonal transport but did not alter MGP transcript levels in the associated TA, 7 days after treatment. Application of 0.10% VIN to the sciatic nerve also did not affect IA sensory or motor nerve conduction velocities or TA contractile function. 5. Treatment of the sciatic nerve with 0.40% (w/v) VIN for 1 hr reduced axonal transport and decreased MGP transcript levels by 50% within 7 days, but also reduced sensory and motor nerve conduction velocities and depressed TA contractile function. 6. Myogenin, a member of a family of regulatory factors shown to influence the transcription of many muscle genes, including MGP, was used as a molecular marker for muscle inactivity. Myogenin transcript levels were increased following denervation and after treatment with TTX or 0.40% VIN but not after treatment with 0.10% VIN. 7. The results suggest that MGP transcript levels in TA are regulated predominantly by muscle activity, rather than by the delivery of neurotrophic factors. Intrinsic myogenic factors, however, also play a role in MGP expression, since denervation did not reduce MGP transcript levels below 30% of control TA. The dominant influence of activity in the regulation of MGP contrasts with the proposed regulation of oxidative enzyme expression, which appears to depend on both activity and trophic factor influences.

  7. COMPARISON OF HAMSTRING MUSCLE ACTIVATION DURING HIGH-SPEED RUNNING AND VARIOUS HAMSTRING STRENGTHENING EXERCISES

    PubMed Central

    Solheim, Jens Asmund Brevik; Bencke, Jesper

    2017-01-01

    Purpose/Background Several studies have examined the effect of hamstring strength exercises upon hamstring strains in team sports that involve many sprints. However, there has been no cross comparison among muscle activation of these hamstring training exercises with actual sprinting. Therefore, the aim of this study was to examine different hamstring exercises and compare the muscle activity in the hamstring muscle group during various exercises with the muscular activity produced during maximal sprints. Methods Twelve male sports students (age 25 ± 6.2 years, 1.80 ± 7.1 m, body mass 81.1 ± 15.6 kg) participated in this study. Surface EMG electrodes were placed on semimembranosus, semitendinosus and biceps femoris to measure muscle activity during seven hamstrings exercises and sprinting together with 3D motion capture to establish at what hip and knee angles maximal muscle activation (EMG) occurs. Maximal EMG activity during sprints for each muscle was used in order to express each exercise as a percentage of max activation during sprinting. Results The main findings were that maximal EMG activity of the different hamstring exercises were on average between 40-65% (Semitendinosus), 18-40% (biceps femoris) and 40-75% (Semimembranosus) compared with the max EMG activity in sprints, which were considered as 100%. The laying kick together with the Nordic hamstring exercises and its variations had the highest muscle activations, while the cranes showed the lowest muscle activation (in all muscles) together with the standing kick for the semimembranosus. In addition, angles at which the peak EMG activity of the hamstring muscle occurs were similar for the Nordic hamstring exercises and different for the two crane exercises (hip angle), standing kick (hip angle) and the laying kick (knee angle) compared with the sprint. Conclusions Nordic hamstring exercises with its variation together with the laying kick activates the hamstrings at high levels and at angles similar to the joint angles at which peak hamstring activation occurs during sprinting, while cranes did not reach high levels of hamstring activation compared with sprinting. Level of Evidence 1b PMID:29181249

  8. The Variation of Work Productivity and Muscle Activities at Different Levels of Production Target

    NASA Astrophysics Data System (ADS)

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Zuhairah Mahmud Zuhudi, Nurul

    2017-10-01

    This paper aims to investigate the variation of work productivity and muscle activities among workers performing industrial repetitive tasks at four different levels of production target. The work productivity and muscle activities data were recorded from twenty workers at four levels of production target corresponding to “participative (PS1)”, “normal (PS2)”, “high (PS3)” and “very high (PS4)”. The results showed that worker productivity was found to increase at higher production target and there was a significant change (p < 0.005) in work productivity across the four different production targets. The muscle activities were found to increase at higher production target and correspond to more discomfort and a higher rate of muscle fatigue. The results indicated that working with a higher production target results in higher worker productivity, but could lead to higher risk of WMSDs.

  9. Bone mineral density, muscle strength and physical activity. A population-based study of 332 subjects aged 15-42 years.

    PubMed

    Düppe, H; Gärdsell, P; Johnell, O; Nilsson, B E; Ringsberg, K

    1997-04-01

    The aim of this population-based study was to find out whether differences in levels of physical activity have an influence on bone mass quantity and whether quadriceps muscle strength is a reliable determinant of bone mass. Included were 175 men and 157 women, aged 15-42 years. Bone mineral density (BMD) was measured at various sites by dual X-ray absorptiometry (DXA) and single photon absorptiometry (SPA). Muscle strength was assessed using an isokinetic muscle force meter. A questionnaire was used to estimate the level of physical activity. We found a positive correlation between physical activity and BMD for boys at the distal forearm and for girls at the trochanter (age group 15-16 years). Active men (age group 21-42 years) had up to 9% higher BMD levels at the hip than those who were less active. Quadriceps muscle torque was not an independent predictor of BMD. Our data suggest that a higher level of physical activity-within the limits of a "normal life style"-may have a positive effect on BMD in the proximal femur of young adults, which in turn may lessen the subsequent risk of fracture.

  10. Electromyography variables during the golf swing: a literature review.

    PubMed

    Marta, Sérgio; Silva, Luís; Castro, Maria António; Pezarat-Correia, Pedro; Cabri, Jan

    2012-12-01

    The aim of the study was to review systematically the literature available on electromyographic (EMG) variables of the golf swing. From the 19 studies found, a high variety of EMG methodologies were reported. With respect to EMG intensity, the right erector spinae seems to be highly activated, especially during the acceleration phase, whereas the oblique abdominal muscles showed moderate to low levels of activation. The pectoralis major, subscapularis and latissimus dorsi muscles of both sides showed their peak activity during the acceleration phase. High muscle activity was found in the forearm muscles, especially in the wrist flexor muscles demonstrating activity levels above the maximal voluntary contraction. In the lower limb higher muscle activity of the trail side was found. There is no consensus on the influence of the golf club used on the neuromuscular patterns described. Furthermore, there is a lack of studies on average golf players, since most studies were executed on professional or low handicap golfers. Further EMG studies are needed, especially on lower limb muscles, to describe golf swing muscle activation patterns and to evaluate timing parameters to characterize neuromuscular patterns responsible for an efficient movement with lowest risk for injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The effects of therapeutic hip exercise with abdominal core activation on recruitment of the hip muscles.

    PubMed

    Chan, Mandy Ky; Chow, Ka Wai; Lai, Alfred Ys; Mak, Noble Kc; Sze, Jason Ch; Tsang, Sharon Mh

    2017-07-21

    Core stabilization has been utilized for rehabilitation and prevention of lower limb musculoskeletal injuries. Previous studies showed that activation of the abdominal core muscles enhanced the hip muscle activity in hip extension and abduction exercises. However, the lack of the direct measurement and quantification of the activation level of the abdominal core muscles during the execution of the hip exercises affect the level of evidence to substantiate the proposed application of core exercises to promote training and rehabilitation outcome of the hip region. The aim of the present study was to examine the effects of abdominal core activation, which is monitored directly by surface electromyography (EMG), on hip muscle activation while performing different hip exercises, and to explore whether participant characteristics such as gender, physical activity level and contractile properties of muscles, which is assessed by tensiomyography (TMG), have confounding effect to the activation of hip muscles in enhanced core condition. Surface EMG of bilateral internal obliques (IO), upper gluteus maximus (UGMax), lower gluteus maximus (LGMax), gluteus medius (GMed) and biceps femoris (BF) of dominant leg was recorded in 20 young healthy subjects while performing 3 hip exercises: Clam, side-lying hip abduction (HABD), and prone hip extension (PHE) in 2 conditions: natural core activation (NC) and enhanced core activation (CO). EMG signals normalized to percentage of maximal voluntary isometric contraction (%MVIC) were compared between two core conditions with the threshold of the enhanced abdominal core condition defined as >20%MVIC of IO. Enhanced abdominal core activation has significantly promoted the activation level of GMed in all phases of clam exercise (P < 0.05), and UGMax in all phases of PHE exercise (P < 0.05), LGMax in eccentric phases of all 3 exercises (P < 0.05), and BF in all phases of all 3 exercises except the eccentric phase of PHE exercise (P < 0.05). The %MVIC of UGMax was significantly higher than that of LGMax in all phases of clam and HABD exercises under both CO and NC conditions (P < 0.001) while the %MVIC of LGMax was significantly higher than UGMax in concentric phase of PHE exercise under NC condition (P = 0.003). Gender, physical activity level and TMG parameters were not major covariates to activation of hip muscles under enhanced core condition. Abdominal core activation enhances the hip muscles recruitment in Clam, HABD and PHE exercises, and this enhancement is correlated with higher physical activity and stiffer hip muscle. Our results suggest the potential application of abdominal core activation for lower limb rehabilitation since the increased activation of target hip muscles may enhance the therapeutic effects of hip strengthening exercises.

  12. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  13. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  14. The evaluation of relationship between vitamin D and muscle power by micro manual muscle tester in end-stage renal disease patients.

    PubMed

    Zahed, Nargesosadat; Chehrazi, Saghar; Falaknasi, Kianosh

    2014-09-01

    Muscle force of lower limb is a major factor for sustaining physical activity. Decreased muscle force can limit physical activity, which can increase mortality and morbidity in end-stage renal disease (ESRD) patients. Muscle force depends on several factors. One of the most important factors is 25-hydroxy vitamin D (25-OHD) that affects muscle function in both uremic and non-uremic patients. The aim of this study was to investigate the association between serum level of 25-OHD and muscle force of lower extremities in hemodialysis patients estimated by a Micro Manual Muscle Tester, a digital instrument that measures muscle force in kilograms This cross-sectional study was performed on 135 adult patients, 69 male (51%) and 66 female (69%) (mean: 1.4, standard deviation: 0.5), undergoing hemodialysis. Standard biochemistry parameters were measured before hemodialysis, including 25-OHD, calcium, albumin, para-hyroid hormone and C-reactive protein (CRP). Based on the result of serum level of 25-OHD, patients were classified into the following three groups: 85 patients (63%) were 25-OHD deficient (25-OHD <30), 43 patients (32%) had a normal level of 25-OHD (30-70) and seven patients (5%) had a toxic level of 25-OHD (>70) (mean: 1.42, standard deviation: 0.59). Also, based on the result of muscle force, patients were classified into the following three groups: 84/133 patients (62%) had weak muscle force (<5 kg), 46/133 patients (34%) had normal muscle force (5-10 kg) and three patients (21%) had strong muscle force (>10 kg) (mean: 1.39, standard deviation: 0.53). There was a significant relation between 25-OHD level and muscle force (P = 0.02), between age and muscle force (P = 0.002) and between gender and muscle force (P <0.001). In our opinion, 25-OHD can be a useful drug in ESRD patients to improve muscle force and physical activity.

  15. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9.

    PubMed

    Silva, Meiricris T; Nascimento, Tábata L; Pereira, Marcelo G; Siqueira, Adriane S; Brum, Patrícia C; Jaeger, Ruy G; Miyabara, Elen H

    2016-07-01

    We investigated the role of β2-adrenoceptors in the connective tissue remodeling of regenerating muscles from β2-adrenoceptor knockout (β2KO) mice. Tibialis anterior muscles from β2KO mice were cryolesioned and analyzed after 3, 10, and 21 days. Regenerating muscles from β2KO mice showed a significant increase in the area density of the connective tissue and in the amount of collagen at 10 days compared with wild-type (WT) mice. A greater increase occurred in the expression levels of collagen I, III, and IV in regenerating muscles from β2KO mice evaluated at 10 days compared with WT mice; this increase continued at 21 days, except for collagen III. Matrix metalloproteinase (MMP-2) activity increased to a similar extent in regenerating muscles from both β2KO and WT mice at 3 and 10 days. This was also the case for MMP-9 activity in regenerating muscles from both β2KO and WT mice at 3 days; however, at 10 days post-cryolesion, this activity returned to baseline levels only in WT mice. MMP-3 activity was unaltered in regenerating muscles at 10 days. mRNA levels of tumor necrosis factor-α increased in regenerating muscles from WT and β2KO mice at 3 days and, at 10 days post-cryolesion, returned to baseline only in WT mice. mRNA levels of interleukin-6 increased in muscles from WT mice at 3 days post-cryolesion and returned to baseline at 10 days post-cryolesion but were unchanged in β2KO mice. Our results suggest that the β2-adrenoceptor contributes to collagen remodeling during muscle regeneration by decreasing MMP-9 activity.

  16. Integration of active pauses and pattern of muscular activity during computer work.

    PubMed

    St-Onge, Nancy; Samani, Afshin; Madeleine, Pascal

    2017-09-01

    Submaximal isometric muscle contractions have been reported to increase variability of muscle activation during computer work; however, other types of active contractions may be more beneficial. Our objective was to determine which type of active pause vs. rest is more efficient in changing muscle activity pattern during a computer task. Asymptomatic regular computer users performed a standardised 20-min computer task four times, integrating a different type of pause: sub-maximal isometric contraction, dynamic contraction, postural exercise and rest. Surface electromyographic (SEMG) activity was recorded bilaterally from five neck/shoulder muscles. Root-mean-square decreased with isometric pauses in the cervical paraspinals, upper trapezius and middle trapezius, whereas it increased with rest. Variability in the pattern of muscular activity was not affected by any type of pause. Overall, no detrimental effects on the level of SEMG during active pauses were found suggesting that they could be implemented without a cost on activation level or variability. Practitioner Summary: We aimed to determine which type of active pause vs. rest is best in changing muscle activity pattern during a computer task. Asymptomatic computer users performed a standardised computer task integrating different types of pauses. Muscle activation decreased with isometric pauses in neck/shoulder muscles, suggesting their implementation during computer work.

  17. Do Golgi tendon organs really inhibit muscle activity at high force levels to save muscles from injury, and adapt with strength training?

    PubMed

    Chalmers, Gordon

    2002-07-01

    Introductory textbooks commonly state that Golgi tendon organs (GTOs) are responsible for a reflex response that inhibits a muscle producing dangerously high tension (autogenic inhibition). Review of the relevant data from animal studies demonstrates that there is wide variability in the magnitude of, and even the presence of, GTO autogenic effects among locomotor hindlimb muscles, and that data on GTO effects under conditions of voluntary maximal muscle activation are lacking. A single available study on GTO function in humans, during a moderate contraction, surprisingly shows a reduction in autogenic inhibition during muscle-force production. Further, it is not possible to find experimental evidence supporting the idea that strength training may produce a decrease in GTO mediated autogenic inhibition, allowing greater muscle activation levels and hence greater force production.

  18. Pain intensity and abdominal muscle activation during walking in patients with low back pain: The STROBE study.

    PubMed

    Kim, Si-Hyun; Park, Kyue-Nam; Kwon, Oh-Yun

    2017-10-01

    Nonspecific low back pain (LBP) is a common musculoskeletal problem that is intensified during physical activity. Patients with LBP have been reported to change their abdominal muscle activity during walking; however, the effects of pain intensity, disability level, and fear-avoidance belief on this relationship have not been evaluated. Thus, we compared abdominal muscle activity in patients with LBP and asymptomatic controls, and assessed the impact of pain intensity, disability level, and fear-avoidance belief.Thirty patients with LBP divided into groups reporting low (LLBP) and high-pain intensity low back pain (HLBP), and 15 participants without LBP were recruited. LBP patients' self-reported pain intensity, disability, and fear-avoidance belief were recorded. To examine abdominal muscle activity (rectus abdominis [RA], internal [IO], and external oblique [EO] muscles) during walking, all subjects walked at a self-selected speed. Abdominal muscle activity (RA, IO, and EO) was compared among groups (LLBP, HLBP, and controls) in different phases of walking (double support vs swing). Relationships between abdominal muscle activity and clinical measures (pain intensity, disability, fear-avoidance belief) were analyzed using partial correlation analysis.Right IO muscle activity during walking was significantly decreased in LLBP and HLBP compared with controls in certain walking phase. Partial correlation coefficients showed significant correlations between fear-avoidance belief and right EO activity (r = .377, P < .05) and between disability index and left IO activity (r = .377, P < .05) in patients with LBP. No significant difference was found in abdominal muscle activity in walking between patients with LLBP and HLBP (P > .05).This study demonstrated decreased IO muscle activity during certain walking phases in LLBP and HLBP compared with asymptomatic participants. Although altered IO muscle activity during walking was observed in patients with LBP, no changes were found with other abdominal muscles (EO, RA). Thus, these results provide useful information about abdominal muscle activity during walking in patients with LBP.

  19. Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels

    NASA Astrophysics Data System (ADS)

    Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari

    2010-10-01

    A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.

  20. Acromiohumeral Distance Change Relates to Middle Trapezius Muscle Activation During Shoulder Elevation With Scapular Retraction.

    PubMed

    Guney-Deniz, Hande; Harput, Gulcan; Toprak, Ugur; Duzgun, Irem

    2018-05-29

    The scapular retraction exercises are widely used among clinicians to balance the activity of the scapular muscles as well as the rotator cuff muscles in different shoulder abduction positions. The aim of this study was to investigate the relationship between scapular (middle and upper trapezius) and shoulder muscles (middle deltoid and infraspinatus) activation level differences and acromiohumeral distance changes during shoulder abduction with scapular retraction. Cross-sectional study. University research laboratory. Nineteen asymptomatic individuals were included (mean ± SD age, 22.4 ± 1.8 years). The acromiohumeral distance was measured at 0° and 90° shoulder abduction when scapula was in non-retracted and retracted position with ultrasound imaging. The relationship between muscle activation level changes and acromiohumeral distance difference was analyzed with Pearson correlation test. Middle trapezius muscle activity change correlated with acromiohumeral distance difference (r=0.55, p=0.018) from 0º to 90º shoulder abduction when scapula was retracted. For both non-retracted and retracted scapular positions, no correlations were found between middle deltoid, infraspinatus and upper trapezius muscle activity changes with acromiohumeral distance differences during shoulder abduction (p>0.05). Active scapular retraction exercise especially focusing on the middle trapezius muscle activation seems to be an effective treatment option to optimize the acromiohumeral distance during shoulder abduction.

  1. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    PubMed Central

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. Trial Registration: ClinicalTrials.gov: NCT01679977 PMID:28078066

  2. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen.

    PubMed

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-09-15

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. ClinicalTrials.gov: NCT01679977.

  3. Recovery of peripheral muscle function from fatiguing exercise and daily physical activity level in patients with multiple sclerosis: a case-control study.

    PubMed

    Ickmans, Kelly; Simoens, Fauve; Nijs, Jo; Kos, Daphne; Cras, Patrick; Willekens, Barbara; Meeus, Mira

    2014-07-01

    Delayed recovery of muscle function following exercise has been demonstrated in the lower limbs of patients with multiple sclerosis (MS). However, studies examining this in the upper limbs are currently lacking. This study compared physical activity level (PAL) and recovery of upper limb muscle function following exercise between MS patients and healthy inactive controls. Furthermore, the relationship between PAL and muscle recovery was examined. PAL of 19 MS patients and 32 controls was measured using an accelerometer for 7 consecutive days. Afterwards, recovery of muscle function was assessed by performing a fatiguing upper limb exercise test with subsequent recovery measures. Muscle recovery of the upper limb muscles was similar in both groups. Average activity counts were significantly lower in MS patients than in the control group. MS patients spent significantly more time being sedentary and less time on activities of moderate intensity compared with the control group. No significant correlation between PAL and recovery of muscle function was found in MS patients. Recovery of upper limb muscle function following exercise is normal in MS patients. MS patients are less physically active than healthy inactive controls. PAL and recovery of upper limb muscle function appear unrelated in MS patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Facilitation handlings induce increase in electromyographic activity of muscles involved in head control of cerebral palsy children.

    PubMed

    Simon, Anelise de Saldanha; do Pinho, Alexandre Severo; Grazziotin Dos Santos, Camila; Pagnussat, Aline de Souza

    2014-10-01

    This study aimed to investigate the electromyographic (EMG) activation of the main cervical muscles involved in the head control during two postures widely used for the facilitation of head control in children with Cerebral Palsy (CP). A crossover trial involving 31 children with clinical diagnosis of CP and spastic quadriplegia was conducted. Electromyography was used to measure muscular activity in randomized postures. Three positions were at rest: (a) lateral decubitus, (b) ventral decubitus on the floor and (c) ventral decubitus on the wedge. Handlings for facilitating the head control were performed using the hip joint as key point of control in two postures: (a) lateral decubitus and (b) ventral decubitus on wedge. All children underwent standardized handlings, performed by the same researcher with experience in the neurodevelopmental treatment. EMG signal was recorded from muscles involved in the head control (paraspinal and sternocleidomastoid muscles) in sagittal, frontal and transverse planes, at the fourth cervical vertebra (C4), tenth thoracic vertebra (T10) and sternocleidomastoid muscle (SCM) levels. The results showed a significant increase in muscle activation when handling was performed in the lateral decubitus at C4 (P<0.001), T10 (P<0.001) and SCM (P=0.02) levels. A significant higher muscle activation was observed when handling was performed in lateral decubitus when compared to ventral decubitus at C4 level (P<0.001). Handling in ventral decubitus also induced an increase in EMG activation at T10 (P=0.018) and SCM (P=0.004) levels but not at C4 level (P=0.38). In conclusion, handlings performed in both positions may induce the facilitation of head control, as evaluated by the activity of cervical and upper trunk muscles. Handling performed in lateral decubitus may induce a slightly better facilitation of head control. These findings contribute to evidence-based physiotherapy practice for the rehabilitation of severely spastic quadriplegic CP children. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The TWEAK–Fn14 dyad is involved in age-associated pathological changes in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajrishi, Marjan M.; Sato, Shuichi; Shin, Jonghyun

    Highlights: • The levels of TWEAK receptor Fn14 are increased in skeletal muscle during aging. • Deletion of Fn14 attenuates age-associated skeletal muscle fiber atrophy. • Deletion of Fn14 inhibits proteolysis in skeletal muscle during aging. • TWEAK–Fn14 signaling activates transcription factor NF-κB in aging skeletal muscle. • TWEAK–Fn14 dyad is involved in age-associated fibrosis in skeletal muscle. - Abstract: Progressive loss of skeletal muscle mass and strength (sarcopenia) is a major clinical problem in the elderly. Recently, proinflammatory cytokine TWEAK and its receptor Fn14 were identified as key mediators of muscle wasting in various catabolic states. However, the rolemore » of the TWEAK–Fn14 pathway in pathological changes in skeletal muscle during aging remains unknown. In this study, we demonstrate that the levels of Fn14 are increased in skeletal muscle of 18-month old (aged) mice compared with adult mice. Genetic ablation of Fn14 significantly increased the levels of specific muscle proteins and blunted the age-associated fiber atrophy in mice. While gene expression of two prominent muscle-specific E3 ubiquitin ligases MAFBx and MuRF1 remained comparable, levels of ubiquitinated proteins and the expression of autophagy-related molecule Atg12 were significantly reduced in Fn14-knockout (KO) mice compared with wild-type mice during aging. Ablation of Fn14 significantly diminished the DNA-binding activity of transcription factor nuclear factor-kappa B (NF-κB), gene expression of various inflammatory molecules, and interstitial fibrosis in skeletal muscle of aged mice. Collectively, our study suggests that the TWEAK–Fn14 signaling axis contributes to age-associated muscle atrophy and fibrosis potentially through its local activation of proteolytic systems and inflammatory pathways.« less

  6. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    PubMed

    Hauerslev, Simon; Sveen, Marie L; Vissing, John; Krag, Thomas O

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  7. Relationship between sleep stages and nocturnal trapezius muscle activity.

    PubMed

    Müller, Christian; Nicoletti, Corinne; Omlin, Sarah; Brink, Mark; Läubli, Thomas

    2015-06-01

    Former studies reported a relationship between increased nocturnal low level trapezius muscle activity and neck or shoulder pain but it has not been explored whether trapezius muscle relaxation is related to sleep stages. The goal of the present study was to investigate whether trapezius muscle activity is related to different sleep stages, as measured by polysomnography. Twenty one healthy subjects were measured on four consecutive nights in their homes, whereas the first night served as adaptation night. The measurements included full polysomnography (electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and electrocardiography (ECG)), as well as surface EMG of the m. trapezius descendens of the dominant arm. Periods with detectable EMG activity of the trapezius muscle lasted on average 1.5% of the length of the nights and only in four nights it lasted longer than 5% of sleeping time. Neither rest time nor the length of periods with higher activity levels of the trapezius muscle did significantly differ between sleep stages. We found no evidence that nocturnal trapezius muscle activity is markedly moderated by the different sleep stages. Thus the results support that EMG measurements of trapezius muscle activity in healthy subjects can be carried out without concurrent polysomnographic recordings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting.

    PubMed

    Heemstra, Karen A; Soeters, Maarten R; Fliers, Eric; Serlie, Mireille J; Burggraaf, Jacobus; van Doorn, Martijn B; van der Klaauw, Agatha A; Romijn, Johannes A; Smit, Johannes W; Corssmit, Eleonora P; Visser, Theo J

    2009-06-01

    The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. This was a prospective study. The study was conducted at a university hospital. We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. D2 activity and D2 mRNA levels were measured in skeletal muscle samples. No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.

  9. An experimental study on the impacts of inspiratory and expiratory muscles activities during mechanical ventilation in ARDS animal model

    PubMed Central

    Zhang, Xianming; Du, Juan; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Chen, Rongchang

    2017-01-01

    In spite of intensive investigations, the role of spontaneous breathing (SB) activity in ARDS has not been well defined yet and little has been known about the different contribution of inspiratory or expiratory muscles activities during mechanical ventilation in patients with ARDS. In present study, oleic acid-induced beagle dogs’ ARDS models were employed and ventilated with the same level of mean airway pressure. Respiratory mechanics, lung volume, gas exchange and inflammatory cytokines were measured during mechanical ventilation, and lung injury was determined histologically. As a result, for the comparable ventilator setting, preserved inspiratory muscles activity groups resulted in higher end-expiratory lung volume (EELV) and oxygenation index. In addition, less lung damage scores and lower levels of system inflammatory cytokines were revealed after 8 h of ventilation. In comparison, preserved expiratory muscles activity groups resulted in lower EELV and oxygenation index. Moreover, higher lung injury scores and inflammatory cytokines levels were observed after 8 h of ventilation. Our findings suggest that the activity of inspiratory muscles has beneficial effects, whereas that of expiratory muscles exerts adverse effects during mechanical ventilation in ARDS animal model. Therefore, for mechanically ventilated patients with ARDS, the demands for deep sedation or paralysis might be replaced by the strategy of expiratory muscles paralysis through epidural anesthesia. PMID:28230150

  10. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    PubMed Central

    Rovira, Mireia; Arrey, Gerard; Planas, Josep V.

    2017-01-01

    Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans. PMID:29326600

  11. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly involved in low-amplitude activities and that the amount of type IIX fibers is positively related to the generation of large muscle forces, validating our hypothesis.

  12. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.

    PubMed

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt

    2017-06-01

    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1-regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1-regulated pathways and overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. SIRT1 may play a crucial role in overload‐induced hypertrophy of skeletal muscle

    PubMed Central

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin JA; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan

    2017-01-01

    Key points Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload‐induced hypertrophy.SIRT1‐mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle.The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent.Overload‐induced changes in microRNA levels regulate SIRT1 and insulin‐like growth factor 1 signalling. Abstract Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P < 0.001). SIRT1‐regulated Akt, endothelial nitric oxide synthase and GLUT4 levels were also induced in hypertrophied muscles, and SIRT1 levels correlated with muscle mass, paired box protein 7 (Pax7), proliferating cell nuclear antigen (PCNA) and nicotinamide phosphoribosyltransferase (Nampt) levels. Alternatively, decreased forkhead box O 1 (FOXO1) and increased K48 polyubiquitination also suggest that SIRT1 could be involved in the catabolic process of hypertrophy. Furthermore, increased levels of K63 and muscle RING finger 2 (MuRF2) protein could also be important enhancers of muscle mass. We report here that the levels of miR1 and miR133a decrease in hypertrophy and negatively correlate with muscle mass, SIRT1 and Nampt levels. Our results reveal a strong correlation between SIRT1 levels and activity, SIRT1‐regulated pathways and overload‐induced hypertrophy. These findings, along with the well‐known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload‐induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. PMID:28251652

  14. In vivo determination of the direction of rotation and moment-angle relationship of individual elbow muscles.

    PubMed

    Zhang, L; Butler, J; Nishida, T; Nuber, G; Huang, H; Rymer, W Z

    1998-10-01

    The direction of rotation (DOR) of individual elbow muscles, defined as the direction in which a muscle rotates the forearm relative to the upper arm in three-dimensional space, was studied in vivo as a function of elbow flexion and forearm rotation. Electrical stimulation was used to activate an individual muscle selectively, and the resultant flexion-extension, supination-pronation, and varus-valgus moments were used to determine the DOR. Furthermore, multi-axis moment-angle relationships of individual muscles were determined by stimulating the muscle at a constant submaximal level across different joint positions, which was assumed to result in a constant level of muscle activation. The muscles generate significant moments about axes other than flexion-extension, which is potentially important for actively controlling joint movement and maintaining stability about all axes. Both the muscle DOR and the multi axis moments vary with the joint position systematically. Variations of the DOR and moment-angle relationship across muscle twitches of different amplitudes in a subject were small, while there were considerable variations between subjects.

  15. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.

    PubMed

    Cunha, Telma F; Bechara, Luiz R G; Bacurau, Aline V N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristóforo; Ferreira, Júlio C B; Brum, Patricia C

    2017-04-01

    We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen species production and systemic inflammation, which diminish NF-κB overactivation, p38 phosphorylation, and ubiquitin proteasome system hyperactivity. These molecular changes counteract plantaris atrophy in trained myocardial infarction-induced heart failure rats. Our data provide new evidence into how AET may regulate protein degradation and thus prevent skeletal muscle atrophy. Copyright © 2017 the American Physiological Society.

  16. Design and testing of regulatory cassettes for optimal activity in skeletal and cardiac muscles.

    PubMed

    Himeda, Charis L; Chen, Xiaolan; Hauschka, Stephen D

    2011-01-01

    Gene therapy for muscular dystrophies requires efficient gene delivery to the striated musculature and specific, high-level expression of the therapeutic gene in a physiologically diverse array of muscles. This can be achieved by the use of recombinant adeno-associated virus vectors in conjunction with muscle-specific regulatory cassettes. We have constructed several generations of regulatory cassettes based on the enhancer and promoter of the muscle creatine kinase gene, some of which include heterologous enhancers and individual elements from other muscle genes. Since the relative importance of many control elements varies among different anatomical muscles, we are aiming to tailor these cassettes for high-level expression in cardiac muscle, and in fast and slow skeletal muscles. With the achievement of efficient intravascular gene delivery to isolated limbs, selected muscle groups, and heart in large animal models, the design of cassettes optimized for activity in different muscle types is now a practical goal. In this protocol, we outline the key steps involved in the design of regulatory cassettes for optimal activity in skeletal and cardiac muscle, and testing in mature muscle fiber cultures. The basic principles described here can also be applied to engineering tissue-specific regulatory cassettes for other cell types.

  17. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    PubMed

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  18. Trainability of Muscular Activity Level during Maximal Voluntary Co-Contraction: Comparison between Bodybuilders and Nonathletes

    PubMed Central

    Maeo, Sumiaki; Takahashi, Takumi; Takai, Yohei; Kanehisa, Hiroaki

    2013-01-01

    Antagonistic muscle pairs cannot be fully activated simultaneously, even with maximal effort, under conditions of voluntary co-contraction, and their muscular activity levels are always below those during agonist contraction with maximal voluntary effort (MVE). Whether the muscular activity level during the task has trainability remains unclear. The present study examined this issue by comparing the muscular activity level during maximal voluntary co-contraction for highly experienced bodybuilders, who frequently perform voluntary co-contraction in their training programs, with that for untrained individuals (nonathletes). The electromyograms (EMGs) of biceps brachii and triceps brachii muscles during maximal voluntary co-contraction of elbow flexors and extensors were recorded in 11 male bodybuilders and 10 nonathletes, and normalized to the values obtained during the MVE of agonist contraction for each of the corresponding muscles (% EMGMVE). The involuntary coactivation level in antagonist muscle during the MVE of agonist contraction was also calculated. In both muscles, % EMGMVE values during the co-contraction task for bodybuilders were significantly higher (P<0.01) than those for nonathletes (biceps brachii: 66±14% in bodybuilders vs. 46±13% in nonathletes, triceps brachii: 74±16% vs. 57±9%). There was a significant positive correlation between a length of bodybuilding experience and muscular activity level during the co-contraction task (r = 0.653, P = 0.03). Involuntary antagonist coactivation level during MVE of agonist contraction was not different between the two groups. The current result indicates that long-term participation in voluntary co-contraction training progressively enhances muscular activity during maximal voluntary co-contraction. PMID:24260233

  19. Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations

    PubMed Central

    Safavynia, Seyed A.

    2012-01-01

    Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219

  20. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

    PubMed

    Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

    2016-03-01

    The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Enzyme activity in the aestivating green-striped burrowing frog (Cyclorana alboguttata).

    PubMed

    Mantle, Beth L; Guderley, Helga; Hudson, Nicholas J; Franklin, Craig E

    2010-10-01

    Green-striped burrowing frogs (Cyclorana alboguttata) can depress their resting metabolism by more than 80% during aestivation. Previous studies have shown that this species is able to withstand long periods of immobilisation during aestivation while apparently maintaining whole muscle mass and contractile performance. The aim of this study was to determine the effect of prolonged aestivation on the levels of metabolic enzymes (CCO, LDH and CS) in functionally distinct skeletal muscles (cruralis, gastrocnemius, sartorius, iliofibularis and rectus abdominus) and liver of C. alboguttata. CS activity was significantly reduced in all tissues except for the cruralis, gastrocnemius and the liver. LDH activity was significantly reduced in the sartorius and rectus abdominus, but remained at control (active) levels in the other tissues. CCO activity was significantly reduced in the gastrocnemius and rectus abdominus, and unchanged in the remaining tissues. Muscle protein was significantly reduced in the sartorius and iliofibularis during aestivation, and unchanged in the remaining muscles. The results suggest that the energy pathways involved in the production and consumption of ATP are remodelled during prolonged aestivation but selective. Remodelling and subsequent down-regulation of metabolic activity seem to target the smaller non-jumping muscles, while the jumping muscles retain enzyme activities at control levels during aestivation. These results suggest a mechanism by which aestivating C. alboguttata are able to maintain metabolic depression while ensuring that the functional capacity of critical muscles is not compromised upon emergence from aestivation.

  2. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  3. Changes in photoperiod alter Glut4 expression in skeletal muscle of C57BL/6J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Ayako; Shibata, Satomi; Takai, Yusuke

    Seasonal changes in photoperiod influence body weight and metabolism in mice. Here, we examined the effect of changes in photoperiod on the expression of glucose transporter genes in the skeletal muscle and adipose tissue of C57BL/6J mice. Glut4 expression was lower in the gastrocnemius muscle of mice exposed to a short-duration day (SD) than those to a long-duration day (LD), with accompanying changes in GLUT4 protein levels. Although Glut4 expression in the mouse soleus muscle was higher under SD than under LD, GLUT4 protein levels remained unchanged. To confirm the functional significance of photoperiod-induced changes in Glut4 expression, we checkedmore » for variations in insulin sensitivity. Blood glucose levels after insulin injection remained high under SD, suggesting that the mice exposed to SD showed lower sensitivity to insulin than those exposed to LD. We also attempted to clarify the relationship between Glut4 expression and physical activity in the mice following changes in photoperiod. Locomotor activity, as detected via infrared beam sensor, was lower under SD than under LD. However, when we facilitated voluntary activity by using running wheels, the rotation of wheels was similar for both groups of mice. Although physical activity levels were enhanced due to running wheels, Glut4 expression in the gastrocnemius muscle remained unchanged. Thus, variations in photoperiod altered Glut4 expression in the mouse skeletal muscle, with subsequent changes in GLUT4 protein levels and insulin sensitivity; these effects might be independent of physical activity. - Highlights: • Glut4 expression in the gastrocnemius muscle was lowered under short photoperiod. • Insulin sensitivity was lowered under short photoperiod. • Access to running wheels did not alter Glut4 expression in the gastrocnemius muscle. • Photoperiodic changes in Glut4 expression may be independent of physical activity.« less

  4. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weiping, E-mail: weiping.qin@mssm.edu; Department of Medicine, Mount Sinai School of Medicine, NY; Pan, Jiangping

    Research highlights: {yields} In rat gastrocnemius muscle, dexamethasone reduced PGC-1{alpha} cellular and nuclear levels without altering mRNA levels for this factor. {yields} Dexamethasone reduced phosphorylating of p38 MAPK, which stabilizes PGC-1{alpha} and promotes its nuclear entry. {yields} Co-administration of testosterone with dexamethasone increased cellular and nuclear levels of PGC-1{alpha} protein without changing its mRNA levels. {yields} Co-administration of testosterone restored p38 MAPK levels to those of controls. -- Abstract: Glucocorticoid-induced muscle atrophy results from muscle protein catabolism and reduced protein synthesis, associated with increased expression of two muscle-specific ubiquitin ligases (MAFbx and MuRF1), and of two inhibitors of protein synthesis,more » REDD1 and 4EBP1. MAFbx, MuRF1, REDD1 and 4EBP1 are up-regulated by the transcription factors FOXO1 and FOXO3A. The transcriptional co-activator PGC-1{alpha} has been shown to attenuate many forms of muscle atrophy and to repress FOXO3A-mediated transcription of atrophy-specific genes. Dexamethasone-induced muscle atrophy can be prevented by testosterone, which blocks up-regulation by dexamethasone of FOXO1. Here, an animal model of dexamethasone-induced muscle atrophy was used to further characterize effects of testosterone to abrogate adverse actions of dexamethasone on FOXO1 levels and nuclear localization, and to determine how these agents affect PGC-1{alpha}, and its upstream activators, p38 MAPK and AMPK. In rat gastrocnemius muscle, testosterone blunted the dexamethasone-mediated increase in levels of FOXO1 mRNA, and FOXO1 total and nuclear protein. Dexamethasone reduced total and nuclear PGC-1{alpha} protein levels in the gastrocnemius; co-administration of testosterone with dexamethasone increased total and nuclear PGC-1{alpha} levels above those present in untreated controls. Testosterone blocked dexamethasone-induced decreases in activity of p38 MAPK in the gastrocnemius muscle. Regulation of FOXO1, PGC-1{alpha} and p38 MAPK by testosterone may represent a novel mechanism by which this agent protects against dexamethasone-induced muscle atrophy.« less

  5. Shoulder Muscle Activation Levels During the Push-Up-Plus Exercise on Stable and Unstable Surfaces.

    PubMed

    Torres, Rafaela J B; Pirauá, André L T; Nascimento, Vinícius Y S; Dos Santos, Priscila S; Beltrão, Natália B; de Oliveira, Valéria M A; Pitangui, Ana Carolina R; de Araújo, Rodrigo C

    2017-07-01

    The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA-MT and UT-LT pairs). No significant differences were observed in TB-BB and AD-PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.

  6. Genomic and metabolic preparation of muscle in sockeye salmon Oncorhynchus nerka for spawning migration.

    PubMed

    Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B

    2013-01-01

    Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities.

  7. Activation time analysis and electromyographic fatigue in patients with temporomandibular disorders during clenching.

    PubMed

    Pitta, Natássia Condilo; Nitsch, Gabriel Silva; Machado, Mariana Barcellos; de Oliveira, Anamaria Siriani

    2015-08-01

    The use of surface electromyography (SEMG) is controversial in the diagnosis and subsequent treatment of temporomandibular disorders (TMD), although there is some evidence that the pattern of the masticatory muscles in TMD patients differs from controls. The aim of this study was to compare relative time of mandibular elevator muscle activation at different levels of activity and median frequency (MF) during sustained clenching. Twenty-two women, aged between 18 and 48years, volunteered to participate in the study. The TMD group had 14 participants diagnosed as group Ia muscle disorders (RDC/TMD). The control group had eight healthy individuals. SEMG records were obtained from masseter and temporal muscles during 10s of sustained clenching. Normalized SEMG amplitudes were classified as minimal, moderate and maximal and time of activation in each level of activity was calculated and compared using two-way ANOVA (groups versus time). A slope of the linear regression line that fits MF values over time was calculated as a fatigue index for elevator muscles. Only the temporal muscles of the TMD group showed longer activation time at moderate and minimal activity levels compared to controls. Fatigue indexes were greater for the TMD group compared to controls. Results showed motor control strategies during sustained clenching that differentiate controls from TMD patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Decreased torque and electromyographic activity in the extensor thigh muscles in chondromalacia patellae.

    PubMed

    Väätäinen, U; Airaksinen, O; Jaroma, H; Kiviranta, I

    1995-01-01

    The alterations in thigh muscle properties of chondromalacia patellae patients during isometric and dynamic endurance tests were studied using a variokinetic knee testing system linked to surface EMG. A total of 41 patients (chondromalacia group) with arthroscopically certified chondromalacia of the patella were studied. The control group consisted of 31 healthy adult volunteers with no history of knee pain or trauma. Peak torque values were 21% (p < 0.01) and force output values 25% (p < 0.05) lower on the symptomatic side of the chondromalacia group than in the control group. The decrease in the ratio between integrated EMG (IEMG) and measured force were found in all parts of the quadriceps femoris muscle in patients with chondromalacia of the patella in isometric extension. No change in the normalized IEMG levels of the thigh muscles were found between chondromalacia patients and controls in dynamic endurance test. The severity of the chondromalacia of the patella did not affect the level of electromyographic activation in thigh muscles. The ratio of normalized EMG levels of vastus medialis and vastus lateralis did not differ between the groups. The present study showed that chondromalacia patellae patients have reduced force and electromyographic activation levels of quadriceps femoris muscle. Especially, the explosive strength of the quadriceps femoris muscle is reduced.

  9. Ensemble of shape functions and support vector machines for the estimation of discrete arm muscle activation from external biceps 3D point clouds.

    PubMed

    Abraham, Leandro; Bromberg, Facundo; Forradellas, Raymundo

    2018-04-01

    Muscle activation level is currently being captured using impractical and expensive devices which make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from 3D point clouds captured with RGB-D cameras. A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that, based on this geometric characterization for some points of view of the biceps, provides a model for the estimation of muscle activation for all neighboring points of view. This results in a classifier that is robust to small perturbations in the point of view of the capturing device, greatly simplifying the installation process for end-users. In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC) of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of about 9.21% MVC - an acceptable performance for telemedicine settings where the electric measurement of muscle activation is impractical. The results prove that the correlations between the external geometry of the arm and biceps muscle activation are strong enough to consider computer vision and supervised learning an alternative with great potential for practical applications in tele-physiotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Electromyographic analysis of lower limb muscles during the golf swing performed with three different clubs.

    PubMed

    Marta, Sérgio; Silva, Luís; Vaz, João Rocha; Castro, Maria António; Reinaldo, Gustavo; Pezarat-Correia, Pedro

    2016-01-01

    The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70-76% and 68-73% EMG(MAX), respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.

  11. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants.

    PubMed

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-03-29

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).

  12. Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants

    PubMed Central

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-01-01

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820

  13. Fitness Profiles and Activity Patterns of Entering College Students.

    ERIC Educational Resources Information Center

    Pierce, Edgar F.; And Others

    1992-01-01

    Entering college students were evaluated for performance on maximal oxygen consumption, body composition, muscle endurance, muscle strength, and joint flexibility tests to determine the relationship of physical activity patterns to fitness levels. Results supported previous research indicating reduced fitness levels in young adults. (SM)

  14. Trapezius muscle activity and body movement at the beginning and the end of a workday and during the lunch period in female office employees

    PubMed Central

    NICOLETTI, Corinne; LÄUBLI, Thomas

    2017-01-01

    The aim of this study was to analyze the activity of the trapezius muscle and the arm acceleration during the course of a workday in office employees. It was examined if there are significant changes in trapezius muscle activity in the afternoon compared to the morning work period and relationships to the level of arm acceleration during lunchtime. Nineteen female office employees were recruited. A one hour period of the work in the morning, afternoon, and lunchtime were compared. The measures of the trapezius muscle activity and muscle rest time (TR) did not significantly differ between working in the morning (TR: median 10%; range 1%–49) or working in the afternoon (TR: median 18%; range 2%–34%). The 90th percentile of arm acceleration during lunch time significantly correlated with less trapezius muscle activity in the afternoon compared to the morning values (RT: Spearman R=0.80; p<0.01). Differences in the duration and level of trapezius muscle activity were bigger between the subjects than between different work periods or between lunchtime and work. Furthermore it seems that higher arm accelerations during lunch may be beneficial in reducing trapezius activity in the afternoon compared to the morning values. PMID:28090066

  15. Trapezius muscle activity and body movement at the beginning and the end of a workday and during the lunch period in female office employees.

    PubMed

    Nicoletti, Corinne; Läubli, Thomas

    2017-04-07

    The aim of this study was to analyze the activity of the trapezius muscle and the arm acceleration during the course of a workday in office employees. It was examined if there are significant changes in trapezius muscle activity in the afternoon compared to the morning work period and relationships to the level of arm acceleration during lunchtime. Nineteen female office employees were recruited. A one hour period of the work in the morning, afternoon, and lunchtime were compared. The measures of the trapezius muscle activity and muscle rest time (TR) did not significantly differ between working in the morning (TR: median 10%; range 1%-49) or working in the afternoon (TR: median 18%; range 2%-34%). The 90 th percentile of arm acceleration during lunch time significantly correlated with less trapezius muscle activity in the afternoon compared to the morning values (RT: Spearman R=0.80; p<0.01). Differences in the duration and level of trapezius muscle activity were bigger between the subjects than between different work periods or between lunchtime and work. Furthermore it seems that higher arm accelerations during lunch may be beneficial in reducing trapezius activity in the afternoon compared to the morning values.

  16. Postural strategy and trunk muscle activation during prolonged standing in chronic low back pain patients.

    PubMed

    Ringheim, Inge; Austein, Helene; Indahl, Aage; Roeleveld, Karin

    2015-10-01

    Prolonged standing has been associated with development and aggravation of low back pain (LBP). However, the underlying mechanisms are not well known. The aim of the present study was to investigate postural control and muscle activation during and as a result of prolonged standing in chronic LBP (cLBP) patients compared to healthy controls (HCs). Body weight shifts and trunk and hip muscle activity was measured during 15 min standing. Prior and after the standing trial, strength, postural sway, reposition error (RE), flexion relaxation ratio (FRR), and pain were assessed and after the prolonged standing, ratings of perceived exertion. During prolonged standing, the cLBP patients performed significantly more body weight shifts (p<.01) with more activated back and abdominal muscles (p=.01) and similar temporal variability in muscle activation compared to HCs, while the cLBP patients reported more pain and perceived exertion at the end of prolonged standing. Moreover, both groups had a similar change in strength, postural sway, RE and FRR from before to after prolonged standing, where changes in HC were towards pre-standing values of cLBP patients. Thus, despite a more variable postural strategy, the cLBP patients did not have higher muscle activation variability, but a general increased muscle activation level. This may indicate a reduced ability to individually deactivate trunk muscles. Plausibly, due to the increased variable postural strategy, the cLBP patients could compensate for the relatively high muscle activation level, resulting in normal variation in muscle activation and normal reduction in strength, RE and FRR after prolonged standing. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle

    PubMed Central

    Féasson, L; Stockholm, D; Freyssenet, D; Richard, I; Duguez, S; Beckmann, J S; Denis, C

    2002-01-01

    The molecular events by which eccentric muscle contractions induce muscle damage and remodelling remain largely unknown. We assessed whether eccentric exercise modulates the expression of proteinases (calpains 1, 2 and 3, proteasome, cathepsin B+L), muscle structural proteins (α-sarcoglycan and desmin), and the expression of the heat shock proteins Hsp27 and αB-crystallin. Vastus lateralis muscle biopsies from twelve healthy male volunteers were obtained before, immediately after, and 1 and 14 days after a 30 min downhill treadmill running exercise. Eccentric exercise induced muscle damage as evidenced by the analysis of muscle pain and weakness, creatine kinase serum activity, myoglobinaemia and ultrastructural analysis of muscle biopsies. The calpain 3 mRNA level was decreased immediately after exercise whereas calpain 2 mRNA level was increased at day 1. Both mRNA levels returned to control values by day 14. By contrast, cathepsin B+L and proteasome enzyme activities were increased at day 14. The α-sarcoglycan protein level was decreased immediately after exercise and at day 1, whereas the desmin level peaked at day 14. αB-crystallin and Hsp27 protein levels were increased at days 1 and 14. Our results suggest that the differential expression of calpain 2 and 3 mRNA levels may be important in the process of exercise-induced muscle damage, whereas expression of α-sarcoglycan, desmin, αB-crystallin and Hsp27 may be essentially involved in the subsequent remodelling of myofibrillar structure. This remodelling response may limit the extent of muscle damage upon a subsequent mechanical stress. PMID:12181300

  18. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.

    PubMed

    Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B; Krogsgaard, Michael R; Benoit, Daniel L

    2017-03-01

    Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they relate to joint stability by quantifying the relationship between individual muscle activation patterns and internal net joint moments in all three loading planes and 2) to determine whether these roles change with increasing force levels. A standing isometric force matching protocol required subjects to modulate ground reaction forces to elicit various combinations and magnitudes of sagittal, frontal, and transverse internal joint moments. Surface EMG measured activities of 10 lower limb muscles. Partial least squares regressions determined which internal moment(s) were significantly related to the activation of individual muscles. Rectus femoris and tensor fasciae latae were classified as moment actuators for knee extension and hip flexion. Hamstrings were classified as moment actuators for hip extension and knee flexion. Gastrocnemius and hamstring muscles were classified as specific joint stabilizers for knee rotation. Vastii were classified as general joint stabilizers because activation was independent of moment generation. Muscle roles did not change with increasing effort levels. Our findings indicate muscle activation is not dependent on anatomical orientation but perhaps on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation.

  19. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program.

