Science.gov

Sample records for muscle cell line

  1. Elevated expression of basic fibroblast growth factor in an immortalized rabbit smooth muscle cell line.

    PubMed

    Winkles, J A; Friesel, R; Alberts, G F; Janat, M F; Liau, G

    1993-08-01

    Intimal smooth muscle cell accumulation is regarded as an important component of atherosclerotic plaque formation, angioplasty-induced restenosis, and vascular graft occlusion. Vascular smooth muscle cells can both express and respond to acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF); therefore, under certain conditions these polypeptides may regulate smooth muscle cell growth in an autocrine manner. Previous studies using smooth muscle cells cultured in vitro have identified factors that can enhance aFGF and bFGF gene expression. In this study, we assayed fibroblast growth factor gene expression in a spontaneously immortalized rabbit smooth muscle cell line. In contrast to "normal" rabbit smooth muscle cells, these immortalized cells acquire an altered morphology and enhanced proliferative rate during; cell passaging in vitro. Both "normal" and immortalized rabbit smooth muscle cells express bFGF but not aFGF transcripts. RNA gel blot hybridization, reverse transcription/polymerase chain reaction amplification, and Western blotting techniques demonstrate that bFGF expression in the immortalized smooth muscle cell line increases as a function of passage level. This continuous cell line should prove valuable for studying both the regulation of bFGF synthesis and the control of vascular smooth muscle cell proliferation.

  2. Production of skeletal muscle elements by cell lines derived from neoplastic rat mammary epithelial stem cells.

    PubMed

    Rudland, P S; Dunnington, D J; Gusterson, B; Monaghan, P; Hughes, C M

    1984-05-01

    Single-cell-cloned cell lines intermediate in morphology between the cuboidal epithelial and fully elongated myoepithelial-like cells have been isolated from the single-cell-cloned epithelial stem cell lines Rama 25 and Rama 37 originally obtained from dimethylbenz(a)anthracene-induced mammary tumors from Sprague-Dawley and Wistar-Furth rats, respectively. These are designated Rama 25-l1, Rama 25-l2, Rama 25-l4 (Sprague-Dawley) and Rama 50-55, Rama 59, and Rama 60 (Wistar-Furth), respectively. When growing as tumors in nude mice or syngeneic Wistar-Furth rats, respectively, many of the newly cloned cell lines give rise to spindle and giant, multinucleated cells which stain immunocytochemically with antisera to myoglobin and myosin and contain longitudinal fibrils, some of which contain phosphotungstic acid-hematoxylin-staining cross-striations. Ultrastructural analysis demonstrates the presence of A-, l-, and H-bands and Z-discs and the hexagonal arrangement of thick and thin filaments characteristic of skeletal muscle. Similar results are obtained with selected cloned cell lines growing on floating collagen gels in vitro. Thus, a developmentally committed mammary epithelial cell can give rise, under suitable conditions, to a well-differentiated mesenchymal lineage, that of skeletal muscle. It is suggested that such cells may be responsible for the generation of the well-differentiated mesenchymal elements seen in the mixed (epithelial and myoepithelial) tumors of glandular origin.

  3. Isolation and Immortalization of Patient-derived Cell Lines from Muscle Biopsy for Disease Modeling

    PubMed Central

    Robin, Jerome D.; Wright, Woody E.; Zou, Yaqun; Cossette, Stacy C.; Lawlor, Michael W.; Gussoni, Emanuela

    2015-01-01

    The generation of patient-specific cell lines represents an invaluable tool for diagnostic or translational research, and these cells can be collected from skin or muscle biopsy tissue available during the patient’s diagnostic workup. In this protocol, we describe a technique for live cell isolation from small amounts of muscle or skin tissue for primary cell culture. Additionally, we provide a technique for the immortalization of myogenic cell lines and fibroblast cell lines from primary cells. Once cell lines are immortalized, substantial expansion of patient-derived cells can be achieved. Immortalized cells are amenable to many downstream applications, including drug screening and in vitro correction of the genetic mutation. Altogether, these protocols provide a reliable tool to generate and preserve patient-derived cells for downstream applications. PMID:25651101

  4. Establishment of a new conditionally immortalized human skeletal muscle microvascular endothelial cell line.

    PubMed

    Sano, Hironori; Sano, Yasuteru; Ishiguchi, Eri; Shimizu, Fumitaka; Omoto, Masatoshi; Maeda, Toshihiko; Nishihara, Hideaki; Takeshita, Yukio; Takahashi, Shiori; Oishi, Mariko; Kanda, Takashi

    2017-12-01

    In skeletal muscle, the capillaries have tight junctions (TJs) that are structurally similar to those in the blood-brain barrier (BBB) and blood-nerve barrier (BNB). Although many findings have been clarified in the territory of BBB and BNB, few have so far examined the TJs of capillaries in the skeletal muscle. In addition, no in vitro human skeletal muscle microvasculature models have been reported thus far. We newly established a new human skeletal muscle microvascular endothelial cell (HSMMEC) line. HSMMECs were isolated from human skeletal muscle and were infected with retroviruses harboring temperature-sensitive SV40 T antigen and telomerase genes. This cell line, termed TSM15, showed a spindle fiber-shaped morphology, an immunoreactivity to anti-factor VIII and anti-VE-cadherin antibodies, and a temperature-sensitive growth. TSM15 cells grew stably for more than 40 passages when they were cultured at 33°C, thereby retaining their spindle fiber-shaped morphology and contact inhibition at confluence. The cells expressed tight junctional molecules such as claudin-5, occludin, and zonula occludens-1, as well as transporters such as a glucose transporter 1. The transendothelial electrical resistance of TSM15 was as high as those of the human brain microvascular endothelial cell line. This novel cell line might facilitate the analyses of the pathophysiology of inflammatory myopathy, such as dermatomyositis, and can improve our understanding of the physiological and biochemical properties of the microvasculature in human skeletal muscle. © 2017 Wiley Periodicals, Inc.

  5. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    PubMed

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  6. Mitogenic effects of vasoactive neuropeptides on cultured smooth muscle cell lines

    SciTech Connect

    Mitsuhashi, M.; Payan, D.G.

    1987-03-02

    In order to investigate the relationship between the biochemical pathways that characterize contraction and cell growth, the authors have studied both contraction, mitogenesis and protein synthesis induced by the vasoactive neuropeptides, substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) on four different established vascular and non-vascular smooth muscle cell lines. Contraction in vitro was evaluated by light microscopy and recorded photographically. Mitogenesis and protein synthesis were evaluated by (/sup 3/H)-thymidine incorporation into cells and (/sup 3/H)-amino acid incorporation into trichloroacetic acid precipitated materials, respectively. SP stimulated mitogenesis of A7r5 cells (embryonic rat aorta), but failed to induce significant contraction of these cells, whereas, SP induced contraction of cultured adult rat vascular smooth muscle cells (VSMC), but failed to stimulate mitogenesis. CGRP and VIP stimulated mitogenesis and protein synthesis, respectively, of DDT/sub 1/MF-2 cells (hamster vas deferens), but neither induced contraction of this cell line. All three neuropeptides showed no effect on BC/sub 3/H1 (mouse smooth muscle-like) cells. These results suggest that neuropeptides with vasoactive properties modulate different stages of cellular mitogenic responses which may be regulated by the degree of maturation of smooth muscle cell. 22 references, 5 figures.

  7. Cholinergic neurons regulate secretion of glial cell line-derived neurotrophic factor by skeletal muscle cells in culture.

    PubMed

    Vianney, John-Mary; Spitsbergen, John M

    2011-05-16

    Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known about factors regulating normal production of endogenous GDNF in skeletal muscle. This study aimed to examine the role that motor neurons play in regulating GDNF secretion by skeletal muscle. A co-culture of skeletal muscle cells (C2C12) and cholinergic neurons, glioma×neuroblastoma hybrid cells (NG108-15) were used to create nerve-muscle interactions in vitro. Acetylcholine receptors (AChRs) on nerve-myotube co-cultures were blocked with alpha-bungarotoxin (α-BTX). GDNF protein content in cells and in culture medium was analyzed by enzyme-linked immunosorbant assay (ELISA) and western blotting. GDNF localization was examined by immunocytochemistry. The nerve-muscle co-culture study indicated that the addition of motor neurons to skeletal muscle cells reduced the secretion of GDNF by skeletal muscle. The results also showed that blocking AChRs with α-BTX reversed the action of neural cells on GDNF secretion by skeletal muscle. Although ELISA results showed no GDNF in differentiated NG108-15 cells grown alone, immunocytochemical analysis showed that GDNF was localized in NG108-15 cells co-cultured with C2C12 myotubes. These results suggest that motor neurons may be regulating their own supply of GDNF secreted by skeletal muscle and that activation of AChRs may be involved in this process.

  8. Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle

    PubMed Central

    1996-01-01

    Muscular dysgenesis (mdg/mdg), a mutation of the skeletal muscle dihydropyridine receptor (DHPR) alpha 1 subunit, has served as a model to study the functions of the DHPR in excitation-contraction coupling and its role in triad formation. We have investigated the question of whether the lack of the DHPR in dysgenic skeletal muscle results in a failure of triad formation, using cell lines (GLT and NLT) derived from dysgenic (mdg/mdg) and normal (+/+) muscle, respectively. The lines were generated by transfection of myoblasts with a plasmid encoding a Large T antigen. Both cell lines express muscle-specific proteins and begin organization of sarcomeres as demonstrated by immunocytochemistry. Similar to primary cultures, dysgenic (GLT) myoblasts show a higher incidence of cell fusion than their normal counterparts (NLT). NLT myotubes develop spontaneous contractile activity, and fluorescent Ca2+ recordings show Ca2+ release in response to depolarization. In contrast, GLTs show neither spontaneous nor depolarization-induced Ca2+ transients, but do release Ca2+ from the sarcoplasmic reticulum (SR) in response to caffeine. Despite normal transverse tubule (T-tubule) formation, GLT myotubes lack the alpha 1 subunit of the skeletal muscle DHPR, and the alpha 2 subunit is mistargeted. Nevertheless, the ryanodine receptor (RyR) frequently develops its normal, clustered organization in the absence of both DHPR alpha subunits in the T-tubules. In EM, these RyR clusters correspond to T-tubule/SR junctions with regularly spaced feet. These findings provide conclusive evidence that interactions between the DHPR and RyR are not involved in the formation of triad junctions or in the normal organization of the RyR in the junctional SR. PMID:8707823

  9. An α-Smooth Muscle Actin (acta2/αsma) Zebrafish Transgenic Line Marking Vascular Mural Cells and Visceral Smooth Muscle Cells

    PubMed Central

    Carter, Alyson D.; Rollins, Evvi-Lynn; Georgijevic, Sonja; Santoro, Massimo M.; Childs, Sarah J.

    2014-01-01

    Mural cells of the vascular system include vascular smooth muscle cells (SMCs) and pericytes whose role is to stabilize and/or provide contractility to blood vessels. One of the earliest markers of mural cell development in vertebrates is α smooth muscle actin (acta2; αsma), which is expressed by pericytes and SMCs. In vivo models of vascular mural cell development in zebrafish are currently lacking, therefore we developed two transgenic zebrafish lines driving expression of GFP or mCherry in acta2-expressing cells. These transgenic fish were used to trace the live development of mural cells in embryonic and larval transgenic zebrafish. acta2:EGFP transgenic animals show expression that largely mirrors native acta2 expression, with early pan-muscle expression starting at 24 hpf in the heart muscle, followed by skeletal and visceral muscle. At 3.5 dpf, expression in the bulbus arteriosus and ventral aorta marks the first expression in vascular smooth muscle. Over the next 10 days of development, the number of acta2:EGFP positive cells and the number of types of blood vessels associated with mural cells increases. Interestingly, the mural cells are not motile and remain in the same position once they express the acta2:EGFP transgene. Taken together, our data suggests that zebrafish mural cells develop relatively late, and have little mobility once they associate with vessels. PMID:24594685

  10. Comparison of growth characteristics between skeletal muscle satellite cell lines from diploid and triploid olive flounder Paralichthys olivaceus

    PubMed Central

    Wu, Zhi-hao; Tan, Xungang; Jiao, Shuang; Zhang, Pei-jun

    2016-01-01

    Objectives. According to myosatellite cell lines (MSCs) established in vitro from diploid and triploid flounder, we compared the characters of growth and differentiation of their MSCs. The results would be useful for learning the muscle development mechanism in teleosts. Materials and Methods. The skeletal muscle cells from the diploid and triploid olive flounder Paralichthys olivaceus were isolated and cultured in vitro, respectively, and the cells were characterized at the morphology and molecular level; meanwhile, the performance of these cells’ proliferation and differentiation were analyzed. Results. Two new skeletal muscle cell lines (POMSCS(2n) and POMSCS(3n)) from diploid and triploid flounder have been respectively subcultured for 67 times and 66 times. The cultured cells were mostly spindle-like mononuclear cells. They have normal flounder diploid karyotype (2n=48t) and triploid karyotype (3n=72t), respectively. Muscle satellite cell gene marker (pax7b) and myogenic cell protein marker (Desmin) were all expressed in cells of two cell lines. Both of the cells could differentiate into the large polynucleated muscle fibre cells, and immunofluorescence reactions of myosin heavy chain (MyHC) were positive. There were more cells of POMSCS(3n) to differentiate into the muscle fibre cells than that of POMSCS(2n). However, POMSCS(2n) cells proliferated more rapidly than those of POMSCS(3n) (P < 0.05). The significant fluorescent signals were observed in both POMSCS(2n) and POMSCS(3n) cells after transfected with pEGFP-N3 reporter plasmid. Conclusions. The two cell lines have been established and characterized as MSCs. We suppose that it might be the differentiation capacity, rather than the proliferation activity of MSCs to play a key role in the better growth of triploid ones than diploid. Both cell lines will become the ideal tools to learn the mechanism of fish MSCs proliferation, differentiation and regeneration during muscle development in the future. PMID

  11. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line

    PubMed Central

    1985-01-01

    The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions, the rate of CPK synthesis is drastically reduced. We show in the present communication that either pituitary- derived fibroblast growth factor (FGF) or brain-derived FGF are as effective as serum in repressing the synthesis of CPK when added to quiescent, differentiated cells. The decrease in the rate of synthesis of CPK occurs within 22 h after the addition of pituitary FGF to the cells. Pituitary FGF had very little effect, if any, on the rate CPK degradation. The overall rate of protein synthesis and the pattern of synthesis of the major polypeptides made by these cells was not altered by the addition of FGF. Although pituitary FGF was mitogenic for BC3H1 cells, the rate of cell growth was not absolutely correlated with the extent of repression of CPK. Brain-derived FGF fully repressed CPK induction under conditions where it showed no significant mitogenic activity. These results show that the expression of a muscle-specific protein, CPK, can be controlled by a single defined polypeptide growth factor in fully differentiated cultures, and that initiation of cell division is not required for their regulation to take place. PMID:3988800

  12. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity☆

    PubMed Central

    Dott, William; Mistry, Pratibha; Wright, Jayne; Cain, Kelvin; Herbert, Karl E

    2014-01-01

    Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR) was significantly increased whereas extracellular acidification rate (ECAR), a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2•– level compared to cells in the glucose model. An antimycin A (AA) dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a galactose media model

  13. Functional adult acetylcholine receptor develops independently of motor innervation in Sol 8 mouse muscle cell line.

    PubMed Central

    Pinset, C; Mulle, C; Benoit, P; Changeux, J P; Chelly, J; Gros, F; Montarras, D

    1991-01-01

    We have defined culture conditions, using a feeder layer of cells from the embryonic mesenchymal cell line, 10T1/2 and a serum-free medium, which allow cells from the mouse myogenic cell line Sol 8 to form contracting myotubes for two weeks. Under these culture conditions, Sol 8 myotubes undergo a maturation process characterized by a sequential expression of two phenotypes. An early phenotype is typified by the expression of the nicotinic acetylcholine receptor (AChR) gamma-subunit transcripts and the presence of low conductance ACh-activated channels, typical of embryonic AChR. A late phenotype is characterized by the expression of AChR epsilon-subunit transcripts, the decreased accumulation of gamma-subunit transcripts and the appearance of high conductance ACh-activated channels, typical of adult AChR. These results indicate that the expression of functional adult type AChR does not require the presence of the motor nerve and therefore represents an intrinsic feature of the Sol 8 muscle cells. Chronic exposure of the cells to the voltage-sensitive Na+ channel blocking agent tetrodotoxin does not affect the appearance of the AChR epsilon-subunit transcripts but prevents the reduction of the steady-state level of the AChR gamma-subunit transcripts and yields a reduced proportion of the adult type channels. Thus, activity seems to facilitate the switch from the embryonic to the adult phenotype of the AChR protein. The Sol 8 cell system might be useful to analyse further the genetic and epigenetic regulation of muscle fibre maturation in mammals. Images PMID:1868829

  14. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte.

    PubMed

    Claycomb, W C; Lanson, N A; Stallworth, B S; Egeland, D B; Delcarpio, J B; Bahinski, A; Izzo, N J

    1998-03-17

    We have derived a cardiac muscle cell line, designated HL-1, from the AT-1 mouse atrial cardiomyocyte tumor lineage. HL-1 cells can be serially passaged, yet they maintain the ability to contract and retain differentiated cardiac morphological, biochemical, and electrophysiological properties. Ultrastructural characteristics typical of embryonic atrial cardiac muscle cells were found consistently in the cultured HL-1 cells. Reverse transcriptase-PCR-based analyses confirmed a pattern of gene expression similar to that of adult atrial myocytes, including expression of alpha-cardiac myosin heavy chain, alpha-cardiac actin, and connexin43. They also express the gene for atrial natriuretic factor. Immunohistochemical staining of the HL-1 cells indicated that the distribution of the cardiac-specific markers desmin, sarcomeric myosin, and atrial natriuretic factor was similar to that of cultured atrial cardiomyocytes. A delayed rectifier potassium current (IKr) was the most prominent outward current in HL-1 cells. The activating currents displayed inward rectification and deactivating current tails were voltage-dependent, saturated at >+20 mV, and were highly sensitive to dofetilide (IC50 of 46.9 nM). Specific binding of [3H]dofetilide was saturable and fit a one-site binding isotherm with a Kd of 140 +/- 60 nM and a Bmax of 118 fmol per 10(5) cells. HL-1 cells represent a cardiac myocyte cell line that can be repeatedly passaged and yet maintain a cardiac-specific phenotype.

  15. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    PubMed

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-07

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  16. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  17. Atrazine exposure causes mitochondrial toxicity in liver and muscle cell lines.

    PubMed

    Sagarkar, Sneha; Gandhi, Deepa; Devi, S Saravana; Sakharkar, Amul; Kapley, Atya

    2016-01-01

    Chronic exposure to atrazine and other pesticides is reported to cause metabolic disorders, yet information on effects of atrazine on expression of genes relevant to mitochondrial function is largely missing. In the present study, therefore, we investigated the expression of a battery of nuclear- and mitochondrial-encoded genes involved in oxidative phosphorylation (OXPHOS) in human liver (HepG2) and rat muscle (L6) cell lines due to short-term atrazine exposure. We have determined the EC50 values of atrazine for cytotoxicity and mitochondrial toxicity (mitotoxicity) in terms of adenosine triphosphate (ATP) content in HepG2 and L6 cells. Further, the mRNA expression of nuclear- and mitochondrial-encoded genes was analyzed using quantitative real-time polymerase chain reaction. The EC50 value of atrazine for mitotoxicity in HepG2 and L6 cells was found to be about 0.162 and 0.089 mM, respectively. Mitochondrial toxicity was indicated by reduction in ATP content following atrazine exposure. Atrazine exposure resulted in down-regulation of many OXPHOS subunits expression and affected biogenesis factors' expression. Most prominently, superoxide dismutase (SOD) and sirtuin 3 (SIRT3) expressions were up-regulated in HepG2 cells, whereas SIRT3 expression was alleviated in L6 cells, without significant changes in SOD levels. Mitochondrial transcription factor A (TFAM) and SIRT1 expression were significantly down-regulated in both cell lines. Results suggest that TFAM and SIRT1 could be involved in atrazine-induced mitochondrial dysfunction, and further studies can be taken up to understand the mechanism of mitochondrial toxicity. Further study can also be taken up to explore the possibility of target genes as biomarkers of pesticide toxicity.

  18. Atrazine exposure causes mitochondrial toxicity in liver and muscle cell lines

    PubMed Central

    Sagarkar, Sneha; Gandhi, Deepa; Devi, S. Saravana; Sakharkar, Amul; Kapley, Atya

    2016-01-01

    Objective: Chronic exposure to atrazine and other pesticides is reported to cause metabolic disorders, yet information on effects of atrazine on expression of genes relevant to mitochondrial function is largely missing. In the present study, therefore, we investigated the expression of a battery of nuclear- and mitochondrial-encoded genes involved in oxidative phosphorylation (OXPHOS) in human liver (HepG2) and rat muscle (L6) cell lines due to short-term atrazine exposure. Materials and Methods: We have determined the EC50 values of atrazine for cytotoxicity and mitochondrial toxicity (mitotoxicity) in terms of adenosine triphosphate (ATP) content in HepG2 and L6 cells. Further, the mRNA expression of nuclear- and mitochondrial-encoded genes was analyzed using quantitative real-time polymerase chain reaction. Results: The EC50 value of atrazine for mitotoxicity in HepG2 and L6 cells was found to be about 0.162 and 0.089 mM, respectively. Mitochondrial toxicity was indicated by reduction in ATP content following atrazine exposure. Atrazine exposure resulted in down-regulation of many OXPHOS subunits expression and affected biogenesis factors’ expression. Most prominently, superoxide dismutase (SOD) and sirtuin 3 (SIRT3) expressions were up-regulated in HepG2 cells, whereas SIRT3 expression was alleviated in L6 cells, without significant changes in SOD levels. Mitochondrial transcription factor A (TFAM) and SIRT1 expression were significantly down-regulated in both cell lines. Conclusion: Results suggest that TFAM and SIRT1 could be involved in atrazine-induced mitochondrial dysfunction, and further studies can be taken up to understand the mechanism of mitochondrial toxicity. Further study can also be taken up to explore the possibility of target genes as biomarkers of pesticide toxicity. PMID:27114639

  19. The use of established skeletal muscle cell lines to assess potential toxicity from embedded metal fragments.

    PubMed

    Kane, Michele A; Kasper, Christine E; Kalinich, John F

    2009-03-01

    The use of novel materials on the modern battlefield, both in military munitions as well as in Improvised Explosive Devices, opens the possibility of wounds with embedded fragments whose health effects and toxicity characteristics have not been fully investigated, if at all. The costly and time-consuming nature of standard two-year lifespan studies prohibits the testing of many materials. In this report, we describe an in vitro system for rapidly assessing potential toxicity of metals and metal mixtures. Using rat L6 and mouse C2C12 skeletal muscle cells and tests for cellular viability, we have shown that two militarily relevant tungsten alloy mixtures (W/Ni/Co and W/Ni/Fe) significantly decreased the metabolic viability of rat L6 cells, whereas the viability of mouse C2C12 cells was not affected by W/Ni/Co and only slightly affected by W/Ni/Fe. In addition, viability assessed through lysosomal uptake of neutral red dye was not affected by either mixture in either cell line indicating that the mitochondria may be the target organelle of these unique metal mixtures. Development of this in vitro screening system may provide a procedure by which the potential toxicities of embedded metal fragments can be rapidly assessed.

  20. Phorbol ester-mediated desensitization of histamine Hl receptors on a cultured smooth muscle cell line

    SciTech Connect

    Mitsuhashi, M.; Payan, D.G.

    1988-01-01

    The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine Hl receptors, (HlR) present on the smooth muscle cell line, DDT/sub 1/MF-2. (/sup 3/H)-pyrilamine binding revealed that specific (/sup 3/H)-pyrilamine binding sites were reduced be pretreatment with 12-O-tetra-decanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4..cap alpha.. phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of HlR. TPA-induced down regulation of HlR was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on HlR. Moreover, treatment with TPA inhibited histamine-induced increases in (Ca/sup 2 +/)/sub i/ in cells loaded with the fluorescent indicator, indo-1. These data suggest that HlR in DDT/sub 1/MF-2 cells were functionally regulated by PKC.

  1. Establishment of clonal myogenic cell lines from severely affected dystrophic muscles - CDK4 maintains the myogenic population

    PubMed Central

    2011-01-01

    Background A hallmark of muscular dystrophies is the replacement of muscle by connective tissue. Muscle biopsies from patients severely affected with facioscapulohumeral muscular dystrophy (FSHD) may contain few myogenic cells. Because the chromosomal contraction at 4q35 linked to FSHD is thought to cause a defect within myogenic cells, it is important to study this particular cell type, rather than the fibroblasts and adipocytes of the endomysial fibrosis, to understand the mechanism leading to myopathy. Results We present a protocol to establish clonal myogenic cell lines from even severely dystrophic muscle that has been replaced mostly by fat, using overexpression of CDK4 and the catalytic component of telomerase (human telomerase reverse transcriptase; hTERT), and a subsequent cloning step. hTERT is necessary to compensate for telomere loss during in vitro cultivation, while CDK4 prevents a telomere-independent growth arrest affecting CD56+ myogenic cells, but not their CD56- counterpart, in vitro. Conclusions These immortal cell lines are valuable tools to reproducibly study the effect of the FSHD mutation within myoblasts isolated from muscles that have been severely affected by the disease, without the confounding influence of variable amounts of contaminating connective-tissue cells. PMID:21798090

  2. Oxytocin receptors expressed and coupled to Ca2+ signalling in a human vascular smooth muscle cell line.

    PubMed

    Yazawa, H; Hirasawa, A; Horie, K; Saita, Y; Iida, E; Honda, K; Tsujimoto, G

    1996-03-01

    1. In a human vascular smooth muscle cell line (HVSMC), binding experiments with [3H]-arginine8-vasopressin (AVP) have shown the existence of a homogeneous population of binding sites with affinity (Kd value) of 0.65 nM and a maximum number of binding sites (Bmax) of 122 fmol mg-1 protein. 2. Nonlabelled compounds compete for [3H]-AVP binding in the HVSMC membrane with an order of potency of oxytocin > lyspressin > or = AVP > Thr4, Gly7-oxytocin > (beta-mercapto-beta-beta-cyclopentamethylenepropionyl-O-Me Tyr2, Arg8) vasopressin > desmopressin > OPC21268 > OPC31260. This order was markedly different from that observed in rat vascular smooth muscle cells (A10), a well-established V1A receptor system. 3. In HVSMC both oxytocin and AVP increased inositol 1,4,5-trisphosphate (IP3) production and [Ca2+]i response, but the efficacy of the responses was greater for oxytocin than AVP. 4. Reverse transcription-polymerase chain reaction (RT-PCR) assay detected only oxytocin receptor but not V1A or V2 receptors in HVSMC, whereas only V1A receptors were found in A10 cells. 5. In conclusion, in HVSMC only oxytocin receptors are expressed among the vasopressin receptor family, and they coupled to phosphatidyl inositol (PI) turnover/Ca2+ signalling. This unexpected observation should provide new insight into the functional role of the oxytocin receptor in a human vascular smooth muscle cell line.

  3. Inhibition of prenyltransferase activity by statins in both liver and muscle cell lines is not causative of cytotoxicity.

    PubMed

    Gee, Rowena H; Spinks, Jenny N; Malia, Jason M; Johnston, Jonathan D; Plant, Nick J; Plant, Kathryn E

    2015-03-02

    As inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase, statins are an important first-line treatment for hypercholesterolemia. However, a recognized side-effect of statin therapy is myopathy, which in severe cases can present as potentially fatal rhabdomyolysis. This represents an important impediment to successful statin therapy, and despite decades of research the molecular mechanisms underlying this side-effect remain unclear. Current evidence supports a role for reduced levels of mevalonate pathway intermediates, with the most accepted hypothesis being a reduction in isoprenoids formation, leading to faulty post-translational modifications of membrane-associated proteins. We have undertaken a comprehensive analysis of the impact of nine statins on two human cell lines; Huh7 hepatoma and RD rhabdomyosarcoma. In both cell lines, concentration-dependent inhibition of prenylation was observed for cerivastatin and simvastatin, which could be rescued with the pathway intermediate mevalonate; in general, muscle cells were more sensitive to this effect, as measured by the levels of unprenylated Rap1A, a marker for prenylation by geranylgeranyl transferase I. Concentration-dependent toxicity was observed in both cell lines, with muscle cells again being more sensitive. Importantly, there was no correlation between inhibition of prenylation and cell toxicity, suggesting they are not causally linked. The lack of a causal relationship was confirmed by the absence of cytotoxicity in all cell lines following exposure to specific inhibitors of geranylgeranyl transferases I and II, and farnesyl transferase. As such, we provide strong evidence against the commonly accepted hypothesis linking inhibition of prenylation and statin-mediated toxicity, with the two processes likely to be simultaneous but independent.

  4. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    PubMed Central

    Lazar-Karsten, Pamela; Belge, Gazanfer; Schult-Badusche, Detlev; Focken, Tim; Radtke, Arlo; Yan, Junfeng; Renhabat, Pramod; Mohamed, Salah A.

    2016-01-01

    Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV), dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC) loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells. PMID:27110824

  5. Non-classical localization of androgen receptor in the C2C12 skeletal muscle cell line.

    PubMed

    Pronsato, Lucía; Boland, Ricardo; Milanesi, Lorena

    2013-02-01

    The classical model of testosterone action has been traditionally described as being mediated by the androgen receptor (AR) localized exclusively in the nucleus. However, there is increasing functional evidence for extranuclear localization of AR. We present biochemical and immunological data supporting mitochondrial and microsomal localization of AR in the C2C12 skeletal muscle cell line. As a first approach AR was detected by immunoblotting, using specific antibodies after subcellular fractionation, not only in nucleus and cytosol, but also in mitochondria and microsomes. We then established [(3)H] testosterone binding characteristics in total homogenates and subcellular fractions. Specific and saturable [(3)H] testosterone binding sites were detected in mitochondria and microsomes. Immunolocalization of the non-classical AR was also confirmed using confocal microscopy. Sucrose gradient fractionation demonstrated the presence of the AR in lipid rafts and caveolae. Besides, the AR interacts physically with Caveolin-1, association that is lost after testosterone treatment. Accordingly, Western blot analysis revealed a decrease of AR expression in the microsomal fraction after testosterone treatment, suggesting translocation of the membrane AR to another subcellular compartment. The non-classical distribution of native pools of AR in skeletal muscle cells suggests an alternative mode of AR localization/function. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Effects of low intensity static electromagnetic radiofrequency fields on leiomyosarcoma and smooth muscle cell lines.

    PubMed

    Karkabounas, Spyridon; Havelas, Konstantinos; Kostoula, Olga K; Vezyraki, Patra; Avdikos, Antonios; Binolis, Jayne; Hatziavazis, George; Metsios, Apostolos; Verginadis, Ioannis; Evangelou, Angelos

    2006-01-01

    In this study we investigated the effects of low intensity static radiofrequency electromagnetic field (EMF) causing no thermal effects, on leiomyosarcoma cells (LSC), isolated from tumors of fifteen Wistar rats induced via a 3,4-benzopyrene injection. Electromagnetic resonance frequencies measurements and exposure of cells to static EMF were performed by a device called multi channel dynamic exciter 100 V1 (MCDE). The LSC were exposed to electromagnetic resonance radiofrequencies (ERF) between 10 kHz to 120 kHz, for 45 min. During a 24h period, after the exposure of the LSC to ERF, there was no inhibition of cells proliferation. In contrast, at the end of a 48 h incubation period, LSC proliferation dramatically decreased by more than 98% (P<0.001). At that time, the survived LSC were only 2% of the total cell population exposed to ERF, and under the same culture conditions showed significant decrease of proliferation. These cells were exposed once again to ERF for 45 min (totally 4 sessions of exposure, of 45 min duration each) and tested using a flow cytometer. Experiments as above were repeated five times. It was found that 45% of these double exposed to ERF, LSC (EMF cells) were apoptotic and only a small percentage 2%, underwent mitosis. In order to determinate their metastatic potential, these EMF cells were also counted and tested by an aggregometer for their ability to aggregate platelets and found to maintain this ability., since they showed no difference in platelet aggregation ability compared to the LSC not exposed to ERF (control cells). In conclusion, exposure of LSC to specific ERF, decreases their proliferation rate and induces cell apoptosis. Also, the LSC that survived after exposed to ERF, had a lower proliferation rate compared to the LSC controls (P<0.05) but did not loose their potential for metastases (platelet aggregation ability). The non-malignant SMC were not affected by the EMF exposure (P<0.4). The specific ERF generated from the MCDE

  7. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise.

    PubMed

    Gyorkos, A M; McCullough, M J; Spitsbergen, J M

    2014-01-17

    Glial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles. Rats were randomly assigned to a run training (run group), swim training (swim group), or sedentary control group. GDNF protein content was determined by enzyme-linked immunosorbant assay. GDNF protein content increased significantly in soleus (SOL) following both training protocols (P<0.05). Although not significant, an increase of 60% in the extensor digitorum longus (EDL) followed swim-training (NS; P<0.06). NMJ morphology was analyzed by measuring α-bungarotoxin labeled post-synaptic end plates. GDNF content and total end plate area were positively correlated. End plate area decreased in EDL of the run group and increased in SOL of the swim group. The results indicate that GDNF expression and NMJ morphological changes are activity dependent and that different changes may be observed by varying the exercise intensity in slow- and fast-twitch fibers. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6

    SciTech Connect

    Lee, M.D.; Zentella, A.; Pekala, P.H.; Cerami, A.

    1987-05-01

    Exposure of fully differentiated L6 myotubes to a crude monokine preparation from endotoxin-stimulated RAW 264.7 cells resulted in a rapid and substantial (70%) increase in fructose 2,6-bisphosphate concentration coincident with a depletion of cellular glycogen and an increased lactate production. During the time required for glycogen depletion (3 hr), stimulation of 3-O-methyl-D-glucose and 2-deoxy-D-glucose uptake was initiated and observed to reach a maximum enhancement of 200% 12-15 hr later. The monokine had no effect on the K/sub m/ value for 2-deoxy-D-glucose uptake (1.1 mM), while V/sub max/ was increased from 912 to 2400 pmol/min per mg of protein. The increase was cytochalasin B inhibitable and was dependent on protein synthesis. Photoaffinity labeling and equilibrium binding studies with (/sup 3/H)cytochalasin B support the hypothesis that this increase in hexose transport was due to an increase in hexose transporters present in the plasma membrane. Purified recombinant interleukin-1..cap alpha.. had no effect on hexose transport, whereas purified recombinant cachectin/tumor necrosis factor did stimulate hexose uptake, with half-maximal stimulation occurring at 36 nM. Although cachectin accounts for most of the biological activity associated with the crude monokine preparation, it is not the only monokine capable of inducing glucose transport in L6 cells. Specific immunoabsorption of cachectin/tumor necrosis factor from the crude monokine preparation revealed a monokine that had a similar bioactivity at extremely low concentrations on L6 cells.

  9. CoCl(2)-simulated hypoxia in skeletal muscle cell lines: Role of free radicals in gene up-regulation and induction of apoptosis.

    PubMed

    Ciafrè, Silvia Anna; Niola, Francesco; Giorda, Ezio; Farace, Maria Giulia; Caporossi, Daniela

    2007-04-01

    Since it was suggested that cobalt chloride (CoCl(2)) could mimic the O(2) sensing role of mitochondria by increasing reactive oxygen species (ROS) generation during normoxia, we studied the correlation between CoCl(2)-generation of free radicals and the induction of a hypoxic cellular response in myogenic cell lines. In both L6C5 and C2C12 cell lines, exposure to CoCl(2) induced an increase of intracellular oxidants, the accumulation of HIF-1alpha protein, and the expression of vascular endothelial growth factor (VEGF) and/or iNOS genes. On the other hand, only ascorbic acid, but not trolox, was effective in lowering the CoCl(2) gene up-regulation. Neither the cytotoxicity nor the apoptosis induced by CoCl(2) in skeletal muscle cells were modified by culture supplementation with either ascorbic acid or trolox. Thus, CoCl(2) treatment of myogenic cell lines may represent a useful and convenient in vitro model to study gene modulation induced by hypoxia in skeletal muscle, although cellular loss induced by this metal may involve mechanisms other than HIF-1alpha stabilization. It is unlikely, however, that ROS would represent the main mediators of CoCl(2) effects on muscle cells.

  10. Cortisol and IGF-1 synergistically up-regulate taurine transport by the rat skeletal muscle cell line, L6.

    PubMed

    Park, Sung-Hee; Lee, Haemi; Park, Taesun

    2004-01-01

    This study was undertaken to evaluate effects of exercise-induced hormones, cortisol, IGF-1, and beta-endorphin, on the regulation of taurine transport activity in rat skeletal myoblasts, L6 cells. Challenge of L6 cells with cortisol (100 nM) for 24 hrs resulted in a 165% increase in taurine transport activity, 220% increase in Vmax of the taurine transporter, and 55% increase in taurine transporter/ beta-actin mRNA level compared with untreated control cells. Neither IGF-1 (1 approximately 100 nM) nor beta-endorphin (1 approximately 20 nM), added in the incubation medium separately for 24 hrs, affected taurine uptake by L6 cells. However, when cells were co-treated with IGF-1 (10 nM) plus cortisol (100 nM), taurine transport activity (37% increase, p < 0.05), Vmax of the transporter (54%, p < 0.05), and taurine transporter/ beta-actin mRNA level were further increased compared to the value for cells treated with cortisol alone. These results suggest that taurine transport by skeletal muscle cells appear to be synergistically up-regulated during a prolonged exercise via elevated levels of cortisol and IGF-1 in muscle.

  11. Role of guanine nucleotide binding protein(s) in vasopressin-induced responses of a vascular smooth muscle cell line

    SciTech Connect

    Nambi, P.; Aiyar, N.; Whitman, M.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Rat aortic smooth muscle cells (A-10) carry vascular V1 vasopressin receptors. In these cells, vasopressin inhibits isoproterenol-induced cAMP accumulation and stimulates phosphatidylinositol turnover and Ca/sup 2 +/ mobilization. Pretreatment of the cells with phorbol esters resulted in inhibition of the vasopressin-induced responses. The inactive phorbol ester aPDD was ineffective. These data suggested that phorbol ester might cause phosphorylation of the vasopressin receptor and/or coupling protein(s). Here, they studied the role of guanine nucleotide binding proteins by employing the novel radiolabeled vasopressin antagonist (/sup 3/H)-SKF 101926. In competition experiments with cell membranes, Gpp(NH)p shifted the vasopressin curve to the right indicating decreased agonist affinity. Phorbol ester pretreatment abolished the Gpp(NH)p effect. Pretreatment of the cells with N-ethylmaleimide (NEM) resulted in inhibition of vasopressin-induced phosphatidyinositol turnover. NEM also abolished the decrease in agonist affinity caused by Gpp(NH)p. These data showed that NEM and phorbol ester pretreatment of smooth muscle cells functionally uncoupled the vasopressin receptors and suggested that vasopressin V1 receptor responses are mediated through guanine nucleotide binding protein(s).

  12. New vitamin D less-calcemic analog affect human bone cell line and cultured vascular smooth muscle cells similar to other less-calcemic analogs.

    PubMed

    Somjen, D; Kulesza, U; Sharon, O; Knoll, E; Stern, N

    2014-03-01

    Primary cultures of human bone and vascular cells respond to vitamin D treatment by modulation of cell proliferation measured by DNA synthesis (DNA) and energy metabolism measured by creatine kinase specific activity (CK) via binding to vitamin D receptors (VDR) which are expressed in these cells. Vitamin D compounds also modulate the response to estradiol-17β (E₂) and the expression mRNAs of estrogen receptors (ERα and ERβ), VDR, 25-hydroxy vitamin D₃ 1-α hydroxylase (1OHase) and lipoxygenases (12LO and 15LO). We now compared our newly synthesized analog: 1α,25-dihydroxy-9-methylene-19-norvitamin D₃ JK152 (JK), on bone and vascular cells compared to other analogs. Human bone cell line SaOS₂ respond to JK by increased DNA and stimulated CK dose-dependently, similar to the less-calcemic analogs CB 1093 (CB) and EB 1089 (EB). JK also up-regulated the response to E₂ in terms of DNA and CK. JK inhibited DNA synthesis and increased CK in primary human vascular smooth muscle cells (VSMC) dose-dependently similar to EB and CB. JK up regulated the response to E₂ in terms of CK with no effect on DNA. JK similar to CB and EB stimulated mRNA expression of VDR and ERα, 12LO and 15LO, with no effect on ERβ and 1OHase mRNA expression in SaOS₂ measured by real time PCR. Similar treatments of VSMC with JK, CB and EB stimulated 12LO and 15LO, VDR and ERα mRNA expression with no effect on ERβ and 1OHase mRNA expression. The results presented here demonstrate that the new vitamin D less-calcemic analog JK is similar to other analogs in its effects on human cultured cells and therefore may be used in combined hormone replacement treatment (HRT) both in vitro and in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Electrical stimulation induces calcium-dependent up-regulation of neuregulin-1β in dystrophic skeletal muscle cell lines.

    PubMed

    Juretić, Nevenka; Jorquera, Gonzalo; Caviedes, Pablo; Jaimovich, Enrique; Riveros, Nora

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease originated by reduced or no expression of dystrophin, a cytoskeletal protein that provides structural integrity to muscle fibres. A promising pharmacological treatment for DMD aims to increase the level of a structural dystrophin homolog called utrophin. Neuregulin-1 (NRG-1), a growth factor that potentiates myogenesis, induces utrophin expression in skeletal muscle cells. Microarray analysis of total gene expression allowed us to determine that neuregulin-1β (NRG-1β) is one of 150 differentially expressed genes in electrically stimulated (400 pulses, 1 ms, 45 Hz) dystrophic human skeletal muscle cells (RCDMD). We investigated the effect of depolarization, and the involvement of intracellular Ca(2+) and PKC isoforms on NRG-1β expression in dystrophic myotubes. Electrical stimulation of RCDMD increased NRG-1β mRNA and protein levels, and mRNA enhancement was abolished by actinomycin D. NRG-1β transcription was inhibited by BAPTA-AM, an intracellular Ca(2+) chelator, and by inhibitors of IP(3)-dependent slow Ca(2+) transients, like 2-APB, Ly 294002 and Xestospongin B. Ryanodine, a fast Ca(2+) signal inhibitor, had no effect on electrical stimulation-induced expression. BIM VI (general inhibitor of PKC isoforms) and Gö 6976 (specific inhibitor of Ca(2+)-dependent PKC isoforms) abolished NRG-1β mRNA induction. Our results suggest that depolarization induced slow Ca(2+) signals stimulate NRG-1β transcription in RCDMD cells, and that Ca(2+)-dependent PKC isoforms are involved in this process. Based on utrophin's ability to partially compensate dystrophin disfunction, knowledge on the mechanism involved on NRG-1 up-regulation could be important for new therapeutic strategies design.

  14. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    PubMed Central

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders. PMID:27340504

  15. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line.

