Sample records for muscle force development

  1. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  2. A Phenomenological Model and Validation of Shortening Induced Force Depression during Muscle Contractions

    PubMed Central

    McGowan, C.P.; Neptune, R.R.; Herzog, W.

    2009-01-01

    History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error < 1.5 N) and force depression in the simulated leg extension exercise being similar in magnitude to experimental values (6.0% vs 6.5%, respectively). To examine the influence of force depression on locomotor performance, simulations of maximum power pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585

  3. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    PubMed

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days gestation in both muscle types and there was no difference between the Ca(2+)- and Sr(2+)-activated force throughout development.

  4. Muscle force depends on the amount of transversal muscle loading.

    PubMed

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  6. Skeletal muscle is a biological example of a linear electroactive actuator

    NASA Astrophysics Data System (ADS)

    Lieber, Richard L.

    1999-05-01

    Skeletal muscle represents a classic biological example of a structure-function relationship. This paper reviews basic muscle anatomy and demonstrates how molecular motion on the order of nm distances is converted into the macroscopic movements that are possible with skeletal muscle. Muscle anatomy provides a structural basis for understanding the basic mechanical properties of skeletal muscle -- namely, the length-tension relationship and the force-velocity relationships. The length-tension relationship illustrates that muscle force generation is extremely length dependent due to the interdigitation of the contractile filaments. The force-velocity relationship is characterized by a rapid force drop in muscle with increasing shortening velocity and a rapid rise in force when muscles are forced to lengthen. Finally, muscle architecture -- the number and arrangement of muscle fibers -- has a profound effect on the magnitude of muscle force generated and the magnitude of muscle excursion. These concepts demonstrate the elegant manner in which muscle acts as a biologically regenerating linear motor. These concepts can be used in developing artificial muscles as well as in performing surgical reconstructive procedures with various donor muscles.

  7. Developing a musculoskeletal model of the primate skull: predicting muscle activations, bite force, and joint reaction forces using multibody dynamics analysis and advanced optimisation methods.

    PubMed

    Shi, Junfen; Curtis, Neil; Fitton, Laura C; O'Higgins, Paul; Fagan, Michael J

    2012-10-07

    An accurate, dynamic, functional model of the skull that can be used to predict muscle forces, bite forces, and joint reaction forces would have many uses across a broad range of disciplines. One major issue however with musculoskeletal analyses is that of muscle activation pattern indeterminacy. A very large number of possible muscle force combinations will satisfy a particular functional task. This makes predicting physiological muscle recruitment patterns difficult. Here we describe in detail the process of development of a complex multibody computer model of a primate skull (Macaca fascicularis), that aims to predict muscle recruitment patterns during biting. Using optimisation criteria based on minimisation of muscle stress we predict working to balancing side muscle force ratios, peak bite forces, and joint reaction forces during unilateral biting. Validation of such models is problematic; however we have shown comparable working to balancing muscle activity and TMJ reaction ratios during biting to those observed in vivo and that peak predicted bite forces compare well to published experimental data. To our knowledge the complexity of the musculoskeletal model is greater than any previously reported for a primate. This complexity, when compared to more simple representations provides more nuanced insights into the functioning of masticatory muscles. Thus, we have shown muscle activity to vary throughout individual muscle groups, which enables them to function optimally during specific masticatory tasks. This model will be utilised in future studies into the functioning of the masticatory apparatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  9. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders

    PubMed Central

    Smith, Rosamund C.; Lin, Boris K.

    2013-01-01

    Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714

  10. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.

    PubMed

    Smith, Rosamund C; Lin, Boris K

    2013-12-01

    This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.

  11. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  12. Intramuscular fiber conduction velocity, isometric force and explosive performance.

    PubMed

    Methenitis, Spyridon; Terzis, Gerasimos; Zaras, Nikolaos; Stasinaki, Angeliki-Nikoletta; Karandreas, Nikolaos

    2016-06-01

    Conduction of electrical signals along the surface of muscle fibers is acknowledged as an essential neuromuscular component which is linked with muscle force production. However, it remains unclear whether muscle fiber conduction velocity (MFCV) is also linked with explosive performance. The aim of the present study was to investigate the relationship between vastus lateralis MFCV and countermovement jumping performance, the rate of force development and maximum isometric force. Fifteen moderately-trained young females performed countermovement jumps as well as an isometric leg press test in order to determine the rate of force development and maximum isometric force. Vastus lateralis MFCV was measured with intramuscular microelectrodes at rest on a different occasion. Maximum MFCV was significantly correlated with maximum isometric force (r = 0.66, p < 0.01), nevertheless even closer with the leg press rate of force development at 100 ms, 150 ms, 200 ms, and 250 ms (r = 0.85, r = 0.89, r = 0.91, r = 0.92, respectively, p < 0.01). Similarly, mean MFCV and type II MFCV were better correlated with the rate of force development than with maximum isometric leg press force. Lower, but significant correlations were found between mean MFCV and countermovement jump power (r = 0.65, p < 0.01). These data suggest that muscle fiber conduction velocity is better linked with the rate of force development than with isometric force, perhaps because conduction velocity is higher in the larger and fastest muscle fibers which are recognized to contribute to explosive actions.

  13. Additional in-series compliance reduces muscle force summation and alters the time course of force relaxation during fixed-end contractions.

    PubMed

    Mayfield, Dean L; Launikonis, Bradley S; Cresswell, Andrew G; Lichtwark, Glen A

    2016-11-15

    There are high mechanical demands placed on skeletal muscles in movements requiring rapid acceleration of the body or its limbs. Tendons are responsible for transmitting muscle forces, but, because of their elasticity, can manipulate the mechanics of the internal contractile apparatus. Shortening of the contractile apparatus against the stretch of tendon affects force generation according to known mechanical properties; however, the extent to which differences in tendon compliance alter force development in response to a burst of electrical impulses is unclear. To establish the influence of series compliance on force summation, we studied electrically evoked doublet contractions in the cane toad peroneus muscle in the presence and absence of a compliant artificial tendon. Additional series compliance reduced tetanic force by two-thirds, a finding predicted based on the force-length property of skeletal muscle. Doublet force and force-time integral expressed relative to the twitch were also reduced by additional series compliance. Active shortening over a larger range of the ascending limb of the force-length curve and at a higher velocity, leading to a progressive reduction in force-generating potential, could be responsible. Muscle-tendon interaction may also explain the accelerated time course of force relaxation in the presence of additional compliance. Our findings suggest that a compliant tendon limits force summation under constant-length conditions. However, high series compliance can be mechanically advantageous when a muscle-tendon unit is actively stretched, permitting muscle fibres to generate force almost isometrically, as shown during stretch-shorten cycles in locomotor activities. Restricting active shortening would likely favour rapid force development. © 2016. Published by The Company of Biologists Ltd.