    PubMed

    Hindi, Sajedah M; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M; Ogura, Yuji; Yan, Zhen; Burkly, Linda C; Zheng, Timothy S; Kumar, Ashok

    2014-03-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.

  20. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.

    PubMed

    Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P

    2008-06-01

    Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (p<.05). As a direct result of these increased activation levels, model-predicted muscle forces increased and consequently led to significantly greater mean (p=.0008) and peak (p=.0012) lumbar IVJ compressive forces when performing suspended push-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (p<.05). In comparison to the standard version of the exercise, suspended push-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.

  1. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations.

    PubMed

    Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael

    2018-05-01

    The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.

  2. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.

    PubMed

    Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian

    2011-03-15

    Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.

  3. Distribution patterns of the glucose transporters GLUT4 and GLUT1 in skeletal muscles of rats (Rattus norvegicus), pigs (Sus scrofa), cows (Bos taurus), adult goats, goat kids (Capra hircus), and camels (Camelus dromedarius).

    PubMed

    Duehlmeier, R; Sammet, K; Widdel, A; von Engelhardt, W; Wernery, U; Kinne, J; Sallmann, H-P

    2007-02-01

    Earlier studies demonstrated that forestomach herbivores are less insulin sensitive than monogastric omnivores. The present study was carried out to determine if different distribution patterns of the glucose transporters GLUT1 and GLUT4 may contribute to these different insulin sensitivities. Western blotting was used to measure GLUT1 and GLUT4 protein contents in oxidative (masseter, diaphragm) and glycolytic (longissimus lumborum, semitendinosus) skeletal muscle membranes of monogastric omnivores (rats and pigs), and of forestomach herbivores (cows, adult goats, goat kids, and camels). Muscles were characterized biochemically. Comparing red and white muscles, the isocitrate dehydrogenase (ICDH) activity was 1.5-15-times higher in oxidative muscles of all species, whereas lactate dehydrogenase (LDH) activity was 1.4-4.4-times higher in glycolytic muscles except in adult goats. GLUT4 levels were 1.5-6.3-times higher in oxidative muscles. GLUT1 levels were 2.2-8.3-times higher in glycolytic muscles in forestomach herbivores but not in monogastric animals. We conclude that GLUT1 may be the predominant glucose transporter in glycolytic muscles of ruminating animals. The GLUT1 distribution patterns were identical in adult and pre-ruminant goats, indicating that GLUT1 expression among these muscles is determined genetically. The high blood glucose levels of camels cited in literature may be due to an "NIDDM-like" impaired GLUT4 activity in skeletal muscle.

  4. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis.

    PubMed

    Gavini, Chaitanya K; Jones, William C; Novak, Colleen M

    2016-09-15

    The ventromedial hypothalamus (VMH) and the central melanocortin system both play vital roles in regulating energy balance by modulating energy intake and utilization. Recent evidence suggests that activation of the VMH alters skeletal muscle metabolism. We show that intra-VMH melanocortin receptor activation increases energy expenditure and physical activity, switches fuel utilization to fats, and lowers work efficiency such that excess calories are dissipated by skeletal muscle as heat. We also show that intra-VMH melanocortin receptor activation increases sympathetic nervous system outflow to skeletal muscle. Intra-VMH melanocortin receptor activation also induced significant changes in the expression of mediators of energy expenditure in muscle. These results support the role of melanocortin receptors in the VMH in the modulation of skeletal muscle metabolism. The ventromedial hypothalamus (VMH) and the brain melanocortin system both play vital roles in increasing energy expenditure (EE) and physical activity, decreasing appetite and modulating sympathetic nervous system (SNS) outflow. Because of recent evidence showing that VMH activation modulates skeletal muscle metabolism, we propose the existence of an axis between the VMH and skeletal muscle, modulated by brain melanocortins, modelled on the brain control of brown adipose tissue. Activation of melanocortin receptors in the VMH of rats using a non-specific agonist melanotan II (MTII), compared to vehicle, increased oxygen consumption and EE and decreased the respiratory exchange ratio. Intra-VMH MTII enhanced activity-related EE even when activity levels were held constant. MTII treatment increased gastrocnemius muscle heat dissipation during controlled activity, as well as in the home cage. Compared to vehicle-treated rats, rats with intra-VMH melanocortin receptor activation had higher skeletal muscle norepinephrine turnover, indicating an increased SNS drive to muscle. Lastly, intra-VMH MTII induced mRNA expression of muscle energetic mediators, whereas short-term changes at the protein level were primarily limited to phosphorylation events. These results support the hypothesis that melanocortin peptides act in the VMH to increase EE by lowering the economy of activity via the enhanced expression of mediators of EE in the periphery including skeletal muscle. The data are consistent with the role of melanocortins in the VMH in the modulation of skeletal muscle metabolism. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  5. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®

    PubMed Central

    Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-01-01

    Background Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. Purpose/Hypothesis The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Study Design Cohort, repeated measures Methods Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. Results The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. Conclusion ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. Level of evidence 3 PMID:27104052

  6. Electromyographic and kinetic analysis of two abdominal muscle performance tests.

    PubMed

    Haladay, Douglas E; Denegar, Craig R; Miller, Sayers J; Challis, John

    2015-01-01

    In order to accurately assess the abdominal muscles, clinicians need valid clinical measures. The double leg lowering test (DLLT) and lower abdominal muscle progression (LAMP) are two common tests of abdominal muscle performance. The purposes of this study were to determine the relation between surface electromyographic (EMG) activity during the DLLT and LAMP levels; hip joint resultant moments and DLLT and LAMP levels; and the two measures of DLLT and LAMP. Ten healthy participants were tested under both conditions. Surface EMG activity of the abdominal muscles was obtained, while pelvic movement was detected simultaneously. A moderate to strong association was found between rectus abdominus muscle activity and a moderate association with the external obliques with both test levels. For the internal oblique/transversus abdominus, a moderate and weak association was found with the DLLT and LAMP, respectively. A very strong association existed between the hip resultant joint moments (RJM) and the DLLT, while there was a weak correlation between hip RJM and the LAMP. No significant correlation was found between the DLLT and LAMP grades. This finding suggests that these tests may measure different qualities of muscle performance and provides preliminary support for their use. Further evaluation of these assessments with clinical populations is necessary.

  7. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    PubMed

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  8. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    PubMed

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon population during restoration and rearing.

  9. Correlates of Physical Functioning and Performance Across the Spectrum of Kidney Function.

    PubMed

    Segura-Ortí, E; Gordon, P L; Doyle, J W; Johansen, K L

    2018-06-01

    The aim of this study was to determine the extent to which poor physical functioning, low participation in physical activity, and muscle atrophy observed among patients on hemodialysis are evident in the earlier stages of chronic kidney disease (CKD). We enrolled adults in three groups: no CKD, Stages 3 to 4 CKD, and hemodialysis. Outcomes measured were physical activity, muscle size, thigh muscle strength, physical performance, and self-reported physical function. Patients with CKD had muscle area intermediate between the no CKD and hemodialysis groups, but they had low levels of physical activity that were similar to the hemodialysis group. Physical activity and muscle size were significantly associated with all outcomes. Kidney function was not significantly associated with muscle strength or physical performance after adjustment for physical activity and muscle size. In conclusion, interventions aimed to increase muscle mass and energy expenditure might have an impact on improving physical function of CKD patients.

  10. Different Muscle-Recruitment Strategies Among Elite Breaststrokers.

    PubMed

    Guignard, Brice; Olstad, Bjørn H; Simbaña Escobar, David; Lauer, Jessy; Kjendlie, Per-Ludvik; Rouard, Annie H

    2015-11-01

    To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers. The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded. The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive PP was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations. The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.

  11. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W

    2012-05-02

    The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Caffeine prevents changes in muscle caused by high-intensity interval training.

    PubMed

    Vieira, Juliano M; Gutierres, Jessié M; Carvalho, Fabiano B; Pereira, Luciane B; Oliveira, Liziele S; Morsch, Vera Maria; Schetinger, Maria Rosa C; Rodrigues, Marília V; Leitemperger, Jossiele; Loro, Vânia; Krewer, Cristina C; Vencato, Marina S; Spanevello, Roselia M

    2017-05-01

    The use of ergogenic substances such as caffeine has become a strategy to enhance sports performance. In the present study we evaluated the effects of high-intensity interval training (HIIT) associated with caffeine intake on acetylcholinesterase (AChE) and Ca 2+ ATPase activity and glycogen levels in the muscles of rats were evaluated. The animals were divided in groups: control, caffeine 4 or 8mg/kg, HIIT, HIIT plus caffeine 4 or caffeine 8mg/kg. Our results showed a decrease in glycogen levels in muscle in all trained groups after acute session exercise, while that an increase in glycogen levels was observed in all groups in relation to control in chronic exercise protocol. HIIT increases the thickness of the left ventricle and the Ca 2+ -ATPase activity and decrease the AChE activity in gastrocnemius muscle. Caffeine treatment prevents changes in enzymes activities as well as left ventricular hypertrophy adaptation induced by HIIT. Our findings suggest that caffeine modulates crucial pathways for muscle contraction in HIIT. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Lower extremity muscle activation during baseball pitching.

    PubMed

    Campbell, Brian M; Stodden, David F; Nixon, Megan K

    2010-04-01

    The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.

  14. Muscle Co-activation: Definitions, Mechanisms, and Functions.

    PubMed

    Latash, Mark L

    2018-03-28

    The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.

  15. Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy

    NASA Technical Reports Server (NTRS)

    Spangenburg, E. E.; Williams, J. H.; Roy, R. R.; Talmadge, R. J.; Spangenberg, E. E. (Principal Investigator)

    2001-01-01

    Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin heavy chain (MHC)-isoform proportions, were determined by Western blotting. CaN levels were significantly greater in the plantaris muscle containing predominantly fast (IIx and IIb) MHC isoforms, compared with the soleus (predominantly type I MHC) or vastus intermedius (VI, contains all 4 adult MHC isoforms). Three months after a complete spinal cord transection (ST), the CaN levels in the VI muscle were significantly reduced, despite a significant increase in fast MHC isoforms. Surprisingly, the levels of CaN in the VI were highly correlated with muscle mass but not MHC isoform proportions in ST and control rats. These data demonstrate that CaN levels in skeletal muscle are highly correlated to muscle mass and that the normal relationship with phenotype is lost after ST.

  16. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program

    PubMed Central

    Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok

    2014-01-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607

  17. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    PubMed

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  18. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab.

    PubMed

    Aggarwal, Rohit; Oddis, Chester V; Goudeau, Danielle; Koontz, Diane; Qi, Zengbiao; Reed, Ann M; Ascherman, Dana P; Levesque, Marc C

    2016-06-01

    To determine the longitudinal trends in serum levels of four myositis-associated autoantibodies: anti-Jo-1, -transcription intermediary factor 1 γ (TIF1-γ), -signal recognition particle (SRP) and -Mi-2, after B cell depletion with rituximab, and to determine the longitudinal association of these autoantibody levels with disease activity as measured by myositis core-set measures (CSMs). Treatment-resistant adult and pediatric myositis subjects (n = 200) received rituximab in the 44-week Rituximab in Myositis Trial. CSMs [muscle enzymes, manual muscle testing (MMT), physician and patient global disease activity, HAQ, and extramuscular disease activity] were evaluated monthly and anti-Jo-1 (n = 28), -TIF1-γ (n = 23), -SRP (n = 25) and -Mi-2 (n = 26) serum levels were measured using validated quantitative ELISAs. Temporal trends and the longitudinal relationship between myositis-associated autoantibodies levels and CSM were estimated using linear mixed models. Following rituximab, anti-Jo-1 levels decreased over time (P < 0.001) and strongly correlated with all CSMs (P < 0.008). Anti-TIF1-γ levels also decreased over time (P < 0.001) and were only associated with HAQ, MMT and physician and patient global disease activity. Anti-SRP levels did not change significantly over time, but were significantly associated with serum muscle enzymes. Anti-Mi-2 levels significantly decreased over time and were associated with muscle enzymes, MMT and the physician global score. Anti-Jo-1, anti-TIF1-γ and anti-Mi-2 levels in myositis subjects decreased after B cell depletion and were correlated with changes in disease activity, whereas anti-SRP levels were only associated with longitudinal muscle enzyme levels. The strong association of anti-Jo-1 levels with clinical outcomes suggests that anti-Jo-1 autoantibodies may be a good biomarker for disease activity. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Muscle recruitment and coordination with an ankle exoskeleton.

    PubMed

    Steele, Katherine M; Jackson, Rachel W; Shuman, Benjamin R; Collins, Steven H

    2017-07-05

    Exoskeletons have the potential to assist and augment human performance. Understanding how users adapt their movement and neuromuscular control in response to external assistance is important to inform the design of these devices. The aim of this research was to evaluate changes in muscle recruitment and coordination for ten unimpaired individuals walking with an ankle exoskeleton. We evaluated changes in the activity of individual muscles, cocontraction levels, and synergistic patterns of muscle coordination with increasing exoskeleton work and torque. Participants were able to selectively reduce activity of the ankle plantarflexors with increasing exoskeleton assistance. Increasing exoskeleton net work resulted in greater reductions in muscle activity than increasing exoskeleton torque. Patterns of muscle coordination were not restricted or constrained to synergistic patterns observed during unassisted walking. While three synergies could describe nearly 95% of the variance in electromyography data during unassisted walking, these same synergies could describe only 85-90% of the variance in muscle activity while walking with the exoskeleton. Synergies calculated with the exoskeleton demonstrated greater changes in synergy weights with increasing exoskeleton work versus greater changes in synergy activations with increasing exoskeleton torque. These results support the theory that unimpaired individuals do not exclusively use central pattern generators or other low-level building blocks to coordinate muscle activity, especially when learning a new task or adapting to external assistance, and demonstrate the potential for using exoskeletons to modulate muscle recruitment and coordination patterns for rehabilitation or performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Finger muscle control in children with dystonia.

    PubMed

    Young, Scott J; van Doornik, Johan; Sanger, Terence D

    2011-06-01

    Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia--motor overflow and difficulties in actively controlling muscles--can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual's level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. Copyright © 2011 Movement Disorder Society.

  1. Skeletal muscle as an endogenous nitrate reservoir

    PubMed Central

    Piknova, Barbora; Park, Ji Won; Swanson, Kathryn M.; Dey, Soumyadeep; Noguchi, Constance Tom; Schechter, Alan N

    2015-01-01

    The nitric oxide synthase (NOS) family of enzymes form nitric oxide (NO) from arginine in the presence of oxygen. At reduced oxygen availability NO is also generated from nitrate in a two step process by bacterial and mammalian molybdopterin proteins, and also directly from nitrite by a variety of five-coordinated ferrous hemoproteins. The mammalian NO cycle also involves direct oxidation of NO to nitrite, and both NO and nitrite to nitrate by oxy-ferrous hemoproteins. The liver and blood are considered the sites of active mammalian NO metabolism and nitrite and nitrate concentrations in the liver and blood of several mammalian species, including human, have been determined. However, the large tissue mass of skeletal muscle had not been generally considered in the analysis of the NO cycle, in spite of its long-known presence of significant levels of active neuronal NOS (nNOS or NOS1). We hypothesized that skeletal muscle participates in the NO cycle and, due to its NO oxidizing heme protein, oxymyoglobin, has high concentrations of nitrate ions. We measured nitrite and nitrate concentrations in rat and mouse leg skeletal muscle and found unusually high concentrations of nitrate but similar levels of nitrite, when compared to the liver. The nitrate reservoir in muscle is easily accessible via the bloodstream and therefore nitrate is available for transport to internal organs where it can be reduced to nitrite and NO. Nitrate levels in skeletal muscle and blood in nNOS−/− mice were dramatically lower when compared with controls, which support further our hypothesis. Although the nitrate reductase activity of xanthine oxidoreductase in muscle is less than that of liver, the residual activity in muscle could be very important in view of its total mass and the high basal level of nitrate. We suggest that skeletal muscle participates in overall NO metabolism, serving as a nitrate reservoir, for direct formation of nitrite and NO, and for determining levels of nitrate in other organs. PMID:25727730

  2. Neck muscle activation and head postures in common high performance aerial combat maneuvers.

    PubMed

    Netto, Kevin J; Burnett, Angus F

    2006-10-01

    Neck injuries are common in high performance combat pilots and have been attributed to high gravitational forces and the non-neutral head postures adopted during aerial combat maneuvers. There is still little known about the pathomechanics of these injuries. Six Royal Australian Air Force Hawk pilots flew a sortie that included combinations of three +Gz levels (1, 3, and 5) and four head postures (Neutral, Turn, Extension, and Check-6). Surface electromyography from neck and shoulder muscles was recorded in flight. Three-dimensional measures of head postures adopted in flight were estimated postflight with respect to end-range of the cervical spine using an electromagnetic tracking device. Mean muscle activation increased significantly with both increasing +Gz and non-neutral head postures. Check-6 at +5 Gz (mean activation of all muscles = 51% MVIC) elicited significantly greater muscle activation in most muscles when compared with Neutral, Extension, and Turn head postures. High levels of muscle co-contraction were evident in high acceleration and non-neutral head postures. Head kinematics showed Check-6 was closest to end-range in any movement plane (86% ROM in rotation) and produced the greatest magnitude of rotation in other planes. Turn and Extension showed a large magnitude of rotation with reference to end-range in the primary plane of motion but displayed smaller rotations in other planes. High levels of neck muscle activation and co-contraction due to high +Gz and head postures close to end range were evident in this study, suggesting the major influence of these factors on the pathomechanics of neck injuries in high performance combat pilots.

  3. Muscle-tendon units localization and activation level analysis based on high-density surface EMG array and NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu

    2016-12-01

    Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.

  4. Hyperthyroidism in Patients with Graves' Ophthalmopathy, and Thyroidal, Skeletal and Eye Muscle Specific Type 2 Deiodinase Enzyme Activities.

    PubMed

    Molnár, Ildikó; Szentmiklósi, József A; Somogyiné-Vári, Éva

    2017-09-01

    Graves' ophthalmopathy is characterized by hyperthyroidism, which is associated with higher serum T 3 levels than T 4 due to deiodinase enzymes.The effect of Graves' patient's sera (n=52) with elevated thyroid hormone and TSH receptor or thyroid peroxidase antibody (anti-TPO) levels was investigated on thyroidal, skeletal and eye muscle type 2 deiodinase enzyme (DII) activities. DII activities were measured with 125 I-T 4 substrate, while thyroid hormone and antibody levels with immunoassays.In Graves' ophthalmopathy, sera with elevated FT 4 or FT 3 levels reduced DII activites remarkably in all tissue fractions. Thyroidal DII activities were lower than those using eye muscle fraction (0.6±0.22 vs 1.14±0.43 pmol/mg/min, P<0.006). Effect of sera with increased FT 3 levels demonstrated also reduced DII activities in patients with Graves' ophthalmopathy after methimazole therapy compared to those who had no ophthalmopathy (2.88±2 vs 20.42±11.82 pmol/mg/min, P<0.006 for thyroidal fraction, 4.07±2.72 vs 29.22±15.46 pmol/mg/min, P<0.004 for skeletal muscle, 5.3±3.47 vs 37.87±18.82 pmol/mg/min, P<0.003 for eye muscle). Hyperthyroid sera with TSH receptor antibodies resulted in increased DII activities, while sera with anti-TPO antibodies were connected to lower DII activities in Graves' ophthalmopathy.In summary, the actions of hyperthyroid sera derived from patients with Graves' disease were tested on tissue-specific DII activities. Elevated FT 4 level-induced DII inactivation is present in Graves' ophthalmopathy, which seems to be also present at the beginning of methimazole therapy. Stimulating TSH receptor antibiodies increased DII activities via their nongenomic effects using sera of hyperthyroid Graves' ophthalmopathy, but anti-TPO antibodies could influence DII activities via altering FT 4 levels. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-05-01

    While body weight support (BWS) intonation is vital during conventional gait training of neurologically challenged subjects, it is important to evaluate its effect during robot assisted gait training. In the present research we have studied the effect of BWS intonation on muscle activities during robotic gait training using dynamic simulations. Two dimensional (2-D) musculoskeletal model of human gait was developed conjointly with another 2-D model of a robotic orthosis capable of actuating hip, knee and ankle joints simultaneously. The musculoskeletal model consists of eight major muscle groups namely; soleus (SOL), gastrocnemius (GAS), tibialis anterior (TA), hamstrings (HAM), vasti (VAS), gluteus maximus (GLU), uniarticular hip flexors (iliopsoas, IP), and Rectus Femoris (RF). BWS was provided at levels of 0, 20, 40 and 60% during the simulations. In order to obtain a feasible set of muscle activities during subsequent gait cycles, an inverse dynamics algorithm along with a quadratic minimization algorithm was implemented. The dynamic parameters of the robot assisted human gait such as joint angle trajectories, ground contact force (GCF), human limb joint torques and robot induced torques at different levels of BWS were derived. The patterns of muscle activities at variable BWS were derived and analysed. For most part of the gait cycle (GC) the muscle activation patterns are quite similar for all levels of BWS as is apparent from the mean of muscle activities for the complete GC. Effect of BWS variation during robot assisted gait on muscle activities was studied by developing dynamic simulation. It is expected that the proposed dynamic simulation approach will provide important inferences and information about the muscle function variations consequent upon a change in BWS during robot assisted gait. This information shall be quite important while investigating the influence of BWS intonation on neuromuscular parameters of interest during robotic gait training.

  6. Muscle Activation during Push-Ups with Different Suspension Training Systems.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C; Martín, Fernando F; Rogers, Michael E; Behm, David G; Andersen, Lars L

    2014-09-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key PointsCompared with standard push-ups on the floor, suspended push-ups increase core muscle activation.A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity.More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation.A suspended push-up is an effective method to achieve high muscle activity levels in the ABS.

  7. Muscle Activation during Push-Ups with Different Suspension Training Systems

    PubMed Central

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan C.; Martín, Fernando F; Rogers, Michael E.; Behm, David G.; Andersen, Lars L.

    2014-01-01

    The purpose of this study was to analyze upper extremity and core muscle activation when performing push-ups with different suspension devices. Young fit male university students (n = 29) performed 3 push-ups each with 4 different suspension systems. Push-up speed was controlled using a metronome and testing order was randomized. Average amplitude of the electromyographic root mean square of Triceps Brachii, Upper Trapezius, Anterior Deltoid, Clavicular Pectoralis, Rectus Abdominis, Rectus Femoris, and Lumbar Erector Spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction (MVIC). Electromyographic data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Based upon global arithmetic mean of all muscles analyzed, the suspended push-up with a pulley system provided the greatest activity (37.76% of MVIC; p < 0.001). Individually, the suspended push-up with a pulley system also provided the greatest triceps brachii, upper trapezius, rectus femoris and erector lumbar spinae muscle activation. In contrast, more stable conditions seem more appropriate for pectoralis major and anterior deltoid muscles. Independent of the type of design, all suspension systems were especially effective training tools for reaching high levels of rectus abdominis activation. Key Points Compared with standard push-ups on the floor, suspended push-ups increase core muscle activation. A one-anchor system with a pulley is the best option to increase TRICEP, TRAPS, LUMB and FEM muscle activity. More stable conditions such as the standard push-up or a parallel band system provide greater increases in DELT and PEC muscle activation. A suspended push-up is an effective method to achieve high muscle activity levels in the ABS. PMID:25177174

  8. Relationship of quadriceps muscle power and optimal shortening velocity with angiotensin-converting enzyme activity in older women.

    PubMed

    Kostka, Joanna; Sikora, Joanna; Kostka, Tomasz

    2017-01-01

    The goal of this study was to assess whether angiotensin-converting enzyme (ACE) activity is related to muscle function (strength, power and velocity), as well as to assess if ACE inhibitors (ACEIs) and other angiotensin system blocking medications (ASBMs) influence muscle performance in elderly women. Ninety-five community-dwelling elderly women took part in this study. Anthropometric data, blood ACE activity analysis, maximum power (P max ) and optimal shortening velocity (υ opt ) of the knee extensor muscles, handgrip strength, physical activity (PA) and functional performance were measured. Women taking ACEI were on average almost 2 years older than the women who did not take ACEI. They took more medicines and were also characterized by significantly lower level of ACE, but they did not differ in terms of PA level, results of functional performance and parameters characterizing muscle functions. No correlations of ACE activity with P max and handgrip strength, as well as with PA or functional performance were found. Higher ACE activity was connected with lower υ opt for women who did not take any ASBMs (rho =-0.37; p =0.01). Serum ACE activity was not associated with muscle strength, power and functional performance in both ASBM users and nonusers, but was associated with optimal shortening velocity of quadriceps muscles in older women. Further prospective studies are needed to assess if ACEIs or other ASBMs may slow down the decline in muscle function and performance.

  9. Neck posture and muscle activity are different when upside down: a human volunteer study.

    PubMed

    Newell, Robyn S; Blouin, Jean-Sébastien; Street, John; Cripton, Peter A; Siegmund, Gunter P

    2013-11-15

    Rollover crashes are dynamic and complex events in which head impacts with the roof can cause catastrophic neck injuries. Ex vivo and computational models are valuable in understanding, and ultimately preventing, these injuries. Although neck posture and muscle activity influence the resulting injury, there is currently no in vivo data describing these parameters immediately prior to a head-first impact. The specific objectives of this study were to determine the in vivo neck vertebral alignment and muscle activation levels when upside down, a condition that occurs during a rollover. Eleven human subjects (6F, 5M) were tested while seated upright and inverted in a custom-built apparatus. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in eight superficial and deep neck muscles. In vivo vertebral alignment and muscle activation levels differed between the upright and inverted conditions. When inverted and relaxed, the neck was more lordotic, C1 was aligned posterior to C7, the Frankfort plane was extended, and the activity of six muscles increased compared to upright and relaxed. When inverted subjects were asked to look forward to eliminate head extension, flexor muscle activity increased, C7 was more flexed, and C1 was aligned anterior to C7 versus upright and relaxed. Combined with the large inter-subject variability observed, these findings indicate that cadaveric or computational models designed to study injuries and prevention devices while inverted need to consider a variety of postures and muscle conditions to be relevant to the in vivo situation. © 2013 Elsevier Ltd. All rights reserved.

  10. Comparison of upper and lower lip muscle activity between stutterers and fluent speakers.

    PubMed

    de Felício, Cláudia Maria; Freitas, Rosana Luiza Rodrigues Gomes; Vitti, Mathias; Regalo, Simone Cecilio Hallak

    2007-08-01

    There is a widespread clinical view that stuttering is associated with high levels of muscles activity. The proposal of this research was to compare stutterers and fluent speakers with respect to the electromyographic activity of the upper and lower lip muscles. Ten individuals who stutter and 10 fluent speakers (control group) paired by gender and age were studied (mean age: 13.4 years). Groups were defined by the speech sample analysis of the ABFW-Language Test. A K6-I EMG (Myo-tronics Co., Seattle, WA, USA) with double disposable silver electrodes (Duotrodes, Myo-tronics Co., Seattle, WA) being used in order to analyze lip muscle activity. The clinical conditions investigated were movements during speech, orofacial non-speech tasks, and rest. Electromyographic data were normalized by lip pursing activity. The non-parametric Mann-Whitney test was used for the comparison of speech fluency profile, and the Student t-test for independent samples for group comparison regarding electromyographic data. There was a statistically significant difference between groups regarding speech fluency profile and upper lip activity in the following conditions: lip lateralization to the right and to the left and rest before exercises (P<0.05). There was no significant difference between groups regarding lower lip activity (P>0.05). The EMG activity of the upper lip muscle in the group with stuttering was significantly lower than in the control group in some of the clinical conditions analyzed. There was no significant difference between groups regarding the lower lip muscle. The subjects who stutter did not present higher levels of muscle activity in lip muscles than fluent speakers.

  11. Finger Muscle Control in Children with Dystonia

    PubMed Central

    Young, Scott J.; van Doornik, Johan; Sanger, Terence D.

    2010-01-01

    Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia—motor overflow and difficulties in actively controlling muscles—can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual’s level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. PMID:21449015

  12. Hypogonadism associated with muscle atrophy, physical inactivity and ESA hyporesponsiveness in men undergoing haemodialysis.

    PubMed

    Cobo, Gabriela; Gallar, Paloma; Di Gioia, Cristina; García Lacalle, Concepción; Camacho, Rosa; Rodriguez, Isabel; Ortega, Olimpia; Mon, Carmen; Vigil, Ana; Lindholm, Bengt; Carrero, Juan Jesús

    Testosterone deficiency (hypogonadism) is common among men undergoing haemodialysis, but its clinical implications are not well characterized. Testosterone is an anabolic hormone that induces erythrocytosis and muscle synthesis. We hypothesized that testosterone deficiency would be associated with low muscle mass, physical inactivity and higher dosages of erythropoietin-stimulating agents (ESA). Single-center cross-sectional study of 57 male haemodialysis patients. None of the patients was undergoing testosterone replacement therapy. Total testosterone was measured in serum. Body composition (by bioelectrical impedance analysis) and physical activity (by the use of pedometers) were assessed. Patients with testosterone levels below the normal range were considered hypogonadal. Mean testosterone level was 321±146ng/dL; 20 patients (35%) were hypogonadal. Hypogonadal patients were older and had lower mean arterial blood pressure, higher interleukin-6 levels, lower lean body mass and higher fat body mass. A negative association between testosterone and normalized ESA dose was found in uni- and multivariate regression analyses. Testosterone levels directly correlated with lean body mass regardless of confounders. Hypogonadal patients had lower physical activity than their counterparts [2753±1784 vs. 4291±3225steps/day (p=0.04)]. The relationship between testosterone and physical activity was independent of age, comorbidities and inflammatory markers, but dependent on the proportion of muscle mass. Hypogonadism is common in our male haemodialysis population and is associated with higher ESA doses, reduced muscle mass and lower physical activity. The link between low testosterone levels and physical inactivity may conceivably relate to reduced muscle mass due to inadequate muscle protein synthesis. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  13. Effect of ski simulator training on kinematic and muscle activation of the lower extremities

    PubMed Central

    Moon, Jeheon; Koo, Dohoon; Kim, Kitae; Shin, Insik; Kim, Hyeyoung; Kim, Jinhae

    2015-01-01

    [Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at “K” Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group’s extension muscles and the biceps femoris group’s flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue. PMID:26357449

  14. Nonlinear deformation of skeletal muscles in a passive state and in isotonic contraction

    NASA Astrophysics Data System (ADS)

    Shil'ko, S. V.; Chernous, D. A.; Pleskachevskii, Yu. M.

    2012-07-01

    A procedure for a two-level modeling of deformation of skeletal muscles is offered. Based on a phenomenological model of an individual muscle fiber, consisting of a viscous, a contractive, and two nonlinearly elastic elements (the first level), various means for describing a skeletal muscle as a whole (the second, macroscopic level) are considered. A method for identification of a muscle model by utilizing experimental elongation diagrams in a passive state and in isotonic contraction is put forward. The results of a biomechanical analysis are compared with known experimental data for the isotonic and isometric activation regimes of tailor's muscle of a frog. It is established that preferable is the description of a muscle that takes into account the different lengths of muscle fibers and their twist.

  15. A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans.

    PubMed

    Jee, Hyunseok; Kim, Jong-Hee

    2017-09-05

    Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms. Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty. The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

  16. Effects of deep breathing on internal oblique and multifidus muscle activity in three sitting postures

    PubMed Central

    Ko, Min-Joo; Jung, Eun-Joo; Kim, Moon-Hwan; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study was to investigate differences in the level of activity of the external oblique (EO), internal oblique (IO), and multifidus (MF) muscles with deep breathing in three sitting postures. [Subjects and Methods] Sixteen healthy women were recruited. The muscle activity (EO, IO, MF) of all subjects was measured in three sitting postures (slumped, thoracic upright, and lumbo-pelvic upright sitting postures) using surface electromyography. The activity of the same muscles was then remeasured in the three sitting postures during deep breathing. [Results] Deep breathing significantly increased activity in the EO, IO, and MF compared with normal breathing. Comparing postures, the activity of the MF and IO muscles was highest in the lumbo-pelvic upright sitting posture. [Conclusion] An lumbo-pelvic upright sitting posture with deep breathing could increase IO and MF muscle activity, thus improving lumbo-pelvic region stability. PMID:29706695

  17. Low-Level Laser Therapy (LLLT) in Dystrophin-Deficient Muscle Cells: Effects on Regeneration Capacity, Inflammation Response and Oxidative Stress.

    PubMed

    Macedo, Aline Barbosa; Moraes, Luis Henrique Rapucci; Mizobuti, Daniela Sayuri; Fogaça, Aline Reis; Moraes, Fernanda Dos Santos Rapucci; Hermes, Tulio de Almeida; Pertille, Adriana; Minatel, Elaine

    2015-01-01

    The present study evaluated low-level laser therapy (LLLT) effects on some physiological pathways that may lead to muscle damage or regeneration capacity in dystrophin-deficient muscle cells of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). Primary cultures of mdx skeletal muscle cells were irradiated only one time with laser and analyzed after 24 and 48 hours. The LLLT parameter used was 830 nm wavelengths at 5 J/cm² fluence. The following groups were set up: Ctrl (untreated C57BL/10 primary muscle cells), mdx (untreated mdx primary muscle cells), mdx LA 24 (mdx primary muscle cells - LLLT irradiated and analyzed after 24 h), and mdx LA 48 (mdx primary muscle cells - LLLT irradiated and analyzed after 48 h). The mdx LA 24 and mdx LA 48 groups showed significant increase in cell proliferation, higher diameter in muscle cells and decreased MyoD levels compared to the mdx group. The mdx LA 48 group showed significant increase in Myosin Heavy Chain levels compared to the untreated mdx and mdx LA 24 groups. The mdx LA 24 and mdx LA 48 groups showed significant increase in [Ca2+]i. The mdx group showed significant increase in H2O2 production and 4-HNE levels compared to the Ctrl group and LLLT treatment reduced this increase. GSH levels and GPx, GR and SOD activities increased in the mdx group. Laser treatment reduced the GSH levels and GR and SOD activities in dystrophic muscle cells. The mdx group showed significant increase in the TNF-α and NF-κB levels, which in turn was reduced by the LLLT treatment. Together, these results suggest that the laser treatment improved regenerative capacity and decreased inflammatory response and oxidative stress in dystrophic muscle cells, indicating that LLLT could be a helpful alternative therapy to be associated with other treatment for dystrophinopathies.

  18. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis

    PubMed Central

    Wilson, Fiona A.; Suryawan, Agus; Orellana, Renán A.; Nguyen, Hanh V.; Jeyapalan, Asumthia S.; Gazzaneo, Maria C.; Davis, Teresa A.

    2008-01-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 μg·kg−1·day−1) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P < 0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P < 0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1·eIF4E complex association, and increased active eIF4E·eIF4G complex formation (P < 0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex. PMID:18682537

  19. Fed levels of amino acids are required for the somatotropin-induced increase in muscle protein synthesis.

    PubMed

    Wilson, Fiona A; Suryawan, Agus; Orellana, Renán A; Nguyen, Hanh V; Jeyapalan, Asumthia S; Gazzaneo, Maria C; Davis, Teresa A

    2008-10-01

    Chronic somatotropin (pST) treatment in pigs increases muscle protein synthesis and circulating insulin, a known promoter of protein synthesis. Previously, we showed that the pST-mediated rise in insulin could not account for the pST-induced increase in muscle protein synthesis when amino acids were maintained at fasting levels. This study aimed to determine whether the pST-induced increase in insulin promotes skeletal muscle protein synthesis when amino acids are provided at fed levels and whether the response is associated with enhanced translation initiation factor activation. Growing pigs were treated with pST (0 or 180 microg x kg(-1) x day(-1)) for 7 days, and then pancreatic-glucose-amino acid clamps were performed. Amino acids were raised to fed levels in the presence of either fasted or fed insulin concentrations; glucose was maintained at fasting throughout. Muscle protein synthesis was increased by pST treatment and by amino acids (with or without insulin) (P<0.001). In pST-treated pigs, fed, but not fasting, amino acid concentrations further increased muscle protein synthesis rates irrespective of insulin level (P<0.02). Fed amino acids, with or without raised insulin concentrations, increased the phosphorylation of S6 kinase (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1), decreased inactive 4EBP1.eIF4E complex association, and increased active eIF4E.eIF4G complex formation (P<0.02). pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of muscle protein synthesis requires fed amino acid levels, but not fed insulin levels. However, under the current conditions, the response to amino acids is not mediated by the activation of translation initiation factors that regulate mRNA binding to the ribosomal complex.

  20. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis

    PubMed Central

    Mukherjee, Sromona; Shukla, Charu; Britton, Steven L.; Koch, Lauren G.; Shi, Haifei; Novak, Colleen M.

    2014-01-01

    A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis. PMID:24398400

  1. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  2. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction

    PubMed Central

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A.; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release. PMID:28890686

  3. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    PubMed

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  5. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  6. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus

    PubMed Central

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-01-01

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep–wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176

  7. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  8. Fatigue-induced changes in decline running.

    PubMed

    Mizrahi, J; Verbitsky, O; Isakov, E

    2001-03-01

    Study the relation between muscle fatigue during eccentric muscle contractions and kinematics of the legs in downhill running. Decline running on a treadmill was used to acquire data on shock accelerations, muscle activity and kinematics, for comparison with level running. In downhill running, local muscle fatigue is the cause of morphological muscle damage which leads to reduced attenuation of shock accelerations. Fourteen subjects ran on a treadmill above level-running anaerobic threshold speed for 30 min, in level and -4 degrees decline running. The following were monitored: metabolic fatigue by means of respiratory parameters; muscle fatigue of the quadriceps by means of elevation in myoelectric activity; and kinematic parameters including knee and ankle angles and hip vertical excursion by means of computerized videography. Data on shock transmission reported in previous studies were also used. Quadriceps fatigue develops in parallel to an increasing vertical excursion of the hip in the stance phase of running, enabled by larger dorsi flexion of the ankle rather than by increased flexion of the knee. The decrease in shock attenuation can be attributed to quadriceps muscle fatigue in parallel to increased vertical excursion of the hips.

  9. Neck muscle activity in helicopter pilots: effect of position and helmet-mounted equipment.

    PubMed

    Thuresson, Marcus; Ang, Björn; Linder, Jan; Harms-Ringdahl, Karin

    2003-05-01

    Helicopter pilots usually work in unfavorable ergonomic positions, often with bulky head-worn equipment during flying missions. The purpose of this study was to evaluate and compare immediate muscle response in the dorsal neck muscles to different positions with a variety of head-worn equipment. Fourteen healthy male helicopter pilots volunteered for this study. EMG activity in the upper and lower dorsal neck muscles and the trapezius muscle was measured in a laboratory situation for 5 s in different sitting positions (neutral, trunk inclined 20 degrees, neck flexed 20 degrees), including registration of a 30 degrees left and right rotation in every position; all measurements were performed while wearing a helmet, a helmet and night vision goggles (hNVG), and a helmet, night vision goggles, and counterweight (hCW), in random order. There was significant higher EMG activity in the upper neck with hNVG and hCW than with the helmet only when comparing the mean activity level of all positions. However, there was no significant difference in EMG activity between any variations of head-worn equipment when comparing activity levels during each position separately. In the upper and lower neck, respectively, there was significantly higher muscle activity during the ipsilateral rotated positions plus neck flexion and trunk inclination than in most other positions. The increased load caused by different positions seems to have a greater influence on muscle activity than the increased load of the head-worn equipment, which must be considered when designing helicopter work-places.

  10. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    PubMed Central

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current-controlling mechanosensitive ion channels. These important findings extend hypotheses of myostatin and physical activity master regulation of genes and gene pathways, impacting medical practices and therapies associated with muscle atrophy in humans and companion animal species and genome-enabled selection practices applied to food-production animal species. PMID:25710176

  11. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice.

    PubMed

    Miura, Pedro; Chakkalakal, Joe V; Boudreault, Louise; Bélanger, Guy; Hébert, Richard L; Renaud, Jean-Marc; Jasmin, Bernard J

    2009-12-01

    A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.

  12. Gender influence on fatigability of back muscles during intermittent isometric contractions: a study of neuromuscular activation patterns.

    PubMed

    Larivière, Christian; Gravel, Denis; Gagnon, Denis; Gardiner, Phillip; Bertrand Arsenault, A; Gaudreault, Nathaly

    2006-11-01

    Gender difference in the fatigability of muscles can be attributed to muscle mass (or strength) and associated level of vascular occlusion, substrate utilization, muscle composition, and neuromuscular activation patterns. The purpose of this study was to assess the role of neuromuscular activation patterns to explain gender differences in back muscle fatigability during intermittent isometric tasks. Sixteen males and 15 females performed maximal voluntary contractions (Strength) and a fatigue test to exhaustion (fatigue criterion=time to exhaustion), while standing in a static dynamometer measuring L5/S1 extension moment. The fatigue test consisted of repetitions of an 8-s cycle (1.5 s ramp to reach 40% of maximal voluntary contraction +5s plateau at 40% of maximal voluntary contraction +1.5s rest). Surface electromyography signals were collected bilaterally from 4 back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). Males were stronger (P<0.05) than females (316, SD 82>196, SD 25 Nm) but showed significantly shorter time-to-exhaustion values (7.1, SD 5.2<13.0, SD 6.1 min.), the latter result being corroborated by electromyographic indices of fatigue. However, the gender effect on time to exhaustion disappeared when accounting for Strength, thus supporting the muscle mass hypothesis. Among the various electromyographic indices computed to assess neuromuscular activation patterns, the amount of alternating activity between homolateral and between contralateral muscles showed a gender effect (females>males). These results support the muscle mass hypothesis as well as the neuromuscular activation hypothesis to explain gender differences in back muscle fatigability.

  13. Muscle-Specific SIRT1 Gain-of-Function Increases Slow-Twitch Fibers and Ameliorates Pathophysiology in a Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Chalkiadaki, Angeliki; Igarashi, Masaki; Nasamu, Armiyaw Sebastian; Knezevic, Jovana; Guarente, Leonard

    2014-01-01

    SIRT1 is a metabolic sensor and regulator in various mammalian tissues and functions to counteract metabolic and age-related diseases. Here we generated and analyzed mice that express SIRT1 at high levels specifically in skeletal muscle. We show that SIRT1 transgenic muscle exhibits a fiber shift from fast-to-slow twitch, increased levels of PGC-1α, markers of oxidative metabolism and mitochondrial biogenesis, and decreased expression of the atrophy gene program. To examine whether increased activity of SIRT1 protects from muscular dystrophy, a muscle degenerative disease, we crossed SIRT1 muscle transgenic mice to mdx mice, a genetic model of Duchenne muscular dystrophy. SIRT1 overexpression in muscle reverses the phenotype of mdx mice, as determined by histology, creatine kinase release into the blood, and endurance in treadmill exercise. In addition, SIRT1 overexpression also results in increased levels of utrophin, a functional analogue of dystrophin, as well as increased expression of PGC-1α targets and neuromuscular junction genes. Based on these findings, we suggest that pharmacological interventions that activate SIRT1 in skeletal muscle might offer a new approach for treating muscle diseases. PMID:25032964

  14. Nandrolone Normalizes Determinants of Muscle Mass and Fiber Type after Spinal Cord Injury

    PubMed Central

    Wu, Yong; Zhao, Jingbo; Zhao, Weidong; Pan, Jiangping; Bauman, William A.

    2012-01-01

    Abstract Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation. PMID:22208735

  15. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury.

    PubMed

    Wu, Yong; Zhao, Jingbo; Zhao, Weidong; Pan, Jiangping; Bauman, William A; Cardozo, Christopher P

    2012-05-20

    Spinal cord injury (SCI) results in atrophy of skeletal muscle and changes from slow oxidative to fast glycolytic fibers, which may reflect reduced levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), increased myostatin signaling, or both. In animals, testosterone reduces loss of muscle fiber cross-sectional area and activity of enzymes of energy metabolism. To identify the molecular mechanisms behind the benefits of androgens on paralyzed muscle, male rats were spinal cord transected and treated for 8 weeks with vehicle, testosterone at a physiological replacement dose, or testosterone plus nandrolone, an anabolic steroid. Treatments were initiated immediately after SCI and continued until the day animals were euthanized. In the SCI animals, gastrocnemius muscle mass was significantly increased by testosterone plus nandrolone, but not by testosterone alone. Both treatments significantly reduced nuclear content of Smad2/3 and mRNA levels of activin receptor IIB and follistatin-like 3. Testosterone alone or with nandrolone reversed SCI-induced declines in cellular and nuclear levels of PGC-1α protein and PGC-1α mRNA levels. For PGC-1α target genes, testosterone plus nandrolone partially reversed SCI-induced decreases in levels of proteins without corresponding increases in their mRNA levels. Thus, the findings demonstrate that following SCI, signaling through activin receptors and Smad2/3 is increased, and that androgens suppress activation of this signaling pathway. The findings also indicate that androgens upregulate PGC-1α in paralyzed muscle and promote its nuclear localization, but that these effects are insufficient to fully activate transcription of PGC-1α target genes. Furthermore, the transcription of these genes is not tightly coupled with their translation.

  16. The forgotten guidelines: cross-sectional analysis of participation in muscle strengthening and balance & co-ordination activities by adults and older adults in Scotland.

    PubMed

    Strain, Tessa; Fitzsimons, Claire; Kelly, Paul; Mutrie, Nanette

    2016-10-21

    In 2011, the UK physical activity guidelines were updated to include recommendations for muscle strengthening and balance & coordination (at least two sessions of relevant activities per week). However, monitoring and policy efforts remain focussed on aerobic activity. This study aimed to assess differences by gender and age in the a) prevalence of muscle strengthening and balance & co-ordination guidelines, and b) participation in guideline-specific activities. The sample for the muscle strengthening analyses was 10,488 adult (16-64 years) and 3857 older adult (≥65 years) 2012-2014 Scottish Health Survey respondents. The balance & co-ordination analyses used only the older adult responses. Differences by gender and (where possible) age in guideline prevalence and activity participation were assessed using logistic regression and t-tests. Thirty-one percent of men and 24 % of women met the muscle strengthening guideline, approximately half that of published figures for aerobic physical activity. Nineteen percent of older men and 12 % of older women met the balance & co-ordination guidelines. The oldest age groups were less likely to meet both guidelines compared to the youngest age groups. Differences by gender were only evident for muscle strengthening: more men met the guidelines than women in all age groups, with the largest difference amongst 16-24 year olds (55 % men compared with 40 % women). Participation in relevant activities differed by gender for both guidelines. 'Workout at gym' was the most popular activity to improve muscle strength for men (18 % participated), while swimming was for women (15 % participated). Golf was the most popular activity to improve balance & co-ordination for older men (11 % participated) and aerobics was for older women (6 % participated). Participation decreased in most muscle strengthening activities for both men and women. One exception was golf, where participation levels were as high amongst older men as in younger age groups, although overall levels were low (3 % of all men). Physical activity policy should aim to increase prevalence of these 'forgotten' guidelines, particularly amongst young women (for muscle strengthening) and older age groups (both guidelines). Gender and age participation differences should be considered when designing population-level interventions.

  17. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    PubMed

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  18. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline

    PubMed Central

    Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-01-01

    Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling. PMID:26600252

  19. Flesh Shear Force, Cooking Loss, Muscle Antioxidant Status and Relative Expression of Signaling Molecules (Nrf2, Keap1, TOR, and CK2) and Their Target Genes in Young Grass Carp (Ctenopharyngodon idella) Muscle Fed with Graded Levels of Choline.

    PubMed

    Zhao, Hua-Fu; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-01-01

    Six groups of grass carp (average weight 266.9 ± 0.6 g) were fed diets containing 197, 385, 770, 1082, 1436 and 1795 mg choline/kg, for 8 weeks. Fish growth, and muscle nutrient (protein, fat and amino acid) content of young grass carp were significantly improved by appropriate dietary choline. Furthermore, muscle hydroxyproline concentration, lactate content and shear force were improved by optimum dietary choline supplementation. However, the muscle pH value, cooking loss and cathepsins activities showed an opposite trend. Additionally, optimum dietary choline supplementation attenuated muscle oxidative damage in grass carp. The muscle antioxidant enzyme (catalase and glutathione reductase did not change) activities and glutathione content were enhanced by optimum dietary choline supplementation. Muscle cooking loss was negatively correlated with antioxidant enzyme activities and glutathione content. At the gene level, these antioxidant enzymes, as well as the targets of rapamycin, casein kinase 2 and NF-E2-related factor 2 transcripts in fish muscle were always up-regulated by suitable choline. However, suitable choline significantly decreased Kelch-like ECH-associated protein 1 a (Keap1a) and Kelch-like ECH-associated protein 1 b (Keap1b) mRNA levels in muscle. In conclusion, suitable dietary choline enhanced fish flesh quality, and the decreased cooking loss was due to the elevated antioxidant status that may be regulated by Nrf2 signaling.

  20. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism.

    PubMed

    Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed

    2010-12-01

    Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.

  1. Type 2 Iodothyronine Deiodinase Levels Are Higher in Slow-Twitch than Fast-Twitch Mouse Skeletal Muscle and Are Increased in Hypothyroidism

    PubMed Central

    Marsili, Alessandro; Ramadan, Waile; Harney, John W.; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A.; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J. Enrique; Larsen, P. Reed

    2010-01-01

    Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T4 to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T3 in skeletal muscle physiology than previously assumed. PMID:20881246

  2. Assessment of muscle fatigue using electromygraphm sensing

    NASA Astrophysics Data System (ADS)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  3. Influence of glutamate-evoked pain and sustained elevated muscle activity on blood oxygenation in the human masseter muscle.