    PubMed

    Yamamoto, Hirotaka; Morino, Katsutaro; Mengistu, Lemecha; Ishibashi, Taishi; Kiriyama, Kohei; Ikami, Takao; Maegawa, Hiroshi

    2016-01-01

    Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS) levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  16. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form

  17. Glial cell line-derived neurotrophic factor (GDNF) protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro

    PubMed Central

    McCullough, Monica J.; Peplinski, Nathan G.; Kinnell, Kyle R.; Spitsbergen, John M.

    2010-01-01

    Current evidence suggests that exercise and glial cell line-derived neurotrophic factor (GDNF) independently cause significant morphological changes in the neuromuscular system. The aim of the current study was to determine if increased physical activity regulates GDNF protein content in rat skeletal muscle. Extensor Digitorum Longus (EDL) and Soleus (SOL) hindlimb skeletal muscles were analyzed following 2 weeks of involuntary exercise and 4 hours of field stimulation or stretch in muscle bath preparations. GDNF protein content was measured via ELISA. Two weeks of exercise increased GDNF protein content in SOL as compared to sedentary controls (4.4 ±0.3 pg GDNF/mg tissue and 3.1 ±0.6 pg GDNF/mg tissue, respectively) and decreased GDNF protein content in EDL as compared to controls (1.0 ±0.1 pg GDNF/mg tissue and 2.3 ±0.7 pg GDNF/mg tissue, respectively). GDNF protein content in the EDL decreased following both field stimulation (56% ±18% decrease from controls) and stretch (66% ±10% decrease from controls). SOL responded to field stimulation with a 38% ±7% increase from controls in GDNF protein content, but showed no change following stretch. Pre-treatment with α-bungarotoxin abolished the effects of field stimulation in both muscles and blocked the effect of stretch in EDL. α-bungarotoxin pre-treatment and stretch increased GDNF protein content to 240% ±10% of controls in the SOL. Exposure to carbamylcholine decreased GDNF protein content to 51% ±28% of controls in the EDL but not SOL. These results suggest that GDNF protein content in skeletal muscle may be controlled by stretch, where it may increase GDNF protein content, and membrane depolarization/ACh which acts to decrease GDNF protein content. PMID:21081155

  18. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  19. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups.

    PubMed

    Randolph, Matthew E; Pavlath, Grace K

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  20. Cell line provenance.

    PubMed

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  1. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines.

    PubMed

    Ang, Lei Yin Emily; Too, Horng Khit Issac; Tan, Eng Lee; Chow, Tak-Kwong Vincent; Shek, Pei-Chi Lynette; Tham, Elizabeth; Alonso, Sylvie

    2016-06-24

    Recurrence of hand, foot and mouth disease (HFMD) pandemics continues to threaten public health. Despite increasing awareness and efforts, effective vaccine and drug treatment have yet to be available. Probiotics have gained recognition in the field of healthcare worldwide, and have been extensively prescribed to babies and young children to relieve gastrointestinal (GI) disturbances and diseases, associated or not with microbial infections. Since the faecal-oral axis represents the major route of HFMD transmission, transient persistence of probiotic bacteria in the GI tract may confer some protection against HFMD and limit transmission among children. In this work, the antiviral activity of two commercially available probiotics, namely Lactobacillus reuteri Protectis (L. reuteri Protectis) and Lactobacillus casei Shirota (L. casei Shirota), was assayed against Coxsackieviruses and Enterovirus 71 (EV71), the main agents responsible for HFMD. In vitro infection set-ups using human skeletal muscle and colon cell lines were designed to assess the antiviral effect of the probiotic bacteria during entry and post-entry steps of the infection cycle. Our findings indicate that L. reuteri Protectis displays a significant dose-dependent antiviral activity against Coxsackievirus type A (CA) strain 6 (CA6), CA16 and EV71, but not against Coxsackievirus type B strain 2. Our data support that the antiviral effect is likely achieved through direct physical interaction between bacteria and virus particles, which impairs virus entry into its mammalian host cell. In contrast, no significant antiviral effect was observed with L. casei Shirota. Should the antiviral activity of L. reuteri Protectis observed in vitro be translated in vivo, such probiotics-based therapeutic approach may have the potential to address the urgent need for a safe and effective means to protect against HFMD and limit its transmission among children.

  2. The Skeletal Muscle Satellite Cell

    PubMed Central

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  3. Satellite cells: the architects of skeletal muscle.

    PubMed

    Chang, Natasha C; Rudnicki, Michael A

    2014-01-01

    The outstanding regenerative capacity of skeletal muscle is attributed to the resident muscle stem cell termed satellite cell. Satellite cells are essential for skeletal muscle regeneration as they ultimately provide the myogenic precursors that rebuild damaged muscle tissue. Satellite cells characteristically are a heterogeneous population of stem cells and committed progenitor cells. Delineation of cellular hierarchy and understanding how lineage fate choices are determined within the satellite cell population will be invaluable for the advancement of muscle regenerative therapies.

  4. Amylin and leptin activate overlapping signalling pathways in an additive manner in mouse GT1-7 hypothalamic, C₂C₁₂ muscle and AML12 liver cell lines.

    PubMed

    Moon, H-S; Chamberland, J P; Mantzoros, C S

    2012-01-01

    It has been suggested that amylin amplifies leptin's effects and affects energy homeostasis synergistically with leptin in animals and humans. However, no previous study has reported on amylin and leptin signalling in hypothalamic, muscle and liver cells. Leptin and amylin signalling studies were performed in vitro in mouse GT1-7 hypothalamic, C₂C₁₂ muscle and AML12 liver cell lines. Treatment of mouse GT1-7 and C₂C₁₂ cells with leptin or amylin increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in a dose- and time-dependent manner. In mouse AML12 cells, leptin and amylin produced a biphasic response of STAT3 activity. Importantly, all leptin and amylin signalling pathways were saturable at leptin and amylin concentrations of ∼100 and ∼50 to 100 ng/ml, respectively. Leptin and amylin in combination activated STAT3, AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK) 1/2 and Akt signalling pathways in an additive manner, effects that were abolished under endoplasmic reticulum (ER) stress. Leptin, but not amylin, increased IRS-1 phosphorylation in GT1-7 hypothalamic, but not in C₂C₁₂ muscle and AML12 liver cell lines. Our data suggest that leptin and amylin have overlapping and additive, but not synergistic, effects in the activation of intracellular signalling pathways. ER stress may induce leptin and amylin resistance in hypothalamic, muscle and liver cell lines. These novel insights into the mode of action of leptin and amylin suggest that these hormones may play an additive role in regulating energy homeostasis in humans.

  5. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels.

    PubMed

    Andres-Mateos, Eva; Mejias, Rebeca; Soleimani, Arshia; Lin, Brian M; Burks, Tyesha N; Marx, Ruth; Lin, Benjamin; Zellars, Richard C; Zhang, Yonggang; Huso, David L; Marr, Tom G; Leinwand, Leslie A; Merriman, Dana K; Cohn, Ronald D

    2012-01-01

    Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.

  6. Impaired Skeletal Muscle Regeneration in the Absence of Fibrosis during Hibernation in 13-Lined Ground Squirrels

    PubMed Central

    Soleimani, Arshia; Lin, Brian M.; Burks, Tyesha N.; Marx, Ruth; Lin, Benjamin; Zellars, Richard C.; Zhang, Yonggang; Huso, David L.; Marr, Tom G.; Leinwand, Leslie A.; Merriman, Dana K.; Cohn, Ronald D.

    2012-01-01

    Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis. PMID:23155423

  7. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  8. Immortalization of primary human smooth muscle cells.

    PubMed Central

    Perez-Reyes, N; Halbert, C L; Smith, P P; Benditt, E P; McDougall, J K

    1992-01-01

    Primary human aortic and myometrial smooth muscle cells (SMCs) were immortalized using an amphotropic recombinant retroviral construct containing the E6 and E7 open reading frames (ORFs) of human papillomavirus type 16. The SMCs expressing the E6/E7 ORFs have considerably elevated growth rates when compared with nonimmortalized control cells and show no signs of senescence with long-term passage. The first SMC line derived in this study has been maintained in continuous tissue culture for greater than 1 year (greater than 180 population doublings). The immortalized SMCs have decreased cell size and decreased content of muscle-specific alpha-actin filaments as determined by indirect immunofluorescence. Southern blot analysis has demonstrated the stable integration of the E6/E7 ORFs in the retrovirally infected cells, and radioimmunoprecipitation has confirmed the continued expression of the E6 and E7 genes. Cytogenetic studies of the SMC lines have revealed essentially diploid populations except for the myometrial clonal line, which became aneuploid at late passage (greater than 125 doublings). These cell lines were not tumorigenic in nude mice. Images PMID:1311088

  9. The role of satellite cells in muscle hypertrophy.

    PubMed

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  10. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells

    PubMed Central

    Tedesco, Francesco Saverio; Dellavalle, Arianna; Diaz-Manera, Jordi; Messina, Graziella; Cossu, Giulio

    2010-01-01

    Skeletal muscle damaged by injury or by degenerative diseases such as muscular dystrophy is able to regenerate new muscle fibers. Regeneration mainly depends upon satellite cells, myogenic progenitors localized between the basal lamina and the muscle fiber membrane. However, other cell types outside the basal lamina, such as pericytes, also have myogenic potency. Here, we discuss the main properties of satellite cells and other myogenic progenitors as well as recent efforts to obtain myogenic cells from pluripotent stem cells for patient-tailored cell therapy. Clinical trials utilizing these cells to treat muscular dystrophies, heart failure, and stress urinary incontinence are also briefly outlined. PMID:20051632

  11. Artificial muscles from fishing line and sewing thread.

    PubMed

    Haines, Carter S; Lima, Márcio D; Li, Na; Spinks, Geoffrey M; Foroughi, Javad; Madden, John D W; Kim, Shi Hyeong; Fang, Shaoli; Jung de Andrade, Mônica; Göktepe, Fatma; Göktepe, Özer; Mirvakili, Seyed M; Naficy, Sina; Lepró, Xavier; Oh, Jiyoung; Kozlov, Mikhail E; Kim, Seon Jeong; Xu, Xiuru; Swedlove, Benjamin J; Wallace, Gordon G; Baughman, Ray H

    2014-02-21

    The high cost of powerful, large-stroke, high-stress artificial muscles has combined with performance limitations such as low cycle life, hysteresis, and low efficiency to restrict applications. We demonstrated that inexpensive high-strength polymer fibers used for fishing line and sewing thread can be easily transformed by twist insertion to provide fast, scalable, nonhysteretic, long-life tensile and torsional muscles. Extreme twisting produces coiled muscles that can contract by 49%, lift loads over 100 times heavier than can human muscle of the same length and weight, and generate 5.3 kilowatts of mechanical work per kilogram of muscle weight, similar to that produced by a jet engine. Woven textiles that change porosity in response to temperature and actuating window shutters that could help conserve energy were also demonstrated. Large-stroke tensile actuation was theoretically and experimentally shown to result from torsional actuation.

  12. Satellite cells in human skeletal muscle plasticity.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  13. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  14. Muscle precursor cells invade and repopulate freeze-killed muscles.

    PubMed

    Morgan, J E; Coulton, G R; Partridge, T A

    1987-10-01

    A problem with the use of muscle grafting as a therapeutic procedure is to produce a graft functionally adequate to replace a muscle of complex architecture, such as a sphincter muscle. We thought it might be possible to use dead cadaver muscles, repopulated by the patient's own muscle precursor cells (mpc), to reconstruct muscles whose anatomy would be imposed by the framework of dead muscle and whose genetic constitution would be determined by the mpc. Here we show, in the mouse, that an extensor digitorum longus (EDL) muscle, killed by repeated freezing and thawing, repopulated with mpc and grafted into a nu/nu or tolerant AKR host mouse, is capable of supporting muscle formation. By using the allotypic isoenzyme forms of glucose-6-phosphate isomerase as markers, we have shown that the newly regenerated muscle in such grafts is derived mainly from the implanted mpc, but also to some extent from the host mouse's own mpc. By 50-70 days after grafting, new muscle fibres were found to constitute up to 70% of the graft. Many fibres had assumed diameters in the normal range for mouse muscle, often having peripherally placed nuclei. These findings raise the possibility of the therapeutic use of such grafts. To our surprise, dead EDL muscle grafts into which no mpc had been implanted were also the site of good muscle regeneration. New-formed muscle in these grafts was shown to be derived entirely from mpc which must have migrated into the graft from the host. Investigation of the mechanisms underlying this phenomenon should further our knowledge of factors which regulate the proliferation and movement of dormant mpc in adult animals.

  15. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    PubMed

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  16. Coaxing stem cells for skeletal muscle repair

    PubMed Central

    McCullagh, Karl J.A.; Perlingeiro, Rita C. R.

    2014-01-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. PMID:25049085

  17. Segregated assembly of muscle myosin expressed in nonmuscle cells.

    PubMed

    Moncman, C L; Rindt, H; Robbins, J; Winkelmann, D A

    1993-10-01

    Skeletal muscle myosin cDNAs were expressed in a simian kidney cell line (COS) and a mouse myogenic cell line to investigate the mechanisms controlling early stages of myosin filament assembly. An embryonic chicken muscle myosin heavy chain (MHC) cDNA was linked to constitutive promoters from adenovirus or SV40 and transiently expressed in COS cells. These cells accumulate hybrid myosin molecules composed of muscle MHCs and endogenous, nonmuscle, myosin light chains. The muscle myosin is found associated with a Triton insoluble fraction from extracts of the COS cells by immunoprecipitation and is detected in 2.4 +/- 0.8-micron-long filamentous structures distributed throughout the cytoplasm by immunofluorescence microscopy. These structures are shown by immunoelectron microscopy to correspond to loosely organized bundles of 12-16-nm-diameter myosin filaments. The muscle and nonmuscle MHCs are segregated in the transfected cells; the endogenous nonmuscle myosin displays a normal distribution pattern along stress fibers and does not colocalize with the muscle myosin filament bundles. A similar assembly pattern and distribution are observed for expression of the muscle MHC in a myogenic cell line. The myosin assembles into filament bundles, 1.5 +/- 0.6 micron in length, that are distributed throughout the cytoplasm of the undifferentiated myoblasts and segregated from the endogenous nonmuscle myosin. In both cell lines, formation of the myosin filament bundles is dependent on the accumulation of the protein. In contrast to these results, the expression of a truncated MHC that lacks much of the rod domain produces an assembly deficient molecule. The truncated MHC is diffusely distributed throughout the cytoplasm and not associated with cellular stress fibers. These results establish that the information necessary for the segregation of myosin isotypes into distinct cellular structures is contained within the primary structure of the MHC and that other factors are not

  18. Do inflammatory cells influence skeletal muscle hypertrophy?

    PubMed

    Koh, Timothy J; Pizza, Francis X

    2009-06-01

    Most research on muscle hypertrophy has focused on the responses of muscle cells to mechanical loading; however, a number of studies also suggest that inflammatory cells may influence muscle hypertrophy. Neutrophils and macrophages accumulate in skeletal muscle following increased mechanical loading, and we have demonstrated that macrophages are essential for hypertrophy following synergist ablation. Whether neutrophils are required remains to be determined. Non-steroidal anti-inflammatory drugs impair adaptive responses of skeletal muscle in both human and animal experiments suggesting that the routine use of such drugs could impair muscle performance. Much remains to be learned about the role of inflammatory cells in muscle hypertrophy, including the molecular signals involved in calling neutrophils and macrophages to skeletal muscle as well as those that regulate their function in muscle. In addition, although we have demonstrated that macrophages produce growth promoting factors during muscle hypertrophy, the full range of functional activities involved in muscle hypertrophy remains to be determined. Further investigation should provide insight into the intriguing hypothesis that inflammatory cells play integral roles in regulating muscle hypertrophy.

  19. Laminin regulates PDGFRβ(+) cell stemness and muscle development.

    PubMed

    Yao, Yao; Norris, Erin H; Mason, Christopher E; Strickland, Sidney

    2016-05-03

    Muscle-resident PDGFRβ(+) cells, which include pericytes and PW1(+) interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ(+) cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ(+) cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ(+) cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ(+) cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy.

  20. Laminin regulates PDGFRβ+ cell stemness and muscle development

    PubMed Central

    Yao, Yao; Norris, Erin H.; E. Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  1. 3D timelapse analysis of muscle satellite cell motility.

    PubMed

    Siegel, Ashley L; Atchison, Kevin; Fisher, Kevin E; Davis, George E; Cornelison, D D W

    2009-10-01

    Skeletal muscle repair and regeneration requires the activity of satellite cells, a population of myogenic stem cells scattered throughout the tissue and activated to proliferate and differentiate in response to myotrauma or disease. While it seems likely that satellite cells would need to navigate local muscle tissue to reach damaged areas, relatively little data on such motility exist, and most studies have been with immortalized cell lines. We find that primary satellite cells are significantly more motile than myoblast cell lines, and that adhesion to laminin promotes primary cell motility more than fourfold over other substrates. Using timelapse videomicroscopy to assess satellite cell motility on single living myofibers, we have identified a requirement for the laminin-binding integrin alpha 7 beta 1 in satellite cell motility, as well as a role for hepatocyte growth factor in promoting directional persistence. The extensive migratory behavior of satellite cells resident on muscle fibers suggests caution when determining, based on fixed specimens, whether adjacent cells are daughters from the same mother cell. We also observed more persistent long-term contact between individual satellite cells than has been previously supposed, potential cell-cell attractive and repulsive interactions, and migration between host myofibers. Based on such activity, we assayed for expression of "pathfinding" cues, and found that satellite cells express multiple guidance ligands and receptors. Together, these data suggest that satellite cell migration in vivo may be more extensive than currently thought, and could be regulated by combinations of signals, including adhesive haptotaxis, soluble factors, and guidance cues.

  2. Isolation, characterization, and molecular regulation of muscle stem cells

    PubMed Central

    Fukada, So-ichiro; Ma, Yuran; Ohtani, Takuji; Watanabe, Yoko; Murakami, Satoshi; Yamaguchi, Masahiko

    2013-01-01

    Skeletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse's genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders. PMID:24273513

  3. MAP kinases p38 and JNK are activated by the steroid hormone 1alpha,25(OH)2-vitamin D3 in the C2C12 muscle cell line.

    PubMed

    Buitrago, Claudia G; Ronda, Ana C; de Boland, Ana Russo; Boland, Ricardo

    2006-03-01

    In chick skeletal muscle cell primary cultures, we previously demonstrated that 1alpha,25(OH)2-vitamin D3 [1alpha,25(OH)2D3], the hormonally active form of vitamin D, increases the phosphorylation and activity of the extracellular signal-regulated mitogen-activated protein (MAP) kinase isoforms ERK1 and ERK2, their subsequent translocation to the nucleus and involvement in DNA synthesis stimulation. In this study, we show that other members of the MAP kinase superfamily are also activated by the hormone. Using the muscle cell line C2C12 we found that 1alpha,25(OH)2D3 within 1 min phosphorylates and increases the activity of p38 MAPK. The immediately upstream mitogen-activated protein kinase kinases 3/6 (MKK3/MKK6) were also phosphorylated by the hormone suggesting their participation in p38 activation. 1Alpha,25(OH)2D3 was able to dephosphorylate/activate the ubiquitous cytosolic tyrosine kinase c-Src in C2C12 cells and studies with specific inhibitors imply that Src participates in hormone induced-p38 activation. Of relevance, 1alpha,25(OH)2D3 induced in the C2C12 line the stimulation of mitogen-activated protein kinase activating protein kinase 2 (MAPKAP-kinase 2) and subsequent phosphorylation of heat shock protein 27 (HSP27) in a p38 kinase activation-dependent manner. Treatment with the p38 inhibitor, SB203580, blocked p38 phosphorylation caused by the hormone and inhibited the phosphorylation of its downstrean substrates. 1Alpha,25(OH)2D3 also promotes the phosphorylation of c-jun N-terminal protein kinases (JNK 1/2), the response is fast (0.5-1 min) and maximal phosphorylation of the enzyme is observed at physiological doses of 1alpha,25(OH)2D3 (1 nM). The relative contribution of ERK-1/2, p38, and JNK-1/2 and their interrelationships in hormonal regulation of muscle cell proliferation and differentiation remain to be established.

  4. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  5. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  6. Interstitial cells: regulators of smooth muscle function.

    PubMed

    Sanders, Kenton M; Ward, Sean M; Koh, Sang Don

    2014-07-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.

  7. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.

  8. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  9. Satellite Cells and Skeletal Muscle Regeneration.

    PubMed

    Dumont, Nicolas A; Bentzinger, C Florian; Sincennes, Marie-Claude; Rudnicki, Michael A

    2015-07-01

    Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.

  10. Potential of laryngeal muscle regeneration using induced pluripotent stem cell-derived skeletal muscle cells.

    PubMed

    Dirja, Bayu Tirta; Yoshie, Susumu; Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Nomoto, Yukio; Wada, Ikuo; Hazama, Akihiro; Omori, Koichi

    2016-01-01

    Conclusion Induced pluripotent stem (iPS) cells may be a new potential cell source for laryngeal muscle regeneration in the treatment of vocal fold atrophy after recurrent laryngeal nerve paralysis. Objectives Unilateral vocal fold paralysis can lead to degeneration, atrophy, and loss of force of the thyroarytenoid muscle. At present, there are some treatments such as thyroplasty, arytenoid adduction, and vocal fold injection. However, such treatments cannot restore reduced mass of the thyroarytenoid muscle. iPS cells have been recognized as supplying a potential resource for cell transplantation. The aim of this study was to assess the effectiveness of the use of iPS cells for the regeneration of laryngeal muscle through the evaluation of both in vitro and in vivo experiments. Methods Skeletal muscle cells were generated from tdTomato-labeled iPS cells using embryoid body formation. Differentiation into skeletal muscle cells was analyzed by gene expression and immunocytochemistry. The tdTomato-labeled iPS cell-derived skeletal muscle cells were transplanted into the left atrophied thyroarytenoid muscle. To evaluate the engraftment of these cells after transplantation, immunohistochemistry was performed. Results The tdTomato-labeled iPS cells were successfully differentiated into skeletal muscle cells through an in vitro experiment. These cells survived in the atrophied thyroarytenoid muscle after transplantation.

  11. Satellite cells in human skeletal muscle plasticity

    PubMed Central

    Snijders, Tim; Nederveen, Joshua P.; McKay, Bryon R.; Joanisse, Sophie; Verdijk, Lex B.; van Loon, Luc J. C.; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models. PMID:26557092

  12. Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration.

    PubMed

    Yang, Wenjun; Hu, Ping

    2017-08-24

    The muscle regeneration is a complicated bioprocess that involved in many cell types, including necrotic muscle cells, satellite cells, mesenchymal cells, pericytes, immune cells, and other cell types present at the injury site. Immune cells involved in both innate and adaptive immune responses regulate the progress of muscle regeneration. In this review, we discussed the roles of different immune cells in muscle regeneration. The immune cells regulate muscle regeneration through cytokine production, cell-cell contacts, and general immune environment regulation. We also describe the current known mechanism of how immune cells regulating muscle regeneration. Copyright © 2017. Published by Elsevier Inc.

  13. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle.

    PubMed

    Tedesco, Francesco Saverio; Moyle, Louise A; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

  14. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells.

    PubMed

    Li, Bo-Jiang; Li, Ping-Hua; Huang, Rui-Hua; Sun, Wen-Xing; Wang, Han; Li, Qi-Fa; Chen, Jie; Wu, Wang-Jun; Liu, Hong-Lin

    2015-08-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  15. Coaxing stem cells for skeletal muscle repair.

    PubMed

    McCullagh, Karl J A; Perlingeiro, Rita C R

    2015-04-01

    Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. GREG cells, a dysferlin-deficient myogenic mouse cell line

    SciTech Connect

    Humphrey, Glen W.; Mekhedov, Elena; Blank, Paul S.; Morree, Antoine de; Pekkurnaz, Gulcin; Nagaraju, Kanneboyina; Zimmerberg, Joshua

    2012-01-15

    The dysferlinopathies (e.g. LGMD2b, Myoshi myopathy) are progressive, adult-onset muscle wasting syndromes caused by mutations in the gene coding for dysferlin. Dysferlin is a large ({approx} 200 kDa) membrane-anchored protein, required for maintenance of plasmalemmal integrity in muscle fibers. To facilitate analysis of dysferlin function in muscle cells, we have established a dysferlin-deficient myogenic cell line (GREG cells) from the A/J mouse, a genetic model for dysferlinopathy. GREG cells have no detectable dysferlin expression, but proliferate normally in growth medium and fuse into functional myotubes in differentiation medium. GREG myotubes exhibit deficiencies in plasma membrane repair, as measured by laser wounding in the presence of FM1-43 dye. Under the wounding conditions used, the majority ({approx} 66%) of GREG myotubes lack membrane repair capacity, while no membrane repair deficiency was observed in dysferlin-normal C2C12 myotubes, assayed under the same conditions. We discuss the possibility that the observed heterogeneity in membrane resealing represents genetic compensation for dysferlin deficiency.

  17. Myosin types in cultured muscle cells

    PubMed Central

    1980-01-01

    Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins. PMID:6156177

  18. Muscle cells provide instructions for planarian regeneration.

    PubMed

    Witchley, Jessica N; Mayer, Mirjam; Wagner, Daniel E; Owen, Jared H; Reddien, Peter W

    2013-08-29

    Regeneration requires both potential and instructions for tissue replacement. In planarians, pluripotent stem cells have the potential to produce all new tissue. The identities of the cells that provide regeneration instructions are unknown. Here, we report that position control genes (PCGs) that control regeneration and tissue turnover are expressed in a subepidermal layer of nonneoblast cells. These subepidermal cells coexpress many PCGs. We propose that these subepidermal cells provide a system of body coordinates and positional information for regeneration, and identify them to be muscle cells of the planarian body wall. Almost all planarian muscle cells express PCGs, suggesting a dual function: contraction and control of patterning. PCG expression is dynamic in muscle cells after injury, even in the absence of neoblasts, suggesting that muscle is instructive for regeneration. We conclude that planarian regeneration involves two highly flexible systems: pluripotent neoblasts that can generate any new cell type and muscle cells that provide positional instructions for the regeneration of any body region. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity

    PubMed Central

    Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle

    2012-01-01

    How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640

  20. Chapter 6. available lepidopteran insect cell lines

    USDA-ARS?s Scientific Manuscript database

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  1. Regulation of myosin accumulation by muscle activity in cell culture.

    PubMed

    Strohman, R C; Bandman, E; Walker, C R

    1981-09-01

    Tetrodotoxin (TTX), at concentrations that do not interfere with normal myogenesis or with myosin synthesis, causes of cultured muscle fibres to accumulate myosin heavy chain peptides. This effect is now shown to be reversible. On removal of TTX, muscle fibres begin to reaccumulate myosin heavy chains and it appears that the myosin heavy chains display a 230% increase in stability when cells are shifted from TTX to a normal medium without TTX. Total protein stability or turnover is not affected by TTX. The ability of TTX to induce failure of accumulation of myosin heavy-chain in cultured muscle fibres does not extend to cultured chick fibroblasts. TTX also does not perturb normal uptake of [3H] leucine during a 1 h pulse and the leucine-specific activity within TTX-treated cells is essentially equivalent to that within normal cells. Finally, limited proteolysis of myosin heavy chain isolated from TTX-treated and normal muscle fibres and display of cleavage products on SDS-polyacrylamide gels does not reveal any significant difference between the two myosins. We conclude that failure of TTX muscle to accumulate myosin heavy chain is not related to impaired synthesis, to changes in myosin heavy-chain primary structure, or to overall changes in muscle fibre proteolytic activity. We speculate that the increase in degradation and resulting failure to accumulate myosin heavy chain in TTX cells is related to an inability of TTX-related muscle fibres to assemble newly synthesized fibrillar proteins into structures such as filaments or fibrils. Failure of assembly would lead to increased exposure to base-line levels of muscle proteolysis and to the observed lack of accumulation of myosin heavy chain.

  2. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles.

    PubMed

    Cerletti, Massimiliano; Jurga, Sara; Witczak, Carol A; Hirshman, Michael F; Shadrach, Jennifer L; Goodyear, Laurie J; Wagers, Amy J

    2008-07-11

    Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.

  3. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  4. Muscle cell attachment in Caenorhabditis elegans

    PubMed Central

    1991-01-01

    In the nematode Caenorhabditis elegans, the body wall muscles exert their force on the cuticle to generate locomotion. Interposed between the muscle cells and the cuticle are a basement membrane and a thin hypodermal cell. The latter contains bundles of filaments attached to dense plaques in the hypodermal cell membranes, which together we have called a fibrous organelle. In an effort to define the chain of molecules that anchor the muscle cells to the cuticle we have isolated five mAbs using preparations enriched in these components. Two antibodies define a 200-kD muscle antigen likely to be part of the basement membrane at the muscle/hypodermal interface. Three other antibodies probably identify elements of the fibrous organelles in the adjacent hypodermis. The mAb IFA, which reacts with mammalian intermediate filaments, also recognizes these structures. We suggest that the components recognized by these antibodies are likely to be involved in the transmission of tension from the muscle cell to the cuticle. PMID:1860880

  5. Muscle hypertrophy in heavy weight Japanese quail line: delayed muscle maturation and continued muscle growth with prolonged upregulation of myogenic regulatory factors.

    PubMed

    Choi, Y M; Suh, Y; Ahn, J; Lee, K

    2014-09-01

    The objective of this study was to compare the temporal expression of myosin heavy chain (MyHC) isoforms, Pax7, and myogenic regulatory factors (MRF) between heavy weight (HW) and random bred control (RBC) Japanese quail lines during muscle development to better understand the mechanisms leading to increased skeletal muscle mass in the HW quail line selected for a greater BW at 4 wk of age separated from RBC quail. Expression of neonatal MyHC isoform began at 3 and 7 d posthatch in RBC and HW quail lines, respectively. In the RBC quail line, adult MyHC isoform, as a marker for muscle maturation, was expressed at 28 d posthatch with sustained expression through 75 d posthatch, whereas this protein was detected only at 75 d posthatch in the HW quail line. Moreover, Pax7 expression continued from embryonic ages to 14 d posthatch in the HW quail line and to 7 d posthatch in the RBC quail line. These expression patterns of MyHC isoforms and Pax7 in the HW quail line were accompanied by delayed muscle maturation and prolonged growth compared with the RBC quail line. Temporal expressions of the primary MRF showed that higher expression levels of MyoD and Myf-5 were observed at 9 and 11 d embryo in the HW quail line compared with the RBC quail line (P < 0.05). The HW quail line exhibited approximately 2 times greater average levels of myogenin expression from 7 to 75 d posthatch (P < 0.05) than the RBC quail line. Prolonged upregulation of these primary and secondary MRF during muscle development is associated with delayed maturation and continued muscle growth, which consequently would permit muscle hypertrophic potentials in the HW quail line compared with the RBC quail line. © 2014 Poultry Science Association Inc.

  6. 3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms

    PubMed Central

    Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141

  7. 3D finite element models of shoulder muscles for computing lines of actions and moment arms.

    PubMed

    Webb, Joshua D; Blemker, Silvia S; Delp, Scott L

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

  8. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells.

    PubMed

    Sanders, Kenton M; Kito, Yoshihiko; Hwang, Sung Jin; Ward, Sean M

    2016-09-01

    Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.

  9. Response of turkey muscle satellite cells to thermal challenge. I. transcriptome effects in proliferating cells.

    PubMed

    Reed, Kent M; Mendoza, Kristelle M; Abrahante, Juan E; Barnes, Natalie E; Velleman, Sandra G; Strasburg, Gale M

    2017-05-06

    Climate change poses a multi-dimensional threat to food and agricultural systems as a result of increased risk to animal growth, development, health, and food product quality. This study was designed to characterize transcriptional changes induced in turkey muscle satellite cells cultured under cold or hot thermal challenge to better define molecular mechanisms by which thermal stress alters breast muscle ultrastructure. Satellite cells isolated from the pectoralis major muscle of 7-weeks-old male turkeys from two breeding lines (16 weeks body weight-selected and it's randombred control) were proliferated in culture at 33 °C, 38 °C or 43 °C for 72 h. Total RNA was isolated and 12 libraries subjected to RNAseq analysis. Statistically significant differences in gene expression were observed among treatments and between turkey lines with a greater number of genes altered by cold treatment than by hot and fewer differences observed between lines than between temperatures. Pathway analysis found that cold treatment resulted in an overrepresentation of genes involved in cell signaling/signal transduction and cell communication/cell signaling as compared to control (38 °C). Heat-treated muscle satellite cells showed greater tendency towards expression of genes related to muscle system development and differentiation. This study demonstrates significant transcriptome effects on turkey skeletal muscle satellite cells exposed to thermal challenge. Additional effects on gene expression could be attributed to genetic selection for 16 weeks body weight (muscle mass). New targets are identified for further research on the differential control of satellite cell proliferation in poultry.

  10. Nonmyogenic cells in skeletal muscle regeneration.

    PubMed

    Paylor, Ben; Natarajan, Anuradha; Zhang, Regan-Heng; Rossi, Fabio

    2011-01-01

    Although classical dogma dictates that satellite cells are the primary cell type involved in skeletal muscle regeneration, alternative cell types such as a variety of inflammatory and stromal cells are also actively involved in this process. A model describing myogenic cells as direct contributors to regeneration and nonmyogenic cells from other developmental sources as important accessories has emerged, with similar systems having been described in numerous other tissues in the body. Increasing evidence supports the notion that inflammatory cells function as supportive accessory cells, and are not merely involved in clearing damage following skeletal muscle injury. Additionally, recent studies have highlighted the role of tissue resident mesenchymal cell populations as playing a central role in regulating regeneration. These "accessory" cell populations are proposed to influence myogenesis via direct cell contact and secretion of paracrine trophic factors. The basic foundations of accessory cell understanding should be recognized as a crucial component to all prospects of regenerative medicine, and this chapter intends to provide a comprehensive background on the current literature describing immune and tissue-resident mesenchymal cells' role in skeletal muscle regeneration.

  11. Satellite cells and the muscle stem cell niche.

    PubMed

    Yin, Hang; Price, Feodor; Rudnicki, Michael A

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.

  12. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  13. Establishment of a Human Thymic Myoid Cell Line

    PubMed Central

    Wakkach, Abdel; Poea, Sandrine; Chastre, Eric; Gespach, Christian; Lecerf, Florence; De la Porte, Sabine; Tzartos, Socrates; Coulombe, Alain; Berrih-Aknin, Sonia

    1999-01-01

    The subset of myoid cells is a normal component of the thymic stroma. To characterize these cells, we immortalized stromal cells from human thymus by using a plasmid vector encoding the SV40 T oncogene. Among the eight cell lines obtained, one had myoid characteristics including desmin and troponin antigens. This new line was designated MITC (myoid immortalized thymic cells). These cells expressed both the fetal and adult forms of muscle acetylcholine receptor (AChR) at the mRNA level, as well as the myogenic transcription factor MyoD1. α-Subunit AChR protein expression was detected by flow cytometry and the AChR was functional in patch-clamp studies. In addition, AChR expression was down-modulated by myasthenia gravis sera or by monoclonal antibody anti-AChR on MITC line similarly to TE671 rhabdomyosarcoma cells, making the MITC line an interesting tool for AChR antigenic modulation experiments. Finally, the MITC line expressed LFA-3, produced several cytokines able to act on T cells, and protected total thymocytes from spontaneous apoptosis in vitro. These results are compatible with a role of thymic myoid cells in some steps of thymocyte development. Therefore MITC line appears to be a useful tool to investigate the physiological role of thymic myoid cells. PMID:10514405

  14. Hamster thecal cells express muscle characteristics

    SciTech Connect

    Self, D.A.; Schroeder, P.C.; Gown, A.M.

    1988-08-01

    Contraction of the follicular wall about the time of ovulation appears to be a coordinated event; however, the cells that mediate it remain poorly studied. We examined the theca externa cells in the wall of hamster follicles for the presence of a functional actomyosin system, both in developing follicles and in culture. We used a monoclonal antibody (HHF35) that recognizes the alpha and gamma isoelectric variants of actin normally found in muscle, but not the beta variant associated with non-muscle sources, to evaluate large preovulatory follicles for actin content and composition. Antibody staining of sectioned ovaries showed intense circumferential reactivity in the outermost wall of developing follicles. Immunoblots from two-dimensional gels of theca externa lysates demonstrated the presence of the two muscle-specific isozymes of actin. Immunofluorescence of cultured follicular cells pulse-labeled with (3H) thymidine (for autoradiographic detection of DNA replication) revealed the presence, in many dividing cells, of actin filaments aligned primarily along the longitudinal axis of the cells. In cultures exposed to the calcium ionophore A23187 (10(-4) M) for varying periods (5 min to 1 h), contraction of many individual muscle-actin-positive cells was observed. Immunofluorescence of these cells, fixed immediately after ionophore-induced contraction, revealed compaction of the actin filaments. Our findings demonstrate that the cells of the theca externa contain muscle actins from an early stage and that these cells are capable of contraction even while proliferating in subconfluent cultures. They suggest that follicular growth may include a naturally occurring developmental sequence in which a contractile cell type proliferates in the differentiated state.

  15. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    SciTech Connect

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of ({sup 35}S)-sodium sulfate and ({sup 3}H)-serine or ({sup 3}H)-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of {sup 35}S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect.

  16. Extracellular matrix components direct porcine muscle stem cell behavior

    SciTech Connect

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  17. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  18. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development

    PubMed Central

    Nogueira, Julia Meireles; Hawrot, Katarzyna; Sharpe, Colin; Noble, Anna; Wood, William M.; Jorge, Erika C.; Goldhamer, David J.; Kardon, Gabrielle; Dietrich, Susanne

    2015-01-01

    Pax7 expressing muscle stem cells accompany all skeletal muscles in the body and in healthy individuals, efficiently repair muscle after injury. Currently, the in vitro manipulation and culture of these cells is still in its infancy, yet muscle stem cells may be the most promising route toward the therapy of muscle diseases such as muscular dystrophies. It is often overlooked that muscular dystrophies affect head and body skeletal muscle differently. Moreover, these muscles develop differently. Specifically, head muscle and its stem cells develop from the non-somitic head mesoderm which also has cardiac competence. To which extent head muscle stem cells retain properties of the early head mesoderm and might even be able to switch between a skeletal muscle and cardiac fate is not known. This is due to the fact that the timing and mechanisms underlying head muscle stem cell development are still obscure. Consequently, it is not clear at which time point one should compare the properties of head mesodermal cells and head muscle stem cells. To shed light on this, we traced the emergence of head muscle stem cells in the key vertebrate models for myogenesis, chicken, mouse, frog and zebrafish, using Pax7 as key marker. Our study reveals a common theme of head muscle stem cell development that is quite different from the trunk. Unlike trunk muscle stem cells, head muscle stem cells do not have a previous history of Pax7 expression, instead Pax7 expression emerges de-novo. The cells develop late, and well after the head mesoderm has committed to myogenesis. We propose that this unique mechanism of muscle stem cell development is a legacy of the evolutionary history of the chordate head mesoderm. PMID:26042028

  19. Esophageal muscle cell interaction with biopolymers.

    PubMed

    Korkmaz, Mevlit; Yakut, Tahsin; Narci, Adnan; Güvenç, B Haluk; Güilten, Tuna; Yağmurca, Murat; Yiğit, Barbaros; Bilir, Ayhan

    2007-02-01

    The in vitro interactions of esophageal smooth muscle cells (SMCs) with synthetic absorbable polymers were tested and artificial muscle tissues harvested from subcutaneous implantation were examined. Esophageal tissue samples from adult and fetal (25-day gestational age) rabbits were cut into small pieces and cultured in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum. Growing cells were identified as SMCs by immunostaining for anti-actin and anti-myosin antibodies. Equal volumes of agar gel and medium were mixed and used for 3-D culture. 5x10(5) cells and 1 mg polyglycolic acid (PGA) and poly-lactide-co-glycolide acid (PLGA) fibers were seeded in six-well tissue culture plates. On days 2 and 7 growing cells were counted by a hemocytometer and cell-polymer interactions were evaluated with light microscopy. Adult and fetal SMCs were seeded onto the PGA and PLGA scaffolds, cultivated for two weeks, and implanted subcutaneously on the backs of the rabbits. Cell-polymer implants were retrieved after four weeks and muscle formation was evaluated histologically and immunohistochemically. Growing cells stained positive for actin and myosin proteins. Cell-polymer interactions were poor after 24 hours, whereas intensive attachment to the fibers was detected 48 hours following cultivation. Both fiber materials supported cell proliferation. PLGA scaffolds improved muscle formation more efficiently than PGA, and fetal and adult SMCs showed similar mass quality. Scaffolds are important as cell-carrying vehicles, and material-cell interactions should be tested before application. A 3-D culture prepared with agar gel and medium is practical for testing material toxicity.

  20. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  1. Autophagic regulation of smooth muscle cell biology.

    PubMed

    Salabei, Joshua K; Hill, Bradford G

    2015-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Skeletal muscle stem cells from animals I. Basic cell biology

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  3. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  4. Isolation of satellite cells from single muscle fibers from young, aged, or dystrophic muscles.

    PubMed

    Di Foggia, Valentina; Robson, Lesley

    2012-01-01

    Skeletal muscle contains an identified resident stem cell population called the satellite cells. This cell is responsible for the majority of the postnatal growth and regenerative potential of skeletal muscle. Other cells do contribute to skeletal muscle regeneration and in cultures of minced whole muscle these cells are cultured along with the satellite cells and it is impossible to dissect out their contribution compared to the satellite cells. Therefore, a method to culture pure satellite cells has been developed to study the signaling pathways that control their proliferation and differentiation. In our studies into the role of the resident myogenic stem cells in regeneration, myopathic conditions, and aging, we have optimized the established techniques that already exist to isolate pure satellite cell cultures from single muscle fibers. We have successfully isolated satellite cells from young adults through to 24-month-old muscles and obtained populations of cells that we are studying for the signaling events that regulate their proliferative potential.