  14. The origin and development of malocclusions. When, where and how dental malocclusions develop.

    PubMed

    Loudon, Merle E

    2013-01-01

    This article describes the forces of the muscles from the stomatonathic system and how they interact in many children to change the normal forces of growth. Because of this change in muscle forces there is a change from normal teeth and bone growth positions to abnormal positions. These normal and/or abnormal changes in muscle forces are the basis for development into class one, class two and class three occlusions. This is very valuable information for the orthodontic clinician because these muscle forces are the fundamental basis for all orthodontic treatment. By knowing this an orthodontic clinician will be more able to diagnose and treat a malocclusion. This is exceptionally important for the dentist who is just starting to learn diagnosis, treatment planning, functional and fixed orthodontic treatment.

  15. Development of mapped stress-field boundary conditions based on a Hill-type muscle model.

    PubMed

    Cardiff, P; Karač, A; FitzPatrick, D; Flavin, R; Ivanković, A

    2014-09-01

    Forces generated in the muscles and tendons actuate the movement of the skeleton. Accurate estimation and application of these musculotendon forces in a continuum model is not a trivial matter. Frequently, musculotendon attachments are approximated as point forces; however, accurate estimation of local mechanics requires a more realistic application of musculotendon forces. This paper describes the development of mapped Hill-type muscle models as boundary conditions for a finite volume model of the hip joint, where the calculated muscle fibres map continuously between attachment sites. The applied muscle forces are calculated using active Hill-type models, where input electromyography signals are determined from gait analysis. Realistic muscle attachment sites are determined directly from tomography images. The mapped muscle boundary conditions, implemented in a finite volume structural OpenFOAM (ESI-OpenCFD, Bracknell, UK) solver, are employed to simulate the mid-stance phase of gait using a patient-specific natural hip joint, and a comparison is performed with the standard point load muscle approach. It is concluded that physiological joint loading is not accurately represented by simplistic muscle point loading conditions; however, when contact pressures are of sole interest, simplifying assumptions with regard to muscular forces may be valid. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Structural limits on force production and shortening of smooth muscle.

    PubMed

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements determine their mechanical behavior, and how this is potentially modified by remodeling that occurs in disease and in response to changes in functional demand.

  17. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle

    PubMed Central

    1980-01-01

    High-energy phosphate utilization (delta approximately P) associated with force development, force maintenance, and relaxation has been determined during single isometric tetani in the rabbit taenia coli. ATP resynthesis from glycolysis and respiration was stopped without deleterious effects on the muscle. At 18 degrees C and a muscle length of 95% l0, the resting rate of energy utilization is 1.8 +/- 0.2 nmol/g . s-1, or 0.85 +/- 0.2 mmol approximately P/mol of total creatine (Ct) . s-1, where Ct = 2.7 mumol/g wet wt. During the initial 25 s of stimulation when force is developed, the average rate of delta approximately P was -8.2 +/- 0.8 mmol/mol Ct . s-1, some four times greater than during the subsequent 35 s of force maintenance, when the rate was -2.0 +/- 0.6 mmol approximately P/mol Ct . s-1. The energy cost of force redevelopment (0 to 95% P0) after a quick release from the peak of a tetanus is very low compared with the initial force development. Therefore, the high rate of energy utilization during force development is not due only to internal work done against the series elasticity nor to any high rate of cross-bridge cycling inherently associated with force development. The high economy of force maintenance compared with other muscle types is undoubtedly due to a slower cross-bridge cycle time. The energy utilization during 45 s of relaxation was not statistically significant, and integral of Pdt/delta approximately P was higher during relaxation than during force maintenance in the stimulated muscle. PMID:6969290

  18. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  19. Intra- and Inter-Rater Reliability of the Rate of Force Development of Hip Abductor Muscles Measured by Hand-Held Dynamometer

    ERIC Educational Resources Information Center

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Nagai, Tomoko; Sakurai, Hiroaki; Kanada, Yoshikiyo; Shomoto, Koji

    2018-01-01

    The aim of this study was to clarify the intra- and inter-rater reliability of the rate of force development in hip abductor muscle force measurements using a hand-held dynamometer. Thirty healthy adults were separately assessed by two independent raters on two separate days. Rate of force development was calculated from the slope of the…

  20. Variable camber wing based on pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  1. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    PubMed

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  2. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone

    PubMed Central

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-01-01

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy. PMID:28952535

  3. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  4. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  5. Development of Postural Muscles and Their Innervation

    PubMed Central

    IJkema-Paassen, J.; Gramsbergen, A.

    2005-01-01

    Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482

  6. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  7. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings.

    PubMed

    Mokhtarzadeh, Hossein; Perraton, Luke; Fok, Laurence; Muñoz, Mario A; Clark, Ross; Pivonka, Peter; Bryant, Adam L

    2014-09-22

    The aim of this paper was to compare the effect of different optimisation methods and different knee joint degrees of freedom (DOF) on muscle force predictions during a single legged hop. Nineteen subjects performed single-legged hopping manoeuvres and subject-specific musculoskeletal models were developed to predict muscle forces during the movement. Muscle forces were predicted using static optimisation (SO) and computed muscle control (CMC) methods using either 1 or 3 DOF knee joint models. All sagittal and transverse plane joint angles calculated using inverse kinematics or CMC in a 1 DOF or 3 DOF knee were well-matched (RMS error<3°). Biarticular muscles (hamstrings, rectus femoris and gastrocnemius) showed more differences in muscle force profiles when comparing between the different muscle prediction approaches where these muscles showed larger time delays for many of the comparisons. The muscle force magnitudes of vasti, gluteus maximus and gluteus medius were not greatly influenced by the choice of muscle force prediction method with low normalised root mean squared errors (<48%) observed in most comparisons. We conclude that SO and CMC can be used to predict lower-limb muscle co-contraction during hopping movements. However, care must be taken in interpreting the magnitude of force predicted in the biarticular muscles and the soleus, especially when using a 1 DOF knee. Despite this limitation, given that SO is a more robust and computationally efficient method for predicting muscle forces than CMC, we suggest that SO can be used in conjunction with musculoskeletal models that have a 1 or 3 DOF knee joint to study the relative differences and the role of muscles during hopping activities in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery

    PubMed Central

    McClung, Joseph M.; DeRuisseau, Keith C.; Whidden, Melissa A.; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S.; Powers, Scott K.