    PubMed

    Suzuki, Shunichi; Arima, Taro; Kitagawa, Yoshimasa; Svensson, Peter; Castrillon, Eduardo

    2017-12-01

    This study aimed to investigate the effect of glutamate-evoked masseter muscle pain on intramuscular oxygenation during rest and sustained elevated muscle activity (SEMA). Seventeen healthy individuals participated in two sessions in which they were injected with glutamate and saline in random order. Each session was divided into three, 10-min periods. During the first (period 1) and the last (period 3) 10-min periods, participants performed five intercalated 1-min bouts of masseter SEMA with 1-min periods of 'rest'. At onset of the second 10-min period, glutamate (0.5 ml, 1 M; Ajinomoto, Tokyo, Japan) or isotonic saline (0.5 ml; 0.9%) was injected into the masseter muscle and the participants kept the muscle relaxed in a resting position for 10 min (period 2). The hemodynamic characteristics of the masseter muscle were recorded simultaneously during the experiment by a laser blood-oxygenation monitor. The results demonstrated that glutamate injections caused significant levels of self-reported pain in the masseter muscle; however, this nociceptive input did not have robust effects on intramuscular oxygenation during rest or SEMA tasks. Interestingly, these findings suggest an uncoupling between acute nociceptive activity and hemodynamic parameters in both resting and low-level active jaw muscles. Further studies are needed to explore the pathophysiological significance of blood-flow changes for persistent jaw-muscle pain conditions. © 2017 Eur J Oral Sci.

  4. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    PubMed Central

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  5. Muscle activation levels of the gluteus maximus and medius during standing hip-joint strengthening exercises using elastic-tubing resistance.

    PubMed

    Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Nelson, Meghan M; Hollman, John H

    2014-02-01

    No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance. To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions. Repeated measures. Laboratory. 26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y). Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order. Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05). For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001). From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.

  6. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.

    PubMed

    Cresswell, A G

    1993-01-01

    The purpose of this study was to determine and compare interactions between the abdominal musculature and intra-abdominal pressure (IAP) during controlled dynamic and static trunk muscle loading. Myoelectric activity was recorded in six subjects from the rectus abdominis, obliquus externus, obliquus internus, transversus abdominis and erector spinae muscles using surface and intra-muscular fine-wire electrodes. The IAP was recorded intra-gastrically. Trunk flexions and extensions were performed lying on one side on a swivel table. An adjustable brake provided different friction loading conditions, while adding weights to an unbraked swivel table afforded various levels of inertial loading. During trunk extensions at all friction loads, IAP was elevated (1.8-7.2 kPa) with concomitant activity in transversus abdominis and obliquus internus muscles--little or no activity was seen from rectus abdominis and obliquus externus muscles. For inertia loading during trunk extension, IAP levels were somewhat lower (1.8-5.6 kPa) and displayed a second peak when abdominal muscle activity occurred in the course of decelerating the movement. For single trunk flexions with friction loading, IAP was higher than that seen in extension conditions and increased with added resistance. For inertial loading during trunk flexion, IAP showed two peaks, the larger first peak matched peak forward acceleration and general abdominal muscle activation, while the second corresponded to peak deceleration and was accompanied by activity in transversus abdominis and erector spinae muscles. It was apparent that different loading strategies produced markedly different patterns of response in both trunk musculature and intra-abdominal pressure.

  7. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea.

    PubMed

    Chi, Aiping; Li, Hong; Kang, Chenzhe; Guo, Huanhuan; Wang, Yimin; Guo, Fei; Tang, Liang

    2015-09-01

    The aim of this study was to investigate the anti-fatigue activity of polysaccharides from Ziyang green tea. Polysaccharides were isolated from Ziyang green tea and its physicochemical properties were analyzed. Meanwhile, a 4-week weight-loaded swimming test of mice was established and polysaccharides were orally administrated during exercise. The biochemical parameters related to fatigue were determined, such as exhaustive time, blood urea nitrogen (BUN), blood lactate acid (Bla) levels and lactic dehydrogenase (LDH) activity in serum, Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) activities, Malondialdehyde (MDA) and glycogen levels in skeletal muscle. The results demonstrated that polysaccharide from Ziyang green tea was a selenium-polysaccharide-protein conjugate (Se-TP), and Se-TP administration significantly prolonged exhaustive time and increased glycogen level and GSH-Px activity in muscle, in addition, markedly decreased BUN, Bla levels and LDH activity in serum and MDA level in muscle. In conclusion, Se-TP treatment can significantly improve exercise-induced fatigue and decrease the oxidative stress induced by the exhaustive exercise. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration.

    PubMed

    Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M

    2010-07-01

    The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p < 0.05) increased baseline muscle activity in all muscles, except the TA compared with no WBV. Adding a light external load without WBV increased baseline muscle activity of the squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.

  9. AMP-Activated Protein Kinase Plays an Important Evolutionary Conserved Role in the Regulation of Glucose Metabolism in Fish Skeletal Muscle Cells

    PubMed Central

    Magnoni, Leonardo J.; Vraskou, Yoryia; Palstra, Arjan P.; Planas, Josep V.

    2012-01-01

    AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP∶ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish. PMID:22359576

  10. Genetic Variations in the Androgen Receptor Are Associated with Steroid Concentrations and Anthropometrics but Not with Muscle Mass in Healthy Young Men

    PubMed Central

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    Objective The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. Design 677 men (25–45 years) were recruited in a cross-sectional, population-based sibling pair study. Methods Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Results Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Conclusions Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function. PMID:24465978

  11. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    PubMed

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. 677 men (25-45 years) were recruited in a cross-sectional, population-based sibling pair study. Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function.

  12. Size, History-Dependent, Activation and Three-Dimensional Effects on the Work and Power Produced During Cyclic Muscle Contractions.

    PubMed

    Ross, Stephanie A; Ryan, David S; Dominguez, Sebastian; Nigam, Nilima; Wakeling, James M

    2018-05-03

    Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibres are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modelling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.

  13. Influence of botulinum toxin on rabbit jaw muscle activity and anatomy.

    PubMed

    Korfage, J A M; Wang, Jeffrey; Lie, S H J T J; Langenbach, Geerling E J

    2012-05-01

    Muscles can adapt their fiber properties to accommodate to new conditions. We investigated the extent to which a decrease in muscle activation can cause an adaptation of fiber properties in synergistic and antagonistic jaw muscles. Three months after the injection of botulinum toxin type A in one masseter (anterior or posterior) muscle changes in fiber type composition and fiber cross-sectional areas in jaw muscles were studied at the microscopic level. The injected masseter showed a steep increase in myosin type IIX fibers, whereas fast fibers decreased by about 50% in size. Depending on the injection site, both synergistic and antagonistic muscles showed a significant increase in the size of their fast IIA fibers, sometimes combined with an increased number of IIX fibers. Silencing the activity in the masseter not only causes changes in the fibers of the injected muscle but also leads to changes in other jaw muscles. Copyright © 2012 Wiley Periodicals, Inc.

  14. Infield masticatory muscle activity in subjects with pain-related temporomandibular disorders diagnoses.

    PubMed

    Khawaja, S N; McCall, W; Dunford, R; Nickel, J C; Iwasaki, L R; Crow, H C; Gonzalez, Y

    2015-04-01

    Pain-related temporomandibular disorders (TMDs) are the most prevalent conditions among TMDs. There is contrasting evidence available for association of pain-related TMD and masticatory muscle activity (MMA). The present investigation assesses the associations between MMA levels of masseter and temporalis muscles during awake and sleep among pain-related TMD diagnostic groups. The department of Oral Diagnostic Sciences, University at Buffalo. Twenty females and six males participated in this study. Using the diagnostic criteria for temporomandibular disorders (DC-TMDs), participants were diagnostically categorized. Subjects used a custom monitoring system, which recorded infield muscle activities. A factorial model tested for association between independent variable (muscle, time period, MMA level, and diagnostic group) effects and the logarithm of MMA. Greenhouse-Geisser test was used to determine any statistically significant associations (p≤0.003). No statistically significant association was found between four-way, three-way, and two-way analyses. However, among the main effects, range of magnitudes was the only variable to be statistically significant. Although the data suggest a trend of increased masseter MMA in the pain-related TMD diagnoses group both during awake and sleep time periods, such observation is not maintained for the temporalis muscle. In addition, temporalis MMA was found to be higher in the pain-related TMD diagnoses group only at extreme activity levels (<25 and ≥80% ranges). This data support the association between masticatory muscle hyperactivity and painful TMD conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Preventive effects of Chlorella on skeletal muscle atrophy in muscle-specific mitochondrial aldehyde dehydrogenase 2 activity-deficient mice.

    PubMed

    Nakashima, Yuya; Ohsawa, Ikuroh; Nishimaki, Kiyomi; Kumamoto, Shoichiro; Maruyama, Isao; Suzuki, Yoshihiko; Ohta, Shigeo

    2014-10-11

    Oxidative stress is involved in age-related muscle atrophy, such as sarcopenia. Since Chlorella, a unicellular green alga, contains various antioxidant substances, we used a mouse model of enhanced oxidative stress to investigate whether Chlorella could prevent muscle atrophy. Aldehyde dehydrogenase 2 (ALDH2) is an anti-oxidative enzyme that detoxifies reactive aldehydes derived from lipid peroxides such as 4-hydroxy-2-nonenal (4-HNE). We therefore used transgenic mice expressing a dominant-negative form of ALDH2 (ALDH2*2 Tg mice) to selectively decrease ALDH2 activity in the muscles. To evaluate the effect of Chlorella, the mice were fed a Chlorella-supplemented diet (CSD) for 6 months. ALDH2*2 Tg mice exhibited small body size, muscle atrophy, decreased fat content, osteopenia, and kyphosis, accompanied by increased muscular 4-HNE levels. The CSD helped in recovery of body weight, enhanced oxidative stress, and increased levels of a muscle impairment marker, creatine phosphokinase (CPK) induced by ALDH2*2. Furthermore, histological and histochemical analyses revealed that the consumption of the CSD improved skeletal muscle atrophy and the activity of the mitochondrial cytochrome c oxidase. This study suggests that long-term consumption of Chlorella has the potential to prevent age-related muscle atrophy.

  16. Trapezius muscle activity increases during near work activity regardless of accommodation/vergence demand level.

    PubMed

    Richter, H O; Zetterberg, C; Forsman, M

    2015-07-01

    To investigate if trapezius muscle activity increases over time during visually demanding near work. The vision task consisted of sustained focusing on a contrast-varying black and white Gabor grating. Sixty-six participants with a median age of 38 (range 19-47) fixated the grating from a distance of 65 cm (1.5 D) during four counterbalanced 7-min periods: binocularly through -3.5 D lenses, and monocularly through -3.5 D, 0 D and +3.5 D. Accommodation, heart rate variability and trapezius muscle activity were recorded in parallel. General estimating equation analyses showed that trapezius muscle activity increased significantly over time in all four lens conditions. A concurrent effect of accommodation response on trapezius muscle activity was observed with the minus lenses irrespective of whether incongruence between accommodation and convergence was present or not. Trapezius muscle activity increased significantly over time during the near work task. The increase in muscle activity over time may be caused by an increased need of mental effort and visual attention to maintain performance during the visual tasks to counteract mental fatigue.

  17. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    PubMed

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  18. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis.

    PubMed

    Alemo Munters, Li; Alexanderson, Helene; Crofford, Leslie J; Lundberg, Ingrid E

    2014-07-01

    With recommended treatment, a majority with idiopathic inflammatory myopathy (IIM) develop muscle impairment and poor health. Beneficial effects of exercise have been reported on muscle performance, aerobic capacity and health in chronic polymyositis and dermatomyositis and to some extent in active disease and inclusion body myositis (IBM). Importantly, randomized controlled trials (RCTs) indicate that improved health and decreased clinical disease activity could be mediated through increased aerobic capacity. Recently, reports seeking mechanisms underlying effects of exercise in skeletal muscle indicate increased aerobic capacity (i.e. increased mitochondrial capacity and capillary density, reduced lactate levels), activation of genes in aerobic phenotype and muscle growth programs, and down regulation in genes related to inflammation. Altogether, exercise contributes to both systemic and within-muscle adaptations demonstrating that exercise is fundamental to improve muscle performance and health in IIM. There is a need for RCTs to study effects of exercise in active disease and IBM.

  19. Regional variation in muscle metabolic enzymes in individual American shad (Alosa sapidissima)

    USGS Publications Warehouse

    Leonard, J.B.K.

    1999-01-01

    Evaluation of the activity of metabolic enzymes is often used to asses metabolic capacity at the tissue level, but the amount of regional variability within a tissue in an individual fish of a given species is frequently unknown. The activities of four enzymes (citrate synthase (CS), phosphofructokinase, lactate dehydrogenase (LDH), and ??-hydroxyacyl coenzyme A dehydrogenase (HOAD) were assayed in red and white muscle at 10 sites along the body of adult American shad (Alosa sapidissima). Red and white muscle HOAD and white muscle CS and LDH varied significantly, generally increasing posteriorly. Maximal variation occurs in red muscle HOAD (~450%) and white muscle LDH (~60%) activity. Differences between the sexes also vary with sampling location. This study suggests that the variability in enzyme activity may be linked to functional differences in the muscle at different locations, and also provides guidelines for sample collection in this species.

  20. Muscle fatigue in fibromyalgia is in the brain, not in the muscles: a case-control study of perceived versus objective muscle fatigue.

    PubMed

    Bandak, Elisabeth; Amris, Kirstine; Bliddal, Henning; Danneskiold-Samsøe, Bente; Henriksen, Marius

    2013-06-01

    To investigate relationships between perceived and objectively measured muscle fatigue during exhausting muscle contractions in women with fibromyalgia (FM) compared with healthy controls (HC). Women with FM and HC completed an isometric muscle exhaustion task at 90° shoulder abduction. Surface electromyographic (EMG) activity in the deltoid muscle was recorded together with self-reported level of muscle fatigue. 25 participants with FM and 23 HC were included. Average time to exhaustion was 254 s shorter in participants with FM than in HC. Participants with FM did not exhibit the same level of objective signs of muscle fatigue, seen as fewer changes in the EMG activity, as the HC during the exhaustion task. The task did not provoke pain in the HC, while participants with FM reported a doubling of pain. Women with FM had shorter exhaustion times and showed fewer objective signs of muscle fatigue during an exhausting isometric shoulder abduction compared with younger HC. This indicates that perceived muscle fatigue may be of central origin and supports the notion of central nervous dysfunction as basic pathological changes in FM.

  1. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    PubMed

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The Effect of Functional Mandibular Shift on the Muscle Spindle Systems in Head-Neck Muscles and the Related Neurotransmitter Histamine.

    PubMed

    Du, Bing-Li; Li, Jiang-Ning; Guo, Hong-Ming; Li, Song; Liu, Biao

    2017-09-01

    The aim of this study is to explore the effects of abnormal occlusion and functional recovery caused by functional mandible deviation on the head and neck muscles and muscle spindle sensory-motor system by electrophysiological response and endogenous monoamine neurotransmitters' distribution in the nucleus of the spinal tract. Seven-week-old male Wistar rats were randomly divided into 7 groups: normal control group, 2W experimental control group, 2W functional mandible deviation group, 2W functional mandible deviation recovery group, 4W experimental control group, 4W functional mandible deviation group, 4W functional mandible deviation recovery group. Chewing muscles, digastric muscle, splenius, and trapezius muscle spindles electrophysiological response activities at the opening and closing state were recorded. And then the chewing muscles, digastric, splenius, trapezius, and neck trigeminal nucleus were taken for histidine decarboxylase (HDC) detection by high performance liquid chromatography (HPLC), immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR). Histamine receptor proteins in the neck nucleus of the spinal tract were also examined by immunofluorescence and RT-PCR. Electromyography activity of chewing muscles, digastric, and splenius muscle was significantly asymmetric; the abnormal muscle electromyography activity was mainly detected at the ipsilateral side. After functional mandibular deviation, muscle sensitivity on the ipsilateral sides of the chewing muscle and splenius decreased, muscle excitement weakened, modulation depth decreased, and the muscle spindle afferent impulses of excitation transmission speed slowed down. Changes for digastric muscle electrical activity were contrary. The functions recovered at different extents after removing the deflector. However, trapezius in all the experimental groups and recovery groups exhibited bilateral symmetry electrophysiological responses, and no significant difference compared with the control group. After functional mandibular deviation, HDC protein and messenger ribonucleic acid (mRNA) levels on the ipsilateral sides of the chewing muscle and splenius increased significantly. HDC level changes for digastric muscle were contrary. After the removal of the mandibular position deflector, HDC protein and mRNA levels decreased on the ipsilateral sides of the chewing muscle and splenius while they increased in the digastric muscle. The difference of histamine decarboxylase content in the bilateral trapezius in each experimental group was small. After functional mandibular deviation, the temporomandibular joint mechanical receptors not only caused the fusimotor fiber hypoallergenic fatigue slow response on the ipsilateral sides of splenius, but also increased the injury neurotransmitter histamine release. The authors' results further support the opinion that the temporomandibular joint receptors may be involved in the mechanical theory of the head and neck muscles nervous system regulation.

  3. Pumping Iron in Australia: Prevalence, Trends and Sociodemographic Correlates of Muscle Strengthening Activity Participation from a National Sample of 195,926 Adults.

    PubMed

    Bennie, Jason A; Pedisic, Zeljko; van Uffelen, Jannique G Z; Charity, Melanie J; Harvey, Jack T; Banting, Lauren K; Vergeer, Ineke; Biddle, Stuart J H; Eime, Rochelle M

    2016-01-01

    The current Australian Physical Activity Guidelines recommend that adults engage in regular muscle-strengthening activity (e.g. strength or resistance training). However, public health surveillance studies describing the patterns and trends of population-level muscle-strengthening activity participation are sparse. The aim of this study is to examine the prevalence, trends and sociodemographic correlates of muscle-strengthening activity participation in a national-representative sample of Australians aged 15 years and over. Between 2001 and 2010, quarterly cross-sectional national telephone surveys were conducted as part of the Australian Sports Commission's 'Exercise, Recreation and Sport Survey'. Pooled population-weighted proportions were calculated for reporting: [i] no muscle-strengthening activity; [ii] insufficient muscle-strengthening activity, and [iii] sufficient muscle-strengthening activity. Associations with sociodemographic variables were assessed using multiple logistic regression analyses. Out of 195,926 participants, aged 15-98 years, only 10.4% (95% CI: 10.1-10.7) and 9.3% (95% CI: 9.1-9.5) met the muscle-strengthening activity recommendations in the past two weeks and in the past year, respectively. Older adults (50+ years), and those living in socioeconomically disadvantaged, outer regional/remote areas and with lower education were less likely to report sufficient muscle-strengthening activity (p<0.001). Over the 10-year monitoring period, there was a significant increase in the prevalence of sufficient muscle-strengthening activity (6.4% to 12.0%, p-value for linear trend <0.001). A vast majority of Australian adults did not engage in sufficient muscle-strengthening activity. There is a need for public health strategies to support participation in muscle-strengthening activity in this population. Such strategies should target older and lower educated adults, and those living in socioeconomically disadvantaged, outer regional/remote and areas.

  4. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  5. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  6. Gluteus Minimus and Gluteus Medius Muscle Activity During Common Rehabilitation Exercises in Healthy Postmenopausal Women.

    PubMed

    Ganderton, Charlotte; Pizzari, Tania; Cook, Jill; Semciw, Adam

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background The gluteus medius (GMed) and gluteus minimus (GMin) provide dynamic stability of the hip joint and pelvis. These muscles are susceptible to atrophy and injury in individuals during menopause, aging, and disease. Numerous studies have reported on the ability of exercises to elicit high levels of GMed activity; however, few studies have differentiated between the portions of the GMed, and none have examined the GMin. Objectives To quantify and rank the level of muscle activity of the 2 segments of the GMin (anterior and posterior fibers) and 3 segments of the GMed (anterior, middle, and posterior fibers) during 4 isometric and 3 dynamic exercises in a group of healthy, postmenopausal women. Methods Intramuscular electrodes were inserted into each segment of the GMed and GMin in 10 healthy, postmenopausal women. Participants completed 7 gluteal rehabilitation exercises, and average normalized muscle activity was used to rank the exercises from highest to lowest. Results The isometric standing hip hitch with contralateral hip swing was the highest-ranked exercise for all muscle segments except the anterior GMin, where it was ranked second. The highest-ranked dynamic exercise for all muscle segments was the dip test. Conclusion The hip hitch and its variations maximally activate the GMed and GMin muscle segments, and may be useful in hip muscle rehabilitation in postmenopausal women. J Orthop Sports Phys Ther 2017;47(12):914-922. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7229.

  7. Muscle activity pattern dependent pain development and alleviation.

    PubMed

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of note is that intensive muscle strength training actually may rehabilitate painful muscles, which has recently been repeatedly proven in randomized controlled trials. With training the maximal muscle activation and strength can be shown to recover, and consequently allow for decreased relative muscle load during occupational repetitive work tasks. Exercise training induces adaptation of metabolic and stress-related mRNA and protein responses in the painful muscles, which is in contrast to the responses evoked during repetitive work tasks per se. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  9. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    PubMed

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.

  10. The effect of psychosocial stress on muscle activity during computer work: Comparative study between desktop computer and mobile computing products.

    PubMed

    Taib, Mohd Firdaus Mohd; Bahn, Sangwoo; Yun, Myung Hwan

    2016-06-27

    The popularity of mobile computing products is well known. Thus, it is crucial to evaluate their contribution to musculoskeletal disorders during computer usage under both comfortable and stressful environments. This study explores the effect of different computer products' usages with different tasks used to induce psychosocial stress on muscle activity. Fourteen male subjects performed computer tasks: sixteen combinations of four different computer products with four different tasks used to induce stress. Electromyography for four muscles on the forearm, shoulder and neck regions and task performances were recorded. The increment of trapezius muscle activity was dependent on the task used to induce the stress where a higher level of stress made a greater increment. However, this relationship was not found in the other three muscles. Besides that, compared to desktop and laptop use, the lowest activity for all muscles was obtained during the use of a tablet or smart phone. The best net performance was obtained in a comfortable environment. However, during stressful conditions, the best performance can be obtained using the device that a user is most comfortable with or has the most experience with. Different computer products and different levels of stress play a big role in muscle activity during computer work. Both of these factors must be taken into account in order to reduce the occurrence of musculoskeletal disorders or problems.

  11. Effect of a worktable position on head and shoulder posture and shoulder muscles in manual material handling.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2015-06-05

    According to a recent research, manual working with high levels of static contraction, repetitive loads, or extreme working postures involving the neck and shoulder muscles causes an increased risk of neck and shoulder musculoskeletal disorders. We investigated the effects of the forwardly worktable position on head and shoulder angles and shoulder muscle activity in manual material handling tasks. The forward head and shoulder angles and the activity of upper trapezius, levator scapulae, and middle deltoid muscle activities of 15 workers were measured during performing of manual material handling in two tasks that required different forward head and shoulder angles. The second manual material task required a significantly increased forward head and shoulder angle. The upper trapezius and levator scapulae muscle activity in second manual material task was increased significantly compared with first manual material task. The middle deltoid muscle activity in second manual material task was not significantly different compared with first manual material task. Based on this result, the forward head and shoulder angles while performing manual work need to be considered in selection of the forward distance of a worktable form the body. The high level contractions of the neck and shoulder muscles correlated with neck and shoulder pain. Therefore, the forward distance of a worktable can be an important factor in preventing neck and shoulder pain in manual material handling workers.

  12. A novel command signal for motor neuroprosthetic control.

    PubMed

    Moss, Christa W; Kilgore, Kevin L; Peckham, P Hunter

    2011-01-01

    Neuroprostheses can restore functions such as hand grasp or standing to individuals with spinal cord injury (SCI) using electrical stimulation to elicit movements in paralyzed muscles. Implanted neuroprostheses currently use electromyographic (EMG) activity from muscles above the lesion that remain under volitional control as a command input. Systems in development use a networked approach and will allow for restoration of multiple functions but will require additional command signals to control the system, especially in individuals with high-level tetraplegia. The objective of this study was to investigate the feasibility of using muscles innervated below the injury level as command sources for a neuroprosthesis. Recent anatomical and physiological studies have demonstrated the presence of intact axons across the lesion, even in those diagnosed with a clinically complete SCI; hence, EMG activity may be present in muscles with no sign of movement. Twelve participants with motor complete SCI were enrolled and EMG was recorded with surface electrodes from 8 muscles below the knee in each leg. Significant activity was evident in 89% of the 192 muscles studied during attempted movements of the foot and lower limb. At least 2 muscles from each participant were identified as potential command signals for a neuroprosthesis based on 2-state, threshold classification. Results suggest that voluntary activity is present and recordable in below lesion muscles even after clinically complete SCI.

  13. Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat.

    PubMed

    Bernabei, Michel; van Dieën, Jaap H; Maas, Huub

    2017-02-15

    The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle-tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s -1 ). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways. © 2017. Published by The Company of Biologists Ltd.

  14. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan.

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2012-01-01

    This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Calcium and stretch activation modulate power generation in Drosophila flight muscle.

    PubMed

    Wang, Qian; Zhao, Cuiping; Swank, Douglas M

    2011-11-02

    Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Effects of Physical Activity and Inactivity on Muscle Fatigue

    PubMed Central

    Bogdanis, Gregory C.

    2012-01-01

    The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being. PMID:22629249

  17. Co-activation: its association with weakness and specific neurological pathology

    PubMed Central

    Busse, Monica E; Wiles, Charles M; van Deursen, Robert WM

    2006-01-01

    Background Net agonist muscle strength is in part determined by the degree of antagonist co-activation. The level of co-activation might vary in different neurological disorders causing weakness or might vary with agonist strength. Aim This study investigated whether antagonist co-activation changed a) with the degree of muscle weakness and b) with the nature of the neurological lesion causing weakness. Methods Measures of isometric quadriceps and hamstrings strength were obtained. Antagonist (hamstring) co-activation during knee extension was calculated as a ratio of hamstrings over quadriceps activity both during an isometric and during a functional sit to stand (STS) task (using kinematics) in groups of patients with extrapyramidal (n = 15), upper motor neuron (UMN) (n = 12), lower motor neuron (LMN) with (n = 18) or without (n = 12) sensory loss, primary muscle or neuromuscular junction disorder (n = 17) and in healthy matched controls (n = 32). Independent t-tests or Mann Witney U tests were used to compare between the groups. Correlations between variables were also investigated. Results In healthy subjects mean (SD) co-activation of hamstrings during isometric knee extension was 11.8 (6.2)% and during STS was 20.5 (12.9)%. In patients, co-activation ranged from 7 to 17% during isometric knee extension and 15 to 25% during STS. Only the extrapyramidal group had lower co-activation levels than healthy matched controls (p < 0.05). Agonist isometric muscle strength and co-activation correlated only in muscle disease (r = -0.6, p < 0.05) and during STS in UMN disorders (r = -0.7, p < 0.5). Conclusion It is concluded that antagonist co-activation does not systematically vary with the site of neurological pathology when compared to healthy matched controls or, in most patient groups, with strength. The lower co-activation levels found in the extrapyramidal group require confirmation and further investigation. Co-activation may be relevant to individuals with muscle weakness. Within patient serial studies in the presence of changing muscle strength may help to understand these relationships more clearly. PMID:17116259

  18. [Effects of different hypoxic training modes on activities of mitochondrial antioxidants and respiratory chain complex in skeletal muscle after exhaustive running in rat].

    PubMed

    Li, Jie; Zhang, Yao-Bin

    2011-02-25

    The present study was aimed to investigate the effect of hypoxic training on mitochondrial antioxidants and activities of respiratory chain complexes in mitochondria of skeletal muscle in rats. Forty healthy male Wistar rats were randomized to 5 groups (n=8): living low-training low (LoLo), living high-training high (HiHi), living high-training low (HiLo), living low-training high (LoHi), and living high-exercise high-training low (HiHiLo). All the animals were subjected to 5-week training in normoxic (atmospheric pressure=632 mmHg, altitude of about 1 500 m) or hypoxic environment (atmospheric pressure=493 mmHg, simulated altitude of about 3 500 m). Before exhaustive running, the animals stayed in normoxia for 3 d. Skeletal muscles were prepared immediately after exhaustive running. Muscle mitochondria were extracted by differential centrifugation. Spectrophotometric analysis was used to evaluate activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA) level and respiratory chain complex (C) I-III activities in muscle homogenate and mitochondria. Results showed that SOD, GSH-Px, CAT activities and MDA level in skeletal muscle homogenate in HiHi and HiHiLo groups were significantly increased (P<0.05 or P<0.01) compared with those in LoLo group. Muscle mitochondrial MDA level in HiHi and HiHiLo groups was significantly lower (P<0.01), while activities of SOD, GSH-Px and CAT were remarkably higher (P<0.01) than those in LoLo group. Meanwhile, C I-III activities in HiHi and HiHiLo groups were increased significantly (P<0.01), and C II activity in HiLo group also was increased remarkably (P<0.01) compared with those in LoLo group. These results suggest that HiHiLo might be an ideal hypoxic training mode.

  19. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  20. Effect of using a suspension training system on muscle activation during the performance of a front plank exercise.

    PubMed

    Byrne, Jeannette M; Bishop, Nicole S; Caines, Andrew M; Crane, Kalynn A; Feaver, Ashley M; Pearcey, Gregory E P

    2014-11-01

    The objective of the study was to examine the effect of suspension training on muscle activation during performance of variations of the plank exercise. Twenty-one participants took part. All individuals completed 2 repetitions each of 4 different plank exercises that consisted of a floor based plank, or planks with arms suspended, feet suspended, or feet and arms suspended using a TRX Suspension System. During plank performance, muscle activation was recorded from rectus abdominis, external oblique, rectus femoris, and serratus anterior (SA) muscles using electromyography. All planks were performed for a total of 3 seconds. Resulting muscle activation data were amplitude normalized, and root mean square activation was then determined over the full 3 second duration of the exercise. A significant main effect of plank type was found for all muscles. Post hoc analysis and effect size examination indicated that abdominal muscle activation was higher in all suspended conditions compared to the floor based plank. The highest level of abdominal muscle activation occurred in the arms suspended and arms/feet suspended conditions, which did not differ from one another. Rectus femoris activation was greatest during the arms suspended condition, whereas SA activity peaked during normal and feet suspended planks. These results indicate that suspension training as performed in this study seems to be an effective means of increasing muscle activation during the plank exercise. Contrary to expectations, the additional instability created by suspending both the arms and feet did not result in any additional abdominal muscle activation. These findings have implications in prescription and progression of core muscle training programs.

  1. Torque and Muscle Activation Impairment Along With Insulin Resistance Are Associated With Falls in Women With Fibromyalgia.

    PubMed

    Góes, Suelen M; Stefanello, Joice M F; Homann, Diogo; Lodovico, Angélica; Hubley-Kozey, Cheryl L; Rodacki, André L F

    2016-11-01

    Góes, SM, Stefanello, JMF, Homann, D, Lodovico, A, Hubley-Kozey, CL, and Rodacki, ALF. Torque and muscle activation impairment along with insulin resistance are associated with falls in women with fibromyalgia. J Strength Cond Res 30(11): 3155-3164, 2016-Fibromyalgia (FM) is a chronic pain condition associated with reduced muscle strength, which can lead to functional incapacity and higher risk of falls. The purpose of the study was to compare maximal ankle joint torque, muscle activation, and metabolic changes between women with and without FM. In addition, the relationship between those aspects and retrospectively reported falls in women with FM was determined. Twenty-nine middle-aged women with FM and 30 controls were recruited. Fall history, pain intensity, and pain threshold were assessed. Plasma glucose levels and insulin resistance (IR) were determined. Peak torque and rate of torque development (RTD) were calculated, and muscle activation was assessed from maximum isometric voluntary ankle dorsiflexion and plantar flexion contractions. In addition, voluntary muscle activation failure of the anterior tibialis muscle during maximal dorsiflexion was calculated. When compared to controls, women with FM reported higher number of retrospectively reported falls, exhibited higher IR, showed reduced plantar flexion and dorsiflexion RTD, had lower plantar flexion peak torque, and demonstrated more antagonist coactivation and higher muscle activation failure (p ≤ 0.05). Higher muscle activation failure was explained by glucose level and pain intensity (adj R = 0.28; p ≤ 0.05). Reduced plantar flexion and dorsiflexion peak torque explained 80% of retrospectively reported falls variance; also, high antagonist coactivation (odds ratio [OR] = 1.6; p ≤ 0.05) and high IR (OR = 1.8; p ≤ 0.05) increased the chance of falls in the FM group. A combination of metabolic factors and muscle function increased the odds of retrospectively reporting a fall in FM. Both aspects may be considered in interventions designed for reducing falls in this population.

  2. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    PubMed

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Modulation of weight off-loading level over body-weight supported locomotion training.

    PubMed

    Wang, Ping; Low, K H; Lim, Peter A C; McGregor, A H

    2011-01-01

    With the evolution of robotic systems to facilitate overground walking rehabilitation, it is important to understand the effect of robotic-aided body-weight supported loading on lower limb muscle activity, if we are to optimize neuromotor recovery. To achieve this objective, we have collected and studied electromyography (EMG) data from key muscles in the lower extremity from healthy subjects walking over a wide range of body-weight off-loading levels as provided by a bespoke gait robot. By examining the impact of body-weight off-loading, it was found that muscle activation patterns were sensitive to the level of off-loading. In addition, a large off-loading might introduce disturbance of muscle activation pattern, led to a wider range of motion in terms of dorsiflexion/plantarflexion. Therefore, any future overground training machine should be enhanced to exclude unnecessary effect of body off-loading in securing the sustaining upright posture and providing assist-as-needed BWS over gait rehabilitation. © 2011 IEEE

  5. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Oral Adenosine-5'-triphosphate (ATP) Administration Increases Postexercise ATP Levels, Muscle Excitability, and Athletic Performance Following a Repeated Sprint Bout.

    PubMed

    Purpura, Martin; Rathmacher, John A; Sharp, Matthew H; Lowery, Ryan P; Shields, Kevin A; Partl, Jeremy M; Wilson, Jacob M; Jäger, Ralf

    2017-01-01

    Oral adenosine-5'-triphosphate (ATP) administration has failed to increase plasma ATP levels; however, chronic supplementation with ATP has shown to increase power, strength, lean body mass, and blood flow in trained athletes. The purpose of this study was to investigate the effects of ATP supplementation on postexercise ATP levels and on muscle activation and excitability and power following a repeated sprint bout. In a double-blind, placebo-controlled, randomized design, 42 healthy male individuals were given either 400 mg of ATP as disodium salt or placebo for 2 weeks prior to an exercise bout. During the exercise bout, muscle activation and excitability (ME, ratio of power output to muscle activation) and Wingate test peak power were measured during all sprints. ATP and metabolites were measured at baseline, after supplementation, and immediately following exercise. Oral ATP supplementation prevented a drop in ATP, adenosine-5'-diphosphate (ADP), and adenosine-5'-monophosphate (AMP) levels postexercise (p < 0.05). No group by time interaction was observed for muscle activation. Following the supplementation period, muscle excitability significantly decreased in later bouts 8, 9, and 10 in the placebo group (-30.5, -28.3, and -27.9%, respectively; p < 0.02), whereas ATP supplementation prevented the decline in later bouts. ATP significantly increased Wingate peak power in later bouts compared to baseline (bout 8: +18.3%, bout 10: +16.3%). Oral ATP administration prevents exercise-induced declines in ATP and its metabolite and enhances peak power and muscular excitability, which may be beneficial for sports requiring repeated high-intensity sprinting bouts.

  7. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken.

    PubMed

    Yan, Junshu; Liu, Peifeng; Xu, Liangmei; Huan, Hailin; Zhou, Weiren; Xu, Xiaoming; Shi, Zhendan

    2018-04-01

    The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P < 0.05), the highest IMP content was obtained when the diet with 0.3% and 0.2% exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P < 0.05) and delicious amino acids (DAA) (quadratic effect, P < 0.01) content in breast muscle. FAA and DAA content in thigh muscle showed an exponential and linear response (P < 0.05), and quadratic response (P < 0.01) to the increasing dietary IMP level, the highest FAA and DAA content was obtained when the diet with 0.2% exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P < 0.05), and the adenosine triphosphate (ATP) enzyme activity in the thigh muscles increased exponentially and linearly with increasing IMP level in diet (exponential effect, P = 0.061; linear effect, P = 0.059). Cyclohydrolase (ATIC) gene expression in thigh muscle had a quadratic response to the increasing dietary IMP level (P < 0.05), 0.2% exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.

  8. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation.

    PubMed

    Gay, André; Aimonetti, Jean-Marc; Roll, Jean-Pierre; Ribot-Ciscar, Edith

    2015-07-30

    In the present study, muscle pain was induced experimentally in healthy subjects by administrating hypertonic saline injections into the tibialis anterior (TA) muscle. We first aimed at comparing the analgesic effects of mechanical vibration applied to either cutaneous or muscle receptors of the TA or to both types simultaneously. Secondly, pain alleviation was compared in subjects in whom muscle tendon vibration evoked kinesthetic illusions of the ankle joint. Muscle tendon vibration, which primarily activated muscle receptors, reduced pain intensity by 30% (p<0.01). In addition, tangential skin vibration reduced pain intensity by 33% (p<0.01), primarily by activating cutaneous receptors. Concurrently stimulating both sensory channels induced stronger analgesic effects (-51%, p<0.01), as shown by the lower levels of electrodermal activity. The strongest analgesic effects of the vibration-induced muscle inputs occurred when illusory movements were perceived (-38%, p=0.01). The results suggest that both cutaneous and muscle sensory feedback reduce muscle pain, most likely via segmental and supraspinal processes. Further clinical trials are needed to investigate these new methods of muscle pain relief. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lower extremity muscle function of front row rugby union scrummaging.

    PubMed

    Yaghoubi, Mostafa; Lark, Sally D; Page, Wyatt H; Fink, Philip W; Shultz, Sarah P

    2018-05-16

    A rugby scrum's front row must act uniformly to transfer maximal horizontal force and improve performance. This study investigated the muscle activation patterns of lower extremity muscles in front row forwards during live and machine scrums at professional and amateur levels. Electromyography was collected bilaterally on vastus lateralis, rectus femoris and gastrocnemius muscles of 75 male rugby prop players during live and machine scrums. ANOVAs compared muscle reaction time, rate of change in muscle amplitude and muscle amplitude between groups and conditions. Cross-correlation analysis explored muscle synchronicity. There were significantly greater rates of change in each muscle amplitude in professional players than amateur players. Additionally, there was significantly quicker muscle reaction time in all muscles, and greater amplitude in vastus lateralis and gastrocnemius, during the live scrum vs. machine condition. The professional props produced more synchronised muscle activation than amateur players and all players produced more synchronised muscle activation against the scrum machine vs. live scrummage. The results indicate a higher skill proficiency and muscle synchronicity in professional players. While scrum machine training is ideally suited for functional muscle strengthening during practice, to truly simulate the requirements of the scrum, training should incorporate the live situation as much as possible.

  10. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    PubMed

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  11. Partial weight support of the arm affects corticomotor selectivity of biceps brachii.

    PubMed

    Runnalls, Keith D; Anson, Greg; Byblow, Winston D

    2015-10-26

    Weight support of the arm (WS) can be used in stroke rehabilitation to facilitate upper limb therapy, but the neurophysiological effects of this technique are not well understood. While an overall reduction in muscle activity is expected, the mechanism by which WS may alter the expression of muscle synergies has not been examined until now. We explored the neurophysiological effect of WS on the selectivity of biceps brachii (BB) activation in healthy adults. Thirteen participants completed counterbalanced movement tasks in a repeated measures design. Three levels of WS (0, 45, and 90 % of full support) were provided to the arm using a commercial device (Saebo Mobile Arm Support). At each level of WS, participants maintained a flexed shoulder posture while performing rhythmic isometric elbow flexion (BB agonist) or forearm pronation (BB antagonist). Single-pulse transcranial magnetic stimulation of primary motor cortex was used to elicit motor-evoked potentials (MEPs) in BB 100-300 ms before muscle contraction. Baseline muscle activity and MEP amplitude were the primary dependent measures. Effects of movement TASK and SUPPORT LEVEL were statistically analyzed using linear mixed effects models. As expected, with increased support tonic activity was reduced across all muscles. This effect was greatest in the anti-gravity muscle anterior deltoid, and evident in biceps brachii and pronator teres as well. For BB MEP amplitude, TASK and SUPPORT LEVEL, interacted such that for elbow flexion, MEP amplitudes were smaller with incrementally greater WS whereas, for forearm pronation MEP amplitudes were smaller only at high WS. Weight support of the arm influences corticomotor selectivity of biceps brachii. WS may impact coordination independently of a global reduction in muscle activity. The amount of supportive force applied to the arm influences the neuromechanical control profile for the limb. These findings may inform the application of WS in upper limb stroke rehabilitation.

  12. Creatine-Kinase- and Exercise-Related Muscle Damage Implications for Muscle Performance and Recovery

    PubMed Central

    Baird, Marianne F.; Graham, Scott M.; Baker, Julien S.; Bickerstaff, Gordon F.

    2012-01-01

    The appearance of creatine kinase (CK) in blood has been generally considered to be an indirect marker of muscle damage, particularly for diagnosis of medical conditions such as myocardial infarction, muscular dystrophy, and cerebral diseases. However, there is controversy in the literature concerning its validity in reflecting muscle damage as a consequence of level and intensity of physical exercise. Nonmodifiable factors, for example, ethnicity, age, and gender, can also affect enzyme tissue activity and subsequent CK serum levels. The extent of effect suggests that acceptable upper limits of normal CK levels may need to be reset to recognise the impact of these factors. There is a need for standardisation of protocols and stronger guidelines which would facilitate greater scientific integrity. The purpose of this paper is to examine current evidence and opinion relating to the release of CK from skeletal muscle in response to physical activity and examine if elevated concentrations are a health concern. PMID:22288008

  13. Activation of the hip adductor muscles varies during a simulated weight-bearing task.

    PubMed

    Hides, Julie A; Beall, Paula; Franettovich Smith, Melinda M; Stanton, Warren; Miokovic, Tanja; Richardson, Carolyn

    2016-01-01

    To investigate the pattern of muscle activation of the individual hip adductor muscles using a standardised simulated unilateral weight-bearing task. A repeated measures design. Laboratory. 20 healthy individuals (11 females, 9 males) participated in the study. Age ranged from 20 to 25 years. Surface electromyography recordings from adductor magnus and adductor longus muscles were taken at levels representing 10-50% of body weight during a simulated weight-bearing task. Electromyography (EMG) data were normalised to maximal voluntary isometric contraction. The adductor magnus was recruited at significantly higher levels than the adductor longus muscle during a simulated weight-bearing task performed across 10-50% of body weight (p < 0.01). Adductor magnus and adductor longus muscles are recruited to different extents during a simulated weight-bearing task. This information should be considered when selecting exercises for management and prevention of groin strains. Closed chain exercises with weight-bearing through the lower limb are more likely to recruit the adductor magnus muscle over the adductor longus muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Intracellular Protein Degradation in Growth of Atlantic Salmon, Salmo salar L].

    PubMed

    Lysenko, L A; Kantserova, N P; Krupnova, M Yu; Veselov, A E; Nemova, N N

    2015-01-01

    A brief review on the common characteristics and specific features of proteolytic machinery in fish skeletal muscles (based on Atlantic salmon, Salmo salar L., Salmonidae) has been given. Among a variety of proteases in the muscle tissue, those determining protein degradation level in developing and intensively growing muscles in salmon young and by this way regulating protein retention intensity and growth at all namely lysosomal cathepsins B and D and calcium-dependent proteases (calpains) were comprehensively studied. Revealed age-related differences in intracellular protease activity in salmon skeletal muscles indicate the role of proteolysis regulation in growth in general and a specific role of the individual proteolytic enzymes in particular. The data on negative correlation of cathepsin D and calpain activity levels in muscles and the rate of weight increase in juvenile salmon were obtained. A revealed positive correlation of cathepsin B activity and morphometric parameters in fish young presumably indicates its primary contribution to non-myofibrillar protein turnover.

  15. COMPARISON OF TRUNK AND LOWER EXTREMITY MUSCLE ACTIVITY AMONG FOUR STATIONARY EQUIPMENT DEVICES: UPRIGHT BIKE, RECUMBENT BIKE, TREADMILL, AND ELLIPTIGO®.

    PubMed

    Bouillon, Lucinda; Baker, Ryan; Gibson, Chris; Kearney, Andrew; Busemeyer, Tommy

    2016-04-01

    Stationary equipment devices are often used to improve fitness. The ElliptiGO® was recently developed that blends the elements of an elliptical trainer and bicycle, allowing reciprocal lower limb pedaling in an upright position. However, it is unknown whether the muscle activity used for the ElliptiGO® is similar to walking or cycling. To date, there is no information comparing muscle activity for exercise on the treadmill, stationary upright and recumbent bikes, and the ElliptiGO®. The purpose of this study was to assess trunk and lower extremity muscle activity among treadmill walking, cycling (recumbent and upright) and the ElliptiGO® cycling. It was hypothesized that the ElliptiGO® and treadmill would elicit similar electromyographic muscle activity responses compared to the stationary bike and recumbent bike during an exercise session. Cohort, repeated measures. Twelve recreationally active volunteers participated in the study and were assigned a random order of exercise for each of the four devices (ElliptiGO®, stationary upright cycle ergometer, recumbent ergometer, and a treadmill). Two-dimensional video was used to monitor the start and stop of exercise and surface electromyography (SEMG) were used to assess muscle activity during two minutes of cycling or treadmill walking at 40-50% heart rate reserve (HRR). Eight muscles on the dominant limb were used for analysis: gluteus maximus (Gmax), gluteus medius (Gmed), biceps femoris (BF), lateral head of the gastrocnemius (LG), tibialis anterior (TA), rectus femoris (RF). Two trunk muscles were assessed on the same side; lumbar erector spinae at L3-4 level (LES) and rectus abdominus (RA). Maximal voluntary isometric contractions (MVIC) were determined for each muscle and SEMG data were expressed as %MVIC in order to normalize outputs. The %MVIC for RF during ElliptiGO® cycling was higher than recumbent cycling. The LG muscle activity was highest during upright cycling. The TA was higher during walking compared to recumbent cycling and ElliptiGO® cycling. No differences were found among the the LES and remaining lower limb musculature across devices. ElliptiGO® cycling was found to elicit sufficient muscle activity to provide a strengthening stimulus for the RF muscle. The LES, RA, Gmax, Gmed, and BF activity were similar across all devices and ranged from low to moderate strength levels of muscle activation. The information gained from this study may assist clinicians in developing low to moderate strengthening exercise protocols when using these four devices. 3.

  16. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems.

    PubMed

    Komatsu, Riyo; Okazaki, Tatsuma; Ebihara, Satoru; Kobayashi, Makoto; Tsukita, Yoko; Nihei, Mayumi; Sugiura, Hisatoshi; Niu, Kaijun; Ebihara, Takae; Ichinose, Masakazu

    2018-05-22

    Repetition of the onset of aspiration pneumonia in aged patients is common and causes chronic inflammation. The inflammation induces proinflammatory cytokine production and atrophy in the muscles. The proinflammatory cytokines induce muscle proteolysis by activating calpains and caspase-3, followed by further degradation by the ubiquitin-proteasome system. Autophagy is another pathway of muscle atrophy. However, little is known about the relationship between aspiration pneumonia and muscle. For swallowing muscles, it is not clear whether they produce cytokines. The main objective of this study was to determine whether aspiration pneumonia induces muscle atrophy in the respiratory (the diaphragm), skeletal (the tibialis anterior, TA), and swallowing (the tongue) systems, and their possible mechanisms. We employed a mouse aspiration pneumonia model and computed tomography (CT) scans of aged pneumonia patients. To induce aspiration pneumonia, mice were inoculated with low dose pepsin and lipopolysaccharide solution intra-nasally 5 days a week. The diaphragm, TA, and tongue were isolated, and total RNA, proteins, and frozen sections were stored. Quantitative real-time polymerase chain reaction determined the expression levels of proinflammatory cytokines, muscle E3 ubiquitin ligases, and autophagy related genes. Western blot analysis determined the activation of the muscle proteolysis pathway. Frozen sections determined the presence of muscle atrophy. CT scans were used to evaluate the muscle atrophy in aged aspiration pneumonia patients. The aspiration challenge enhanced the expression levels of proinflammatory cytokines in the diaphragm, TA, and tongue. Among muscle proteolysis pathways, the aspiration challenge activated caspase-3 in all the three muscles examined, whereas calpains were activated in the diaphragm and the TA but not in the tongue. Activation of the ubiquitin-proteasome system was detected in all the three muscles examined. The aspiration challenge activated autophagy in the TA and the tongue, whereas weak or little activation was detected in the diaphragm. The aspiration challenge resulted in a greater proportion of smaller myofibers than in controls in the diaphragm, TA, and tongue, suggesting muscle atrophy. CT scans clearly showed that aspiration pneumonia was followed by muscle atrophy in aged patients. Aspiration pneumonia induced muscle atrophy in the respiratory, skeletal, and swallowing systems in a preclinical animal model and in human patients. Diaphragmatic atrophy may weaken the force of cough to expectorate sputum or mis-swallowed contents. Skeletal muscle atrophy may cause secondary sarcopenia. The atrophy of swallowing muscles may weaken the swallowing function. Thus, muscle atrophy could become a new therapeutic target of aspiration pneumonia. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  17. TAK1 regulates skeletal muscle mass and mitochondrial function

    PubMed Central

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  18. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  19. Effect of noxious electrical stimulation of the peroneal nerve on stretch reflex activity of the hamstring muscle in rats: possible implications of neuronal mechanisms in the development of tight hamstrings in lumbar disc herniation.

    PubMed

    Hirayama, Jiro; Yamagata, Masatsune; Takahashi, Kazuhisa; Moriya, Hideshige

    2005-05-01

    The effect of noxious electrical stimulation of the peroneal nerve on the stretch reflex electromyogram activity of the hamstring muscle (semitendinous) was studied. To verify the following hypothetical mechanisms underlying tight hamstrings in lumbar disc herniation: stretch reflex muscle activity of hamstrings is increased by painful inputs from an injured spinal nerve root and the increased stretch reflex muscle activity is maintained by central sensitization. It is reported that stretch reflex activity of the trunk muscles is induced by noxious stimulation of the sciatic nerve and maintained by central sensitization. In spinalized rats (transected spinal cord), the peroneal nerve was stimulated electrically as a conditioning stimulus. Stretch reflex electromyogram activity of the semitendinous muscle was recorded before and after the conditioning stimulus. Even after electrical stimulation was terminated, an increased stretch reflex activity of the hamstring muscle was observed. It is likely that a central sensitization mechanism at the spinal cord level was involved in the increased reflex activity. Central sensitization may play a part in the neuronal mechanisms of tight hamstrings in lumbar disc herniation.