  5. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis

    PubMed Central

    Tierney, Matthew T.; Sacco, Alessandra

    2016-01-01

    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity. PMID:26948993

  6. Role of satellite cells in muscle growth and maintenance of muscle mass.

    PubMed

    Pallafacchina, G; Blaauw, B; Schiaffino, S

    2013-12-01

    Changes in muscle mass may result from changes in protein turnover, reflecting the balance between protein synthesis and protein degradation, and changes in cell turnover, reflecting the balance between myonuclear accretion and myonuclear loss. Myonuclear accretion, i.e. increase in the number of myonuclei within the muscle fibers, takes place via proliferation and fusion of satellite cells, myogenic stem cells associated to skeletal muscle fibers and involved in muscle regeneration. In developing muscle, satellite cells undergo extensive proliferation and most of them fuse with myofibers, thus contributing to the increase in myonuclei during early postnatal stages. A similar process is induced in adult skeletal muscle by functional overload and exercise. In contrast, satellite cells and myonuclei may undergo apoptosis during muscle atrophy, although it is debated whether myonuclear loss occurs in atrophying muscle. An increase in myofiber size can also occur by changes in protein turnover without satellite cell activation, e.g. in late phases of postnatal development or in some models of muscle hypertrophy. The relative role of protein turnover and cell turnover in muscle adaptation and in the establishment of functional muscle hypertrophy remains to be established. The identification of the signaling pathways mediating satellite cell activation may provide therapeutic targets for combating muscle wasting in a variety of pathological conditions, including cancer cachexia, renal and cardiac failure, neuromuscular diseases, as well as aging sarcopenia. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Muscle satellite cell heterogeneity and self-renewal

    PubMed Central

    Motohashi, Norio; Asakura, Atsushi

    2014-01-01

    Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD. PMID:25364710

  8. Myogenic capacity of muscle progenitor cells from head and limb muscles.

    PubMed

    Grefte, Sander; Kuijpers, Mette A R; Kuijpers-Jagtman, Anne M; Torensma, Ruurd; Von den Hoff, Johannes W

    2012-02-01

    The restoration of muscles in the soft palate of patients with cleft lip and/or palate is accompanied by fibrosis, which leads to speech and feeding problems. Treatment strategies that improve muscle regeneration have only been tested in limb muscles. Therefore, in the present study the myogenic potential of muscle progenitor cells (MPCs) isolated from head muscles was compared with that of limb muscles. Muscle progenitor cells were isolated from the head muscles and limb muscles of rats and cultured. The proliferation of MPCs was analysed by DNA quantification. The differentiation capacity was analysed by quantifying the numbers of fused cells, and by measuring the mRNA levels of differentiation markers. Muscle progenitor cells were stained to quantify the expression of paired box protein Pax 7 (Pax-7), myoblast determination protein 1 (MyoD), and myogenin. Proliferation was similar in the head MPCs and the limb MPCs. Differentiating head and limb MPCs showed a comparable number of fused cells and mRNA expression levels of myosin-1 (Myh1), myosin-3 (Myh3), and myosin-4 (Myh4). During proliferation and differentiation, the number of Pax-7(+), MyoD(+), and myogenin(+) cells in head and limb MPCs was equal. It was concluded that head and limb MPCs show similar myogenic capacities in vitro. Therefore, in vivo myogenic differences between those muscles might rely on the local microenvironment. Thus, regenerative strategies for limb muscles might also be used for head muscles.

  9. Regenerative function of immune system: Modulation of muscle stem cells.

    PubMed

    Saini, Jasdeep; McPhee, Jamie S; Al-Dabbagh, Sarah; Stewart, Claire E; Al-Shanti, Nasser

    2016-05-01

    Ageing is characterised by progressive deterioration of physiological systems and the loss of skeletal muscle mass is one of the most recognisable, leading to muscle weakness and mobility impairments. This review highlights interactions between the immune system and skeletal muscle stem cells (widely termed satellite cells or myoblasts) to influence satellite cell behaviour during muscle regeneration after injury, and outlines deficits associated with ageing. Resident neutrophils and macrophages in skeletal muscle become activated when muscle fibres are damaged via stimuli (e.g. contusions, strains, avulsions, hyperextensions, ruptures) and release high concentrations of cytokines, chemokines and growth factors into the microenvironment. These localised responses serve to attract additional immune cells which can reach in excess of 1×10(5) immune cell/mm(3) of skeletal muscle in order to orchestrate the repair process. T-cells have a delayed response, reaching peak activation roughly 4 days after the initial damage. The cytokines and growth factors released by activated T-cells play a key role in muscle satellite cell proliferation and migration, although the precise mechanisms of these interactions remain unclear. T-cells in older people display limited ability to activate satellite cell proliferation and migration which is likely to contribute to insufficient muscle repair and, consequently, muscle wasting and weakness. If the factors released by T-cells to activate satellite cells can be identified, it may be possible to develop therapeutic agents to enhance muscle regeneration and reduce the impact of muscle wasting during ageing and disease.

  10. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

    PubMed

    Andrade, Bruno M; Baldanza, Marcelo R; Ribeiro, Karla C; Porto, Anderson; Peçanha, Ramon; Fortes, Fabio S A; Zapata-Sudo, Gisele; Campos-de-Carvalho, Antonio C; Goldenberg, Regina C S; Werneck-de-Castro, João Pedro

    2015-01-01

    Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

  11. Bone Marrow Mesenchymal Cells Improve Muscle Function in a Skeletal Muscle Re-Injury Model

    PubMed Central

    Ribeiro, Karla C.; Porto, Anderson; Peçanha, Ramon; Fortes, Fabio S. A.; Zapata-Sudo, Gisele; Campos-de-Carvalho, Antonio C.; Goldenberg, Regina C. S.; Werneck-de-Castro, João Pedro

    2015-01-01

    Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model. PMID:26039243

  12. Persistent use of false myeloma cell lines.

    PubMed

    Drexler, Hans G; Matsuo, Yoshinobu; MacLeod, Roderick A E

    2003-09-01

    Multiple myeloma (MM) is a neoplasm of a terminally differentiated B-cell. Human myeloma cell lines were shown to be suitable model systems for use in various fields of the biological sciences. Within the last 20 years more than 100 cell lines have been established. So-called 'myeloma cell lines' have been previously reported and are still widely used which are in reality Epstein-Barr virus (EBV)-positive B-lymphoblastoid cell lines. The presence of the EBV-genome in residual normal B-cells provides them with a selective growth advantage after explantation. Cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. On closer examination, the use of false cell lines may be seen to invalidate a significant percentage of scientific work, or at least cast doubts on the relevance of these in vitro results to the cell type or tumor in vivo. Ultimately, use of cross-contaminated cell lines is a waste of human and material resources. Henceforth, it should be mandatory to prove the proper derivation of each new cell line by comparing DNA fingerprints or karyotypes of the patient's primary cells and the cultured cells. The availability of well characterized and authenticated bona fide MM cell lines is of great importance for the study of the biology, etiology and treatment of the disease.

  13. Smooth muscle differentiation in scleroderma fibroblastic cells.

    PubMed Central

    Sappino, A. P.; Masouyé, I.; Saurat, J. H.; Gabbiani, G.

    1990-01-01

    Using antibodies to alpha-smooth muscle actin and desmin on paraffin-embedded formalin-fixed tissue sections, the authors demonstrate that fibroblastic cells of localized and systemic scleroderma lesions express features of smooth muscle differentiation. Eleven of eleven skin specimens of systemic sclerosis patients and two of four skin specimens of localized scleroderma displayed the presence of fibroblasts expressing alpha-smooth muscle actin, a cell population that predominated in areas of prominent collagen deposition. A similar fibroblastic phenotype was found in the esophagus, the liver, and the lung specimens obtained from four patients who died of progressive systemic sclerosis. Immunostaining for desmin, performed on adjacent tissue sections, demonstrated that a minority of these fibroblastic cells present in skin and visceral lesions contained this protein. The authors' observations indicate that scleroderma fibroblasts are phenotypically related to the stromal cells previously identified in hypertrophic scars, fibromatoses, and desmoplasia; they might provide novel criteria for the characterization of scleroderma lesions and help to identify the factors responsible for phenotypic modulations in fibroblastic cells. Images Figure 1 Figure 2 Figure 3 PMID:1698026

  14. Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: A multifactorial process

    SciTech Connect

    Abedi, Mehrdad; Greer, Deborah A.; Colvin, Gerald A.; Demers, Delia A.; Dooner, Mark S.; Harpel, Jasha A.; Weier, Heinz-Ulrich G.; Lambert, Jean-Francois; Quesenberry, Peter J.

    2004-01-10

    Murine marrow cells are capable of repopulating skeletal muscle fibers. A point of concern has been the robustness of such conversions. We have investigated the impact of type of cell delivery, muscle injury, nature of delivered cell, and stem cell mobilizations on marrow to muscle conversion. We transplanted GFP transgenic marrow into irradiated C57BL/6 mice and then injured anterior tibialis muscle by cardiotoxin. One month after injury, sections were analyzed by standard and deconvolutional microscopy for expression of muscle and hematopietic markers. Irradiation was essential to conversion although whether by injury or induction of chimerism is not clear. Cardiotoxin and to a lesser extent PBS injected muscles showed significant number of GFP+ muscle fibers while uninjected muscles showed only rare GFP+ cells. Marrow conversion to muscle was increased by two cycles of G-CSF mobilization and to a lesser extent with G-CSF and steel or GM-CSF. Transplantation of female GFP to male C57 BL/6 and GFP to Rosa26 mice showed fusion of donor cells to recipient muscle. High numbers of donor derived muscle colonies and up to12 percent GFP positive muscle cells were seen after mobilization or direct injection. These levels of donor muscle chimerism approach levels which could be clinically significant in developing strategies for the treatment of muscular dystrophies. In summary, the conversion of marrow to skeletal muscle cells is based on cell fusion and is critically dependent on injury. This conversion is also numerically significant and increases with mobilization.

  15. Human satellite cells: identification on human muscle fibres

    PubMed Central

    Boldrin, Luisa; Morgan, Jennifer E

    2012-01-01

    Satellite cells, normally quiescent underneath the myofibre basal lamina, are skeletal muscle stem cells responsible for postnatal muscle growth, repair and regeneration. Since their scarcity and small size have limited study on transverse muscle sections, techniques to isolate individual myofibres, bearing their attendant satellite cells, were developed. Studies on mouse myofibres have generated much information on satellite cells, but the limited availability and small size of human muscle biopsies have hampered equivalent studies of satellite cells on human myofibres. Here, we identified satellite cells on fragments of human and mouse myofibres, using a method applicable to small muscle biopsies. PMID:22333991

  16. Satellite cell proliferation in adult skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  17. Muscle Satellite Cell Protein Teneurin-4 Regulates Differentiation During Muscle Regeneration.

    PubMed

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So-Ichiro; Okano, Hideyuki; Takeda, Shin'ichi; Akazawa, Chihiro

    2015-10-01

    Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells.

  18. Meat Science and Muscle Biology Symposium: stem cell niche and postnatal muscle growth.

    PubMed

    Bi, P; Kuang, S

    2012-03-01

    Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality.

  19. Catechins activate muscle stem cells by Myf5 induction and stimulate muscle regeneration.

    PubMed

    Kim, A Rum; Kim, Kyung Min; Byun, Mi Ran; Hwang, Jun-Ha; Park, Jung Il; Oh, Ho Taek; Kim, Hyo Kyeong; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2017-07-22

    Muscle weakness is one of the most common symptoms in aged individuals and increases risk of mortality. Thus, maintenance of muscle mass is important for inhibiting aging. In this study, we investigated the effect of catechins, polyphenol compounds in green tea, on muscle regeneration. We found that (-)-epicatechin gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) activate satellite cells by induction of Myf5 transcription factors. For satellite cell activation, Akt kinase was significantly induced after ECG treatment and ECG-induced satellite cell activation was blocked in the presence of Akt inhibitor. ECG also promotes myogenic differentiation through the induction of myogenic markers, including Myogenin and Muscle creatine kinase (MCK), in satellite and C2C12 myoblast cells. Finally, EGCG administration to mice significantly increased muscle fiber size for regeneration. Taken together, the results suggest that catechins stimulate muscle stem cell activation and differentiation for muscle regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Muscle disuse atrophy is not accompanied by changes in skeletal muscle satellite cell content.

    PubMed

    Snijders, Tim; Wall, Benjamin T; Dirks, Marlou L; Senden, Joan M G; Hartgens, Fred; Dolmans, John; Losen, Mario; Verdijk, Lex B; van Loon, Luc J C

    2014-04-01

    Muscle disuse leads to a considerable loss in skeletal muscle mass and strength. However, the cellular mechanisms underlying disuse-induced muscle fibre atrophy remain to be elucidated. Therefore we assessed the effect of muscle disuse on the CSA (cross-sectional area), muscle fibre size, satellite cell content and associated myocellular signalling pathways of the quadriceps muscle. A total of 12 healthy young (24±1 years of age) men were subjected to 2 weeks of one-legged knee immobilization via a full-leg cast. Before and immediately after the immobilization period and after 6 weeks of natural rehabilitation, muscle strength [1RM (one-repetition maximum)], muscle CSA [single slice CT (computed tomography) scan] and muscle fibre type characteristics (muscle biopsies) were assessed. Protein and/or mRNA expression of key genes [i.e. MYOD (myogenic differentiation), MYOG (myogenin) and MSTN (myostatin)] in the satellite cell regulatory pathways were determined using Western blotting and RT-PCR (real-time PCR) analyses respectively. The present study found that quadriceps CSA declined following immobilization by 8±2% (P<0.05). In agreement, both type I and type II muscle fibre size decreased 7±3% and 13±4% respectively (P<0.05). No changes were observed in satellite cell content following immobilization in either type I or type II muscle fibres. Muscle MYOG mRNA expression doubled (P<0.05), whereas MSTN protein expression decreased 30±9% (P<0.05) following immobilization. Muscle mass and strength returned to the baseline values within 6 weeks of recovery without any specific rehabilitative programme. In conclusion, 2 weeks of muscle disuse leads to considerable loss in skeletal muscle mass and strength. The loss in muscle mass was attributed to both type I and type II muscle fibre atrophy, and was not accompanied by a decline in satellite cell content.

  1. Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate.

    PubMed

    Penton, Christopher M; Thomas-Ahner, Jennifer M; Johnson, Eric K; McAllister, Cynthia; Montanaro, Federica

    2013-01-01

    Muscle side population (SP) cells are rare multipotent stem cells that can participate in myogenesis and muscle regeneration upon transplantation. While they have been primarily studied for the development of cell-based therapies for Duchenne muscular dystrophy, little is known regarding their non-muscle lineage choices or whether the dystrophic muscle environment affects their ability to repair muscle. Unfortunately, the study of muscle SP cells has been challenged by their low abundance and the absence of specific SP cell markers. To address these issues, we developed culture conditions for the propagation and spontaneous multi-lineage differentiation of muscle SP cells. Using this approach, we show that SP cells from wild type muscle robustly differentiate into satellite cells and form myotubes without requiring co-culture with myogenic cells. Furthermore, this myogenic activity is associated with SP cells negative for immune (CD45) and vascular (CD31) markers but positive for Pax7, Sca1, and the mesenchymal progenitor marker PDGFRα. Additionally, our studies revealed that SP cells isolated from dystrophic or cardiotoxin-injured muscle fail to undergo myogenesis. Instead, these SP cells rapidly expand giving rise to fibroblast and adipocyte progenitors (FAPs) and to their differentiated progeny, fibroblasts and adipocytes. Our findings indicate that muscle damage affects the lineage choices of muscle SP cells, promoting their differentiation along fibro-adipogenic lineages while inhibiting myogenesis. These results have implications for a possible role of muscle SP cells in fibrosis and fat deposition in muscular dystrophy. In addition, our studies provide a useful in vitro system to analyze SP cell biology in both normal and pathological conditions.

  2. Response of the JAK-STAT pathway to mammalian hibernation in 13-lined ground squirrel striated muscle.

    PubMed

    Logan, Samantha M; Tessier, Shannon N; Tye, Joann; Storey, Kenneth B

    2016-03-01

    Over the course of the torpor-arousal cycle, hibernators must make behavioral, physiological, and molecular rearrangements in order to keep a very low metabolic rate and retain organ viability. 13-lined ground squirrels (Ictidomys tridecemlineatus) remain immobile during hibernation, and although the mechanisms of skeletal muscle survival are largely unknown, studies have shown minimal muscle loss in hibernating organisms. Additionally, the ground squirrel heart undergoes cold-stress, reversible cardiac hypertrophy, and ischemia-reperfusion without experiencing fatal impairment. This study examines the role of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in the regulation of cell stress in cardiac and skeletal muscles, comparing euthermic and hibernating ground squirrels. Immunoblots showed a fivefold decrease in JAK3 expression during torpor in skeletal muscle, along with increases in STAT3 and 5 phosphorylation and suppressors of cytokine signaling-1 (SOCS1) protein levels. Immunoblots also showed coordinated increases in STAT1, 3 and 5 phosphorylation and STAT1 inhibitor protein expression in cardiac muscle during torpor. PCR analysis revealed that the activation of these pro-survival signaling cascades did not result in coordinate changes in downstream genes such as anti-apoptotic B-cell lymphoma-2 (Bcl-2) family gene expression. Overall, these results indicate activation of the JAK-STAT pathway in both cardiac and skeletal muscles, suggesting a response to cellular stress during hibernation.

  3. Cell line fingerprinting using retroelement insertion polymorphism.

    PubMed

    Ustyugova, Svetlana V; Amosova, Anna L; Lebedev, Yuri B; Sverdlov, Eugene D

    2005-04-01

    Human cell lines are an indispensable tool for functional studies of living entities in their numerous manifestations starting with integral complex systems such as signal pathways and networks, regulation of gene ensembles, epigenetic factors, and finishing with pathological changes and impact of artificially introduced elements, such as various transgenes, on the behavior of the cell. Therefore, it is highly desirable to have reliable cell line identification techniques to make sure that the cell lines to be used in experiments are exactly what is expected. To this end, we developed a set of informative markers based on insertion polymorphism of human retroelements (REs). The set includes 47 pairs of PCR primers corresponding to introns of the human genes with dimorphic LINE1 (L1) and Alu insertions. Using locus-specific PCR assays, we have genotyped 10 human cell lines of various origins. For each of these cell lines, characteristic fingerprints were obtained. An estimated probability that two different cell lines possess the same marker genotype is about 10-18. Therefore, the proposed set of markers provides a reliable tool for cell line identification.

  4. The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells.

    PubMed

    Meng, Jinhong; Bencze, Maximilien; Asfahani, Rowan; Muntoni, Francesco; Morgan, Jennifer E

    2015-01-01

    Muscle stem cell transplantation is a possible treatment for muscular dystrophy. In addition to the intrinsic properties of the stem cells, the local and systemic environment plays an important role in determining the fate of the grafted cells. We therefore investigated the effect of modulating the host muscle environment in different ways (irradiation or cryoinjury or a combination of irradiation and cryoinjury) in two immunodeficient mouse strains (mdx nude and recombinase-activating gene (Rag)2-/γ chain-/C5-) on the regenerative capacity of two types of human skeletal muscle-derived stem cell (pericytes and CD133+ cells). Human skeletal muscle-derived pericytes or CD133+ cells were transplanted into muscles of either mdx nude or recombinase-activating gene (Rag)2-/γ chain-/C5- host mice. Host muscles were modulated prior to donor cell transplantation by either irradiation, or cryoinjury, or a combination of irradiation and cryoinjury. Muscles were analysed four weeks after transplantation, by staining transverse cryostat sections of grafted muscles with antibodies to human lamin A/C, human spectrin, laminin and Pax 7. The number of nuclei and muscle fibres of donor origin and the number of satellite cells of both host and donor origin were quantified. Within both host strains transplanted intra-muscularly with both donor cell types, there were significantly more nuclei and muscle fibres of donor origin in host muscles that had been modulated by cryoinjury, or irradiation+cryoinjury, than by irradiation alone. Irradiation has no additive effects in further enhancing the transplantation efficiency than cryodamage. Donor pericytes did not give rise to satellite cells. However, using CD133+ cells as donor cells, there were significantly more nuclei, muscle fibres, as well as satellite cells of donor origin in Rag2-/γ chain-/C5- mice than mdx nude mice, when the muscles were injured by either cryodamage or irradiation+cryodamage. Rag2-/γ chain-/C5- mice are a

  5. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf.

    PubMed Central

    Cross, D A; Alessi, D R; Vandenheede, J R; McDowell, H E; Hundal, H S; Cohen, P

    1994-01-01

    Glycogen synthase kinase-3 (GSK3) is inactivated in vitro by p70 S6 kinase or MAP kinase-activated protein kinase-1 beta (MAPKAP kinase-1 beta; also known as Rsk-2). Here we show that GSK3 isoforms are inhibited by 40% within minutes after stimulation of the rat skeletal-muscle cell line L6 with insulin-like growth factor-1 (IGF-1) or insulin. GSK3 was similarly inhibited in rabbit skeletal muscle after an intravenous injection of insulin. Inhibition resulted from increased phosphorylation of GSK3, probably at a serine/threonine residue(s), because it was reversed by incubation with protein phosphatase-2A. Rapamycin blocked the activation of p70 S6 kinase by IGF-1 in L6 cells, but had no effect on the inhibition of GSK3 or the activation of MAPKAP kinase-1 beta. In contrast, wortmannin, a potent inhibitor of PtdIns 3-kinase, prevented the inactivation of GSK3 and the activation of MAPKAP kinase-1 beta and p70 S6 kinase by IGF-1 or insulin. Wortmannin also blocked the activation of p74raf-1. MAP kinase kinase and p42 MAP kinase, but not the formation of GTP-Ras by IGF-1. The results suggest that the stimulation of glycogen synthase by insulin/IGF-1 in skeletal muscle involves the MAP-KAP kinase-1-catalysed inhibition of GSK3, as well as the previously described activation of the glycogen-associated form of protein phosphatase-1. Images Figure 1 PMID:7945242

  6. Fat cell invasion in long-term denervated skeletal muscle.

    PubMed

    de Castro Rodrigues, Antonio; Andreo, Jesus Carlos; Rosa, Geraldo Marco; dos Santos, Nícolas Bertolaccini; Moraes, Luis Henrique Rapucci; Lauris, José Roberto P

    2007-01-01

    There are several differences between red and white muscles submitted to different experimental conditions, especially following denervation: a) denervation atrophy is more pronounced in red than white muscles; b) the size of the fibers in the red muscles does not vary between different parts of the muscle before and after denervation, when compared to white muscles; c) the regional difference in the white muscles initially more pronounced after denervation than red muscle; d) red muscle fibers and fibers of the deep white muscle present degenerative changes such as disordered myofibrils and sarcolemmal folds after long-term denervation; e) myotube-like fibers with central nuclei occur in the red muscle more rapidly than white after denervation. Denervation of skeletal muscles causes, in addition to fibers atrophy, loss of fibers with subsequent regeneration, but the extent of fat cell percentage invasion is currently unknown. The present article describes a quantitative study on fat cell invasion percentage in red m. soleus and white m. extensor digitorum longus (EDL) rat muscles at 7 weeks for up to 32 weeks postdenervation. The results indicate that the percentage of fat cells increase after denervation and it is steeper than the age-related fat invasion in normal muscles. The fat percentage invasion is more pronounced in red compared with white muscle. All experimental groups present a statistically significant difference as regard fat cell percentage invasion.

  7. Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration

    PubMed Central

    Doyle, Michelle J.; Zhou, Sheng; Tanaka, Kathleen Kelly; Pisconti, Addolorata; Farina, Nicholas H.; Sorrentino, Brian P.

    2011-01-01

    Skeletal muscle contains progenitor cells (satellite cells) that maintain and repair muscle. It also contains muscle side population (SP) cells, which express Abcg2 and may participate in muscle regeneration or may represent a source of satellite cell replenishment. In Abcg2-null mice, the SP fraction is lost in skeletal muscle, although the significance of this loss was previously unknown. We show that cells expressing Abcg2 increased upon injury and that muscle regeneration was impaired in Abcg2-null mice, resulting in fewer centrally nucleated myofibers, reduced myofiber size, and fewer satellite cells. Additionally, using genetic lineage tracing, we demonstrate that the progeny of Abcg2-expressing cells contributed to multiple cell types within the muscle interstitium, primarily endothelial cells. After injury, Abcg2 progeny made a minor contribution to regenerated myofibers. Furthermore, Abcg2-labeled cells increased significantly upon injury and appeared to traffic to muscle from peripheral blood. Together, these data suggest an important role for Abcg2 in positively regulating skeletal muscle regeneration. PMID:21949413

  8. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  9. Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells.

    PubMed

    Tong, H Q; Jiang, Z Q; Dou, T F; Li, Q H; Xu, Z Q; Liu, L X; Gu, D H; Rong, H; Huang, Y; Chen, X B; Jois, M; Te Pas, M F W; Ge, C R; Jia, J J

    2016-10-05

    Chicken skeletal muscle satellite cells are located between the basement membrane and the sarcolemma of mature muscle fibers. Avian broilers have been genetically selected based on their high growth velocity and large muscle mass. The Wuding chicken is a famous local chicken in Yunnan Province that undergoes non-selection breeding and is slow growing. In this study, we aimed to explore differences in the proliferation and differentiation properties of satellite cells isolated from the two chicken breeds. Using immunofluorescence, hematoxylin-eosin staining and real-time polymerase chain reaction analysis, we analyzed the in vitro characteristics of proliferating and differentiating satellite cells isolated from the two chicken breeds. The growth curve of satellite cells was S-shaped, and cells from Wuding chickens entered the logarithmic phase and plateau phase 1 day later than those from Avian chicken. The results also showed that the two skeletal muscle satellite cell lines were positive for Pax7, MyoD and IGF-1. The expression of Pax7 followed a downward trend, whereas that of MyoD and IGF-1 first increased and subsequently decreased in cells isolated from the two chickens. These data indicated that the skeletal muscle satellite cells of Avian chicken grow and differentiate faster than did those of Wuding chickens. We suggest that the methods of breeding selection applied to these breeds regulate the characteristics of skeletal muscle satellite cells to influence muscle growth.

  10. Mast Cell-Airway Smooth Muscle Crosstalk

    PubMed Central

    Kaur, Davinder; Doe, Camille; Woodman, Lucy; Heidi Wan, Wing-Yan; Sutcliffe, Amanda; Hollins, Fay

    2012-01-01

    Background: The mast cell localization to airway smooth muscle (ASM) bundle in asthma is important in the development of disordered airway physiology. Thymic stromal lymphopoietin (TSLP) is expressed by airway structural cells. Whether it has a role in the crosstalk between these cells is uncertain. We sought to define TSLP expression in bronchial tissue across the spectrum of asthma severity and to investigate the TSLP and TSLP receptor (TSLPR) expression and function by primary ASM and mast cells alone and in coculture. Methods: TSLP expression was assessed in bronchial tissue from 18 subjects with mild to moderate asthma, 12 with severe disease, and nine healthy control subjects. TSLP and TSLPR expression in primary mast cells and ASM was assessed by immunofluorescence, flow cytometry, and enzyme-linked immunosorbent assay, and its function was assessed by calcium imaging. The role of TSLP in mast cell and ASM proliferation, survival, differentiation, synthetic function, and contraction was examined. Results: TSLP expression was increased in the ASM bundle in mild-moderate disease. TSLP and TSLPR were expressed by mast cells and ASM and were functional. Mast cell activation by TSLP increased the production of a broad range of chemokines and cytokines, but did not affect mast cell or ASM proliferation, survival, or contraction. Conclusions: TSLP expression by the bronchial epithelium and ASM was upregulated in asthma. TSLP promoted mast cell synthetic function, but did not contribute to other functional consequences of mast cell-ASM crosstalk. PMID:22052771

  11. The role of muscle cells in regulating cartilage matrix production

    PubMed Central

    Cairns, Dana M.; Lee, Philip G.; Uchimura, Tomoya; Seufert, Christopher R.; Kwon, Heenam; Zeng, Li

    2009-01-01

    Muscle is one of the tissues located in close proximity to cartilage tissue. Although it has been suggested that muscle could influence skeletal development through generating mechanical forces by means of contraction, very little is known regarding whether muscle cells release biochemical signals to regulate cartilage gene expression. We tested the hypothesis that muscle cells directly regulate cartilage matrix production by analyzing chondrocytes co-cultured with muscle cells in 2D or 3D conditions. We found that chondrocytes cultured with C2C12 muscle cells exhibited enhanced alcian blue staining and elevated expression of collagen II and collagen IX proteins. While non-muscle cells do not promote cartilage matrix production, converting them into muscle cells enhanced their pro-chondrogenic activity. Furthermore, muscle cell-conditioned medium led to increased cartilage matrix production, suggesting that muscle cells secrete pro-chondrogenic factors. Taken together, our study suggests that muscle cells may play an important role in regulating cartilage gene expression. This result may ultimately lead to the discovery of novel factors that regulate cartilage formation and homeostasis, and provide insights into improving the strategies for regenerating cartilage. PMID:19813241

  12. Notch Signaling in Vascular Smooth Muscle Cells.

    PubMed

    Baeten, J T; Lilly, B

    2017-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.

  13. Epithelium-derived chemokines induce airway smooth muscle cell migration.

    PubMed

    Takeda, N; Sumi, Y; Préfontaine, D; Al Abri, J; Al Heialy, N; Al-Ramli, W; Michoud, M-C; Martin, J G; Hamid, Q

    2009-07-01

    The remodelling of airway smooth muscle (ASM) associated with asthma severity may involve the migration of ASM cells towards the epithelium. However, little is known about the mechanisms of cell migration and the effect of epithelial-derived mediators on this process. The main objective of the current study is to assess the effects of epithelial-derived chemokines on ASM cell migration. Normal human ASM cells were incubated with supernatants from cells of the bronchial epithelial cell line BEAS-2B and normal human bronchial epithelial (NHBE) cells. To induce chemokine production, epithelial cells were treated with TNF-alpha. Chemokine expression by epithelial cells was evaluated by quantitative real-time PCR, ELISA and membrane antibody array. To identify the role of individual chemokines in ASM cell migration, we performed migration assays with a modified Boyden chamber using specific neutralizing antibodies to block chemokine effects. Supernatants from BEAS-2B cells treated with TNF-alpha increased ASM cell migration; migration was increased 1.6 and 2.5-fold by supernatant from BEAS-2B cells treated with 10 and 100 ng/mL TNF-alpha, respectively. Protein levels in supernatants and mRNA expression by BEAS-2B cells of regulated on activation, normal T cell expressed and secreted (RANTES) and IL-8 were significantly increased by 100 ng/mL TNF-alpha treatment. The incubation of supernatant with antibodies to RANTES or IL-8 significantly reduced ASM cell migration, and the combined antibodies further inhibited the cell migration. The migratory effects of supernatants and inhibiting effects of RANTES and/or IL-8 were confirmed also using NHBE cells. The results show that chemokines from airway epithelial cells cause ASM cell migration and might potentially play a role in the process of airway remodelling in asthma.

  14. Electric Pulse Stimulation of Cultured Murine Muscle Cells Reproduces Gene Expression Changes of Trained Mouse Muscle

    PubMed Central

    Burch, Nathalie; Arnold, Anne-Sophie; Item, Flurin; Summermatter, Serge; Brochmann Santana Santos, Gesa; Christe, Martine; Boutellier, Urs; Toigo, Marco; Handschin, Christoph

    2010-01-01

    Adequate levels of physical activity are at the center of a healthy lifestyle. However, the molecular mechanisms that mediate the beneficial effects of exercise remain enigmatic. This gap in knowledge is caused by the lack of an amenable experimental model system. Therefore, we optimized electric pulse stimulation of muscle cells to closely recapitulate the plastic changes in gene expression observed in a trained skeletal muscle. The exact experimental conditions were established using the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) as a marker for an endurance-trained muscle fiber. We subsequently compared the changes in the relative expression of metabolic and myofibrillar genes in the muscle cell system with those observed in mouse muscle in vivo following either an acute or repeated bouts of treadmill exercise. Importantly, in electrically stimulated C2C12 mouse muscle cells, the qualitative transcriptional adaptations were almost identical to those in trained muscle, but differ from the acute effects of exercise on muscle gene expression. In addition, significant alterations in the expression of myofibrillar proteins indicate that this stimulation could be used to modulate the fiber-type of muscle cells in culture. Our data thus describe an experimental cell culture model for the study of at least some of the transcriptional aspects of skeletal muscle adaptation to physical activity. This system will be useful for the study of the molecular mechanisms that regulate exercise adaptation in muscle. PMID:20532042

  15. Cell accumulation in the junctional region of denervated muscle

    PubMed Central

    1987-01-01

    If skeletal muscles are denervated, the number of mononucleated cells in the connective tissue between muscle fibers increases. Since interstitial cells might remodel extracellular matrix, and since extracellular matrix in nerve and muscle plays a direct role in reinnervation of the sites of the original neuromuscular junctions, we sought to determine whether interstitial cell accumulation differs between junctional and extrajunctional regions of denervated muscle. We found in muscles from frog and rat that the increase in interstitial cell number was severalfold (14-fold for frog, sevenfold for rat) greater in the vicinity of junctional sites than in extrajunctional regions. Characteristics of the response at the junctional sites of frog muscles are as follows. During chronic denervation, the accumulation of interstitial cells begins within 1 wk and it is maximal by 3 wk. Reinnervation 1-2 wk after nerve damage prevents the maximal accumulation. Processes of the cells form a multilayered veil around muscle fibers but make little, if any, contact with the muscle cell or its basal lamina sheath. The results of additional experiments indicate that the accumulated cells do not originate from terminal Schwann cells or from muscle satellite cells. Most likely the cells are derived from fibroblasts that normally occupy the space between muscle fibers and are known to make and degrade extracellular matrix components. PMID:3491825

  16. Autofluorescent particles of human uterine muscle cells.

    PubMed Central

    Gosden, R. G.; Hawkins, H. K.; Gosden, C. A.

    1978-01-01

    Smooth muscle tissue collected from the uterine fundus of 24 patients undergoing hysterectomy was examined for chromolipoid pigments by histochemical and electron microscopic techniques. Certain cytoplasmic particles were found, mainly in smooth muscle cells, which exhibited characteristic autofluorescence, sudanophilia, and acid phosphatase activity but did not correspond to any typical pigment described previously. These particles were present in all subjects and they tended to increase in number with age. Chemical tests on tissue lipid extracts failed to prove that vitamin A was responsible for the fluorescence. The ultrastructural appearance of the particles somewhat variable, but most particles were rounded and of low electron density, with a lucent central space and dense bodies, probably lysosomes, at the periphery. The whole complex was enclosed by a single trilaminar membrane. Images Figure 5 Figure 1 Figure 2 Figure 6 Figure 7 Figure 3 Figure 8 Figure 4 PMID:645817

  17. Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture.

    PubMed

    Marchand, E; Constantin, B; Vandebrouck, C; Raymond, G; Cognard, C

    2001-02-01

    Abnormalities of calcium homeostasis are involved in the process of cell injuries such as Duchenne muscular dystrophy characterized by the absence of the protein dystrophin. But how the absence of dystrophin leads to cytosolic calcium overload is as yet poorly understood. This question has been addressed with skeletal muscle cells from human DMD muscles or mdx mice. Although easier to obtain than human muscles, mdx muscle cells have provided controversial data concerning the resting intracellular calcium level ([Ca2+](i)). This work describes the culture of Sol8 cell line that expresses neither dystrophin nor adhalin, a dystrophin-associated protein. The [Ca2+](i)and intracellular calcium transients induced by different stimuli (acetylcholine, caffeine and high potassium) are normal during the first days of culture. At later stages, calcium homeostasis exhibits drastic alterations with a breaking down of the calcium responses and a large [Ca2+](i)elevation. Concomitantly, Sol8 cells exhibit morphological signs of cell death like cytoplasmic shrinkage and incorporation of propidium iodide. Cell death could be significantly reduced by blocking the activity of calpains, a type of calcium-regulated proteases. These results suggest that Sol8 cell line provides an alternative model of dystrophin-deficient skeletal muscle cells for which a clear disturbance of the calcium homeostasis is observed in culture in association with calpain-dependent cell death. It is shown that transfection with a plasmid cDNA permits the forced expression of dystrophin in Sol8 myotubes as well as a correct sorting of the protein. This approach could be used to explore possible interactions between dystrophin deficiency, calcium homeostasis alteration, and dystrophic cell death. Copyright 2001 Harcourt Publishers Ltd.

  18. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  19. Functional heterogeneity of side population cells in skeletal muscle

    SciTech Connect

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi . E-mail: takeda@ncnp.go.jp

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.

  20. Muscle stem cells contribute to myofibers in sedentary adult mice

    PubMed Central

    Keefe, Alexandra C.; Lawson, Jennifer A.; Flygare, Steven D.; Fox, Zachary D.; Colasanto, Mary P.; Mathew, Sam J.; Yandell, Mark; Kardon, Gabrielle

    2015-01-01

    Skeletal muscle is essential for mobility, stability, and whole body metabolism, and muscle loss, for instance during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofiber homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labeled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that even in the absence of injury, satellite cells contribute to myofibers in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofiber cross-sectional area of uninjured adult muscle. PMID:25971691

  1. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.

    PubMed

    Shan, Tizhong; Zhang, Pengpeng; Bi, Pengpeng; Kuang, Shihuan

    2015-05-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs.

  2. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis.

    PubMed

    Shan, Tizhong; Xu, Ziye; Liu, Jiaqi; Wu, Weiche; Wang, Yizhen

    2017-10-01

    Liver kinase B1 (Lkb1), also named as Serine/Threonine protein kinase 11 (STK11), is a serine/threonine kinase that plays crucial roles in various cellular processes including cell survival, cell division, cellular polarity, cell growth, cell differentiation, and cell metabolism. In metabolic tissues, Lkb1 regulates glucose homeostasis and energy metabolism through phosphorylating and activating the AMPK subfamily proteins. In skeletal muscle, Lkb1 affects muscle development and postnatal growth, lipid and fatty acid oxidation, glucose metabolism, and insulin sensitivity. Recently, the regulatory roles of Lkb1 in regulating division, self-renew, proliferation, and differentiation of skeletal muscle progenitor cells have been reported. In this review, we discuss the roles of Lkb1 in regulating skeletal muscle progenitor cell homeostasis and skeletal muscle development and metabolism. © 2017 Wiley Periodicals, Inc.

  3. Standards for Cell Line Authentication and Beyond

    PubMed Central

    Cole, Kenneth D.; Plant, Anne L.

    2016-01-01

    Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines. PMID:27300367

  4. Comparison of Muscle Fiber and Meat Quality Characteristics in Different Japanese Quail Lines

    PubMed Central

    Choi, Y. M.; Hwang, S.; Lee, K.

    2016-01-01

    The aim of this study was to compare the growth performance, fiber characteristics of the pectoralis major muscle, and meat quality characteristics in the heavy weight (HW) and random bred control (RBC) quail lines and genders. The HW male exhibited more than two times greater body (245.7 vs 96.1 g, p<0.05) and pectoralis major muscle (PMW; 37.1 vs 11.1 g, p<0.05) weights compared to the RBC female. This growth performance in the HW line was associated with a greater muscle fiber area (1,502 vs 663.0 μm2, p<0.001) compared to the RBC line. Greater muscle mass of the HW male was accompanied by a higher percentage of type IIB fiber compared to the HW female (64.0% vs 51.0%, p<0.05). However, muscle fiber hyperplasia (increase in fiber number) has had a somewhat limited effect on PMW between the two lines. On the other hand, the HW line harboring a higher proportion of type IIB fiber showed rapid pH decline at the early postmortem period (6.23 vs 6.41, p<0.05) and lighter meat surface (53.5 vs 47.3, p<0.05) compared to the RBC line harboring a lower proportion of type IIB fiber. There were no significant differences observed in the measurement of water-holding capacity including drip loss (2.74% vs 3.07%, p>0.05) and cooking loss (21.9% vs 20.4%, p>0.05) between the HW and RBC lines. Therefore, the HW quail line developed by selection from the RBC quail, was slightly different in the meat quality characteristics compared to the RBC line, and a marked difference was found in growth performance between the two quail lines. PMID:27383804

  5. Traction in smooth muscle cells varies with cell spreading

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  6. Traction in smooth muscle cells varies with cell spreading

    NASA Technical Reports Server (NTRS)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  7. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice

    SciTech Connect

    Auda-Boucher, Gwenola; Rouaud, Thierry; Lafoux, Aude; Levitsky, Dmitri; Huchet-Cadiou, Corinne; Feron, Marie; Guevel, Laetitia; Talon, Sophie; Fontaine-Perus, Josiane; Gardahaut, Marie-France . E-mail: Marie-France.Gardahaut@univ-nantes.fr

    2007-03-10

    We have previously reported that CD34{sup +} cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP{sup +}/CD34{sup +} cells or desmin{sup +}/{sup -}LacZ/CD34{sup +} cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.

  8. Fetal muscle-derived cells can repair dystrophic muscles in mdx mice.

    PubMed

    Auda-Boucher, Gwenola; Rouaud, Thierry; Lafoux, Aude; Levitsky, Dmitri; Huchet-Cadiou, Corinne; Feron, Marie; Guevel, Laetitia; Talon, Sophie; Fontaine-Pérus, Josiane; Gardahaut, Marie-France

    2007-03-10

    We have previously reported that CD34(+) cells purified from mouse fetal muscles can differentiate into skeletal muscle in vitro and in vivo when injected into muscle tissue of dystrophic mdx mice. In this study, we investigate the ability of such donor cells to restore dystrophin expression, and to improve the functional muscle capacity of the extensor digitorum longus muscle (EDL) of mdx mice. For this purpose green fluorescent-positive fetal GFP(+)/CD34(+) cells or desmin(+)/(-)LacZ/CD34(+) cells were transplanted into irradiated or non-irradiated mdx EDL muscle. Donor fetal muscle-derived cells predominantly fused with existing fibers. Indeed more than 50% of the myofibers of the host EDL contained donor nuclei delivering dystrophin along 80-90% of the length of their sarcolemma. The presence of significant amounts of dystrophin (about 60-70% of that found in a control wild-type mouse muscle) was confirmed by Western blot analyses. Dystrophin expression also outcompeted that of utrophin, as revealed by a spatial shift in the distribution of utrophin. At 1 month post-transplant, the recipient muscle appeared to have greater resistance to fatigue than control mdx EDL muscle during repeated maximal contractions.

  9. Embryonic stem cell lines of nonhuman primates.

    PubMed

    Nakatsuji, Norio; Suemori, Hirofumi

    2002-06-26

    Human embryonic stem (ES) cell lines have opened great potential and expectation for cell therapy and regenerative medicine. Monkey and human ES cell lines, which are very similar to each other, have been established from monkey blastocysts and surplus human blastocysts from fertility clinics. Nonhuman primate ES cell lines provide important research tools for basic and applicative research. Firstly, they provide wider aspects of investigation of the regulative mechanisms of stem cells and cell differentiation among primate species. Secondly, their usage does not need clearance or permission from the regulative rules in many countries that are associated with the ethical aspects of human ES cells, although human and nonhuman embryos and fetuses are very similar to each other. Lastly and most importantly, they are indispensable for animal models of cell therapy to test effectiveness, safety, and immunological reaction of the allogenic transplantation in a setting similar to the treatment of human diseases. So far, ES cell lines have been established from rhesus monkey (Macaca mulatta), common marmoset (Callithrix jacchus), and cynomolgus monkey (Macaca fascicularis), using blastocysts produced naturally or by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These cell lines seem to have very similar characteristics. They express alkaline phosphatase activity and stage-specific embryonic antigen (SSEA)-4 and, in most cases, SSEA-3. Their pluripotency was confirmed by the formation of embryoid bodies and differentiation into various cell types in culture and also by the formation of teratomas that contained many types of differentiated tissues including derivatives of three germ layers after transplantation into the severe combined immunodeficiency (SCID) mice. The noneffectiveness of the leukemia inhibitory factor (LIF) signal makes culture of primate and human ES cell lines prone to undergo spontaneous differentiation and thus it is

  10. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles

    PubMed Central

    Ono, Yusuke; Boldrin, Luisa; Knopp, Paul; Morgan, Jennifer E.; Zammit, Peter S.

    2010-01-01

    Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles. PMID:19835858

  11. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles.

    PubMed

    Ono, Yusuke; Boldrin, Luisa; Knopp, Paul; Morgan, Jennifer E; Zammit, Peter S

    2010-01-01

    Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.