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force–frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm−2) at stimulation frequencies of 20–300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in μm2) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with contractile dysfunction. Finally, the transgenic overexpression of independent endogenous antioxidants alters diaphragm skeletal muscle morphology, and these changes may also contribute to the diminished specific force production observed in these animals. PMID:19783618

  9. Relative fascicle excursion effects on dynamic strength generation during gait in children with cerebral palsy.

    PubMed

    Martín Lorenzo, T; Lerma Lara, S; Martínez-Caballero, I; Rocon, E

    2015-10-01

    Evaluation of muscle structure gives us a better understanding of how muscles contribute to force generation which is significantly altered in children with cerebral palsy (CP). While most muscle structure parameters have shown to be significantly correlated to different expressions of strength development in children with CP and typically developing (TD) children, conflicting results are found for muscle fascicle length. Muscle fascicle length determines muscle excursion and velocity, and contrary to what might be expected, correlations of fascicle length to rate of force development have not been found for children with CP. The lack of correlation between muscle fascicle length and rate of force development in children with CP could be due, on the one hand, to the non-optimal joint position adopted for force generation on the isometric strength tests as compared to the position of TD children. On the other hand, the lack of correlation could be due to the erroneous assumption that muscle fascicle length is representative of sarcomere length. Thus, the relationship between muscle architecture parameters reflecting sarcomere length, such as relative fascicle excursions and dynamic power generation, should be assessed. Understanding of the underlying mechanisms of weakness in children with CP is key for individualized prescription and assessment of muscle-targeted interventions. Findings could imply the detection of children operating on the descending limb of the sarcomere length-tension curve, which in turn might be at greater risk of developing crouch gait. Furthermore, relative muscle fascicle excursions could be used as a predictive variable of outcomes related to crouch gait prevention treatments such as strength training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. EMG analysis tuned for determining the timing and level of activation in different motor units

    PubMed Central

    Lee, Sabrina S.M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2011-01-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94Hz and 323.13Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98 to 0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. PMID:21570317

  11. EMG analysis tuned for determining the timing and level of activation in different motor units.

    PubMed

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cross-bridge kinetics, cooperativity, and negatively strained cross- bridges in vertebrate smooth muscle. A laser-flash photolysis study

    PubMed Central

    1988-01-01

    The effects of laser-flash photolytic release of ATP from caged ATP [P3- 1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross- bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross- bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle. PMID:3373178

  13. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies

    PubMed Central

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages. PMID:26114955

  14. CK-2127107 amplifies skeletal muscle response to nerve activation in humans.

    PubMed

    Andrews, Jinsy A; Miller, Timothy M; Vijayakumar, Vipin; Stoltz, Randall; James, Joyce K; Meng, Lisa; Wolff, Andrew A; Malik, Fady I

    2018-05-01

    Three studies evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of CK-2127107 (CK-107), a next-generation fast skeletal muscle troponin activator (FSTA), in healthy participants. We tested the hypothesis that CK-107 would amplify the force-frequency response of muscle in humans. To assess the force-frequency response, participants received single doses of CK-107 and placebo in a randomized, double-blind, 4-period, crossover study. The force-frequency response of foot dorsiflexion following stimulation of the deep fibular nerve to activate the tibialis anterior muscle was assessed. CK-107 significantly increased tibialis anterior muscle response with increasing dose and plasma concentration in a frequency-dependent manner; the largest increase in peak force was ∼60% at 10 Hz. CK-107 appears more potent and produced larger increases in force than tirasemtiv-a first-generation FSTA-in a similar pharmacodynamic study, thereby supporting its development for improvement of muscle function of patients. Muscle Nerve 57: 729-734, 2018. © 2017 The Authors. Muscle & Nerve published by Wiley Periodicals, Inc.

  15. An attempt to bridge muscle architecture dynamics and its instantaneous rate of force development using ultrasonography.

    PubMed

    Li, Jizhou; Zhou, Yongjin; Zheng, Yong-Ping; Li, Guanglin

    2015-08-01

    Muscle force output is an essential index in rehabilitation assessment or physical exams, and could provide considerable insights for various applications such as load monitoring and muscle assessment in sports science or rehabilitation therapy. Besides direct measurement of force output using a dynamometer, electromyography has earlier been used in several studies to quantify muscle force as an indirect means. However, its spatial resolution is easily compromised as a summation of the action potentials from neighboring motor units of electrode site. To explore an alternative method to indirectly estimate the muscle force output, and with better muscle specificity, we started with an investigation on the relationship between architecture dynamics and force output of triceps surae. The muscular architecture dynamics is captured in ultrasonography sequences and estimated using a previously reported motion estimation method. Then an indicator named as the dorsoventrally averaged motion profile (DAMP) is employed. The performance of force output is represented by an instantaneous version of the rate of force development (RFD), namely I-RFD. From experimental results on ten normal subjects, there were significant correlations between the I-RFD and DAMP for triceps surae, both normalized between 0 and 1, with the sum of squares error at 0.0516±0.0224, R-square at 0.7929±0.0931 and root mean squared error at 0.0159±0.0033. The statistical significance results were less than 0.01. The present study suggested that muscle architecture dynamics extracted from ultrasonography during contraction is well correlated to the I-RFD and it can be a promising option for indirect estimation of muscle force output. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    DTIC Science & Technology

    2012-12-01

    isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were...development, we removed progres- sively larger amounts of muscle tissue followed by a mea- surement of maximal isometric force (Po). The final model, and...indicated by increased collagen deposition (Fig. 2). The scarred area and the area immediately adjacent to it contained disorganized muscle fibers

  17. Evaluating skeletal muscle electromechanical delay with intramuscular pressure.

    PubMed

    Go, Shanette A; Litchy, William J; Evertz, Loribeth Q; Kaufman, Kenton R

    2018-06-08

    Intramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD). Force, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated. A statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms). IMP reflects changes in muscle tension due to the contractile muscle elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A novel estimating method for steering efficiency of the driver with electromyography signals

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Ji, Xuewu; Hayama, Ryouhei; Mizuno, Takahiro

    2014-05-01

    The existing research of steering efficiency mainly focuses on the mechanism efficiency of steering system, aiming at designing and optimizing the mechanism of steering system. In the development of assist steering system especially the evaluation of its comfort, the steering efficiency of driver physiological output usually are not considered, because this physiological output is difficult to measure or to estimate, and the objective evaluation of steering comfort therefore cannot be conducted with movement efficiency perspective. In order to take a further step to the objective evaluation of steering comfort, an estimating method for the steering efficiency of the driver was developed based on the research of the relationship between the steering force and muscle activity. First, the steering forces in the steering wheel plane and the electromyography (EMG) signals of the primary muscles were measured. These primary muscles are the muscles in shoulder and upper arm which mainly produced the steering torque, and their functions in steering maneuver were identified previously. Next, based on the multiple regressions of the steering force and EMG signals, both the effective steering force and the total force capacity of driver in steering maneuver were calculated. Finally, the steering efficiency of driver was estimated by means of the estimated effective force and the total force capacity, which represented the information of driver physiological output of the primary muscles. This research develops a novel estimating method for driver steering efficiency of driver physiological output, including the estimation of both steering force and the force capacity of primary muscles with EMG signals, and will benefit to evaluate the steering comfort with an objective perspective.