  20. Epidemiological investigation of muscle-strengthening activities and cognitive function among older adults.

    PubMed

    Loprinzi, Paul D

    2016-06-01

    Limited research has examined the association of muscle-strengthening activities and executive cognitive function among older adults, which was this study's purpose. Data from the 1999-2002 NHANES were employed (N = 2157; 60-85 years). Muscle-strengthening activities were assessed via self-report, with cognitive function assessed using the digit symbol substitution test. After adjusting for age, age-squared, gender, race-ethnicity, poverty level, body mass index, C-reactive protein, smoking, comorbid illness and physical activity, muscle-strengthening activities were significantly associated with cognitive function (βadjusted = 3.4; 95% CI: 1.7-5.1; P < 0.001). Compared to those not engaging in aerobic exercise and not meeting muscle-strengthening activity guidelines, those doing 1 (βadjusted = 3.7; 95% CI: 1.9-5.4; P < 0.001) and both (βadjusted = 6.6; 95% CI: 4.8-8.3; P < 0.001) of these behaviors had a significantly higher executive cognitive function score. In conclusion, muscle-strengthening activities are associated with executive cognitive function among older U.S. adults, underscoring the importance of promoting both aerobic exercise and muscle-strengthening activities to older adults. © The Author(s) 2016.

  1. Effects of environmental cocaine concentrations on the skeletal muscle of the European eel (Anguilla anguilla).

    PubMed

    Capaldo, Anna; Gay, Flaminia; Lepretti, Marilena; Paolella, Gaetana; Martucciello, Stefania; Lionetti, Lillà; Caputo, Ivana; Laforgia, Vincenza

    2018-06-04

    The presence of illicit drugs in the aquatic environment represents a new potential risk for aquatic organisms, due to their constant exposure to substances with strong pharmacological activity. Currently, little is known about the ecological effects of illicit drugs. The aim of this study was to evaluate the influence of environmental concentrations of cocaine, an illicit drug widespread in surface waters, on the skeletal muscle of the European eel (Anguilla anguilla). The skeletal muscle of silver eels exposed to 20 ng L -1 of cocaine for 50 days were compared to control, vehicle control and two post-exposure recovery groups (3 and 10 days after interruption of cocaine). The eels general health, the morphology of the skeletal muscle and several parameters indicative of the skeletal muscle physiology were evaluated, namely the muscle whole protein profile, marker of the expression levels of the main muscle proteins; cytochrome oxidase activity, markers of oxidative metabolism; caspase-3, marker of apoptosis activation; serum levels of creatine kinase, lactate dehydrogenase and aspartate aminotransferase, markers of skeletal muscle damages. Cocaine-exposed eels appeared hyperactive but they showed the same general health status as the other groups. In contrast, their skeletal muscle showed evidence of serious injury, including muscle breakdown and swelling, similar to that typical of rhabdomyolysis. These changes were still present 10 days after the interruption of cocaine exposure. In fact, with the exception of the expression levels of the main muscle proteins, which remained unchanged, all the other parameters examined showed alterations that persisted for at least 10 days after the interruption of cocaine exposure. This study shows that even low environmental concentrations of cocaine cause severe damage to the morphology and physiology of the skeletal muscle of the silver eel, confirming the harmful impact of cocaine in the environment that potentially affects the survival of this species. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Effect of Different Levels of Cu, Zn and Mn Nanoparticles in Hen Turkey Diet on the Activity of Aminopeptidases.

    PubMed

    Jóźwik, Artur; Marchewka, Joanna; Strzałkowska, Nina; Horbańczuk, Jarosław Olav; Szumacher-Strabel, Małgorzata; Cieślak, Adam; Lipińska-Palka, Paulina; Józefiak, Damian; Kamińska, Agnieszka; Atanasov, Atanas G

    2018-05-11

    The aim of the study was to estimate the influence of the different levels of Cu, Zn, and Mn nanoparticles on the activity of aminopeptidases in turkey. An experiment was carried out on 144 turkey hen Hybrid Converter. The birds were divided into groups given standard- and nanoparticle-supplementation of different level of copper (Cu 20, 10, 2 mg/kg), zinc (Zn 100, 50, 10 ppm), and manganese (Mn 100, 50, 10 ppm), covering respectively 100%, 50%, and 10% of the physiological demands for those minerals in the diet. The activity of aminopeptidases (alanyl: AlaAP, leucyl: LeuAP and arginyl: ArgAP) after supplementation of minerals was determined in the breast and thigh turkey muscle. The strongest effect of interaction among minerals supplementation form and dose on the activity levels of the aminopeptidases in thigh muscle was observed for nano-Cu already at the lowest dose of 2 mg/kg. In this dose (covering 10% of the birds’ demand) nano form of supplementation significantly increased the activity of Ala-, Leu-, and ArgAP (877, 201, and 719, respectively), compared to standard form of supplementation (461, 90.5, and 576, respectively). In turn, in breast muscle, after supplementation covering 10% of the demand with the nano-Cu, nano-Zn, and nano-Mn compared to the standard form, we did not observe any significant difference in the activity levels of any of the investigated aminopeptidases, except for AlaAP under Zn supplementation. Supplementation with the 20 mg/kg of Nano-Cu (100% of demand) and with 10 mg/kg of Nano-Cu (50% of demand) inhibited the activity of all of the three aminopeptidases in thigh muscle. Supplementation of the minerals in nano form into the diet, especially of Cu and Zn in the dose covering 10% of the demand is relevant to maintain homeostasis in turkey muscles, as indicated by the activity of the aminopeptidases.

  3. Relationship between abdominal and pelvic floor muscle activation and intravaginal pressure during pelvic floor muscle contractions in healthy continent women.

    PubMed

    Madill, Stéphanie J; McLean, Linda

    2006-01-01

    Activation of the abdominal muscles might contribute to the generation of a strong pelvic floor muscle contraction, and consequently may contribute to the continence mechanism in women. The purpose of this study was to determine the abdominal muscle activation levels and the patterns of muscle activity associated with voluntary pelvic floor muscle (PFM) contractions in urinary continent women. Fifteen healthy continent women participated. They performed three maximal contractions of each of the four abdominal muscles and of their PFMs while in supine. Abdominal and PFM activity was recorded using electromyography (EMG), and intravaginal pressure was recorded using a custom modified Femiscan probe. During voluntary maximal PFM contractions, rectus abdominus was activated to 9.61 (+/-7.42)% maximal voluntary electrical activity (MVE), transversus abdominus was activated to 224.30(+/-47.4)% MVE, the external obliques were activated to 18.72(+/-13.33)% MVE, and the internal obliques were activated to 81.47(+/-63.57)% MVE. A clear pattern of activation emerged, whereby the transversus abdominus, internal oblique, and rectus abdominus muscles worked with the PFM in the initial generation of maximal intravaginal pressure. PFM activity predominated in the initial rise in lower vaginal pressure, with later increases in pressure (up to 70% maximum pressure) being associated with the combined activation of the PFM, rectus abdominus, internal obliques, and transverses abdominus. These abdominal muscles were the primary source of intravaginal pressure increases in the latter 30% of the task, whereas there was little increase in PFM activation from this point on. The external oblique muscles showed no clear pattern of activity, but worked at approximately 20% MVE throughout the PFM contractions, suggesting that their role may be predominantly in postural setting prior to the initiation of intravaginal pressure increases. Defined patterns of abdominal muscle activity were found in response to voluntary PFM contractions in healthy continent women. (c) 2006 Wiley-Liss, Inc.

  4. Changes in Locomotor Muscle Activity After Treadmill Training in Subjects With Incomplete Spinal Cord Injury

    PubMed Central

    Gorassini, Monica A.; Norton, Jonathan A.; Nevett-Duchcherer, Jennifer; Roy, Francois D.; Yang, Jaynie F.

    2009-01-01

    Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury. PMID:19073799

  5. The effect of thigh muscle activity on anterior knee laxity in the uninjured and anterior cruciate ligament-injured knee.

    PubMed

    Barcellona, Massimo G; Morrissey, Matthew C; Milligan, Peter; Amis, Andrew A

    2014-11-01

    The main purpose of this study was to describe the nature of the relationship between hamstring muscle activity and anterior knee laxity. This was a cross-sectional study. Anterior knee laxity was measured at 133N and manual maximal forces using the KT2000 knee arthrometer, in 8 ACL-injured and 13 uninjured individuals. Electromyographic activity of the lateral hamstrings was measured during laxity testing. Subjects contracted the hamstrings during anterior knee laxity testing at eight predetermined levels of maximal voluntary isometric contraction. Volitional contraction of the lateral hamstrings reduced anterior knee laxity logarithmically for both the 133N and manual maximal tests in both the ACL-injured and uninjured knees. A simple linear regression model, with the log of percentage of maximum lateral hamstrings activity as the sole predictor, explained approximately 70-80% of the variation in anterior knee laxity. Both ACL-injured and uninjured subjects reduced anterior knee laxity at the same rate with increases in muscle activity. However, initial lateral hamstrings muscle activity had a greater effect on percentage anterior knee laxity scores in the ACL-injured as compared to the uninjured knee. Lateral hamstrings activity reduces anterior knee laxity in a nonlinear manner, whereby the initial lower level of activation produces the greatest change in anterior knee laxity. Therefore, hamstrings muscle activity must be monitored during anterior knee laxity testing.

  6. Patterns of arm muscle activation involved in octopus reaching movements.

    PubMed

    Gutfreund, Y; Flash, T; Fiorito, G; Hochner, B

    1998-08-01

    The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.

  7. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity.

    PubMed

    Richard-Bulteau, Hélène; Serrurier, Bernard; Crassous, Brigitte; Banzet, Sébastien; Peinnequin, André; Bigard, Xavier; Koulmann, Nathalie

    2008-02-01

    The present study was designed to test the hypothesis that increasing physical activity by running exercise could favor the recovery of muscle mass after extensive injury and to determine the main molecular mechanisms involved. Left soleus muscles of female Wistar rats were degenerated by notexin injection before animals were assigned to either a sedentary group or an exercised group. Both regenerating and contralateral intact muscles from active and sedentary rats were removed 5, 7, 14, 21, 28 and 42 days after injury (n = 8 rats/group). Increasing contractile activity through running exercise during muscle regeneration ensured the full recovery of muscle mass and muscle cross-sectional area as soon as 21 days after injury, whereas muscle weight remained lower even 42 days postinjury in sedentary rats. Proliferator cell nuclear antigen and MyoD protein expression went on longer in active rats than in sedentary rats. Myogenin protein expression was higher in active animals than in sedentary animals 21 days postinjury. The Akt-mammalian target of rapamycin (mTOR) pathway was activated early during the regeneration process, with further increases of mTOR phosphorylation and its downstream effectors, eukaryotic initiation factor-4E-binding protein-1 and p70(s6k), in active rats compared with sedentary rats (days 7-14). The exercise-induced increase in mTOR phosphorylation, independently of Akt, was associated with decreased levels of phosphorylated AMP-activated protein kinase. Taken together, these results provided evidence that increasing contractile activity during muscle regeneration ensured early and full recovery of muscle mass and suggested that these beneficial effects may be due to a longer proliferative step of myogenic cells and activation of mTOR signaling, independently of Akt, during the maturation step of muscle regeneration.

  8. Sweating response to passive stretch of the calf muscle during activation of forearm muscle metaboreceptors in heated humans.

    PubMed

    Amano, Tatsuro; Ichinose, Masashi; Nishiyasu, Takeshi; Inoue, Yoshimitsu; Koga, Shunsaku; Miwa, Mikio; Kondo, Narihiko

    2014-05-15

    Activation of muscle metaboreceptors and mechanoreceptors has been shown to independently influence the sweating response, while their integrative control effects remain unclear. We examined the sweating response when the two muscle receptors are concurrently activated in different limbs, as well as the blood pressure response. In total, 27 young males performed passive calf muscle stretches (muscle mechanoreceptor activation) for 30 s in a semisupine position with and without postisometric handgrip exercise muscle ischemia (PEMI, muscle metaboreceptor activation) at exercise intensities of 35 and 50% of maximum voluntary contraction (MVC) under hot conditions (ambient temperature, 35°C, relative humidity, 50%). Passive calf muscle stretching alone increased the mean sweating rate significantly on the forehead, chest, and thigh (SRmean) and mean arterial blood pressure (MAP), but not the heart rate (HR), from prestretching levels by 0.04 ± 0.01 mg·cm(2)·min(-1), 4.0 ± 1.3 mmHg (P < 0.05), and -1.0 ± 0.5 beats/min (P > 0.05), respectively. The SRmean and MAP during PEMI were significantly higher than those at rest. The passive calf muscle stretch during PEMI increased MAP significantly by 3.4 ± 1.0 and 2.0 ± 0.7 mmHg for 35 and 50% of MVC, respectively (P < 0.05), but not that of SRmean or HR at either exercise intensity. These results suggest that sweating and blood pressure responses to concurrent activation of the two muscle receptors in different limbs differ and that the influence of calf muscle mechanoreceptor activation alone on the sweating response disappears during forearm muscle metaboreceptor activation. Copyright © 2014 the American Physiological Society.

  9. C60 fullerene as promising therapeutic agent for correcting and preventing skeletal muscle fatigue.

    PubMed

    Prylutskyy, Yurij I; Vereshchaka, Inna V; Maznychenko, Andriy V; Bulgakova, Nataliya V; Gonchar, Olga O; Kyzyma, Olena A; Ritter, Uwe; Scharff, Peter; Tomiak, Tomasz; Nozdrenko, Dmytro M; Mishchenko, Iryna V; Kostyukov, Alexander I

    2017-01-13

    Bioactive soluble carbon nanostructures, such as the C 60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C 60 fullerene aqueous colloid solution (C 60 FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. During fatigue development, we observed decrease in the muscle effort level before C 60 FAS administration. After the application of C 60 FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C 60 FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. C 60 FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C 60 FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.

  10. Glycogen depletion according to muscle and fibre types in response to dyadic encounters in pigs (Sus scrofa domesticus)--relationships with plasma epinephrine and aggressive behaviour.

    PubMed

    Fernandez, X; Meunier-Salaün, M C; Ecolan, P

    1994-12-01

    Changes in glycogen content according to fibre type were assessed in a predominantly white (Longissimus) and a predominantly red (Semispinalis) pig muscle, in response to dyadic encounters involving aggressive interactions. Tested animals showed significantly lower glycogen levels than the control in the Semispinalis, but not in the Longissimus muscle. Histological treatment of muscle serial cuts followed by computerized image analysis showed that the observed decrease in muscle Semispinalis glycogen level occurred only in fast-twitch fibres. Total glycogen and glycogen contents in fast-twitch fibres of the Semispinalis muscle were closely and negatively related to aggressive behaviour, but not with plasma epinephrine levels during and at the end of the encounters. The present results provide indirect evidences suggesting a major influence of fighting-induced physical activity on muscle glycogen depletion in response to aggressive interactions in pigs.

  11. Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.

    Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used tomore » measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.« less

  12. The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans

    PubMed Central

    Kostas, Stephen A.; Fire, Andrew

    2002-01-01

    We have isolated mutations in a gene mls-1 that is required for proper specification of nonstriated muscle fates in Caenorhabditis elegans. Loss of MLS-1 activity causes uterine muscle precursors to forego their normal fates, instead differentiating as vulval muscles. We have cloned mls-1 and shown that the product is a member of the T-box family of transcriptional regulators. MLS-1 acts as a cell fate determinant in that ectopic expression can transform other cell types to uterine muscle precursors. Uterine muscle patterning is executed by regulation of MLS-1 at several different levels. The mls-1 promoter is activated by the C. elegans orthologs of Twist and Daughterless, but is only active in a subset of the lineage where these two transcription factors are present. mls-1 activity also appears to be regulated by posttranscriptional processes, as expression occurs in both uterine and vulval muscle precursors. PMID:11799068

  13. Modulation of redox regulatory molecules and electron transport chain activity in muscle of air breathing fish Heteropneustes fossilis under air exposure stress.

    PubMed

    Paital, Biswaranjan

    2014-01-01

    Responses of redox regulatory system to long-term survival (>18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 °C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

  14. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology.

    PubMed

    Spencer, Melissa J; Mellgren, Ronald L

    2002-10-01

    Reduced sarcolemmal integrity in dystrophin-deficient muscles of mdx mice and Duchenne muscular dystrophy (DMD) patients has been reported to result in altered calcium homeostasis. Previous studies have shown a correlative relationship between calcium-dependent protease (calpain) activity in dystrophic muscle and muscle necrosis, but have not tested whether calpain activation precedes cell death or is a consequence of it. To test a causal relationship between calpain activation and muscle cell death in dystrophin deficiency, mdx mice were generated that overexpress a calpastatin transgene in muscle. Calpastatin (CS) is a specific, endogenous inhibitor of m- and micro -calpains that does not inhibit calpain 3 (p94). CS overexpression on a C57/BL 10 background produced no phenotype. Transgenic (Tg) mice crossed with mdx mice were tested for pathological indicators of necrosis, regeneration and membrane damage. Two lines of mice were examined, with different levels of CS overexpression. Both lines of Tg/mdx mice showed reductions in muscle necrosis at 4 weeks of age. These mice had fewer as well as smaller lesions. In addition, one line of mice had significantly less regeneration, indicating a reduction in previous necrosis. The extent of improvement correlated with the level of CS protein expression. Membrane damage, as assessed by procion orange and creatine kinase assays, was unchanged, supporting the idea that calpains act downstream of the primary muscle defect. These data suggest that calpains play an active role in necrotic processes in dystrophic muscle and that inhibition of calpains might provide a good therapeutic option for treatment of DMD.

  15. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  16. Calpain activity in fast, slow, transforming, and regenerating skeletal muscles of rat.

    PubMed

    Sultan, K R; Dittrich, B T; Pette, D

    2000-09-01

    Fiber-type transitions in adult skeletal muscle induced by chronic low-frequency stimulation (CLFS) encompass coordinated exchanges of myofibrillar protein isoforms. CLFS-induced elevations in cytosolic Ca(2+) could activate proteases, especially calpains, the major Ca(2+)-regulated cytosolic proteases. Calpain activity determined by a fluorogenic substrate in the presence of unaltered endogenous calpastatin activities increased twofold in low-frequency-stimulated extensor digitorum longus (EDL) muscle, reaching a level intermediate between normal fast- and slow-twitch muscles. micro- and m-calpains were delineated by a calpain-specific zymographical assay that assessed total activities independent of calpastatin and distinguished between native and processed calpains. Contrary to normal EDL, structure-bound, namely myofibrillar and microsomal calpains, were abundant in soleus muscle. However, the fast-to-slow conversion of EDL was accompanied by an early translocation of cytosolic micro-calpain, suggesting that myofibrillar and microsomal micro-calpain was responsible for the twofold increase in activity and thus involved in controlled proteolysis during fiber transformation. This is in contrast to muscle regeneration where m-calpain translocation predominated. Taken together, we suggest that translocation is an important step in the control of calpain activity in skeletal muscle in vivo.

  17. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES – IMPLICATIONS FOR REHABILITATION STRATEGIES

    PubMed Central

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas; Tang, Lars; Zebis, Mette; Nielsen, Kristian

    2016-01-01

    ABSTRACT Background A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. Purpose The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used balance devices (Airex®, BOSU® Ball and wobble board). Design Descriptive exploratory laboratory study. Methods Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using reflective markers and 3-dimensional recordings and expressed as inversion-eversion range of motion variability, peak velocity of inversion and number of inversion-eversion direction changes. Peroneus longus EMG activity was averaged and normalized to maximal activity during maximum voluntary contraction (MVC), and in addition amplitude probability distribution function (APDF) between 90 and 10% was calculated as a measure of muscle activation variability. Results Balancing on BOSU® Ball and wobble board generally resulted in increased ankle kinematic and muscle activity variables, compared to the other surfaces. BOSU® Ball was the most challenging in terms of inversion-eversion variability while wobble board was associated with a higher number of inversion-eversion direction changes. No differences in average muscle activation level were found between these two surfaces, but the BOSU® Ball did show a more variable activation pattern in terms of APDF. Conclusion The results showed large kinematic variability among different balance training devices and these differences are also reflected in muscle activation variability. The two most challenging devices were BOSU® Ball and Wobble board compared to Airex® and floor. This study can serve as guidance for clinicians who wish to implement a gradual progression of ankle rehabilitation and prevention exercises by taking the related ankle kinematics and muscle activity into account. Level of Evidence Level 3 PMID:27274425

  18. Motor modules in robot-aided walking

    PubMed Central

    2012-01-01

    Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators) and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies). In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h) and levels of body weight support (0 to 30%). Results The muscular activity of volunteers could be described by low dimensionality (4 modules), as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns. PMID:23043818

  19. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells.

    PubMed

    Carlson, Morgan E; Hsu, Michael; Conboy, Irina M

    2008-07-24

    Adult skeletal muscle robustly regenerates throughout an organism's life, but as the muscle ages, its ability to repair diminishes and eventually fails. Previous work suggests that the regenerative potential of muscle stem cells (satellite cells) is not triggered in the old muscle because of a decline in Notch activation, and that it can be rejuvenated by forced local activation of Notch. Here we report that, in addition to the loss of Notch activation, old muscle produces excessive transforming growth factor (TGF)-beta (but not myostatin), which induces unusually high levels of TGF-beta pSmad3 in resident satellite cells and interferes with their regenerative capacity. Importantly, endogenous Notch and pSmad3 antagonize each other in the control of satellite-cell proliferation, such that activation of Notch blocks the TGF-beta-dependent upregulation of the cyclin-dependent kinase (CDK) inhibitors p15, p16, p21 and p27, whereas inhibition of Notch induces them. Furthermore, in muscle stem cells, Notch activity determines the binding of pSmad3 to the promoters of these negative regulators of cell-cycle progression. Attenuation of TGF-beta/pSmad3 in old, injured muscle restores regeneration to satellite cells in vivo. Thus a balance between endogenous pSmad3 and active Notch controls the regenerative competence of muscle stem cells, and deregulation of this balance in the old muscle microniche interferes with regeneration.

  20. Evaluation of document location during computer use in terms of neck muscle activity and neck movement.

    PubMed

    Goostrey, Sonya; Treleaven, Julia; Johnston, Venerina

    2014-05-01

    This study evaluated the impact on neck movement and muscle activity of placing documents in three commonly used locations: in-line, flat desktop left of the keyboard and laterally placed level with the computer screen. Neck excursion during three standard head movements between the computer monitor and each document location and neck extensor and upper trapezius muscle activity during a 5 min typing task for each of the document locations was measured in 20 healthy participants. Results indicated that muscle activity and neck flexion were least when documents were placed laterally suggesting it may be the optimal location. The desktop option produced both the greatest neck movement and muscle activity in all muscle groups. The in-line document location required significantly more neck flexion but less lateral flexion and rotation than the laterally placed document. Evaluation of other holders is needed to guide decision making for this commonly used office equipment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation

    PubMed Central

    2016-01-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and “basic” OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H+. The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. PMID:27283913

  2. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    PubMed

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  3. Pumping Iron in Australia: Prevalence, Trends and Sociodemographic Correlates of Muscle Strengthening Activity Participation from a National Sample of 195,926 Adults

    PubMed Central

    Pedisic, Zeljko; van Uffelen, Jannique G. Z.; Charity, Melanie J.; Harvey, Jack T.; Banting, Lauren K.; Vergeer, Ineke; Biddle, Stuart J. H.; Eime, Rochelle M.

    2016-01-01

    Objective The current Australian Physical Activity Guidelines recommend that adults engage in regular muscle-strengthening activity (e.g. strength or resistance training). However, public health surveillance studies describing the patterns and trends of population-level muscle-strengthening activity participation are sparse. The aim of this study is to examine the prevalence, trends and sociodemographic correlates of muscle-strengthening activity participation in a national-representative sample of Australians aged 15 years and over. Methods Between 2001 and 2010, quarterly cross-sectional national telephone surveys were conducted as part of the Australian Sports Commission's 'Exercise, Recreation and Sport Survey'. Pooled population-weighted proportions were calculated for reporting: [i] no muscle-strengthening activity; [ii] insufficient muscle-strengthening activity, and [iii] sufficient muscle-strengthening activity. Associations with sociodemographic variables were assessed using multiple logistic regression analyses. Results Out of 195,926 participants, aged 15–98 years, only 10.4% (95% CI: 10.1–10.7) and 9.3% (95% CI: 9.1–9.5) met the muscle-strengthening activity recommendations in the past two weeks and in the past year, respectively. Older adults (50+ years), and those living in socioeconomically disadvantaged, outer regional/remote areas and with lower education were less likely to report sufficient muscle-strengthening activity (p<0.001). Over the 10-year monitoring period, there was a significant increase in the prevalence of sufficient muscle-strengthening activity (6.4% to 12.0%, p-value for linear trend <0.001). Conclusions A vast majority of Australian adults did not engage in sufficient muscle-strengthening activity. There is a need for public health strategies to support participation in muscle-strengthening activity in this population. Such strategies should target older and lower educated adults, and those living in socioeconomically disadvantaged, outer regional/remote and areas. PMID:27119145

  4. Development and evaluation of a passive trunk support system for Duchenne muscular dystrophy patients.

    PubMed

    Mahmood, Mohammad Nauzef; Peeters, Laura H C; Paalman, Micha; Verkerke, Gijsbertus J; Kingma, Idsart; van Dieën, Jaap H

    2018-03-14

    Patients with Duchenne muscular dystrophy gradually lose the ability to use different muscles of their body. Consequently, they lose the ability to stabilize their trunk against gravity. This hinders them to effectively perform different daily activities. In this paper, we describe the design, realization and evaluation of a trunk orthosis for these patients that should allow them to move their trunk and maintain stability. This study aimed to primarily assess the effectiveness of the trunk support system in terms of unloading of trunk muscles, so only healthy participants were recruited for this phase of the study. Measurements were done on 10 healthy participants (23.4±2.07 [M±SD] years old, average body weight 68.42±24.22 [M±SD] kg). The experiment comprised maintaining a constant trunk posture in three different device conditions (control without orthosis and two conditions with different configurations of the orthosis), at four different flexion angles (10°, 20°, 30°, 40°) for each device condition and for two load conditions (with and without stretching the arms). Electromyography (EMG) signals from the trunk muscles were measured to estimate activation levels of the trunk muscles (iliocostalis, longissimus, external oblique and rectus abdominis) and a motion capture system was used to record the movement of the participants during the experiment. Wearing the orthosis caused reductions in longissimus and iliocostalis activity. The average muscle activity level was 5%-10% of maximum voluntary contraction in the unsupported conditions for those particular muscles. This level was reduced to 3%-9% of maximal voluntary contraction for the supported conditions. No effect on external oblique and rectus abdominis activity was observed. Moreover, no pain or discomfort was reported by any of the participants during the experiment. The results from the current experiment also suggests the necessity of lumber stabilizing systems while using trunk orthosis. The developed orthosis reduces trunk muscle activation level and provides a solid step for further development of support systems for Duchenne muscular dystrophy patients. The current study was approved by the medical ethics committee Arnhem-Nijmegen (study number: NL53143.091.15 ), The Netherlands.

  5. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles

    NASA Astrophysics Data System (ADS)

    Badia, Jordi; Boretius, Tim; Andreu, David; Azevedo-Coste, Christine; Stieglitz, Thomas; Navarro, Xavier

    2011-06-01

    The selection of a suitable nerve electrode for neuroprosthetic applications implies a trade-off between invasiveness and selectivity, wherein the ultimate goal is achieving the highest selectivity for a high number of nerve fascicles by the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME) is intended to be transversally inserted into the peripheral nerve and to be useful to selectively activate subsets of axons in different fascicles within the same nerve. We present a comparative study of TIME, LIFE and multipolar cuff electrodes for the selective stimulation of small nerves. The electrodes were implanted on the rat sciatic nerve, and the activation of gastrocnemius, plantar and tibialis anterior muscles was recorded by EMG signals. Thus, the study allowed us to ascertain the selectivity of stimulation at the interfascicular and also at the intrafascicular level. The results of this study indicate that (1) intrafascicular electrodes (LIFE and TIME) provide excitation circumscribed to the implanted fascicle, whereas extraneural electrodes (cuffs) predominantly excite nerve fascicles located superficially; (2) the minimum threshold for muscle activation with TIME and LIFE was significantly lower than with cuff electrodes; (3) TIME allowed us to selectively activate the three tested muscles when stimulating through different active sites of one device, both at inter- and intrafascicular levels, whereas selective activation using multipolar cuff (with a longitudinal tripolar stimulation configuration) was only possible for two muscles, at the interfascicular level, and LIFE did not activate selectively more than one muscle in the implanted nerve fascicle.

  6. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. An Analysis of Muscle Activities of Healthy Women during Pilates Exercises in a Prone Position.

    PubMed

    Kim, Bo-In; Jung, Ju-Hyeon; Shim, Jemyung; Kwon, Hae-Yeon; Kim, Haroo

    2014-01-01

    [Purpose] This study analyzed the activities of the back and hip muscles during Pilates exercises conducted in a prone position. [Subjects] The subjects were 18 healthy women volunteers who had practiced at a Pilates center for more than three months. [Methods] The subjects performed three Pilates exercises. To examine muscle activity during the exercises, 8-channel surface electromyography (Noraxon USA, Inc., Scottsdale, AZ) was used. The surface electrodes were attached to the bilateral latissimus dorsi muscle, multifidus muscle, gluteus maximus, and semitendinous muscle. Three Pilates back exercises were compared: (1) double leg kick (DLK), (2) swimming (SW), and (3) leg beat (LB). Electrical muscle activation was normalized to maximal voluntary isometric contraction. Repeated measures analysis of variance was performed to assess the differences in activation levels among the exercises. [Results] The activity of the multifidus muscle was significantly high for the SW (52.3±11.0, 50.9±9.8) and LB exercises(51.8±12.8, 48.3±13.9) and the activity of the semitendinosus muscle was higher for the LB exercise (49.2±8.7, 52.9±9.3) than for the DLK and SW exercises. [Conclusion] These results may provide basic material for when Pilates exercises are performed in a prone position and may be useful information on clinical Pilates for rehabilitation programs.

  8. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  9. Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.

    PubMed

    McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J

    2016-02-01

    Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P < 0.05) after warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.

  10. Assessment of the maximum voluntary arm muscle contraction in sign language for the deaf.

    PubMed

    Regalo, S C H; Teixeira, V R; Vitti, M; Chaves, T C; Hallak, J E C; Bevilaqua-Grossi, D; Siriani de Oliveira, A

    2006-01-01

    The purpose of this study was to investigate the levels of upper member muscles' activation of deaf individuals, who use the Brazilian sign language - LIBRAS, comparing these findings to volunteers with no postural deviations and normal hearing Forty eight volunteers divided into two groups comprising healthy and deaf subjects (24 volunteers for each group). The signs of rest were obtained with the volunteer maintaining the upper member in an anatomical position, but with the forearm flexed and sustained by the lower member. Maximum voluntary isometric contractions (MVIC) of the biceps, triceps, deltoid, and trapezius muscles were performed in the position of muscular function testing. Statistical analysis was performed using the SPSS-10.0. Continuous data with normal distribution were analyzed by ANOVA with the significance level of p < 0.01. The normalized electromyographic muscle data obtained in muscular rest do not show statistically significant differences among the studies muscles, in both groups. In the comparison of normalized RMS values obtained in MVIC, the mean values for the trapezius muscle of deaf group were statistically lower than control group. This study's results indicate there are no differences between the levels of muscular activation for arm biceps, arm triceps, and the anterior portion of the deltoid muscle between the mean normalized RMS values of deaf and healthy individuals.

  11. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers.

    PubMed

    Hongsibsong, Surat; Sittitoon, Nalin; Sapbamrer, Ratana

    2017-03-28

    This study aims to determine (1) total dialkylphosphate (ΣDAP) levels, occupational knowledge and practice, DNA damage, AChE activity, and health symptoms in rice, corn, and double-crop farmers; (2) the association of health symptoms with ΣDAP levels, occupational knowledge and practice, DNA damage, and AChE activity in farmers; and (3) the prevalence of health symptoms between farmers and non-farmers. A cross-sectional study was conducted by interviewing as well as analyzing urine and blood samples during July to August 2014. There were no differences in ΣDAP levels, AChE activity, and occupational knowledge and practice scores among all farmer groups. In terms of health symptoms related to ΣDAP, AChE activity, DNA damage, and occupational knowledge and practice, pesticide-related symptoms were determined, including breathlessness, chest pain, dry throat, numbness, muscle weakness, cramp, headache, dizziness, eye irritation, white/red rash, and white/red pimple, which were classified as respiratory, muscle, nervous, and epithelial symptoms. A remarkable finding was that farmers had a significantly higher prevalence of muscle weakness (odds ratio (OR)=3.79) and numbness (OR=3.45) as compared with non-farmers. Our findings, therefore, suggest that a long-term low-level exposure to organophosphates (OPs) may be associated with an increasing prevalence of muscle symptoms. However, a further cohort study incorporating sensitive health outcomes and measurement of multiple pesticides monitoring on a larger scale is warranted.

  12. 11β-Hydroxysteroid dehydrogenase type 1 within muscle protects against the adverse effects of local inflammation.

    PubMed

    Hardy, Rowan S; Doig, Craig L; Hussain, Zahrah; O'Leary, Mary; Morgan, Stuart A; Pearson, Mark J; Naylor, Amy; Jones, Simon W; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Lavery, Gareth G; Cooper, Mark S; Raza, Karim

    2016-12-01

    Muscle wasting is a common feature of inflammatory myopathies. Glucocorticoids (GCs), although effective at suppressing inflammation and inflammatory muscle loss, also cause myopathy with prolonged administration. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bidirectional GC-activating enzyme that is potently upregulated by inflammation within mesenchymal-derived tissues. We assessed the regulation of this enzyme with inflammation in muscle, and examined its functional impact on muscle. The expression of 11β-HSD1 in response to proinflammatory stimuli was determined in a transgenic murine model of chronic inflammation (TNF-Tg) driven by overexpression of tumour necrosis factor (TNF)-α within tissues, including muscle. The inflammatory regulation and functional consequences of 11β-HSD1 expression were examined in primary cultures of human and murine myotubes and human and murine muscle biopsies ex vivo. The contributions of 11β-HSD1 to muscle inflammation and wasting were assessed in vivo with the TNF-Tg mouse on an 11β-HSD1 null background. 11β-HSD1 was significantly upregulated within the tibialis anterior and quadriceps muscles from TNF-Tg mice. In human and murine primary myotubes, 11β-HSD1 expression and activity were significantly increased in response to the proinflammatory cytokine TNF-α (mRNA, 7.6-fold, p < 0.005; activity, 4.1-fold, p < 0.005). Physiologically relevant levels of endogenous GCs activated by 11β-HSD1 suppressed proinflammatory cytokine output (interkeukin-6, TNF-α, and interferon-γ), but had little impact on markers of muscle wasting in human myotube cultures. TNF-Tg mice on an 11β-11β-HSD1 knockout background developed greater muscle wasting than their TNF-Tg counterparts (27.4% less; p < 0.005), with smaller compacted muscle fibres and increased proinflammatory gene expression relative to TNF-Tg mice with normal 11β-HSD1 activity. This study demonstrates that inflammatory stimuli upregulate 11β-HSD1 expression and GC activation within muscle. Although concerns have been raised that excess levels of GCs may be detrimental to muscle, in this inflammatory TNF-α-driven model, local endogenous GC activation appears to be an important anti-inflammatory response that protects against inflammatory muscle wasting in vivo. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  13. Virtual exertions: evoking the sense of exerting forces in virtual reality using gestures and muscle activity.

    PubMed

    Chen, Karen B; Ponto, Kevin; Tredinnick, Ross D; Radwin, Robert G

    2015-06-01

    This study was a proof of concept for virtual exertions, a novel method that involves the use of body tracking and electromyography for grasping and moving projections of objects in virtual reality (VR). The user views objects in his or her hands during rehearsed co-contractions of the same agonist-antagonist muscles normally used for the desired activities to suggest exerting forces. Unlike physical objects, virtual objects are images and lack mass. There is currently no practical physically demanding way to interact with virtual objects to simulate strenuous activities. Eleven participants grasped and lifted similar physical and virtual objects of various weights in an immersive 3-D Cave Automatic Virtual Environment. Muscle activity, localized muscle fatigue, ratings of perceived exertions, and NASA Task Load Index were measured. Additionally, the relationship between levels of immersion (2-D vs. 3-D) was studied. Although the overall magnitude of biceps activity and workload were greater in VR, muscle activity trends and fatigue patterns for varying weights within VR and physical conditions were the same. Perceived exertions for varying weights were not significantly different between VR and physical conditions. Perceived exertion levels and muscle activity patterns corresponded to the assigned virtual loads, which supported the hypothesis that the method evoked the perception of physical exertions and showed that the method was promising. Ultimately this approach may offer opportunities for research and training individuals to perform strenuous activities under potentially safer conditions that mimic situations while seeing their own body and hands relative to the scene. © 2014, Human Factors and Ergonomics Society.

  14. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  15. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.

  16. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI

    PubMed Central

    Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep

    2017-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757

  17. Regulation of extracellular matrix elements and sarcomerogenesis in response to different periods of passive stretching in the soleus muscle of rats.

    PubMed

    Peviani, Sabrina M; Guzzoni, Vinicius; Pinheiro-Dardis, Clara M; Silva, Yara P da; Fioravante, Alisson C R; Sagawa, Adriana H; Delfino, Gabriel B; Durigan, João L Q; Salvini, Tania F

    2018-06-13

    Stretching is a common method used to prevent muscle shortening and improve limited mobility. However, the effect of different time periods on stretching-induced adaptation of the extracellular matrix and its regulatory elements have yet to be investigated. We aimed to evaluate the expression of fibrillar collagens, sarcomerogenesis, metalloproteinase (MMP) activity and gene expression of the extracellular matrix (ECM) regulators in the soleus (SOL) muscle of rats submitted to different stretching periods. The soleus muscles were submitted to 10 sets of passive stretching over 10 (St 10d) or 15 days (St 15d) (1 min per set, with 30 seconds' rest between sets). Sarcomerogenesis, muscle cross-sectional area (CSA), and MMP activity and mRNA levels in collagen (type I, III and IV), connective tissue growth factor (CTGF), growth factor-beta (TGF-β), and lysyl oxidase (LOX) were analyzed. Passive stretching over both time periods mitigated COL-I deposition in the SOL muscle of rats. Paradoxically, 10 days of passive stretching induced COL-I and COL-III synthesis, with concomitant upregulation of TGF-β1 and CTGF at a transcriptional level. These responses may be associated with lower LOX mRNA levels in SOL muscles submitted to 10 passive stretching sessions. Moreover, sarcomerogenesis was observed after 15 days of stretching, suggesting that stretching-induced muscle adaptations are time-dependent responses.

  18. M-Mode Ultrasound Reveals Earlier Gluteus Minimus Activity in Individuals With Chronic Hip Pain During a Step-down Task.

    PubMed

    Dieterich, Angela V; Deshon, Louise; Strauss, Geoffrey R; McKay, Jan; Pickard, Christine M

    2016-04-01

    Controlled laboratory study. The hip abductor muscles are important hip joint stabilizers. Hip joint pain may alter muscle recruitment. Motion-mode (M-mode) ultrasound enables noninvasive measurements of the onset of deep and superficial muscle motion, which is associated with activation onset. To compare (1) the onset of superficial and deep gluteus medius and gluteus minimus muscle motion relative to the instant of peak ground reaction force and (2) the level of swing-phase muscle motion during step-down between subjects with chronic hip pain and controls using M-mode ultrasound. Thirty-five subjects with anterior, nontraumatic hip pain for more than 6 months (mean ± SD age, 54 ± 9 years) and 35 controls (age, 57 ± 7 years) were scanned on the lateral hip of the leading leg during frontal step-down onto a force platform using M-mode ultrasound. Computerized motion detection with the Teager-Kaiser energy operator was applied on the gluteus minimus and the deep and superficial gluteus medius to determine the time lag between muscle motion onset and instant of peak ground reaction force and the level of gluteus minimus motion during the swing phase. Time lags and motion levels were averaged per subject, and t tests were used to determine between-group differences. In participants with hip pain, gluteus minimus motion onset was 103 milliseconds earlier (P = .002) and superficial gluteus medius motion was 70 milliseconds earlier (P = .047) than those in healthy control participants. The level of gluteus minimus swing-phase motion was higher with pain (P = .006). Increased gluteus minimus motion during the swing phase and earlier gluteus minimus and superficial gluteus medius motion in individuals with hip pain suggest an overall increase of muscle activity, possibly a protective behavior.

  19. Electromyographic analyses of the erector spinae muscles during golf swings using four different clubs.

    PubMed

    Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C

    2018-04-01

    The purpose of this study was to compare the electromyography (EMG) patterns of the thoracic and lumbar regions of the erector spinae (ES) muscle during the golf swing whilst using four different golf clubs. Fifteen right-handed male golfers performed a total of twenty swings in random order using the driver, 4-iron, 7-iron and pitching-wedge. Surface EMG was recorded from the lead and trail sides of the thoracic and lumbar regions of the ES muscle (T8, L1 and L5 lateral to the spinous-process). Three-dimensional high-speed video analysis was used to identify the backswing, forward swing, acceleration, early and late follow-through phases of the golf swing. No significant differences in muscle-activation levels from the lead and trail sides of the thoracic and lumbar regions of the ES muscle were displayed between the driver, 4-iron, 7-iron and pitching-wedge (P > 0.05). The highest mean thoracic and lumbar ES muscle-activation levels were displayed in the forward swing (67-99% MVC) and acceleration (83-106% MVC) phases of the swing for all clubs tested. The findings from this study show that there were no significant statistical differences between the driver, 4-iron, 7-iron and pitching-wedge when examining muscle activity from the thoracic and lumbar regions of the ES muscle.

  20. Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy

    2009-07-15

    Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1more » resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.« less

  1. Do Differences in Levels, Types, and Duration of Muscle Contraction Have an Effect on the Degree of Post-exercise Depression?

    PubMed

    Miyaguchi, Shota; Kojima, Sho; Kirimoto, Hikari; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-01-01

    We conducted two experiments to determine how differences in muscle contraction levels, muscle contraction types, and movement duration affect degree of post-exercise depression (PED) after non-exhaustive, repetitive finger movement. Twelve healthy participants performed repetitive abduction movements of the right index finger at 2 Hz. In experiment 1, we examined the effects of muscle contraction levels at 10, 20, and 30% maximum voluntary contraction and the effects of muscle contraction types at isotonic and isometric contraction. In experiment 2, we examined the effects of movement duration at 2 and 6 min. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle before movement tasks and 1-10 min after movement tasks. MEP amplitudes after isotonic contraction tasks were significantly smaller than those after isometric contraction tasks and decreased with increasing contraction levels, but were independent of movement duration. This study demonstrated that the degree of PED after non-exhaustive repetitive finger movement depended on muscle contraction levels and types. Thus, the degree of PED may depend on the levels of activity in the motor cortex during a movement task. This knowledge will aid in the design of rehabilitation protocols.

  2. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation

    PubMed Central

    2013-01-01

    Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory intermediate neurons that are activated by the conditioning SICI stimulus. PMID:23547559

  3. [Skeletal muscles, physical activity and health].

    PubMed

    Saltin, B; Helge, J W

    2000-11-01

    The metabolic capacity of skeletal muscle plays a significant role for insulin sensitivity and the blood lipid profile. The metabolic capacity of the muscle is a function of the individual's physical activity level. This is also true for the content of type IIa muscle fibres, which is reduced, and the number of capillaries, which is elevated with muscle usage. Several of these skeletal muscle features are risk factors for or linked with life-style induced diseases such as type II diabetes, hypertension, hyperlipemia and obesity. The central role of the skeletal muscle and its functional metabolic capacity for life style diseases highlights the importance of people maintaining daily physical activity. This article focuses on the link between the metabolic capacity of skeletal muscle and the metabolic syndrome and briefly discusses the explanations for this relationship. As one important aspect if skeletal muscle has a high capacity for lipid oxidation, then more saturated fatty acids are oxidised and more unsaturated fatty acids are built in the phospholipid fraction of the plasma membrane, giving it more fluidity and improved insulin sensitivity. Moreover, the article points at the role of these fatty acids in activating genes via the PPAR-receptor system essential for enzyme and transport proteins in the lipid metabolism.

  4. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography.

    PubMed

    Hegyi, A; Péter, A; Finni, T; Cronin, N J

    2018-03-01

    Recent studies suggest region-specific metabolic activity in hamstring muscles during injury prevention exercises, but the neural representation of this phenomenon is unknown. The aim of this study was to examine whether regional differences are evident in the activity of biceps femoris long head (BFlh) and semitendinosus (ST) muscles during two common injury prevention exercises. Twelve male participants without a history of hamstring injury performed the Nordic hamstring exercise (NHE) and stiff-leg deadlift (SDL) while BFlh and ST activities were recorded with high-density electromyography (HD-EMG). Normalized activity was calculated from the distal, middle, and proximal regions in the eccentric phase of each exercise. In NHE, ST overall activity was substantially higher than in BFlh (d = 1.06 ± 0.45), compared to trivial differences between muscles in SDL (d = 0.19 ± 0.34). Regional differences were found in NHE for both muscles, with different proximal-distal patterns: The distal region showed the lowest activity level in ST (regional differences, d range = 0.55-1.41) but the highest activity level in BFlh (regional differences, d range = 0.38-1.25). In SDL, regional differences were smaller in both muscles (d range = 0.29-0.67 and 0.16-0.63 in ST and BFlh, respectively) than in NHE. The use of HD-EMG in hamstrings revealed heterogeneous hamstrings activity during typical injury prevention exercises. High-density EMG might be useful in future studies to provide a comprehensive overview of hamstring muscle activity in other exercises and high-injury risk tasks. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles.

    PubMed

    Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2011-12-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.

  6. Application of a Rat Hindlimb Model: A Prediction of Force Spaces Reachable Through Stimulation of Nerve Fascicles

    PubMed Central

    Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.

    2011-01-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999

  7. Cervical vertebral realignment when voluntarily adopting a protective neck posture.

    PubMed

    Newell, Robyn S; Siegmund, Gunter P; Blouin, Jean-Sébastien; Street, John; Cripton, Peter A

    2014-07-01

    In vivo human volunteer study of the intervertebral postural changes and muscle activity levels while tensing the neck muscles. To determine if actively tensing the neck muscles changes the posture of the cervical spine and, because axial impact neck injury often occurs while inverted, whether these changes exist both upright and upside down. Rollover accidents are dynamic and complex events in which head contacts with the vehicle interior can cause catastrophic neck injuries. Computational modeling has suggested that active neck muscles may increase the risk of cervical spine fracture in a rollover crash. Cadaver testing has also demonstrated that overall neck alignment and curvature are key to understanding and preventing catastrophic neck injuries. Although muscle activity and neck posture affects the resulting injury, there are currently no in vivo data describing how tensing the neck muscles influences intervertebral posture. Eleven human subjects (6 females, 5 males) actively tensed their neck muscles while seated upright and inverted. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in 8 neck muscles. On average, tensed muscles increased cervical spine curvature and anterior motion of the cervical vertebrae relative to the torso. These changes, which were magnified by inversion, indicate that cervical intervertebral posture differs considerably between the relaxed and tensed states. Active muscle contraction can change the vertebral alignment in upright and inverted postures. This change in posture may alter the load path and injury mechanics during an axial head impact and may help explain the disparity between the neck injuries observed in real-world rollover accidents and ex vivo cadaver experiments. N/A.

  8. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  9. Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes.

    PubMed

    Monaco, Cynthia M F; Hughes, Meghan C; Ramos, Sofhia V; Varah, Nina E; Lamberz, Christian; Rahman, Fasih A; McGlory, Chris; Tarnopolsky, Mark A; Krause, Matthew P; Laham, Robert; Hawke, Thomas J; Perry, Christopher G R

    2018-06-01

    A comprehensive assessment of skeletal muscle ultrastructure and mitochondrial bioenergetics has not been undertaken in individuals with type 1 diabetes. This study aimed to systematically assess skeletal muscle mitochondrial phenotype in young adults with type 1 diabetes. Physically active, young adults (men and women) with type 1 diabetes (HbA 1c 63.0 ± 16.0 mmol/mol [7.9% ± 1.5%]) and without type 1 diabetes (control), matched for sex, age, BMI and level of physical activity, were recruited (n = 12/group) to undergo vastus lateralis muscle microbiopsies. Mitochondrial respiration (high-resolution respirometry), site-specific mitochondrial H 2 O 2 emission and Ca 2+ retention capacity (CRC) (spectrofluorometry) were assessed using permeabilised myofibre bundles. Electron microscopy and tomography were used to quantify mitochondrial content and investigate muscle ultrastructure. Skeletal muscle microvasculature was assessed by immunofluorescence. Mitochondrial oxidative capacity was significantly lower in participants with type 1 diabetes vs the control group, specifically at Complex II of the electron transport chain, without differences in mitochondrial content between groups. Muscles of those with type 1 diabetes also exhibited increased mitochondrial H 2 O 2 emission at Complex III and decreased CRC relative to control individuals. Electron tomography revealed an increase in the size and number of autophagic remnants in the muscles of participants with type 1 diabetes. Despite this, levels of the autophagic regulatory protein, phosphorylated AMP-activated protein kinase (p-AMPKα Thr172 ), and its downstream targets, phosphorylated Unc-51 like autophagy activating kinase 1 (p-ULK1 Ser555 ) and p62, was similar between groups. In addition, no differences in muscle capillary density or platelet aggregation were observed between the groups. Alterations in mitochondrial ultrastructure and bioenergetics are evident within the skeletal muscle of active young adults with type 1 diabetes. It is yet to be elucidated whether more rigorous exercise may help to prevent skeletal muscle metabolic deficiencies in both active and inactive individuals with type 1 diabetes.