  12. Neurofilament protein aggregation in a cell line model system.

    PubMed

    Hull, Elizabeth; Spoja, Christoffer; Cordova, Matt; Cohlberg, Jeffrey A

    2008-02-01

    Protein aggregates are associated with many diseases and even aggregates of proteins that have no role in disease are inherently toxic to both neuronal and non-neuronal cells. We have developed a model system to explore the mechanism of protein aggregation using a mouse muscle cell line expressing chimeric neurofilament (NF) proteins, a constituent of the protein aggregates in ALS, Lewy body dementia, and Charcot-Marie-Tooth disease. Formation of protein aggregates in these cells leads to reduced cell viability and activated caspases. Aggregates contained both chimeric NF proteins and ubiquitin by immunolocalization and were predominately cytosolic when proteins were expressed at low levels or for shorter periods of time but were present in the nucleus when expression levels increased. This system represents a flexible, new tool to decipher the molecular mechanism of protein aggregation and the contributions of aggregation to cell toxicity.

  13. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  14. Halofuginone improves muscle-cell survival in muscular dystrophies.

    PubMed

    Bodanovsky, Anna; Guttman, Noga; Barzilai-Tutsch, Hila; Genin, Ola; Levy, Oshrat; Pines, Mark; Halevy, Orna

    2014-07-01

    Halofuginone has been shown to prevent fibrosis via the transforming growth factor-β/Smad3 pathway in muscular dystrophies. We hypothesized that halofuginone would reduce apoptosis--the presumed cause of satellite-cell depletion during muscle degradation-in the mdx mouse model of Duchenne muscular dystrophy. Six-week-old mdx mouse diaphragm exhibited fourfold higher numbers of apoptotic nuclei compared with wild-type mice as determined by a TUNEL assay. Apoptotic nuclei were found in macrophages and in Pax7-expressing cells; some were located in centrally-nucleated regenerating myofibers. Halofuginone treatment of mdx mice reduced the apoptotic nuclei number in the diaphragm, together with reduction in Bax and induction in Bcl2 levels in myofibers isolated from these mice. A similar effect was observed when halofuginone was added to cultured myofibers. No apparent effect of halofuginone was observed in wild-type mice. Inhibition of apoptosis or staurosporine-induced apoptosis by halofuginone in mdx primary myoblasts and C2 myogenic cell line, respectively, was reflected by less pyknotic/apoptotic cells and reduced Bax expression. This reduction was reversed by a phosphinositide-3-kinase and mitogen-activated protein kinase/extracellular signal-regulated protein kinase inhibitors, suggesting involvement of these pathways in mediating halofuginone's effects on apoptosis. Halofuginone increased apoptosis in α smooth muscle actin- and prolyl 4-hydroxylase β-expressing cells in mdx diaphragm and in myofibroblasts, the major source of extracellular matrix. The data suggest an additional mechanism by which halofuginone improves muscle pathology and function in muscular dystrophies.

  15. Eosinophils induce airway smooth muscle cell proliferation.

    PubMed

    Halwani, Rabih; Vazquez-Tello, Alejandro; Sumi, Yuki; Pureza, Mary Angeline; Bahammam, Ahmed; Al-Jahdali, Hamdan; Soussi-Gounni, Abdelillah; Mahboub, Bassam; Al-Muhsen, Saleh; Hamid, Qutayba

    2013-04-01

    Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling

  16. Novel insight into stem cell trafficking in dystrophic muscles.

    PubMed

    Farini, Andrea; Villa, Chiara; Manescu, Adrian; Fiori, Fabrizio; Giuliani, Alessandra; Razini, Paola; Sitzia, Clementina; Del Fraro, Giulia; Belicchi, Marzia; Meregalli, Mirella; Rustichelli, Franco; Torrente, Yvan

    2012-01-01

    Recently published reports have described possible cellular therapy approaches to regenerate muscle tissues using arterial route delivery. However, the kinetic of distribution of these migratory stem cells within injected animal muscular dystrophy models is unknown. Using living X-ray computed microtomography, we established that intra-arterially injected stem cells traffic to multiple muscle tissues for several hours until their migration within dystrophic muscles. Injected stem cells express multiple traffic molecules, including VLA-4, LFA-1, CD44, and the chemokine receptor CXCR4, which are likely to direct these cells into dystrophic muscles. In fact, the majority of intra-arterially injected stem cells access the muscle tissues not immediately after the injection, but after several rounds of recirculation. We set up a new, living, 3D-imaging approach, which appears to be an important way to investigate the kinetic of distribution of systemically injected stem cells within dystrophic muscle tissues, thereby providing supportive data for future clinical applications.

  17. Satellite cells from dystrophic muscle retain regenerative capacity.

    PubMed

    Boldrin, Luisa; Zammit, Peter S; Morgan, Jennifer E

    2015-01-01

    Duchenne muscular dystrophy is an inherited disorder that is characterized by progressive skeletal muscle weakness and wasting, with a failure of muscle maintenance/repair mediated by satellite cells (muscle stem cells). The function of skeletal muscle stem cells resident in dystrophic muscle may be perturbed by being in an increasing pathogenic environment, coupled with constant demands for repairing muscle. To investigate the contribution of satellite cell exhaustion to this process, we tested the functionality of satellite cells isolated from the mdx mouse model of Duchenne muscular dystrophy. We found that satellite cells derived from young mdx mice contributed efficiently to muscle regeneration within our in vivo mouse model. To then test the effects of long-term residence in a dystrophic environment, satellite cells were isolated from aged mdx muscle. Surprisingly, they were as functional as those derived from young or aged wild type donors. Removing satellite cells from a dystrophic milieu reveals that their regenerative capacity remains both intact and similar to satellite cells derived from healthy muscle, indicating that the host environment is critical for controlling satellite cell function.

  18. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation.

    PubMed

    Gal-Levi, R; Leshem, Y; Aoki, S; Nakamura, T; Halevy, O

    1998-03-12

    The role of hepatocyte growth factor (HGF) and its receptor, c-met, in proliferation and differentiation of satellite cells was studied in primary cultures of chicken skeletal muscle satellite cells and a myogenic C2 cell line. HGF mRNA was expressed mainly in the myotubes of both cultures. The addition of conditioned medium derived from those cultures had a scattering effect on the canine kidney epithelial cell line, MDCK. In contrast, c-met mRNA levels decreased during cell differentiation of C2 and primary satellite cells. Application of exogenous HGF to chicken myoblasts resulted in their enhanced DNA synthesis. Among several growth factors, HGF was the first to induce DNA synthesis in quiescent satellite cells, thereby driving them into the cell cycle. Ectopic expression of chicken HGF in primary satellite cells suppressed the activation of muscle-regulatory gene reporter constructs MCK-CAT, MRF4-CAT, MEF2-CAT and 4Rtk-CAT, as well as the gene expression of MyoD and myogenin, and MHC protein expression. Ectopic MyoD reversed HGF's inhibitory effect on MCK transactivation. These data suggest that HGF inhibits cell differentiation by inhibiting the activity of basic helix-loop-helix (bHLH)/E protein heterodimers, thus inhibiting myogenic determination factor activity and subsequent muscle-specific protein expression. During muscle growth and regeneration, HGF plays a dual role in satellite-cell myogenesis, affecting both the proliferation and differentiation of these cells in a paracrine fashion.

  19. Muscle satellite cells increase during hibernation in ground squirrels.

    PubMed

    Brooks, Naomi E; Myburgh, Kathryn H; Storey, Kenneth B

    2015-11-01

    Skeletal muscle satellite cells (SCs) are involved in muscle growth and repair. However, clarification of their behavior in hibernating mammals is lacking. The aim of this study was to quantify SCs and total myonuclei in hibernator muscle during different phases of the torpor-arousal cycle. Skeletal muscle was collected from thirteen-lined ground squirrels, Ictidomys tridecemlineatus, at five timepoints during hibernation: control euthermic [CON, stable body temperature (Tb)], early torpor (ET, within 24h), late torpor (LT, 5+ consecutive days), early arousal (EA, increased respiratory rate >60 breaths/min, Tb 9-12°C) and interbout arousal (IA, euthermic Tb). Protein levels of p21, Myf5, Wnt4, and β-catenin were determined by western blotting. SCs (Pax7(+)) and myonuclei were identified using immunohistochemistry. Over the torpor-arousal cycle, myonuclei/fiber remained unchanged. However, the percentage of SCs increased significantly during ET (7.35±1.04% vs. 4.18±0.58%; p<0.05) and returned to control levels during LT. This coincided with a 224% increase in p21 protein during ET. Protein levels of Wnt4 did not change throughout, whereas Myf5 was lower during EA (p<0.08) and IA (p<0.05). Compared to torpor, β-catenin increased by 247% and 279% during EA and IA, respectively (p<0.05). In conclusion, SCs were not dormant during hibernation and increased numbers of SC during ET corresponded with elevated amounts of p21 suggesting that cell cycle control may explain the SC return to baseline levels during late torpor. Despite relatively low Tb during early arousal, active control of quiescence by Myf5 is reduced. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter.

    PubMed

    Li, Yanhui; Wen, Yan; Wang, Zhe; Wei, Yi; Wani, Prachi; Green, Morgaine; Swaminathan, Ganesh; Ramamurthi, Anand; Pera, Renee Reijo; Chen, Bertha

    2016-12-01

    : Data suggest that myoblasts from various sources, including bone marrow, skeletal muscle, and adipose tissue, can restore muscle function in patients with urinary incontinence. Animal data have indicated that these progenitor cells exert mostly a paracrine effect on the native tissues rather than cell regeneration. Limited knowledge is available on the in vivo effect of human stem cells or muscle progenitors on injured muscles. We examined in vivo integration of smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs). pSMCs were derived from a human embryonic stem cell line (H9-ESCs) and two induced pluripotent stem cell (iPSC) lines. pSMCs were injected periurethrally into urethral injury rat models (2 × 10(6) cells per rat) or intramuscularly into severe combined immunodeficiency mice. Histologic and quantitative image analysis revealed that the urethras in pSMC-treated rats contained abundant elastic fibers and thicker muscle layers compared with the control rats. Western blot confirmed increased elastin/collagen III content in the urethra and bladder of the H9-pSMC-treated rats compared with controls. iPSC-pSMC treatment also showed similar trends in elastin and collagen III. Human elastin gene expression was not detectable in rodent tissues, suggesting that the extracellular matrix synthesis resulted from the native rodent tissues rather than from the implanted human cells. Immunofluorescence staining and in vivo bioluminescence imaging confirmed long-term engraftment of pSMCs into the host urethra and the persistence of the smooth muscle phenotype. Taken together, the data suggest that hPSC-derived pSMCs facilitate restoration of urethral sphincter function by direct smooth muscle cell regeneration and by inducing native tissue elastin/collagen III remodeling. The present study provides evidence that a pure population of human smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs) (human

  1. Transcriptional networks that regulate muscle stem cell function.

    PubMed

    Punch, Vincent G; Jones, Andrew E; Rudnicki, Michael A

    2009-01-01

    Muscle stem cells comprise different populations of stem and progenitor cells found in embryonic and adult tissues. A number of signaling and transcriptional networks are responsible for specification and survival of these cell populations and regulation of their behavior during growth and regeneration. Muscle progenitor cells are mostly derived from the somites of developing embryos, while satellite cells are the progenitor cells responsible for the majority of postnatal growth and adult muscle regeneration. In resting muscle, these stem cells are quiescent, but reenter the cell cycle during their activation, whereby they undergo decisions to self-renew, proliferate, or differentiate and fuse into multinucleated myofibers to repair damaged muscle. Regulation of muscle stem cell activity is under the precise control of a number of extrinsic signaling pathways and active transcriptional networks that dictate their behavior, fate, and regenerative potential. Here, we review the networks responsible for these different aspects of muscle stem cell biology and discuss prevalent parallels between mechanisms regulating the activity of embryonic muscle progenitor cells and adult satellite cells.

  2. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    PubMed

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  3. The muscle satellite cell at 50: the formative years

    PubMed Central

    2011-01-01

    In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted. PMID:21849021

  4. Muscle lipid metabolism in two rabbit lines divergently selected for intramuscular fat.

    PubMed

    Martínez-Álvaro, M; Agha, S; Blasco, A; Hernández, P

    2017-06-01

    A divergent selection experiment for intramuscular fat (IMF) of LM at 9 wk of age was performed in rabbits. The objective of this work was to compare the lipid metabolism in muscles and fat tissues of the high-IMF and low-IMF lines. Lipogenic, catabolic, and lipolytic activities were studied in 2 muscles with different oxidative patterns (LM and semimembranosus proprius) and in the perirenal fat depot at 2 ages, 9 and 13 wk. In addition, adipocytes were characterized in perirenal fat. In the fifth generation, direct response to selection was 0.26 g IMF/100 g muscle. Lines showed differences in their lipogenic activities of muscles and fat tissues at 13 wk but not at 9 wk. The high-IMF line showed greater glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme (EM), and fatty acid synthase (FAS) activities in LM than the low-IMF line, with probabilities = 1.00, 0.93, and 0.90, respectively. Differences between lines were particularly great for G6PDH activity, representing 1.13 SD. The high-IMF line also showed greater G6PDH and FAS activities in semimembranosus proprius (P = 0.98 for G6PDH and 0.95 for FAS) and perirenal fat (P = 0.91 for G6PDH and 0.96 for FAS). However, in perirenal fat, EM activity was greater in the low-IMF line (P = 0.90). No differences between lines were found in almost any catabolic or lipolytic activities of muscles. Regarding adipocyte characteristics, the high-IMF line showed larger adipocytes in perirenal fat depot tissue (P = 0.97) compared to the low-IMF line, but no differences between lines were observed in the number of adipocytes. This study sheds light on the metabolic activities involved in the genetic differentiation of lipid deposition in rabbits. This study shows that lipogenic activities in muscles and fat tissues, in particular G6PDH in LM, are involved in the lipid accumulation in muscle and adipose tissues.

  5. Amino acid pools in cultured muscle cells.

    PubMed

    Low, R B; Stirewalt, W S; Rittling, S R; Woodworth, R C

    1984-01-01

    Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships--in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.

  6. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    PubMed

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  7. Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation

    PubMed Central

    van der Schaft, Daisy W. J.; van Spreeuwel, Ariane C. C.; Boonen, Kristel J. M.; Langelaan, Marloes L. P.; Bouten, Carlijn V. C.; Baaijens, Frank P. T.

    2013-01-01

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative 1. The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues 2,3. Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts 4, neonatal muscle derived progenitor cells 5, cells derived from adult muscle tissues from other species such as human 6 or even induced pluripotent stem cells (iPS cells) 7. Cell contractility causes alignment of the cells along the long axis of the construct 8,9 and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent 8. Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while to serve as a

  8. Growth inhibitory activity of indapamide on vascular smooth muscle cells.

    PubMed

    Ganado, P; Ruiz, E; Del Rio, M; Larcher, F; Sanz, M; Steinert, J R; Tejerina, T

    2001-09-28

    Abnormal vascular smooth muscle cell proliferation has a fundamental role in the pathogenesis of vascular diseases. Indapamide is an oral diuretic antihypertensive drug effective for patients with mild or moderate essential hypertension. We now investigated the effects of indapamide on the growth of aortic vascular smooth muscle cells (A10 cell line). Indapamide inhibited cell proliferation as measured by the tetrazolium salt XTT (sodium 3'-[1-(phenylamino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene sulfonic acid hydrate) test. The increase in cell number was significantly reduced in the presence of indapamide 10(-6) and 5 x 10(-4) M (P < 0.05 n = 3 and P < 0.01, n = 3, respectively). Serum-induced DNA synthesis, determined as the incorporation of 5-bromo-2'-deoxyuridine (BrdU), was concentration-dependently inhibited by indapamide. BrdU incorporation was 47.2+/-1.6% (10% foetal calf serum). Indapamide treatment markedly prevented BrdU incorporation (37.2+/-2.1%, 29.2+/-4.8%, 15.0+/-1.8%, 8.7+/-2.1%) indapamide 10(-6), 10(-5), 5 x 10(-5) and 5 x 10(-4) M, respectively. Cell-cycle progression was also evaluated. Flow cytometry analysis of DNA content in synchronised cells revealed blocking of the serum-inducible cell-cycle progression by indapamide. This inhibition was abolished when the drug was added 2 h after serum repletion, indicating that indapamide must act at the early events of a cell cycle to be fully effective against DNA synthesis. In addition, serum-induced intracellular Ca2+ movements and also p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation were studied in the presence or absence of indapamide. Indapamide 10(-5) and 5 x 10(-5) M decreased significantly cytosolic free calcium, and the p44/p42 mitogen-activated protein kinase phosphorylation (5 x 10(-5) M) stimulated by 10% foetal calf serum. In accordance with this finding, indapamide (5 x 10(-4) M) caused a 95% to 99% decrease in the early elevation of c-fos expression as

  9. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    PubMed

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  10. Macrophage-released ADAMTS1 promotes muscle stem cell activation.

    PubMed

    Du, Hongqing; Shih, Chung-Hsuan; Wosczyna, Michael N; Mueller, Alisa A; Cho, Joonseok; Aggarwal, Abhishek; Rando, Thomas A; Feldman, Brian J

    2017-09-22

    Coordinated activation of muscle stem cells (known as satellite cells) is critical for postnatal muscle growth and regeneration. The muscle stem cell niche is central for regulating the activation state of satellite cells, but the specific extracellular signals that coordinate this regulation are poorly understood. Here we show that macrophages at sites of muscle injury induce activation of satellite cells via expression of Adamts1. Overexpression of Adamts1 in macrophages in vivo is sufficient to increase satellite cell activation and improve muscle regeneration in young mice. We demonstrate that NOTCH1 is a target of ADAMTS1 metalloproteinase activity, which reduces Notch signaling, leading to increased satellite cell activation. These results identify Adamts1 as a potent extracellular regulator of satellite cell activation and have significant implications for understanding the regulation of satellite cell activity and regeneration after muscle injury.Satellite cells are crucial for growth and regeneration of skeletal muscle. Here the authors show that in response to muscle injury, macrophages secrete Adamts1, which induces satellite cell activation by modulating Notch1 signaling.

  11. Mouse sectioned muscle regenerates following auto-grafting with muscle fragments: a new muscle precursor cells transfer?

    PubMed

    Biérinx, Anne-Sophie; Sebille, Alain

    2008-02-06

    It was discovered fifty years ago that a minced skeletal muscle replaced in its bed is able to regenerate. This regeneration is due to the presence of quiescent muscle precursor cells so-called satellite cells in the adult muscle which proliferate and fuse to regenerate new centronucleated fibres when the muscle is damaged. These observations open therapeutic perspectives and, in this study, we attempted to test in the mouse whether fragments of minced muscle regenerate new fibres to fill the gap resulting from the trans-section and retraction of the extensor digitorum longus muscle (EDL). When untreated this gap never regenerates. In agreement with Studitsky, we observed that a minced EDL replaced in its bed regenerates fibres that are spatially disorganised. Minced fragments of abdominus rectus muscle placed in the gap resulting of the trans-section of the EDL regenerate muscle fibres in the gap with a better organisation that in the whole minced muscle. These results could have putative clinical applications, for instance in the prevention of incontinence following prostatectomy which implies removal excision of a large part of the striated urethral sphincter.

  12. Reduction of type IIb myosin and IIB fibers in tibialis anterior muscle of mini-muscle mice from high-activity lines.

    PubMed

    Bilodeau, Geneviève M; Guderley, Helga; Joanisse, Denis R; Garland, Theodore

    2009-03-01

    Selective breeding of laboratory house mice (Mus domesticus) for high voluntary wheel running has generated four replicate lines that show an almost threefold increase in daily wheel-running distances as compared with four nonselected control lines. An unusual hindlimb "mini-muscle" phenotype (small muscles, increased mitochondrial enzyme levels, disorganized fiber distribution) has increased in frequency in two of the four replicate selected lines. The gene of major effect that accounts for this phenotype is an autosomal recessive that has been mapped to a 2.6335 Mb interval on MMU11, but not yet identified. This study examined the tibialis anterior muscle to determine whether changes in muscle fiber types could explain such modifications in muscle size and properties. Although selected and control lines did not exhibit systematic differences in the fiber types present in the tibialis anterior muscle, as assessed by electrophoresis of myosin heavy chains (MHC) and by histochemistry, mini-muscle mice lacked type IIB fibers and the corresponding MHCs. Mini-muscle tibialis show increased activities of hexokinase and citrate synthase compared with the normally sized muscles, likely the result of the modified fiber types in the muscle. The mini-muscle phenotype is the major means through which selective breeding for high wheel running has modified the functional capacities of the hindlimb muscles, as normally sized tibialis anterior muscles from control and selected lines did not show general differences in their enzymatic capacities, MHC profiles or fiber type composition, with the exception of an elevated hexokinase activity and a reduced GPa activity in the selected lines.

  13. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    SciTech Connect

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  14. Dissemination of Walker 256 carcinoma cells to rat skeletal muscle

    SciTech Connect

    Ueoka, H.; Hayashi, K.; Namba, T.; Grob, D.

    1986-03-05

    After injection of 10/sup 6/ Walker 256 carcinoma cells labelled with /sup 125/I-5-iodo-2'-deoxyuridine into the tail vein, peak concentration in skeletal muscle was 46 cells/g at 60 minutes, which was lower than 169202, 1665, 555, 198 and 133 cells/g, respectively, at 30 or 60 minutes in lung, liver, spleen, kidney and heart. Because skeletal muscle constitutes 37.4% of body weight, the total number of tumor cells was 2323 cells, which was much greater than in spleen, kidney and heart with 238, 271, and 85 cells, respectively, and only less than in lung and liver, at 222857 and 11700 cells, respectively. The total number in skeletal muscle became greater than in liver at 4 hours and than in lung at 24 hours. Ten minutes after injection of 7.5 x 10/sup 6/ Walker 256 carcinoma cells into the abdominal aorta of rats, a mean of 31 colony-forming cells were recovered from the gastrocnemius, while 106 cells were recovered from the lung after injection into the tail vein. These results indicate that a large number of viable tumor cells can be arrested in skeletal muscle through circulation. The rare remote metastasis of malignancies into skeletal muscle despite constantly circulating tumor cells does not appear to be due to poor dissemination of tumor cells into muscle but due to unhospitable environment of skeletal muscle.

  15. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.

  16. Prostaglandin Actions in Established Insect Cell Lines

    USDA-ARS?s Scientific Manuscript database

    Prostaglandins (PGs) are oxygenated metabolites of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids that serve as biochemical signals that mediate a wide range of physiological functions in animal cells. For example, PGs influence protein expression in establish insect cell lines ...

  17. RNA sequencing for global gene expression associated with muscle growth in a single male modern broiler line compared to a foundational Barred Plymouth Rock chicken line.

    PubMed

    Kong, Byung-Whi; Hudson, Nicholas; Seo, Dongwon; Lee, Seok; Khatri, Bhuwan; Lassiter, Kentu; Cook, Devin; Piekarski, Alissa; Dridi, Sami; Anthony, Nicholas; Bottje, Walter

    2017-01-13

    Modern broiler chickens exhibit very rapid growth and high feed efficiency compared to unselected chicken breeds. The improved production efficiency in modern broiler chickens was achieved by the intensive genetic selection for meat production. This study was designed to investigate the genetic alterations accumulated in modern broiler breeder lines during selective breeding conducted over several decades. To identify genes important in determining muscle growth and feed efficiency in broilers, RNA sequencing (RNAseq) was conducted with breast muscle in modern pedigree male (PeM) broilers (n = 6 per group), and with an unselected foundation broiler line (Barred Plymouth Rock; BPR). The RNAseq analysis was carried out using Ilumina Hiseq (2 x 100 bp paired end read) and raw reads were assembled with the galgal4 reference chicken genome. With normalized RPM values, genes showing >10 average read counts were chosen and genes showing <0.05 p-value and >1.3 fold change were considered as differentially expressed (DE) between PeM and BPR. DE genes were subjected to Ingenuity Pathway Analysis (IPA) for bioinformatic functional interpretation. The results indicate that 2,464 DE genes were identified in the comparison between PeM and BPR. Interestingly, the expression of genes encoding mitochondrial proteins in chicken are significantly biased towards the BPR group, suggesting a lowered mitochondrial content in PeM chicken muscles compared to BPR chicken. This result is inconsistent with more slow muscle fibers bearing a lower mitochondrial content in the PeM. The molecular, cellular and physiological functions of DE genes in the comparison between PeM and BPR include organismal injury, carbohydrate metabolism, cell growth/proliferation, and skeletal muscle system development, indicating that cellular mechanisms in modern broiler lines are tightly associated with rapid growth and differential muscle fiber contents compared to the unselected BPR line. Particularly, PDGF

  18. Advancements in stem cells treatment of skeletal muscle wasting

    PubMed Central

    Meregalli, Mirella; Farini, Andrea; Sitzia, Clementina; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging. PMID:24575052

  19. PDT-induced apoptosis in arterial smooth muscles cells

    NASA Astrophysics Data System (ADS)

    Nyamekye, Isaac; Renick, R.; Gilbert, C.; McEwan, Jean R.; Evan, G.; Bishop, Christopher C. R.; Bown, Stephen G.

    1995-03-01

    PDT kills smooth muscle cells (SMC) in vivo and thus prevents intimal hyperplasia after angioplasty. It causes little inflammation and structural integrity of the artery is not compromised. We have studied the process of the SMC death in vitro. Cultured rat SMC (cell line sv40 ATCC) were sensitized with aluminum disulphonated phthalocyanine (AlS2Pc), and then irradiated with 675 nm laser light (2.5 J/cm2). Controls were studied using only sensitizer or laser for treatment. The cells were incubated and the dying process observed with a time lapse video and microscope system. PDT caused a characteristic pattern of death. Cells lost contact with neighbors, shrank, and showed hyperactivity and membrane ruffling. The cells imploded into active and condensed membrane bound vesicles which were terminally reduced to residual bodies. These are the morphological changes of apoptosis. The control cells which were given AlS2Pc alone or laser alone showed no death. PDT induced cultured arterial SMC death by apoptosis rather than necrosis. An apoptotic mechanism of cell death in vivo would explain the relative lack of inflammation and local tissue destruction in the face of massive death.

  20. Virus Discovery Using Tick Cell Lines

    PubMed Central

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  1. PEDF-derived peptide promotes skeletal muscle regeneration through its mitogenic effect on muscle progenitor cells.

    PubMed

    Ho, Tsung-Chuan; Chiang, Yi-Pin; Chuang, Chih-Kuang; Chen, Show-Li; Hsieh, Jui-Wen; Lan, Yu-Wen; Tsao, Yeou-Ping

    2015-08-01

    In response injury, intrinsic repair mechanisms are activated in skeletal muscle to replace the damaged muscle fibers with new muscle fibers. The regeneration process starts with the proliferation of satellite cells to give rise to myoblasts, which subsequently differentiate terminally into myofibers. Here, we investigated the promotion effect of pigment epithelial-derived factor (PEDF) on muscle regeneration. We report that PEDF and a synthetic PEDF-derived short peptide (PSP; residues Ser(93)-Leu(112)) induce satellite cell proliferation in vitro and promote muscle regeneration in vivo. Extensively, soleus muscle necrosis was induced in rats by bupivacaine, and an injectable alginate gel was used to release the PSP in the injured muscle. PSP delivery was found to stimulate satellite cell proliferation in damaged muscle and enhance the growth of regenerating myofibers, with complete regeneration of normal muscle mass by 2 wk. In cell culture, PEDF/PSP stimulated C2C12 myoblast proliferation, together with a rise in cyclin D1 expression. PEDF induced the phosphorylation of ERK1/2, Akt, and STAT3 in C2C12 myoblasts. Blocking the activity of ERK, Akt, or STAT3 with pharmacological inhibitors attenuated the effects of PEDF/PSP on the induction of C2C12 cell proliferation and cyclin D1 expression. Moreover, 5-bromo-2'-deoxyuridine pulse-labeling demonstrated that PEDF/PSP stimulated primary rat satellite cell proliferation in myofibers in vitro. In summary, we report for the first time that PSP is capable of promoting the regeneration of skeletal muscle. The signaling mechanism involves the ERK, AKT, and STAT3 pathways. These results show the potential utility of this PEDF peptide for muscle regeneration.

  2. Rejuvenating stem cells to restore muscle regeneration in aging

    PubMed Central

    Bengal, Eyal; Perdiguero, Eusebio; Serrano, Antonio L.; Muñoz-Cánoves, Pura

    2017-01-01

    Adult muscle stem cells, originally called satellite cells, are essential for muscle repair and regeneration throughout life. Besides a gradual loss of mass and function, muscle aging is characterized by a decline in the repair capacity, which blunts muscle recovery after injury in elderly individuals. A major effort has been dedicated in recent years to deciphering the causes of satellite cell dysfunction in aging animals, with the ultimate goal of rejuvenating old satellite cells and improving muscle function in elderly people. This review focuses on the recently identified network of cell-intrinsic and -extrinsic factors and processes contributing to the decline of satellite cells in old animals. Some studies suggest that aging-related satellite-cell decay is mostly caused by age-associated extrinsic environmental changes that could be reversed by a “youthful environment”. Others propose a central role for cell-intrinsic mechanisms, some of which are not reversed by environmental changes. We believe that these proposals, far from being antagonistic, are complementary and that both extrinsic and intrinsic factors contribute to muscle stem cell dysfunction during aging-related regenerative decline. The low regenerative potential of old satellite cells may reflect the accumulation of deleterious changes during the life of the cell; some of these changes may be inherent (intrinsic) while others result from the systemic and local environment (extrinsic). The present challenge is to rejuvenate aged satellite cells that have undergone reversible changes to provide a possible approach to improving muscle repair in the elderly. PMID:28163911

  3. The structure and distribution of satellite cells of cardiac muscles in decapod crustaceans.

    PubMed

    Midsukami, M

    1981-01-01

    The structure and distribution of satellite cells of cardiac muscles were examined in twenty-one species of animals chosen from each tribe within the order Decapoda (Arthropoda, Crustacea). The satellite cells were found in all animals observed. Most of them are morphologically identical with those described in different striated muscles of other species, but some cells have unusual features. The decapod satellite cell occasionally lies right over the region corresponding to the intercalated disc between the apposed cardiac muscle cells. The cell sends cytoplasmic processes into the adjacent muscle cells, enabling the plasma membrane to make close contact with the cleft opening of the intercalated disc, and with the myofibril at the level of the Z-line. Another characteristic feature is the presence of "paired" cells. Such cells are clearly separated from each other over most of the contact area by the respective plasma membranes, which are smooth in appearance and devoid of specialized regions. The significance of the presence of satellite cells in decapod cardiac muscle and its possible role are discussed and compared with those described for other species.

  4. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    PubMed

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  5. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.

    PubMed

    Choi, Yeong-Jin; Kim, Taek Gyoung; Jeong, Jonghyeon; Yi, Hee-Gyeong; Park, Ji Won; Hwang, Woonbong; Cho, Dong-Woo

    2016-10-01

    Engineered skeletal muscle tissues that mimic the structure and function of native muscle have been considered as an alternative strategy for the treatment of various muscular diseases and injuries. Here, it is demonstrated that 3D cell-printing of decellularized skeletal muscle extracellular matrix (mdECM)-based bioink facilitates the fabrication of functional skeletal muscle constructs. The cellular alignment and the shape of the tissue constructs are controlled by 3D cell-printing technology. mdECM bioink provides the 3D cell-printed muscle constructs with a myogenic environment that supports high viability and contractility as well as myotube formation, differentiation, and maturation. More interestingly, the preservation of agrin is confirmed in the mdECM, and significant increases in the formation of acetylcholine receptor clusters are exhibited in the 3D cell-printed muscle constructs. In conclusion, mdECM bioink and 3D cell-printing technology facilitate the mimicking of both the structural and functional properties of native muscle and hold great promise for producing clinically relevant engineered muscle for the treatment of muscular injuries.

  6. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair

    PubMed Central

    Kim, Ji Hyun; Ko, In Kap; Atala, Anthony; Yoo, James J.

    2016-01-01

    Reconstructing functional volumetric tissue in vivo following implantation remains a critical challenge facing cell-based approaches. Several pre-vascularization approaches have been developed to increase cell viability following implantation. Structural and functional restoration was achieved in a preclinical rodent tissue defect; however, the approach used in this model fails to repair larger (>mm) defects as observed in a clinical setting. We propose an effective cell delivery system utilizing appropriate vascularization at the site of cell implantation that results in volumetric and functional tissue reconstruction. Our method of multiple cell injections in a progressive manner yielded improved cell survival and formed volumetric muscle tissues in an ectopic muscle site. In addition, this strategy supported the reconstruction of functional skeletal muscle tissue in a rodent volumetric muscle loss injury model. Results from our study suggest that our method may be used to repair volumetric tissue defects by overcoming diffusion limitations and facilitating adequate vascularization. PMID:27924941

  7. Action of obestatin in skeletal muscle repair: stem cell expansion, muscle growth, and microenvironment remodeling.

    PubMed

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-06-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration.

  8. Action of Obestatin in Skeletal Muscle Repair: Stem Cell Expansion, Muscle Growth, and Microenvironment Remodeling

    PubMed Central

    Gurriarán-Rodríguez, Uxía; Santos-Zas, Icía; González-Sánchez, Jessica; Beiroa, Daniel; Moresi, Viviana; Mosteiro, Carlos S; Lin, Wei; Viñuela, Juan E; Señarís, José; García-Caballero, Tomás; Casanueva, Felipe F; Nogueiras, Rubén; Gallego, Rosalía; Renaud, Jean-Marc; Adamo, Sergio; Pazos, Yolanda; Camiña, Jesús P

    2015-01-01

    The development of therapeutic strategies for skeletal muscle diseases, such as physical injuries and myopathies, depends on the knowledge of regulatory signals that control the myogenic process. The obestatin/GPR39 system operates as an autocrine signal in the regulation of skeletal myogenesis. Using a mouse model of skeletal muscle regeneration after injury and several cellular strategies, we explored the potential use of obestatin as a therapeutic agent for the treatment of trauma-induced muscle injuries. Our results evidenced that the overexpression of the preproghrelin, and thus obestatin, and GPR39 in skeletal muscle increased regeneration after muscle injury. More importantly, the intramuscular injection of obestatin significantly enhanced muscle regeneration by simulating satellite stem cell expansion as well as myofiber hypertrophy through a kinase hierarchy. Added to the myogenic action, the obestatin administration resulted in an increased expression of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) and the consequent microvascularization, with no effect on collagen deposition in skeletal muscle. Furthermore, the potential inhibition of myostatin during obestatin treatment might contribute to its myogenic action improving muscle growth and regeneration. Overall, our data demonstrate successful improvement of muscle regeneration, indicating obestatin is a potential therapeutic agent for skeletal muscle injury and would benefit other myopathies related to muscle regeneration. PMID:25762009

  9. Turning terminally differentiated skeletal muscle cells into regenerative progenitors.

    PubMed

    Wang, Heng; Lööf, Sara; Borg, Paula; Nader, Gustavo A; Blau, Helen M; Simon, András

    2015-08-05

    The ability to repeatedly regenerate limbs during the entire lifespan of an animal is restricted to certain salamander species among vertebrates. This ability involves dedifferentiation of post-mitotic cells into progenitors that in turn form new structures. A long-term enigma has been how injury leads to dedifferentiation. Here we show that skeletal muscle dedifferentiation during newt limb regeneration depends on a programmed cell death response by myofibres. We find that programmed cell death-induced muscle fragmentation produces a population of 'undead' intermediate cells, which have the capacity to resume proliferation and contribute to muscle regeneration. We demonstrate the derivation of proliferating progeny from differentiated, multinucleated muscle cells by first inducing and subsequently intercepting a programmed cell death response. We conclude that cell survival may be manifested by the production of a dedifferentiated cell with broader potential and that the diversion of a programmed cell death response is an instrument to achieve dedifferentiation.

  10. Muscle stem cells in developmental and regenerative myogenesis.

    PubMed

    Kang, Jong-Sun; Krauss, Robert S

    2010-05-01

    Skeletal muscle development serves as a paradigm for cell lineage specification and cell differentiation. Adult skeletal muscle has high regenerative capacity, with satellite cells the primary source of this capability. The present review describes recent findings on developmental and adult myogenesis with emphasis on emerging distinctions between various muscle groups and stages of myogenesis. Muscle progenitors of the body are derived from multipotent cells of the dermomyotome and express the transcription factors Pax3 and Pax7. These cells self-renew or induce expression of myogenic regulatory factors (MRFs) and differentiate. The roles of Pax3, Pax7 and specific myogenic regulatory factor progenitor populations in trunk and limb myogenesis have been identified through cell ablation in the mouse. Various head muscles and associated satellite cells have differing developmental origins, and rely on distinct combinations of transcriptional regulators, than trunk and limb muscles. Several genetic and sorting protocols demonstrate that satellite cells are heterogeneous with some possessing stem cell properties; the relative roles of lineage and niche in these properties are being explored. Although cellular mechanisms of developmental, postnatal and adult regenerative myogenesis are thought to be similar, recent studies reveal distinct genetic requirements for embryonic, fetal, postnatal and adult regenerative myogenesis. Genetic determinants of formation or repair of various muscles during different stages of myogenesis are unexpectedly diverse. Future studies should illuminate these differences, as well as mechanisms that underlie stem cell properties of satellite cells.

  11. Refractory lining for electrochemical cell

    DOEpatents

    Blander, Milton; Cook, Glenn M.

    1987-01-01

    Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.

  12. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    PubMed Central

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  13. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle.

    PubMed

    McCarthy, John J; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B; Srikuea, Ratchakrit; Lawson, Benjamin A; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S; Esser, Karyn A; Dupont-Versteegden, Esther E; Peterson, Charlotte A

    2011-09-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca(2+) sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells.

  14. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    PubMed

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-04

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  15. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  16. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    PubMed

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  17. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines

    PubMed Central

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105

  18. Stem Cell Antigen-1 in Skeletal Muscle Function

    PubMed Central

    Bernstein, Harold S.; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J.; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-01-01

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age. PMID:24042315

  19. Cytoglobin modulates myogenic progenitor cell viability and muscle regeneration.

    PubMed

    Singh, Sarvjeet; Canseco, Diana C; Manda, Shilpa M; Shelton, John M; Chirumamilla, Rajendra R; Goetsch, Sean C; Ye, Qiu; Gerard, Robert D; Schneider, Jay W; Richardson, James A; Rothermel, Beverly A; Mammen, Pradeep P A

    2014-01-07

    Mammalian skeletal muscle can remodel, repair, and regenerate itself by mobilizing satellite cells, a resident population of myogenic progenitor cells. Muscle injury and subsequent activation of myogenic progenitor cells is associated with oxidative stress. Cytoglobin is a hemoprotein expressed in response to oxidative stress in a variety of tissues, including striated muscle. In this study, we demonstrate that cytoglobin is up-regulated in activated myogenic progenitor cells, where it localizes to the nucleus and contributes to cell viability. siRNA-mediated depletion of cytoglobin from C2C12 myoblasts increased levels of reactive oxygen species and apoptotic cell death both at baseline and in response to stress stimuli. Conversely, overexpression of cytoglobin reduced reactive oxygen species levels, caspase activity, and cell death. Mice in which cytoglobin was knocked out specifically in skeletal muscle were generated to examine the role of cytoglobin in vivo. Myogenic progenitor cells isolated from these mice were severely deficient in their ability to form myotubes as compared with myogenic progenitor cells from wild-type littermates. Consistent with this finding, the capacity for muscle regeneration was severely impaired in mice deficient for skeletal-muscle cytoglobin. Collectively, these data demonstrate that cytoglobin serves an important role in muscle repair and regeneration.

  20. Skeletal muscle characterization of Japanese quail line selectively bred for lower body weight as an avian model of delayed muscle growth with hypoplasia.

    PubMed

    Choi, Young Min; Suh, Yeunsu; Shin, Sangsu; Lee, Kichoon

    2014-01-01

    This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth.

  1. Skeletal Muscle Characterization of Japanese Quail Line Selectively Bred for Lower Body Weight as an Avian Model of Delayed Muscle Growth with Hypoplasia

    PubMed Central

    Choi, Young Min; Suh, Yeunsu; Shin, Sangsu; Lee, Kichoon

    2014-01-01

    This study was designed to extensively characterize the skeletal muscle development in the low weight (LW) quail selected from random bred control (RBC) Japanese quail in order to provide a new avian model of impaired and delayed growth in physically normal animals. The LW line had smaller embryo and body weights than the RBC line in all age groups (P<0.05). During 3 to 42 d post-hatch, the LW line exhibited approximately 60% smaller weight of pectoralis major muscle (PM), mainly resulting from lower fiber numbers compared to the RBC line (P<0.05). During early post-hatch period when myotubes are still actively forming, the LW line showed impaired PM growth with prolonged expression of Pax7 and lower expression levels of MyoD, Myf-5, and myogenin (P<0.05), likely leading to impairment of myogenic differentiation and consequently, reduced muscle fiber formation. Additionally, the LW line had delayed transition of neonatal to adult myosin heavy chain isoform, suggesting delayed muscle maturation. This is further supported by the finding that the LW line continued to grow unlike the RBC line; difference in the percentages of PMW to body weights between both quail lines diminished with increasing age from 42 to 75 d post-hatch. This delayed muscle growth in the LW line is accompanied by higher levels of myogenin expression at 42 d (P<0.05), higher percentage of centered nuclei at 42 d (P<0.01), and greater rate of increase in fiber size between 42 and 75 d post-hatch (P<0.001) compared to the RBC line. Analysis of physiological, morphological, and developmental parameters during muscle development of the LW quail line provided a well-characterized avian model for future identification of the responsible genes and for studying mechanisms of hypoplasia and delayed muscle growth. PMID:24763754

  2. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes.

    PubMed

    Tavi, Pasi; Korhonen, Topi; Hänninen, Sandra L; Bruton, Joseph D; Lööf, Sara; Simon, Andras; Westerblad, Håkan

    2010-05-01

    Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F-actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax-7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination.

  3. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells.

    PubMed

    Elschenbroich, Sarah; Ignatchenko, Vladimir; Sharma, Parveen; Schmitt-Ulms, Gerold; Gramolini, Anthony O; Kislinger, Thomas

    2009-10-01

    High-resolution peptide separation is pivotal for successful shotgun proteomics. The need for capable techniques propels invention and improvement of ever more sophisticated approaches. Recently, Agilent Technologies has introduced the OFFGEL fractionator, which conducts peptide separation by isoelectric focusing in an off-gel setup. This platform has been shown to accomplish high resolution of peptides for diverse sample types, yielding valuable advantages over comparable separation techniques. In this study, we deliver the first comparison of the newly emerging OFFGEL approach to the well-established on-line MudPIT platform. Samples from a membrane-enriched fraction isolated from murine C2C12 cells were subjected to replicate analysis by OFFGEL (12 fractions, pH 3-10) followed by RP-LC-MS/MS or 12-step on-line MudPIT. OFFGEL analyses yielded 1398 proteins (identified by 10,269 peptides), while 1428 proteins (11,078 peptides) were detected with the MudPIT approach. Thus, our data shows that both platforms produce highly comparable results in terms of protein/peptide identifications and reproducibility for the sample type analyzed. We achieve more accurate peptide focusing after OFFGEL fractionation with 88% of all peptides binned to a single fraction, as compared to 61% of peptides detected in only one step in MudPIT analyses. Our study suggests that both platforms are equally capable of high quality peptide separation of a sample with medium complexity, rendering them comparably valuable for comprehensive proteomic analyses.