  19. Rate of Force Development in the Handgripping Muscles by Females as a Function of Fatigue Level.

    ERIC Educational Resources Information Center

    Ewing, John L., Jr.; Stull, G. Alan

    1984-01-01

    This study determined the effects on the rate at which the handgripping muscles in college-age females develop force when they are fatigued to 80, 60, and 40 percent of their original maximal strength level. (JMK)

  20. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.

    PubMed

    Raikova, Rositsa; Aladjov, Hristo

    2003-06-01

    A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.

  1. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  2. Is titin a 'winding filament'? A new twist on muscle contraction.

    PubMed

    Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L

    2012-03-07

    Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.

  3. Is titin a ‘winding filament’? A new twist on muscle contraction

    PubMed Central

    Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.

    2012-01-01

    Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329

  4. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    PubMed Central

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be generated through load sharing among redundant muscles. The force vector maps are subject specific and also suitable in feedforward and feedback control taking the individual’s available workspace into account. With feedback, more accurate control of muscle force can be achieved. PMID:24103414

  5. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.

    PubMed

    Kia, Mohammad; Stylianou, Antonis P; Guess, Trent M

    2014-03-01

    Knowledge of the forces acting on musculoskeletal joint tissues during movement benefits tissue engineering, artificial joint replacement, and our understanding of ligament and cartilage injury. Computational models can be used to predict these internal forces, but musculoskeletal models that simultaneously calculate muscle force and the resulting loading on joint structures are rare. This study used publicly available gait, skeletal geometry, and instrumented prosthetic knee loading data [1] to evaluate muscle driven forward dynamics simulations of walking. Inputs to the simulation were measured kinematics and outputs included muscle, ground reaction, ligament, and joint contact forces. A full body musculoskeletal model with subject specific lower extremity geometries was developed in the multibody framework. A compliant contact was defined between the prosthetic femoral component and tibia insert geometries. Ligament structures were modeled with a nonlinear force-strain relationship. The model included 45 muscles on the right lower leg. During forward dynamics simulations a feedback control scheme calculated muscle forces using the error signal between the current muscle lengths and the lengths recorded during inverse kinematics simulations. Predicted tibio-femoral contact force, ground reaction forces, and muscle forces were compared to experimental measurements for six different gait trials using three different gait types (normal, trunk sway, and medial thrust). The mean average deviation (MAD) and root mean square deviation (RMSD) over one gait cycle are reported. The muscle driven forward dynamics simulations were computationally efficient and consistently reproduced the inverse kinematics motion. The forward simulations also predicted total knee contact forces (166N

  6. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.

    PubMed

    Mokhtarzadeh, Hossein; Yeow, Chen Hua; Goh, James Cho Hong; Oetomo, Denny; Ewing, Katie; Lee, Peter Vee Sin

    2017-10-01

    Knee injuries are common during landing activities. Greater landing height increases peak ground reaction forces (GRFs) and loading at the knee joint. As major muscles to stabilize the knee joint, Quadriceps and Hamstring muscles provide internal forces to attenuate the excessive GRF. Despite the number of investigations on the importance of muscle function during landing, the role of landing height on these muscles forces using modeling during landing is not fully investigated. Participant-specific musculoskeletal models were developed using experimental motion analysis data consisting of anatomic joint motions and GRF from eight male participants performing double-leg drop landing from 30 and 60 cm. Muscle forces were calculated in OpenSim and their differences were analyzed at the instances of high risk during landing i.e. peak GRF for both heights. The maximum knee flexion angle and moments were found significantly higher from a double-leg landing at 60 cm compared to 30 cm. The results showed elevated GRF, and mean muscle forces during landing. At peak GRF, only quadriceps showed significantly greater forces at 60 cm. Hamstring muscle forces did not significantly change at 60 cm compared to 30 cm. Quadriceps and hamstring muscle forces changed at different heights. Since hamstring forces were similar in both landing heights, this could lead to an imbalance between the antagonist muscles, potentially placing the knee at risk of injury if combined with small flexion angles that was not observed at peak GRF in our study. Thus, enhanced neuromuscular training programs strengthening the hamstrings may be required to address this imbalance. These findings may contribute to enhance neuromuscular training programs to prevent knee injuries during landing.

  7. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  8. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    PubMed

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  9. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  10. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.

    PubMed

    Marcucci, Lorenzo; Reggiani, Carlo; Natali, Arturo N; Pavan, Piero G

    2017-12-01

    Muscles exhibit highly complex, multi-scale architecture with thousands of muscle fibers, each with different properties, interacting with each other and surrounding connective structures. Consequently, the results of single-fiber experiments are scarcely linked to the macroscopic or whole muscle behavior. This is especially true for human muscles where it would be important to understand of how skeletal muscles disorders affect patients' life. In this work, we developed a mathematical model to study how fast and slow muscle fibers, well characterized in single-fiber experiments, work and generate together force and displacement in muscle bundles. We characterized the parameters of a Hill-type model, using experimental data on fast and slow single human muscle fibers, and comparing experimental data with numerical simulations obtained from finite element (FE) models of single fibers. Then, we developed a FE model of a bundle of 19 fibers, based on an immunohistochemically stained cross section of human diaphragm and including the corresponding properties of each slow or fast fiber. Simulations of isotonic contractions of the bundle model allowed the generation of its apparent force-velocity relationship. Although close to the average of the force-velocity curves of fast and slow fibers, the bundle curve deviates substantially toward the fast fibers at low loads. We believe that the present model and the characterization of the force-velocity curve of a fiber bundle represents the starting point to link the single-fiber properties to those of whole muscle with FE application in phenomenological models of human muscles.

  11. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  12. Mathematical models of human paralyzed muscle after long-term training.

    PubMed

    Law, L A Frey; Shields, R K

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

  13. [Study on the 3D mathematical mode of the muscle groups applied to human mandible by a linear programming method].