  10. Muscle strength and physical activity are associated with self-rated health in an adult Danish population.

    PubMed

    Hansen, Andreas W; Beyer, Nina; Flensborg-Madsen, Trine; Grønbæk, Morten; Helge, Jørn W

    2013-12-01

    To describe associations of muscle strength, physical activity and self-rated health. Isometric muscle strength by maximal handgrip strength (HGS) or muscle strength by 30s repeated chair stand test (30s-CS) was combined with leisure time physical activity. Using logistic regression odds ratio was calculated for good self-rated health according to the combined associations among 16,539 participants (59.7% women), mean age 51.9 (SD: 13.8) years, from a cross-sectional study in Denmark 2007-2008. Good self-rated health was positively associated with higher levels of physical activity and greater muscle strength. Regarding HGS the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high HGS (OR=6.84, 95% CI: 4.85-9.65 and OR=7.34, 95% CI: 5.42-9.96 for men and women, respectively). Similarly the highest OR for good self-rated health was in the moderate/vigorous physically active participants with high scores in the 30s-CS test (6.06, 95% CI: 4.32-8.50 and 13.38, 95% CI: 9.59-18.67 for men and women, respectively). The reference groups were sedentary participants with low strength (HGS or 30s-CS). The combined score for physical activity level with either HGS or 30s-CS was strongly positively associated with self-related health. © 2013.

  11. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2017-08-01

    We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ELECTROMYOGRAPHIC ASSESSMENT OF MUSCLE ACTIVITY BETWEEN GENDERS DURING UNILATERAL WEIGHT‐BEARING TASKS USING ADJUSTED DISTANCES

    PubMed Central

    Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay

    2012-01-01

    Purpose/Background: Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single‐limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Methods: Twenty men and 20 women who were recreationally active and healthy participated in the study. Two‐dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side‐step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed‐model ANOVA, and ICCs with 95% confidence intervals were calculated. Results: Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC3,3 ranged from moderate to high (0.74 to 0.97) for the three tasks. Conclusions: Muscle activation among the eight muscles was similar between females and males during the lunge, side‐step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus maximus and gluteus medius as compared to the trunk, hip flexors, or hamstring muscles. However these values were well below the recruitment levels necessary for strengthening in both genders. Level of evidence: 4 PMID:23316423

  13. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    PubMed Central

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca’ Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator–activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556

  14. Active and passive characteristics of muscle tone and their relationship to models of subluxation/joint dysfunction

    PubMed Central

    Knutson, Gary A.; Owens, Edward F.

    2003-01-01

    The relationship of muscles to the causes and effects of the pathophysiologic entity referred to as chiropractic subluxation or joint dysfunction is critical. Part I of this paper reviewed the complexities of skeletal muscle in regards to anatomy, active and passive tone, detection of muscle tone, neurophysiology, and how muscle function fits into a variety of subluxation/joint dysfunction models. The concluding part of the review culminates in a hypothesis to describe and explain varying degrees of muscle tone that may be encountered clinically. It is hoped that knowledge of the differing levels of muscle tone and their causes will help the clinician to better determine the underlying cause of a neuromusculoskeletal problem allowing application of necessary and proper intervention.

  15. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene

    2016-01-01

    Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.

  16. Differential Roles for the Thyroarytenoid and Lateral Cricoarytenoid Muscles in Phonation

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen

    2015-01-01

    Objective Laryngeal adductor muscle dysfunction is common cause of voice disorders. Reconstitution of adductor muscle function is often the target of therapy, but the effects of these muscles on voice production remain to be fully understood. This study investigated the differential roles of thyroarytenoid (TA) and lateral cricoarytenoid (LCA) muscles on voice production. Study Design Basic science study using an in vivo canine model of phonation. Methods The TA and LCA muscle nerve branches were stimulated to obtain 7 graded levels of muscle activation, from threshold to maximal contraction. The effects of LCA activation alone, TA activation alone, and combined TA and LCA activation on phonation onset parameters were investigated. Phonatory posture, phonation onset type, fundamental frequency (F0), phonation onset pressure, and airflow were evaluated. Results LCA activation closed the posterior glottis but mid-membranous gap remained. TA activation closed the membranous glottis but posterior gap remained. Complete glottal closure was obtained only with combined TA and LCA activation. Phonation onset with LCAs alone was characterized by multiple modes (soft, aperiodic, periodic), while with TAs alone was abrupt and periodic but had significant baseline noise. Combined muscle activation led to elimination of baseline noise with stable abrupt periodic onset of phonation. Combined muscle activation was also necessary for F0 variation. LCA assisted the TA in increasing subglottal pressure while concurrently reducing phonation onset airflow. Conclusion TA is necessary for F0 variation, stable onset phonation, and increased subglottal pressure but needs LCA for optimal effectiveness and to reduce airflow requirements with increased activation. PMID:26198167

  17. Estimating contraction level using root mean square amplitude in control subjects and patients with neuromuscular disorders.

    PubMed

    Boe, Shaun G; Rice, Charles L; Doherty, Timothy J

    2008-04-01

    To assess the utility of the surface electromyographic signal as a means of estimating the level of muscle force during quantitative electromyography studies by examining the relationship between muscle force and the amplitude of the surface electromyographic activity signal; and to determine the impact of a reduction in the number of motor units on this relationship, through inclusion of a sample of patients with neuromuscular disease. Cross-sectional, cohort study design. Tertiary care, ambulatory, electromyography laboratory. A volunteer, convenience sample of healthy control subjects (n=10), patients with amyotrophic lateral sclerosis (n=9), and patients with Charcot-Marie-Tooth disease type X (n=5). Not applicable. The first dorsal interosseous (FDI) and biceps brachii muscles were examined. Force values (at 10% increments) were calculated from two 4-second maximal voluntary contractions (MVCs). Surface electromyographic activity was recorded during separate 4-second voluntary contractions at 9 force increments (10% -90% of MVC). Additionally, a motor unit number estimate was derived for each subject to quantify the degree of motor unit loss in patients relative to control subjects. The relationships between force and surface electromyographic activity for both muscles (controls and patients) were best fit by a linear function. The variability about the grouped regression lines was quantified by 95% confidence intervals and found to be +/-6.7% (controls) and +/-8.5% (patients) for the FDI and +/-5% (controls) and +/-6.1% (patients) for the biceps brachii. These results suggest that the amplitude of the surface electromyographic activity signal may be used as a means of estimating the level of muscle force during quantitative electromyography studies. Future studies should be directed at examining if the variability associated with these force and surface electromyographic activity relationships is acceptable in replacing previous methods of measuring muscle force.

  18. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  19. Hyperglycemia inhibits recovery from disuse-induced skeletal muscle atrophy in rats.

    PubMed

    Kataoka, H; Nakano, J; Morimoto, Y; Honda, Y; Sakamoto, J; Origuchi, T; Okita, M; Yoshimura, T

    2014-01-01

    The purpose of this study was to evaluate the effects of hyperglycemia on skeletal muscle recovery following disuse-induced muscle atrophy in rats. Wistar rats were grouped as streptozotocin-induced diabetic rats and non-diabetic rats. Both ankle joints of each rat were immobilized to induce atrophy of the gastrocnemius muscles. After two weeks of immobilization and an additional two weeks of recovery, tail blood and gastrocnemius muscles were isolated. Serial cross sections of muscles were stained for myosin ATPase (pH 4.5) and alkaline phosphatase activity. Serum insulin and muscle insulin-like growth factor-1 (IGF-1) levels were also measured. Serum insulin levels were significantly reduced in the diabetic rats compared to the non-diabetic controls. The diameters of type I, IIa, and IIb myofibers and capillary-to-myofiber ratio in the isolated muscle tissue were decreased after immobilization in both treatments. During the recovery period, these parameters were restored in the non-diabetic rats, but not in the diabetic rats. In addition, muscle IGF-1 levels after recovery increased significantly in the non-diabetic rats, but not in the diabetic rats. We conclude that decreased levels of insulin and IGF-1 and impairment of angiogenesis associated with diabetes might be partly responsible for the inhibition of regrowth in diabetic muscle.

  20. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats.

    PubMed

    Luo, Li; Lu, A-Ming; Wang, Yan; Hong, An; Chen, Yulan; Hu, Juan; Li, Xiaoning; Qin, Zheng-Hong

    2013-04-01

    Resistance exercise training (RET) remains the most effective treatment for the loss of muscle mass and strength in elderly people. However, the underlying cellular and molecular mechanisms are not well understood. Recent evidence suggests that autophagic signaling is altered in aged skeletal muscles. This study aimed to investigate if RET affects IGF-1 and its receptors, the Akt/mTOR, and Akt/FOXO3a signaling pathways and regulates autophagy and apoptosis in the gastrocnemius muscles of 18-20 month old rats. The results showed that 9 weeks of RET prevented the loss of muscle mass and improved muscle strength, accompanied by reduced LC3-II/LC3-I ratio, reduced p62 protein levels, and increased levels of autophagy regulatory proteins, including Beclin 1, Atg5/12, Atg7, and the lysosomal enzyme cathepsin L. RET also reduced cytochrome c level in the cytosol but increased its level in mitochondrial fraction, and inhibited cleaved caspase 3 production and apoptosis. Furthermore, RET upregulated the expression of IGF-1 and its receptors but downregulated the phosphorylation of Akt and mTOR. In addition, RET upregulated the expression of total AMPK, phosphorylated AMPK, and FOXO3a. Taken together, these results suggest that the benefits of RET are associated with increased autophagy activity and reduced apoptosis of muscle cells by modulating IGF-1 and its receptors, the Akt/mTOR and Akt/FOXO3a signaling pathways in aged skeletal muscles. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.

  2. The effect of caffeine on skeletal muscle anabolic signaling and hypertrophy.

    PubMed

    Moore, Timothy M; Mortensen, Xavier M; Ashby, Conrad K; Harris, Alexander M; Kump, Karson J; Laird, David W; Adams, Aaron J; Bray, Jeremy K; Chen, Ting; Thomson, David M

    2017-06-01

    Caffeine is a widely consumed stimulant with the potential to enhance physical performance through multiple mechanisms. However, recent in vitro findings have suggested that caffeine may block skeletal muscle anabolic signaling through AMP-activated protein kinase (AMPK)-mediated inhibition of mechanistic target of rapamycin (mTOR) signaling pathway. This could negatively affect protein synthesis and the capacity for muscle growth. The primary purpose of this study was to assess the effect of caffeine on in vivo AMPK and mTOR pathway signaling, protein synthesis, and muscle growth. In cultured C2C12 muscle cells, physiological levels of caffeine failed to impact mTOR activation or myoblast proliferation or differentiation. We found that caffeine administration to mice did not significantly enhance the phosphorylation of AMPK or inhibit signaling proteins downstream of mTOR (p70S6k, S6, or 4EBP1) or protein synthesis after a bout of electrically stimulated contractions. Skeletal muscle-specific knockout of LKB1, the primary AMPK activator in skeletal muscle, on the other hand, eliminated AMPK activation by contractions and enhanced S6k, S6, and 4EBP1 activation before and after contractions. In rats, the addition of caffeine did not affect plantaris hypertrophy induced by the tenotomy of the gastrocnemius and soleus muscles. In conclusion, caffeine administration does not impair skeletal muscle load-induced mTOR signaling, protein synthesis, or muscle hypertrophy.

  3. Electromyographic evaluation of a low-level laser protocol for the treatment of temporomandibular disorder: a randomized, controlled, blind trial

    PubMed Central

    Leal de Godoy, Camila Haddad; Motta, Lara Jansiski; Garcia, Eugenio Jose; Fernandes, Kristianne Porta Santos; Mesquita-Ferrari, Raquel Agnelli; Sfalcin, Ravana Angelini; Motta, Pamella de Barros; Politti, Fabiano; Bussadori, Sandra Kalil

    2017-01-01

    [Purpose] Problems involving the temporomandibular joint and associated structures can lead to temporomandibular disorder (TMD). The aim of the present study was to evaluate muscle activity in individuals with a diagnosis of TMD before and after treatment with low-level laser therapy (LLLT) through the use of electromyography (EMG). [Subjects and Methods] Male and female individuals aged 14 to 23 years were evaluated. TMD was determined by a clinical examination and the administration of the Research Diagnostic Criteria for Temporomandibular Disorders, followed by the evaluation of sensitivity to palpation of the masseter and anterior temporal muscles as well as the EMG determination of muscle activity. The participants were randomly allocated to an active LLLT group (n=9) and sham group (n=7). Twelve sessions of LLLT were conducted using a wavelength of 780 nm, energy density of 25 J/cm2, power of 50 mW, power density of 1.25 W/cm2 and a 20-second exposure time or sham LLLT. Muscle activity was determined prior to treatment and after the last session. [Results] During the isometric evaluation of the masseter and anterior temporal muscles, an increase in the mean EMG signal was found in the group submitted to active LLLT. When evaluated individually, some participants in the active LLLT group demonstrated a reduction in muscle activity, but no significant differences were found in the mean EMG signal between the initial and final evaluations. [Conclusion] Further studies with a larger sample size are needed to confirm the present findings. PMID:29643585

  4. Human skeletal muscle type 1 fibre distribution and response of stress-sensing proteins along the titin molecule after submaximal exhaustive exercise.

    PubMed

    Koskinen, Satu O A; Kyröläinen, Heikki; Flink, Riina; Selänne, Harri P; Gagnon, Sheila S; Ahtiainen, Juha P; Nindl, Bradley C; Lehti, Maarit

    2017-11-01

    Early responses of stress-sensing proteins, muscle LIM protein (MLP), ankyrin repeat proteins (Ankrd1/CARP and Ankrd2/Arpp) and muscle-specific RING finger proteins (MuRF1 and MuRF2), along the titin molecule were investigated in the present experiment after submaximal exhaustive exercise. Ten healthy men performed continuous drop jumping unilaterally on a sledge apparatus with a submaximal height until complete exhaustion. Five stress-sensing proteins were analysed by mRNA measurements from biopsies obtained immediately and 3 h after the exercise from exercised vastus lateralis muscle while control biopsies were obtained from non-exercised legs before the exercise. Decreased maximal jump height and increased serum creatine kinase activities as indirect markers for muscle damage and HSP27 immunostainings on muscle biopsies as a direct marker for muscle damage indicated that the current exercised protocol caused muscle damage. mRNA levels for four (MLP, Ankrd1/CARP, MuRF1 and MuRF2) out of the five studied stress sensors significantly (p < 0.05) increased 3 h after fatiguing exercise. The magnitude of MLP and Ankrd2 responses was related to the proportion of type 1 myofibres. Our data showed that the submaximal exhaustive exercise with subject's own physical fitness level activates titin-based stretch-sensing proteins. These results suggest that both degenerative and regenerative pathways are activated in very early phase after the exercise or probably already during the exercise. Activation of these proteins represents an initial step forward adaptive remodelling of the exercised muscle and may also be involved in the initiation of myofibre repair.

  5. Application of biospeckles for assessment of structural and cellular changes in muscle tissue

    NASA Astrophysics Data System (ADS)

    Maksymenko, Oleksandr P.; Muravsky, Leonid I.; Berezyuk, Mykola I.

    2015-09-01

    A modified spatial-temporal speckle correlation technique for operational assessment of structural changes in muscle tissues after slaughtering is considered. Coefficient of biological activity as a quantitative indicator of structural changes of biochemical processes in biological tissues is proposed. The experimental results have shown that this coefficient properly evaluates the biological activity of pig and chicken muscle tissue samples. Studying the degradation processes in muscle tissue during long-time storage in a refrigerator by measuring the spatial-temporal dynamics of biospeckle patterns is carried out. The reduction of the bioactivity level of refrigerated muscle tissue samples connected with the initiation of muscle fiber cracks and ruptures, reduction of sarcomeres, nuclei deformation, nuclear chromatin diminishing, and destruction of mitochondria is analyzed.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  7. Exposure to sublethal concentrations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard.

    PubMed

    Pretto, Alexandra; Loro, Vania Lucia; Silva, Vera M Machado; Salbego, Joseânia; de Menezes, Charlene Cavalheiro; Souza, Carine de Freitas; Gioda, Carolina Rosa; Baldisserotto, Bernardo

    2014-04-01

    The effects of Cu exposure on catalase (CAT) and acetylcholinesterase (AChE) activity, formation of thiobarbituric acid-reactive species (TBARS) and metabolic parameters were evaluated in silver catfish (Rhamdia quelen). The fish were exposed for 45 days to 0, 16 and 29 μg/L Cu. The fish that were exposed to Cu exhibited lower TBARS levels in the muscle and higher TBARS levels in the liver. They also showed lower CAT activity in the liver and lower AChE activity in the brain and muscle. Higher glucose and lactate and lower protein plasma levels were observed in the fish exposed to Cu. The changes in the hepatic metabolic parameters were Cu concentration dependent. In the muscle, lower glycogen and higher lactate levels were observed in the fish exposed to Cu. Alterations in the metabolic parameters showed a preference for the anaerobic pathway of energy production and liver protein catabolism to supply the energy demand.

  8. Metabolic Maturation during Muscle Stem Cell Differentiation Is Achieved by miR-1/133a-Mediated Inhibition of the Dlk1-Dio3 Mega Gene Cluster.

    PubMed

    Wüst, Stas; Dröse, Stefan; Heidler, Juliana; Wittig, Ilka; Klockner, Ina; Franko, Andras; Bonke, Erik; Günther, Stefan; Gärtner, Ulrich; Boettger, Thomas; Braun, Thomas

    2018-05-01

    Muscle stem cells undergo a dramatic metabolic switch to oxidative phosphorylation during differentiation, which is achieved by massively increased mitochondrial activity. Since expression of the muscle-specific miR-1/133a gene cluster correlates with increased mitochondrial activity during muscle stem cell (MuSC) differentiation, we examined the potential role of miR-1/133a in metabolic maturation of skeletal muscles in mice. We found that miR-1/133a downregulate Mef2A in differentiated myocytes, thereby suppressing the Dlk1-Dio3 gene cluster, which encodes multiple microRNAs inhibiting expression of mitochondrial genes. Loss of miR-1/133a in skeletal muscles or increased Mef2A expression causes continuous high-level expression of the Dlk1-Dio3 gene cluster, compromising mitochondrial function. Failure to terminate the stem cell-like metabolic program characterized by high-level Dlk1-Dio3 gene cluster expression initiates profound changes in muscle physiology, essentially abrogating endurance running. Our results suggest a major role of miR-1/133a in metabolic maturation of skeletal muscles but exclude major functions in muscle development and MuSC maintenance. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  10. Changes in the size and synthetic activity of nuclear populations in chronically stimulated rabbit skeletal muscle.

    PubMed Central

    Joplin, R E; Franchi, L L; Salmons, S

    1987-01-01

    The adaptive response of mammalian fast-twitch skeletal muscle to long-term low-frequency stimulation involves coordinated changes in the expression of a large number of genes and an increase in the synthesis of proteins and nucleic acids. Morphological correlates of these changes were sought in a qualitative and quantitative study of nuclear populations that included autoradiography at both light and electron microscopic levels. Stimulation-induced changes in biosynthetic activity were found to be supported by increases in the numbers of both non-muscle and muscle nuclei, and myonuclear counts were significantly increased in relation to sarcoplasmic volume. Moreover, the chronically stimulated muscle fibres showed ultrastructural signs consistent with mobilisation of transcriptional and translational activity. Images Fig. 2 Fig. 4 (cont.) Fig. 4 Fig. 5 PMID:3503051

  11. Effect of hindlimb immobilization on the fatigability of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1983-01-01

    The effect of 6 weeks of disuse atrophy produced by hindlimb immobilization was studied in situ (33.5 C) in the soleus and extensor digitorum longus muscles of rats. The results indicate that disuse causes preferential alterations in the isometric contractile properties of slow-twitch, as opposed to fast-twitch, skeletal muscles. During continuous contractile activity, atrophied muscles were found to have lower ATP levels and an apparent increase in their dependence on anaerobic metabolism, as reflected by the more extensive depletion of glycogen and enhanced lactate formation. Although the atrophied muscles were determined to have fewer cross bridges and thus generated lower tension, the pattern of decline in active cross-bridge formation and tetanic tension during contractile activity was found to proceed in a manner similar to controls.

  12. Alterations in neuromuscular function in girls with generalized joint hypermobility.

    PubMed

    Jensen, Bente Rona; Sandfeld, Jesper; Melcher, Pia Sandfeld; Johansen, Katrine Lyders; Hendriksen, Peter; Juul-Kristensen, Birgit

    2016-10-03

    Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor adaptation to compensate for hypermobility. Higher medial muscle activation indicated higher levels of medial knee joint compression in girls with GJH. Increased flexion-extension co-activation ratios in GJH were explained by decreased agonist drive to the hamstrings.

  13. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability.

    PubMed

    Huffman, Kim M; Jessee, Ryan; Andonian, Brian; Davis, Brittany N; Narowski, Rachel; Huebner, Janet L; Kraus, Virginia B; McCracken, Julie; Gilmore, Brian F; Tune, K Noelle; Campbell, Milton; Koves, Timothy R; Muoio, Deborah M; Hubal, Monica J; Kraus, William E

    2017-01-23

    To identify molecular alterations in skeletal muscle in rheumatoid arthritis (RA) that may contribute to ongoing disability in RA. Persons with seropositive or erosive RA (n = 51) and control subjects matched for age, gender, race, body mass index (BMI), and physical activity (n = 51) underwent assessment of disease activity, disability, pain, physical activity and thigh muscle biopsies. Muscle tissue was used for measurement of pro-inflammatory markers, transcriptomics, and comprehensive profiling of metabolic intermediates. Groups were compared using mixed models. Bivariate associations were assessed with Spearman correlation. Compared to controls, patients with RA had 75% greater muscle concentrations of IL-6 protein (p = 0.006). In patients with RA, muscle concentrations of inflammatory markers were positively associated (p < 0.05 for all) with disease activity (IL-1β, IL-8), disability (IL-1β, IL-6), pain (IL-1β, TNF-α, toll-like receptor (TLR)-4), and physical inactivity (IL-1β, IL-6). Muscle cytokines were not related to corresponding systemic cytokines. Prominent among the gene sets differentially expressed in muscles in RA versus controls were those involved in skeletal muscle repair processes and glycolytic metabolism. Metabolic profiling revealed 46% higher concentrations of pyruvate in muscle in RA (p < 0.05), and strong positive correlation between levels of amino acids involved in fibrosis (arginine, ornithine, proline, and glycine) and disability (p < 0.05). RA is accompanied by broad-ranging molecular alterations in skeletal muscle. Analysis of inflammatory markers, gene expression, and metabolic intermediates linked disease-related disruptions in muscle inflammatory signaling, remodeling, and metabolic programming to physical inactivity and disability. Thus, skeletal muscle dysfunction might contribute to a viscous cycle of RA disease activity, physical inactivity, and disability.

  14. The influence of acute resistance exercise on cyclooxygenase-1 and -2 activity and protein levels in human skeletal muscle.

    PubMed

    Carroll, Chad C; O'Connor, Devin T; Steinmeyer, Robert; Del Mundo, Jonathon D; McMullan, David R; Whitt, Jamie A; Ramos, Jahir E; Gonzales, Rayna J

    2013-07-01

    This study evaluated the activity and content of cyclooxygenase (COX)-1 and -2 in response to acute resistance exercise (RE) in human skeletal muscle. Previous work suggests that COX-1, but not COX-2, is the primary COX isoform elevated with resistance exercise in human skeletal muscle. COX activity, however, has not been assessed after resistance exercise in humans. It was hypothesized that RE would increase COX-1 but not COX-2 activity. Muscle biopsies were taken from the vastus lateralis of nine young men (25 ± 1 yr) at baseline (preexercise), 4, and 24 h after a single bout of knee extensor RE (three sets of 10 repetitions at 70% of maximum). Tissue lysate was assayed for COX-1 and COX-2 activity. COX-1 and COX-2 protein levels were measured via Western blot analysis. COX-1 activity increased at 4 h (P < 0.05) compared with preexercise, but returned to baseline at 24 h (PRE: 60 ± 10, 4 h: 106 ± 22, 24 h: 72 ± 8 nmol PGH2·g total protein(-1)·min(-1)). COX-2 activity was elevated at 4 and 24 h after RE (P < 0.05, PRE: 51 ± 7, 4 h: 100 ± 19, 24 h: 98 ± 14 nmol PGH2·g total protein(-1)·min(-1)). The protein level of COX-1 was not altered (P > 0.05) with acute RE. In contrast, COX-2 protein levels were nearly 3-fold greater (P > 0.05) at 4 h and 5-fold greater (P = 0.06) at 24 h, compared with preexercise. In conclusion, COX-1 activity increases transiently with exercise independent of COX-1 protein levels. In contrast, both COX-2 activity and protein levels were elevated with exercise, and this elevation persisted to at least 24 h after RE.

  15. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells

    PubMed Central

    GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; HOUSMEKERIDOU, ANASTASIA; KARAPOULIOU, CHRISTINA; KERASIOTI, EFTHALIA; ALIGIANNIS, NEKTARIOS; SKALTSOUNIS, ALEXIOS L; SPANDIDOS, DEMETRIOS A; TSATSAKIS, ARISTIDIS M; KOURETAS, DEMETRIOS

    2015-01-01

    In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074

  16. Muscle Activation Differs Between Partial and Full Back Squat Exercise With External Load Equated.

    PubMed

    da Silva, Josinaldo J; Schoenfeld, Brad J; Marchetti, Priscyla N; Pecoraro, Silvio L; Greve, Julia M D; Marchetti, Paulo H

    2017-06-01

    Changes in range of motion affect the magnitude of the load during the squat exercise and, consequently, may influence muscle activation. The purpose of this study was to evaluate muscle activation between the partial and full back squat exercise with external load equated on a relative basis between conditions. Fifteen young, healthy, resistance-trained men (age: 26 ± 5 years, height: 173 ± 6 cm) performed a back squat at their 10 repetition maximum (10RM) using 2 different ranges of motion (partial and full) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis, vastus medialis, rectus femoris, biceps femoris (BF), semitendinosus, erector spinae, soleus (SL), and gluteus maximus (GM). In general, muscle activity was highest during the partial back squat for GM (p = 0.004), BF (p = 0.009), and SL (p = 0.031) when compared with full-back squat. There was no significant difference for rating of perceived exertion between partial and full back squat exercise at 10RM (8 ± 1 and 9 ± 1, respectively). In conclusion, the range of motion in the back squat alters muscle activation of the prime mover (GM) and stabilizers (SL and BF) when performed with the load equated on a relative basis. Thus, the partial back squat maximizes the level of muscle activation of the GM and associated stabilizer muscles.

  17. [Insight into the training of patients with idiopathic inflammatory myopathy].

    PubMed

    Váncsa, Andrea

    2016-09-01

    Using current recommended treatment, a majority of patients with idiopathic inflammatory myopathy develop muscle impairment and poor health. Beneficial effects of exercise have been reported on muscle performance, aerobic capacity and health in chronic polymyositis and dermatomyositis, as well as in active disease and inclusion body myositis to some extent. Importantly, randomized controlled trials indicate that improved health and decreased clinical disease activity could be mediated through increased aerobic capacity. Recently, reports seeking pathomechanisms of the underlying effects of exercise on skeletal muscle indicate increased aerobic capacity (i.e. increased mitochondrial capacity and capillary density, reduced lactate levels), activation of genes of aerobic phenotype and muscle growth programs and down regulation of genes related to inflammation. Exercise contributes to both systemic and within-muscle adaptations demonstrating that it is fundamental for improving muscle performance and health in patients with idiopathic inflammatory myopathy. There is a need for randomized controlled trials to study the effects of exercise in patients with active disease and inclusion body myositis. Orv. Hetil., 2016, 157(39), 1557-1562.

  18. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age

    PubMed Central

    Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng

    2016-01-01

    The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats. PMID:27076782

  19. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    PubMed

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  20. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat

    PubMed Central

    Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael

    2014-01-01

    Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766

  1. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    PubMed

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Multiple active myofascial trigger points and pressure pain sensitivity maps in the temporalis muscle are related in women with chronic tension type headache.

    PubMed

    Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-01-01

    To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.

  3. Electromyographic analysis of the serratus anterior and trapezius muscles during push-ups on stable and unstable bases in subjects with scapular dyskinesis.

    PubMed

    Pirauá, André Luiz Torres; Pitangui, Ana Carolina Rodarti; Silva, Juliana Pereira; Pereira dos Passos, Muana Hiandra; Alves de Oliveira, Valéria Mayaly; Batista, Laísla da Silva Paixão; Cappato de Araújo, Rodrigo

    2014-10-01

    The present study was performed to assess the electromyographic activity of the scapular muscles during push-ups on a stable and unstable surface, in subjects with scapular dyskinesis. Muscle activation (upper trapezius [UT]; lower trapezius [LT]; upper serratus anterior [SA_5th]; lower serratus anterior [SA_7th]) and ratios (UT/LT; UT/SA_5th; UT/ SA_7th) levels were determined by surface EMG in 30 asymptomatic men with scapular dyskinesis, during push-up performed on a stable and unstable surface. Multivariate analysis of variance with repeated measures was used for statistical analyses. The unstable surface caused a decrease in the EMG activity of the serratus anterior and an increase in EMG activity of the trapezius (p=0.001). UT/SA_5th and UT/ SA_7th ratios were higher during unstable push-ups (p=0.001). The results suggest that, in individuals with scapular dyskinesis, there is increased EMG activity of the trapezius and decreased EMG activity of the serratus anterior in response to an unstable surface. These results suggest that the performance of the push up exercise on an unstable surface may be more favorable to produce higher levels of trapezius activation and lower levels of serratus anterior activation. However, if the goal of the exercise program is the strengthening of the SA muscle, it is suggested to perform the push up on a stable surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Occlusal force, electromyographic activity of masticatory muscles and mandibular flexure of subjects with different facial types

    PubMed Central

    CUSTODIO, William; GOMES, Simone Guimarães Farias; FAOT, Fernanda; GARCIA, Renata Cunha Matheus Rodrigues; DEL BEL CURY, Altair Antoninha

    2011-01-01

    Objective The aim of this study was to evaluate whether vertical facial patterns influence maximal occlusal force (MOF), masticatory muscle electromyographic (EMG) activity, and medial mandibular flexure (MMF). Material and Methods Seventy-eight dentate subjects were divided into 3 groups by Ricketts's analysis: brachyfacial, mesofacial and dolychofacial. Maximum occlusal force in the molar region was bilaterally measured with a force transducer. The electromyographic activities of the masseter and anterior temporal muscles were recorded during maximal voluntary clenching. Medial mandibular flexure was calculated by subtracting the intermolar distance of maximum opening or protrusion from the distance in the rest position. The data were analyzed using ANOVA followed by Tukey's HSD test. The significance level was set at 5%. Results Data on maximum occlusal force showed that shorter faces had higher occlusal forces (P<0.0001). Brachyfacial subjects presented higher levels of masseter electromyographic activity and medial mandibular flexure, followed by the mesofacial and dolychofacial groups. Additionally, dolychofacial subjects showed significantly lower electromyographic temporalis activities (P<0.05). Conclusion Within the limitations of the study, it may be concluded that maximum occlusal force, masticatory muscle activity and medial mandibular flexure were influenced by the vertical facial pattern. PMID:21655772

  5. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  6. Comparative study of DL-selenomethionine vs sodium selenite and seleno-yeast on antioxidant activity and selenium status in laying hens.

    PubMed

    Jing, C L; Dong, X F; Wang, Z M; Liu, S; Tong, J M

    2015-05-01

    The aim of this study was to compare the effect of DL-selenomethionine (SM) with 2 routinely used Se sources, sodium selenite (SS) and seleno-yeast (SY), on relative bioavailability based on antioxidant activity and tissue Se content. Six hundred thirty 131-day-old brown laying hens were randomly assigned to 7 treatments for 168 d (24 wks) with 6 replicates of 15 hens per replicate. The SS and SY animals were supplemented a cornmeal and soybean diet that supplied a total Se 0.3 mg/kg whereas SM was added at 4 different levels to the total Se at 0.1, 0.3, 0.5 and 0.7 mg/kg. All hens fed the Se-supplemented diet showed higher glutathione peroxidase (GSH-Px) activity (P < 0.01), higher superoxide dismutase (SOD) activity (P < 0.05), lower malondialdehyde (MDA) content (P < 0.05) in plasma, and greater Se contents in egg yolks, albumen, leg muscle, breast muscle, liver, and plasma compared with those fed the control diet (P < 0.01). The organic sources (SY and SM) exhibited a greater ability to increase the GSH-Px activity (P < 0.01) and Se content in albumen (P < 0.01), leg, and breast muscles (P = 0.0099 and P = 0.0014, respectively) than the SS that was added at 0.3 mg Se/kg. The higher SM added levels increased the GSH-Px activity until the dose of 0.5mg Se/kg (P < 0.01).The greater Se concentrations in albumen, muscle and liver appeared in the higher SM-added level, as well as above the dose of 0.1 mg Se/kg (P < 0.01). In addition, hens fed the diet with SM accumulated more Se in albumen, leg, and breast muscle than those fed diets with SY (P < 0.05). These results confirmed the higher ability of organic Se sources to increase the antioxidant activity and Se deposition in egg albumen, leg, and breast muscles compared with SS, and demonstrated a significantly better efficiency of SM compared with SY for albumen and muscle Se enrichment. © 2015 Poultry Science Association Inc.

  7. Effect of dietary copper addition on lipid metabolism in rabbits

    PubMed Central

    Lei, Liu; Xiaoyi, Sui; Fuchang, Li

    2017-01-01

    ABSTRACT The present study was conducted to investigate the effect of copper supplementation on lipid metabolism in rabbits. Our study showed dietary copper addition (5-45 mg/kg) increased body mass gain, but decreased fat and liver weights compared with those in the control group (P < 0.05). Copper (45 mg/kg) addition significantly increased the skeletal muscle weight, but inhibited cytoplasmic lipid accumulation in liver, skeletal muscle and adipose tissue (P < 0.05). Compared with the control group, dietary copper addition (45 mg/kg) significantly increased plasma triglyceride levels but decreased very low density lipoprotein levels (P < 0.05). Copper treatment significantly increased gene expression of carnitine palmitoyltransferase (CPT) 1, CPT2 and peroxisome proliferator-activated receptor (PPAR) a in liver (P < 0.05). In skeletal muscle, CPT1, CPT2, fatty acid transport protein, fatty acid-binding protein, and PPARa mRNA as well as phosphorylated AMP-activated protein kinase (AMPK) levels were significantly up-regulated by copper treatment (P < 0.05). Rabbits receiving copper supplementation had higher CPT1, CPT2, PPARa and hormone-sensitive lipase mRNA levels in adipose tissue (P < 0.05). In conclusion, copper promoted skeletal muscle growth and reduced fat accretion. PPARa signaling in liver, skeletal muscle and adipose tissues and AMPK signaling in skeletal muscle tissue were involved in the regulation of lipid metabolism by copper. PMID:28747869

  8. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle

    PubMed Central

    Mobley, Christopher B.; Mumford, Petey W.; Kephart, Wesley C.; Haun, Cody T.; Holland, Angelia M.; Beck, Darren T.; Martin, Jeffrey S.; Young, Kaelin C.; Anderson, Richard G.; Patel, Romil K.; Langston, Gillis L.; Lowery, Ryan P.; Wilson, Jacob M.; Roberts, Michael D.

    2017-01-01

    Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus, atrophy occurs following 12 months of age in male Fisher rats and this may be due to translational deficits (i.e., changes in MPS and ribosome density) and/or increases in proteolysis rather than increased oxidative stress and/or alterations in global transcriptional mechanisms. PMID:28775694

  9. Gravitational force modulates muscle activity during mechanical oscillation of the tibia in humans

    PubMed Central

    Chang, Shuo-Hsiu; Dudley-Javoroski, Shauna; Shields, Richard K.

    2012-01-01

    Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 seconds at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were < 2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia. PMID:21708472

  10. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.

    PubMed

    Kokabu, Shoichiro; Nakatomi, Chihiro; Matsubara, Takuma; Ono, Yusuke; Addison, William N; Lowery, Jonathan W; Urata, Mariko; Hudnall, Aaron M; Hitomi, Suzuro; Nakatomi, Mitsushiro; Sato, Tsuyoshi; Osawa, Kenji; Yoda, Tetsuya; Rosen, Vicki; Jimi, Eijiro

    2017-08-04

    Satellite cells are skeletal muscle stem cells that provide myonuclei for postnatal muscle growth, maintenance, and repair/regeneration in adults. Normally, satellite cells are mitotically quiescent, but they are activated in response to muscle injury, in which case they proliferate extensively and exhibit up-regulated expression of the transcription factor MyoD, a master regulator of myogenesis. MyoD forms a heterodimer with E proteins through their basic helix-loop-helix domain, binds to E boxes in the genome and thereby activates transcription at muscle-specific promoters. The central role of MyoD in muscle differentiation has increased interest in finding potential MyoD regulators. Here we identified transducin-like enhancer of split (TLE3), one of the Groucho/TLE family members, as a regulator of MyoD function during myogenesis. TLE3 was expressed in activated and proliferative satellite cells in which increased TLE3 levels suppressed myogenic differentiation, and, conversely, reduced TLE3 levels promoted myogenesis with a concomitant increase in proliferation. We found that, via its glutamine- and serine/proline-rich domains, TLE3 interferes with MyoD function by disrupting the association between the basic helix-loop-helix domain of MyoD and E proteins. Our findings indicate that TLE3 participates in skeletal muscle homeostasis by dampening satellite cell differentiation via repression of MyoD transcriptional activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    NASA Astrophysics Data System (ADS)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  12. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  13. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning.

    PubMed

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend.

  14. Potential clinical application of surface electromyography as indicator of neuromuscular recovery during weaning tests after organophosphate poisoning

    PubMed Central

    Sánchez, Maria Bernarda Salazar; Valdivieso, Alher Mauricio Hernández; Villanueva, Miguel Ángel Mañanas; Salazar, Andrés Felipe Zuluaga

    2017-01-01

    This study aimed to explore the usefulness of measuring respiratory muscle activity in mechanically ventilated patients suffering from acute organophosphate poisoning, with a view towards providing complementary information to determine the best time to suspend ventilatory support. Surface electromyography in respiratory muscles (diaphragm, external intercostal and sternocleidomastoid muscles) was recorded in a young man affected by self-poisoning with an unknown amount of parathion to determine the muscle activity level during several weaning attempts from mechanical ventilation. The energy distribution of each surface electromyography signal frequency, the synchronization between machine and patient and between muscles, acetylcholinesterase enzyme activity, and work of breathing and rapid shallow breathing indices were calculated in each weaning attempt. The work of breathing and rapid shallow breathing indices were not correlated with the failure/success of the weaning attempt. The diaphragm gradually increased its engagement with ventilation, achieving a maximal response that correlated with successful weaning and maximal acetylcholinesterase enzyme activity; in contrast, the activity of accessory respiratory muscles showed an opposite trend. PMID:28977266

  15. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury

    PubMed Central

    LaBarge, Samuel; McDonald, Marisa; Smith-Powell, Leslie; Auwerx, Johan; Huss, Janice M.

    2014-01-01

    The estrogen-related receptor-α (ERRα) regulates mitochondrial biogenesis and glucose and fatty acid oxidation during differentiation in skeletal myocytes. However, whether ERRα controls metabolic remodeling during skeletal muscle regeneration in vivo is unknown. We characterized the time course of skeletal muscle regeneration in wild-type (M-ERRαWT) and muscle-specific ERRα−/− (M-ERRα−/−) mice after injury by intramuscular cardiotoxin injection. M-ERRα−/− mice exhibited impaired regeneration characterized by smaller myofibers with increased centrally localized nuclei and reduced mitochondrial density and cytochrome oxidase and citrate synthase activities relative to M-ERRαWT. Transcript levels of mitochondrial transcription factor A, nuclear respiratory factor-2a, and peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1β, were downregulated in the M-ERRα−/− muscles at the onset of myogenesis. Furthermore, coincident with delayed myofiber recovery, we observed reduced muscle ATP content (−45% vs. M-ERRαWT) and enhanced AMP-activated protein kinase (AMPK) activation in M-ERRα−/− muscle. We subsequently demonstrated that pharmacologic postinjury AMPK activation was sufficient to delay muscle regeneration in WT mice. AMPK activation induced ERRα transcript expression in M-ERRαWT muscle and in C2C12 myotubes through induction of the Esrra promoter, indicating that ERRα may control gene regulation downstream of the AMPK pathway. Collectively, these results suggest that ERRα deficiency during muscle regeneration impairs recovery of mitochondrial energetic capacity and perturbs AMPK activity, resulting in delayed myofiber repair.—LaBarge, S., McDonald, M., Smith-Powell, L., Auwerx, J., Huss, J. M. Estrogen-related receptor-α (ERRα) deficiency in skeletal muscle impairs regeneration in response to injury. PMID:24277576

  16. The use of electromyography and magnetic resonance imaging to evaluate a core strengthening exercise programme.

    PubMed

    Rutkowska-Kucharska, Alicja; Szpala, Agnieszka

    2018-01-01

    The question that was asked in the study was whether a training routine based on curl-up exercises with a load provided by body mass of the person increases local muscle strength or local muscle endurance. The aim of this study was to evaluate the effect of 4 weeks training based on a small load and low movement velocity on electrical activity (EMG), cross-sectional area (CSA) of core stabilisers. The EMG activity was measured in the rectus abdominis (RA), obliquus abdominis externus and erector spinae (ES) muscles. CSA of the muscles: RA, anterolateral abdominal, psoas major, quadratus lumborum, ES, and multifidus at the level of L3-L4 were measured too. The training increased the CSA and thickness in most of the muscles studied. Statistically significant correlation was found only for the ES circumference (left side) and EMG activity for the right side (r= 0.627, p= 0.022) and left side (r= 0.624, p= 0.023). The training programme resulted in a increase in the number of curl-up repetitions revealing an endurance increase in abdominal muscles. Furthermore, there was a increase in the EMG activity of the RA. An increase of the CSA of all tested muscles showed an increase of muscle active force.

  17. Association of health symptoms with low-level exposure to organophosphates, DNA damage, AChE activity, and occupational knowledge and practice among rice, corn, and double-crop farmers

    PubMed Central

    Hongsibsong, Surat; Sittitoon, Nalin; Sapbamrer, Ratana

    2017-01-01

    Objectives: This study aims to determine (1) total dialkylphosphate (ΣDAP) levels, occupational knowledge and practice, DNA damage, AChE activity, and health symptoms in rice, corn, and double-crop farmers; (2) the association of health symptoms with ΣDAP levels, occupational knowledge and practice, DNA damage, and AChE activity in farmers; and (3) the prevalence of health symptoms between farmers and non-farmers. Methods: A cross-sectional study was conducted by interviewing as well as analyzing urine and blood samples during July to August 2014. Results: There were no differences in ΣDAP levels, AChE activity, and occupational knowledge and practice scores among all farmer groups. In terms of health symptoms related to ΣDAP, AChE activity, DNA damage, and occupational knowledge and practice, pesticide-related symptoms were determined, including breathlessness, chest pain, dry throat, numbness, muscle weakness, cramp, headache, dizziness, eye irritation, white/red rash, and white/red pimple, which were classified as respiratory, muscle, nervous, and epithelial symptoms. A remarkable finding was that farmers had a significantly higher prevalence of muscle weakness (odds ratio (OR)=3.79) and numbness (OR=3.45) as compared with non-farmers. Conclusion: Our findings, therefore, suggest that a long-term low-level exposure to organophosphates (OPs) may be associated with an increasing prevalence of muscle symptoms. However, a further cohort study incorporating sensitive health outcomes and measurement of multiple pesticides monitoring on a larger scale is warranted. PMID:28077823

  18. Evaluation of muscle activity, bite force and salivary cortisol in children with bruxism before and after low level laser applied to acupoints: study protocol for a randomised controlled trial.

    PubMed

    Salgueiro, Mônica da Consolação Canuto; Bortoletto, Carolina Carvalho; Horliana, Anna Carolina RattoTempestini; Mota, Ana Carolina Costa; Motta, Lara Jansiski; Motta, Pamella de Barros; MesquitaFerrari, Raquel Agnelli; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalil

    2017-08-08

    Bruxism is a repetitive activity that causes tooth wear, audible sounds, and discomfort. Preventive measures have been studied for conditions that can exert a negative influence on physiological development in children. Low-level laser therapy administered over acupoints is an effective, painless, low-cost treatment option that has achieved good results. Thus, the aim of the proposed study is to evaluate changes in muscle activity, bite force and salivary cortisol in children with bruxism after the application of low-level laser to accupoints. The children will be randomly allocated to four groups of 19 individuals: G1 - low-level laser; G2 - occlusal splint; G3 - placebo laser; and G4 - control (without bruxism). The BTS TMJOINT electromyography will be used to determine muscle activity and a digital gnathodynamometer will be used to measure bite force. Salivary cortisol will be analysed at baseline as well as one and six months after treatment. Two-way ANOVA will be employed and complemented by Tukey's test. Bruxism is a repetitive activity of the masticatory muscles that can have negative consequences if not treated, such as tooth wear, noises, discomfort and anxiety. Thus, control and treatment measures should be taken. Although low-level laser therapy over acupoints has been indicated for children, the effects of this treatment modality have not yet been studied. NCT02757261 on 8 April 2016. This study protocol received a grant from the Brazilian fostering agency São Paulo Research Foundation (FAPESP: #2015/24731-0).

  19. Matrix Metalloproteinase Inhibitor Batimastat Alleviates Pathology and Improves Skeletal Muscle Function in Dystrophin-Deficient mdx Mice

    PubMed Central

    Kumar, Akhilesh; Bhatnagar, Shephali; Kumar, Ashok

    2010-01-01

    Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, involves severe muscle degeneration, inflammation, fibrosis, and early death in afflicted boys. Matrix metalloproteinases (MMPs) are extracellular proteases that cause tissue degradation in several disease states. In this study, we tested the hypothesis that the expression levels of various MMPs are abnormally increased and that their inhibition will ameliorate muscle pathogenesis in animal models of DMD. Our results show that the transcript levels of several MMPs are significantly up-regulated, whereas tissue inhibitors of MMPs are down-regulated, in dystrophic muscle of mdx mice. Chronic administration of batimastat (BB-94), a broad spectrum peptide inhibitor of MMPs, reduced necrosis, infiltration of macrophages, centronucleated fibers, and the expression of embryonic myosin heavy chain in skeletal muscle of mdx mice. Batimastat also reduced the expression of several inflammatory molecules and augmented the levels of sarcolemmal protein β-dystroglycan and neuronal nitric oxide in mdx mice. In addition, muscle force production in isometric contraction was increased in batimastat-treated mdx mice compared with those treated with vehicle alone. Furthermore, inhibition of MMPs using batimastat reduced the activation of mitogen-activated protein kinases and activator protein-1 in myofibers of mdx mice. Our study provides the novel evidence that the expression of MMPs is atypically increased in DMD, that their inhibition ameliorates pathogenesis, and that batimastat could prove to be a significant candidate for DMD therapy. PMID:20472898

  20. Age-dependent effect of every-other-day feeding and aerobic exercise in ubiquinone levels and related antioxidant activities in mice muscle.

    PubMed

    Rodríguez-Bies, Elizabeth; Navas, Plácido; López-Lluch, Guillermo

    2015-01-01

    Aging affects many biochemical, cellular, and physiological processes in the organisms. Accumulation of damage based on oxidized macromolecules is found in many age-associated diseases. Coenzyme Q (Q) is one of the main molecules involved in metabolic and antioxidant activities in cells. Q-dependent antioxidant activities are importantly involved on the protection of cell membranes against oxidation. Many studies indicate that Q decay in most of the organs during aging. In our study, no changes in Q levels were found in old animals in comparison with young animals. On the other hand, the interventions, caloric restriction based on every-other-day feeding procedure, and physical exercise were able to increase Q levels in muscle, but only in old and not in young animals. Probably, this effect prevented the increase in lipid peroxidation found in aged animals and also protein carbonylation. Further, Q-dependent antioxidant activities such as NADH-cytochrome b5 reductase and NAD(P)H-quinone oxidoreductase 1 are also modulated by both exercise and every other day feeding. Taken together, we demonstrate that exercise and dietary restriction as every-other-day procedure can regulate endogenous synthesized Q levels and Q-dependent antioxidant activities in muscle, preventing oxidative damage in aged muscle. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. On-the-Field Resistance-Tubing Exercises for Throwers: An Electromyographic Analysis

    PubMed Central

    Myers, Joseph B; Pasquale, Maria R; Laudner, Kevin G; Sell, Timothy C; Bradley, James P; Lephart, Scott M

    2005-01-01

    Context: Athletes who throw commonly use rubber-tubing resistance exercises in the field setting to assist with warm-up before throwing. Yet no researchers have described which muscles are being activated or which exercises are most effective during rubber-tubing exercises used by throwers for warm-up. Objective: To describe the effectiveness of 12 rubber-tubing resistance exercises commonly used by throwers in activating the shoulder muscles important for throwing. Design: Descriptive research design. Setting: An applied biomechanics research laboratory. Patients or Other Participants: Fifteen physically active male subjects with no history of shoulder injury. Main Outcome Measure(s): Subjects randomly performed 12 rubber-tubing resistance exercises while we assessed muscle activation of the subscapularis, supraspinatus, teres minor, and rhomboid major by indwelling electromyography. Activation of the sternal portion of the pectoralis major, anterior deltoid, middle deltoid, latissimus dorsi, serratus anterior, biceps brachii, triceps brachii, lower trapezius, and infraspinatus muscles was assessed by surface electromyography. Results: Performance of 7 exercises (external rotation at 90° of abduction, throwing deceleration, humeral flexion, humeral extension, low scapular rows, throwing acceleration, and scapular punch) resulted in the highest level of muscle activation of all muscles tested. Conclusions: These 7 exercises exhibited moderate activation (>20% maximal voluntary isometric contraction) in each muscle of the rotator cuff, the primary humeral movers, and the scapular stabilizer muscles. The results suggest that these exercises are most effective in activating the muscles important to the throwing motion and may be beneficial for throwers during their prethrowing warm-up routine. PMID:15902319

  2. Estimation of skeletal muscle interstitial adenosine during forearm dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Costa, F.; Heusinkveld, J.; Ballog, R.; Davis, S.; Biaggioni, I.