  4. Selective Expansion of Skeletal Muscle Stem Cells From Bulk Muscle Cells in Soft Three-Dimensional Fibrin Gel.

    PubMed

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey; Wu, Wen-Shu

    2017-02-28

    Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three-dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell-based therapies for various muscle disorders. © Stem Cells Translational Medicine 2017.

  5. Caveolar nanospaces in smooth muscle cells

    PubMed Central

    Gherghiceanu, Mihaela; Popescu, L M

    2006-01-01

    Caveolae, specialized membrane nanodomains, have a key role in signaling processes, including calcium handling in smooth muscle cells (SMC). We explored the three-dimensional (3D) architecture of peripheral cytoplasmic space at the nanoscale level and the close spatial relationships between caveolae, sarcoplasmic reticulum (SR), and mitochondria, as ultrastructural basis for an excitation-contraction coupling system and, eventually, for excitation - transcription coupling. About 150 electron micrographs of SMC showed that superficial SR and peripheral mitochondria are rigorously located along the caveolar domains of plasma membrane, alternating with plasmalemmal dense plaques. Electron micrographs made on serial ultrathin sections were digitized, then computer-assisted organellar profiles were traced on images, and automatic 3D reconstruction was obtained using the ‘Reconstruct’ software. The reconstruction was made for 1 μm3 in rat stomach (muscularis mucosae) and 10 μm3 in rat urinary bladder (detrusor smooth muscle). The close appositions (about 15 nm distance) of caveolae, peripheral SR, and mitochondria create coherent cytoplasmic nanoscale subdomains. Apparently, 80% of caveolae establish close contacts with SR and about 10% establish close contacts with mitochondria in both types of SMC. Thus, our results show that caveolae and peripheral SR build Ca2+release units in which mitochondria often could play a part. The caveolae-SR couplings occupy 4.19% of the cellular volume in stomach and 3.10% in rat urinary bladder, while caveolae-mitochondria couplings occupy 3.66% and 3.17%, respectively. We conclude that there are strategic caveolae-SR or caveolae-mitochondria contacts at the nanoscale level in the cortical cytoplasm of SMC, presumably responsible for a vectorial control of free Ca2+ cytoplasmic concentrations in definite nanospaces. This may account for slective activation of specific Ca2+ signaling pathways. PMID:16796817

  6. Murine cerebrovascular cells as a cell culture model for cerebral amyloid angiopathy: isolation of smooth muscle and endothelial cells from mouse brain.

    PubMed

    Gauthier, Sebastien A; Sahoo, Susmita; Jung, Sonia S; Levy, Efrat

    2012-01-01

    The use of murine cerebrovascular endothelial and smooth muscle cells has not been widely employed as a cell culture model for the investigation of cellular mechanisms involved in cerebral amyloid angiopathy (CAA). Difficulties in isolation and propagation of murine cerebrovascular cells and insufficient yields for molecular and cell culture studies have deterred investigators from using mice as a source for cerebrovascular cells in culture. Instead, cerebrovascular cells from larger mammals are preferred and several methods describing the isolation of endothelial and smooth muscle cells from human, canine, rat, and guinea pig have been published. In recent years, several transgenic mouse lines showing CAA pathology have been established; consequently murine cerebrovascular cells derived from these animals can serve as a key cellular model to study CAA. Here, we describe a procedure for isolating murine microvessels that yields healthy smooth muscle and endothelial cell populations and produce sufficient material for experimental purposes. Murine smooth muscle cells isolated using this protocol exhibit the classic "hill and valley" morphology and are immunoreactive for the smooth muscle cell marker α-actin. Endothelial cells display a "cobblestone" pattern phenotype and show the characteristic immunostaining for the von Willebrand factor and the factor VIII-related antigen. In addition, we describe methods designed to preserve these cells by storage in liquid nitrogen and reestablishing viable cell cultures. Finally, we compare our methods with protocols designed to isolate and maintain human cerebrovascular cell cultures.

  7. Cl− channels in smooth muscle cells

    PubMed Central

    Bulley, Simon

    2013-01-01

    In smooth muscle cells (SMCs), the intracellular chloride ion (Cl−) concentration is high due to accumulation by Cl−/HCO3− exchange and Na+, K+, Cl− cotransportation. The equilibrium potential for Cl− (ECl) is more positive than physiological membrane potentials (Em), with Cl− efflux inducing membrane depolarization. Early studies used electrophysiology and non-specific antagonists to study the physiological relevance of Cl− channels in SMCs. More recent reports have incorporated molecular biological approaches to identify and determine the functional significance of several different Cl− channels. Both “classic” and cGMP-dependent calcium (Ca2+)-activated (ClCa) channels and volume-sensitive Cl− channels are present, with TMEM16A/ANO1, bestrophins and ClC-3, respectively, proposed as molecular candidates for these channels. The cystic fibrosis transmembrane conductance regulator (CFTR) has also been described in SMCs. This review will focus on discussing recent progress made in identifying each of these Cl− channels in SMCs, their physiological functions, and contribution to diseases that modify contraction, apoptosis and cell proliferation. PMID:24077695

  8. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo.

    PubMed

    Gurevich, David B; Nguyen, Phong Dang; Siegel, Ashley L; Ehrlich, Ophelia V; Sonntag, Carmen; Phan, Jennifer M N; Berger, Silke; Ratnayake, Dhanushika; Hersey, Lucy; Berger, Joachim; Verkade, Heather; Hall, Thomas E; Currie, Peter D

    2016-07-08

    Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.

  9. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  10. Skeletal muscle satellite cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Molnar, Greg; Hartzell, Charles R.; Schroedl, Nancy A.; Gonda, Steve R.

    1993-01-01

    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of

  11. Effects of teicoplanin on cell number of cultured cell lines

    PubMed Central

    Kashkolinejad-Koohi, Tahere; Saadat, Iraj

    2015-01-01

    Teicoplanin is a glycopeptide antibiotic with a wide variation in human serum half-life. It is also a valuable alternative of vancomycin. There is however no study on its effect on cultured cells. The aim of the present study was to test the effect of teicoplanin on cultured cell lines CHO, Jurkat E6.1 and MCF-7. The cultured cells were exposed to teicoplanin at final concentrations of 0–11000 μg/ml for 24 hours. To determine cell viability, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was performed. At low concentrations of teicoplanin the numbers of cultured cells (due to cell proliferation) were increased in the three cell lines examined. The maximum cell proliferation rates were observed at concentrations of 1000, 400, and 200 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. Cell toxicity was observed at final concentrations over 2000, 6000, and 400 μg/ml of teicoplanin for CHO, MCF-7 and Jurkat cell lines, respectively. A dose-dependent manner of cell toxicity was observed. Our present findings indicated that teicoplanin at clinically used concentrations induced cell proliferation. It should therefore be used cautiously, particularly in children, pregnant women and patients with cancer. PMID:27486356

  12. Role of muscle stem cells during skeletal regeneration.

    PubMed

    Abou-Khalil, Rana; Yang, Frank; Lieu, Shirley; Julien, Anais; Perry, Jaselle; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph; Colnot, Céline

    2015-05-01

    Although the importance of muscle in skeletal regeneration is well recognized clinically, the mechanisms by which muscle supports bone repair have remained elusive. Muscle flaps are often used to cover the damaged bone after traumatic injury yet their contribution to bone healing is not known. Here, we show that direct bone-muscle interactions are required for periosteum activation and callus formation, and that muscle grafts provide a source of stem cells for skeletal regeneration. We investigated the role of satellite cells, the muscle stem cells. Satellite cells loss in Pax7(-/-) mice and satellite cell ablation in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice impaired bone regeneration. Although satellite cells did not contribute as a large source of cells endogenously, they exhibited a potential to contribute to bone repair after transplantation. The fracture healing phenotype in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice was associated with decreased bone morphogenetic proteins (BMPs), insulin-like growth factor 1, and fibroblast growth factor 2 expression that are normally upregulated in response to fracture in satellite cells. Exogenous rhBMP2 improved bone healing in Pax7(Cre) (ERT) (2/) (+) ;DTA(f/f) mice further supporting the role of satellite cells as a source of growth factors. These results provide the first functional evidence for a direct contribution of muscle to bone regeneration with important clinical implications as it may impact the use of muscle flaps, muscle stem cells, and growth factors in orthopedic applications. © 2015 AlphaMed Press.

  13. Muscle-derived hematopoietic stem cells are hematopoietic in origin

    PubMed Central

    McKinney-Freeman, Shannon L.; Jackson, Kathyjo A.; Camargo, Fernando D.; Ferrari, Giuliana; Mavilio, Fulvio; Goodell, Margaret A.

    2002-01-01

    It has recently been shown that mononuclear cells from murine skeletal muscle contain the potential to repopulate all major peripheral blood lineages in lethally irradiated mice, but the origin of this activity is unknown. We have fractionated muscle cells on the basis of hematopoietic markers to show that the active population exclusively expresses the hematopoietic stem cell antigens Sca-1 and CD45. Muscle cells obtained from 6- to 8-week-old C57BL/6-CD45.1 mice and enriched for cells expressing Sca-1 and CD45 were able to generate hematopoietic but not myogenic colonies in vitro and repopulated multiple hematopoietic lineages of lethally irradiated C57BL/6-CD45.2 mice. These data show that muscle-derived hematopoietic stem cells are likely derived from the hematopoietic system and are a result not of transdifferentiation of myogenic stem cells but instead of the presence of substantial numbers of hematopoietic stem cells in the muscle. Although CD45-negative cells were highly myogenic in vitro and in vivo, CD45-positive muscle-derived cells displayed only very limited myogenic activity and only in vivo. PMID:11830662

  14. Neurotrophin and Neurotrophin Receptors in Vascular Smooth Muscle Cells

    PubMed Central

    Donovan, Michael J.; Miranda, Rajesh C.; Kraemer, Rosemary; McCaffrey, Timothy A.; Tessarollo, Lino; Mahadeo, Debbie; Sharif, Setareh; Kaplan, David R.; Tsoulfas, Pantelis; Parada, Luis; Toran-Allerand, C. Dominique; Hajjar, David P.; Hempstead, Barbara L.

    1995-01-01

    The neurotrophins, a family of related polypeptide growth factors including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3 and NT-4/5 promote the survival and differentiation of distinctive sets of embryonic neurons. Here we define a new functional role for neurotrophins, as autocrine or local paracrine mediators of vascular smooth muscle cell migration. We have identified neurotrophins, and their cognate receptors, the trk tyrosine kinases, in human and rat vascular smooth muscle cells in vivo. In vitro, cultured human smooth muscle cells express BDNF; NT-3; and trk A, B, and C Similarly, rat smooth muscle cells expressed all three trk receptors as well as all four neurotrophins. Moreover, NGF induces cultured human smooth muscle cell migration at subnanomolar concentrations. In the rat aortic balloon deendothelialization model of vascular injury, the expression of NGF, BDNF, and their receptors trk A and trk B increased dramatically in the area of injury within 3 days and persisted during the formation of the neointima. In human coronary atherosclerotic lesions, BDNF, NT-3, and NT-4/5, and the trk B and trk C receptors could be demonstrated in smooth muscle cells. These findings suggest that neurotrophins play an important role in regulating the response of vascular smooth muscle cells to injury. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6Figure 7Figure 8 PMID:7639328

  15. Radiation sensitivity of Merkel cell carcinoma cell lines

    SciTech Connect

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  16. Skeletal Muscle Cell Behavior After Physical Agent Treatments.

    PubMed

    Battistelli, Michela; Salucci, Sara; Guescini, Michele; Curzi, Davide; Stocchi, Vilberto; Falcieri, Elisabetta

    2015-01-01

    Apoptosis is essential for skeletal muscle development and homeostasis. It has been frequently involved in several muscle myopathies and sarcopenia, as well as in denervation, in disuse and acute strenuous or eccentric physical exercise. In this work skeletal muscle cell death, induced in vitro by a variety of physical triggers, has been investigated. C2C12 myoblasts and myotubes were exposed to UVB for 30 min, hyperthermia for 1 h at 43 °C, low pH for 3 h, hypothermia for 4h at 0 - 6°C, all followed by 2 - 4 h recovery. Their effects have been analysed by means of morpho- functional and molecular approaches. After UVB radiation, hyperthermia and acidosis, morphological apoptotic features and in situ DNA fragmentation appeared, more evident in myoblasts. Interestingly, apoptotic, non apoptotic and necrotic nuclei could be occasionally observed within the same myotube. Low pH induced apoptosis and necrosis, both characterized by swollen nuclei. In all these experimental conditions, the molecular investigations revealed a caspase pathway involvement in inducing cell death. Differently, hypothermia showed a scant and initial chromatin margination, in the presence of a diffused autophagic component. In this case, in situ DNA fragmentation and caspase activation have not been detected. Myoblasts and myotubes appeared sensitive to physical agents, some of which, induced apoptotic cell death. Moreover, hypothermia exposure seemed to enhance autophagic response, thus representing a way to delay trauma-correlated muscle inflammation. This study permits to highlight skeletal muscle cell behavior in response to physical agents, by adding important information to muscle cell death knowledge. UVB radiation and hyperthermia, usually used in clinical therapy, have also adverse effects on skeletal muscle such as myonuclei loss and cell death, contributing to muscle mass decrease. Acidosis occurs physiologically in muscular fatigue, reducing not only the athlete performance, but

  17. Apoptosis-Inducing Factor Regulates Skeletal Muscle Progenitor Cell Number and Muscle Phenotype

    PubMed Central

    Djeghloul, Dounia; Lécolle, Sylvie; Bertrand, Anne T.; Biondi, Olivier; De Windt, Leon J.; Chanoine, Christophe

    2011-01-01

    Apoptosis Inducing Factor (AIF) is a highly conserved, ubiquitous flavoprotein localized in the mitochondrial intermembrane space. In vivo, AIF provides protection against neuronal and cardiomyocyte apoptosis induced by oxidative stress. Conversely in vitro, AIF has been demonstrated to have a pro-apoptotic role upon induction of the mitochondrial death pathway, once AIF translocates to the nucleus where it facilitates chromatin condensation and large scale DNA fragmentation. Given that the aif hypomorphic harlequin (Hq) mutant mouse model displays severe sarcopenia, we examined skeletal muscle from the aif hypomorphic mice in more detail. Adult AIF-deficient skeletal myofibers display oxidative stress and a severe form of atrophy, associated with a loss of myonuclei and a fast to slow fiber type switch, both in “slow” muscles such as soleus, as well as in “fast” muscles such as extensor digitorum longus, most likely resulting from an increase of MEF2 activity. This fiber type switch was conserved in regenerated soleus and EDL muscles of Hq mice subjected to cardiotoxin injection. In addition, muscle regeneration in soleus and EDL muscles of Hq mice was severely delayed. Freshly cultured myofibers, soleus and EDL muscle sections from Hq mice displayed a decreased satellite cell pool, which could be rescued by pretreating aif hypomorphic mice with the manganese-salen free radical scavenger EUK-8. Satellite cell activation seems to be abnormally long in Hq primary culture compared to controls. However, AIF deficiency did not affect myoblast cell proliferation and differentiation. Thus, AIF protects skeletal muscles against oxidative stress-induced damage probably by protecting satellite cells against oxidative stress and maintaining skeletal muscle stem cell number and activation. PMID:22076146

  18. Sphingosylphosphorylcholine inhibits macrophage adhesion to vascular smooth muscle cells.

    PubMed

    Wirrig, Christiane; McKean, Jenny S; Wilson, Heather M; Nixon, Graeme F

    2016-09-01

    Inflammation in de-endothelialised arteries contributes to the development of cardiovascular diseases. The process that initiates this inflammatory response is the adhesion of monocytes/macrophages to exposed vascular smooth muscle cells, typically stimulated by cytokines such as tumour necrosis factor-α (TNF). The aim of this study was to determine the effect of the sphingolipid sphingosylphosphorylcholine (SPC) on the interaction of monocytes/macrophages with vascular smooth muscle cells. Rat aortic smooth muscle cells and rat bone marrow-derived macrophages were co-cultured using an in vitro assay following incubation with sphingolipids to assess inter-cellular adhesion. We reveal that SPC inhibits the TNF-induced adhesion of macrophages to smooth muscle cells. This anti-adhesive effect was the result of SPC-induced changes to the smooth muscle cells (but not the macrophages) and was mediated, at least partly, via the sphingosine 1-phosphate receptor subtype 2. Lipid raft domains were also required. Although SPC did not alter expression or membrane distribution of the adhesion proteins intercellular adhesion molecule-1 and vascular cellular adhesion protein-1 in smooth muscle cells, SPC preincubation inhibited the TNF-induced increase in inducible nitric oxide synthase (NOS2) resulting in a subsequent decrease in nitric oxide production. Inhibiting NOS2 activation in smooth muscle cells led to a decrease in the adhesion of macrophages to smooth muscle cells. This study has therefore delineated a novel pathway which can inhibit the interaction between macrophages and vascular smooth muscle cells via SPC-induced repression of NOS2 expression. This mechanism could represent a potential drug target in vascular disease. Copyright © 2016. Published by Elsevier Inc.

  19. Effects of polyphenolic grape extract on the oxidative status of muscle and endothelial cells.

    PubMed

    Goutzourelas, N; Stagos, D; Demertzis, N; Mavridou, P; Karterolioti, H; Georgadakis, S; Kerasioti, E; Aligiannis, N; Skaltsounis, L; Statiri, A; Tsioutsiouliti, A; Tsatsakis, A M; Hayes, A W; Kouretas, D

    2014-11-01

    A grape pomace extract enhanced antioxidant mechanisms in muscle and endothelial cells both in the absence and in the presence of oxidative stress-induced agent tert-butyl hydroperoxide (tBHP). In particular, muscle (C2C12) and endothelial (EA.hy926) cells were treated with the extract at noncytotoxic concentrations for 24 h, and the oxidative stress markers, total reactive oxygen species (ROS), glutathione (GSH), thiobarbituric reactive substances (TBARS), and protein carbonyl levels were assessed. The results showed that the grape extract treatment reduced significantly ROS, TBARS, and protein carbonyl levels and increased GSH in C2C12 cells, while it increased GSH and decreased protein carbonyl levels in EA.hy926 cells. In the presence of tBHP, the grape extract treatment in C2C12 cells reduced significantly ROS, TBARS, and protein carbonyls and increased GSH compared with tBHP alone treatment, while, in EA.hy926 cells, the extract decreased significantly TBARS and protein carbonyls but increased GSH. The antioxidant potency of the extract was different between muscle and endothelial cells suggesting that the antioxidant activity depends on cell type. Moreover, the antioxidant activity of the grape extract, in both cell lines, exerted, at least in part, through increase in GSH levels. The present work is the first to report the effects of grape extract shown for skeletal muscle cells. © The Author(s) 2014.

  20. Development, characterization, conservation and storage of fish cell lines: a review.

    PubMed

    Lakra, W S; Swaminathan, T Raja; Joy, K P

    2011-03-01

    Cell lines provide an important biological tool for carrying out investigations into physiology, virology, toxicology, carcinogenesis and transgenics. Teleost fish cell lines have been developed from a broad range of tissues such as ovary, fin, swim bladder, heart, spleen, liver, eye muscle, vertebrae, brain, skin. One hundred and twenty-four new fish cell lines from different fish species ranging from grouper to eel have been reported since the last review by Fryer and Lannan (J Tissue Culture Methods 16: 87-94, 1994). Among the cell lines listed, more than 60% were established from species from Asia, which contributes more than 80% of total fish production. This includes 59 cell lines from 19 freshwater, 54 from 22 marine and 11 from 3 brackish water fishes. Presently, about 283 cell lines have been established from finfish around the world. In addition to the listing and a scientific update on new cell lines, the importance of authentication, applications, cross-contamination and implications of overpassaged cell lines has also been discussed in this comprehensive review. The authors feel that the review will serve an updated database for beginners and established researchers in the field of fish cell line research and development.

  1. Satellite and stem cells in muscle growth and repair.

    PubMed

    Le Grand, Fabien; Rudnicki, Michael

    2007-11-01

    The FASEB summer research conference on Skeletal Muscle Satellite and Stem Cells, organized by Thomas Rando, Giulio Cossu and Jeffrey Chamberlain, was held in Indian Wells, California, in July. An international array of researchers gathered to share numerous new insights into the cellular and molecular regulation of stem cells and satellite cells in skeletal muscle biology. The conference is unique in that it brings together investigators from diverse backgrounds, who work on the growth and repair of skeletal muscle in humans and model systems, in health and disease.

  2. Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering.

    PubMed

    Luo, Jiesi; Qin, Lingfeng; Kural, Mehmet H; Schwan, Jonas; Li, Xia; Bartulos, Oscar; Cong, Xiao-Qiang; Ren, Yongming; Gui, Liqiong; Li, Guangxin; Ellis, Matthew W; Li, Peining; Kotton, Darrell N; Dardik, Alan; Pober, Jordan S; Tellides, George; Rolle, Marsha; Campbell, Stuart; Hawley, Robert J; Sachs, David H; Niklason, Laura E; Qyang, Yibing

    2017-12-01

    Development of autologous tissue-engineered vascular constructs using vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (iPSCs) holds great potential in treating patients with vascular disease. However, preclinical, large animal iPSC-based cellular and tissue models are required to evaluate safety and efficacy prior to clinical application. Herein, swine iPSC (siPSC) lines were established by introducing doxycycline-inducible reprogramming factors into fetal fibroblasts from a line of inbred Massachusetts General Hospital miniature swine that accept tissue and organ transplants without immunosuppression within the line. Highly enriched, functional VSMCs were derived from siPSCs based on addition of ascorbic acid and inactivation of reprogramming factor via doxycycline withdrawal. Moreover, siPSC-VSMCs seeded onto biodegradable polyglycolic acid (PGA) scaffolds readily formed vascular tissues, which were implanted subcutaneously into immunodeficient mice and showed further maturation revealed by expression of the mature VSMC marker, smooth muscle myosin heavy chain. Finally, using a robust cellular self-assembly approach, we developed 3D scaffold-free tissue rings from siPSC-VSMCs that showed comparable mechanical properties and contractile function to those developed from swine primary VSMCs. These engineered vascular constructs, prepared from doxycycline-inducible inbred siPSCs, offer new opportunities for preclinical investigation of autologous human iPSC-based vascular tissues for patient treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PPARδ regulates satellite cell proliferation and skeletal muscle regeneration

    PubMed Central

    2011-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARδ has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Pparδ leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Pparδ using Myf5-Cre/Pparδflox/flox alleles to ablate PPARδ in myogenic progenitor cells. Although Pparδ-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Pparδ-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Pparδ-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Pparδ-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARδ acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARδ in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARδ in muscle progenitor cells and postnatal muscle regeneration. PMID:22040534

  4. Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines

    PubMed Central

    Gupta, R. N.; Pareek, Anil; Suthar, Manish; Rathore, Garvendra S.; Basniwal, Pawan K.; Jain, Deepti

    2009-01-01

    The effect of hot water extract of fruits of Helicteres isora on glucose uptake was studied in rodent skeletal muscle cells (L-6 cells) involved in glucose utilization. H. isora is an antidiabetic medicinal plant being used in Indian traditional medicine. Hot water extracts were analysed for glucose uptake activity and found to be significantly active at 200 μg/ml dose comparable with insulin and metformin. Elevation of glucose uptake by H. isora in association with glucose transport supported the upregulation of glucose uptake. It was concluded that hot water extract of H. isora activate glucose uptake in L-6 cell line of mouse skeletal muscles. PMID:20336200

  5. Study of glucose uptake activity of Helicteres isora Linn. fruits in L-6 cell lines.

    PubMed

    Gupta, R N; Pareek, Anil; Suthar, Manish; Rathore, Garvendra S; Basniwal, Pawan K; Jain, Deepti

    2009-10-01

    The effect of hot water extract of fruits of Helicteres isora on glucose uptake was studied in rodent skeletal muscle cells (L-6 cells) involved in glucose utilization. H. isora is an antidiabetic medicinal plant being used in Indian traditional medicine. Hot water extracts were analysed for glucose uptake activity and found to be significantly active at 200 mug/ml dose comparable with insulin and metformin. Elevation of glucose uptake by H. isora in association with glucose transport supported the upregulation of glucose uptake. It was concluded that hot water extract of H. isora activate glucose uptake in L-6 cell line of mouse skeletal muscles.

  6. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles

    PubMed Central

    Cosgrove, Benjamin D.; Gilbert, Penney M.; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P.; Corbel, Stephane Y.; Llewellyn, Michael E.; Delp, Scott L.; Blau, Helen M.

    2014-01-01

    The aged suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging due in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of aged MuSCs are intrinsically defective relative to young MuSCs, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation due to a higher incidence of cells that express senescence markers and that have elevated p38α/β MAPK activity. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the aged MuSC population to transient inhibition of p38α/β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional aged MuSC population, rejuvenating its potential for regeneration, serial transplantation, and strengthening damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy in aged individuals. PMID:24531378

  7. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles.

    PubMed

    Cosgrove, Benjamin D; Gilbert, Penney M; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P; Corbel, Stephane Y; Llewellyn, Michael E; Delp, Scott L; Blau, Helen M

    2014-03-01

    The elderly often suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging owing in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of MuSCs from aged mice are intrinsically defective relative to MuSCs from young mice, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation. This deficiency is correlated with a higher incidence of cells that express senescence markers and is due to elevated activity of the p38α and p38β mitogen-activated kinase pathway. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the MuSC population from aged mice to transient inhibition of p38α and p38β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional MuSC population from aged mice, rejuvenating its potential for regeneration and serial transplantation as well as strengthening of damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy for the elderly.

  8. Electromyographic Evaluation of the Effect of Lined Dentures on Masticatory Muscle Activity in Edentulous Subjects

    PubMed Central

    Srivastava, Shitij; Gaur, Abhishek; Dupare, Arun; Rastogi, Shiksha; Kamatagi, Laxmikant

    2015-01-01

    Aim The purpose of this study was to examine changes in relative electromyographic (EMG) activities of temporal and masseter muscles after relining the dentures with silicone and acrylic-resin based denture liners. Materials and Methods Conventional complete dentures were fabricated for 20 edentulous patients. One month after completing adjustments of the dentures, electromyography of the masseter and temporalis muscle during maximum intercuspation was recorded. The dentures were then relined with a silicone denture liner and after an adaptation period of one month, were again subjected for electromyographic evaluation. Further, the dentures were relined with acrylic denture liner and subjected to electromyographic evaluation. Data was analysed using Statistical Package for Social Sciences (SPSS) version 15.0. Intergroup comparisons were done using ANOVA followed by post-hoc assessments using Tukey HSD test. Results Mean amplitude and duration with conventional dentures was found to be significantly lower as compared to silicone lined and acrylic lined dentures for all the comparisons. Statistically, no significant difference between silicone lined and acrylic lined dentures was observed for any of the comparisons. Conclusion Within the limitations of this experimental design, it was concluded that relining significantly increases electromyographic activity of the masseter and temporalis muscles. Thus, resulting in an improved biting force, chewing efficiency and masticatory performance. There were no significant differences between silicone and acrylic based denture liners for both electromyographic variables. PMID:26436054

  9. Regulation of skeletal muscle stem cells by fibroblast growth factors.

    PubMed

    Pawlikowski, Bradley; Vogler, Thomas Orion; Gadek, Katherine; Olwin, Bradley B

    2017-03-01

    Fibroblast growth factors (FGFs) are essential for self-renewal of skeletal muscle stem cells (satellite cells) and required for maintenance and repair of skeletal muscle. Satellite cells express high levels of FGF receptors 1 and 4, low levels of FGF receptor 3, and little or no detectable FGF receptor 2. Of the multiple FGFs that influence satellite cell function in culture, FGF2 and FGF6 are the only members that regulate satellite cell function in vivo by activating ERK MAPK, p38α/β MAPKs, PI3 kinase, PLCγ and STATs. Regulation of FGF signaling is complex in satellite cells, requiring Syndecan-4, a heparan sulfate proteoglycan, as well as ß1-integrin and fibronectin. During aging, reduced responsiveness to FGF diminishes satellite cell self-renewal, leading to impaired skeletal muscle regeneration and depletion of satellite cells. Mislocalization of ß1-integrin, reductions in fibronectin, and alterations in heparan sulfate content all contribute to reduced FGF responsiveness in satellite cells. How these cell surface proteins regulate satellite cell self-renewal is incompletely understood. Here we summarize the current knowledge, highlighting the role(s) for FGF signaling in skeletal muscle regeneration, satellite cell behavior, and age-induced muscle wasting. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc.

  10. Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.

    PubMed

    Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; M Ametamey, Simon; Handschin, Christoph; Eberli, Daniel

    2017-02-03

    Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential gradually decline with age. The goal of this research was to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2 and 4 weeks after subcutaneous injection of cell-collagen suspensions and histological analysis confirmed the earlier myotube formation in PGC-1α modified samples, predominantly of slow twitch myofibers. Increased contractile protein levels were detected by Western Blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow type myofibers. Therefore, overexpressing PGC-1α is novel strategy to further enhance skeletal muscle tissue engineering.

  11. Dystrophic muscle environment induces changes in cell plasticity.

    PubMed

    Faralli, Herve; Dilworth, F Jeffrey

    2014-04-15

    Fibro-adipogenic progenitors (FAPs) reside in the muscle, where they facilitate myofiber regeneration. Under normal conditions, FAPs lack myogenic potential and thus do not directly contribute to regenerated myofibers. Surprisingly, Saccone and colleagues (pp. 841-857) demonstrated that the dystrophic muscle environment causes FAPs to adopt a chromatin state that imparts these cells with myogenic potential. In this context, treatment of muscle with deacetylase inhibitors activates a BAF60c-myomiR transcriptional network in FAPs, blocking adipogenesis and driving muscle differentiation.

  12. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells.

    PubMed

    Ciemerych, Maria A; Archacka, Karolina; Grabowska, Iwona; Przewoźniak, Marta

    2011-01-01

    Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.

  13. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    SciTech Connect

    Felthaus, O.; Ettl, T.; Gosau, M.; Driemel, O.; Brockhoff, G.; Reck, A.; Zeitler, K.; Hautmann, M.; Reichert, T.E.; Schmalz, G.; Morsczeck, C.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  14. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation.

    PubMed

    Sleep, Eduard; Cosgrove, Benjamin D; McClendon, Mark T; Preslar, Adam T; Chen, Charlotte H; Sangji, M Hussain; Pérez, Charles M Rubert; Haynes, Russell D; Meade, Thomas J; Blau, Helen M; Stupp, Samuel I

    2017-09-19

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice.

  15. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    PubMed Central

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  16. p75NTR Mediates Neurotrophin-Induced Apoptosis of Vascular Smooth Muscle Cells

    PubMed Central

    Wang, Shiyang; Bray, Paula; McCaffrey, Timothy; March, Keith; Hempstead, Barbara L.; Kraemer, Rosemary

    2000-01-01

    The development of atherosclerotic lesions results from aberrant cell migration, proliferation, and extracellular matrix production. In advanced lesions, however, cellular apoptosis, leading to lesion remodeling, predominates. During lesion formation, the neurotrophins and the neurotrophin receptor tyrosine kinases, trks B and C, are induced and mediate smooth muscle cell migration. Here we demonstrate that a second neurotrophin receptor, p75NTR, is expressed by established human atherosclerotic lesions and late lesions that develop after balloon injury of the rat thoracic aorta. The p75NTR, a member of the tumor necrosis factor/FAS receptor family, can modulate trk receptor function as well as initiate cell death when expressed in cells of the nervous system that lack kinase-active trk receptors. p75NTR expression colocalizes to neointimal cells, which express smooth muscle cell α-actin and are expressed by cultured human endarterectomy-derived cells (HEDC). Areas of the plaque expressing p75NTR demonstrate increased TUNEL positivity, and HEDC undergo apoptosis in response to the neurotrophins. Finally, neurotrophins also induced apoptosis of a smooth muscle cell line genetically manipulated to express p75NTR, but lacking trk receptor expression. These studies identify the regulated expression of neurotrophins and p75NTR as an inducer of smooth muscle cell apoptosis in atherosclerotic lesions. PMID:11021829

  17. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    PubMed

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  18. Investigating citrullinated proteins in tumour cell lines

    PubMed Central

    2013-01-01

    Background The conversion of arginine into citrulline, termed citrullination, has important consequences for the structure and function of proteins. Studies have found PADI4, an enzyme performing citrullination, to be highly expressed in a variety of malignant tumours and have shown that PADI4 participates in the process of tumorigenesis. However, as citrullinated proteins have not been systematically investigated in tumours, the present study aimed to identify novel citrullinated proteins in tumours by 2-D western blotting (2-D WB). Methods Two identical two-dimensional electrophoresis (2-DE) gels were prepared using extracts from ECA, H292, HeLa, HEPG2, Lovo, MCF-7, PANC-1, SGC, and SKOV3 tumour cell lines. The expression profiles on a 2-DE gel were trans-blotted to PVDF membranes, and the blots were then probed with an anti-citrulline antibody. By comparing the 2-DE profile with the parallel 2-D WB profile at a global level, protein spots with immuno-signals were collected from the second 2-DE gel and identified using mass spectrometry. Immunoprecipitation was used to verify the expression and citrullination of the targeted proteins in tumour cell lines. Results 2-D WB and mass spectrometry identified citrullinated α-enolase (ENO1), heat shock protein 60 (HSP60), keratin 8 (KRT8), tubulin beta (TUBB), T cell receptor chain and vimentin in these cell lines. Immunoprecipitation analyses verified the expression and citrullination of ENO1, HSP60, KRT8, and TUBB in the total protein lysates of the tumour cell lines. Conclusions The citrullination of these proteins suggests a new mechanism in the tumorigenic process. PMID:24099319

  19. Multiple muscle wasting-related transcription factors are acetylated in dexamethasone-treated muscle cells.

    PubMed

    Chamberlain, Wei; Gonnella, Patricia; Alamdari, Nima; Aversa, Zaira; Hasselgren, Per-Olof

    2012-04-01

    Recent studies suggest that the expression and activity of the histone acetyltransferase p300 are upregulated in catabolic muscle allowing for acetylation of cellular proteins. The function of transcription factors is influenced by posttranslational modifications, including acetylation. It is not known if transcription factors involved in the regulation of muscle mass are acetylated in atrophying muscle. We determined cellular levels of acetylated C/EBPβ, C/EBPδ, FOXO1, FOXO3a, and NF-kB/p65 in dexamethasone-treated L6 muscle cells, a commonly used in vitro model of muscle wasting. The role of p300 in dexamethasone-induced transcription factor acetylation and myotube atrophy was examined by transfecting muscle cells with p300 siRNA. Treatment of L6 myotubes with dexamethasone resulted in increased cellular levels of acetylated C/EBPβ and δ, FOXO1 and 3a, and p65. Downregulation of p300 with p300 siRNA reduced acetylation of transcription factors and decreased dexamethasone-induced myotube atrophy and expression of the ubiquitin ligase MuRF1. The results suggest that several muscle wasting-related transcription factors are acetylated supporting the concept that posttranslational modifications of proteins regulating gene transcription may be involved in the loss of muscle mass. The results also suggest that acetylation of the transcription factors is at least in part regulated by p300 and plays a role in glucocorticoid-induced muscle atrophy. Targeting molecules that regulate acetylation of transcription factors may help reduce the impact of muscle wasting.

  20. Ischemia-reperfusion-induced apoptotic endothelial cells isolated from rat skeletal muscle.

    PubMed

    Wang, Wei Z; Fang, Xin-Hua; Stephenson, Linda L; Khiabani, Kayvan T; Zamboni, William A

    2009-02-01

    The purpose of the present study was to investigate ischemia-reperfusion-induced apoptosis and necrosis in endothelial cells isolated from skeletal muscle. A vascular pedicle isolated rat gracilis muscle model was used. After surgical preparation, clamps were applied to the vascular pedicle to create 4 hours of ischemia and released for reperfusion (ischemia-reperfusion group, n = 9). Clamping was omitted in sham ischemia-reperfusion rats (sham ischemia-reperfusion group, n = 9). The muscle samples were harvested after 20 hours of reperfusion for the process of cell isolation. One hundred thousand cells from each sample were stained by monoclonal anti-CD146-fluorescein (a principal marker for mature endothelial cells), Annexin V-PE, or 7-aminoactinomycin D to detect and quantify apoptotic and necrotic cells. Twenty thousand cells from each sample were scanned and analyzed by flow cytometry. The average +/- SEM of CD146-fluorescein-positive cells was 20.0 +/- 2.9 percent, suggesting that these cells might be endothelial cells from the muscle microvasculature. In the population of gated CD146-fluorescein-positive cells, the average percentage of apoptotic cells (stained by Annexin V-PE) was 15.9 +/- 2.2 percent in the sham ischemia-reperfusion group and 33.5 +/- 5.3 percent in the ischemia-reperfusion group (p < 0.01), the average percentage of necrotic/apoptotic cells (stained by both 7-aminoactinomycin D and Annexin V-PE) was 17.8 +/- 4.1 percent in the sham ischemia-reperfusion group and 39.2 +/- 3.1 percent in the ischemia-reperfusion group (p < 0.01). Given the results of the present study, the authors hypothesize that the endothelial cells lining microscopic blood vessels are among the major contributors to ischemia-reperfusion-induced cell apoptosis and necrosis detected from rat skeletal muscle.

  1. Muscle atrophy reversed by growth factor activation of satellite cells in a mouse muscle atrophy model.

    PubMed

    Hauerslev, Simon; Vissing, John; Krag, Thomas O

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength.

  2. Muscle Atrophy Reversed by Growth Factor Activation of Satellite Cells in a Mouse Muscle Atrophy Model

    PubMed Central

    Hauerslev, Simon; Vissing, John; Krag, Thomas O.

    2014-01-01

    Muscular dystrophies comprise a large group of inherited disorders that lead to progressive muscle wasting. We wanted to investigate if targeting satellite cells can enhance muscle regeneration and thus increase muscle mass. We treated mice with hepatocyte growth factor and leukemia inhibitory factor under three conditions: normoxia, hypoxia and during myostatin deficiency. We found that hepatocyte growth factor treatment led to activation of the Akt/mTOR/p70S6K protein synthesis pathway, up-regulation of the myognic transcription factors MyoD and myogenin, and subsequently the negative growth control factor, myostatin and atrophy markers MAFbx and MuRF1. Hypoxia-induced atrophy was partially restored by hepatocyte growth factor combined with leukemia inhibitory factor treatment. Dividing satellite cells were three-fold increased in the treatment group compared to control. Finally, we demonstrated that myostatin regulates satellite cell activation and myogenesis in vivo following treatment, consistent with previous findings in vitro. Our results suggest, not only a novel in vivo pharmacological treatment directed specifically at activating the satellite cells, but also a myostatin dependent mechanism that may contribute to the progressive muscle wasting seen in severely affected patients with muscular dystrophy and significant on-going regeneration. This treatment could potentially be applied to many conditions that feature muscle wasting to increase muscle bulk and strength. PMID:24963862

  3. Spontaneous Cell Competition in Immortalized Mammalian Cell Lines

    PubMed Central

    Penzo-Méndez, Alfredo I.; Chen, Yi-Ju; Li, Jinyang; Witze, Eric S.; Stanger, Ben Z.

    2015-01-01

    Cell competition is a form of cell-cell interaction by which cells compare relative levels of fitness, resulting in the active elimination of less-fit cells, “losers,” by more-fit cells, “winners.” Here, we show that in three routinely-used mammalian cell lines – U2OS, 3T3, and MDCK cells – sub-clones arise stochastically that exhibit context-dependent competitive behavior. Specifically, cell death is elicited when winner and loser sub-clones are cultured together but not alone. Cell competition and elimination in these cell lines is caspase-dependent and requires cell-cell contact but does not require de novo RNA synthesis. Moreover, we show that the phenomenon involves differences in cellular metabolism. Hence, our study demonstrates that cell competition is a common feature of immortalized mammalian cells in vitro and implicates cellular metabolism as a mechanism by which cells sense relative levels of “fitness.” PMID:26200654

  4. Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate.

    PubMed

    Lin, Cho-Hao; Lilly, Brenda

    2014-11-01

    Under defined conditions, mesenchymal stem cells can differentiate into unique cell types, making them attractive candidates for cell-based disease therapies. Ischemic diseases would greatly benefit from treatments that include the formation of new blood vessels from mesenchymal stem cells. However, blood vessels are complex structures composed of endothelial cells and smooth muscle cells, and their assembly and function in a diseased environment is reliant upon joining with the pre-existing vasculature. Although endothelial cell/smooth muscle cell interactions are well known, how endothelial cells may influence mesenchymal stem cells and facilitate their differentiation has not been defined. Therefore, we sought to explore how endothelial cells might drive mesenchymal stem cells toward a smooth muscle fate. Our data show that cocultured endothelial cells induce smooth muscle cell differentiation in mesenchymal stem cells. Endothelial cells can promote a contractile phenotype, reduce proliferation, and enhance collagen synthesis and secretion. Our data show that Notch signaling is essential for endothelial cell-dependent differentiation, and this differentiation pathway is largely independent of growth factor signaling mechanisms.

  5. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles

    PubMed Central

    Xu, Xiaoti; Wilschut, Karlijn J.; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P. Daniel; Hoffman, William Y.; Pomerantz, Jason H.

    2015-01-01

    Summary Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2–4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50–70 fiber-associated, or 1,000–5,000 FACS-enriched CD56+/CD29+ human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications. PMID:26352798

  6. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles.

    PubMed

    Xu, Xiaoti; Wilschut, Karlijn J; Kouklis, Gayle; Tian, Hua; Hesse, Robert; Garland, Catharine; Sbitany, Hani; Hansen, Scott; Seth, Rahul; Knott, P Daniel; Hoffman, William Y; Pomerantz, Jason H

    2015-09-08

    Identification of human satellite cells that fulfill muscle stem cell criteria is an unmet need in regenerative medicine. This hurdle limits understanding how closely muscle stem cell properties are conserved among mice and humans and hampers translational efforts in muscle regeneration. Here, we report that PAX7 satellite cells exist at a consistent frequency of 2-4 cells/mm of fiber in muscles of the human trunk, limbs, and head. Xenotransplantation into mice of 50-70 fiber-associated, or 1,000-5,000 FACS-enriched CD56(+)/CD29(+) human satellite cells led to stable engraftment and formation of human-derived myofibers. Human cells with characteristic PAX7, CD56, and CD29 expression patterns populated the satellite cell niche beneath the basal lamina on the periphery of regenerated fibers. After additional injury, transplanted satellite cells robustly regenerated to form hundreds of human-derived fibers. Together, these findings conclusively delineate a source of bona-fide endogenous human muscle stem cells that will aid development of clinical applications.