    PubMed

    Wang, Dongmei; Yu, Liniu; Zhou, Xianlian; Wang, Chengtao

    2004-02-01

    Four types of 3D mathematical mode of the muscle groups applied to the human mandible have been developed. One is based on electromyography (EMG) and the others are based on linear programming with different objective function. Each model contains 26 muscle forces and two joint forces, allowing simulation of static bite forces and concomitant joint reaction forces for various bite point locations and mandibular positions. In this paper, the method of image processing to measure the position and direction of muscle forces according to 3D CAD model was built with CT data. Matlab optimization toolbox is applied to solve the three modes based on linear programming. Results show that the model with an objective function requiring a minimum sum of the tensions in the muscles is reasonable and agrees very well with the normal physiology activity.

  14. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings.

    PubMed

    Ranatunga, K W

    2018-05-22

    Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.

  15. Temperature Effects on Force and Actin–Myosin Interaction in Muscle: A Look Back on Some Experimental Findings

    PubMed Central

    Ranatunga, K. W.

    2018-01-01

    Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption. PMID:29786656

  16. Neuromuscular performance of lower limbs during voluntary and reflex activity in power- and endurance-trained athletes.

    PubMed

    Kyröläinen, H; Komi, P V

    1994-01-01

    Neural, mechanical and muscle factors influence muscle force production. This study was therefore, designed to compare possible differences in the function of the neuromuscular system among differently adapted subjects. A group of 11 power-trained athletes and 10 endurance-trained athletes volunteered as subjects for this study. Maximal voluntary isometric force and the rate of force production of the knee extensor and the plantar flexor muscles were measured. In addition, basic reflex function was measured in the two experimental conditions. The power athletes produced higher voluntary forces (P < 0.01-0.001) with higher rates for force production (P < 0.001) by both muscle groups measured. Unexpectedly, however, no differences were noticed in the electromyogram time curves between the groups. During reflex activity, the endurance group demonstrated higher sensitivity to the mechanical stimuli, i.e. the higher reflex amplitude caused a higher rate of reflex force development, and the reflex amplitude correlated with the averaged angular velocity. The differences in the isometric conditions could be explained by obviously different muscle fibre distribution, by different amounts of muscle mass, by possible differences in the force transmission from individual myofibrils to the skeletal muscle and by specificity of training. In addition, differences in nervous system structure and muscle spindle properties could explain the observed differences in reflex activity between the two groups.

  17. Classification and development of myofiber types in the superior oblique extraocular muscle of chicken.

    PubMed

    Baryshnikova, Larisa M; Croes, Scott A; von Bartheld, Christopher S

    2007-12-01

    Precise control of contractile force of extraocular muscles is required for appropriate movements and alignment of the eyes. It is unclear how such precise regulation of contractile force is achieved during development and maturation. By using the posthatch chicken as a model, we describe and quantify critical parameters of the developing superior oblique extraocular muscle from hatching to 16 weeks of age, including contractile force, muscle mass, myofiber diameters, classification of fiber types, and distribution and quantification of mitochondria. Analysis at the light- and electron microscopic levels shows that chicken myofiber types largely correspond to their mammalian counterparts, with four fiber types in the orbital and four types in the global layer. Twitch tension muscle force and muscle mass gradually increase and stabilize at approximately 11 weeks. Tetanic tension continues to increase between 11 and 16 weeks. Myofiber diameters in both the orbital and global layer increase from hatching to six weeks, and then stabilize, whereas the myofiber number is constant after hatching. This finding suggests that muscle mass increases during late maturation due to increasing fiber length rather than fiber diameter. Quantitative ultrastructural analysis reveals continuing changes in the composition of the four muscle fiber types, suggesting ongoing fiber type conversion or differential replacement of myofiber types. Muscle fiber composition continues to change into late juvenile and adult age. Our study provides evidence for gradual, incremental, and continuing changes in avian myofiber composition and function that is similar to postnatal oculomotor maturation in visually oriented mammals such as kitten.

  18. Medial gastrocnemius structure and gait kinetics in spastic cerebral palsy and typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2018-05-01

    To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.

  19. A new model for force generation by skeletal muscle, incorporating work-dependent deactivation

    PubMed Central

    Williams, Thelma L.

    2010-01-01

    A model is developed to predict the force generated by active skeletal muscle when subjected to imposed patterns of lengthening and shortening, such as those that occur during normal movements. The model is based on data from isolated lamprey muscle and can predict the forces developed during swimming. The model consists of a set of ordinary differential equations, which are solved numerically. The model's first part is a simplified description of the kinetics of Ca2+ release from sarcoplasmic reticulum and binding to muscle protein filaments, in response to neural activation. The second part is based on A. V. Hill's mechanical model of muscle, consisting of elastic and contractile elements in series, the latter obeying known physiological properties. The parameters of the model are determined by fitting the appropriate mathematical solutions to data recorded from isolated lamprey muscle activated under conditions of constant length or rate of change of length. The model is then used to predict the forces developed under conditions of applied sinusoidal length changes, and the results compared with corresponding data. The most significant advance of this model is the incorporation of work-dependent deactivation, whereby a muscle that has been shortening under load generates less force after the shortening ceases than otherwise expected. In addition, the stiffness in this model is not constant but increases with increasing activation. The model yields a closer prediction to data than has been obtained before, and can thus prove an important component of investigations of the neural—mechanical—environmental interactions that occur during natural movements. PMID:20118315

  20. Developing a Brief Method for the Simultaneous Assessment of Anaerobic and Aerobic Fitness

    DTIC Science & Technology

    2007-10-01

    production may have a common metabolic basis. Isolated muscle fibers contracting at low frequencies in oxygenated solutions (31, 42) and in vivo muscle active...the rate of stimulation or recruiting additional muscle fibers (24). The progressive increase in neuromuscular activity characteristic of high-force...used (19). During isometric contractions of unfatigued limb muscles , force production is modulated by recruitment for outputs of up to 85% of the

  1. Neural control of muscle force: indications from a simulation model

    PubMed Central

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  2. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  3. Fropofol decreases force development in cardiac muscle.