    2000-01-01

    It has been proposed that adenosine is a metabolic signal that triggers activation of muscle afferents involved in the exercise pressor reflex. Furthermore, exogenous adenosine induces sympathetic activation that mimics the exercise pressor reflex, and blockade of adenosine receptors inhibits sympathetic activation induced by exercise. Thus, we hypothesize that adenosine is released locally by the muscle during exercise. We used microdialysis probes, placed in the flexor digitorium superficialis muscle, to estimate muscle interstitial adenosine levels in humans. We estimated resting in vivo muscle interstitial adenosine concentrations (0.292+/-0.058 micromol/L, n=4) by perfusing increasing concentrations of adenosine to determine the gradient produced in the dialysate. Muscle interstitial adenosine concentrations increased from 0.23+/-0.04 to 0.82+/-0.14 micromol/L (n=14, P<0.001) during intermittent dynamic exercise at 50% of maximal voluntary contraction. Lactate increased from 0.8+/-0.1 to 2.3+/-0.3 mmol/L (P<0.001). Lower intensity (15% maximal voluntary contraction) intermittent dynamic exercise increased adenosine concentrations from 0.104+/-0.02 to 0.42+/-0.16 micromol/L (n=7). The addition of ischemia to this low level of exercise produced a greater increase in adenosine (from 0.095+/-0.02 to 0.48+/-0.2 micromol/L) compared with nonischemic exercise (0. 095+/-0.02 to 0.25+/-0.12 micromol/L). These results indicate that microdialysis is useful in estimating adenosine concentrations and in reflecting changes in muscle interstitial adenosine during dynamic exercise in humans.

  3. Effect of the Abdominal Hollowing and Bracing Maneuvers on Activity Pattern of the Lumbopelvic Muscles During Prone Hip Extension in Subjects With or Without Chronic Low Back Pain: A Preliminary Study.

    PubMed

    Kahlaee, Amir H; Ghamkhar, Leila; Arab, Amir M

    2017-02-01

    The purpose of this study was to compare the effect of abdominal hollowing (AH) and abdominal bracing (AB) maneuvers on the activity pattern of lumbopelvic muscles during prone hip extension (PHE) in participants with or without nonspecific chronic low back pain (CLBP). Twenty women with or without CLBP participated in this cross-sectional observational study. The electromyographic activity (amplitude and onset time) of the contralateral erector spinae (CES), ipsilateral erector spinae (IES), gluteus maximus, and biceps femoris muscles was measured during PHE with and without abdominal maneuvers. A 3-way mixed model analysis of variance and post hoc tests were used for statistical analysis. Between-group comparisons showed that the CES onset delay during PHE alone was greater (P = .03) and the activity level of IES, CES, and biceps femoris in all maneuvers (P < .05) was higher in patients with CLBP than in asymptomatic participants. In asymptomatic participants, PHE + AH significantly decreased the signal amplitude (AMP) of IES (P = .01) and CES (P = .02) muscles. In participants with CLBP, IES muscle AMP was lower during PHE + AH compared with PHE + AB and PHE alone. With regard to onset delay, the results also showed no significant difference between maneuvers within either of the 2 groups (P > .05). Performance of the AH maneuver decreased the erector spinae muscle AMP in both groups, and neither maneuver altered the onset delay of any of the muscles in either group. The low back pain group showed higher levels of activity in all muscles (not statistically significant in gluteus maximus during all maneuvers). The groups were similar according to the onset delay of any of the muscles during either maneuver. Copyright © 2016. Published by Elsevier Inc.

  4. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of instruction, surface stability, and load intensity on trunk muscle activity.

    PubMed

    Bressel, Eadric; Willardson, Jeffrey M; Thompson, Brennan; Fontana, Fabio E

    2009-12-01

    The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39-167%) during squats with instructions compared to the other squat conditions (P=0.04-0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P=0.04-0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.

  6. Voluntary running, skeletal muscle gene expression, and signaling inversely regulated by orchidectomy and testosterone replacement.

    PubMed

    Ibebunjo, Chikwendu; Eash, John K; Li, Christine; Ma, QiCheng; Glass, David J

    2011-02-01

    Declines in skeletal muscle size and strength, often seen with chronic wasting diseases, prolonged or high-dose glucocorticoid therapy, and the natural aging process in mammals, are usually associated with reduced physical activity and testosterone levels. However, it is not clear whether the decline in testosterone and activity are causally related. Using a mouse model, we found that removal of endogenous testosterone by orchidectomy results in an almost complete cessation in voluntary wheel running but only a small decline in muscle mass. Testosterone replacement restored running behavior and muscle mass to normal levels. Orchidectomy also suppressed the IGF-I/Akt pathway, activated the atrophy-inducing E3 ligases MuRF1 and MAFBx, and suppressed several energy metabolism pathways, and all of these effects were reversed by testosterone replacement. The study also delineated a distinct, previously unidentified set of genes that is inversely regulated by orchidectomy and testosterone treatment. These data demonstrate the necessity of testosterone for both speed and endurance of voluntary wheel running in mice and suggest a potential mechanism for declined activity in humans where androgens are deficient.

  7. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    PubMed

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  8. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration

    PubMed Central

    2013-01-01

    Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977

  9. Morpho-functional implications of myofascial stretching applied to muscle chains: A case study.

    PubMed

    Raţ, Bogdan Constantin; Raţă, Marinela; Antohe, Bogdan

    2018-03-16

    Most lesions of the soft tissues, especially those at the muscle level, are due to the lack of elasticity of the connective tissue and fascia. Stretching is one of the most commonly used methods of treatment for such musculoskeletal issues. This study tracks the effects of stretching on the electromyographic activity of muscle chains, applied to a 24-year-old athlete diagnosed with the Haglund's disease. For the evaluation, we used visual examination and surface electromyography (maximum volumetric isometric contraction). The therapeutic intervention consisted in the application of the static stretching positions, which intended the elongation of the shortened muscle chains. The treatment program had a duration of 2 months, with a frequency of 2 sessions per week and an average duration of 60 minutes. The posterior muscle chains recorded an increase in the EMG activity, while the anterior muscle chains tended to diminish their EMG activity. As a result of the applied treatment, all the evaluated muscle chains recorded a rebalancing of the electromyographic activity, demonstrating the efficiency of stretching as a method of global treatment of muscle chains. By analysing all the data, we have come to the conclusion that static stretching is an effective treatment method for shortened muscle chains.

  10. Temporal patterns of the trunk muscles remain altered in a low back-injured population despite subjective reports of recovery.

    PubMed

    Moreside, Janice M; Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-04-01

    To compare temporal activation patterns from 24 abdominal and lumbar muscles between healthy subjects and those who reported recovery from recent low back injury (LBI). Cross-sectional comparative study. University neuromuscular function laboratory. Healthy adult volunteers (N=81; 30 LBI, 51 asymptomatic subjects). Trunk muscle electromyographic activity was collected during 2 difficulty levels of a supine trunk stability test aimed at challenging lumbopelvic control. Principal component (PC) analysis was applied to determine differences in temporal and/or amplitude electromyographic patterns between groups. Mixed-model analyses of variance were performed on PC scores that explained more than 89% of the variance (α=.05). Four PCs explained 89% and 96% of the variance for the abdominal and back muscles, respectively, with both muscle groups having similar shapes in the first 3 PCs. Significant interactions or group main effects were found for all PC scores except PC4 for the back extensors. Overall activation amplitudes for both the abdominal and back muscles (PC1 scores) were significantly (P<.05) higher for the LBI group, with both abdominal and back muscles of the LBI group demonstrating an increased response to the leg-loading phase (PC2 scores) compared with the asymptomatic group. Differences were also found between groups in their preparatory activity (PC3 scores), with the LBI group having a higher early relative amplitude of abdominal and back extensor activity. Despite perceived readiness to return to work and low pain scores, muscle activation patterns remained altered in this LBI group, including reduced synergistic coactivation and increased overall amplitudes as well as greater relative amplitude differences during specific phases of the movement. Electromyographic measures provide objective information to help guide therapy and may assist with determining the level of healing and return-to-work readiness after an LBI. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Influence of smartphone use styles on typing performance and biomechanical exposure.

    PubMed

    Ko, Ping-Hsin; Hwang, Yaw-Huei; Liang, Huey-Wen

    2016-06-01

    Twenty-seven subjects completed 2-min typing tasks using four typing styles: right-hand holding/typing (S-thumb) and two-hand typing at three heights (B-low, B-mid and B-high). The styles had significant effects on typing performance, neck and elbow flexion and muscle activities of the right trapezius and several muscles of the right upper limb (p < 0.0001 by repeated-measure analysis of variance). The subjects typed the fewest words (error-adjusted characters per minute: 78) with the S-thumb style. S-thumb style resulted in similar flexion angles of the neck, elbow and wrist, but significantly increased muscle activities in all tested muscles compared with the B-mid style. Holding the phone high or low reduced the flexion angles of the neck and right elbow compared with the B-mid style, but the former styles increased the muscle activity of the right trapezius. Right-hand holding/typing was not a preferable posture due to high muscle activities and slow typing speed. Practitioner Summary: Right-hand holding/typing was not favoured, due to increased muscle activities and slower typing speed. Holding the phone high or low reduced the flexion angles of the neck and right elbow, but the former styles increased the muscle activity of the right trapezius compared with holding the phone at chest level.

  12. EMG analysis tuned for determining the timing and level of activation in different motor units

    PubMed Central

    Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2011-01-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317

  13. Stereotypic Laryngeal and Respiratory Motor Patterns Generate Different Call Types in Rat Ultrasound Vocalization

    PubMed Central

    RIEDE, TOBIAS

    2014-01-01

    Rodents produce highly variable ultrasound whistles as communication signals unlike many other mammals, who employ flow-induced vocal fold oscillations to produce sound. The role of larynx muscles in controlling sound features across different call types in ultrasound vocalization (USV) was investigated using laryngeal muscle electromyographic (EMG) activity, subglottal pressure measurements and vocal sound output in awake and spontaneously behaving Sprague–Dawley rats. Results support the hypothesis that glottal shape determines fundamental frequency. EMG activities of thyroarytenoid and cricothyroid muscles were aligned with call duration. EMG intensity increased with fundamental frequency. Phasic activities of both muscles were aligned with fast changing fundamental frequency contours, for example in trills. Activities of the sternothyroid and sternohyoid muscles, two muscles involved in vocal production in other mammals, are not critical for the production of rat USV. To test how stereotypic laryngeal and respiratory activity are across call types and individuals, sets of ten EMG and subglottal pressure parameters were measured in six different call types from six rats. Using discriminant function analysis, on average 80% of parameter sets were correctly assigned to their respective call type. This was significantly higher than the chance level. Since fundamental frequency features of USV are tightly associated with stereotypic activity of intrinsic laryngeal muscles and muscles contributing to build-up of subglottal pressure, USV provide insight into the neurophysiological control of peripheral vocal motor patterns. PMID:23423862

  14. EMG analysis tuned for determining the timing and level of activation in different motor units.

    PubMed

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. A comparison of muscular activity during single and double mouse clicks.

    PubMed

    Thorn, Stefan; Forsman, Mikael; Hallbeck, Susan

    2005-05-01

    Work-related musculoskeletal disorders (WMSDs) in the neck/shoulder region and the upper extremities are a common problem among computer workers. Occurrences of motor unit (MU) double discharges with very short inter-firing intervals (doublets) have been hypothesised as a potential additional risk for overuse of already exhausted fibres during long-term stereotyped activity. Doublets are reported to be present during double-click mouse work tasks. A few comparative studies have been carried out on overall muscle activities for short-term tasks with single types of actions, but none on occurrences of doublets during double versus single clicks. The main purpose of this study was to compare muscle activity levels of single and double mouse clicks during a long-term combined mouse/keyboard work task. Four muscles were studied: left and right upper trapezius, right extensor digitorum communis (EDC) and right flexor carpi ulnaris. Additionally, MU activity was analysed through intramuscular electromyography in the EDC muscle for a selection of subjects. The results indicate that double clicking produces neither higher median or 90th percentile levels in the trapezius and EDC muscles, nor a higher disposition for MU doublets, than does single clicking. Especially for the 90th percentile levels, the indications are rather the opposite (in the EDC significantly higher during single clicks in 8 of 11 subjects, P < 0.05). Although it cannot be concluded from the present study that double clicks are harmless, there were no signs that double clicks during computer work generally constitute a larger risk factor for WMSDs than do single clicks.

  16. Physical Exercise as Therapy for Frailty.

    PubMed

    Aguirre, Lina E; Villareal, Dennis T

    2015-01-01

    Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.

  17. Analysis of fiber-type differences in reporter gene expression of β-gal transgenic muscle.

    PubMed

    Tai, Phillip W L; Smith, Catherine L; Angello, John C; Hauschka, Stephen D

    2012-01-01

    β-galactosidase (β-gal) is among the most frequently used markers for studying a wide variety of biological mechanisms, e.g., gene expression, cell migration, stem cell conversion to different cell types, and gene silencing. Many of these studies require the histochemical detection of relative β-gal levels in tissue cross-sections mounted onto glass slides and visualized by microscopy. This is particularly useful for the analysis of promoter activity in skeletal muscle tissue since the β-gal levels can vary dramatically between different anatomical muscles and myofiber types. The differences in promoter activity can be due to a myofiber's developmental history, innervation, response to normal or experimental physiological signals, and its disease state. It is thus important to identify the individual fiber types within muscle cross-sections and to correlate these with transgene expression signals. Here, we provide a detailed description of how to process and analyze muscle tissues to determine the fiber-type composition and β-gal transgene expression within cryosections.

  18. A peripheral governor regulates muscle contraction.

    PubMed

    MacIntosh, Brian R; Shahi, M Reza S

    2011-02-01

    Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.

  19. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle.

    PubMed

    Gonçalves, Dawit A P; Lira, Eduardo C; Baviera, Amanda M; Cao, Peirang; Zanon, Neusa M; Arany, Zoltan; Bedard, Nathalie; Tanksale, Preeti; Wing, Simon S; Lecker, Stewart H; Kettelhut, Isis C; Navegantes, Luiz C C

    2009-12-01

    Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.

  20. Quantitative evaluation of muscle relaxation induced by Kundalini yoga with the help of EMG integrator.

    PubMed

    Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A

    1990-10-01

    The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.

  1. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  2. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions

    PubMed Central

    Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A.; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy

    2010-01-01

    NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise. PMID:20739506

  3. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions.

    PubMed

    Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy; Musi, Nicolas

    2010-11-01

    NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise.

  4. Muscle-strengthening and aerobic activities and mortality among 3+ year cancer survivors in the U.S.

    PubMed

    Tarasenko, Yelena N; Linder, Daniel F; Miller, Eric A

    2018-05-01

    This study examined the association between adherence to American College of Sports Medicine and American Cancer Society guidelines on aerobic and muscle-strengthening activities and mortality risks among 3+ year cancer survivors in the U.S. The observational study was based on 1999-2009 National Health Interview Survey Linked Mortality Files with follow-up through 2011. After applying exclusion criteria, there were 13,997 observations. The hazard ratios (HRs) for meeting recommendations on muscle-strengthening activities only, on aerobic activities only, and on both types of physical activity (i.e., adhering to complete guidelines) were calculated using a reference group of cancer survivors engaging in neither. Unadjusted and adjusted HRs of all-cause, cancer-specific, and cardiovascular disease-specific mortalities were estimated using Cox proportional hazards models. In all models, compared to the reference group, cancer survivors adhering to complete guidelines had significantly decreased all-cause, cancer-specific, and cardiovascular disease-specific mortalities (HRs ranged from 0.37 to 0.64, p's < 0.05). There were no statistically significant differences between hazard rates of cancer survivors engaging in recommended levels of muscle-strengthening activities only and the reference group (HRs ranged from 0.76 to 0.94, p's > 0.05). Wald test statistics suggested a significant dose-response relationship between levels of adherence to complete guidelines and cancer-specific mortality. While muscle-strengthening activities by themselves do not appear to reduce mortality risks, such activities may provide added cancer-specific survival benefits to 3+ year cancer survivors who are already aerobically active.

  5. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity

    NASA Technical Reports Server (NTRS)

    Bey, Lionel; Akunuri, Nagabhavani; Zhao, Po; Hoffman, Eric P.; Hamilton, Deborah G.; Hamilton, Marc T.

    2003-01-01

    Physical inactivity and unloading lead to diverse skeletal muscle alterations. Our goal was to identify the genes in skeletal muscle whose expression is most sensitive to periods of unloading/reduced physical activity and that may be involved in triggering initial responses before phenotypic changes are evident. The ability of short periods of physical activity/loading as an effective countermeasure against changes in gene expression mediated by inactivity was also tested. Affymetrix microarrays were used to compare mRNA levels in the soleus muscle under three experimental treatments (n = 20-29 rats each): 12-h hindlimb unloading (HU), 12-h HU followed by 4 h of intermittent low-intensity ambulatory and postural activity (4-h reloading), and control (with ambulatory and postural activity). Using a combination of criteria, we identified a small set of genes (approximately 1% of 8,738 genes on the array or 4% of significant expressed genes) with the most reproducible and largest responses to altered activity. Analysis revealed a coordinated regulation of transcription for a large number of key signaling proteins and transcription factors involved in protein synthesis/degradation and energy metabolism. Most (21 of 25) of the gene expression changes that were downregulated during HU returned at least to control levels during the reloading. In surprising contrast, 27 of 38 of the genes upregulated during HU remained significantly above control, but most showed trends toward reversal. This introduces a new concept that, in general, genes that are upregulated during unloading/inactivity will be more resistant to periodic reloading than those genes that are downregulated. This study reveals genes that are the most sensitive to loading/activity in rat skeletal muscle and indicates new targets that may initiate muscle alterations during inactivity.

  6. The initial effects of a sustained glenohumeral postero-lateral glide during elevation on shoulder muscle activity: A repeated measures study on asymptomatic shoulders.

    PubMed

    Ribeiro, Daniel Cury; de Castro, Marcelo Peduzzi; Sole, Gisela; Vicenzino, Bill

    2016-04-01

    Manual therapy enhances pain-free range of motion and reduces pain levels, but its effect on shoulder muscle activity is unclear. This study aimed to assess the effects of a sustained glenohumeral postero-lateral glide during elevation on shoulder muscle activity. Thirty asymptomatic individuals participated in a repeated measures study of the electromyographic activity of the supraspinatus, infraspinatus, posterior deltoid, and middle deltoid. Participants performed four sets of 10 repetitions of shoulder scaption and abduction with and without a glide of the glenohumeral joint. Repeated-measures multivariate analysis of variance (MANOVA) was used to assess the effects of movement direction (scaption and abduction), and condition (with and without glide) (within-subject factors) on activity level of each muscle (dependent variables). Significant MANOVAs were followed-up with repeated-measures one-way analysis of variance. During shoulder scaption with glide, the supraspinatus showed a reduction of 4.1% maximal isometric voluntary contraction (MVIC) (95% CI 2.4, 5.8); and infraspinatus 1.3% MVIC (95% CI 0.5, 2.1). During shoulder abduction with a glide, supraspinatus presented a reduction of 2.5% MVIC (95% CI 1.1, 4.0), infraspinatus 2.1% MVIC (95% CI 1.0, 3.2), middle deltoid 2.2% MVIC (95% CI = 0.4, 4.1), posterior deltoid 2.1% MVIC (95% CI 1.3, 2.8). In asymptomatic individuals, sustained glide reduced shoulder muscle activity compared to control conditions. This might be useful in enhancing shoulder movement in clinical populations. Reductions in muscle activity might result from altered joint mechanics, including simply helping to lift the arm, and/or through changing afferent sensory input about the shoulder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  8. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production.

    PubMed

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J; Dekemp, Robert A; Harper, Mary-Ellen

    2013-08-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat.

  9. Mitochondrial uncoupling in skeletal muscle by UCP1 augments energy expenditure and glutathione content while mitigating ROS production

    PubMed Central

    Adjeitey, Cyril Nii-Klu; Mailloux, Ryan J.; deKemp, Robert A.

    2013-01-01

    Enhancement of proton leaks in muscle tissue represents a potential target for obesity treatment. In this study, we examined the bioenergetic and physiological implications of increased proton leak in skeletal muscle. To induce muscle-specific increases in proton leak, we used mice that selectively express uncoupling protein-1 (UCP1) in skeletal muscle tissue. UCP1 expression in muscle mitochondria was ∼13% of levels in brown adipose tissue (BAT) mitochondria and caused increased GDP-sensitive proton leak. This was associated with an increase in whole body energy expenditure and a decrease in white adipose tissue content. Muscle UCP1 activity had divergent effects on mitochondrial ROS emission and glutathione levels compared with BAT. UCP1 in muscle increased total mitochondrial glutathione levels ∼7.6 fold. Intriguingly, unlike in BAT mitochondria, leak through UCP1 in muscle controlled mitochondrial ROS emission. Inhibition of UCP1 with GDP in muscle mitochondria increased ROS emission ∼2.8-fold relative to WT muscle mitochondria. GDP had no impact on ROS emission from BAT mitochondria from either genotype. Collectively, these findings indicate that selective induction of UCP1-mediated proton leak in muscle can increase whole body energy expenditure and decrease adiposity. Moreover, ectopic UCP1 expression in skeletal muscle can control mitochondrial ROS emission, while it apparently plays no such role in its endogenous tissue, brown fat. PMID:23757405

  10. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    PubMed

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Activation of Neck and Low-Back Muscles Is Reduced with the Use of a Neck Balance System Together with a Lumbar Support in Urban Drivers.

    PubMed

    Menotti, Federica; Labanca, Luciana; Laudani, Luca; Giombini, Arrigo; Pigozzi, Fabio; Macaluso, Andrea

    2015-01-01

    Driving is associated with high activation of low-back and neck muscles due to the sitting position and perturbations imposed by the vehicle. The aim of this study was to investigate the use of a neck balance system together with a lumbar support on the activation of low-back and neck muscles during driving. Twelve healthy male subjects (age 32±6.71 years) were asked to drive in two conditions: 1) with devices; 2) without devices. During vehicle accelerations and decelerations root mean square (RMS) of surface electromyography (sEMG) was recorded from the erector spinae, semispinalis capitis and sternocleidomastoid muscles and expressed as a percentage of maximal voluntary contraction (MVC). The pitch of the head was obtained by means of an inertial sensor placed on the subjects' head. A visual analog scale (VAS) was used to assess the level of perceived comfort. RMS of the low back muscles was lower with than without devices during both acceleration and deceleration of the vehicle (1.40±0.93% vs 29 2.32±1.90% and 1.88±1.45% vs 2.91±2.33%, respectively), while RMS of neck extensor muscles was reduced only during acceleration (5.18±1.96% vs 5.91±2.16%). There were no differences between the two conditions in RMS of neck flexor muscles, the pitch of the head and the VAS score. The use of these two ergonomic devices is therefore effective in reducing the activation of low-back and neck muscles during driving with no changes in the level of perceived comfort, which is likely due to rebalancing weight on the neck and giving a neutral position to lumbar segments.

  12. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele.

    PubMed

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D

    2012-12-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2-10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Changes in muscle activation patterns in response to enhanced sensory input during treadmill stepping in infants born with myelomeningocele

    PubMed Central

    Pantall, Annette; Teulier, Caroline; Ulrich, Beverly D.

    2013-01-01

    Infants with myelomeningocele (MMC) increase step frequency in response to modifications to the treadmill surface. The aim was to investigate how these modifications impacted the electromyographic (EMG) patterns. We analyzed EMG from 19 infants aged 2–10 months, with MMC at the lumbosacral level. We supported infants upright on the treadmill for 12 trials, each 30 seconds long. Modifications included visual flow, unloading, weights, Velcro and lcriction. Surface electrodes recorded EMG from tibialis anterior, lateral gastrocnemius, rectus femoris and biceps femoris. We determined muscle bursts for each stride cycle and from these calculated various parameters. Results indicated that each of the five sensory conditions generated different motor patterns. Visual flow and friction which we previously reported increased step frequency impacted lateral gastrocnemius most. Weights, which significantly decreased step frequency increased burst duration and co-activity of the proximal muscles. We also observed an age effect, with all conditions increasing muscle activity in younger infants whereas in older infants visual flow and unloading stimulated most activity. In conclusion, we have demonstrated that infants with myelomeningocele at levels which impact the myotomes of major locomotor muscles find ways to respond and adapt their motor output to changes in sensory input. PMID:23158017

  14. Effects of Predictability of Load Magnitude on the Response of the Flexor Digitorum Superficialis to a Sudden Fingers Extension

    PubMed Central

    Aimola, Ettore; Valle, Maria Stella; Casabona, Antonino

    2014-01-01

    Muscle reflexes, evoked by opposing a sudden joint displacement, may be modulated by several factors associated with the features of the mechanical perturbation. We investigated the variations of muscle reflex response in relation to the predictability of load magnitude during a reactive grasping task. Subjects were instructed to flex the fingers 2–5 very quickly after a stretching was exerted by a handle pulled by loads of 750 or 1250 g. Two blocks of trials, one for each load (predictable condition), and one block of trials with a randomized distribution of the loads (unpredictable condition) were performed. Kinematic data were collected by an electrogoniometer attached to the middle phalanx of the digit III while the electromyography of the Flexor Digitorum Superficialis muscle was recorded by surface electrodes. For each trial we measured the kinematics of the finger angular rotation, the latency of muscle response and the level of muscle activation recorded below 50 ms (short-latency reflex), between 50 and 100 ms (long-latency reflex) and between 100 and 140 ms (initial portion of voluntary response) from the movement onset. We found that the latency of the muscle response lengthened from predictable (35.5±1.3 ms for 750 g and 35.5±2.5 ms for 1250 g) to unpredictable condition (43.6±1.3 ms for 750 g and 40.9±2.1 ms for 1250 g) and the level of muscle activation increased with load magnitude. The parallel increasing of muscle activation and load magnitude occurred within the window of the long-latency reflex during the predictable condition, and later, at the earliest portion of the voluntary response, in the unpredictable condition. Therefore, these results indicate that when the amount of an upcoming perturbation is known in advance, the muscle response improves, shortening the latency and modulating the muscle activity in relation to the mechanical demand. PMID:25271638

  15. Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes.

    PubMed

    Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L; Price, S Russ

    2010-08-01

    PGC-1alpha is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1alpha expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1alpha participates in the regulation of muscle mass. PGC-1alpha gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1alpha in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1alpha expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21days, the levels of PGC-1alpha protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1alpha transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1alpha regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1alpha expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 mRNAs were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1alpha were also decreased in muscles of CnAalpha-/- and CnAbeta-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1alpha expression. These findings demonstrate that Cn activity is a major determinant of PGC-1alpha expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass.

  16. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes

    PubMed Central

    Roberts-Wilson, Tiffany K.; Reddy, Ramesh N.; Bailey, James L.; Zheng, Bin; Ordas, Ronald; Gooch, Jennifer L.; Price, S. Russ

    2010-01-01

    PGC-1α is a transcriptional coactivator that controls energy homeostasis through regulation of glucose and oxidative metabolism. Both PGC-1α expression and oxidative capacity are decreased in skeletal muscle of patients and animals undergoing atrophy, suggesting that PGC-1α participates in the regulation of muscle mass. PGC-1α gene expression is controlled by calcium- and cAMP-sensitive pathways. However, the mechanism regulating PGC-1α in skeletal muscle during atrophy remains unclear. Therefore, we examined the mechanism responsible for decreased PGC-1α expression using a rodent streptozotocin (STZ) model of chronic diabetes and atrophy. After 21d, the levels of PGC-1α protein and mRNA were decreased. We examined the activation state of CREB, a potent activator of PGC-1α transcription, and found that phospho-CREB was paradoxically high in muscle of STZ-rats, suggesting that the cAMP pathway was not involved in PGC-1α regulation. In contrast, expression of calcineurin (Cn), a calcium-dependent phosphatase, was suppressed in the same muscles. PGC-1α expression is regulated by two Cn substrates, MEF2 and NFATc. Therefore, we examined MEF2 and NFATc activity in muscles from STZ-rats. Target genes MRF4 and MCIP1.4 were both significantly reduced, consistent with reduced Cn signaling. Moreover, levels of MRF4, MCIP1.4, and PGC-1α were also decreased in muscles of CnAα-/- and CnAβ-/- mice without diabetes indicating that decreased Cn signaling, rather than changes in other calcium- or cAMP-sensitive pathways, were responsible for decreased PGC-1α expression. These findings demonstrate that Cn activity is a major determinant of PGC-1α expression in skeletal muscle during diabetes and possibly other conditions associated with loss of muscle mass. PMID:20359506

  17. Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

    PubMed Central

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  18. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    PubMed

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  19. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase.

    PubMed

    Zheng, D; MacLean, P S; Pohnert, S C; Knight, J B; Olson, A L; Winder, W W; Dohm, G L

    2001-09-01

    Skeletal muscle GLUT-4 transcription in response to treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), a known activator of AMP-activated protein kinase (AMPK), was studied in rats and mice. The increase in GLUT-4 mRNA levels in response to a single subcutaneous injection of AICAR, peaked at 13 h in white and red quadriceps muscles but not in the soleus muscle. The mRNA level of chloramphenicol acyltransferase reporter gene which is driven by 1,154 or 895 bp of the human GLUT-4 proximal promoter was increased in AICAR-treated transgenic mice, demonstrating the transcriptional upregulation of the GLUT-4 gene by AICAR. However, this induction of transcription was not apparent with 730 bp of the promoter. In addition, nuclear extracts from AICAR-treated mice bound to the consensus sequence of myocyte enhancer factor-2 (from -473 to -464) to a greater extent than from saline-injected mice. Thus AMP-activated protein kinase activation by AICAR increases GLUT-4 transcription by a mechanism that requires response elements within 895 bp of human GLUT-4 proximal promoter and that may be cooperatively mediated by myocyte enhancer factor-2.

  20. Efficacy of neuromuscular electrical stimulation in patients with COPD followed in intensive care unit.

    PubMed

    Akar, Olcay; Günay, Ersin; Sarinc Ulasli, Sevinc; Ulasli, Alper Murat; Kacar, Emre; Sariaydin, Muzaffer; Solak, Özlem; Celik, Sefa; Ünlü, Mehmet

    2017-11-01

    Serious problems on muscle strength and functional status can be seen in bedridden-patients with chronic obstructive pulmonary diseases (COPD) receiving mechanical ventilation. We aimed to investigate the impact of active extremity mobilization and neuromuscular electrical stimulation (NMES) on weaning processes, discharge from hospital and inflammatory mediators in COPD patients receiving mechanical ventilation. Thirty conscious COPD patients (F/M:15/15) hospitalized in the intensive care unit (ICU) with diagnosis of respiratory failure were enrolled to this study. Patients were randomized into three groups, including 10 patients for each. Active extremity-exercise training and NMES were applied to Group-1, only NMES was applied to Group-2 and active extremity exercise training was applied to Group-3. Muscle strengths, mobilization duration and weaning situation were evaluated. Serum cytokine levels were evaluated. Lower extremity muscle-strength was significantly improved in Group-1 (from 3.00 to 5.00, P = 0.014) and 2 (from 4.00 to 5.00, P = 0.046). Upper extremity muscle strength was also significantly improved in all three groups (from 4.00 to 5.00 for all groups, P = 0.038, P = 0.046 and P = 0.034, respectively). Duration of mobilization and discharge from the ICU were similar among groups. There was a significant decrease in serum interleukin (IL)-6 level in Group-1 and in serum IL-8 level in Group-1 and Group-2 after rehabilitation. This study indicates that pulmonary rehabilitation can prevent loss of muscle strength in ICU. Nevertheless, we consider that further studies with larger populations are needed to examine the impact of NMES and/or active and passive muscle training in bedridden ICU patients who are mechanically ventilated. © 2015 John Wiley & Sons Ltd.

  1. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Becausemore » skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.« less

  2. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting

    NASA Technical Reports Server (NTRS)

    Wing, S. S.; Goldberg, A. L.; Goldberger, A. L. (Principal Investigator)

    1993-01-01

    Glucocorticoids are essential for the increase in protein breakdown in skeletal muscle normally seen during fasting. To determine which proteolytic pathway(s) are activated upon fasting, leg muscles from fed and fasted normal rats were incubated under conditions that block or activate different proteolytic systems. After food deprivation (1 day), the nonlysosomal ATP-dependent process increased by 250%, as shown in experiments involving depletion of muscle ATP. Also, the maximal capacity of the lysosomal process increased 60-100%, but no changes occurred in the Ca(2+)-dependent or the residual energy-independent proteolytic processes. In muscles from fasted normal and adrenalectomized (ADX) rats, the protein breakdown sensitive to inhibitors of the lysosomal or Ca(2+)-dependent pathways did not differ. However, the ATP-dependent process was 30% slower in muscles from fasted ADX rats. Administering dexamethasone to these animals or incubating their muscles with dexamethasone reversed this defect. During fasting, when the ATP-dependent process rises, muscles show a two- to threefold increase in levels of ubiquitin (Ub) mRNA. However, muscles of ADX animals failed to show this response. Injecting dexamethasone into the fasted ADX animals increased muscle Ub mRNA within 6 h. Thus glucocorticoids activate the ATP-Ub-dependent proteolytic pathway in fasting apparently by enhancing the expression of components of this system such as Ub.

  3. Surface EMG electrodes do not accurately record from lumbar multifidus muscles.

    PubMed

    Stokes, Ian A F; Henry, Sharon M; Single, Richard M

    2003-01-01

    This study investigated whether electromyographic signals recorded from the skin surface overlying the multifidus muscles could be used to quantify their activity. Comparison of electromyography signals recorded from electrodes on the back surface and from wire electrodes within four different slips of multifidus muscles of three human subjects performing isometric tasks that loaded the trunk from three different directions. It has been suggested that suitably placed surface electrodes can be used to record activity in the deep multifidus muscles. We tested whether there was a stronger correlation and more consistent regression relationship between signals from electrodes overlying multifidus and longissimus muscles respectively than between signals from within multifidus and from the skin surface electrodes over multifidus. The findings provided consistent evidence that the surface electrodes placed over multifidus muscles were more sensitive to the adjacent longissimus muscles than to the underlying multifidus muscles. The R(2) for surface versus intra-muscular comparisons was 0.64, while the average R(2) for surface-multifidus versus surface-longissimus comparisons was 0.80. Also, the magnitude of the regression coefficients was less variable between different tasks for the longissimus versus surface multifidus comparisons. Accurate measurement of multifidus muscle activity requires intra-muscular electrodes. Electromyography is the accepted technique to document the level of muscular activation, but its specificity to particular muscles depends on correct electrode placement. For multifidus, intra-muscular electrodes are required.

  4. [Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board "BION-M1" biosatellite].

    PubMed

    Ogneva, I V; Maximova, M V; Larina, I M

    2014-01-01

    The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

  5. The Effect of Cycling Intensity on Cycling Economy During Seated and Standing Cycling.

    PubMed

    Arkesteijn, Marco; Jobson, Simon; Hopker, James; Passfield, Louis

    2016-10-01

    Previous research has shown that cycling in a standing position reduces cycling economy compared with seated cycling. It is unknown whether the cycling intensity moderates the reduction in cycling economy while standing. The aim was to determine whether the negative effect of standing on cycling economy would be decreased at a higher intensity. Ten cyclists cycled in 8 different conditions. Each condition was either at an intensity of 50% or 70% of maximal aerobic power at a gradient of 4% or 8% and in the seated or standing cycling position. Cycling economy and muscle activation level of 8 leg muscles were recorded. There was an interaction between cycling intensity and position for cycling economy (P = .03), the overall activation of the leg muscles (P = .02), and the activation of the lower leg muscles (P = .05). The interaction showed decreased cycling economy when standing compared with seated cycling, but the difference was reduced at higher intensity. The overall activation of the leg muscles and the lower leg muscles, respectively, increased and decreased, but the differences between standing and seated cycling were reduced at higher intensity. Cycling economy was lower during standing cycling than seated cycling, but the difference in economy diminishes when cycling intensity increases. Activation of the lower leg muscles did not explain the lower cycling economy while standing. The increased overall activation, therefore, suggests that increased activation of the upper leg muscles explains part of the lower cycling economy while standing.

  6. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone.

    PubMed

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-05-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles.

  7. Neck movement and muscle activity characteristics in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Souvlis, T; Jimmieson, N L

    2008-03-01

    Cross-sectional study. To explore aspects of cervical musculoskeletal function in female office workers with neck pain. Evidence of physical characteristics that differentiate computer workers with and without neck pain is sparse. Patients with chronic neck pain demonstrate reduced motion and altered patterns of muscle control in the cervical flexor and upper trapezius (UT) muscles during specific tasks. Understanding cervical musculoskeletal function in office workers will better direct intervention and prevention strategies. Measures included neck range of motion; superficial neck flexor muscle activity during a clinical test, the craniocervical flexion test; and a motor task, a unilateral muscle coordination task, to assess the activity of both the anterior and posterior neck muscles. Office workers with and without neck pain were formed into 3 groups based on their scores on the Neck Disability Index. Nonworking women without neck pain formed the control group. Surface electromyographic activity was recorded bilaterally from the sternocleidomastoid, anterior scalene (AS), cervical extensor (CE) and UT muscles. Workers with neck pain had reduced rotation range and increased activity of the superficial cervical flexors during the craniocervical flexion test. During the coordination task, workers with pain demonstrated greater activity in the CE muscles bilaterally. On completion of the task, the UT and dominant CE and AS muscles demonstrated an inability to relax in workers with pain. In general, there was a linear relationship between the workers' self-reported levels of pain and disability and the movement and muscle changes. These results are consistent with those found in other cervical musculoskeletal disorders and may represent an altered muscle recruitment strategy to stabilize the head and neck. An exercise program including motor reeducation may assist in the management of neck pain in office workers.

  8. Development of a human body finite element model with multiple muscles and their controller for estimating occupant motions and impact responses in frontal crash situations.

    PubMed

    Iwamoto, Masami; Nakahira, Yuko; Kimpara, Hideyuki; Sugiyama, Takahiko; Min, Kyuengbo

    2012-10-01

    A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration. A muscle controller using reinforcement learning (RL), which is a mathematical model of learning process in the basal ganglia associated with human postural controls, were newly proposed to estimate muscle activity in various occupant conditions including inattentive and attentive conditions. Control of individual muscles predicted by RL reproduced more human like head-neck motions than conventional control of two groups of agonist and antagonist muscles. The model and the controller demonstrated that head-neck motions of an occupant under an impact deceleration of frontal crash were different in between a bracing condition with maximal braking force and an occupant condition predicted by RL. The model and the controller have the potential to investigate muscular effects in various occupant conditions during frontal crashes.

  9. The effects of workplace stressors on muscle activity in the neck-shoulder and forearm muscles during computer work: a systematic review and meta-analysis.

    PubMed

    Eijckelhof, B H W; Huysmans, M A; Bruno Garza, J L; Blatter, B M; van Dieën, J H; Dennerlein, J T; van der Beek, A J

    2013-12-01

    Workplace stressors have been indicated to play a role in the development of neck and upper extremity pain possibly through an increase of sustained (low-level) muscle activity. The aim of this review was to study the effects of workplace stressors on muscle activity in the neck-shoulder and forearm muscles. An additional aim was to find out whether the muscles of the neck-shoulder and the forearm are affected differently by different types of workplace stressors. A systematic literature search was conducted on studies investigating the relation between simulated or realistic workplace stressors and neck-shoulder and forearm muscle activity. For studies meeting the inclusion criteria, a risk of bias assessment was performed and data were extracted for synthesis. Results were pooled when possible and otherwise described. Twenty-eight articles met the inclusion criteria, reporting data of 25 different studies. Except for one field study, all included studies were laboratory studies. Data of 19 articles could be included in the meta-analysis and revealed a statistically significant, medium increase in neck-shoulder and forearm muscle activity as a result of workplace stressors. In subgroup analyses, we found an equal effect of different stressor types (i.e. cognitive/emotional stress, work pace, and precision) on muscle activity in both body regions. In conclusion, simulated workplace stressors result in an increase in neck-shoulder and forearm muscle activity. No indications were found that different types of stressors affect these body regions differently. These conclusions are fully based on laboratory studies, since field studies on this topic are currently lacking.

  10. Comparison of Thoracic and Lumbar Erector Spinae Muscle Activation Before and After a Golf Practice Session.

    PubMed

    Sorbie, Graeme G; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike C

    2017-08-01

    Lower back pain is commonly associated with golfers. The study aimed: to determine whether thoracic- and lumbar-erector-spinae muscle display signs of muscular fatigue after completing a golf practice session, and to examine the effect of the completed practice session on club head speed, ball speed and absolute carry distance performance variables. Fourteen right-handed male golfers participated in the laboratory-based-study. Surface electromyography (EMG) data was collected from the lead and trail sides of the thoracic- and lumbar-erector-spinae muscle. Normalized root mean squared (RMS) EMG activation levels and performance variables for the golf swings were compared before and after the session. Fatigue was assessed using median frequency (MDF) and RMS during the maximum voluntary contraction (MVC) performed before and after the session. No significant differences were observed in RMS thoracic- and lumbar-erector-spinae muscle activation levels during the five phases of the golf swing and performance variables before and after the session (p > .05). Significant changes were displayed in MDF and RMS when comparing the MVC performed before and after the session (p < .05). Fatigue was evident in the trail side of the erector-spinae muscle after the session.

  11. Influence of fatigue on upper limb muscle activity and performance in tennis.

    PubMed

    Rota, Samuel; Morel, Baptiste; Saboul, Damien; Rogowski, Isabelle; Hautier, Christophe

    2014-02-01

    The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    PubMed

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or spontaneously-occurring. These findings are particularly relevant to both the recently renewed concern over the impact of fibrates on hypertension and a new understanding of their gastrointestinal side effects.

  13. Gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow.

    PubMed

    Shono, Tomoki; Masumoto, Kenji; Fujishima, Kazutaka; Hotta, Noboru; Ogaki, Tetsuro; Adachi, Takahiro

    2007-11-01

    This study sought to determine the characteristics of gait patterns and muscle activity in the lower extremities of elderly women during underwater treadmill walking against water flow. Eight female subjects (61.4+/-3.9 y) performed underwater and land treadmill walking at varying exercise intensities and velocities. During underwater walking (water level at the xiphoid process) using the Flowmill, which has a treadmill at the base of a water flume, the simultaneous belt and water flow velocities were set to 20, 30 and 4 m.min(-1). Land walking velocities were set to 40, 60 and 80 m.min(-1). Oxygen uptake and heart rate were measured during both walking exercises. Maximum and minimum knee joint angles, and mean angular velocities of knee extension and knee flexion in the swing phase were calculated using two-dimensional motion analysis. Electromyograms were recorded using bipolar surface electrodes for five muscles: the tibialis anterior (TA), medial gastrocnemius (MG), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF). At the same exercise intensity level, cadence was almost half that on land. Step length did not differ significantly because velocity was halved. Compared to land walking, the maximum and minimum knee joint angles were significantly smaller and the mean angular velocity of knee extension was significantly lower. Knee extension in the swing phase was limited by water resistance. While the muscle activity levels of TA, VM and BF were almost the same as during land walking, those of MG and RF were lower. At the same velocity, exercise intensity was significantly higher than during land walking, cadence was significantly lower, and step length significantly larger. The knee joint showed significantly smaller maximum and minimum angles, and the mean angular velocity of knee flexion was significantly larger. The muscle activity levels of TA, VM, and BF increased significantly in comparison with land walking, although those of MG and RF did not significantly differ. Given our findings, it appears that buoyancy, lower cadence, and a moving floor influenced the muscle activity level of MG and RF at the same exercise intensity level and at the same velocity. These results show promise of becoming the basic data of choice for underwater walking exercise prescription.

  14. Spatial analysis of muscular activations in stroke survivors.

    PubMed

    Rasool, Ghulam; Afsharipour, Babak; Suresh, Nina L; Xiaogang Hu; Rymer, William Zev

    2015-01-01

    We investigated the spatial patterns of electrical activity in stroke-affected muscles using the high density surface electromyogram (sEMG) grids. We acquired 128-channel sEMG signals from the impaired as well as contralateral Biceps Brachii (BB) muscles of stroke survivors and from healthy participants at various force levels from 20 to 60% of maximum voluntary contraction in an isometric non-fatiguing recording protocol. We found the spatial sEMG pattern to be consistent across force levels in healthy and stroke subjects. However, once compared across sides (left vs right in healthy and impaired vs. contralateral in stroke) we found stroke-affected sides to be significantly different in distribution pattern of sEMG from the contralateral side. The sEMG activity areas were significantly shrunk on the affected sides indicating muscle atrophy due to stroke.

  15. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  16. Muscle Coordination and Locomotion in Humans.

    PubMed

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Copper sulphate (CuSO4) toxicity on tissue phosphatases activity and carbohydrates turnover in Achatina fulica.

    PubMed

    Ramalingam, K; Indra, D

    2002-04-01

    A time course study on the sublethal toxicity of CuSO4 on tissue carbohydrate metabolites level and their phosphatases activity in Achatina fulica revealed differential response. The levels of total carbohydrates and glycogen in the body mass muscle, foot muscle and hemolymph revealed their involvement in the endogenous derivation of energy during stress. The same metabolites in digestive gland revealed its importance to reproduction and development. The lactate accumulated in all the tissues implied the mechanism of CuSO4 toxicosis in the metabolic acidosis. The decrease of pyruvate in foot muscle, body mass muscle and hemolymph inferred the preponderance of glycolysis in energy derivation. In contrast, the pyruvate concentration in digestive gland revealed its differential response in the stress metabolic sequence of changes, as a unique tissue. The lactate/pyruvate ratio and the calcium content in tissues constitute direct evidences for the snails adaptation to toxic stress.

  18. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function.

    PubMed

    Callahan, Damien M; Bedrin, Nicholas G; Subramanian, Meenakumari; Berking, James; Ades, Philip A; Toth, Michael J; Miller, Mark S

    2014-06-15

    Age-related loss of skeletal muscle mass and function is implicated in the development of disease and physical disability. However, little is known about how age affects skeletal muscle structure at the cellular and ultrastructural levels or how such alterations impact function. Thus we examined skeletal muscle structure at the tissue, cellular, and myofibrillar levels in young (21-35 yr) and older (65-75 yr) male and female volunteers, matched for habitual physical activity level. Older adults had smaller whole muscle tissue cross-sectional areas (CSAs) and mass. At the cellular level, older adults had reduced CSAs in myosin heavy chain II (MHC II) fibers, with no differences in MHC I fibers. In MHC II fibers, older men tended to have fewer fibers with large CSAs, while older women showed reduced fiber size across the CSA range. Older adults showed a decrease in intermyofibrillar mitochondrial size; however, the age effect was driven primarily by women (i.e., age by sex interaction effect). Mitochondrial size was inversely and directly related to isometric tension and myosin-actin cross-bridge kinetics, respectively. Notably, there were no intermyofibrillar or subsarcolemmal mitochondrial fractional content or myofilament ultrastructural differences in the activity-matched young and older adults. Collectively, our results indicate age-related reductions in whole muscle size do not vary by sex. However, age-related structural alterations at the cellular and subcellular levels are different between the sexes and may contribute to different functional phenotypes in ways that modulate sex-specific reductions in physical capacity with age. Copyright © 2014 the American Physiological Society.

  19. Co-transplantation of plasmid-transfected myoblasts and myotubes into rat brains enables high levels of gene expression long-term

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Williams, P.; Safda, N.; Schultz, E.; Wolff, J. A.

    1993-01-01

    We have previously proposed the use of primary muscle cells as a "platform," or "vehicle" for intracerebral transgene expression. Brain grafts of minced muscle, or cultured muscle cells persisted in rat brains for at least 6 mo without any decrease in graft size, or tumor formation. Stable, but moderate levels of intracerebral transgene expression were obtained by transplanting plasmid-transfected myotubes in culture. In the present study, high and stable levels of intracerebral transgene expression were achieved by the co-transplantation of plasmid-transfected myoblasts and myotubes in culture. Approximately 5 X 10(5) myoblasts and myotubes were transfected with 10 micrograms pRSVL plasmid DNA, and 30 micrograms Lipofectin (BRL), respectively. They were mixed together (total cell number was 1 million), and stereotactically injected into the caudate nucleus of an adult rat brain. The activity of luciferase, the product of transgene expression, was stable for at least 4 mo, and much higher than the levels in myotube grafts, or co-grafts of myoblasts and minced muscle. Presumably, the myotubes served as a framework on which the myoblasts can form myotubes. The sections of brains transplanted with co-graft of myoblasts, and myotubes transfected with pRSVLac-Z were stained immunofluorescently for beta-galactosidase activity. The muscle grafts contained beta-galactosidase positive myofibers 4 mo after transplantation. Such high and stable levels of in vivo expression after postnatal gene transfer have rarely been achieved. Primary muscle cells are useful vehicle for transgene expression in brains, and potentially valuable for gene therapy of degenerative neurological disorders.

  20. A Rare Case of Chronic Active Epstein-Barr Virus (EBV) Infection Accompanied by the Infiltration of EBV-infected CD8+ T Cells into the Muscle.

    PubMed

    Kobayashi, Nobuhiko; Mitsui, Takeki; Ogawa, Yoshiyuki; Iriuchishima, Hirono; Takizawa, Makiko; Yokohama, Akihiko; Saitoh, Takayuki; Koiso, Hiromi; Tsukamoto, Norifumi; Murakami, Hirokazu; Nojima, Yoshihisa; Handa, Hiroshi

    2018-04-01

    We describe a rare case of chronic active Epstein-Barr virus (CAEBV) infection, with infiltration of the skeletal muscle. A 19-year-old woman with swollen cervical lymph nodes and a fever was referred to our hospital. Swelling of the trapezium muscle and elevation of creatinine kinase level were observed. Biopsy results of the brachialis muscle revealed infiltration of Epstein-Barr virus (EBV)-encoded RNA-positive CD8 T lymphocytes. The EBV virus load in the peripheral blood was high, and EBV monoclonality was determined by Southern blot analysis. Owing to the rarity of CAEBV with skeletal muscle infiltration, this case alerts physicians to the potential diagnostic pitfalls of CAEBV.

  1. PABPN1-Dependent mRNA Processing Induces Muscle Wasting

    PubMed Central

    Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D.; Florea, Bogdan I.; Raz, Vered

    2016-01-01

    Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PMID:27152426

  2. [Comparative study of respiratory mechanisms between professional lyrical singers and beginners].