  7. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  8. Dexamethasone effects on creatine kinase activity and insulin-like growth factor receptors in cultured muscle cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Stuart, Charles A.; Huls, M. H.; Sams, Clarence F.; Cintron, Nitza M.

    1989-01-01

    The effect of dexamethasone on the activity of creatine kinase (CK) and the insulin-like growth factor I (IGF-I) binding were investigated using skeletal- and cardiac-muscle-derived cultured cell lines (mouse, C2C12; rat, L6 and H9c2). It was found that, in skeletal muscle cells, dexamethasone treatment during differentiation of skeletal-muscle cells caused dose-dependent increases in CK activity and increases in the degree of myotube formation, whereas cardiac cells (H9c2) exhibited very low CK activity during culture or dexamethasone treatment. Results for IGF-I binding were similar in all three cell lines. The IGF-I binding to dexamethasone-treated cells (50 nM for 24 hr on the day prior to confluence) resulted in an increased number of available binding sites, with no effect on the binding affinities.

  9. The effect of trinitrobenzene sulfonic acid on gut-derived smooth muscle cell arachidonic acid metabolism: role of endogenous prostanoids.

    PubMed

    Longo, W E; Smith, G S; Deshpande, Y; Reickenberg, C; Kaminski, D L

    1997-01-01

    The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB), a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM) were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE(2) and 6-keto PGF-1(alpha) release, but not leukotriene B(4) release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.

  10. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.

    PubMed

    Mei, Yingwu; Xu, Le; Mowrey, David D; Mendez Giraldez, Raul; Wang, Ying; Pasek, Daniel A; Dokholyan, Nikolay V; Meissner, Gerhard

    2015-07-10

    Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.

  11. Functional features of cancer stem cells in melanoma cell lines.

    PubMed

    Zimmerer, Rüdiger M; Korn, Philippe; Demougin, Philippe; Kampmann, Andreas; Kokemüller, Horst; Eckardt, André M; Gellrich, Nils-Claudius; Tavassol, Frank

    2013-08-06

    Recent evidence suggests a subset of cells within a tumor with "stem-like" characteristics. These cells are able to transplant tumors in immunodeficient hosts. Distinct from non-malignant stem cells, cancer stem cells (CSC) show low proliferative rates, high self-renewing capacity, propensity to differentiate into actively proliferating tumor cells, and resistance to chemotherapy or radiation. They are often characterized by elevated expression of stem cell surface markers, in particular CD133, and sets of differentially expressed stem cell-associated genes. CSC are usually rare in clinical specimens and hardly amenable to functional studies and gene expression profiling. In this study, a panel of heterogenous melanoma cell lines was screened for typical CSC features. Nine heterogeneous metastatic melanoma cell lines including D10 and WM115 were studied. Cell lines were phenotyped using flow cytometry and clonogenic assays were performed by limiting dilution analysis on magnetically sorted cells. Spheroidal growth was investigated in pretreated flasks. Gene expression profiles were assessed by using real-time rt-PCR and DNA microarrays. Magnetically sorted tumor cells were subcutaneously injected into the flanks of immunodeficient mice. Comparative immunohistochemistry was performed on xenografts and primary human melanoma sections. D10 cells expressed CD133 with a significantly higher clonogenic capacity as compared to CD133- cells. Na8, D10, and HBL cells formed spheroids on poly-HEMA-coated flasks. D10, Me39, RE, and WM115 cells expressed at least 2 of the 3 regulatory core transcription factors SOX2, NANOG, and OCT4 involved in the maintenance of stemness in mesenchymal stem cells. Gene expression profiling on CD133+ and CD133- D10 cells revealed 68 up- and 47 downregulated genes (+/-1.3 fold). Two genes, MGP and PROM1 (CD133), were outstandingly upregulated. CD133+ D10 cells formed tumors in NSG mice contrary to CD133- cells and CD133 expression was detected

  12. Effective Young's modulus of the artificial muscle twisted by fishing lines: Analysis and experiment

    NASA Astrophysics Data System (ADS)

    Yue, Donghua; Zhang, Xingyi; Zhou, Jun; Zhou, You-He

    2015-09-01

    Artificial muscles transformed by fishing lines or sewing thread, have distinguished advantages, e. g., fast, scalable, nonhysteretic, and long-life, which have been proposed by Haines et al. [Science 343, 868 (2014)]. In this paper, we present a geometrical model to predict the effective Young's modulus of the basic structure that is twisted by three fishing lines with the same diameter. Moreover, series of experiments are carried out to verify the present model, and it is found the theoretical calculations take good agreements with the experimental results.

  13. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    DTIC Science & Technology

    2013-12-01

    mechanisms of long-term muscle atrophy. # 2012 Elsevier Ltd and ISBI. All rights reserved. * Corresponding author at: US Army Institute of Surgical...understanding of the impact of burn on satellite cell functionality will allow us to identify the cellular mechanisms of long-term muscle atrophy after...fibers. J Biophys Biochem Cytol 1961;9:493–5. [12] Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001;91

  14. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  15. Virgin birth: engineered heart muscle from parthenogenetic stem cells

    PubMed Central

    McSweeney, Sara J.; Schneider, Michael D.

    2013-01-01

    Cardiac muscle restitution, or true regeneration, is an unmet need in the treatment of myocardial infarction (MI), prompting a decade of study with stem cells of many kinds. Among key obstacles to effective cardiac cell grafting are the cost of autologous stem cell–derived cardiomyocytes, the ethical implications of using embryonic stem cell (ESC) products, immunological barriers to allogeneic cells, functional maturation beyond just the correct lineage decision, and the lack of durable engraftment. In this issue of the JCI, Didié and colleagues show that cardiomyocytes made from parthenogenetic stem cells (PSCs) and deployed as engineered heart muscle (EHM) may overcome all of these formidable barriers. PMID:23434596

  16. Tobacco constituents are mitogenic for arterial smooth-muscle cells

    SciTech Connect

    Becker, C.G.; Hajjar, D.P.; Hefton, J.M.

    1985-07-01

    Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.

  17. Outgrowing endothelial and smooth muscle cells for tissue engineering approaches.

    PubMed

    Kolster, Moritz; Wilhelmi, Mathias; Schrimpf, Claudia; Hilfiker, Andres; Haverich, Axel; Aper, Thomas

    2017-01-01

    In recent years, circulating progenitors of endothelial cells and smooth muscle cells were identified in the peripheral blood. In our study, we evaluated the utilization of both cell types isolated and differentiated from peripheral porcine blood in terms for their use for tissue engineering purposes. By means of density gradient centrifugation, the monocyte fraction from porcine blood was separated, split, and cultivated with specific culture media with either endothelial cell growth medium-2 or smooth muscle cell growth medium-2 for the differentiation of endothelial cells or smooth muscle cells. Obtained cells were characterized at an early stage of cultivation before the first passage and a late stage (fourth passage) on the basis of the expression of the antigens CD31, CD34, CD45, nitric oxide synthase, and the contractile filaments smooth-muscle alpha-actin (sm-alpha-actin) and smoothelin. Functional characterization was done based on the secretion of nitric oxide, the formation of a coherent monolayer on polytetrafluoroethylene, and capillary sprouting. During cultivation in both endothelial cell growth medium-2 and smooth muscle cell growth medium-2, substantially two types of cells grew out: early outgrown CD45-positive cells, which disappeared during further cultivation, and in 85% (n = 17/20) of cultures cultivated with endothelial cell growth medium-2 colony-forming late outgrowth endothelial cells. During cultivation with smooth muscle cell growth medium-2 in 80% (n = 16/20) of isolations colony-forming late outgrowth smooth muscle cells entered the stage. Cultivation with either endothelial cell growth medium-2 or smooth muscle cell growth medium-2 had selective effect on the late outgrown cells to that effect that the number of CD31-positive cells increased from 34.8% ± 13% to 83.9% ± 8% in cultures cultivated with endothelial cell growth medium-2 and the number of sm-α-actin+ cells increased from 52.6% ± 18% to 88% ± 5

  18. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    SciTech Connect

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-02-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 ..mu..M serotonin with increased incorporation of (/sup 3/H)thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 ..mu..M. At a concentration of 1 ..mu..M, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was approx. = 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors.

  19. Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle.

    PubMed

    Buss, Robert R; Gould, Thomas W; Ma, Jianjun; Vinsant, Sharon; Prevette, David; Winseck, Adam; Toops, Kimberly A; Hammarback, James A; Smith, Thomas L; Oppenheim, Ronald W

    2006-12-27

    The widespread, massive loss of developing neurons in the central and peripheral nervous system of birds and mammals is generally considered to be an evolutionary adaptation. However, until recently, models for testing both the immediate and long-term consequences of preventing this normal cell loss have not been available. We have taken advantage of several methods for preventing neuronal death in vivo to ask whether rescued neurons [e.g., motoneurons (MNs)] differentiate normally and become functionally incorporated into the nervous system. Although many aspects of MN differentiation occurred normally after the prevention of cell death (including the expression of several motoneuron-specific markers, axon projections into the ventral root and peripheral nerves, ultrastructure, dendritic arborization, and afferent axosomatic synapses), other features of the neuromuscular system (MNs and muscle) were abnormal. The cell bodies and axons of MNs were smaller than normal, many MN axons failed to become myelinated or to form functional synaptic contacts with target muscles, and a subpopulation of rescued cells were transformed from alpha- to gamma-like MNs. Additionally, after the rescue of MNs in myogenin glial cell line-derived neurotrophic factor (MyoGDNF) transgenic mice, myofiber differentiation of extrafusal skeletal muscle was transformed and muscle physiology and motor behaviors were abnormal. In contrast, extrafusal myofiber phenotype, muscle physiology, and (except for muscle strength tests) motor behaviors were all normal after the rescue of MNs by genetic deletion of the proapoptotic gene Bax. However, there was an increase in intrafusal muscle fibers (spindles) in Bax knock-out versus both wild-type and MyoGDNF mice. Together, these data indicate that after the prevention of MN death, the neuromuscular system becomes transformed in novel ways to compensate for the presence of the thousands of excess cells.

  20. Expression of different phenotypes in cell lines from canine mammary spindle-cell tumours and osteosarcomas indicating a pluripotent mammary stem cell origin.

    PubMed

    Hellmén, E; Moller, M; Blankenstein, M A; Andersson, L; Westermark, B

    2000-06-01

    Mammary spindle-cell tumours and sarcomas seem to be restricted to dogs and humans. Two cell lines from spontaneous primary canine mammary spindle-cell tumours (CMT-U304 and CMT-U309) and two cell lines from spontaneous primary canine mammary osteosarcomas (CMT-U334 and CMT-U335) were established to study the mesenchymal phenotypes of mammary tumours in the female dog. The cells from the spindle-cell tumours expressed cytokeratin, vimentin and smooth muscle actin filaments. When these cells were inoculated subcutaneously into female and male nude mice they formed different types of mesenchymal tumours such as spindle-cell tumours, fibroma and rhabdomyoid tumours (n = 6/8). The cells from the osteosarcomas expressed vimentin filaments and also formed different types of mesenchymal tumours such as chondroid, rhabdomyoid, smooth muscle-like and spindle-cell tumours (n = 6/10). The cell lines CMT-U304, CMT-U309 and CMT-U335 had receptors for progesterone but none of the four cell lines had receptors for estrogen. All four cell lines and their corresponding primary tumours showed identical allelic patterns in microsatellite analysis. By in situ hybridization with genomic DNA we could verify that all formed tumours but one were of canine origin. Our results support the hypothesis that canine mammary tumours are derived from pluripotent stem cells.

  1. Muscle progenitor cell regenerative capacity in the torn rotator cuff.

    PubMed

    Meyer, Gretchen A; Farris, Ashley L; Sato, Eugene; Gibbons, Michael; Lane, John G; Ward, Samuel R; Engler, Adam J

    2015-03-01

    Chronic rotator cuff (RC) tears affect a large portion of the population and result in substantial upper extremity impairment, shoulder weakness, pain, and limited range of motion. Regardless of surgical or conservative treatment, persistent atrophic muscle changes limit functional restoration and may contribute to surgical failure. We hypothesized that deficits in the skeletal muscle progenitor (SMP) cell pool could contribute to poor muscle recovery following tendon repair. Biopsies were obtained from patients undergoing arthroscopic RC surgery. The SMP population was quantified, isolated, and assayed in culture for its ability to proliferate and fuse in vitro and in vivo. The SMP population was larger in muscles from cuffs with partial tears compared with no tears or full thickness tears. However, SMPs from muscles in the partial tear group also exhibited reduced proliferative ability. Cells from all cuff states were able to fuse robustly in culture and engraft when injected into injured mouse muscle, suggesting that when given the correct signals, SMPs are capable of contributing to muscle hypertrophy and regeneration regardless of tear severity. The fact that this does not appear to happen in vivo helps focus future therapeutic targets for promoting muscle recovery following rotator cuff repairs and may help improve clinical outcomes.

  2. Muscle Progenitor Cell Regenerative Capacity in the Torn Rotator Cuff

    PubMed Central

    Meyer, Gretchen A.; Farris, Ashley L.; Sato, Eugene; Gibbons, Michael; Lane, John G.; Ward, Samuel R.; Engler, Adam J.

    2014-01-01

    Chronic rotator cuff (RC) tears affect a large portion of the population and result in substantial upper extremity impairment, shoulder weakness, pain and limited range of motion. Regardless of surgical or conservative treatment, persistent atrophic muscle changes limit functional restoration and may contribute to surgical failure. We hypothesized that deficits in the skeletal muscle progenitor (SMP) cell pool could contribute to poor muscle recovery following tendon repair. Biopsies were obtained from patients undergoing arthroscopic RC surgery. The SMP population was quantified, isolated and assayed in culture for its ability to proliferate and fuse in-vitro and in-vivo. The SMP population was larger in muscles from cuffs with partial tears compared with no tears or full thickness tears. However, SMPs from muscles in the partial tear group also exhibited reduced proliferative ability. Cells from all cuff states were able to fuse robustly in culture and engraft when injected into injured mouse muscle, suggesting that when given the correct signals, SMPs are capable of contributing to muscle hypertrophy and regeneration regardless of tear severity. The fact that this does not appear to happen in-vivo helps focus future therapeutic targets for promoting muscle recovery following rotator cuff repairs and may help improve clinical outcomes. PMID:25410765

  3. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells.

    PubMed

    Shefer, Gavriella; Partridge, Terry A; Heslop, Louise; Gross, Jacqueline G; Oron, Uri; Halevy, Orna

    2002-04-01

    Low energy laser irradiation (LELI) has been shown to promote skeletal muscle cell activation and proliferation in primary cultures of satellite cells as well as in myogenic cell lines. Here, we have extended these studies to isolated myofibers. These constitute the minimum viable functional unit of the skeletal muscle, thus providing a close model of in vivo regeneration of muscle tissue. We show that LELI stimulates cell cycle entry and the accumulation of satellite cells around isolated single fibers grown under serum-free conditions and that these effects act synergistically with the addition of serum. Moreover, for the first time we show that LELI promotes the survival of fibers and their adjacent cells, as well as cultured myogenic cells, under serum-free conditions that normally lead to apoptosis. In both systems, expression of the anti-apoptotic protein Bcl-2 was markedly increased, whereas expression of the pro-apoptotic protein BAX was reduced. In culture, these changes were accompanied by a reduction in the expression of p53 and the cyclin-dependent kinase inhibitor p21, reflecting the small decrease in viable cells 24 hours after irradiation. These findings implicate regulation of these factors as part of the protective role of LELI against apoptosis. Taken together, our findings are of critical importance in attempts to improve muscle regeneration following injury.

  4. Molecular aging and rejuvenation of human muscle stem cells

    PubMed Central

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J; Aagaard, Per; Mackey, Abigail; Kjaer, Michael; Conboy, Irina

    2009-01-01

    Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans. Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth factor beta (TGF-β)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular understanding, combined with data that human satellite cells remain intrinsically young, introduced novel therapeutic targets. Indeed, activation of MAPK/Notch restored ‘youthful’ myogenic responses to satellite cells from 70-year-old humans, rendering them similar to cells from 20-year-old humans. These findings strongly suggest that aging of human muscle maintenance and repair can be reversed by ‘youthful’ calibration of specific molecular pathways. PMID:20049743

  5. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    PubMed

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  6. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle.

    PubMed

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise.

  7. Functional Overload Enhances Satellite Cell Properties in Skeletal Muscle

    PubMed Central

    Fujimaki, Shin; Machida, Masanao; Wakabayashi, Tamami; Asashima, Makoto; Takemasa, Tohru; Kuwabara, Tomoko

    2016-01-01

    Skeletal muscle represents a plentiful and accessible source of adult stem cells. Skeletal-muscle-derived stem cells, termed satellite cells, play essential roles in postnatal growth, maintenance, repair, and regeneration of skeletal muscle. Although it is well known that the number of satellite cells increases following physical exercise, functional alterations in satellite cells such as proliferative capacity and differentiation efficiency following exercise and their molecular mechanisms remain unclear. Here, we found that functional overload, which is widely used to model resistance exercise, causes skeletal muscle hypertrophy and converts satellite cells from quiescent state to activated state. Our analysis showed that functional overload induces the expression of MyoD in satellite cells and enhances the proliferative capacity and differentiation potential of these cells. The changes in satellite cell properties coincided with the inactivation of Notch signaling and the activation of Wnt signaling and likely involve modulation by transcription factors of the Sox family. These results indicate the effects of resistance exercise on the regulation of satellite cells and provide insight into the molecular mechanism of satellite cell activation following physical exercise. PMID:26779264

  8. Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

    PubMed Central

    Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517

  9. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    PubMed

    Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  10. Brief report: Blockade of Notch signaling in muscle stem cells causes muscular dystrophic phenotype and impaired muscle regeneration.

    PubMed

    Lin, Shuibin; Shen, Huangxuan; Jin, Baofeng; Gu, Yumei; Chen, Zirong; Cao, Chunxia; Hu, Chengbin; Keller, Charles; Pear, Warren S; Wu, Lizi

    2013-04-01

    Muscular dystrophies are a group of devastating diseases characterized by progressive muscle weakness and degeneration, with etiologies including muscle gene mutations and regenerative defects of muscle stem cells. Notch signaling is critical for skeletal myogenesis and has important roles in maintaining the muscle stem cell pool and preventing premature muscle differentiation. To investigate the functional impact of Notch signaling blockade in muscle stem cells, we developed a conditional knock-in mouse model in which endogenous Notch signaling is specifically blocked in muscle stem cell compartment. Mice with Notch signaling inhibition in muscle stem cells showed several muscular dystrophic features and impaired muscle regeneration. Analyses of satellite cells and isolated primary myoblasts revealed that Notch signaling blockade in muscle stem cells caused reduced activation and proliferation of satellite cells but enhanced differentiation of myoblasts. Our data thus indicate that Notch signaling controls processes that are critical to regeneration in muscular dystrophy, suggesting that Notch inhibitor therapies could have potential side effects on muscle functions. Copyright © 2013 AlphaMed Press.

  11. Tissue-specific stem cells: Lessons from the skeletal muscle satellite cell

    PubMed Central

    Brack, Andrew S.; Rando, Thomas A.

    2012-01-01

    In 1961, the satellite cell was first identified when electron microscopic examination of skeletal muscle demonstrated a cell wedged between the plasma membrane of the muscle fiber and the basement membrane. In recent years it has been conclusively demonstrated that the satellite cell is the primary cellular source for muscle regeneration and is equipped with the potential to self renew, thus functioning as a bone fide skeletal muscle stem cell (MuSC). As we move past the 50th anniversary of the satellite cell, we take this opportunity to discuss the current state of the art and dissect the unknowns in the MuSC field. PMID:22560074

  12. Complimentary endothelial cell/smooth muscle cell co-culture systems with alternate smooth muscle cell phenotypes.

    PubMed

    Rose, Stacey L; Babensee, Julia E

    2007-08-01

    Development of in vitro models of native and injured vasculature is crucial for better understanding altered wound healing in disease, device implantation, or tissue engineering. Conditions were optimized using polyethyleneteraphalate transwell filters for human aortic endothelial cell (HAEC)/smooth muscle cell (HASMC) co-cultures with divergent HASMC phenotypes ('more or less secretory') while maintaining quiescent HAECs. Resulting HASMC phenotype was studied at 48 and 72 h following co-culture initiation, and compared to serum and growth factor starved monocultured 'forced contractile' HASMCs. Forced contractile HASMCs demonstrated organized alpha-smooth muscle actin filaments, minimal interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion, and low intracellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and tissue factor expression. Organization of alpha-smooth muscle actin was lost in 'more secretory' HASMCs in co-culture with HAECs, and IL-8 and MCP-1 secretion, as well as ICAM-1, VCAM-1, and tissue factor expression were significantly upregulated at both time points. Alternately, 'less secretory' HASMCs in co-culture with HAECs showed similar characteristics to forced contractile HASMCs at the 48 h time point, while by the 72 h time point they behaved similarly to 'more secretory' HASMCs. These co-culture systems could be useful in better understanding vascular healing, however there remain time constraint considerations for maintaining culture integrity/cell phenotype.

  13. ARSENIC INDUCES SUSTAINED IMPAIRMENT OF SKELETAL MUSCLE AND MUSCLE PROGENITOR CELL ULTRASTRUCTURE AND BIOENERGETICS

    PubMed Central

    Fabrisia, Ambrosio; Elke, Brown; Donna, Stolz; Ricardo, Ferrari; Bret, Goodpaster; Bridget, Deasy; Giovanna, Distefano; Alexandra, Roperti; Amin, Cheikhi; Yesica, Garciafigueroa; Aaron, Barchowsky

    2014-01-01

    Over 4 million individuals in the US, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 µg/L to over 1 mg/L, with 100 µg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. When compared to non-exposed controls, mice exposed to drinking water containing 100µg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There was no difference in levels of inorganic arsenic or its mononomethyl- and dimethyl- metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, as compared to cells isolated from non-exposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant. PMID:24960579

  14. In vivo gene editing in dystrophic mouse muscle and muscle stem cells.

    PubMed

    Tabebordbar, Mohammadsharif; Zhu, Kexian; Cheng, Jason K W; Chew, Wei Leong; Widrick, Jeffrey J; Yan, Winston X; Maesner, Claire; Wu, Elizabeth Y; Xiao, Ru; Ran, F Ann; Cong, Le; Zhang, Feng; Vandenberghe, Luk H; Church, George M; Wagers, Amy J

    2016-01-22

    Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery. AAV-Dmd CRISPR treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle.

  15. In vivo gene editing in dystrophic mouse muscle and muscle stem cells#

    PubMed Central

    Cheng, Jason K.W.; Chew, Wei Leong; Widrick, Jeffrey J.; Yan, Winston X.; Maesner, Claire; Wu, Elizabeth Y.; Xiao, Ru; Ran, F. Ann; Cong, Le; Zhang, Feng; Vandenberghe, Luk H.; Church, George M.; Wagers, Amy J.

    2016-01-01

    Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated but still functional protein. In this study, we develop and test a direct gene editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored Dystrophin reading frame in myofibers, cardiomyocytes and muscle stem cells following local or systemic delivery. AAV-Dmd CRISPR-treatment partially recovered muscle functional deficiencies and generated a pool of endogenously corrected myogenic precursors in mdx mouse muscle. PMID:26721686

  16. Effects of carbon monoxide on cardiac muscle cells in culture

    SciTech Connect

    Nag, A.C.; Chen, K.C.; Cheng, Mei General Motors Research Laboratories, Warren, MI )

    1988-09-01

    Embryonic rat cardiac muscle cells grown in the presence of various tensions of CO (5-95%) without the presence of O{sub 2} survived and exhibited reduced cell growth, which was concentration dependent. When cardiac muscle cells were grown in the presence of a mixture of CO (10-20%) and O{sub 2} (10-20%), the growth rate of these cells was comparable to that of the control cells. Cardiac myocytes continued to beat when exposed to varying tensions of CO, except in the case of 95% CO. The cells exposed to different concentrations of CO contained fewer myofibrils of different stages of differentiation compared with the control and the culture exposed to a mixture of 20% O{sub 2} and 20% CO, with cells that contained abundant, highly differentiated myofibrils. There was no significant difference in the structural organization of mitochondria between the control and the surviving experimental cells. It is evident from the present studies that O{sub 2} is required for the optimum in vitro cellular growth of cardiac muscle. Furthermore, CO in combination with O{sub 2} at a concentration of 10 or 20% can produce optimal growth of cardiac muscle cells in culture. To determine maximum labeling index during the labeling period, cells were continuously labeled with ({sup 3}H)thymidine for 24 h before the termination of cultures.

  17. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  18. GPVI oligomerisation in cell lines and platelets

    PubMed Central

    2007-01-01

    Summary Background Glycoprotein VI (GPVI) is a physiological receptor for collagen expressed at the surface of platelets and megakaryocytes. Constitutive dimerisation of GPVI has been proposed as necessary for the interaction with collagen, although direct evidence of dimerisation has not been reported in cell lines or platelets. Objectives To investigate oligomerisation of GPVI in transfected cell lines and in platelets under nonstimulated conditions. Methods and Results By using a combination of molecular and biochemical techniques, we demonstrate that GPVI association occurs at the surface of transfected 293T cells under basal conditions, through an interaction at the extra-cellular domain of the receptor. Bioluminescence resonance energy transfer was used to confirm oligomerisation of GPVI under these conditions. A chemical cross-linker was used to detect constitutive oligomeric forms of GPVI at the surface of platelets, which contain the FcR γ-chain. Conclusions The present results directly demonstrate GPVI-FcR γ-chain oligomerisation at the surface of the platelet, and thereby add to the growing evidence that oligomerisation of GPVI may be a pre-requisite for binding of the receptor to collagen, and therefore for proper functioning of platelets upon vascular damage. PMID:17367493

  19. Expression of P2Y receptors in cell lines derived from the human lung.

    PubMed

    Communi, D; Paindavoine, P; Place, G A; Parmentier, M; Boeynaems, J M

    1999-05-01

    1. Northern blotting experiments have been performed with RNA extracted from several cell lines derived from the human lung in order to detect P2Y1, P2Y2, P2Y4 and P2Y6 mRNA. We have investigated the 1HAEo- and 16HBE14o- epithelial cell lines derived from the airway epithelium, the A549 cell line displaying properties of type II alveolar epithelial cells, the CALU-3 serous cells, the 6CFSMEo- submucosal cells and the HASMSC1 airway smooth muscle cells. We have also evaluated one pancreatic epithelial cell line called CFPAC-1. These experiments revealed that P2Y2 and P2Y6 mRNA are co-expressed in the IHAEo-, 16HBE14o- and A549 epithelial cell lines. The CFPAC-1 pancreatic cell line was strongly positive for the P2Y2 receptor. No signal was obtained for the P2Y1 and P2Y4 receptors. 2. We have then performed RT-PCR experiments with specific oligonucleotides of these last two P2Y receptors with the RNA used for the Northern blotting experiments. P2Y4 mRNA was detected in five cell lines: 1HAEo-, 16HBE14o-, 6CFSMEo-, HASMSC1 and CFPAC-1. P2Y1 mRNA was only detected in the CALU-3 cell line. 3. Inositol trisphosphates assays have identified a response typical of the P2Y2 receptor in the 1HAEo- and the 16HBE14o- airway epithelial cell lines which co-express P2Y2 and P2Y6 mRNA. By contrast, the 6CFSMEo- submucosal cells expressed a UTP-specific response which displayed pharmacological characteristics compatible with the human P2Y4 receptor: in particular, there was no response to UDP or ATP and the UTP effect was totally inhibited by pertussis toxin.

  20. Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal.

    PubMed

    Mitsui, Retsu; Komuro, Terumasa

    2002-08-01

    Interstitial cells of Cajal in the circular (ICC-CM) and longitudinal (ICC-LM) muscle layer of the rat gastric antrum and their innervation were studied ultrastructurally. Both ICC-CM and ICC-LM are characterized by many mitochondria, rough and smooth endoplasmic reticulum, caveolae, and formation of gap junctions with each other and with muscle cells, though ICC-LM tend to show more variable cytoplasmic features depending on section profiles. Close contacts between nerve terminals and both ICC-CM and ICC-LM are observed. These possible synaptic structures are characterized by: (1) accumulation of synaptic vesicles in nerve varicosities, (2) a narrow gap (about 20 nm) between pre- and postjunctional membranes, (3) lack of a basal lamina between pre- and postjunctional membranes, and (4) the presence of an electron-dense lining on the inner aspect of prejunctional membranes. Almost the same characteristics are observed between the nerve terminals and the muscle cells of both circular and longitudinal muscle layers of the same specimens. Therefore, we conclude that the smooth muscle cells of both circular and longitudinal layers of the rat antrum are directly and indirectly innervated via ICC. Their functional significance is discussed.

  1. Multidirectional Scanning Model, MUSCLE, to Vectorize Raster Images with Straight Lines.

    PubMed

    Karas, Ismail Rakip; Bayram, Bulent; Batuk, Fatmagul; Akay, Abdullah Emin; Baz, Ibrahim

    2008-04-15

    This paper presents a new model, MUSCLE (Multidirectional Scanning for Line Extraction), for automatic vectorization of raster images with straight lines. The algorithm of the model implements the line thinning and the simple neighborhood methods to perform vectorization. The model allows users to define specified criteria which are crucial for acquiring the vectorization process. In this model, various raster images can be vectorized such as township plans, maps, architectural drawings, and machine plans. The algorithm of the model was developed by implementing an appropriate computer programming and tested on a basic application. Results, verified by using two well known vectorization programs (WinTopo and Scan2CAD), indicated that the model can successfully vectorize the specified raster data quickly and accurately.

  2. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor.

    PubMed

    Lee, Min; Wu, Benjamin M; Stelzner, Matthias; Reichardt, Holger M; Dunn, James C Y

    2008-08-01

    Intestinal tissue engineering is a potential therapy for patients with short bowel syndrome. Tissue engineering scaffolds that promote smooth muscle cell proliferation and angiogenesis are essential toward the regeneration of functional smooth muscles for peristalsis and motility. Since basic fibroblast growth factor (bFGF) can stimulate smooth muscle proliferation and angiogenesis, the delivery of bFGF was employed to stimulate proliferation and survival of primary intestinal smooth muscle cells. Two methods of local bFGF delivery were examined: the incorporation of bFGF into the collagen coating and the encapsulation of bFGF into poly(D,L-lactic-co-glycolic acid) microspheres. Cell-seeded scaffolds were implanted into the omentum and were retrieved after 4, 14, and 28 days. The seeded cells proliferated from day 4 to day 14 in all implants; however, at 28 days, significantly higher density of implanted cells and blood vessels was observed, when 10 microg of bFGF was incorporated into the collagen coating of scaffolds as compared to scaffolds with either no bFGF or 1 microg of bFGF in collagen. Microsphere encapsulation of 1 microg of bFGF produced similar effects as 10 microg of bFGF mixed in collagen and was more effective than the delivery of 1 microg of bFGF by collagen incorporation. The majority of the implanted cells also expressed alpha-smooth muscle actin. Scaffolds coated with microsphere-encapsulated bFGF and seeded with smooth muscle cells may be a useful platform for the regeneration of the intestinal smooth muscle.

  3. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  4. Analysis of micro-failure behaviors in artificial muscles based on fishing line and sewing thread

    NASA Astrophysics Data System (ADS)

    Xu, J. B.; Cheng, K. F.; Tu, S. L.; He, X. M.; Ma, C.; Jin, Y. Z.; Kang, X. N.; Sun, T.; Zhang, Y.

    2017-06-01

    The aim of the present study was to discuss a new and effective method for testing artificial muscles based on micro-failure behaviors analysis. Thermo-mechanical actuators based on fishing line and sewing thread, also, the capability of responding to ambient temperature variations producing a large amount of shrinkage ratio of a resulting variation in longitudinal length. The minimum micro-failure value is 0.02μm and the maximum value is 1.72μm with nylon twist pattern. The discovery of an innovative effective testing of artificial muscles based on polymeric fibers specimens on micro-failure, rupture, slippage, etc. This research finds out a micro-failure behavior analysis of thermo-mechanical actuators based on fishing line and sewing thread. The specimens show large deformations when heated together with warping performance in terms of shrinkage of energy and densities. With the purpose of providing useful analysis data for the further technology applications, we attempt micrometre-sized artificial muscles which were also tested was readily accessible and also can be applied to other polymeric fibers. Effective use of this technique achievement relies on rotate speed, temperature and tensile direction. The results of the tensile testing experiments were outstanding with respect to some important issues related to the response of micro-structure, twisted polymeric fibers and shrinkage ratio.

  5. Insulin regulates lipid and glucose metabolism similarly in two lines of rainbow trout divergently selected for muscle fat content.

    PubMed

    Jin, Junyan; Panserat, Stéphane; Kamalam, Biju Sam; Aguirre, Peyo; Véron, Vincent; Médale, Françoise

    2014-08-01

    Two experimental rainbow trout lines were developed through divergent selection for low (Lean 'L' line) or high (Fat 'F' line) muscle fat content. Previous nutritional studies suggested that these lines differed in their regulation of lipid and glucose metabolism. Since insulin acts as an anabolic hormone by regulating lipid and glucose metabolism, we put forward the hypothesis that F line might have a stronger sensitivity to insulin than L line. In order to test this hypothesis, bovine insulin was injected into rainbow trout of the two lines fasted for 48 h. As expected, insulin induced hypoglycemia and activated Akt-TOR signaling both in the liver and muscle of the two lines. We demonstrate that this was coupled with increased expression of insulin dependent glucose transporter (GLUT4) and transcription factors of fatty acid anabolism (LXR and SREBP1c) in the muscle and liver, respectively, and lower mRNA levels of fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) in the white muscle of both lines. Regarding the genotype effect, TOR signaling response to insulin was stronger in F line as reflected by the higher phosphorylation of S6 protein and elevated mRNA levels of lipogenic enzyme (FAS) in the liver of F line. This observation was concordant with the higher plasma concentrations of free fatty acids and triglycerides in F line. Moreover, mRNA levels of hepatic gluconeogenic enzymes (G6Pase2, FBPase and PEPCK) and muscle fatty acid oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were higher in the F line. However, very few insulin-genotype interactions were detected, indicating that insulin induced similar changes in lipid and glucose metabolism in both lines. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  7. Functional imaging of muscle cells by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Nucciotti, Valentina; Sacconi, Leonardo; Linari, Marco; Lombardi, Vincenzo; Piazzesi, Gabriella; Piroddi, Nicoletta; Poggesi, Corrado; Tesi, Chiara; Vanzi, Francesco; Pavone, Francesco S.

    2006-02-01

    The intrinsically ordered arrays of proteins (mainly actin and myosin) constituting the myofibrils within muscle cells are at the basis of a strong Second Harmonic Generation (SHG) from muscle fibers and isolated myofibrils. We have characterized the SHG signal with regard to its polarization and potential source within the muscle cell. The lateral resolution that can be achieved through SHG imaging of muscle strongly depends on sample depth. In fact, a comparison between intact muscle fibers and single myofibrils demonstrates that, whereas in both cases the alternation of dark I bands and bright A bands is visible, the contours of these bands are much better resolved in myofibrils than in fibers. Further, imaging of myofibrils revealed the presence of a darker zone in the centre of the A band. These effects of scattering by tissue on the image resolution were also studied with regard to the polarization of the SHG signal. The polarization-dependence of SHG intensity represents a powerful tool for the investigation of the structural dynamics occurring in the emitting proteins during the active cycle of muscle contraction. The prospective to perform functional studies requires a complete characterization of the effects of scattering and possibly multiple emitting populations on the measured SHG signal. Also, SHG is extremely sensitive to the degree of order present in the filament array, offering an interesting potential in the development of non-invasive tools for the diagnosis of degenerative diseases affecting skeletal muscles.

  8. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  9. A bioinformatics analysis of the cell line nomenclature.

    PubMed

    Sarntivijai, Sirarat; Ade, Alexander S; Athey, Brian D; States, David J

    2008-12-01

    Cell lines are used extensively in biomedical research, but the nomenclature describing cell lines has not been standardized. The problems are both linguistic and experimental. Many ambiguous cell line names appear in the published literature. Users of the same cell line may refer to it in different ways, and cell lines may mutate or become contaminated without the knowledge of the user. As a first step towards rationalizing this nomenclature, we created a cell line knowledgebase (CLKB) with a well-structured collection of names and descriptive data for cell lines cultured in vitro. The objectives of this work are: (i) to assist users in extracting useful information from biomedical text and (ii) to highlight the importance of standardizing cell line names in biomedical research. This CLKB contains a broad collection of cell line names compiled from ATCC, Hyper CLDB and MeSH. In addition to names, the knowledgebase specifies relationships between cell lines. We analyze the use of cell line names in biomedical text. Issues include ambiguous names, polymorphisms in the use of names and the fact that some cell line names are also common English words. Linguistic patterns associated with the occurrence of cell line names are analyzed. Applying these patterns to find additional cell line names in the literature identifies only a small number of additional names. Annotation of microarray gene expression studies is used as a test case. The CLKB facilitates data exploration and comparison of different cell lines in support of clinical and experimental research. The web ontology file for this cell line collection can be downloaded at http://www.stateslab.org/data/celllineOntology/cellline.zip.

  10. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    SciTech Connect

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal {beta} III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  11. Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems.

    PubMed Central

    Daubas, P; Klarsfeld, A; Garner, I; Pinset, C; Cox, R; Buckingham, M

    1988-01-01

    Proximal upstream flanking sequences of the mouse myosin alkali light chain gene encoding MLC1F and MLC3F, the mouse alpha-cardiac actin gene and the chicken gene for the alpha-subunit of the acetylcholine receptor were linked to the bacterial chloramphenicol acetyl transferase (CAT) gene and transfected into primary cultures derived from mouse skeletal muscle or into myogenic cell lines. We demonstrate that the mouse MLC1F/MLC3F gene has two functional promoters. In primary muscle cultures, a 1200 bp sequence flanking exon 1 (MLC1F) and a 438 bp sequence flanking exon 2 (MLC3F) direct CAT activity in myotubes, but not in myoblasts or in non myogenic 3T6 and CV1 cells. Developmentally regulated expression is also seen with the alpha-cardiac actin (320 bp) and acetylcholine receptor alpha-subunit (850 bp) upstream sequences in the primary culture system. Transfection experiments with myogenic cell lines show different results with a given promoter construct, reflecting possible differences in the levels of regulatory factors between lines. Different muscle gene promoters behave differently in a given cell line, suggesting different regulatory factor requirements between these promoters. Images PMID:2894633

  12. Osteogenic cell fractions isolated from mouse tongue muscle.

    PubMed

    Harada, Koji; Harada, Toyoko; Ferdous, Tarannum; Takenawa, Takanori; Ueyama, Yoshiya

    2015-07-01

    The use of stem cells represents a promising approach for the treatment of bone defects. However, successful treatments rely upon the availability of cells that are easily obtained and that appropriately differentiate into osteoblasts. The tongue potentially represents a source of autologous cells for such purposes. In the present study, the ability of stem cell antigen-1 (Sca-1) positive cells derived from tongue muscle to differentiate into osteoblasts was investigated. The tongue muscles were excised from Jcl-ICR mice and tongue muscle-derived Sca-1-positive cells (TDSCs) were isolated from the tongue muscle using a magnetic cell separation system with microbeads. TDSCs were cultured in plastic dishes or gelatin sponges of β-tricalcium phosphate (β-TCP) with bone differentiation-inducing medium. The expression of osteogenic markers (Runx2, osterix, alkaline phosphatase, fibronectin, osteocalcin, osteonectin and osteopontin) was investigated in cultured TDSCs by western blot analysis. The formation of mineralized matrices was examined using alizarin red S and Von Kossa staining. Bone formation was investigated in cultured TDSCs by hematoxylin-eosin staining and immunohistochemistry. In the present study, the expression of Sca-1 in mouse tongue muscle was demonstrated and TDSCs were isolated at high purity. TDSCs differentiated into cells of osteoblast lineage, as demonstrated by the upregulation of osteoblastic marker expression. The formation of mineralized matrices was confirmed by alizarin red S or Von Kossa staining in vitro. Bone formation was observed in the gelatin sponges of β-TCP, which were subsequently implanted under the skin of the backs of nude mice. These results suggested that TDSCs retain their osteogenic differentiation potential and therefore the tongue muscle may be used as a source of stem cells for bone regeneration.

  13. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  14. Alpha-tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity.

    PubMed

    Boscoboinik, D; Szewczyk, A; Azzi, A

    1991-04-01

    Alpha-Tocopherol (vitamin E) protects against free radical damage, which has been implicated in aging, cancer initiation, and atherosclerosis. We have found that physiological concentrations of alpha-tocopherol specifically inhibited aorta smooth muscle cell (VSMC, line A7r5) proliferation and protein kinase C (PKC) activity. Other water and lipid soluble antioxidants were inactive. alpha-Tocopherol inhibition of PKC and of VSMC proliferation may represent a physiological mechanism, relevant to the onset of diseased states such as atherosclerosis.

  15. Distribution of alpha-vascular smooth muscle actin in the smooth muscle cells of the gastrointestinal tract of the chicken.

    PubMed Central

    Yamamoto, Y; Kubota, T; Atoji, Y; Suzuki, Y

    1996-01-01

    Immunoreactivity specific for alpha-vascular smooth muscle actin (ASMA) was examined in the enteric smooth muscle cells along the entire length of the gastrointestinal tract of the chicken. Specificity for gamma-smooth muscle actin (GSMA) and desmin was also examined. All smooth muscle layers, i.e. the muscularis mucosae, and the circular and longitudinal muscle layers, showed immunoreactivity specific for GSMA and desmin throughout the gastrointestinal tract whereas immunoreactivity for ASMA differed between regions and muscle layers. In the oesophagus and crop, immunoreactivity for ASMA was observed in the muscularis mucosae and the inner and outer muscle layers, together with staining for GSMA and desmin. In the proventriculus, immunoreactivity for ASMA was observed in all smooth muscle cells in the inner layer of the muscularis mucosae and the longitudinal muscle layer. In the outer layer of the muscularis mucosae, immunoreactivity for ASMA on smooth muscle cells was observed on the luminal side and decreased in the serosal direction. In the intermediate muscles, immunoreactivity for ASMA was observed in the luminal portion, the intensity of staining decreasing gradually in the serosal direction. In contrast to the intermediate muscles, the latter muscles were negative for ASMA. In the pyloric region, the outer part was weakly immunopositive, while the inner part was intensely positive. In the small and large intestines, the muscularis mucosae and the longitudinal muscle layer were positive for ASMA. The outer part of the circular muscle layer was immunonegative for ASMA whereas the inner part was positive. The complex structure and contractile functions of each organ and muscle layers may be related to the difference patterns of expression of ASMA molecules in the smooth muscle cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8982838

  16. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    PubMed

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  17. EXAFS studies of prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Czapla, J.; Kwiatek, W. M.; Lekki, J.; Kisiel, A.; Steininger, R.; Goettlicher, J.

    2013-04-01

    Sulphur plays a vital role in every human organism. It is known, that sulphur-bearing compounds, such as for example cysteine and glutathione, play critical roles in development and progression of many diseases. Any alteration in sulphur's biochemistry could become a precursor of serious pathological conditions. One of such condition is prostate cancer, the most frequently diagnosed malignancy in the western world and the second leading cause of cancer related death in men. The purpose of presented studies was to examine what changes occur in the nearest chemical environment of sulphur in prostate cancer cell lines in comparison to healthy cells. The Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy was used, followed by theoretical calculations. The results of preliminary analysis is presented.