    PubMed

    Ren, Xianfeng; Schmidt, William; Huang, Yiyuan; Lu, Haisong; Liu, Wenjie; Bu, Weiming; Eckenhoff, Roderic; Cammarato, Anthony; Gao, Wei Dong

    2018-03-09

    Supranormal contractile properties are frequently associated with cardiac diseases. Anesthetic agents, including propofol, can depress myocardial contraction. We tested the hypothesis that fropofol, a propofol derivative, reduces force development in cardiac muscles via inhibition of cross-bridge cycling and may therefore have therapeutic potential. Force and intracellular Ca 2+ ([Ca 2+ ] i ) transients of rat trabecular muscles were determined. Myofilament ATPase, actin-activated myosin ATPase, and velocity of actin filaments propelled by myosin were also measured. Fropofol dose dependently decreased force without altering [Ca 2+ ] i in normal and pressure-induced hypertrophied-hypercontractile muscles. Similarly, fropofol depressed maximum Ca 2+ -activated force ( F max ) and increased the [Ca 2+ ] i required for 50% activation at steady-state (Ca 50 ) without affecting the Hill coefficient in both intact and skinned cardiac fibers. The drug also depressed cardiac myofibrillar and actin-activated myosin ATPase activity. In vitro actin sliding velocity was significantly reduced when fropofol was introduced during rigor binding of cross-bridges. The data suggest that the depressing effects of fropofol on cardiac contractility are likely to be related to direct targeting of actomyosin interactions. From a clinical standpoint, these findings are particularly significant, given that fropofol is a nonanesthetic small molecule that decreases myocardial contractility specifically and thus may be useful in the treatment of hypercontractile cardiac disorders.-Ren, X., Schmidt, W., Huang, Y., Lu, H., Liu, W., Bu, W., Eckenhoff, R., Cammarato, A., Gao, W. D. Fropofol decreases force development in cardiac muscle.

  4. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.

    PubMed

    Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A

    2018-03-01

    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Porcine Stomach Smooth Muscle Force Depends on History-Effects.

    PubMed

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm 2 . Maximum shortening velocity ( V max ) and curvature factor ( curv ) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant ( P < 0.05) FD [up to 32% maximum muscle force ( F im )] and FE (up to 16% F im ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying.

  6. Porcine Stomach Smooth Muscle Force Depends on History-Effects

    PubMed Central

    Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias

    2017-01-01

    The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying. PMID:29093684

  7. [Maximal isometric bite force and sports. Preliminary study].

    PubMed

    Sannajust, J P; Thiery, C; Poumarat, G; Vanneuville, G; Barthélémy, I; Mondie, J M

    2002-06-01

    The evaluation of the bite forces coupled with EMG activity of masseter muscles allows to point out temporo-mandibular joint disorders. The intense practice of sports induces stress which may affect the mandibular statics, due to an hyperfunction of the elevator masticatory muscles, especially the masseter muscles. This concept has led us to compare the maximum isometric bite forces of sedentary and physically trained subjects. The aim of this experimentation is to study the maximum isometric bite forces of the premolars, with a force transducer, for two groups of physically trained and sedentary volunteers (25 subjects), with distinction between male and female subjects. Subjects with normal denture and no temporo-mandibular joint disorder were retained. EMG and force recording were synchronized and recorded during 10 seconds of maximal contraction. The male subjects developed a maximal bite-force significantly higher (p < 0.05) compared to the female subjects. There is no significant difference between subjects practising a sport (at least 6 hours a week) and sedentary ones. The evolution of force during the contraction is different between sexes. EMG activity allowed to control that subjects developed a maximal force and an increase in muscular fatigability of physically active females compared to sedentary ones was noticed. The difference of maximal force between men and women is similar to the one found for the locomotor muscles. The analysis of the evolution of the force according to the contraction duration, might be linked to a different distribution of muscular fibers according to the sex. The practice of a sport might increase the fatigability of the masseter muscles and might be a factor inducing a muscular imbalance of the mandibular posture. But the relatively low number of subjects and the absence of well defined distinctions between different kinds of sport limit our conclusions.

  8. Effect of ageing on the force development in tetanic contractions of motor units in rat medial gastrocnemius muscle.

    PubMed

    Łochyński, Dawid; Kaczmarek, Dominik; Krutki, Piotr; Celichowski, Jan

    2010-09-01

    The purpose of this study was to determine the effect of ageing on the rate of force generation of motor units, and the mechanical efficiency of contraction produced by a doublet discharge. The study was carried out on isolated motor units of rat medial gastrocnemius muscle of young (5-10 mo) and two groups of old (24-25 and 28-30 mo) Wistar rats. Motor units were classified into the fast fatigable (FF), fast resistant (FR) and slow (S) ones. The force output and rate of force development were determined for non-doublet unfused tetanic contractions evoked by a series of a constant-rate trains of pulses and corresponding doublet contractions starting with an initial brief interpulse interval of 5 ms, and for maximal tetanic contraction. In FF motor units the rate of force development and the force produced by the doublet discharge increased transiently at the age of 24-25 mo, while in S and FR motor units this increase was observed at the age of 28-30 mo. Age-related decrease in the rate of force development of skeletal muscle cannot be attributed to a decline in efficiency of force production by functioning motor units. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. A Predictive Mathematical Model of Muscle Forces for Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Lee, Samuel C. K.; Ding, Jun; Prosser, Laura A.; Wexler, Anthony S.; Binder-Macleod, Stuart A.

    2009-01-01

    Aim: The purpose of this study was to determine if our previously developed muscle model could be used to predict forces of the quadriceps femoris and triceps surae muscles of children with spastic diplegic cerebral palsy (CP). Method: Twenty-two children with CP (12 males, 10 females; mean age 10y, SD 2y, range 7-13y; Gross Motor Function…

  10. Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy

    PubMed Central

    Li, Frank; Buck, Danielle; De Winter, Josine; Kolb, Justin; Meng, Hui; Birch, Camille; Slater, Rebecca; Escobar, Yael Natelie; Smith, John E.; Yang, Lin; Konhilas, John; Lawlor, Michael W.; Ottenheijm, Coen; Granzier, Henk L.

    2015-01-01

    Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulin's functional roles in adult muscle, we studied a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscles, but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survive to adulthood with low nebulin levels (<5% of control), contain nemaline rods and undergo fiber-type switching toward oxidative types. Nebulin deficiency causes a large deficit in specific force, and mechanistic studies provide evidence that a reduced fraction of force-generating cross-bridges and shortened thin filaments contribute to the force deficit. Muscles rich in glycolytic fibers upregulate proteolysis pathways (MuRF-1, Fbxo30/MUSA1, Gadd45a) and undergo hypotrophy with smaller cross-sectional areas (CSAs), worsening their force deficit. Muscles rich in oxidative fibers do not have smaller weights and can even have hypertrophy, offsetting their specific-force deficit. These studies reveal nebulin as critically important for force development and trophicity in adult muscle. The Neb cKO phenocopies important aspects of NEM (muscle weakness, oxidative fiber-type predominance, variable trophicity effects, nemaline rods) and will be highly useful to test therapeutic approaches to ameliorate muscle weakness. PMID:26123491

  11. Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice

    PubMed Central

    Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.