    PubMed

    Lassalle, A; Grini, M N; Amy de la Bretèque, B; Ouaknine, M; Giovanni, A

    2002-01-01

    The apprenticeship for classical singing requires years of training due to its complexity. This training is directed at the different levels of the vocal apparatus: the source of energy or air flow (lungs), the vibrator (vocal cords) and the resonators (bucco-pharyngeal cavity). For this study we have concentrated on the first level, that is, respiration. When a greater demand of vocal activity is required respiration becomes more sustained and more complex; this is when difficulties may be observed. Singers overcome these difficulties through different strategies according to their level of vocal training. Our study compared respiratory strategies used by professional singers and singing students (first year conservatoire students) during singing tasks; none of the subjects had any history of vocal pathology. Electromyographic analysis of muscle activity was registered for the rectus abdominals muscle, external oblique muscle and transverse muscle with surface electrodes. Kinetic analysis was used to measure thoracic cage displacement: pressure sensitive belts were placed around the pubis, the epigastric region and thorax. The subjects were asked to perform two vocal tasks: vocalization of a sustained "i" and singing of an extract of a vaccaï. Results were compared between the 7 professional singers and the 6 singing students. They allowed us to confirm the existence of distinct respiratory strategies according to the level of vocal training, as described in literature. Professional singers inhibited the activity of their rectus abdominals muscles during singing and used mostly their external oblique and transverse muscles, thus, sustaining an expanded ribcage and a longer expiratory breath. Singing students, on the other hand, worked intensively all the abdominal muscles leading to a collapse of the ribcage. Management of air was more difficult and breath was shorter. Future studies will consider a larger population sample in order to define quantitative parameters that might allow a significant differentiation of respiratory strategies between professional singers and singing students.

  3. Posture in dentists: Sitting vs. standing positions during dentistry work--An EMG study.

    PubMed

    Pejcić, Natasa; Jovicić, Milica Đurić; Miljković, Nadica; Popović, Dejan B; Petrović, Vanja

    2016-01-01

    Adequate working posture is important for overall health. Inappropriate posture may increase fatigue, decrease efficiency, and eventually lead to injuries. The purpose was to examine posture positions used during dentistry work. In order to quantify different posture positions, we recorded muscle activity and positions of body segments. The position (inclination) data of the back was used to assess two postures: sitting and standing during standard dental interventions. During standard interventions, whether sitting or standing, a tilt of less than 20 degrees was most prevalent in the forward and lateral flexion directions. Amplitude of electromyography signals corresponding to the level of muscle activity were higher in sitting compared with the electromyography in standing position for all muscle groups on the left and right side of the body. Significant difference between muscle activity in two working postures was evident in splenius capitis muscle on the left (p = 0.032), on the right side of the body (p = 0.049) and in muscle activity of mastoid muscle on the left side (p = 0.029). These findings show that risk for increased fatigue and possible injures can be reduced by combining the sitting and standing occupational postures.

  4. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells.

    PubMed

    Wu, Haiqing; Ren, Yu; Pan, Wei; Dong, Zhenguo; Cang, Ming; Liu, Dongjun

    2015-11-01

    Mammalian target of rapamycin (mTOR) signaling pathway plays a key role in muscle development and is involved in multiple intracellular signaling pathways. Myocyte enhancer factor-2 (MEF2) regulates muscle cell proliferation and differentiation. However, how the mTOR signaling pathway regulates MEF2 activity remains unclear. We isolated goat skeletal muscle satellite cells (gSSCs) as model cells to explore mTOR signaling pathway regulation of MEF2C. We inhibited mTOR activity in gSSCs with PP242 and found that MEF2C phosphorylation was decreased and that muscle creatine kinase (MCK) expression was suppressed. Subsequently, we detected integrin-linked kinase (ILK) using MEF2C coimmunoprecipitation; ILK and MEF2C were colocalized in the gSSCs. We found that inhibiting mTOR activity increased ILK phosphorylation levels and that inhibiting ILK activity with Cpd 22 and knocking down ILK with small interfering RNA increased MEF2C phosphorylation and MCK expression. In the presence of Cpd 22, mTOR activity inhibition did not affect MEF2C phosphorylation. Moreover, ILK dephosphorylated MEF2C in vitro. These results suggest that the mTOR signaling pathway regulates MEF2C positively and regulates ILK negatively and that ILK regulates MEF2C negatively. It appears that the mTOR signaling pathway regulates MEF2C through ILK, further regulating the expression of muscle-related genes in gSSCs. © 2015 International Federation for Cell Biology.

  5. Surface electromyography and ultrasound evaluation of pelvic floor muscles in hyperandrogenic women.

    PubMed

    Vassimon, Flávia Ignácio Antonio; Ferreira, Cristine Homsi Jorge; Martins, Wellington Paula; Ferriani, Rui Alberto; Batista, Roberta Leopoldino de Andrade; Bo, Kari

    2016-04-01

    High levels of androgens increase muscle mass. Due to the characteristics of hyperandrogenism in polycystic ovary syndrome (PCOS), it is plausible that women with PCOS may have increased pelvic floor muscle (PFM) thickness and neuromuscular activity levels compared with controls. The aim of this study was to assess PFM thickness and neuromuscular activity among hyperandrogenic women with PCOS and controls. This was an observational, cross-sectional, case-control study evaluating PFM by ultrasound (US) and surface electromyography (sEMG) in nonobese women with and without PCOS. Seventy-two women were divided into two groups: PCOS (n = 33) and controls (n = 39). PFM thickness during contraction was assessed by US (Vingmed CFM 800). Pelvic floor muscle activity was assessed by sEMG (MyoTrac Infinit) during contractions at different time lengths: quick, and 8 and 60 s. Descriptive analysis, analysis of variance (ANOVA), and Student's t test were used for statistical analyses. There were no significant differences in PFM sEMG activity between PCOS and controls in any of the contractions: quick contraction (73.23 mV/ 71.56 mV; p = 0.62), 8 s (55.77 mV/ 54.17 mV; p = 0.74), and 60 s (49.26 mV/ 47.32 mV; p = 0.68), respectively. There was no difference in PFM thickness during contractions evaluated by US between PCOS and controls (12.78 mm/ 13.43 mm; p =  .48). This study did not find statistically significant differences in pelvic floor muscle thickness or in muscle activity between PCOS women and controls.

  6. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  7. Association between masseter muscle activity levels recorded during sleep and signs and symptoms of temporomandibular disorders in healthy young adults.

    PubMed

    Baba, Kazuyoshi; Haketa, Tadasu; Sasaki, Yoshiyuki; Ohyama, Takashi; Clark, Glenn T

    2005-01-01

    To examine whether any signs and symptoms of temporomandibular disorders were significantly associated with masseter muscle activity levels during sleep. One hundred three healthy adult subjects (age range, 22 to 32 years) participated in the study. They were asked to fill out questionnaires, undergo a calibrated clinical examination of their jaws and teeth, and perform 6 consecutive nightly masseter electromyographic (EMG) recordings with a portable EMG recording system in their home. The EMG data were considered dependent variables, while the questionnaire and examination data were considered independent variables. Multiple stepwise linear regression analysis was utilized to assess possible associations between these variables. Both gender and joint sound scores were significantly related to the duration of EMG activity. None of the other independent variables were found to be related to any of the muscle activity variables. The results suggest that both gender and clicking are significantly related to duration of masseter EMG activity during sleep.

  8. Muscle Activation During Side-Step Cutting Maneuvers in Male and Female Soccer Athletes

    PubMed Central

    Hanson, Ashley M; Padua, Darin A; Troy Blackburn, J; Prentice, William E; Hirth, Christopher J

    2008-01-01

    Context: Female soccer athletes are at greater risk of anterior cruciate ligament (ACL) injury than males. Sex differences in muscle activation may contribute to the increased incidence of ACL injuries in female soccer athletes. Objective: To examine sex differences in lower extremity muscle activation between male and female soccer athletes at the National Collegiate Athletic Association Division I level during 2 side-step cutting maneuvers. Design: Cross-sectional with 1 between-subjects factor (sex) and 2 within-subjects factors (cutting task and phase of contact). Setting: Sports medicine research laboratory. Patients or Other Participants: Twenty males (age = 19.4 ± 1.4 years, height = 176.5 ± 5.5 cm, mass = 74.6 ± 6.0 kg) and 20 females (age = 19.8 ± 1.1 years, height = 165.7 ± 4.3 cm, mass = 62.2 ± 7.2 kg). Intervention(s): In a single testing session, participants performed the running-approach side-step cut and the box-jump side-step cut tasks. Main Outcome Measure(s): Surface electromyographic activity of the rectus femoris, vastus lateralis, medial hamstrings, lateral hamstrings, gluteus medius, and gluteus maximus was recorded for each subject. Separate mixed-model, repeated-measures analysis of variance tests were used to compare the dependent variables across sex during the preparatory and loading contact phases of each cutting task. Results: Females displayed greater vastus lateralis activity and quadriceps to hamstrings coactivation ratios during the preparatory and loading phases, as well as greater gluteus medius activation during the preparatory phase only. No significant differences were noted between the sexes for muscle activation in the other muscles analyzed during each task. Conclusions: The quadriceps-dominant muscle activation pattern observed in recreationally active females is also present in female soccer athletes at the Division I level when compared with similarly trained male soccer athletes. The relationship between increased quadriceps activation and greater incidence of noncontact ACL injury in female soccer athletes versus males requires further study. PMID:18345337

  9. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response

    PubMed Central

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-01-01

    Objective Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. Methods The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Results Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Conclusion Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway. PMID:28489606

  10. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.

    PubMed

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-06-13

    Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway.

  11. Proton magnetic resonance spectroscopy shows lower intramyocellular lipid accumulation in middle-aged subjects predisposed to familial longevity.

    PubMed

    Wijsman, C A; van Opstal, A M; Kan, H E; Maier, A B; Westendorp, R G J; Slagboom, P E; Webb, A G; Mooijaart, S P; van Heemst, D

    2012-02-01

    Families predisposed to longevity show enhanced glucose tolerance and skeletal muscle insulin sensitivity compared with controls, independent of body composition and physical activity. Intramyocellular lipid (IMCL) accumulation in skeletal muscle has been associated with insulin resistance. Here, we assessed whether subjects enriched for familial longevity have lower IMCL levels. We determined IMCL levels in 48 subjects from the Leiden Longevity Study, comprising 24 offspring of nonagenarian siblings and 24 partners thereof as control subjects. IMCL levels were assessed noninvasively using short echo time proton magnetic resonance spectroscopy ((1)H-MRS) of the tibialis anterior muscle with a 7 Tesla human MR scanner. IMCL levels were calculated relative to the total creatine (tCr) CH3 signal. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ). After correction for age, sex, BMI, and physical activity, offspring of long-lived nonagenarian siblings tended to show lower IMCL levels compared with controls (IMCL/tCr: 3.1 ± 0.5 vs. 4.5 ± 0.5, respectively, P = 0.051). In a pairwise comparison, this difference reached statistical significance (P = 0.038). We conclude that offspring of nonagenarian siblings predisposed to longevity show lower IMCL levels compared with environmentally matched control subjects. Future research should focus on assessing what mechanisms may explain the lower IMCL levels in familial longevity.

  12. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload.

    PubMed

    Skof, B; Strojnik, V

    2006-03-01

    The aim of this study was to determine the influence of anaerobic running on muscle contractile characteristics and voluntary muscle activation level during MVC as well as the dynamics of their recovery during a 2-hour period. Seven well-trained runners performed 5 x 300 m at submaximal velocity with a 1-minute active recovery interval between the runs. The average run velocity was 6.69 m.s(-1), which represented 77 % of their top velocity. Contractile characteristics of the vastus lateralis and activation level of quadriceps femoris muscles were measured before and immediately after the runs and within the 120-minute time interval that followed the workload. To do this we used: single twitch, low- and high-frequency electrical stimulation, maximal voluntary knee extension test, and muscle activation level test. After the exercise the maximal twitch torque (T(TW)) decreased for 28 +/- 3.7 % (p < 0.001) and torque at stimulation with 20 Hz and 100 Hz were 19.2 +/- 4.6 % (p < 0.01) and 7.5 +/- 2.3 % (p < 0.05) lower, respectively, while MVC torque and activation level remained unchanged. Subjects with higher blood lactate accumulation level showed significant decrease in the torque at low frequency stimulation (T(F20)) (r = - 0.80; p < 0.01) and T(TW) (r = - 0.92; p < 0.01). The restoration of twitch torque took a short time despite the fact that blood lactate concentration remained high. Ten minutes after the last interval run the twitch torque exceeded the pre-workload value by 11 % (p < 0.01). Potentiation lasted until the 40th min. It was concluded that fatigue after the anaerobic interval workload was peripheral in character and caused by contractile mechanisms disturbances.

  13. Biochemical assessment of the hibernator skeletal muscle properties in search of a potential countermeasure against muscle atrophy in space microgravity

    NASA Astrophysics Data System (ADS)

    Lee, K.; Park, J. Y.; Gwag, T.; Yoo, W.; Choi, I.

    Mammalian skeletal muscle undergoes significant loss of mass and tension capacity during spaceflight or hindlimb suspension This is contrasted by observed features of hibernators in that muscle mass and contractility remain fairly unchanged during a prolonged period of dormancy In an effort of finding potential countermeasure against muscle atrophy in space microgravity we thereby investigated the biochemical properties of the pectoral muscle in a winter-hibernating bat Murina leucogaster Two-dimensional electrophoresis on overall muscle proteins and western blot analysis on heat shock proteins HSP 60 kD 70 kD and 90 kD were conducted to compare levels of myofiber proteins and the stress responsive chaperone molecules in winter-hibernation WH versus summer-active bats SA No seasonal difference was found in the ratio of muscle mass to body mass for the pectoral muscles confirming similar results in previous reports Among more than thirty proteins identified only 14 of the proteins showed significant reduction in the level for WH compared to SA The level of HSP60 and HSP90 in WH were 63 and 71 that in SA respectively P quad 0 05 whereas that of HSP70 was not different between the two groups However when the WH were forced to arouse for 40 min from hibernation the level of HSP70 increased 1 4-fold and 1 51-fold that of WH and SA respectively while the level of HSP90 increased 1 57-fold that of WH These results suggest that the levels of many key contractile and regulatory proteins were retained during

  14. The microRNA miR-1 regulates a MEF-2 dependent retrograde signal at neuromuscular junctions

    PubMed Central

    Simon, David J.; Madison, Jon M.; Conery, Annie L.; Thompson-Peer, Katherine L.; Soskis, Michael; Ruvkun, Gary B.; Kaplan, Joshua M.; Kim, John K.

    2008-01-01

    Summary We show that miR-1, a conserved muscle specific microRNA, regulates aspects of both pre- and post-synaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered pre-synaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses, and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in pre-synaptic function. PMID:18510933

  15. Limits to sustainable muscle performance: interaction between glycolysis and oxidative phosphorylation.

    PubMed

    Conley, K E; Kemper, W F; Crowther, G J

    2001-09-01

    This paper proposes a mechanism responsible for setting the sustainable level of muscle performance. Our contentions are that the sustainable work rate is determined (i) at the muscle level, (ii) by the ability to maintain ATP supply and (iii) by the products of glycolysis that may inhibit the signal for oxidative phosphorylation. We argue below that no single factor 'limits' sustainable performance, but rather that the flux through and the interaction between glycolysis and oxidative phosphorylation set the level of sustainable ATP supply. This argument is based on magnetic resonance spectroscopy measurements of the sources and sinks for energy in vivo in human muscle and rattlesnake tailshaker muscle during sustained contractions. These measurements show that glycolysis provides between 20% (human muscle) and 40% (tailshaker muscle) of the ATP supply during sustained contractions in these muscles. We cite evidence showing that this high glycolytic flux does not reflect an O(2) limitation or mitochondria operating at their capacity. Instead, this flux reflects a pathway independent of oxidative phosphorylation for ATP supply during aerobic exercise. The consequence of this high glycolytic flux is accumulation of H(+), which we argue inhibits the rise in the signal activating oxidative phosphorylation, thereby restricting oxidative ATP supply to below the oxidative capacity. Thus, both glycolysis and oxidative phosphorylation play important roles in setting the highest steady-state ATP synthesis flux and thereby determine the sustainable level of work by exercising muscle.

  16. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  17. Muscle activity levels in upper-body push exercises with different loads and stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Colado, Juan Carlos; Martin, Fernando; Rogers, Michael E

    2014-11-01

    Exercises that aim to stimulate muscular hypertrophy and increase neural drive to the muscle fibers should be used during rehabilitation. Thus, it is of interest to identify optimal exercises that efficiently achieve high muscle activation levels. The purpose of this study was to compare the muscle activation levels during push-up variations (ie, suspended push-ups with/without visual input on different suspension systems, and push-ups on the floor with/without additional elastic resistance) with the bench press exercise and the standing cable press exercise both performed at 50%, 70%, and 85% of the 1-repetition maximum. Young fit male university students (N = 29) performed 3 repetitions in all conditions under the same standardized procedures. Average amplitude of the electromyogram (EMG) root mean square for the rectus abdominis, external oblique, sternocostal head of the pectoralis major, anterior deltoid, long head of the triceps brachii, upper trapezius, anterior serratus, and posterior deltoid was recorded. The EMG signals were normalized to the maximum voluntary isometric contraction. The EMG data were analyzed with repeated-measures analysis of variance with a Bonferroni post hoc. Elastic-resisted push-ups induce similar EMG stimulus in the prime movers as the bench press at high loads while also providing a greater core challenge. Suspended push-ups are a highly effective way to stimulate abdominal muscles. Pectoralis major, anterior deltoid, and anterior serratus are highly elicited during more stable pushing conditions, whereas abdominal muscles, triceps brachii, posterior deltoid, and upper trapezius are affected in the opposite manner.

  18. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P

    2009-11-15

    A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.

  19. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    PubMed

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). Both SS and IMF mitochondria demonstrated elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In addition, SS mitochondrial antioxidant enzyme activities were significantly lower, while IMF mitochondrial antioxidant enzyme activities were higher (p < 0.05). By contrast, RES treatment protected rats against diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p < 0.05). Moreover, the activities of SS and IMF mitochondrial antioxidant enzymes were increased, which reverted the increased SS mitochondrial oxidative stress levels (p < 0.05). This study suggests that RES ameliorates insulin sensitivity consistent with improved SIRT3 expressions and rebalance between SS mitochondrial oxidative stress and antioxidant competence in HFD rats.

  20. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy.

    PubMed

    Guglielmi, V; Oosterhof, A; Voermans, N C; Cardani, R; Molenaar, J P; van Kuppevelt, T H; Meola, G; van Engelen, B G; Tomelleri, G; Vattemi, G

    2016-06-01

    Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Eye-lens accommodation load and static trapezius muscle activity.

    PubMed

    Richter, H O; Bänziger, T; Forsman, M

    2011-01-01

    The purpose of this experimental study was to investigate if sustained periods of oculomotor load impacts on neck/scapular area muscle activity. The static trapezius muscle activity was assessed from bipolar surface electromyography, normalized to a submaximal contraction. Twenty-eight subjects with a mean age of 29 (range 19-42, SD 8) viewed a high-contrast fixation target for two 5-min periods through: (1) -3.5 dioptre (D) lenses; and (2) 0 D lenses. The target was placed 5 D away from the individual's near point of accommodation. Each subject's ability to compensate for the added blur was extracted via infrared photorefraction measurements. Subjects whose accommodative response was higher in the -D blur condition (1) showed relatively more static bilateral trapezius muscle activity level. During no blur (2) there were no signs of relationships. The results indicate that sustained eye-lens accommodation at near, during ergonomically unfavourable viewing conditions, could possibly represent a risk factor for trapezius muscle myalgia.

  2. Age-Related Locomotion Characteristics in Association with Balance Function in Young, Middle-Aged, and Older Adults.

    PubMed

    Lee, Hwang-Jae; Chang, Won Hyuk; Hwang, Sun Hee; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-04-01

    The purpose of this study was to examine age-related gait characteristics and their associations with balance function in older adults. A total of 51 adult volunteers participated. All subjects underwent locomotion analysis using a 3D motion analysis and 12-channel dynamic electromyography system. Dynamic balance function was assessed by the Berg Balance Scale. Older adults showed a higher level of muscle activation than young adults, and there were significant positive correlations between increased age and activation of the trunk and thigh muscles in the stance and swing phase of the gait cycle. In particular, back extensor muscle activity was mostly correlated with the dynamic balance in older adults. Thus, back extensor muscle activity in walking may provide a clue for higher falling risk in older adults. This study demonstrates that the back extensor muscles play very important roles with potential for rehabilitation training to improve balance and gait in older adults.

  3. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    PubMed Central

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  4. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    PubMed Central

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  5. Motor unit activity after eccentric exercise and muscle damage in humans.

    PubMed

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  6. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  7. The role of DNA methylation during anoxia tolerance in a freshwater turtle (Trachemys scripta elegans).

    PubMed

    Wijenayake, Sanoji; Storey, Kenneth B

    2016-04-01

    Oxygen deprivation is a lethal stress that only a few animals can tolerate for extended periods. This study focuses on analyzing the role of DNA methylation in aiding natural anoxia tolerance in a champion vertebrate anaerobe, the red-eared slider turtle (Trachemys scripta elegans). We examined the relative expression and total enzymatic activity of four DNA methyltransferases (DNMT1, DNMT2, DNMT3a and DNMT3b), two methyl-binding domain proteins (MBD1 and MBD2), and relative genomic levels of 5-methylcytosine under control, 5 h anoxic, and 20 h anoxic conditions in liver, heart, and white skeletal muscle (n = 4, p < 0.05). In liver, protein expression of DNMT1, DNMT2, MBD1, and MBD2 rose significantly by two- to fourfold after 5 h anoxic submergence compared to normoxic-control conditions. In heart, 5 h anoxia submergence resulted in a 1.4-fold increase in DNMT3a levels and a significant decrease in MBD1 and MBD2 levels to ~30 % of control values. In white muscle, DNMT3a and DNMT3b increased threefold and MBD1 levels increased by 50 % in response to 5 h anoxia. Total DNMT activity rose by 0.6-2.0-fold in liver and white muscle and likewise global 5mC levels significantly increased in liver and white muscle under 5 and 20 h anoxia. The results demonstrate an overall increase in DNA methylation, DNMT protein expression and enzymatic activity in response to 5 and 20 h anoxia in liver and white muscle indicating a potential downregulation of gene expression via this epigenetic mechanism during oxygen deprivation.

  8. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    PubMed

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock★

    PubMed Central

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.; Biensø, Rasmus S.; Tagliazucchi, Guidantonio M.; Patel, Vishal R.; Forcato, Mattia; Paz, Marcia I.P.; Gudiksen, Anders; Solagna, Francesca; Albiero, Mattia; Moretti, Irene; Eckel-Mahan, Kristin L.; Baldi, Pierre; Sassone-Corsi, Paolo; Rizzuto, Rosario; Bicciato, Silvio; Pilegaard, Henriette; Blaauw, Bert; Schiaffino, Stefano

    2013-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. PMID:24567902

  10. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    NASA Astrophysics Data System (ADS)

    De Luca, C. J.; Kline, J. C.

    2012-02-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.

  11. Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study.

    PubMed

    Valenti, Giorgio; Denti, Licia; Maggio, Marcello; Ceda, GianPaolo; Volpato, Stefano; Bandinelli, Stefania; Ceresini, Graziano; Cappola, Anne; Guralnik, Jack M; Ferrucci, Luigi

    2004-05-01

    It has been suggested that the reduced production of dehydroepiandrosterone sulfate (DHEAS) may be partially responsible for the decline of muscle strength and mass that often occurs with aging. However, this hypothesis has been only tested in small series of normal volunteers, with little consideration for potential confounders. Using data from a representative sample of 558 men (20-95 years) we tested the hypothesis that circulating DHEAS is independently associated with muscle strength and mass. Data are from InCHIANTI, an epidemiological study conducted in the Chianti geographic area (Tuscany, Italy). DHEAS serum levels were related to lower extremity muscle strength assessed by hand-held dynamometry and calf muscle area estimated from quantitative computerized tomography. Confounders included age, anthropometrics, physical activity, smoking, energy and alcohol intake, albumin, lipids, interleukin-6, comorbidity, depressive symptoms, and disability in activities of daily living. In fully adjusted models predicting lower extremity muscle strength and calf muscle area, we found significant age*log DHEAS interactions, suggesting that the relationship between DHEAS levels and muscle parameters differs across the life span. In age-stratified models adjusted for confounders, serum DHEAS was an independent predictor of muscle strength (p <.02) and mass (p <.01), but only for men between 60 and 79 years of age. After adjusting these models for serum-free or bioavailable testosterone, results were unchanged. In men aged 60-79 years, circulating DHEAS is an independent correlate of muscle strength and calf muscle area. The possible causal role of declining DHEAS in age-related sarcopenia should be further explored in longitudinal studies.

  12. The slack test does not assess maximal shortening velocity of muscle fascicle in human.

    PubMed

    Hager, Robin; Dorel, Sylvain; Nordez, Antoine; Rabita, Giuseppe; Couturier, Antoine; Hauraix, Hugo; Duchateau, Jacques; Guilhem, Gaël

    2018-06-14

    The application of a series of extremely high accelerative motor-driven quick releases while muscles contract isometrically (i.e. slack test) has been proposed to assess unloaded velocity in human muscle. This study aimed to measure gastrocnemius medialis fascicle (V F ) and tendinous tissues shortening velocity during motor-driven quick releases performed at various activation levels to assess the applicability of the slack test method in human. Maximal fascicle shortening velocity and joint velocity recorded during quick releases and during fast contraction without external load (ballistic condition) were compared. Gastrocnemius medialis fascicle behaviour was investigated from 25 participants using high-frame rate ultrasound during quick releases performed at various activation levels (from 0% to 60% of maximal voluntary isometric torque) and ballistic contractions. Unloaded joint velocity calculated using the slack test method increased whereas V F decreased with muscle activation level (P≤0.03). Passive and low-level quick releases elicited higher V F values (≥ 41.4±9.7 cm.s -1 ) compared to ballistic condition (36.3±8.7 cm.s -1 ), while quick releases applied at 60% of maximal voluntary isometric torque produced the lowest V F These findings suggest that initial fascicle length, complex fascicle-tendon interactions, unloading reflex and motor-driven movement pattern strongly influence and limit the shortening velocity achieved during the slack test. Furthermore, V F elicited by quick releases is likely to reflect substantial contributions of passive processes. Therefore, the slack test is not appropriate to assess maximal muscle shortening velocity in vivo. © 2018. Published by The Company of Biologists Ltd.

  13. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    PubMed

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through direct synapses on somata in Vmes and on dendrites of neurons in Vmot.

  14. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  15. Metabolic muscle damage and oxidative stress markers in an America's Cup yachting crew.

    PubMed

    Barrios, Carlos; Hadala, Michal; Almansa, Inmaculada; Bosch-Morell, Francisco; Palanca, José M; Romero, Francisco J

    2011-07-01

    Activities of enzymes involved in muscle damage [creatine kinase (CK) and aspartate aminotransferase (AST)] and levels of malondialdehyde (MDA) as a marker of oxidative stress were monitored in the plasma of 27 members of an America's Cup yachting crew. The preventive benefits of allopurinol on muscle damage were also tested. In racing period A, the crew was divided into two groups according to their tasks on board. Blood samples from all 27 sailors were obtained before the start of a 5-day fleet race, after the last race, and after the ten match races. In period B, crew members were divided at random into two groups. One group (13 participants) received 300 mg/day of allopurinol 3 h before racing. The other ten members received placebo. Blood samples were collected just before and after the second round of the Louis Vuitton Cup. All participants showed increased CK and AST activities after the racing period A. The increase in CK activity was highest in sailors involved in strenuous physical work. At the end of period A, plasma MDA levels were higher in all participants as compared with non-participant athletes. In period B, a significant decrease in CK activity, but not in AST, appeared among participants receiving allopurinol. Plasma MDA decreased in sailors treated with allopurinol, but this reduction did not reach statistical significance. America's Cup is a sailing sport with high physical demands, as shown by the increase in muscle-damage markers. Treatment with allopurinol appeared to decrease the levels of muscle damage markers.

  16. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice

    PubMed Central

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-01-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl) phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle. PMID:28290602

  17. AJS1669, a novel small-molecule muscle glycogen synthase activator, improves glucose metabolism and reduces body fat mass in mice.

    PubMed

    Nakano, Kazuhiro; Takeshita, Sen; Kawasaki, Noriko; Miyanaga, Wataru; Okamatsu, Yoriko; Dohi, Mizuki; Nakagawa, Tadakiyo

    2017-04-01

    Impaired glycogen synthesis and turnover are common in insulin resistance and type 2 diabetes. As glycogen synthase (GS) is a key enzyme involved in the synthetic process, it presents a promising therapeutic target for the treatment of type 2 diabetes. In the present study, we identified a novel, potent and orally available GS activator AJS1669 {sodium 2-[[5-[[4-(4,5-difluoro-2-methylsulfanyl-phenyl)phenoxy] methyl]furan-2-carbonyl]-(2-furylmethyl)amino] acetate}. In vitro, we performed a glycogen synthase 1 (GYS1) activation assay for screening GS activators and identified that the activity of AJS1669 was further potentiated in the presence of glucose-6-phosphate (G6P). In vivo, we used ob/ob mice to evaluate the novel anti-diabetic effects of AJS1669 by measuring basal blood glucose levels, glucose tolerance and body fat mass index. Repeated administration of AJS1669 over 4 weeks reduced blood glucose and hemoglobin A1c (HbA1c) levels in ob/ob mice. AJS1669 also improved glucose tolerance in a dose-dependent manner, and decreased body fat mass. The mRNA levels of genes involved in mitochondrial fatty acid oxidation and mitochondrial biogenesis were elevated in skeletal muscle tissue following AJS1669 treatment. Hepatic tissue of treated mice also exhibited elevated expression of genes associated with fatty acid oxidation. In contrast to ob/ob mice, in C57Bl/6 mice AJS1669 administration did not alter body weight or reduce glucose levels. These results demonstrate that pharmacological agents that activate GYS1, the main GS subtype found in skeletal muscle, have potential for use as novel treatments for diabetes that improve glucose metabolism in skeletal muscle.

  18. An electromyographic study on the sequential recruitment of bilateral sternocleidomastoid and masseter muscle activity during gum chewing.

    PubMed

    Guo, S-X; Li, B-Y; Zhang, Y; Zhou, L-J; Liu, L; Widmalm, S-E; Wang, M-Q

    2017-08-01

    Mandibular functions are associated with electromyographic activity of the jaw muscles and also the sternocleidomastoid muscle (SCM). The precise spatiotemporal relation of SCM and masticatory muscles activities during chewing is worthy of investigation. To analyse the sequential recruitment of SCM and masseter activities during chewing as indicated by the spatiotemporal locations of their activity peaks. Jaw movements and bilateral surface electromyographic activity of SCM and masseter were recorded during gum chewing in 20 healthy subjects. The timing order was decided by comparing the length of time from the time when the opening started to the time when the surface electromyographic activity reached its peak value. Spatial order was analysed by locating the peak electromyographic activity onto a standard chewing cycle which was created based on 15 unilateral chewing cycles. Paired t-test, one-way ANOVA and Student-Newman-Keuls post-test were used for comparisons. Although the Time to Peak for the balancing side SCM appeared shorter than for the other three tested muscles, most often it did not reach a level of significance. However, the location of the balancing side SCM's peak activity was further from the terminal chewing position (TCP) than the working side SCM and bilateral masseters (P < 0·05). The balancing side SCM activity reached its peak significantly further away from TCP than the other three tested muscles during chewing. Further studies with spatiotemporal variables included should be helpful to understand the roles of the head, neck and jaw muscles in orofacial and cervical dysfunctional problems. © 2017 John Wiley & Sons Ltd.

  19. Electromyographic activity of mystacial pad musculature during whisking behavior in the rat.

    PubMed

    Carvell, G E; Simons, D J; Lichtenstein, S H; Bryant, P

    1991-01-01

    Cinematographic measurements of whisker movements generated by behaving rats were compared with electromyographic (EMG) activity recorded simultaneously from mystacial pad musculature. Muscle activity consisted of repetitive bursts, each of which initiated a "whisking" cycle consisting of a protraction followed by a retraction. Protraction amplitude and velocity were directly proportional to the amount of EMG activity during forward whisker movement. Overtime, the intensity of muscle discharge determined the set point about which the vibrissae moved; higher levels of muscle activity resulted in a greater degree of overall whisker protraction. These findings are consistent with the known anatomy of the facial musculature and underscore the importance of whisker protraction in the acquisition of tactile information by the vibrissae.

  20. Suppression of Oxidative Stress by Resveratrol After Isometric Contractions in Gastrocnemius Muscles of Aged Mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Williamson, Courtney L.; Dabkowski, Erinne R.; Hollander, John M.

    2010-01-01

    This study tested the hypothesis that resveratrol supplementation would lower oxidative stress in exercised muscles of aged mice. Young (3 months) and aged (27 months) C57BL/6 mice received a control or a 0.05% trans-resveratrol-supplemented diet for 10 days. After 7 days of dietary intervention, 20 maximal electrically evoked isometric contractions were obtained from the plantar flexors of one limb in anesthetized mice. Exercise was conducted for three consecutive days. Resveratrol supplementation blunted the exercise-induced increase in xanthine oxidase activity in muscles from young (25%) and aged (53%) mice. Resveratrol lowered H2O2 levels in control (13%) and exercised (38%) muscles from aged animals, reduced Nox4 protein in both control and exercised muscles of young (30%) and aged mice (40%), and increased the ratio of reduced glutathione to oxidized glutathione in exercised muscles from young (38%) and aged (135%) mice. Resveratrol prevented the increase in lipid oxidation, increased catalase activity, and increased MnSOD activity in exercised muscles from aged mice. These data show that dietary resveratrol suppresses muscle indicators of oxidative stress in response to isometric contractions in aged mice. PMID:20507922

  1. A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency.

    PubMed

    Boitier, E; Degoul, F; Desguerre, I; Charpentier, C; François, D; Ponsot, G; Diry, M; Rustin, P; Marsac, C

    1998-01-01

    We report severe coenzyme Q10 deficiency of muscle in a 4-year-old boy presenting with progressive muscle weakness, seizures, cerebellar syndrome, and a raised cerebro-spinal fluid lactate concentration. State-3 respiratory rates of muscle mitochondria with glutamate, pyruvate, palmitoylcarnitine, and succinate as respiratory substrates were markedly reduced, whereas ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine were oxidized normally. The activities of complexes I, II, III and IV of the electron transport chain were normal, but the activities of complexes I+III and II+III, both systems requiring coenzyme Q10 as an electron carrier, were dramatically decreased. These results suggested a defect in the mitochondrial coenzyme Q10 content. This was confirmed by the direct assessment of coenzyme Q10 level by high-performance liquid chromatography in patient's muscle homogenate and isolated mitochondria, revealing levels of 16% and 6% of the control values, respectively. We did not find any impairment of the respiratory chain either in a lymphoblastoid cell line or in skin cultured fibroblasts from the patient, suggesting that the coenzyme Q10 depletion was tissue-specific. This is a new case of a muscle deficiency of mitochondrial coenzyme Q in a patient suffering from an encephalomyopathy.

  2. Function of a large biarticular hip and knee extensor during walking and running in guinea fowl (Numida meleagris).

    PubMed

    Carr, Jennifer A; Ellerby, David J; Marsh, Richard L

    2011-10-15

    Physiological and anatomical evidence suggests that in birds the iliotibialis lateralis pars postacetabularis (ILPO) is functionally important for running. Incorporating regional information, we estimated the mean sarcomere strain trajectory and electromyographic (EMG) amplitude of the ILPO during level and incline walking and running. Using these data and data in the literature of muscle energy use, we examined three hypotheses: (1) active lengthening will occur on the ascending limb of the length-tension curve to avoid potential damage caused by stretch on the descending limb; (2) the active strain cycle will shift to favor active shortening when the birds run uphill and shortening will occur on the plateau and shallow ascending limb of the length-tension curve; and (3) measures of EMG intensity will correlate with energy use when the mechanical function of the muscle is similar. Supporting the first hypothesis, we found that the mean sarcomere lengths at the end of active lengthening during level locomotion were smaller than the predicted length at the start of the plateau of the length-tension curve. Supporting the second hypothesis, the magnitude of active lengthening decreased with increasing slope, whereas active shortening increased. In evaluating the relationship between EMG amplitude and energy use (hypothesis 3), we found that although increases in EMG intensity with speed, slope and loading were positively correlated with muscle energy use, the quantitative relationships between these variables differed greatly under different conditions. The relative changes in EMG intensity and energy use by the muscle probably varied because of changes in the mechanical function of the muscle that altered the ratio of muscle energy use to active muscle volume. Considering the overall function of the cycle of active lengthening and shortening of the fascicles of the ILPO, we conclude that the function of active lengthening is unlikely to be energy conservation and may instead be related to promoting stability at the knee. The work required to lengthen the ILPO during stance is provided by co-contracting knee flexors. We suggest that this potentially energetically expensive co-contraction serves to stabilize the knee in early stance by increasing the mechanical impedance of the joint.

  3. Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery.

    PubMed

    Taivassalo, Tanja; Ayyad, Karen; Haller, Ronald G

    2012-01-01

    Human skeletal muscle respiratory chain defects restrict the ability of working muscle to extract oxygen from blood, and result in a hyperkinetic circulation during exercise in which oxygen delivery is excessive relative to oxygen uptake and oxygen levels within contracting muscle are abnormally high. To investigate the role of the muscle microcirculation in this anomalous circulatory response and possible implications for the regulation of muscle angiogenesis, we assessed muscle oxidative capacity during cycle exercise and determined capillary levels and distribution and vascular endothelial growth factor expression in quadriceps muscle biopsies in patients with mitochondrial myopathy attributable to heteroplasmic mitochondrial DNA mutations. We found that in patients with mitochondrial myopathy, muscle capillary levels were twice that of sedentary healthy subjects (3.0 ± 0.9% compared with 1.4 ± 0.3%, P < 0.001) despite the fact that oxygen utilization during peak cycle exercise was half that of control subjects (11.1 ± 4.0 ml/kg/min compared with 20.7 ± 7.9 ml/kg/min, P < 0.01); that capillary area was greatest in patients with the most severe muscle oxidative defects and was more than two times higher around muscle fibre segments with defective (i.e. cytochrome oxidase negative/succinic dehydrogenase-positive or 'ragged-red' fibres) compared with more preserved respiratory chain function; and that vascular endothelial growth factor expression paralleled capillary distribution. The increased muscle capillary levels in patients correlated directly (r(2) = 0.68, P < 0.05) with the severity of the mismatch between systemic oxygen delivery (cardiac output) and oxygen utilization during cycle exercise. Our results suggest that capillary growth is increased as a result of impaired muscle oxidative phosphorylation in mitochondrial myopathy, thus promoting increased blood flow to respiration-incompetent muscle fibres and a mismatch between oxygen delivery and utilization during exercise. Furthermore, the finding of high capillary levels despite elevated tissue oxygen levels during exercise in respiration-deficient muscle fibres implies that mitochondrial metabolism activates angiogenesis in skeletal muscle by a mechanism that is independent of hypoxia.

  4. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.

    PubMed

    Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro

    2017-08-01

    The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated

    USDA-ARS?s Scientific Manuscript database

    Insulin and amino acids act independently to stimulate protein synthesis in skeletal muscle of neonatal pigs, and the responses decrease with development. The purpose of this study was to compare the separate effects of fed levels of INS and AA on the activation of signaling components leading to tr...

  6. Distinct Behaviour of Sorafenib in Experimental Cachexia-Inducing Tumours: The Role of STAT3

    PubMed Central

    Busquets, Sílvia; López-Soriano, Francisco J.; Argilés, Josep M.

    2014-01-01

    The presence of a tumour is very often associated with wasting in the host, affecting both skeletal muscle and adipose tissue. In the present study we used sorafenib, a multi-kinase inhibitor with anti-tumour activity, in order to investigate the effects of chemotherapy on wasting. Three different experimental mouse tumour models were included: C26 colon carcinoma, B16 melanoma and Lewis lung carcinoma (LLC). The results obtained clearly show that sorafenib was effective in reducing tumour growth in LLC and B16 models, while it had no effect on C26. Interestingly, sorafenib treatment reduced the signs of muscle wasting and improved the physical activity in the LLC model and also in the C26, despite the absence of antineoplastic action in the latter. Our results discard a role for IL-6 in the action of sorafenib since the drug did not affect the levels of this cytokine. Conversely, sorafenib seems to act by influencing both STAT3 and ERK activity at muscle level, leading to reduced accumulation of Pax7 and atrogin-1. Sorafenib may interfere with muscle wasting by decreasing the activation of these signal transduction pathways. PMID:25436606

  7. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  8. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study.

    PubMed

    Fitton, L C; Shi, J F; Fagan, M J; O'Higgins, P

    2012-07-01

    Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  9. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study

    PubMed Central

    Fitton, L C; Shi, J F; Fagan, M J; O’Higgins, P

    2012-01-01

    Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated. PMID:22690885

  10. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma

    PubMed Central

    Vitadello, Maurizio; Germinario, Elena; Ravara, Barbara; Libera, Luciano Dalla; Danieli-Betto, Daniela; Gorza, Luisa

    2014-01-01

    Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force–frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting. PMID:24710058

  11. Effective utilization of gravity during arm downswing in keystrokes by expert pianists.

    PubMed

    Furuya, S; Osu, R; Kinoshita, H

    2009-12-01

    The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.

  12. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling.

    PubMed

    Burgos-Ramos, Emma; Canelles, Sandra; Rodríguez, Amaia; Frago, Laura M; Gómez-Ambrosi, Javier; Chowen, Julie A; Frühbeck, Gema; Argente, Jesús; Barrios, Vicente

    2018-07-15

    Insulin potentiates leptin effects on muscle accrual and glucose homeostasis. However, the relationship between leptin's central effects on peripheral insulin sensitivity and the associated structural changes remain unclear. We hypothesized that central leptin infusion modifies muscle size through activation of insulin signaling. Muscle insulin signaling, enzymes of fatty acid metabolism, mitochondrial respiratory chain complexes, proliferating cell nuclear antigen (PCNA) and fiber area were analyzed in the gastrocnemius of chronic central infused (L), pair-fed (PF) and control rats. PCNA-positive nuclei, fiber area, GLUT4 and glycogen levels and activation of Akt and mechanistic target of rapamycin were increased in L, with no changes in PF. Acetyl-CoA carboxylase-β mRNA levels and non-esterified fatty acid and triglyceride content were reduced and carnitine palmitoyltransferase-1b expression and mitochondrial complexes augmented in L. These results suggest that leptin promotes an increase in muscle size associated with improved insulin signaling favored by lipid profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, ∆(9)-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids.

    PubMed

    Rana, Madhu Suman; Tyagi, A; Hossain, Sk Asraf; Tyagi, A K

    2012-03-01

    Conjugated linoleic acid, a fatty acid found in milk fat and ruminant meat is one of the functional food components. Modifying fatty acid composition so as to increase CLA and other beneficial PUFA/MUFA level and reducing SFA levels might be a key to enhance the neutraceutical and therapeutic value of ruminant-derived food products. In the present experiment, the effect of supplementation of polyphenol rich Terminalia chebula plant extract at different concentrations (1.06g/kg and 3.18g/kg of body weight in T1 and T2 groups, respectively) was investigated on fatty acid composition of rumen fluid, plasma, intramuscular fat and Δ9-desaturase activity in longissimus dorsi muscle of crossbred kids. Total MUFA and PUFA content in muscle were enhanced by 25 and 35%, respectively, whereas SFA was reduced by 20% thereby improving the desaturation index. Δ9-desaturase activity also increased by 47% resulting in an enhancement of total CLA content (58.73%) in muscle. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking.

    PubMed

    Mills, Kathryn; Hunt, Michael A; Leigh, Ryan; Ferber, Reed

    2013-08-01

    Neuromuscular alterations are increasingly reported in individuals with knee osteoarthritis (KOA) during level walking. We aimed to determine which neuromuscular alterations are consistent in KOA individuals and how these may be influenced by osteoarthritis severity, varus alignment and/or joint laxity. Electronic databases were searched up to July 2012. Cross-sectional observational studies comparing lower-limb neuromuscular activity in individuals with KOA, healthy controls or with different KOA cohorts were included. Two reviewers assessed methodological quality. Effect sizes were used to quantify the magnitude of observed differences. Where studies were homogenous, effect sizes were pooled using a fixed-effects model. Fourteen studies examining neuromuscular alterations in indices of co-contraction, muscle amplitude and muscle activity duration were included. Data pooling revealed that moderate KOA individuals exhibit increased co-contraction of lateral knee muscles (ES 0.64 [0.3 to 0.97]) and moderately increased rectus femoris (ES 0.73 [0.23 to 1.22]), vastus lateralis (ES 0.77 [0.27 to 1.27]) and biceps femoris (ES 1.18 [0.67 to 1.7]) mean amplitude. Non-pooled data indicated prolonged activity of these muscles. Increased medial knee neuromuscular activity was prevalent for those exhibiting varus alignment and medial knee joint laxity. Interpretation Individuals with KOA exhibited increased co-contraction, amplitude and duration of lateral knee muscles regardless of disease severity, limb alignment or medial joint laxity. Individuals with severe disease, varus alignment and medial joint laxity demonstrate up-regulation of medial knee muscles. Future research investigating the efficacy of neuromuscular rehabilitation programs should consider the effect of simultaneous up-regulation of medial and lateral knee muscles on disease progression. © 2013.

  15. Motor output evoked by subsaccadic stimulation of primate frontal eye fields.

    PubMed

    Corneil, Brian D; Elsley, James K; Nagy, Benjamin; Cushing, Sharon L

    2010-03-30

    In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades

  16. Muscle-specific deletion of Prkaa1 enhances skeletal muscle lipid accumulation in mice fed a high-fat diet.

    PubMed

    Wu, Weiche; Xu, Ziye; Zhang, Ling; Liu, Jiaqi; Feng, Jie; Wang, Xinxia; Shan, Tizhong; Wang, Yizhen

    2018-05-01

    Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.

  17. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression.

    PubMed

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A; Cardozo, Christopher P

    2011-10-14

    Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy. Copyright © 2011. Published by Elsevier Inc.

  18. Evaluation of the internal oblique, external oblique, and transversus abdominalis muscles in patients with ankylosing spondylitis: an ultrasonographic study.

    PubMed

    Üşen, Ahmet; Kuran, Banu; Yılmaz, Figen; Aksu, Neşe; Erçalık, Cem

    2017-11-01

    The objectives of the study are to compare abdominal muscle thickness in ankylosing spondylitis (AS) patients with healthy subjects and determine the factors affecting these muscle thickness. Thirty-five male patients with a previous diagnosis of AS according to the Modified New York criteria and a control group consisting of 35 healthy male individuals were included in this cross-sectional and case-control study. Thicknesses of the internal oblique (IO), external oblique (EO), and transversus abdominalis (TrA) muscles were measured with ultrasound (US). AS patients were classified according to the International Physical Activity Questionnaire (IPAQ). There were 35 AS patients with a mean age of 35.17 ± 8.05 years and 35 healthy subjects with a mean age 32.57 ± 7.05 years. No significant difference was observed between the groups in terms of abdominal muscle thicknesses (p > 0.005). When the AS patients were classified according to the IPAQ scores, thicknesses of the IO and TrA muscles were significantly lower in patients who had the low level of IPAQ scores (p < 0.05). In the light of our first and preliminary results, muscle thickness of the IO, EO, and TrA muscles were similar in AS patients to healthy subjects. However, AS patients who had lower level of physical activity have also reduced thickness of IO and TrA muscles.

  19. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  20. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  1. PRMT7 Preserves Satellite Cell Regenerative Capacity.

    PubMed

    Blanc, Roméo Sébastien; Vogel, Gillian; Chen, Taiping; Crist, Colin; Richard, Stéphane

    2016-02-16

    Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone

    PubMed Central

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-01-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles. PMID:27313393

  3. Influence of cigarette smoking on human autonomic function

    NASA Technical Reports Server (NTRS)

    Niedermaier, O. N.; Smith, M. L.; Beightol, L. A.; Zukowska-Grojec, Z.; Goldstein, D. S.; Eckberg, D. L.

    1993-01-01

    BACKGROUND. Although cigarette smoking is known to lead to widespread augmentation of sympathetic nervous system activity, little is known about the effects of smoking on directly measured human sympathetic activity and its reflex control. METHODS AND RESULTS. We studied the acute effects of smoking two research-grade cigarettes on muscle sympathetic nerve activity and on arterial baroreflex-mediated changes of sympathetic and vagal neural cardiovascular outflows in eight healthy habitual smokers. Measurements were made during frequency-controlled breathing, graded Valsalva maneuvers, and carotid baroreceptor stimulation with ramped sequences of neck pressure and suction. Smoking provoked the following changes: Arterial pressure increased significantly, and RR intervals, RR interval spectral power at the respiratory frequency, and muscle sympathetic nerve activity decreased. Plasma nicotine levels increased significantly, but plasma epinephrine, norepinephrine, and neuropeptide Y levels did not change. Peak sympathetic nerve activity during and systolic pressure overshoots after Valsalva straining increased significantly in proportion to increases of plasma nicotine levels. The average carotid baroreceptor-cardiac reflex relation shifted rightward and downward on arterial pressure and RR interval axes; average gain, operational point, and response range did not change. CONCLUSIONS. In habitual smokers, smoking acutely reduces baseline levels of vagal-cardiac nerve activity and completely resets vagally mediated arterial baroreceptor-cardiac reflex responses. Smoking also reduces muscle sympathetic nerve activity but augments increases of sympathetic activity triggered by brief arterial pressure reductions. This pattern of autonomic changes is likely to influence smokers' responses to acute arterial pressure reductions importantly.

  4. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  5. Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice

    PubMed Central

    Burns, David P.; Ali, Izza; Rieux, Clement; Healy, James; Jasionek, Greg; O’Halloran, Ken D.

    2017-01-01

    Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. PMID:29210997

  6. Dietary resveratrol supplementation improves meat quality of finishing pigs through changing muscle fiber characteristics and antioxidative status.