  18. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    SciTech Connect

    Lopez, Veronica; Saraff, Kumuda; Medh, Jheem D.

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  19. In vitro co-culture of epithelial cells and smooth muscle cells on aligned nanofibrous scaffolds.

    PubMed

    Kuppan, Purushothaman; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2017-12-01

    Esophagus is a complex, hollow organ consisting of epithelial cells in the inner mucosal layer and smooth muscle cells in the outer muscle layer. In the present study, we have evaluated the in vitro co-culture of epithelial cells and smooth muscle cells on the aligned nanofibrous scaffold made of PHBV, PHBV-gelatin, PCL and PCL-gelatin developed through electrospinning using rotating drum collector. Epithelial cells were labeled with cell tracker green while the smooth muscle cells were labeled with cell tracker red. Labeled cells were seeded on the aligned nanofibers matrices and tracked using laser scanning confocal microscopy. The results demonstrate that both epithelial and smooth muscle cells attach, extend, and proliferate over these nanofibrous matrices. Confocal z-sectioning shows that epithelial and smooth muscle cells tend to separate into two distinct layers on a single nanofiber system mimicking the in vivo anatomy. Cell viability assay showed that both types of cells are viable and also interact with each other. The functional gene expression of respective cell types demonstrates that both epithelial and smooth muscle cells are phenotypically as well as functionally active when they were co-cultured. Thus the study highlighted that aligned nanofibrous scaffolds could be potential alternative graft for esophageal tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  1. Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair

    PubMed Central

    Wu, Zhiliang; Sofronic-Milosavljevic, Lj; Nagano, Isao; Takahashi, Yuzo

    2008-01-01

    Trichinella infection results in formation of a capsule in infected muscles. The capsule is a residence of the parasite which is composed of the nurse cell and fibrous wall. The process of nurse cell formation is complex and includes infected muscle cell response (de-differentiation, cell cycle re-entry and arrest) and satellite cell responses (activation, proliferation and differentiation). Some events that occur during the nurse cell formation are analogous to those occurring during muscle cell regeneration/repair. This article reviews capsule formation with emphasis on this analogy. PMID:18710582

  2. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    PubMed

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  3. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    PubMed

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  4. Position control of fishing line artificial muscles (coiled polymer actuators) from nylon thread

    NASA Astrophysics Data System (ADS)

    Arakawa, Takeshi; Takagi, Kentaro; Tahara, Kenji; Asaka, Kinji

    2016-04-01

    Recently, fishing line artificial muscle has been developed and is paid much attention due to the properties such as large contraction, light weight and extremely low cost. Typical fishing line artificial muscle is made from Nylon thread and made by just twisting the polymer. In this paper, because of the structure of the actuator, such actuators may be named as coiled polymer actuators (CPAs). In this paper, a CPA is fabricated from commercial Nylon fishing line and Ni-Cr alloy (Nichrome) wire is wound around it. The CPA contracts by the Joule heat generated by applied voltage to the Nichrome wire. For designing the control system, a simple model is proposed. According to the physical principle of the actuator, two first-order transfer functions are introduced to represent the actuator model. One is a system from the input power to the temperature and the other is a system from the temperature to the deformation. From the system identification result, it is shown that the dominant dynamics is the system from the input power to the temperature. Using the developed model, position control of the voltage-driven CPA is discussed. Firstly, the static nonlinearity from the voltage to the power is eliminated. Then, a 2-DOF PID controller which includes an inversion-based feed forward controller and a PID controller are designed. In order to demonstrate the proposed controller, experimental verification is shown.

  5. Changes in muscle cell cation regulation and meat quality traits are associated with genetic selection for high body weight and meat yield in broiler chickens.

    PubMed

    Sandercock, Dale A; Barker, Zoe E; Mitchell, Malcolm A; Hocking, Paul M

    2009-01-14

    Between-breed genetic variation for muscle and meat quality traits was determined at eight weeks of age in 34 lines of purebred commercial broiler and layer lines and traditional breeds (categories) of chickens. Between-breed genetic variation for plasma ion concentrations and element concentration in muscle dry matter and ash were determined. Plasma from broilers had higher concentrations of Na+, K+, Mg++, total and free Ca++ and lower free:total Ca++ than plasma from layer and traditional lines. Muscle from broilers contained more Na and higher concentrations of K, Mg and Ca per mg of ash but not of dry matter compared with layer and traditional lines. In comparison with layer and traditional lines, broiler genotypes were over three times heavier, their plasma creatine kinase activity (CK), a marker of muscle tissue damage, was higher, their breast muscle colour was lighter (L*) and less red (a*) and yellow (b*) in appearance, the initial and final pH of their muscles were lower, the pH change was higher and their breast muscle was more tender. Thus, genetic selection for broiler traits has markedly altered cation regulation in muscle cells and may be associated with changes in muscle cell function and the development of pathology and meat quality problems.

  6. Changes in muscle cell cation regulation and meat quality traits are associated with genetic selection for high body weight and meat yield in broiler chickens

    PubMed Central

    Sandercock, Dale A; Barker, Zoe E; Mitchell, Malcolm A; Hocking, Paul M

    2009-01-01

    Between-breed genetic variation for muscle and meat quality traits was determined at eight weeks of age in 34 lines of purebred commercial broiler and layer lines and traditional breeds (categories) of chickens. Between-breed genetic variation for plasma ion concentrations and element concentration in muscle dry matter and ash were determined. Plasma from broilers had higher concentrations of Na+, K+, Mg++, total and free Ca++ and lower free:total Ca++ than plasma from layer and traditional lines. Muscle from broilers contained more Na and higher concentrations of K, Mg and Ca per mg of ash but not of dry matter compared with layer and traditional lines. In comparison with layer and traditional lines, broiler genotypes were over three times heavier, their plasma creatine kinase activity (CK), a marker of muscle tissue damage, was higher, their breast muscle colour was lighter (L*) and less red (a*) and yellow (b*) in appearance, the initial and final pH of their muscles were lower, the pH change was higher and their breast muscle was more tender. Thus, genetic selection for broiler traits has markedly altered cation regulation in muscle cells and may be associated with changes in muscle cell function and the development of pathology and meat quality problems. PMID:19284683

  7. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells.

    PubMed

    Fortier, Mathieu; Figeac, Nicolas; White, Robert B; Knopp, Paul; Zammit, Peter S

    2013-10-15

    Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.

  8. Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption.

    PubMed

    Baeder, Andrea C; Napa, Kiran; Richardson, Sarah T; Taylor, Oliver J; Andersen, Samantha G; Wilcox, Shalene H; Winden, Duane R; Reynolds, Paul R; Bikman, Benjamin T

    2016-01-01

    Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE). Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity.

  9. Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption

    PubMed Central

    Baeder, Andrea C.; Napa, Kiran; Richardson, Sarah T.; Taylor, Oliver J.; Andersen, Samantha G.; Wilcox, Shalene H.; Winden, Duane R.; Reynolds, Paul R.

    2016-01-01

    Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE). Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity. PMID:27034671

  10. Sphingosine-1-phosphate receptor 3 influences cell cycle progression in muscle satellite cells

    PubMed Central

    Fortier, Mathieu; Figeac, Nicolas; White, Robert B.; Knopp, Paul; Zammit, Peter S.

    2013-01-01

    Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells. PMID:23911934

  11. Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro.

    PubMed Central

    Bains, W; Ponte, P; Blau, H; Kedes, L

    1984-01-01

    We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated. Images PMID:6493226

  12. Caffeine-induced Release of Intracellular Ca2+ from Chinese Hamster Ovary Cells Expressing Skeletal Muscle Ryanodine Receptor

    PubMed Central

    Bhat, Manjunatha B.; Zhao, Jiying; Zang, Weijin; Balke, C. William; Takeshima, Hiroshi; Wier, W. Gil; Ma, Jianjie

    1997-01-01

    The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins. PMID:9382901

  13. Increased Stiffness in Aged Skeletal Muscle Impairs Muscle Progenitor Cell Proliferative Activity

    PubMed Central

    Couture, Vanessa; Söllrald, Thomas; Drouin, Geneviève; Veillette, Noémie; Grandbois, Michel; Grenier, Guillaume

    2015-01-01

    Background Skeletal muscle aging is associated with a decreased regenerative potential due to the loss of function of endogenous stem cells or myogenic progenitor cells (MPCs). Aged skeletal muscle is characterized by the deposition of extracellular matrix (ECM), which in turn influences the biomechanical properties of myofibers by increasing their stiffness. Since the stiffness of the MPC microenvironment directly impacts MPC function, we hypothesized that the increase in muscle stiffness that occurs with aging impairs the behavior of MPCs, ultimately leading to a decrease in regenerative potential. Results We showed that freshly isolated individual myofibers from aged mouse muscles contain fewer MPCs overall than myofibers from adult muscles, with fewer quiescent MPCs and more proliferative and differentiating MPCs. We observed alterations in cultured MPC behavior in aged animals, where the proliferation and differentiation of MPCs were lower and higher, respectively. These alterations were not linked to the intrinsic properties of aged myofibers, as shown by the similar values for the cumulative population-doubling values and fusion indexes. However, atomic force microscopy (AFM) indentation experiments revealed a nearly 4-fold increase in the stiffness of the MPC microenvironment. We further showed that the increase in stiffness is associated with alterations to muscle ECM, including the accumulation of collagen, which was correlated with higher hydroxyproline and advanced glycation end-product content. Lastly, we recapitulated the impaired MPC behavior observed in aging using a hydrogel substrate that mimics the stiffness of myofibers. Conclusions These findings provide novel evidence that the low regenerative potential of aged skeletal muscle is independent of intrinsic MPC properties but is related to the increase in the stiffness of the MPC microenvironment. PMID:26295702

  14. Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis.

    PubMed

    Wang, Guqi; Burczynski, Frank J; Hasinoff, Brian B; Zhang, Kaidong; Lu, Qilong; Anderson, Judy E

    2009-01-01

    Nitric oxide (NO) mediates activation of satellite precursor cells to enter the cell cycle. This provides new precursor cells for skeletal muscle growth and muscle repair from injury or disease. Targeting a new drug that specifically delivers NO to muscle has the potential to promote normal function and treat neuromuscular disease, and would also help to avoid side effects of NO from other treatment modalities. In this research, we examined the effectiveness of the NO donor, iosorbide dinitrate (ISDN), and a muscle relaxant, methocarbamol, in promoting satellite cell activation assayed by muscle cell DNA synthesis in normal adult mice. The work led to the development of guaifenesin dinitrate (GDN) as a new NO donor for delivering nitric oxide to muscle. The results revealed that there was a strong increase in muscle satellite cell activation and proliferation, demonstrated by a significant 38% rise in DNA synthesis after a single transdermal treatment with the new compound for 24 h. Western blot and immunohistochemistry analyses showed that the markers of satellite cell myogenesis, expression of myf5, myogenin, and follistatin, were increased after 24 h oral administration of the compound in adult mice. This research extends our understanding of the outcomes of NO-based treatments aimed at promoting muscle regeneration in normal tissue. The potential use of such treatment for conditions such as muscle atrophy in disuse and aging, and for the promotion of muscle tissue repair as required after injury or in neuromuscular diseases such as muscular dystrophy, is highlighted.

  15. RBP-J (Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells.

    PubMed

    Vasyutina, Elena; Lenhard, Diana C; Wende, Hagen; Erdmann, Bettina; Epstein, Jonathan A; Birchmeier, Carmen

    2007-03-13

    In the developing muscle, a pool of myogenic progenitor cells is formed and maintained. These resident progenitors provide a source of cells for muscle growth in development and generate satellite cells in the perinatal period. By the use of conditional mutagenesis in mice, we demonstrate here that the major mediator of Notch signaling, the transcription factor RBP-J, is essential to maintain this pool of progenitor cells in an undifferentiated state. In the absence of RBP-J, these cells undergo uncontrolled myogenic differentiation, leading to a depletion of the progenitor pool. This results in a lack of muscle growth in development and severe muscle hypotrophy. In addition, satellite cells are not formed late in fetal development in conditional RBP-J mutant mice. We conclude that RBP-J is required in the developing muscle to set aside proliferating progenitors and satellite cells.

  16. Fear responses and postmortem muscle characteristics of turkeys of two genetic lines.

    PubMed

    Erasmus, M A; Lee, H C; Kang, I; Swanson, J C

    2015-09-01

    Commercial turkey production has increased greatly in recent decades. Along with increased production, problems with turkey meat quality have also increased. Research with other species has demonstrated that differences in meat quality exist among pigs and cattle differing in characteristics such as fearfulness. However, associations between fear responses and postmortem (PM) muscle characteristics related to the meat quality of turkeys have not been examined. This study evaluated the test-retest repeatability of responses of male commercial (COMM) and randombred (RB) turkeys in an open field (OF) test, which is used to assess fear and activity levels of poultry. Another objective of this study was to evaluate the relationship between behavioral OF responses and PM breast muscle characteristics (pH and R-value) that are related to meat quality. Thirdly, this study evaluated differences in pH and R-value between the turkey lines. Male COMM and RB turkeys were each housed in groups in 4 pens. Turkeys were individually tested in an OF (2.74×2.74 m, divided into 81 squares) at 1, 4, and 11 wk (COMM N=27; RB N=33). Turkeys were then grouped into clusters based on a cluster analysis of OF behavior. Turkeys were processed and meat quality characteristics were evaluated at 15-17 wk for COMM and 20-21 wk for RB turkeys. Results were analyzed using a mixed model (SAS 9.4). Breast muscle pH and R-value did not differ between genetic lines, and there were no differences in pH and R-value among clusters within genetic lines. These findings suggest that OF responses measured during rearing are not related to PM breast muscle pH and R-value, which ultimately affect meat quality. Further research is needed to assess whether other types of fear responses are associated with meat quality and whether differences in R-value between genetic lines are associated with differences in other meat quality characteristics. © 2015 Poultry Science Association Inc.

  17. Epidermal growth factor controls smooth muscle alpha-isoactin expression in BC3H1 cells

    PubMed Central

    1988-01-01

    We have examined the effects of epidermal growth factor (EGF), platelet- derived growth factor, and insulin on the differentiation of a mouse vascular smooth muscle-like cell line, the BC3H1 cells. On the basis of cell morphology and smooth muscle alpha-isoactin synthesis, we demonstrate that EGF at physiological concentrations prevents the differentiation of these cells, whereas platelet-derived growth factor has no apparent effect. The induction of alpha-isoactin synthesis by serum deprivation is inhibited by EGF in a dose-dependent manner with a half-maximal effect at 3-5 ng/ml and a maximal inhibition at approximately 30 ng/ml. Northern analysis also shows that EGF blocks the accumulation of alpha-isoactin mRNA normally observed during cell differentiation. Addition of EGF to differentiated cells results in a repression of alpha-isoactin synthesis, a stimulation of beta- and gamma-isoactin synthesis, and the stabilization of the nonmuscle isoactins. The synthesis of creatine phosphokinase, a muscle-specific noncontractile protein, is also regulated by EGF in a similar fashion. Modulation by EGF of alpha-isoactin expression is not affected by aphidicolin and is therefore independent of its mitogenic effect on these cells. Insulin is not required for observation of the EGF- dependent effects but instead seems to promote differentiation. Our results show that EGF can replace serum in controlling the differentiation of BC3H1 cells. PMID:3279054

  18. Productive infection of human skeletal muscle cells by pandemic and seasonal influenza A(H1N1) viruses.

    PubMed

    Desdouits, Marion; Munier, Sandie; Prevost, Marie-Christine; Jeannin, Patricia; Butler-Browne, Gillian; Ozden, Simona; Gessain, Antoine; Van Der Werf, Sylvie; Naffakh, Nadia; Ceccaldi, Pierre-Emmanuel

    2013-01-01

    Besides the classical respiratory and systemic symptoms, unusual complications of influenza A infection in humans involve the skeletal muscles. Numerous cases of acute myopathy and/or rhabdomyolysis have been reported, particularly following the outbreak of pandemic influenza A(H1N1) in 2009. The pathogenesis of these influenza-associated myopathies (IAM) remains unkown, although the direct infection of muscle cells is suspected. Here, we studied the susceptibility of cultured human primary muscle cells to a 2009 pandemic and a 2008 seasonal influenza A(H1N1) isolate. Using cells from different donors, we found that differentiated muscle cells (i. e. myotubes) were highly susceptible to infection by both influenza A(H1N1) isolates, whereas undifferentiated cells (i. e. myoblasts) were partially resistant. The receptors for influenza viruses, α2-6 and α2-3 linked sialic acids, were detected on the surface of myotubes and myoblasts. Time line of viral nucleoprotein (NP) expression and nuclear export showed that the first steps of the viral replication cycle could take place in muscle cells. Infected myotubes and myoblasts exhibited budding virions and nuclear inclusions as observed by transmission electron microscopy and correlative light and electron microscopy. Myotubes, but not myoblasts, yielded infectious virus progeny that could further infect naive muscle cells after proteolytic treatment. Infection led to a cytopathic effect with the lysis of muscle cells, as characterized by the release of lactate dehydrogenase. The secretion of proinflammatory cytokines by muscle cells was not affected following infection. Our results are compatible with the hypothesis of a direct muscle infection causing rhabdomyolysis in IAM patients.

  19. Glucose deprivation attenuates sortilin levels in skeletal muscle cells.

    PubMed

    Ariga, Miyako; Yoneyama, Yosuke; Fukushima, Toshiaki; Ishiuchi, Yuri; Ishii, Takayuki; Sato, Hitoshi; Hakuno, Fumihiko; Nedachi, Taku; Takahashi, Shin-Ichiro

    2017-03-31

    In skeletal muscle, sortilin plays a predominant role in the sorting of glucose transporter 4 (Glut4), thereby controlling glucose uptake. Moreover, our previous study suggested that the sortilin expression levels are also implicated in myogenesis. Despite the importance of sortilin in skeletal muscle, however, the regulation of sortilin expression has not been completely understood. In the present study, we analyzed if the sortilin expression is regulated by glucose in C2C12 myocytes and rat skeletal muscles in vivo. Sortilin protein expression was elevated upon C2C12 cell differentiation and was further enhanced in the presence of a high concentration of glucose. The gene expression and protein degradation of sortilin were not affected by glucose. On the other hand, rapamycin partially reduced sortilin induction by a high concentration of glucose, which suggested that sortilin translation could be regulated by glucose, at least in part. We also examined if the sortilin regulation by glucose was also observed in skeletal muscles that were obtained from fed or fasted rats. Sortilin expression in both gastrocnemius and extensor digitorum longus (EDL) muscle was significantly decreased by 17-18h of starvation. On the other hand, pathological levels of high blood glucose did not alter the sortilin expression in rat skeletal muscle. Overall, the present study suggests that sortilin protein levels are reduced under hypoglycemic conditions by post-transcriptional control in skeletal muscles.

  20. Anti-apoptotic Effects of Human Wharton's Jelly-derived Mesenchymal Stem Cells on Skeletal Muscle Cells Mediated via Secretion of XCL1

    PubMed Central

    Kwon, SooJin; Ki, Soo Mi; Park, Sang Eon; Kim, Min-Jeong; Hyung, Brian; Lee, Na Kyung; Shim, Sangmi; Choi, Byung-Ok; Na, Duk L; Lee, Ji Eun; Chang, Jong Wook

    2016-01-01

    The role of Wharton's jelly-derived human mesenchymal stem cells (WJ-MSCs) in inhibiting muscle cell death has been elucidated in this study. Apoptosis induced by serum deprivation in mouse skeletal myoblast cell lines (C2C12) was significantly reduced when the cell lines were cocultured with WJ-MSCs. Antibody arrays indicated high levels of chemokine (C motif) ligand (XCL1) secretion by cocultured WJ-MSCs and XCL1 protein treatment resulted in complete inhibition of apoptosis in serum-starved C2C12 cells. Apoptosis of C2C12 cells and loss of differentiated C2C12 myotubes induced by lovastatin, another muscle cell death inducer, was also inhibited by XCL1 treatment. However, XCL1 treatment did not inhibit apoptosis of cell lines other than C2C12. When XCL1-siRNA pretreated WJ-MSCs were cocultured with serum-starved C2C12 cells, apoptosis was not inhibited, thus confirming that XCL1 is a key factor in preventing C2C12 cell apoptosis. We demonstrated the therapeutic effect of XCL1 on the zebrafish myopathy model, generated by knock down of a causative gene ADSSL1. Furthermore, the treatment of XCL1 resulted in significant recovery of the zebrafish skeletal muscle defects. These results suggest that human WJ-MSCs and XCL1 protein may act as promising and novel therapeutic agents for treatment of myopathies and other skeletal muscle diseases. PMID:27434589

  1. Intestinal smooth muscle cells locally enhance stem cell factor (SCF) production against gastrointestinal nematode infections.

    PubMed

    Morimoto, Masahiro

    2011-06-01

    Smooth muscle cells can produce stem cell factor (SCF) in the normal state for the preservation of mast cells, but it is still unknown whether smooth muscle cells can enhance SCF production in response to the pathological stimuli. The present study showed that smooth muscle cells in mast cell-increased regions around worm cysts of intestinal nematodes significantly enhanced SCF gene expression compared with mast cell non-increased regions in same sample. SCF gene expression in mast cell non-increased regions in nematode-infected mice showed almost the same level as in non-infected control groups. These results indicate that smooth muscle cells can locally enhance SCF gene expression, and may have a role in local immunological reactions as growth factor-producing cells.

  2. Diffuse skeletal muscles uptake of [18F] fluorodeoxyglucose on positron emission tomography in primary muscle peripheral T-cell lymphoma.

    PubMed

    Tanaka, Yuji; Hayashi, Yuichi; Kato, Jun'ichi; Yamada, Megumi; Koumura, Akihiro; Sakurai, Takeo; Kimura, Akio; Hozumi, Isao; Hatano, Yuichiro; Hirose, Yoshinobu; Takami, Tsuyoshi; Nakamura, Hiroshi; Kasahara, Senji; Tsurumi, Hisashi; Moriwaki, Hisataka; Inuzuka, Takashi

    2011-01-01

    A 40-year-old man presented with weakness of neck extensor muscles. Cervical magnetic resonance imaging showed high-intensity areas in muscles of the left lateral cervical region on T2-weighted images. Fluorodeoxyglucose-positron emission tomography scan demonstrated striking fluorodeoxyglucose uptake by multiple skeletal muscles of the neck, chest, and abdominal region. Muscle biopsy demonstrated peripheral T-cell lymphoma, unspecified. The diagnosis was primary skeletal muscle peripheral T-cell lymphoma. Primary skeletal muscle non-Hodgkin's lymphoma of T-cell immunophenotype is extremely rare and fluorodeoxyglucose-positron emission tomography demonstrated striking fluorodeoxyglucose uptake in multiple skeletal muscles and served as a quite useful modality for the diagnosis of this patient.

  3. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    PubMed Central

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  4. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  5. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  6. Intermediate filaments in muscle and epithelial cells of nematodes

    PubMed Central

    1986-01-01

    Current concepts of the developmentally controlled multigene family of intermediate filament (IF) proteins expect the origin of their complexity in evolutionary precursors preceding all vertebrate classes. Among invertebrates, however, firm ultrastructural as well as molecular documentation of IFs is restricted to some giant axons and to epithelia of a few molluscs and annelids. As Ascaris lumbricoides is easily dissected into clean tissues, IF expression in this large nematode was analyzed by electron microscopic and biochemical procedures and a monoclonal antibody reacting with all mammalian IF proteins. We document for the first time the presence of IFs in muscle cells of an invertebrate. They occur in three muscle types (irregular striated pharynx muscle, obliquely striated body muscle, uterus smooth muscle). IFs are also found in the epithelia studied (syncytial epidermis, intestine, ovary, testis). Immunoblots on muscles, pharynx, intestine, uterus, and epidermis identify a pair of polypeptides (with apparent molecular masses of 71 and 63 kD) as IF constituents. In vitro reconstitution of filaments was obtained with the proteins purified from body muscle. In the small nematode Caenorhabditis elegans IF proteins are so far found only in the massive desmosome-anchored tonofilament bundles which traverse a special epithelial cell type, the marginal cells of the pharynx. We speculate that IFs may occur in most but perhaps not all invertebrates and that they may not occur in all cells in large amounts. As electron micrographs of the epidermis of a planarian--a member of the Platyhelminthes--reveal IFs, the evolutionary origin of this cytoplasmic structure can be expected either among the lowest metazoa or already in some unicellular eukaryotes. PMID:3519620

  7. Engraftment of FACS Isolated Muscle Stem Cells into Injured Skeletal Muscle.

    PubMed

    Tierney, Matthew; Sacco, Alessandra

    2017-01-01

    Skeletal muscle stem cell (MuSC) isolation and transplantation are invaluable tools to assess their capacity for self-renewal and tissue repair. Significant technical advances in recent years have led to the optimization of these approaches, improving our ability to assess MuSC regenerative potential. Here, we describe the procedures for Fluorescent Activated Cell Sorting (FACS)-based isolation of MuSC, their intramuscular transplantation, and analysis of their engraftment into host tissues.

  8. A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent

    PubMed Central

    Knappe, Stefanie; Zammit, Peter S.; Knight, Robert D.

    2015-01-01

    Skeletal muscle regeneration in vertebrates occurs by the activation of quiescent progenitor cells that express pax7 to repair and replace damaged myofibers. We have developed a mechanical injury paradigm in zebrafish to determine whether developmental stage and injury size affect the regeneration dynamics of skeletal muscle. We found that both small focal injuries, and large injuries affecting the entire myotome, lead to expression of myf5 and myogenin, which was prolonged in older larvae, indicating a slower process of regeneration. We characterized the endogenous behavior of a population of muscle-resident Pax7-expressing cells using a pax7a:eGFP transgenic line and found that GFP+ cell migration in the myotome dramatically declined between 5 and 7 days post-fertilization (dpf). Following a small single myotome injury, GFP+ cells responded by extending processes, before migrating to the injured myofibers. Furthermore, these cells responded more rapidly to injury in 4 dpf larvae compared to 7 dpf. Interestingly, we did not see GFP+ myofibers after repair of small injuries, indicating that pax7a-expressing cells did not contribute to myofiber formation in this injury context. On the contrary, numerous GFP+ myofibers could be observed after an extensive single myotome injury. Both injury models were accompanied by an increased number of proliferating GFP+ cells, which was more pronounced in larvae injured at 4 dpf than 7 dpf. This indicates intriguing developmental differences, at these early ages. Our data also suggests an interesting disparity in the role that pax7a-expressing muscle progenitor cells play during skeletal muscle regeneration, which may reflect the extent of muscle damage. PMID:26379543

  9. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them

    PubMed Central

    Almeida, Camila F.; Fernandes, Stephanie A.; Ribeiro Junior, Antonio F.; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics. PMID:27042182

  10. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation

    PubMed Central

    Wallace, Marita A.; Della Gatta, Paul A.; Ahmad Mir, Bilal; Kowalski, Greg M.; Kloehn, Joachim; McConville, Malcom J.; Russell, Aaron P.; Lamon, Séverine

    2016-01-01

    Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration. PMID:26903873

  11. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation.

    PubMed

    Wallace, Marita A; Della Gatta, Paul A; Ahmad Mir, Bilal; Kowalski, Greg M; Kloehn, Joachim; McConville, Malcom J; Russell, Aaron P; Lamon, Séverine

    2016-01-01

    Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. These findings position STARS as an important regulator of skeletal muscle growth and regeneration.

  12. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration.

    PubMed

    Milner, Derek J; Cameron, Jo Ann

    2013-01-01

    Skeletal muscle possesses a robust innate capability for repair of tissue damage. Natural repair of muscle damage is a stepwise process that requires the coordinated activity of a number of cell types, including infiltrating macrophages, resident myogenic and non-myogenic stem cells, and connective tissue fibroblasts. Despite the proficiency of this intrinsic repair capability, severe injuries that result in significant loss of muscle tissue overwhelm the innate repair process and require intervention if muscle function is to be restored. Recent advances in stem cell biology, regenerative medicine, and materials science have led to attempts at developing tissue engineering-based methods for repairing severe muscle defects. Muscle tissue also plays a role in the ability of tailed amphibians to regenerate amputated limbs through epimorphic regeneration. Muscle contributes adult stem cells to the amphibian regeneration blastema, but it can also contribute blastemal cells through the dedifferentiation of multinucleate myofibers into mononuclear precursors. This fascinating plasticity and its contributions to limb regeneration have prompted researchers to investigate the potential for mammalian muscle to undergo dedifferentiation. Several works have shown that mammalian myotubes can be fragmented into mononuclear cells and induced to re-enter the cell cycle, but mature myofibers are resistant to fragmentation. However, recent works suggest that there may be a path to inducing fragmentation of mature myofibers into proliferative multipotent cells with the potential for use in muscle tissue engineering and regenerative therapies.

  13. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  14. Chromatin signaling in muscle stem cells: interpreting the regenerative microenvironment

    PubMed Central

    Brancaccio, Arianna; Palacios, Daniela

    2015-01-01

    Muscle regeneration in the adult occurs in response to damage at expenses of a population of adult stem cells, the satellite cells. Upon injury, either physical or genetic, signals released within the satellite cell niche lead to the commitment, expansion and differentiation of the pool of muscle progenitors to repair damaged muscle. To achieve this goal satellite cells undergo a dramatic transcriptional reprogramming to coordinately activate and repress specific subset of genes. Although the epigenetics of muscle regeneration has been extensively discussed, less emphasis has been put on how extra-cellular cues are translated into the specific chromatin reorganization necessary for progression through the myogenic program. In this review we will focus on how satellite cells sense the regenerative microenvironment in physiological and pathological circumstances, paying particular attention to the mechanism through which the external stimuli are transduced to the nucleus to modulate chromatin structure and gene expression. We will discuss the pathways involved and how alterations in this chromatin signaling may contribute to satellite cells dysfunction during aging and disease. PMID:25904863

  15. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.

    PubMed

    Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M

    2007-05-01

    Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.

  16. BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development

    PubMed Central

    Shin, Jaeyoung; Watanabe, Shuichi; Hoelper, Soraya; Krüger, Marcus; Kostin, Sawa; Pöling, Jochen; Kubin, Thomas; Braun, Thomas

    2016-01-01

    Migration of skeletal muscle precursor cells is a key step during limb muscle development and depends on the activity of PAX3 and MET. Here, we demonstrate that BRAF serves a crucial function in formation of limb skeletal muscles during mouse embryogenesis downstream of MET and acts as a potent inducer of myoblast cell migration. We found that a fraction of BRAF accumulates in the nucleus after activation and endosomal transport to a perinuclear position. Mass spectrometry based screening for potential interaction partners revealed that BRAF interacts and phosphorylates PAX3. Mutation of BRAF dependent phosphorylation sites in PAX3 impaired the ability of PAX3 to promote migration of C2C12 myoblasts indicating that BRAF directly activates PAX3. Since PAX3 stimulates transcription of the Met gene we propose that MET signaling via BRAF fuels a positive feedback loop, which maintains high levels of PAX3 and MET activity required for limb muscle precursor cell migration. DOI: http://dx.doi.org/10.7554/eLife.18351.001 PMID:27906130

  17. Immunologically Induced Alterations of Airway Smooth Muscle Cell Membrane

    NASA Astrophysics Data System (ADS)

    Souhrada, M.; Souhrada, J. F.

    1984-08-01

    Active and passive sensitization, both in vivo and in vitro, caused significant hyperpolarization of airway smooth muscle cell preparations isolated from guinea pigs. An increase in the contribution of the electrogenic Na+ pump to the resting membrane potential was responsible for this change. Hyperpolarization, as induced by passive sensitization, was not prevented by agents that inhibit specific mediators of anaphylaxis but was abolished when serum from sensitized animals was heated. The heat-sensitive serum factor, presumably reaginic antibodies, appears to be responsible for the membrane hyperpolarization of airway smooth muscle cells after sensitization.

  18. A Neuroblastoma × Glioma Hybrid Cell Line with Morphine Receptors

    PubMed Central

    Klee, Werner A.; Nirenberg, Marshall

    1974-01-01

    A neuroblastoma × glioma hybrid cell line with well-developed neural properties was found that has high-affinity morphine receptors. The average cell contains approximately 3 × 106 receptors. In contrast, parent cells and other neuroblastoma or hybrid cell lines tested had few or no morphine receptors. PMID:4530316

  19. Preparation of adult muscle fiber-associated stem/precursor cells.

    PubMed

    Conboy, Michael J; Conboy, Irina M

    2010-01-01

    In our studies of muscle regeneration we have developed, modified, and optimized techniques to isolate and study the stem and precursor cells to muscle tissue. Our goals have been to obtain for study muscle fibers in bulk, or the fiber-associated cells, separately from the other cells found in muscle. Using these techniques, myofiber-associated cells may be isolated from neonatal through adult muscle, from resting or from regenerating muscle, thus allowing one to investigate the cellular populations participating during the time course of these events. The protocol is applicable to any age and condition of muscle and may be adapted for other tissues.

  20. Implantation of muscle satellite cells overexpressing myogenin improves denervated muscle atrophy in rats.

    PubMed

    Shen, H; Lv, Y; Shen, X Q; Xu, J H; Lu, H; Fu, L C; Duan, T

    2016-02-01

    This study evaluated the effect of muscle satellite cells (MSCs) overexpressing myogenin (MyoG) on denervated muscle atrophy. Rat MSCs were isolated and transfected with the MyoG-EGFP plasmid vector GV143. MyoG-transfected MSCs (MTMs) were transplanted into rat gastrocnemius muscles at 1 week after surgical denervation. Controls included injections of untransfected MSCs or the vehicle only. Muscles were harvested and analyzed at 2, 4, and 24 weeks post-transplantation. Immunofluorescence confirmed MyoG overexpression in MTMs. The muscle wet weight ratio was significantly reduced at 2 weeks after MTM injection (67.17±6.79) compared with muscles injected with MSCs (58.83±5.31) or the vehicle (53.00±7.67; t=2.37, P=0.04 and t=3.39, P=0.007, respectively). The muscle fiber cross-sectional area was also larger at 2 weeks after MTM injection (2.63×10³±0.39×10³) compared with MSC injection (1.99×10³±0.58×10³) or the vehicle only (1.57×10³±0.47×10³; t=2.24, P=0.049 and t=4.22, P=0.002, respectively). At 4 and 24 weeks post-injection, the muscle mass and fiber cross-sectional area were similar across all three experimental groups. Immunohistochemistry showed that the MTM group had larger MyoG-positive fibers. The MTM group (3.18±1.13) also had higher expression of MyoG mRNA than other groups (1.41±0.65 and 1.03±0.19) at 2 weeks after injection (t=2.72, P=0.04). Transplanted MTMs delayed short-term atrophy of denervated muscles. This approach can be optimized as a novel stand-alone therapy or as a bridge to surgical re-innervation of damaged muscles.

  1. Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells.

    PubMed

    Kennedy, Eimear; Mooney, Ciaran J; Hakimjavadi, Roya; Fitzpatrick, Emma; Guha, Shaunta; Collins, Laura E; Loscher, Christine E; Morrow, David; Redmond, Eileen M; Cahill, Paul A

    2014-10-01

    Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α-actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10(+), Sox17(+)) and a glia marker (S100β(+)). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.

  2. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system.

    PubMed

    Mu, Xiaodong; Peng, Hairong; Pan, Haiying; Huard, Johnny; Li, Yong

    2011-02-03

    Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo.

  3. The effect of temperature on proliferation and differentiation of chicken skeletal muscle satellite cells isolated from different muscle types.

    PubMed

    Harding, Rachel L; Halevy, Orna; Yahav, Shlomo; Velleman, Sandra G

    2016-04-01

    Skeletal muscle satellite cells are a muscle stem cell population that mediate posthatch muscle growth and repair. Satellite cells respond differentially to environmental stimuli based upon their fiber-type of origin. The objective of this study was to determine how temperatures below and above the in vitro control of 38°C affected the proliferation and differentiation of satellite cells isolated from the chicken anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b.femoris) muscles. The satellite cells isolated from the p. major muscle were more sensitive to both cold and hot temperatures compared to the b.femoris satellite cells during both proliferation and differentiation. The expressions of myogenic regulatory transcription factors were also different between satellite cells from different fiber types. MyoD expression, which partially regulates proliferation, was generally expressed at higher levels in p. major satellite cells compared to the b.femoris satellite cells from 33 to 43°C during proliferation and differentiation. Similarly, myogenin expression, which is required for differentiation, was also expressed at higher levels in p. major satellite cells in response to both cold and hot temperatures during proliferation and differentiation than b. femoris satellite cells. These data demonstrate that satellite cells from the anaerobic p. major muscle are more sensitive than satellite cells from the aerobic b. femoris muscle to both hot and cold thermal stress during myogenic proliferation and differentiation.

  4. Dendroaspis natriuretic peptide induces the apoptosis of cardiac muscle cells.

    PubMed

    Ha, Ki-Chan; Chae, Han-Jung; Piao, Cheng-Shi; Kim, Suhn-Hee; Kim, Hyung-Ryong; Chae, Soo-Wan

    2005-01-01

    Early heart failure is characterized by elevated plasma Dendroaspis natriuretic peptide-like immunoreactivity (DNP-LI). However, the direct effects of DNP on heart or the heart-associated cell system are not well known. Therefore, we investigated whether DNP induces the apoptosis of H9c2 cardiac muscle cells. H9c2 cardiac muscle cells and rat neonatal cardiomyocytes were treated with various concentrations of DNP. Cell viability and nuclear morphology change were determined by trypan blue staining and Hoechst 33258 staining, respectively. Caspase-3-like activity was measured using specific fluorogenic substrates. Pro-and antiapoptotic proteins were assayed by Western blotting. DNP induced the apoptosis of H9c2 cardiac muscle cells in a dose-dependent manner. Maximum effects occurred at 100 nM concentration of DNP, with a 7-8-fold increase in apoptotic cells, to reach a maximum apoptotic index of 17%. We also identified that H9c2 cardiac muscle cells expressed Natriuretic peptide reactor -A and -B, which respond to DNP to generate cGMP. The treatment with DNP also markedly reduced levels of Bcl-2, inhibitor of apoptosis protein-1, and inhibitor of apoptosis protein-2 and increased the level of Bax and cytochrome c release into cytoplasm and subsequent caspase-3 activation, which co-occurred with increased apoptosis. DNP-induced apoptosis was mediated by cyclic GMP, and this effect was mimicked by dibutylyl-cGMP (30 microM), a membrane permeable analog of cGMP. Furthermore, DNP-induced apoptosis was observed in rat neonatal cardiomyocytes. These results suggest that DNP induces the apoptosis of H9c2 cardiac muscle cells and of cardiomyocytes via cGMP and demonstrate that the operative mechanism includes the regulation of Bcl-2 family proteins.

  5. DNA profiling and characterization of animal cell lines.

    PubMed

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.

  6. Arginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate.

    PubMed

    Blanc, Roméo Sébastien; Vogel, Gillian; Li, Xing; Yu, Zhenbao; Li, Shawn; Richard, Stéphane

    2017-02-01

    Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving determinant transcription factors such as Pax7, Myf5, MyoD, and MyoG. Recently, there have been several reports about the role of arginine methylation as a requirement for epigenetically mediated control of muscle regeneration. Here we report that the protein arginine methyltransferase 1 (PRMT1) is expressed in MSCs and that conditional ablation of PRMT1 in MSCs using Pax7(CreERT2) causes impairment of muscle regeneration. Importantly, PRMT1-deficient MSCs have enhanced cell proliferation after injury but are unable to terminate the myogenic differentiation program, leading to regeneration failure. We identify the coactivator of Six1, Eya1, as a substrate of PRMT1. We show that PRMT1 methylates Eya1 in vitro and that loss of PRMT1 function in vivo prevents Eya1 methylation. Moreover, we observe that PRMT1-deficient MSCs have reduced expression of Eya1/Six1 target MyoD due to disruption of Eya1 recruitment at the MyoD promoter and subsequent Eya1-mediated coactivation. These findings suggest that arginine methylation by PRMT1 regulates muscle stem cell fate through the Eya1/Six1/MyoD axis.

  7. Dormancy and quiescence of skeletal muscle stem cells.

    PubMed

    Rocheteau, Pierre; Vinet, Mathilde; Chretien, Fabrice

    2015-01-01

    The skeletal muscle of vertebrates has a huge regenerative capacity. When destroyed after different types of injury, this organ can regenerate very quickly (less than 20 days following myotoxin injection in the mouse) ad integrum and repeatedly. The cell responsible for this regeneration is the so-called satellite cell, the muscle stem cell that lies on top of the muscle fibre, a giant, multinucleated cell that contains the contractile material. When injected in the muscle, satellite cells can efficiently differentiate into contractile muscle fibres. The satellite cell shows great therapeutic potential; and its regenerative capacity has triggered particular interest in the field of muscular degeneration. In this review we will focus on one particular property of the satellite cell: its quiescence and dormancy. Indeed adult satellite cells are quiescent; they lie between the basal lamina and the basement membrane of the muscle fibre, ready to proliferate, and fuse in order to regenerate myofibers upon injury. It has recently been shown that a subpopulation of satellite cells is able to enter dormancy in human and mice cadavers. Dormancy is defined by a low metabolic state, low mobility, and a long lag before division when plated in vitro, compared to quiescent cells. This definition is also based on current knowledge about long-term hematopoietic stem cells, a subpopulation of stem cells that are described as dormant based on the same criteria (rare division and low metabolism when compared to progeny which are dividing more often). In the first part of this review, we will provide a description of satellite cells which addresses their quiescent state. We will then focus on the uneven distribution of satellite cells in the muscle and describe evidence that suggests that their dormancy differs from one muscle to the next and that one should be cautious when making generalisations regarding this cellular state. In a second part, we will discuss the transition between

  8. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  9. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells.

    PubMed Central

    Nelson, P; Christian, C; Nirenberg, M

    1976-01-01

    Clonal neuroblastoma X glioma hybrid cells were shown to form synapses with cultured, striated muscle cells. The properties of the synapses between hybrid and muscle cells were similar to those of the normal, neuromuscular synapse at an early stage of development. The number of synapses formed and the efficiency of transmission across synapses were found to be regulated, apparently independently, by components in the culture medium. Under appropriate conditions synapses were found with 20% of the hybrid-muscle cell pairs examined; thus, the hybrid cells form synapses with relatively high frequency. Images PMID:1061105

  10. Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation

    PubMed Central

    Ballantyne, Margaret D.; Pinel, Karine; Dakin, Rachel; Vesey, Alex T.; Diver, Louise; Mackenzie, Ruth; Garcia, Raquel; Welsh, Paul; Sattar, Naveed; Hamilton, Graham; Joshi, Nikhil; Dweck, Marc R.; Miano, Joseph M.; McBride, Martin W.; Newby, David E.; McDonald, Robert A.