    2012-01-01

    Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364

  12. Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force–Velocity Properties: Predicting Patterns of In Vivo Muscle Force

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.; Lee, Sabrina S.; Arnold, Allison S.

    2014-01-01

    We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle–tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle’s architecture and series elasticity. Activation of the model’s single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency–time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle–tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function. PMID:24928073

  13. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  14. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis

    PubMed Central

    Sobotka, Stanislaw; Mu, Liancai

    2012-01-01

    Background End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Materials and Methods Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Results Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. Conclusions The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. PMID:23207170

  15. Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis.

    PubMed

    Sobotka, Stanislaw; Mu, Liancai

    2013-06-15

    End-to-end nerve anastomosis (EEA) is a commonly used nerve repair technique. However, this method generally results in poor functional recovery. This study was designed to determine the correlation of functional recovery to the extent of axonal reinnervation after EEA procedure in a rat model. Seven adult rats were subjected to the immediate reinnervation of an experimentally paralyzed sternomastoid (SM) muscle. The SM nerve was transected and immediately repaired with EEA. The SM muscle at the opposite side, without nerve transection, served as a control. Three months after EEA nerve repair, the muscle force of the SM muscle was measured and the regenerated axons in the muscle were detected using neurofilament immunohistochemistry. Three months after surgery, the reinnervated SM muscle produced limited anatomical and functional recovery (calculated as the percentage of the control). Specifically, the wet weight of the operated SM muscle (a measure of muscle mass recovery) was 78.0% of the control. The maximal tetanic force (a measure of muscle functional recovery) was 56.7% of the control. The area fraction of the neurofilament stained intramuscular axons (a measure of axonal regeneration and muscle reinnervation) was measured to be only 13.4% of the control. A positive correlation was revealed between the extent of muscle reinnervation and maximal muscle force. The EEA reinnervated SM muscle in the rat yielded unsatisfactory muscle force recovery as a result of mild to moderate nerve regeneration. Further work is needed to improve the surgical procedure, enhance axonal regeneration, and/or develop novel treatment strategies for better functional recovery. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Effect of brief daily resistance training on rapid force development in painful neck and shoulder muscles: randomized controlled trial

    PubMed Central

    Jay, Kenneth; schraefel, mc; Andersen, Christoffer H; Ebbesen, Frederik S; Christiansen, David H; Skotte, Jørgen; Zebis, Mette K; Andersen, Lars L

    2013-01-01

    Objective: To determine the effect of small daily amounts of progressive resistance training on rapid force development of painful neck/shoulder muscles. Methods: 198 generally healthy adults with frequent neck/shoulder muscle pain (mean: age 43·1 years, computer use 93% of work time, 88% women, duration of pain 186 day during the previous year) were randomly allocated to 2- or 12 min of daily progressive resistance training with elastic tubing or to a control group receiving weekly information on general health. A blinded assessor took measures at baseline and at 10-week follow-up; participants performed maximal voluntary contractions at a static 90-degree shoulder joint angle. Rapid force development was determined as the rate of torque development and maximal muscle strength was determined as the peak torque. Results: Compared with the control group, rate of torque development increased 31·0 Nm s−1 [95% confidence interval: (1·33–11·80)] in the 2-min group and 33·2 Nm s−1 (1·66–12·33) in the 12-min group from baseline to 10-week follow-up, corresponding to an increase of 16·0% and 18·2% for the two groups, respectively. The increase was significantly different compared to controls (P<0·05) for both training groups. Maximal muscle strength increased only ∼5–6% [mean and 95% confidence interval for 2- and 12-min groups to control, respectively: 2·5 Nm (0·05–0·73) and 2·2 Nm (0·01–0·70)]. No significant differences between the 2- and 12-min groups were evident. A weak but significant relationship existed between changes in rapid force development and pain (r = 0·27, P<0·01), but not between changes in maximal muscle strength and pain. Conclusion: Small daily amounts of progressive resistance training in adults with frequent neck/shoulder pain increases rapid force development and, to a less extent, maximal force capacity. PMID:23758661

  17. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring.

    PubMed

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C

    2009-02-01

    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  18. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling.

    PubMed

    Chang, Chia-Yuan; Rupp, Jonathan D; Reed, Matthew P; Hughes, Richard E; Schneider, Lawrence W

    2009-11-01

    In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking. To check the predictions of the AnyBody Model, activation levels of twelve major muscles in the hip and lower extremities were measured using surface EMG electrodes on 12 midsize-male subjects performing simulated maximum and 50% of maximum braking in a laboratory seating buck. Comparisons between test results and the predictions of the AnyBody Model when it was used to simulate these same braking tests suggest that the AnyBody model appropriately predicts agonistic muscle activations but under predicts antagonistic muscle activations. Simulations of knee-to-knee-bolster impacts were performed by impacting the knees of the lower-extremity finite element model with and without the muscle forces predicted by the validated AnyBody Model. Results of these simulations confirm previous findings that muscle tension increases knee-impact force by increasing the effective mass of the KTH complex due to tighter coupling of muscle mass to bone. They also indicate that muscle activation preferentially couples mass distal to the hip, thereby accentuating the decrease in femur force from the knee to the hip. However, the reduction in force transmitted from the knee to the hip is offset by the increased force at the knee and by increased compressive forces at the hip due to activation of lower-extremity muscles. As a result, approximately 45% to 60% and 50% to 65% of the force applied to the knee is applied to the hip in the simulations without and with muscle tension, respectively. The simulation results suggest that lower-extremity muscle tension has little effect on the risk of hip injuries, but it increases the bending moments in the femoral shaft, thereby increasing the risk of femoral shaft fractures by 20%-40%. However, these findings may be affected by the inability of the AnyBody Model to appropriately predict antagonistic muscle forces.

  19. Effects of 8 weeks of vibration training at different frequencies (1 or 15 Hz) in senior sportsmen on torque and force development and of 1 year of training on muscle fibers.