    PubMed

    Zhang, Cheng; Luo, Junqiu; Yu, Bing; Zheng, Ping; Huang, Zhiqing; Mao, Xiangbing; He, Jun; Yu, Jie; Chen, Jiali; Chen, Daiwen

    2015-04-01

    This study investigated the effects of resveratrol (0, 300, 600 mg/kg) on meat quality, muscle fiber characteristics and antioxidative capacity of finishing pigs. The results showed that resveratrol not only increased m. longissimus dorsi (LM) pH(24 h), a*, crude protein and myoglobin content but also decreased L*(24 h), shear force, drip loss, glycolytic potential, as well as backfat depth, LM lactate dehydrogenase activity and mRNA level. Meanwhile, LM total antioxidative capacity, glutathione peroxidase activity and its mRNA level were increased by resveratrol, while malonaldehyde content was decreased. In addition, resveratrol increased myosin heavy chain (MyHC)IIa mRNA level and decreased MyHCIIb mRNA level, along with decreased myofiber cross-sectional area. In conclusion, these results suggest that resveratrol is an effective feed additive to improve pork quality, and the underlying mechanism may be partly due to the changed muscle fiber characteristics and antioxidative capacity induced by resveratrol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lower-extremity musculoskeletal geometry affects the calculation of patellofemoral forces in vertical jumping and weightlifting.

    PubMed

    Cleather, D I; Bull, A M J

    2010-01-01

    The calculation of the patellofemoral joint contact force using three-dimensional (3D) modelling techniques requires a description of the musculoskeletal geometry of the lower limb. In this study, the influence of the complexity of the muscle model was studied by considering two different muscle models, the Delp and Horsman models. Both models were used to calculate the patellofemoral force during standing, vertical jumping, and Olympic-style weightlifting. The patellofemoral forces predicted by the Horsman model were markedly lower than those predicted by the Delp model in all activities and represented more realistic values when compared with previous work. This was found to be a result of a lower level of redundancy in the Delp model, which forced a higher level of muscular activation in order to allow a viable solution. The higher level of complexity in the Horsman model resulted in a greater degree of redundancy and consequently lower activation and patellofemoral forces. The results of this work demonstrate that a well-posed muscle model must have an adequate degree of complexity to create a sufficient independence, variability, and number of moment arms in order to ensure adequate redundancy of the force-sharing problem such that muscle forces are not overstated.

  8. Fiber size, type, and myosin heavy chain content in rhesus hindlimb muscles after 2 weeks at 2 G

    NASA Technical Reports Server (NTRS)

    Tavakol, Morteza; Roy, Roland R.; Kim, Jung A.; Zhong, Hui; Hodgson, John A.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Edgerton, V. Reggie

    2002-01-01

    BACKGROUND: Fiber atrophy and an increase in the percentage of fast fibers have been observed in Rhesus leg muscles after spaceflight. Hypothesis: Hypergravity will result in muscle fiber hypertrophy and an increase in the percentage of slow fibers. METHODS: Open muscle biopsies were obtained from Rhesus soleus, medial gastrocnemius (MG), and tibialis anterior (TA) muscles before and after 14 d of centrifugation (2 G) and in time-matched controls. Cage activity levels were measured by telemetry. RESULTS: Based on monoclonal antibody binding for myosin heavy chains (MHC), the fastest region of soleus contained a higher proportion of type I+II (27 vs. 13%) and had a tendency for a lower proportion of type I (38 vs. 61%, p = 0.10) fibers after than before centrifugation. There was a higher proportion of type I+II fibers in post- vs. pre-2 G (10 vs. 0.6%) MG biopsies. Fiber type distribution and MHC composition were unaffected in the TA. Overall, mean fiber sizes were unaffected by centrifugation. Average cage activity levels were 36% lower during than before 2 G. CONCLUSIONS: Our hypothesis was rejected. The changes in the proportion of fibers expressing type I MHC are the reverse of that expected with chronic loading of extensors and, paradoxically, are similar to changes observed with chronic unloading, such as occurs during spaceflight, in this primate model. The data are consistent with the observed decrease in total daily activity levels.

  9. Attenuation of p38α MAPK stress response signaling delays the in vivo aging of skeletal muscle myofibers and progenitor cells.

    PubMed

    Papaconstantinou, John; Wang, Chen Z; Zhang, Min; Yang, San; Deford, James; Bulavin, Dmitry V; Ansari, Naseem H

    2015-09-01

    Functional competence and self-renewal of mammalian skeletal muscle myofibers and progenitor cells declines with age. Progression of the muscle aging phenotype involves the decline of juvenile protective factorsi.e., proteins whose beneficial functions translate directly to the quality of life, and self-renewal of progenitor cells. These characteristics occur simultaneously with the age-associated increase of p38α stress response signaling. This suggests that the maintenance of low levels of p38α activity of juvenile tissues may delay or attenuate aging. We used the dominant negative haploinsufficient p38α mouse (DN-p38α(AF/+)) to demonstrate that in vivo attenuation of p38α activity in the gastrocnemius of the aged mutant delays age-associated processes that include: a) the decline of the juvenile protective factors, BubR1, aldehyde dehydrogenase 1A (ALDH1A1), and aldehyde dehydrogenase 2 (ALDH2); b) attenuated expression of p16(Ink4a) and p19(Arf) tumor suppressor genes of the Cdkn2a locus; c) decreased levels of hydroxynonenal protein adducts, expression of COX2 and iNOS; d) decline of the senescent progenitor cell pool level and d) the loss of gastrocnemius muscle mass. We propose that elevated P-p38α activity promotes skeletal muscle aging and that the homeostasis of p38α impacts the maintenance of a beneficial healthspan.

  10. Two stages and three components of the postural preparation to action.

    PubMed

    Krishnan, Vennila; Aruin, Alexander S; Latash, Mark L

    2011-07-01

    Previous studies of postural preparation to action/perturbation have primarily focused on anticipatory postural adjustments (APAs), the changes in muscle activation levels resulting in the production of net forces and moments of force. We hypothesized that postural preparation to action consists of two stages: (1) Early postural adjustments (EPAs), seen a few hundred ms prior to an expected external perturbation and (2) APAs seen about 100 ms prior to the perturbation. We also hypothesized that each stage consists of three components, anticipatory synergy adjustments seen as changes in covariation of the magnitudes of commands to muscle groups (M-modes), changes in averaged across trials levels of muscle activation, and mechanical effects such as shifts of the center of pressure. Nine healthy participants were subjected to external perturbations created by a swinging pendulum while standing in a semi-squatting posture. Electrical activity of twelve trunk and leg muscles and displacements of the center of pressure were recorded and analyzed. Principal component analysis was used to identify four M-modes within the space of muscle activations using indices of integrated muscle activation. This analysis was performed twice, over two phases, 400-700 ms prior to the perturbation and over 200 ms just prior to the perturbation. Similar robust results were obtained using the data from both phases. An index of a multi-M-mode synergy stabilizing the center of pressure displacement was computed using the framework of the uncontrolled manifold hypothesis. The results showed high synergy indices during quiet stance. Each of the two stages started with a drop in the synergy index followed by a change in the averaged across trials activation levels in postural muscles. There was a very long electromechanical delay during the early postural adjustments and a much shorter delay during the APAs. Overall, the results support our main hypothesis on the two stages and three components of the postural preparation to action/perturbation. This is the first study to document anticipatory synergy adjustments in whole-body tasks. We interpret the results within the referent configuration hypothesis (an extension of the equilibrium-point hypothesis): The early postural adjustment is based primarily on changes in the coactivation command, while the APAs involve changes in the reciprocal command. The results fit an earlier hypothesis that whole-body movements are controlled by a neuromotor hierarchy where each level involves a few-to-many mappings organized to stabilize its overall output.

  11. The AMPK β2 subunit is required for energy homeostasis during metabolic stress.

    PubMed

    Dasgupta, Biplab; Ju, Jeong Sun; Sasaki, Yo; Liu, Xiaona; Jung, Su-Ryun; Higashida, Kazuhiko; Lindquist, Diana; Milbrandt, Jeffrey

    2012-07-01

    AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.

  12. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  13. Does experimental low back pain change posteroanterior lumbar spinal stiffness and trunk muscle activity? A randomized crossover study.

    PubMed

    Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N

    2016-05-01

    While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (P<0.05). Both spinal stiffness and trunk muscle activity returned to baseline levels as pain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm-2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  15. Increases in creatine kinase with atorvastatin treatment are not associated with decreases in muscular performance.

    PubMed

    Ballard, Kevin D; Parker, Beth A; Capizzi, Jeffrey A; Grimaldi, Adam S; Clarkson, Priscilla M; Cole, Stephanie M; Keadle, Justin; Chipkin, Stuart; Pescatello, Linda S; Simpson, Kathleen; White, C Michael; Thompson, Paul D

    2013-09-01

    The present study examined if increases in creatine kinase (CK) levels during high-dose atorvastatin treatment are associated with changes in skeletal muscle function and symptoms. The Effect of Statins on Muscle Performance study (STOMP) investigated the effects of atorvastatin 80 mg daily for 6 months on muscle performance, exercise capacity, and the incidence of statin-associated muscle complaints in healthy adults. CK levels increased with atorvastatin (n = 202) from 132.3 ± 120.9 U/L (mean ± SD) at baseline to 159.7 ± 170.4 and 153.1 ± 139.4 U/L at 3 and 6 months, respectively (P ≤ 0.002 for both). Changes in CK with atorvastatin treatment were not associated with changes in muscle function or the incidence of myalgia. More subjects on atorvastatin (n = 24) compared to placebo (n = 12 of 217) doubled their CK level at 6 months (P = 0.02). No differences in muscle function or physical activity were observed between atorvastatin-treated subjects who did or did not double their CK. Results of the present investigation extend the findings of STOMP by demonstrating that greater increases in CK levels with high-dose atorvastatin treatment did not deleteriously impact skeletal muscle function or predict skeletal muscle complaints. This study was registered at ClinicalTrials.gov (NCT00609063). © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α.

    PubMed

    Kackstein, Katharina; Teren, Andrej; Matsumoto, Yasuharu; Mangner, Norman; Möbius-Winkler, Sven; Linke, Axel; Schuler, Gerhard; Punkt, Karla; Adams, Volker

    2013-05-01

    Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. Copyright © 2017 the American Physiological Society.

  18. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy

    PubMed Central

    Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.

    2017-01-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic biological mechanisms of muscle fiber hypertrophy. PMID:27979985

  19. Posterior Cricoarytenoid Muscle Dynamics in Canines and Humans

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objective The posterior cricoarytenoid (PCA) muscle is the sole abductor of the glottis and serves important functions during respiration, phonation, cough, and sniff. The present study examines vocal fold abduction dynamics during PCA muscle activation. Study Design Basic science study using an in vivo canine model and human subjects. Methods In four canines and five healthy humans vocal fold abduction time was measured using high speed video recording. In the canines, PCA muscle activation was achieved using graded stimulation of the PCA nerve branch. The human subjects performed coughing and sniffing tasks. High speed video and audio signals were concurrently recorded. Results In the canines the vocal fold moved posteriorly, laterally, and superiorly during abduction. Average time to reach 10%, 50% and 90% abduction was 23, 50, and 100 ms with low stimulation, 24, 58, and 129 ms with medium stimulation, and 21, 49, and 117 ms with high level stimulation. In the humans, 100% abduction times for coughing and sniffing tasks were 79 and 193 ms, respectively. Conclusion The PCA abduction times in canines are within the range in humans. The results also further support the notion that PCA muscles are fully active during cough. Level of Evidence N/A (Animal studies and basic research) PMID:24781959

  20. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    PubMed

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  1. Muscle coordination in cycling: effect of surface incline and posture.

    PubMed

    Li, L; Caldwell, G E

    1998-09-01

    The purpose of the present study was to examine the neuromuscular modifications of cyclists to changes in grade and posture. Eight subjects were tested on a computerized ergometer under three conditions with the same work rate (250 W): pedaling on the level while seated, 8% uphill while seated, and 8% uphill while standing (ST). High-speed video was taken in conjunction with surface electromyography (EMG) of six lower extremity muscles. Results showed that rectus femoris, gluteus maximus (GM), and tibialis anterior had greater EMG magnitude in the ST condition. GM, rectus femoris, and the vastus lateralis demonstrated activity over a greater portion of the crank cycle in the ST condition. The muscle activities of gastrocnemius and biceps femoris did not exhibit profound differences among conditions. Overall, the change of cycling grade alone from 0 to 8% did not induce a significant change in neuromuscular coordination. However, the postural change from seated to ST pedaling at 8% uphill grade was accompanied by increased and/or prolonged muscle activity of hip and knee extensors. The observed EMG activity patterns were discussed with respect to lower extremity joint moments. Monoarticular extensor muscles (GM, vastus lateralis) demonstrated greater modifications in activity patterns with the change in posture compared with their biarticular counterparts. Furthermore, muscle coordination among antagonist pairs of mono- and biarticular muscles was altered in the ST condition; this finding provides support for the notion that muscles within these antagonist pairs have different functions.

  2. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  3. Neck muscle biomechanics and neural control.

    PubMed

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, p<0.05) and their preferred directions were 23, 39, & 21{degree sign} different from their electrically stimulated directions for the SCM, SPL, and SSC respectively (p<0.05). Intra-subject variability was smaller in electrically stimulated moment directions when compared to voluntary preferred directions, and intra-subject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  4. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    PubMed

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  5. Obstructive sleep apnea.

    PubMed

    White, David P; Younes, Magdy K

    2012-10-01

    Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive collapse of the pharyngeal airway during sleep. Control of pharyngeal patency is a complex process relating primarily to basic anatomy and the activity of many pharyngeal dilator muscles. The control of these muscles is regulated by a number of processes including respiratory drive, negative pressure reflexes, and state (sleep) effects. In general, patients with OSA have an anatomically small airway the patency of which is maintained during wakefulness by reflex-driven augmented dilator muscle activation. At sleep onset, muscle activity falls, thereby compromising the upper airway. However, recent data suggest that the mechanism of OSA differs substantially among patients, with variable contributions from several physiologic characteristics including, among others: level of upper airway dilator muscle activation required to open the airway, increase in chemical drive required to recruit the pharyngeal muscles, chemical control loop gain, and arousal threshold. Thus, the cause of sleep apnea likely varies substantially between patients. Other physiologic mechanisms likely contributing to OSA pathogenesis include falling lung volume during sleep, shifts in blood volume from peripheral tissues to the neck, and airway edema. Apnea severity may progress over time, likely due to weight gain, muscle/nerve injury, aging effects on airway anatomy/collapsibility, and changes in ventilatory control stability. © 2012 American Physiological Society

  6. Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to an exercise intervention.

    PubMed

    Nelson-Wong, Erika; Callaghan, Jack P

    2010-12-01

    Low back pain (LBP) development has been associated with occupational standing. Increased hip and trunk muscle co-activation is considered to be predisposing for LBP development during standing in previously asymptomatic individuals. The purpose of this work was to investigate muscle activation and LBP responses to a prescribed exercise program. Pain-developing (PD) individuals were expected to have decreased LBP and muscle co-activation following exercise intervention. Electromyography (EMG) data were recorded from trunk and hip muscle groups during 2-h of standing. An increase of >10mm on visual analog scale (VAS) during standing was threshold for PD categorization. Participants were assigned to progressive exercise program with weekly supervision or control (usual activity) for 4 weeks then re-tested. Forty percent were categorized as PD on day 1, VAS=24.2 (±4.0)mm. PD exercisers (PDEX) had lower VAS scores (8.93±3.66 mm) than PD control (PDCON) (16.5±6.3 mm) on day 2 (p=0.007). Male PDEX had decreased gluteus medius co-activation levels (p<0.05) on day 2. The exercise program proved beneficial in reducing LBP during standing. There were changes in muscle activation patterns previously associated with LBP. Predisposing factors for LBP during standing were shown to change positively with appropriate exercise intervention. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Anaerobic muscle strengthening physical activity and depression severity among USA adults.

    PubMed

    Cangin, Causenge; Harris, Randall; Binkley, Philip; Schwartzbaum, Judith; Focht, Brian

    2018-06-01

    We investigated the association between depression and anaerobic physical activity (while controlling aerobic physical activity), using a nationally representative sample of USA adults ( n  = 7354) who participated in the cross sectional National Health and Nutrition Examination Survey (NHANES, 1999-2006). We defined depression using the validated "Patient Health Questionnaire" (PHQ 9 ) scale of 0-27 as PHQ 9   ≥  10. Severity of depression was classified by clinically established PHQ 9 levels: mild (5-9), dysthymic (10-14), moderate (15-19), and major depression ( ≥ 20). We used logistic regression to estimate adjusted odds ratios of depression associated with distinct types of activity (only aerobic, only anaerobic, combined regime). We used multinomial logistic regression to examine associations of anaerobic activity with various severity levels of depression (mild, dysthymic, moderate, and major depression) with adjustment for aerobic activity. Women had higher prevalence of depression than men (8.4% versus 5.7%), whereas anaerobic muscle strengthening activity was more common in men than women (35% versus 24%). Adjusting for aerobic activity , anaerobic activity was inversely associated with depression (PHQ 9   ≥  10) in women under 50 (OR = 0.57; 95%CI = 0.41-0.81), all women (OR = 0.59; 0.43-0.80), men under 50 (OR = 0.85; 0.58-1.2), and all men (OR = 0.72; 0.51-1.01). Anaerobic activity was inversely associated with severity level of depressive symptoms in women and men. The combined regimen of anaerobic muscle strengthening activity and meeting the Physical Activity Guideline for America (PAGA) was related to the lowest odds ratio of depression in women (OR = 0.50; 95%CI = 0.33-0.75) and men (OR = 0.39; 95%CI = 0.23-0.62). Independent of aerobic physical activity, anaerobic muscle strengthening activity is significantly and inversely associated with depression among USA adults.

  8. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle.

    PubMed

    Montori-Grau, Marta; Pedreira-Casahuga, Robert; Boyer-Díaz, Zoé; Lassot, Iréna; García-Martínez, Celia; Orozco, Anna; Cebrià, Judith; Osorio-Conles, Oscar; Chacón, Matilde R; Vendrell, Joan; Vázquez-Carrera, Manuel; Desagher, Solange; Jiménez-Chillarón, Josep Carles; Gómez-Foix, Anna Ma

    2018-06-01

    Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    PubMed

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. Copyright © 2016 the American Physiological Society.

  10. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  11. The Impact of Ergonomically Designed Workstations on Shoulder EMG Activity during Carpet Weaving

    PubMed Central

    Motamedzade, Majid; Afshari, Davood; Soltanian, Alireza

    2014-01-01

    Background: The present study aimed to evaluate the biomechanical exposure to the trapezius muscle activity in female weavers for a prolonged period in the workstation A (suggested by previous studies) and workstation B (proposed by the present study). Methods: Electromyography data were collected from nine females during four hours for each ergonomically designed workstation at the Ergonomics Laboratory, Hamadan, Iran. The design criteria for ergonomically designed workstations were: 1) weaving height (20 and 3 cm above elbow height for workstations A and B, respectively), and 2) seat type (10° and 0° forwardsloping seat for workstations A and B, respectively). Results: The amplitude probability distribution function (APDF) analysis showed that the left and right upper trapezius muscle activity was almost similar at each workstation. Trapezius muscle activity in the workstation A was signifi­cantly greater than workstations B (P<0.001). Conclusion: In general, use of workstation B leads to significantly reduced muscle activity levels in the upper trapezius as compared to workstation A in weavers. Despite the positive impact of workstation B in reducing trapezius muscle activity, it seems that constrained postures of the upper arm during weaving may be associated with musculoskeletal symptoms. PMID:25650180

  12. The Impact of Ergonomically Designed Workstations on Shoulder EMG Activity during Carpet Weaving.

    PubMed

    Motamedzade, Majid; Afshari, Davood; Soltanian, Alireza

    2014-01-01

    The present study aimed to evaluate the biomechanical exposure to the trapezius muscle activity in female weavers for a prolonged period in the workstation A (suggested by previous studies) and workstation B (proposed by the present study). Electromyography data were collected from nine females during four hours for each ergonomically designed workstation at the Ergonomics Laboratory, Hamadan, Iran. The design criteria for ergonomically designed workstations were: 1) weaving height (20 and 3 cm above elbow height for workstations A and B, respectively), and 2) seat type (10° and 0° forwardsloping seat for workstations A and B, respectively). The amplitude probability distribution function (APDF) analysis showed that the left and right upper trapezius muscle activity was almost similar at each workstation. Trapezius muscle activity in the workstation A was signifi-cantly greater than workstations B (P<0.001). In general, use of workstation B leads to significantly reduced muscle activity levels in the upper trapezius as compared to workstation A in weavers. Despite the positive impact of workstation B in reducing trapezius muscle activity, it seems that constrained postures of the upper arm during weaving may be associated with musculoskeletal symptoms.

  13. Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations.

    PubMed

    Fuglevand, A J; Segal, S S

    1997-10-01

    Muscle fiber activity is the principal stimulus for increasing capillary perfusion during exercise. The control elements of perfusion, i.e., microvascular units (MVUs), supply clusters of muscle fibers, whereas the control elements of contraction, i.e., motor units, are composed of fibers widely scattered throughout muscle. The purpose of this study was to examine how the discordant spatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle cross section. A computer model simulated the locations of perfused MVUs in response to the activation of up to 100 motor units in a muscle with 40,000 fibers and a cross-sectional area of 100 mm2. The simulation increased contraction intensity by progressive recruitment of motor units. For each step of motor unit recruitment, the percentage of active fibers and the number of perfused MVUs were determined for several conditions: 1) motor unit fibers widely dispersed and motor unit territories randomly located (which approximates healthy human muscle), 2) regionalized motor unit territories, 3) reversed recruitment order of motor units, 4) densely clustered motor unit fibers, and 5) increased size but decreased number of motor units. The simulations indicated that the widespread dispersion of motor unit fibers facilitates complete capillary (MVU) perfusion of muscle at low levels of activity. The efficacy by which muscle fiber activity induced perfusion was reduced 7- to 14-fold under conditions that decreased the dispersion of active fibers, increased the size of motor units, or reversed the sequence of motor unit recruitment. Such conditions are similar to those that arise in neuromuscular disorders, with aging, or during electrical stimulation of muscle, respectively.

  14. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    PubMed

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  15. TGF-{beta} receptors, in a Smad-independent manner, are required for terminal skeletal muscle differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Droguett, Rebeca; Cabello-Verrugio, Claudio; Santander, Cristian

    2010-09-10

    Skeletal muscle differentiation is strongly inhibited by transforming growth factor type {beta} (TGF-{beta}), although muscle formation as well as regeneration normally occurs in an environment rich in this growth factor. In this study, we evaluated the role of intracellular regulatory Smads proteins as well as TGF-{beta}-receptors (TGF-{beta}-Rs) during skeletal muscle differentiation. We found a decrease of TGF-{beta} signaling during differentiation. This phenomenon is explained by a decline in the levels of the regulatory proteins Smad-2, -3, and -4, a decrease in the phosphorylation of Smad-2 and lost of nuclear translocation of Smad-3 and -4 in response to TGF-{beta}. No changemore » in the levels and inhibitory function of Smad-7 was observed. In contrast, we found that TGF-{beta}-R type I (TGF-{beta}-RI) and type II (TGF-{beta}-RII) increased on the cell surface during skeletal muscle differentiation. To analyze the direct role of the serine/threonine kinase activities of TGF-{beta}-Rs, we used the specific inhibitor SB 431542 and the dominant-negative form of TGF-{beta}-RII lacking the cytoplasmic domain. The TGF-{beta}-Rs were important for successful muscle formation, determined by the induction of myogenin, creatine kinase activity, and myosin. Silencing of Smad-2/3 expression by specific siRNA treatments accelerated myogenin, myosin expression, and myotube formation; although when SB 431542 was present inhibition in myosin induction and myotube formation was observed, suggesting that these last steps of skeletal muscle differentiation require active TGF-{beta}-Rs. These results suggest that both down-regulation of Smad regulatory proteins and cell signaling through the TGF-{beta} receptors independent of Smad proteins are essential for skeletal muscle differentiation.« less

  16. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    PubMed

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  17. Neuromotor control of gluteal muscles in runners with achilles tendinopathy.

    PubMed

    Franettovich Smith, Melinda M; Honeywill, Conor; Wyndow, Narelle; Crossley, Kay M; Creaby, Mark W

    2014-03-01

    The purpose of this study was to compare the neuromotor control of the gluteus medius (GMED) and gluteus maximus (GMAX) muscles in runners with Achilles tendinopathy to that of healthy controls. Fourteen male runners with Achilles tendinopathy and 19 healthy male runners (control) ran overground while EMG of GMED and GMAX was recorded. Three temporal variables were identified via visual inspection of EMG data: (i) onset of muscle activity (onset), (ii) offset of muscle activity (offset), and (iii) duration of muscle activity (duration). A multivariate analysis of covariance with between-subject factor of group (Achilles tendinopathy, control) and variables of onset, offset, and duration was performed for each muscle. Age, weight, and height were included as covariates, and α level was set at 0.05. The Achilles tendinopathy group demonstrated a delay in the activation of the GMED relative to heel strike (P < 0.001) and a shorter duration of activation (P < 0.001) compared to that of the control group. GMED offset time relative to heel strike was not different between the groups (P = 0.063). For GMAX, the Achilles tendinopathy group demonstrated a delay in its onset (P = 0.008), a shorter duration of activation (P = 0.002), and earlier offset (P < 0.001) compared to the control group. This study provides preliminary evidence of altered neuromotor control of the GMED and GMAX muscles in male runners with Achilles tendinopathy. Although further prospective studies are required to discern the causal nature of this relationship, this study highlights the importance of considering neuromotor control of the gluteal muscles in the assessment and management of patients with Achilles tendinopathy.

  18. Differences in muscle activity during hand-dexterity tasks between women with arthritis and a healthy reference group.

    PubMed

    Brorsson, Sofia; Nilsdotter, Anna; Thorstensson, Carina; Bremander, Ann

    2014-05-15

    Impaired hand function is common in patients with arthritis and it affects performance of daily activities; thus, hand exercises are recommended. There is little information on the extent to which the disease affects activation of the flexor and extensor muscles during these hand-dexterity tasks. The purpose of this study was to compare muscle activation during such tasks in subjects with arthritis and in a healthy reference group. Muscle activation was measured in m. extensor digitorium communis (EDC) and in m. flexor carpi radialis (FCR) with surface electromyography (EMG) in women with rheumatoid arthritis (RA, n = 20), hand osteoarthritis (HOA, n = 16) and in a healthy reference group (n = 20) during the performance of four daily activity tasks and four hand exercises. Maximal voluntary isometric contraction (MVIC) was measured to enable intermuscular comparisons, and muscle activation is presented as %MVIC. The arthritis group used a higher %MVIC than the reference group in both FCR and EDC when cutting with a pair of scissors, pulling up a zipper and-for the EDC-also when writing with a pen and using a key (p < 0.02). The exercise "rolling dough with flat hands" required the lowest %MVIC and may be less effective in improving muscle strength. Women with arthritis tend to use higher levels of muscle activation in daily tasks than healthy women, and wrist extensors and flexors appear to be equally affected. It is important that hand training programs reflect real-life situations and focus also on extensor strength.

  19. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    PubMed

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  20. FABP4 inhibitor BMS309403 decreases saturated-fatty-acid-induced endoplasmic reticulum stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation.

    PubMed

    Bosquet, Alba; Girona, Josefa; Guaita-Esteruelas, Sandra; Heras, Mercedes; Saavedra-García, Paula; Martínez-Micaelo, Neus; Masana, Lluís; Rodríguez-Calvo, Ricardo

    2018-06-01

    Fatty acid binding protein 4 (FABP4) inhibitors have been proposed as potential therapeutic approaches against insulin resistance-related inflammation and type 2 diabetes mellitus. However, the underlying molecular mechanisms by which these molecules drive these effects in skeletal muscle remain unknown. Here, we assessed whether the FABP4 inhibitor BMS309403 prevented lipid-induced endoplasmic reticulum (ER) stress-associated inflammation in skeletal muscle. The BMS309403 treatment was assessed both in the skeletal muscle of high-fat diet (HFD)-fed mice and in palmitate-stimulated C2C12 myotubes. HFD feeding promoted insulin resistance, which is characterized by increased plasma levels of glucose, insulin, non-esterified fatty acids, triglycerides, resistin, and leptin and reduced plasma levels of adiponectin compared with control mice fed a standard diet. Additionally, insulin-resistant animals showed increased FABP4 plasma levels. In line with this evidence, recombinant FABP4 attenuated the insulin-induced AKT phosphorylation in C2C12 myotubes. Treatment with BMS309403 reduced lipid-induced ER stress and inflammation in both mouse skeletal muscle and C2C12 myotubes. The effects of the FABP4 inhibitor reducing lipid-induced ER stress-associated inflammation were related to the reduction of fatty acid-induced intramyocellular lipid deposits, ROS and nuclear factor-kappaB (NF-κB) nuclear translocation. Accordingly, BMS309403 reduced lipid-induced p38 MAPK phosphorylation, which is upstream of NF-κB activation. Overall, these findings indicate that BMS309403 reduces fatty acid-induced ER stress-associated inflammation in skeletal muscle by reducing p38 MAPK activation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Instructional Package of Development of Skill in Using Fine Motor of Children for Children with Intellectual Disabilities

    NASA Astrophysics Data System (ADS)

    Sangsawang, T.

    2018-02-01

    This research has the following purposes: 1) to find the efficiency of the self-learning activity set on development of skill in using fine motor of children with intellectual disabilities., 2) to compare the abilities to use the small muscles after the study more than before the study of children with intellectual disabilities, who made study with the self-learning activity on development of small muscles use., 3) to study the satisfaction of the children with intellectual disabilities using the self-learning activity on development of small muscles use. The sample groups on the research are the children with intellectual disabilities of the special education Maha Chakri Sirindhorn Provincial Nakhon Nayok Center in the school year 2016, for 7 children. The tools used on the research consist of the self-learning activity on development of small muscles use for the children with intellectual disabilities of the special, the observation form of abilities of small muscles before and after using the activity set and the observation form of satisfaction of the children with intellectual disabilities of the special towards the self-learning activity set on development of small muscles for the children with intellectual disabilities of the special. The statistics used on the research include the percentage, mean value, standard deviation and the t-test for dependent sample. From the research, it was found that the self-learning activity set on development of small muscles use for children with intellectual disabilities of the special is efficient based on the criteria in average equal to 77.78/76.51, the educational coefficient of the student after the study higher than before the study with average points before the study equal to 55.14 and S.D. value equal to 3.72. The average points after the study equal to 68.86, S.D. value equal to 2.73, t-test value before and after the study equal to 7.94, which are different significantly on statistics at the level 0.05 and the satisfaction observation form of the student towards the self-learning activity on small muscles use for he down syndrome children with average value equal to 4.58 in the considerable level.

  2. Electromyography of 3 scapular muscles: a comparative analysis of the cuff link device and a standard push-up.

    PubMed

    Tucker, W Steven; Campbell, Brian M; Swartz, Erik E; Armstrong, Charles W

    2008-01-01

    The Cuff Link is a closed kinetic chain rehabilitation apparatus for the upper extremity. Limited research has established its effectiveness to elicit muscle activation of the scapular muscles. To determine if scapular muscle activation differs in response to 2 upper extremity closed kinetic chain exercises: Cuff Link and standard push-up. A single-group, repeated-measures design. Controlled laboratory. Twenty-eight healthy individuals (13 women: age = 19.69 +/- 1.55 years, height = 167.44 +/- 9.52 cm, mass = 61.00 +/- 8.79 kg; 15 men: age = 22.00 +/- 3.91 years, height = 181.44 +/- 6.60 cm, mass = 82.36 +/- 13.23 kg) with no history of shoulder or low back injury volunteered to participate in this study. Participants performed 10 trials of complete revolutions on the Cuff Link and 10 full-weight-bearing push-ups. We controlled trial velocity and randomized order. Trunk and shoulder positions were normalized to the participant's height. Using surface electromyography, we recorded muscle activity of the serratus anterior, middle trapezius, and lower trapezius. Rectified and smoothed electromyography data for the serratus anterior, middle trapezius, and lower trapezius were normalized as a percentage of the maximal voluntary isometric contractions (%MVIC). Mean muscle activity of the serratus anterior, middle trapezius, and lower trapezius. We used paired-samples t tests to analyze the mean data for each condition. The alpha level was adjusted to .016 to avoid a type I error. Middle trapezius %MVIC was greater during push-ups (27.01 +/- 20.40%) than during use of the Cuff Link (11.49 +/- 9.46%) (P = .001). Lower trapezius %MVIC was greater during push-ups (36.07 +/- 18.99%) than during use of the Cuff Link (16.29 +/- 8.64%) (P = .001). There was no difference in %MVIC for the serratus anterior between conditions. The push-up demonstrated greater middle trapezius and lower trapezius activation levels compared with the Cuff Link. However, the push-up had a high participant failure rate. Because serratus anterior activation levels were similar, the Cuff Link may be an appropriate alternative for individuals lacking the upper body strength to perform a push-up.

  3. Method to Measure Tone of Axial and Proximal Muscle

    PubMed Central

    Gurfinkel, Victor S.; Cacciatore, Timothy W.; Cordo, Paul J.; Horak, Fay B.

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  4. Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury.

    PubMed

    Fink, E; Fortin, D; Serrurier, B; Ventura-Clapier, R; Bigard, A X

    2003-01-01

    The recovery of metabolic pathways after muscle damage has been poorly studied. We investigated the myosin heavy chain (MHC) isoform transitions and the recovery of citrate synthase (CS) activity, isoform distribution of lactate dehydrogenase (LDH) and creatine kinase (CK) in slow muscles after two types of injury. Muscle degeneration was induced in left soleus muscles of male Wistar rats by either notexin injection or crushing and the regenerative process was examined from 2 to 56 days after injury. Myosin transition occurred earlier after notexin than after crush injury. Fast-type IIx and more particularly type IIa MHC isoform disappeared by day 28 after notexin inoculation, while they were still detected long after in crushed muscles. A full recovery of both the CS activity and the specific activity of the H-LDH subunit was observed from day 42 in notexin-treated muscles, while values measured in crushed muscles remained significantly lower than in non-injured muscles (P < 0.05). The activity of the mitochondrial isoform of CK (mi-CK) was markedly affected by the type of injury (P < 0.001), and failed to reach normal levels after crush injury (P < 0.05). The results of this study show that the relatively rapid MHC transitions during regeneration contrasts with the slow recovery in the oxidative capacity. The recovery of the oxidative capacity remained incomplete after crush injury, a model of injury known to lead to disruption of the basal lamina and severe interruption of the vascular and nerve supply.

  5. Electromyographic and biomechanical analysis of step negotiation in Charcot Marie Tooth subjects whose level walk is not impaired.

    PubMed

    Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Sipio, Enrica Di; Diverio, Manuela; Moroni, Isabella; Padua, Luca; Pagliano, Emanuela; Schenone, Angelo; Pareyson, Davide; Ferrarin, Maurizio

    2018-05-01

    Charcot-Marie-Tooth (CMT) is a slowly progressive disease characterized by muscular weakness and wasting with a length-dependent pattern. Mildly affected CMT subjects showed slight alteration of walking compared to healthy subjects (HS). To investigate the biomechanics of step negotiation, a task that requires greater muscle strength and balance control compared to level walking, in CMT subjects without primary locomotor deficits (foot drop and push off deficit) during walking. We collected data (kinematic, kinetic, and surface electromyographic) during walking on level ground and step negotiation, from 98 CMT subjects with mild-to-moderate impairment. Twenty-one CMT subjects (CMT-NLW, normal-like-walkers) were selected for analysis, as they showed values of normalized ROM during swing and produced work at push-off at ankle joint comparable to those of 31 HS. Step negotiation tasks consisted in climbing and descending a two-step stair. Only the first step provided the ground reaction force data. To assess muscle activity, each EMG profile was integrated over 100% of task duration and the activation percentage was computed in four phases that constitute the step negotiation tasks. In both tasks, CMT-NLW showed distal muscle hypoactivation. In addition, during step-ascending CMT-NLW subjects had relevant lower activities of vastus medialis and rectus femoris than HS in weight-acceptance, and, on the opposite, a greater activation as compared to HS in forward-continuance. During step-descending, CMT-NLW showed a reduced activity of tibialis anterior during controlled-lowering phase. Step negotiation revealed adaptive motor strategies related to muscle weakness due to disease in CMT subjects without any clinically apparent locomotor deficit during level walking. In addition, this study provided results useful for tailored rehabilitation of CMT patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Is subscapularis recruited in a similar manner during shoulder internal rotation exercises and belly press and lift off tests?

    PubMed

    Ginn, Karen A; Reed, Darren; Jones, Chelsea; Downes, Anthony; Cathers, Ian; Halaki, Mark

    2017-06-01

    Although the belly press and lift off tests are recommended to assess subscapularis function, shoulder internal rotation (IR) exercises performed in other shoulder positions are more commonly used to restore subscapularis function. It is not known if shoulder IR exercises specifically activate subscapularis to the same degree as the lift off and belly press tests, and thus have the potential to effect subscapularis strength gains. Therefore, the aim was to compare subscapularis activation levels with those of other shoulder internal rotator muscles during the belly press and lift off tests and shoulder IR exercise positions. Original research. Twenty asymptomatic volunteers performed maximal isometric contractions during the belly press and lift off tests and shoulder IR performed at 90° and 0° abduction in an upright position and supported at 90° abduction in supine. Muscle activation levels were recorded using a combination of indwelling and surface electrodes. Data were normalized to maximum voluntary contractions and averaged. Moderate average subscapularis activation levels were recorded during all shoulder IR tasks examined with no significant difference between tasks (p=0.18). The belly press test was the only IR task in which subscapularis activation levels were significantly higher than all other shoulder internal rotator muscles (p<0.05). Shoulder IR exercises activate subscapularis to similar moderate levels as the belly press and lift off tests and therefore, have similar potential to strengthen subscapularis. However, the belly press test, with significantly higher subscapularis activation than other shoulder internal rotators, more specifically targets subscapularis. Copyright © 2016. Published by Elsevier Ltd.

  7. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding creatine analogue β-guanidinopropionic acid 17-19. Tension production may be inhibited in unloaded antigravity muscles 20, although the muscular activity detected by electromyography is not necessarily decreased 21. Thus, the contents of high-energy phosphates or turnover rate of adenosine triphosphate (ATP), which then affect the mitochondrial energy metabolism, may be altered. Therefore, the responses of high-energy phosphates and metabolic properties of rat hindlimb muscles to gravitational unloading were investigated.

  8. Immediate effects of a high-velocity spine manipulation in paraspinal muscles activity of nonspecific chronic low-back pain subjects.

    PubMed

    Bicalho, Eduardo; Setti, João Antônio Palma; Macagnan, Jones; Cano, José Luis Rivas; Manffra, Elisangela Ferretti

    2010-10-01

    High-velocity spinal manipulation is commonly adopted for treating chronic low-back pain (CLBP) and has been associated with changes in muscle activity, but the evidence is controversial. The aim of this study was to analyse the immediate effects of high-velocity spine manipulation on paraspinal activity during flexion-extension trunk movements. Forty nonspecific CLBP patients were randomised into two groups, manipulation (n = 20) and control (n = 20). While the manipulation group received high-velocity spine manipulation at the L4-L5 level, the control group remained lying in the same position. EMG-related variables, perceived pain intensity (100 mm VAS) and finger-floor distance were collected before and after spinal manipulation at the L4-L5 level. EMG surface signals from the right and left paraspinal muscles (L5-S1 level) were acquired during trunk flexion-extension cycles. EMG activity during the static relaxation phase was significantly reduced following intervention for the manipulation group but not for the control group. The extension-phase EMG activity was also reduced after manipulation, but the flexion-phase EMG levels remained unchanged. Accordingly, the percent changes in FRR and ERR were significantly larger for the manipulation group compared to the control. The results suggest that a high-velocity spinal manipulation is able to acutely reduce abnormal EMG activity during the full-flexion static phase and activation during the extension phase. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Correction of Mitochondrial Enzyme Activities in the Skeletal Muscles of Old Rats in Response to Addition of Olive Oil to the Ration.

    PubMed

    Bronnikov, G E; Kulagina, T P; Aripovskii, A V; Kramarova, L I

    2015-06-01

    Activities of mitochondrial electron transport chain enzymes NADH-CoQ oxidoreductase (complex I), cytochrome C-oxidase (complex IV), and citrate synthase were measured by spectrophotometry in m. quadriceps femoris homogenate from old rats receiving olive oil with the ration. Reduced activities of complexes I and IV in old animals were restored to the level of young animals after 6-week consumption of olive oil. Activity of citrate synthase did not change with age. Positive effect of olive oil on fatty-acid composition of the muscle tissue in old animals was demonstrated. The content of summary monounsaturated fatty acids, reduced with aging, and of summary polyunsaturated ones, increasing with age, were restored in old rats to the levels virtually not differing from the levels of young animals.

  10. Isoform composition and gene expression of thick and thin filament proteins in striated muscles of mice after 30-day space flight.

    PubMed

    Ulanova, Anna; Gritsyna, Yulia; Vikhlyantsev, Ivan; Salmov, Nikolay; Bobylev, Alexander; Abdusalamova, Zarema; Rogachevsky, Vadim; Shenkman, Boris; Podlubnaya, Zoya

    2015-01-01

    Changes in isoform composition, gene expression of titin and nebulin, and isoform composition of myosin heavy chains as well as changes in titin phosphorylation level in skeletal (m. gastrocnemius, m. tibialis anterior, and m. psoas) and cardiac muscles of mice were studied after a 30-day-long space flight onboard the Russian spacecraft "BION-M" number 1. A muscle fibre-type shift from slow-to-fast and a decrease in the content of titin and nebulin in the skeletal muscles of animals from "Flight" group was found. Using Pro-Q Diamond staining, an ~3-fold increase in the phosphorylation level of titin in m. gastrocnemius of mice from the "Flight" group was detected. The content of titin and its phosphorylation level in the cardiac muscle of mice from "Flight" and "Control" groups did not differ; nevertheless an increase (2.2 times) in titin gene expression in the myocardium of flight animals was found. The observed changes are discussed in the context of their role in the contractile activity of striated muscles of mice under conditions of weightlessness.

  11. Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice.

    PubMed

    Davey, Rachel A; Clarke, Michele V; Russell, Patricia K; Rana, Kesha; Seto, Jane; Roeszler, Kelly N; How, Jackie M Y; Chia, Ling Yeong; North, Kathryn; Zajac, Jeffrey D

    2017-10-01

    Although it is well established that exogenous androgens have anabolic effects on skeletal muscle mass in humans and mice, data from muscle-specific androgen receptor (AR) knockout (ARKO) mice indicate that myocytic expression of the AR is dispensable for hind-limb muscle mass accrual in males. To identify possible indirect actions of androgens via the AR in neurons to regulate muscle, we generated neuron-ARKO mice in which the dominant DNA binding-dependent actions of the AR are deleted in neurons of the cortex, forebrain, hypothalamus, and olfactory bulb. Serum testosterone and luteinizing hormone levels were elevated twofold in neuron-ARKO males compared with wild-type littermates due to disruption of negative feedback to the hypothalamic-pituitary-gonadal axis. Despite this increase in serum testosterone levels, which was expected to increase muscle mass, the mass of the mixed-fiber gastrocnemius (Gast) and the fast-twitch fiber extensor digitorum longus hind-limb muscles was decreased by 10% in neuron-ARKOs at 12 weeks of age, whereas muscle strength and fatigue of the Gast were unaffected. The mass of the soleus muscle, however, which consists of a high proportion of slow-twitch fibers, was unaffected in neuron-ARKOs, demonstrating a stimulatory action of androgens via the AR in neurons to increase the mass of fast-twitch hind-limb muscles. Furthermore, neuron-ARKOs displayed reductions in voluntary and involuntary physical activity by up to 60%. These data provide evidence for a role of androgens via the AR in neurons to positively regulate fast-twitch hind-limb muscle mass and physical activity in male mice. Copyright © 2017 Endocrine Society.

  12. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari

    2016-07-01

    Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.

  13. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  14. Direction-specific recruitment of rotator cuff muscles during bench press and row.

    PubMed

    Wattanaprakornkul, Duangjai; Halaki, Mark; Cathers, Ian; Ginn, Karen A

    2011-12-01

    Recent studies indicate that rotator cuff (RC) muscles are recruited in a reciprocal, direction-specific pattern during shoulder flexion and extension exercises. The main purpose of this study was to determine if similar reciprocal RC recruitment occurs during bench press (flexion-like) and row (extension-like) exercises. In addition, shoulder muscle activity was comprehensively compared between bench press and flexion; row and extension; and bench press and row exercises. Electromyographic (EMG) activity was recorded from 9 shoulder muscles sites in 15 normal volunteers. All exercises were performed at 20, 50 and 70% of subjects' maximal load. EMG data were normalized to standard maximal voluntary contractions. Infraspinatus activity was significantly higher than subscapularis during bench press, with the converse pattern during the row exercise. Significant differences in activity levels were found in pectoralis major, deltoid and trapezius between the bench press and flexion exercises and in lower trapezius between the row and extension exercises. During bench press and row exercises, the recruitment pattern in each active muscle did not vary with load. During bench press and row exercises, RC muscles contract in a reciprocal direction-specific manner in their role as shoulder joint dynamic stabilizers to counterbalance antero-posterior translation forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Muscle activity and spine load during anterior chain whole body linkage exercises: the body saw, hanging leg raise and walkout from a push-up.

    PubMed

    McGill, Stuart; Andersen, Jordan; Cannon, Jordan

    2015-01-01

    This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.

  18. Irisin is more strongly predicted by muscle oxidative potential than adiposity in non-diabetic men.

    PubMed

    Huth, Claire; Dubois, Marie-Julie; Marette, André; Tremblay, Angelo; Weisnagel, S John; Lacaille, Michel; Mauriège, Pascale; Joanisse, Denis R

    2015-09-01

    Numerous controversies surround the peptide hormone irisin. Although implicated as a myokine promoting the browning of adipose tissue in rodents, its roles in humans remain unclear. Contradictory results have also been found with respect to the relationships between adiposity or metabolic health and plasma irisin levels in humans. We investigated the relationship between irisin levels and body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), fitness level (ergocycle VO2max) and skeletal muscle metabolic profile in 53 men (aged 34-53 years) from four groups: sedentary non-obese controls (body mass index [BMI] <25 kg/m(2)), sedentary obese (BMI >30 kg/m(2)), sedentary obese glucose-intolerant, and non-obese highly trained endurance active. Baseline plasma irisin levels were significantly different between groups, being lowest in trained men (140.6 ± 38.2 ng/mL) and highest in metabolically deteriorated glucose-intolerant subjects (204.0 ± 50.5 ng/mL; ANOVA p = 0.01). Including all subjects, irisin levels were positively associated with adiposity (e.g. fat mass, r = 0.430, p < 0.01) and negatively associated with fitness (r = -0.369, p < 0.01), insulin sensitivity (M/I, r = -0.355, p < 0.01) and muscle citrate synthase (CS) activity (r = -0.482, p < 0.01). Most correlations lost statistical significance when excluding active individuals, except for insulin resistance (r = -0.413, p < 0.01) and CS (r = -0.462, p < 0.01). Multiple regression analyses reveal CS as the strongest independent predictor of irisin levels (r(2) range 0.214 to 0.237). We conclude that muscle oxidative potential is an important factor linked to circulating irisin levels.

  19. Refinements in pectus carinatum correction: the pectoralis muscle split technique.

    PubMed

    Schwabegger, Anton H; Jeschke, Johannes; Schuetz, Tanja; Del Frari, Barbara

    2008-04-01

    The standard approach for correction of pectus carinatum deformity includes elevation of the pectoralis major and rectus abdominis muscle from the sternum and adjacent ribs. A postoperative restriction of shoulder activity for several weeks is necessary to allow stable healing of the elevated muscles. To reduce postoperative immobilization, we present a modified approach to the parasternal ribs using a pectoralis muscle split technique. At each level of rib cartilage resection, the pectoralis muscle is split along the direction of its fibers instead of elevating the entire muscle as performed with the standard technique. From July 2000 to May 2007, we successfully used this technique in 33 patients with pectus carinatum deformity. After the muscle split approach, patients returned to full unrestricted shoulder activity as early as 3 weeks postoperatively, compared to 6 weeks in patients treated with muscle flap elevation. Postoperative pain was reduced and the patients were discharged earlier from the hospital than following the conventional approach. The muscle split technique is a modified surgical approach to the parasternal ribs in patients with pectus carinatum deformity. It helps to maintain pectoralis muscle vascularization and function and can reduce postoperative pain, hospitalization, and rehabilitation period.

  20. Fatigue is associated with muscle weakness in Ehlers-Danlos syndrome: an explorative study.

    PubMed

    Voermans, N C; Knoop, H; Bleijenberg, G; van Engelen, B G

    2011-06-01

    Ehlers-Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of inherited connective tissue disorders characterised by joint hypermobility, skin hyperextensibility and tissue fragility. It has recently been shown that muscle weakness occurs frequently in EDS, and that fatigue is a common and clinically important symptom. The aim of this study was to investigate the relationship between fatigue severity and subjective and objective measures of muscle weakness. Furthermore, the predictive value of muscle weakness for fatigue severity was determined, together with that of pain and physical activity. An explorative, cross-sectional, observational study. Thirty EDS patients, recruited from the Dutch patient association, were investigated at the neuromuscular outpatient department of a tertiary referral centre in The Netherlands. Muscle strength measured with manual muscle strength testing and hand-held dynamometry. Self-reported muscle weakness, pain, physical activity levels and fatigue were assessed with standardised questionnaires. Fatigue severity in EDS was significantly correlated with measured and self-reported muscle weakness (r=-0.408 for manual muscle strength, r=0.461 for hand-held dynamometry and r=0.603 for self-reported muscle weakness). Both muscle weakness and pain severity were significant predictors of fatigue severity in a multiple regression analysis. The results suggest a positive and direct relationship between fatigue severity and muscle weakness in EDS. Future research should focus on the relationship between fatigue, muscle weakness and objectively measured physical activity, preferably in a larger cohort of EDS patients. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Top