    2016-01-01

    Background— Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. Methods and Results— Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle–induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. Conclusions— These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies. PMID:27052414

  11. A stromal myoid cell line provokes thymic erythropoiesis between 16th to 20th weeks of intrauterine life.

    PubMed

    Tamiolakis, D; Venizelos, J; Kotini, A; Karamanidis, D; Boglou, P; Papadopoulos, N

    2004-02-01

    The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular microenvironment. The thymic RE cells are functionally specialised based on their intrathymic location and this differentiation is modulated by various interaction signals of differentiating thymocytes and other non lymphatic haematopoietic stem cells. To study the role of another cell line in fetal thymic haematopoietic proliferation and differentiation in different stages of development: the stromal myoid cells. Fifteen cases of fetal thymic specimens (4th to 8th weeks: five cases 16th to 20th weeks: five cases and 28th to 32nd weeks: five cases respectively) were studied. Tissue paraffin samples were stained immunohistochemically using (i) a monoclonal antibody recognising alpha-smooth muscle actin, a contractile microfilament expressed exclusively by smooth muscle cells, myofibroblasts and related cells, (ii) a monoclonal antibody glycophorin C recognising the erythropoietic cells. Histology-Embryology Department of Democritus University of Thrace (Alexandroupolis) over ten year period (1991-2001). The number of alpha-smooth muscle actin-positive cells significantly increased during the late second and third trimester of gestation. In the above period a relevant increase in the number of glycophorin C positive cells were observed. Our data suggest that a myoid cell line is involved in the formation of an appropriate microenvironment for homing and proliferation of erythropoietic cells.

  12. Satellite cell activity in muscle regeneration after contusion in rats.

    PubMed

    Srikuea, Ratchakrit; Pholpramool, Chumpol; Kitiyanant, Yindee; Yimlamai, Tossaporn

    2010-11-01

    1. The role of satellite cells in muscle growth during development is well documented, but the involvement of these cells in muscle repair after contusion is less well known. In the present study, we investigated the time-course of satellite cell activity (from 3h to 7days) after contusion of rat gastrocnemius muscle using specific molecular markers for immunofluorescence and real-time polymerase chain reaction (PCR). 2. Inflammation of the injured muscle occurred within 6h, followed by disintegration of the damaged myofibres within 12h. Newly formed myofibres appeared by Day 7. 3. The number of MyoD-positive nuclei (activated satellite cells) in the injured muscle was significantly increased by 6h, reaching a maximum by 12h after contusion. However, the number of MyoD-positive nuclei decreased towards control levels by Day 7. Changes in the number of bromodeoxyuridine-labelled nuclei (proliferating satellite cells) paralleled the changes seen in the number of MyoD-positive nuclei. Conversely, expression of myogenin protein was not apparent until Day 3 and increased further by Day 7. Colabelling of MyoD and myogenin was seen in only a few cells. 4. The time-course of MyoD mRNA expression corresponded with MyoD protein expression. However, there were two peaks in myogenin mRNA expression: 6h and Day 7 after contusion. The second peak coincided with upregulation of myostatin mRNA levels. 5. The results of the present study suggest that contusion activates a homogeneous population of satellite cells to proliferate within 3days, followed by differentiation to form new myofibres. The latter may be regulated, in part, by myostatin.

  13. Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development.

    PubMed

    Wang, Hui; Noulet, Fanny; Edom-Vovard, Frédérique; Tozer, Samuel; Le Grand, Fabien; Duprez, Delphine

    2010-04-20

    Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.

  14. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies.

    PubMed

    Negroni, Elisa; Gidaro, Teresa; Bigot, Anne; Butler-Browne, Gillian S; Mouly, Vincent; Trollet, Capucine

    2015-04-01

    Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.

  15. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  16. Biomechanical Origins of Muscle Stem Cell Signal Transduction.

    PubMed

    Morrissey, James B; Cheng, Richard Y; Davoudi, Sadegh; Gilbert, Penney M

    2016-04-10

    Skeletal muscle, the most abundant and widespread tissue in the human body, contracts upon receiving electrochemical signals from the nervous system to support essential functions such as thermoregulation, limb movement, blinking, swallowing and breathing. Reconstruction of adult muscle tissue relies on a pool of mononucleate, resident muscle stem cells, known as "satellite cells", expressing the paired-box transcription factor Pax7 necessary for their specification during embryonic development and long-term maintenance during adult life. Satellite cells are located around the myofibres in a niche at the interface of the basal lamina and the host fibre plasma membrane (i.e., sarcolemma), at a very low frequency. Upon damage to the myofibres, quiescent satellite cells are activated and give rise to a population of transient amplifying myogenic progenitor cells, which eventually exit the cell cycle permanently and fuse to form new myofibres and regenerate the tissue. A subpopulation of satellite cells self-renew and repopulate the niche, poised to respond to future demands. Harnessing the potential of satellite cells relies on a complete understanding of the molecular mechanisms guiding their regulation in vivo. Over the past several decades, studies revealed many signal transduction pathways responsible for satellite cell fate decisions, but the niche cues driving the activation and silencing of these pathways are less clear. Here we explore the scintillating possibility that considering the dynamic changes in the biophysical properties of the skeletal muscle, namely stiffness, and the stretch and shear forces to which a myofibre can be subjected to may provide missing information necessary to gain a full understanding of satellite cell niche regulation.

  17. Differential expression of beta 1 integrins in nonneoplastic smooth and striated muscle cells and in tumors derived from these cells.

    PubMed Central

    Mechtersheimer, G.; Barth, T.; Quentmeier, A.; Möller, P.

    1994-01-01

    Integrins are a superfamily of transmembrane alpha beta heterodimers that play an important role in cell-matrix and cell-cell interactions by acting as receptors for extracellular matrix proteins and for cell adhesion molecules. Using monoclonal antibodies against beta 1, alpha 1 to alpha 6, and alpha v subunits, the in situ distribution pattern of beta 1 integrins was examined immunohistochemically in nonneoplastic smooth and striated muscle cells and in their tumors. Nonneoplastic smooth muscle cells were beta 1+, alpha 1+, alpha 3+, alpha v+ and, in diverse localizations, also alpha 5+ or even alpha 6+. The expression of the beta 1 chain was conserved in all leiomyomas and leiomyosarcomas. The distribution pattern of the alpha subunits by contrast underwent several changes during malignant transformation of smooth muscle cells. These alterations consisted in a neoexpression of alpha 2, alpha 4, and alpha 6 as well as in an abnormal abrogation of alpha 1 and alpha 3 in some leiomyosarcomas. Except for the absence of alpha 5 in the majority of epithelioid leiomyosarcomas, expression of the alpha 5 and alpha v subunits was mainly conserved. In addition, tumors with epithelioid differentiation differed from typical cases by the absence of alpha 1 and the simultaneous presence of alpha 4. Adult striated muscle cells were beta 1+ but alpha 1- to alpha 6- and alpha v-, whereas fetal striated muscle cells were not only beta 1+ but also alpha 3+/-, alpha 4+/-, alpha 5+ and alpha 6+. In all rhabdomyosarcomas the expression of beta 1 was retained. Furthermore, the majority of cases showed the expression of one or more alpha subunits most of which, ie, alpha 4, alpha 5, and alpha 6, were also found in fetal striated muscle cells. In conclusion, beta 1 integrins exhibited a differential expression pattern along the two lines of myogenic differentiation. This integrin profile underwent characteristic changes during malignant transformation. Nevertheless, the compiled

  18. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes.

    PubMed

    Alonso-Carbajo, Lucía; Kecskes, Miklos; Jacobs, Griet; Pironet, Andy; Syam, Ninda; Talavera, Karel; Vennekens, Rudi

    2017-09-01

    The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca(2+) signaling in diverse cell types, either by providing a Ca(2+) influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca(2+) channels, and on the other limits the driving force for Ca(2+) entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Defining the Diversity of Phenotypic Respecification Using Multiple Cell Lines and Reprogramming Regimens

    PubMed Central

    Alicea, Bradly; Murthy, Shashanka; Keaton, Sarah A.; Cobbett, Peter; Cibelli, Jose B.

    2013-01-01

    To better understand the basis of variation in cellular reprogramming, we performed experiments with two primary objectives: first, to determine the degree of difference, if any, in reprogramming efficiency among cells lines of a similar type after accounting for technical variables, and second, to compare the efficiency of conversion of multiple similar cell lines to two separate reprogramming regimens–induced neurons and induced skeletal muscle. Using two reprogramming regimens, it could be determined whether converted cells are likely derived from a distinct subpopulation that is generally susceptible to reprogramming or are derived from cells with an independent capacity for respecification to a given phenotype. Our results indicated that when technical components of the reprogramming regimen were accounted for, reprogramming efficiency was reproducible within a given primary fibroblast line but varied dramatically between lines. The disparity in reprogramming efficiency between lines was of sufficient magnitude to account for some discrepancies in published results. We also found that the efficiency of conversion to one phenotype was not predictive of reprogramming to the alternate phenotype, suggesting that the capacity for reprogramming does not arise from a specific subpopulation with a generally “weak grip” on cellular identity. Our findings suggest that parallel testing of multiple cell lines from several sources may be needed to accurately assess the efficiency of direct reprogramming procedures, and that testing a larger number of fibroblast lines—even lines with similar origins—is likely the most direct means of improving reprogramming efficiency. PMID:23672680

  20. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. © FASEB.

  1. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  2. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  3. Constitutive endothelin-1 overexpression promotes smooth muscle cell proliferation via an external autocrine loop.

    PubMed

    Alberts, G F; Peifley, K A; Johns, A; Kleha, J F; Winkles, J A

    1994-04-01

    Endothelin-1 (ET-1) is a potent vasoconstrictor peptide originally purified from endothelial cell-conditioned medium. It has multiple biological activities and has been implicated in a number of human diseases, including hypertension and atherosclerosis. Contradictory reports have been published regarding whether ET-1 is a mitogen for vascular smooth muscle cells (SMC); thus, this issue is presently unresolved. In this study, we demonstrate that rat aortic SMC express functional endothelin cell surface receptors but do not proliferate when ET-1 is added to serum-free culture medium on every other day for a period of 1 week. To determine whether ET-1 could function in an autocrine manner to promote SMC growth, we transfected this same cell line with an ET-1 expression plasmid. Several independent lines expressing variable levels of ET-1 mRNA and biologically active ET-1 were obtained. Cell proliferation assays indicated that the transfected SMC line secreting the highest level of ET-1 had an enhanced growth rate when compared with untransfected or vector-alone transfected cells. The growth rate of this SMC line, but not of untransfected cells, was significantly reduced when the ETA receptor subtype-selective antagonist BQ-123 was included in the culture medium. These results indicate that constitutive ET-1 overexpression can promote SMC proliferation. Therefore, it is possible that under certain conditions ET-1 could be an important factor controlling SMC replication in vivo.

  4. Muscarinic receptor size on smooth muscle cells and membranes

    SciTech Connect

    Collins, S.M.; Jung, C.Y.; Grover, A.K.

    1986-08-01

    The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).

  5. The role of taurine on skeletal muscle cell differentiation.

    PubMed

    Miyazaki, Teruo; Honda, Akira; Ikegami, Tadashi; Matsuzaki, Yasushi

    2013-01-01

    Taurine abundantly contained in the skeletal muscle has been considered as one of essential factors for the differentiation and growth of skeletal muscles. The previous studies in the taurine transporter knockout mice showed that deficiency of taurine content in the skeletal muscle caused incomplete muscular developments, morphological abnormalities, and exercise abilities. In fetal and neonatal periods, taurine must be an essential amino acid due to no biosynthesis capacity, and therefore, taurine should be endogenously supplied through placenta and maternal milk. In general cell culture condition, taurine contained in the culture medium is absent or few, and therefore, most of cultured cells are in taurine-deficient condition. In the present study, we confirmed, in cultured mouse differentiable myoblast, taurine treatment significantly enhanced the differentiation to myotube in a dose-dependent manner, while these effects were abrogated by inhibitions of taurine transport and Ca(2+) signaling pathway.The present study suggested that exogenous taurine might play a key role on the mature differentiation/growth of the skeletal muscle during development period through Ca(2+) signaling pathway, and therefore, taurine would contribute the muscle recovery after damages.

  6. Effect of ionizing radiation on human skeletal muscle precursor cells

    PubMed Central

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Background Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions. PMID:24294183

  7. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair

    PubMed Central

    Bazgir, Behzad; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Mozdziak, Paul; Asgari, Alireza

    2017-01-01

    Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise. PMID:28042532

  8. Satellite Cells Contribution to Exercise Mediated Muscle Hypertrophy and Repair.

    PubMed

    Bazgir, Behzad; Fathi, Rouhollah; Rezazadeh Valojerdi, Mojtaba; Mozdziak, Paul; Asgari, Alireza

    2017-01-01

    Satellite cells (SCs) are the most abundant skeletal muscle stem cells. They are widely recognized for their contributions to maintenance of muscle mass, regeneration and hypertrophy during the human life span. These cells are good candidates for cell therapy due to their self-renewal capabilities and presence in an undifferentiated form. Presently, a significant gap exists between our knowledge of SCs behavior and their application as a means for human skeletal muscle tissue repair and regeneration. Both physiological and pathological stimuli potentially affect SCs activation, proliferation, and terminal differentiation the former category being the focus of this article. Activation of SCs occurs following exercise, post-training micro-injuries, and electrical stimulation. Exercise, as a potent and natural stimulus, is at the center of numerous studies on SC activation and relevant fields. According to research, different exercise modalities end with various effects. This review article attempts to picture the state of the art of the SCs life span and their engagement in muscle regeneration and hypertrophy in exercise.

  9. Proteomics research on muscle-invasive bladder transitional cell carcinoma

    PubMed Central

    2011-01-01

    Background Aimed to facilitate candidate biomarkers selection and improve network-based multi-target therapy, we perform comparative proteomics research on muscle-invasive bladder transitional cell carcinoma. Laser capture microdissection was used to harvest purified muscle-invasive bladder cancer cells and normal urothelial cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results A total of 885/890 proteins commonly appeared in 4 paired samples. 295/337 of the 488/493 proteins that specific expressed in tumor/normal cells own gene ontology (GO) cellular component annotation. Compared with the entire list of the international protein index (IPI), there are 42/45 GO terms exhibited as enriched and 9/5 exhibited as depleted, respectively. Several pathways exhibit significantly changes between cancer and normal cells, mainly including spliceosome, endocytosis, oxidative phosphorylation, etc. Finally, descriptive statistics show that the PI Distribution of candidate biomarkers have certain regularity. Conclusions The present study identified the proteome expression profile of muscle-invasive bladder cancer cells and normal urothelial cells, providing information for subcellular pattern research of cancer and offer candidate proteins for biomarker panel and network-based multi-target therapy. PMID:21645413

  10. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-01-01

    The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through

  11. MOUSE TRANSGENIC LINES THAT SELECTIVELY LABEL TYPE I, TYPE IIA AND TYPES IIX+B SKELETAL MUSCLE FIBERS

    PubMed Central

    Chakkalakal, Joe V.; Kuang, Shihuan; Buffelli, Mario; Lichtman, Jeff W.; Sanes, Joshua R.

    2014-01-01

    Skeletal muscle fibers vary in contractile and metabolic properties. Four main fiber types are present in mammalian trunk and limb muscles; they are called I, IIA, IIX and IIB, ranging from slowest- to fastest-contracting. Individual muscles contain stereotyped proportions of two or more fiber types. Fiber type is determined by a combination of nerve-dependent and –independent influences, leading to formation of “homogeneous motor units” in which all branches of a single motor neuron form synapses on fibers of a single type. Fiber type composition of muscles can be altered in adulthood by multiple factors including exercise, denervation, hormones and aging. To facilitate analysis of muscle development, plasticity and innervation, we generated transgenic mouse lines in which Type I, Type IIA, and Type IIX+B fibers can be selectively labeled with distinguishable fluorophores. We demonstrate their use for motor unit reconstruction and live imaging of nerve-dependent alterations in fiber type. PMID:21898764

  12. Immunoglobulin expression and synthesis by human haemic cell lines.

    PubMed Central

    Gordon, J; Hough, D; Karpas, A; Smith, J L

    1977-01-01

    Twenty-six human cell lines derived from a variety of lymphoid and non-lymphoid malignancies, were investigated for their immunological markers, with special reference to the class of immunoglobulin expressed. Twenty-five of the lines stained positively for surface immunoglobulin and IgD together with IgM proved to be the major immunoglobulin classes on these cells. Six of the lines were chosen for a study of their immunoglobulin synthesis patterns over an 18-h period and the immunoglobulin produced was analysed on SDS-polyacrylamide gel electrophoresis. Patterns obtained from the cell lines were similar to that from normal lymph node lymphocytes and differed markedly to plasma cells. Two of the cell lines had abnormal immunoglobulin synthesis patterns characterized as free light chains in one case. The cell lines are evaluated for their usefulness as models of immunoglobulin synthesis and analogues of normal and neoplastic states. PMID:608682

  13. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    PubMed

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  14. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines.

    PubMed

    Yin, Jinlong; Jin, Xun; Beck, Samuel; Kang, Dong Ho; Hong, Zhongshan; Li, Zhehu; Jin, Yongcheng; Zhang, Qiankun; Choi, Yun-Jaie; Kim, Sung-Chan; Kim, Hyunggee

    2010-02-01

    Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.

  15. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  16. Intracerebral transplants of primary muscle cells: a potential 'platform' for transgene expression in the brain

    NASA Technical Reports Server (NTRS)

    Jiao, S.; Schultz, E.; Wolff, J. A.

    1992-01-01

    After the transplantation of rat primary muscle cells into the caudate or cortex of recipient rats, the muscle cells were able to persist for at least 6 months. Muscle cells transfected with expression plasmids prior to transplantation were able to express reporter genes in the brains for at least 2 months. These results suggest that muscle cells might be a useful 'platform' for transgene expression in the brain.

  17. Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals.

    PubMed

    Bröhl, Dominique; Vasyutina, Elena; Czajkowski, Maciej T; Griger, Joscha; Rassek, Claudia; Rahn, Hans-Peter; Purfürst, Bettina; Wende, Hagen; Birchmeier, Carmen

    2012-09-11

    Skeletal muscle growth and regeneration rely on myogenic progenitor and satellite cells, the stem cells of postnatal muscle. Elimination of Notch signals during mouse development results in premature differentiation of myogenic progenitors and formation of very small muscle groups. Here we show that this drastic effect is rescued by mutation of the muscle differentiation factor MyoD. However, rescued myogenic progenitors do not assume a satellite cell position and contribute poorly to myofiber growth. The disrupted homing is due to a deficit in basal lamina assembly around emerging satellite cells and to their impaired adhesion to myofibers. On a molecular level, emerging satellite cells deregulate the expression of basal lamina components and adhesion molecules like integrin α7, collagen XVIIIα1, Megf10, and Mcam. We conclude that Notch signals control homing of satellite cells, stimulating them to contribute to their own microenvironment and to adhere to myofibers.

  18. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells.

    PubMed

    Taylor, W E; Bhasin, S; Artaza, J; Byhower, F; Azam, M; Willard, D H; Kull, F C; Gonzalez-Cadavid, N

    2001-02-01

    Myostatin mutations in mice and cattle are associated with increased muscularity, suggesting that myostatin is a negative regulator of skeletal muscle mass. To test the hypothesis that myostatin inhibits muscle cell growth, we examined the effects of recombinant myostatin in mouse skeletal muscle C2C12 cells. After verification of the expression of cDNA constructs in a cell-free system and in transfected Chinese hamster ovary cells, the human recombinant protein was expressed as the full-length (375-amino acid) myostatin in Drosophila cells (Mst375D), or the 110-amino acid carboxy-terminal protein in Escherichia coli (Mst110EC). These proteins were identified by immunoblotting and were purified. Both Mst375D and Mst110EC dose dependently inhibited cell proliferation (cell count and Formazan assay), DNA synthesis ([3H]thymidine incorporation), and protein synthesis ([1-14C]leucine incorporation) in C2C12 cells. The inhibitory effects of both proteins were greater in myotubes than in myoblasts. Neither protein had any significant effects on protein degradation or apoptosis. In conclusion, recombinant myostatin proteins inhibit cell proliferation, DNA synthesis, and protein synthesis in C2C12 muscle cells, suggesting that myostatin may control muscle mass by inhibiting muscle growth or regeneration.

  19. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  20. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  1. Continuous human cell lines and method of making same

    SciTech Connect

    Stampfer, M.R.

    1989-02-28

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. No Drawings

  2. Necdin enhances muscle reconstitution of dystrophic muscle by vessel-associated progenitors, by promoting cell survival and myogenic differentiation.

    PubMed

    Pessina, P; Conti, V; Tonlorenzi, R; Touvier, T; Meneveri, R; Cossu, G; Brunelli, S

    2012-05-01

    Improving stem cell therapy is a major goal for the treatment of muscle diseases, where physiological muscle regeneration is progressively exhausted. Vessel-associated stem cells, such as mesoangioblasts (MABs), appear to be the most promising cell type for the cell therapy for muscular dystrophies and have been shown to significantly contribute to restoration of muscle structure and function in different muscular dystrophy models. Here, we report that melanoma antigen-encoding gene (MAGE) protein necdin enhances muscle differentiation and regeneration by MABs. When necdin is constitutively overexpressed, it accelerates their differentiation and fusion in vitro and it increases their efficacy in reconstituting regenerating myofibres in the α-sarcoglycan dystrophic mouse. Moreover, necdin enhances survival when MABs are exposed to cytotoxic stimuli that mimic the inflammatory dystrophic environment. Taken together, these data demonstrate that overexpression of necdin may be a crucial tool to boost therapeutic applications of MABs in dystrophic muscle.

  3. Contribution of synovial lining cells to synovial vascularization of the rat temporomandibular joint.

    PubMed

    Nozawa-Inoue, Kayoko; Harada, Fumiko; Magara, Jin; Ohazama, Atsushi; Maeda, Takeyasu

    2016-03-01

    The lining layer of the synovial membrane in the temporomandibular joint (TMJ) contains two types of lining cells: macrophage-like type A and fibroblast-like type B cells. The type B cells are particularly heterogeneous in their morphology and immunoreactivity, so that details of their functions remain unclear. Some of the type B cells exhibit certain resemblances in their ultrastructure to those of an activated capillary pericyte at the initial stage of the angiogenesis. The articular surface, composed of cartilage and the disc in the TMJ, has few vasculatures, whereas the synovial lining layer is richly equipped with blood capillaries to produce the constituent of synovial fluid. The present study investigated at both the light and electron microscopic levels the immunocytochemical characteristics of the synovial lining cells in the adult rat TMJ, focusing on their contribution to the synovial vascularization. It also employed an intravascular perfusion with Lycopersicon esculentum (tomato) lectin to identify functional vessels in vivo. Results showed that several type B cells expressed desmin, a muscle-specific intermediate filament which is known as the earliest protein to appear during myogenesis as well as being a marker for the immature capillary pericyte. These desmin-positive type B cells showed immunoreactions for vimentin and pericyte markers (neuron-glial 2; NG2 and PDGFRβ) but not for the other markers of myogenic cells (MyoD and myogenin) or a contractile apparatus (αSMA and caldesmon). Immunoreactivity for RECA-1, an endothelial marker, was observed in the macrophage-like type A cells. The arterioles and venules inside the synovial folds extended numerous capillaries with RECA-1-positive endothelial cells and desmin-positive pericytes to distribute densely in the lining layer. The distal portion of these capillaries showing RECA-1-immunoreactivity lacked lectin-staining, indicating a loss of blood-circulation due to sprouting or termination in the

  4. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  5. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  6. Susceptibilities of 14 cell lines to bluetongue virus infection.

    PubMed Central

    Wechsler, S J; McHolland, L E

    1988-01-01

    The effect of bluetongue virus (BTV) infection was investigated in 14 cell lines. The cell lines included the following vertebrate cells: baby hamster kidney, African green monkey kidney (Vero), rabbit kidney, bovine kidney, canine kidney, bovine turbinate, bovine endothelium (CPAE), bighorn sheep tongue, equine dermis, gekko lung, rainbow trout gonad, and mouse fibroblast (L929); they also included the following invertebrate lines: mosquito and biting midge. Comparisons between the cell lines were made on the basis of time to observed cytopathic effects, titer in 50% tissue culture infectious doses, and titer in plaque-forming units. The CPAE cell line produced the highest BTV 50% tissue culture infectious dose of all cell lines tested. The Vero and L929 cells gave the most discrete plaques in plaque assays. Of the 14 cell lines tested, the CPAE cells were the most susceptible to both cell culture-adapted and animal source BTV. Bovine endothelial cells demonstrate significant potential as a cell culture system for BTV investigations. PMID:2853175

  7. Co-cultivation of human aortic smooth muscle cells with epicardial adipocytes affects their proliferation rate.

    PubMed

    Ždychová, J; Čejková, S; Králová Lesná, I; Králová, A; Malušková, J; Janoušek, L; Kazdová, L

    2014-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMC) is thought to play a role in the pathogenesis of atherosclerosis. Adipocytes produce several bioactive paracrine substances that can affect the growth and migration of VSMCs. Our study focuses on the direct effect of the bioactive substances in conditioned media (CM) that was obtained by incubation with primary adipocyte-derived cell lines, including cell lines derived from both preadipocytes and from more mature cells, on the proliferation rate of human aortic smooth muscle cells (HAoSMCs). We used a Luminex assay to measure the adipokine content of the CM and showed that there was a higher concentration of monocyte chemoattractant protein-1 in renal preadipocyte-CM compared with the HAoSMC control (p<0.5). The addition of both renal preadipocyte- and epicardial adipocyte- CM resulted in the elevated production of vascular endothelial growth factor compared with the control HASoSMC CM (p<0.001). The adiponectin content in renal adipocyte-CM was increased compared to all the remaining adipocyte-CM (p<0.01). Moreover, the results showed a higher proliferation rate of HAoSMCs after co-culture with epicardial adipocyte-CM compared to the HAoSMC control (p<0.05). These results suggest that bioactive substances produced by adipocytes have a stimulatory effect on the proliferation of VSMCs.

  8. Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve

    PubMed Central

    Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Feinberg, Adam W.

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031

  9. Vascular Calcification: Mechanisms of Vascular Smooth Muscle Cell Calcification

    PubMed Central

    Leopold, Jane A.

    2014-01-01

    Vascular calcification is highly prevalent and, when present, is associated with major adverse cardiovascular events. Vascular smooth muscle cells play an integral role in mediating vessel calcification by undergoing differentiation to osteoblast-like cells and generating matrix vesicles that serve as a nidus for calcium-phosphate deposition in the vessel wall. Once believed to be a passive process, it is now recognized that vascular calcification is a complex and highly regulated process that involves activation of cellular signaling pathways, circulating inhibitors of calcification, genetic factors, and hormones. This review will examine several of the key mechanisms linking vascular smooth muscle cells to vessel calcification that may be targeted to reduce vessel wall mineralization and, thereby, reduce cardiovascular risk. PMID:25435520

  10. Signalling functions of alpha-tocopherol in smooth muscle cells.

    PubMed

    Azzi, A; Boscoboinik, D; Clément, S; Ozer, N K; Ricciarelli, R; Stocker, A; Tasinato, A; Sirikçi, O

    1997-01-01

    alpha-Tocopherol but not beta-tocopherol, activates protein phosphatase 2A, decreases protein kinase C activity and attenuates smooth muscle cell proliferation at physiological concentrations. beta-Tocopherol prevents the effects of alpha-tocopherol. Inhibition of protein kinase C alpha, but not of the other isoforms, by the inhibitor Gö6976 prevents the effect of alpha-tocopherol. Protein kinase C alpha, immunoprecipitated from alpha-tocopherol treated cells, is less phosphorylated and inactive. It is proposed that the specific activation of protein phosphatase 2A by alpha-tocopherol results in dephosphorylation and inactivation of protein kinase C alpha. Finally, this cascade of events leads to smooth muscle cell proliferation inhibition.

  11. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  12. Transdifferentiation of human endothelial progenitors into smooth muscle cells.

    PubMed

    Ji, HaYeun; Atchison, Leigh; Chen, Zaozao; Chakraborty, Syandan; Jung, Youngmee; Truskey, George A; Christoforou, Nicolas; Leong, Kam W

    2016-04-01

    Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD. The EPC undergo a cytoskeletal rearrangement resembling that of mesenchymal cells within 3 days post initiation of MYOCD expression. By day 7, the reprogrammed cells show upregulation of smooth muscle markers ACTA2, MYH11, and TAGLN by qRT-PCR and ACTA2 and MYH11 expression by immunofluorescence. By two weeks, they resemble umbilical artery SMC in microarray gene expression analysis. The iSMC, in contrast to EPC control, show calcium transients in response to phenylephrine stimulation and a contractility an order of magnitude higher than that of EPC as determined by traction force microscopy. Tissue-engineered blood vessels constructed using iSMC show functionality with respect to flow- and drug-mediated vasodilation and vasoconstriction.

  13. Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype

    PubMed Central

    Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.

    2016-01-01

    Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658

  14. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Krämer, Stefanie D; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M

    2016-09-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally

  15. Re-characterization of established human retinoblastoma cell lines.

    PubMed

    Busch, Maike; Philippeit, Claudia; Weise, Andreas; Dünker, Nicole

    2015-03-01

    Retinoblastoma (RB) is the most common malignant intraocular childhood tumor. Forty years after their first description, in the present study, we re-characterized seven established retinoblastoma cell lines with regard to their RB1 mutation status, morphology, growth pattern, endogenous apoptosis levels, colony formation efficiency in soft agar and invasiveness and dissemination capacity in chick chorioallantoic membrane (CAM) assays. All RB cell lines predominantly resemble small epithelioid cells with little cytoplasm and large nucleus, which mainly grow in cell clusters, but sometimes form chain-like structures with incident loops or three-dimensional aggregates. We observed different growth rates for the different retinoblastoma cells investigated. RBL-30, RBL-13 and RBL 383 cells grew very slowly, whereas Y-79 cells grew fastest under our culture conditions. Apoptosis rates likewise differed with highest cell death levels in RB 383 and RB 355 and lowest in WERI-Rb1 and RBL-15. Contradicting former reports, six of the seven RB cell lines analyzed were able to form colonies in soft agarose after single cell seeding within 3 weeks of incubation. Upon inoculation of four out of seven RB cell lines on the dorsal CAM, GFP-positive cells were detectable in the ventral CAM and two RB cell lines caused tumor development, indicating their intravasation and dissemination potential. All RB cell lines exhibited the potential to extravasate from the capillary system after intravenous CAM injection. Our study provides valuable new details for future therapy-related retinoblastoma basic research in vitro.

  16. The pursuit of ES cell lines of domesticated ungulates

    USDA-ARS?s Scientific Manuscript database

    In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines...

  17. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  18. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  19. Regenerative potential of human muscle stem cells in chronic inflammation

    PubMed Central

    2011-01-01

    Introduction Chronic inflammation is a profound systemic modification of the cellular microenvironment which could affect survival, repair and maintenance of muscle stem cells. The aim of this study was to define the role of chronic inflammation on the regenerative potential of satellite cells in human muscle. Methods As a model for chronic inflammation, 11 patients suffering from rheumatoid arthritis (RA) were included together with 16 patients with osteoarthritis (OA) as controls. The mean age of both groups was 64 years, with more females in the RA group compared to the OA group. During elective knee replacement surgery, a muscle biopsy was taken from the distal musculus vastus medialis. Cell populations from four RA and eight OA patients were used for extensive phenotyping because these cell populations showed no spontaneous differentiation and myogenic purity greater than 75% after explantation. Results After mononuclear cell explantation, myogenic purity, viability, proliferation index, number of colonies, myogenic colonies, growth speed, maximum number of population doublings and fusion index were not different between RA and OA patients. Furthermore, the expression of proteins involved in replicative and stress-induced premature senescence and apoptosis, including p16, p21, p53, hTERT and cleaved caspase-3, was not different between RA and OA patients. Mean telomere length was shorter in the RA group compared to the OA group. Conclusions In the present study we found evidence that chronic inflammation in RA does not affect the in vitro regenerative potential of human satellite cells. Identification of mechanisms influencing muscle regeneration by modulation of its microenvironment may, therefore, be more appropriate. PMID:22171690

  20. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  1. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  2. Cell and molecular biology of SAE, a cell line from the spiny dogfish shark, Squalus acanthias.

    PubMed

    Parton, Angela; Forest, David; Kobayashi, Hiroshi; Dowell, Lori; Bayne, Christopher; Barnes, David

    2007-02-01

    Cartilaginous fish, primarily sharks, rays and skates (elasmobranchs), appeared 450 million years ago. They are the most primitive vertebrates, exhibiting jaws and teeth, adaptive immunity, a pressurized circulatory system, thymus, spleen, and a liver comparable to that of humans. The most used elasmobranch in biomedical research is the spiny dogfish shark, Squalus acanthias. Comparative genomic analysis of the dogfish shark, the little skate (Leucoraja erincea), and other elasmobranchs have yielded insights into conserved functional domains of genes associated with human liver function, multidrug resistance, cystic fibrosis, and other biomedically relevant processes. While genomic information from these animals is informative in an evolutionary framework, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. We have derived the first multipassage, continuously proliferating cell line of a cartilaginous fish. The line was initiated from embryos of the spiny dogfish shark. The cells were maintained in a medium modified for fish species and supplemented with cell type-specific hormones, other proteins and sera, and plated on a collagen substrate. SAE cells have been cultured continuously for three years. These cells can be transfected by plasmids and have been cryopreserved. Expressed Sequence Tags generated from a normalized SAE cDNA library included a number of markers for cartilage and muscle, as well as proteins influencing tissue differentiation and development, suggesting that SAE cells may be of mesenchymal stem cell origin. Examination of SAE EST sequences also revealed a cartilaginous fish-specific repetitive sequence that may be evidence of an ancient mobile genetic element that most likely was introduced into the cartilaginous fish lineage after divergence from the lineage leading to teleosts.

  3. Modifiers of muscle and heart cell fate specification identified by gain-of-function screen in Drosophila.

    PubMed

    Bidet, Yannick; Jagla, Teresa; Da Ponte, Jean-Philippe; Dastugue, Bernard; Jagla, Krzysztof

    2003-09-01

    The homeobox genes ladybird in Drosophila and their vertebrate counterparts Lbx1 genes display restricted expression patterns in a subset of muscle precursors and are both implicated in diversification of muscle cell fates. In order to gain new insights into mechanisms controlling conserved aspects of cell fate specification, we have performed a gain-of-function (GOF) screen for modifiers of the mesodermal expression of ladybird genes using a collection of EP element carrying Drosophila lines. Amongst the identified genes, several have been previously implicated in cell fate specification processes, thus validating the strategy of our screen. Observed GOF phenotypes have led us to identification of an important number of candidate genes, whose myogenic and/or cardiogenic functions remain to be investigated. Amongst them, the EP insertions close to rhomboid, yan and rac2 suggest new roles for these genes in diversification of muscle and/or heart cell lineages. The analysis of loss and GOF of rhomboid and yan reveals their new roles in specification of ladybird-expressing precursors of adult muscles (LaPs) and ladybird/tinman-positive pericardial cells. Observed phenotypes strongly suggest that rhomboid and yan act at the level of progenitor and founder cells and contribute to the diversification of mesodermal fates. Our analysis of rac2 phenotypes clearly demonstrates that the altered mesodermal level of Rho-GTPase Rac2 can influence specification of a number of cardiac and muscular cell types including those expressing ladybird. Finding that in rac2 mutants ladybird and even skipped-positive muscle founders are overproduced, indicate a new early function for this gene during segregation of muscle progenitors and/or specification of founder cells. Intriguingly, rhomboid, yan and rac2 act as conserved components of Receptor Tyrosine Kinases (RTKs) signalling pathways, suggesting that RTK signalling constitutes a part of a conserved regulatory network governing

  4. Genistein suppresses smooth muscle cell-derived foam cell formation through tyrosine kinase pathway.

    PubMed

    Lin, Jinghan; Xu, Yi; Zhao, Tingting; Sun, Lina; Yang, Meimei; Liu, Tingjiao; Sun, Hui; Zhang, Liming

    2015-08-07

    Genistein, as a protein tyrosine kinase inhibitor, has been shown to possess anti-atherosclerotic effects. Since the smooth muscle cell-derived foam cells are key components of atherosclerotic plaques. The aim of this study is to investigate the influence of genistein on foam cell transformation from vascular smooth muscle cells and possible mechanisms contributing to these effects. Vascular smooth muscle cells exposed to ox-LDL developed into foam cell, as demonstrated by Oil Red O staining and cholesterol content analysis. Ox-LDL induced phenotype transformation of smooth muscle cells, decreased expression of α-actin and increased expression of CD68 (a specific marker for monocytes, can also function as a subtype of scavenger receptors). The expression of scavenger receptors CD36 and LOX-1 was measured, and their role in foam cell formation in the presence of genistein, daidzein (a structurally similar analogue of genistein) and herbimycin A (a commonly tyrosine kinase inhibitor). The results showed that foam cell formation was markedly reduced by genistein and herbimycin A, as well as the expression of CD68, CD36 and LOX-1. However, daidzein had no such effect. In addition, genistein-induced down-regulation of CD68, CD36 and LOX-1 could be reversed by sodium orthovanadate (a membrane-permeable protein tyrosine phosphatase inhibitor). The results showed that ox-LDL induce smooth muscle cell-derived foam cell formation and transform the phenotype of smooth muscle cell. While tyrosine kinase inhibitor, genistein could suppress smooth muscle cell-derived foam cell formation through inhibiting the protein expressions of CD68, CD36 and LOX-1. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Minimally Invasive Muscle Embedding (MIME) - A Novel Experimental Technique to Facilitate Donor-Cell-Mediated Myogenesis.

    PubMed

    Roche, Joseph A; Begam, Morium; Galen, Sujay S

    2017-08-24

    Skeletal muscle possesses regenerative capacity due to tissue-resident, muscle-fiber-generating (myogenic) satellite cells (SCs), which can form new muscle fibers under the right conditions. Although SCs can be harvested from muscle tissue and cultured in vitro, the resulting myoblast cells are not very effective in promoting myogenesis when transplanted into host muscle. Surgically exposing the host muscle and grafting segments of donor muscle tissue, or the isolated muscle fibers with their SCs onto host muscle, promotes better myogenesis compared to myoblast transplantation. We have developed a novel technique that we call Minimally Invasive Muscle Embedding (MIME). MIME involves passing a surgical needle through the host muscle, drawing a piece of donor muscle tissue through the needle track, and then leaving the donor tissue embedded in the host muscle so that it may act as a source of SCs for the host muscle. Here we describe in detail the steps involved in performing MIME in an immunodeficient mouse model that expresses a green fluorescent protein (GFP) in all of its cells. Immunodeficiency in the host mouse reduces the risk of immune rejection of the donor tissue, and GFP expression enables easy identification of the host muscle fibers (GFP+) and donor-cell-derived muscle fibers (GFP-). Our pilot data suggest that MIME can be used to implant an extensor digitorum longus (EDL) muscle from a donor mouse into the tibialis anterior (TA) muscle of a host mouse. Our data also suggest that when a myotoxin (barium chloride, BaCl2) is injected into the host muscle after MIME, there is evidence of donor-cell-derived myogenesis in the host muscle, with approximately 5%, 26%, 26% and 43% of the fibers in a single host TA muscle showing no host contribution, minimal host contribution, moderate host contribution, and maximal host contribution, respectively.

  6. Efficient single muscle fiber isolation from alcohol-fixed adult muscle following β-galactosidase staining for satellite cell detection.

    PubMed

    Verma, Mayank; Asakura, Atsushi

    2011-01-01

    Staining for β-galactosidase activity for whole tissues, sections, and cells is a common method to detect expression of β-galactosidase reporter transgene as well as senescence-dependent β-galactosidase activity. Choice of fixatives is a critical step for detection of β-galactosidase activity, subsequent immunostaining, and enzymatic digestion of tissue to dissociate cells. In this report, the authors examined several aldehyde and alcohol fixatives in mouse skeletal muscle tissues for their efficiency at improving detection of β-galactosidase activity as well as detection by immunostaining. In addition, fixatives were also analyzed for their efficiency for collagenase digestion to isolate single muscle fibers on postfixed β-galactosidase-stained whole skeletal muscle tissues. The results show that fixing cells with isopropanol yields the greatest reliability and intensity in both β-galactosidase staining as well as double staining for β-galactosidase activity and antibodies. In addition, isopropanol and ethanol, but not glutaraldehyde or paraformaldehyde, allow for the isolation of single muscle fibers from the diaphragm and tibialis anterior muscles following postfixed β-galactosidase staining. Using this method, it is possible to identify the amount of cells that occupy the satellite cell compartment in single muscle fibers prepared from any muscle tissues, including tibialis anterior muscle and diaphragm.

  7. Expansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration.

    PubMed

    Yokota, Toshifumi; Lu, Qi-Long; Morgan, Jennifer E; Davies, Kay E; Fisher, Rosie; Takeda, Shin'ichi; Partridge, Terence A

    2006-07-01

    Duchenne muscular dystrophy and the mdx mouse myopathies reflect a lack of dystrophin in muscles. However, both contain sporadic clusters of revertant fibers (RFs) that express dystrophin. RF clusters expand in size with age in mdx mice. To test the hypothesis that the expansion of clusters is achieved through the process of muscle degeneration and regeneration, we analyzed muscles of mdx mice in which degeneration and regeneration were inhibited by the expression of micro-dystrophins or utrophin transgenes. Postnatal RF expansion was diminished in direct correlation to the protective effect of the transgene expression. Similarly, expansion of RFs was inhibited when muscle regeneration was blocked by irradiation. However, in irradiated muscles, irradiation-tolerant quiescent muscle precursor cells reactivated by notexin effectively restored RF expansion. Our observations demonstrate that revertant events occur initially within a subset of muscle precursor cells. The proliferation of these cells, as part of the regeneration process, leads to the expansion of RF clusters within degenerating muscles. This expansion of revertant clusters depicts the cumulative history of regeneration, thus providing a useful index for functional evaluation of therapies that counteract muscle degeneration.

  8. Excitation—contraction coupling in amphioxus muscle cells

    PubMed Central

    Hagiwara, S.; Henkart, Maryanna P.; Kidokoro, Y.

    1971-01-01

    1. Excitation-contraction coupling was studied in myotomal muscles of amphioxus, Branchiostoma californiense. 2. The action potential of a muscle cell produces a twitch with a rise time of 30-40 msec at 11° C and its Q10 is about 2·2. 3. The twitch increases in amplitude with increasing external Ca concentration and is abolished in Ca-free saline (1 mM-EGTA and 55·7 mM-MgCl2); the twitch amplitude is suppressed by Co or La ions. 4. Caffeine at concentrations above 1 mM in the external saline causes a prolongation of the action potential and a contracture which lasts several minutes. 5. After exposure to caffeine the responsiveness of the muscle to subsequent applications of caffeine recovers in normal saline in 20-30 minutes but not in Ca-free saline. 6. The amplitude of the caffeine contracture is independent of the external Ca concentration and is unaltered after the twitch is eliminated in Ca-free saline. 7. After exposure to caffeine a full-sized twitch can be obtained before the responsiveness to caffeine shows any significant recovery. 8. It is concluded that the twitch is produced by the Ca influx resulting from the increased permeability of the muscle cell membrane to Ca during the action potential and that the Ca mobilized by caffein