    PubMed

    Kern, H; Kovarik, J; Franz, C; Vogelauer, M; Löfler, S; Sarabon, N; Grim-Stieger, M; Biral, D; Adami, N; Carraro, U; Zampieri, S; Hofer, Ch

    2010-02-01

    To examine the effects of 8 weeks of vibration training at different frequencies (1 and 15 Hz) on maximal isometric torque and force development in senior sportsmen, and of 1 year of heavy-resistance and vibration trainings on muscle fibers. Seven healthy senior sportsmen (mean age: 69.0 +/- 5.4 years) performed an 8 weeks of strength training of knee extensors. Vibrations were applied vertically to the axis of movement during training. One leg of each subject was trained at a frequency of 1 Hz, while the other leg was trained at 15 Hz. Measures of isometric peak torque (at knee-angles of 60, 90 and 120 degrees ) and force development were recorded before and after training. Four sportsmen continued a year-long heavy-resistance training adding every second week a session of vibration training. After training, muscle biopsies were harvested from their quadriceps muscles and used for structural analyses. Morphometry of muscle fibers was performed by light microscopy. Immunohistochemistry using anti-MHCemb and anti-N-CAM antibodies was performed to measure potential muscle damage. Data from muscle morphometry were compared to that of a series of vastus lateralis biopsies harvested from 12 young sportsmen and four healthy elderly. Our results showed a significant increase in isometric peak torque at both 1 and 15 Hz vibration frequency in all three measured angles of the knee. There was no significant difference between the two frequencies, but we could find a higher increase in percentage of maximum power after the 1 Hz training. The results of force development showed a slight increase at the 1 Hz training in measured time frames from 0 to 50 and 200 ms, without statistical significance. A trend to significance was found at the 1 Hz training at the time window up to 200 ms. The 15 Hz training showed no significant changes of force development. Muscle biopsies show that the muscles of these well trained senior sportsmen contain muscle fibers which are 35% larger than those of sedentary elderly and, unexpectedly, 10% larger than those of young sportsmen. Despite 1 year of heavy resistance and vibration training, no evidence of muscle damage or denervation/reinnervation could be observed by light microscopy analyses, ATPase histochemistry and immunohistochemistry using anti-N-CAM or anti-MHC-emb antibodies. Integration of vibration to conventional strength training in elderly sportsmen induces similar improvement of isometric peak torque and force development independently from the vibration frequency after 8 weeks of training, and long-term results in the surprising evidence of hypertrophic muscle fibers larger than those of young active sportsmen. The observation that the vibration training with low frequency is safe opens the possibility to test these rehabilitation procedures in sedentary elderly.

  20. Force development and intracellular Ca2+ in intact cardiac muscles from gravin mutant mice.

    PubMed

    Li, Zhitao; Singh, Sonal; Suryavanshi, Santosh V; Ding, Wengang; Shen, Xiaoxu; Wijaya, Cori S; Gao, Wei Dong; McConnell, Bradley K

    2017-07-15

    Gravin (AKAP12) is an A-kinase-anchoring-protein that scaffolds protein kinase A (PKA), β 2 -adrenergic receptor (β 2 -AR), protein phosphatase 2B and protein kinase C. Gravin facilitates β 2 -AR-dependent signal transduction through PKA to modulate cardiac excitation-contraction coupling and its removal positively affects cardiac contraction. Trabeculae from the right ventricles of gravin mutant (gravin-t/t) mice were employed for force determination. Simultaneously, corresponding intracellular Ca 2+ transient ([Ca 2+ ] i ) were measured. Twitch force (T f )-interval relationship, [Ca 2+ ] i -interval relationship, and the rate of decay of post-extrasysolic potentiation (R f ) were also obtained. Western blot analysis were performed to correlate sarcomeric protein expression with alterations in calcium cycling between the WT and gravin-t/t hearts. Gravin-t/t muscles had similar developed force compared to WT muscles despite having lower [Ca 2+ ] i at any given external Ca 2+ concentration ([Ca 2+ ] o ). The time to peak force and peak [Ca 2+ ] i were slower and the time to 75% relaxation was significantly prolonged in gravin-t/t muscles. Both T f -interval and [Ca 2+ ] i -interval relations were depressed in gravin-t/t muscles. R f , however, did not change. Furthermore, Western blot analysis revealed decreased ryanodine receptor (RyR2) phosphorylation in gravin-t/t hearts. Gravin-t/t cardiac muscle exhibits increased force development in responsiveness to Ca 2+ . The Ca 2+ cycling across the SR appears to be unaltered in gravin-t/t muscle. Our study suggests that gravin is an important component of cardiac contraction regulation via increasing myofilament sensitivity to calcium. Further elucidation of the mechanism can provide insights to role of gravin if any in the pathophysiology of impaired contractility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Role of Musculoskeletal Dynamics and Neuromuscular Control in Stress Development in Bone

    NASA Technical Reports Server (NTRS)

    DeWoody, Yssa

    1996-01-01

    The role of forces produced by the musculotendon units in the stress development of the long bones during gait has not been fully analyzed. It is well known that the musculotendons act as actuators producing the joint torques which drive the body. Although the joint torques required to perform certain motor tasks can be recovered through a kinematic analysis, it remains a difficult problem to determine the actual forces produced by each muscle that resulted in these torques. As a consequence, few studies have focused on the role of individual muscles in the development of stress in the bone. This study takes a control theoretic approach to the problem. A seven-link, eight degrees of freedom model of the body is controlled by various muscle groups on each leg to simulate gait. The simulations incorporate Hill-type models of muscles with activation and contraction dynamics controlled through neural inputs. This direct approach allows one to know the exact muscle forces exerted by each musculotendon throughout the gait cycle as well the joint torques and reaction forces at the ankle and knee. Stress and strain computed by finite element analysis on skeletal members will be related to these derived loading conditions. Thus the role of musculoskeletal dynamics and neuromuscular control in the stress development of the tibia during gait can be analyzed.

  2. Changes in gluteal muscle forces with alteration of footstrike pattern during running.

    PubMed

    Vannatta, Charles Nathan; Kernozek, Thomas W; Gheidi, Naghmeh

    2017-10-01

    Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ciliary muscle contraction force and trapezius muscle activity during manual tracking of a moving visual target.

    PubMed

    Domkin, Dmitry; Forsman, Mikael; Richter, Hans O

    2016-06-01

    Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N=11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p<0.01) and passive side (0.64, p<0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye-hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck-shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils

    PubMed Central

    Minozzo, Fabio C.; Altman, David; Rassier, Dilson E.

    2017-01-01

    The sarcomere is the smallest functional unit of myofibrils in striated muscles. Sarcomeres are connected in series through a network of elastic and structural proteins. During myofibril activation, sarcomeres develop forces that are regulated through complex dynamics among their structures. The mechanisms that regulate intersarcomere dynamics are unclear, which limits our understanding of fundamental muscle features. Such dynamics are associated with the loss in forces caused by mechanical instability encountered in muscle diseases and cardiomyopathy and may underlie potential target treatments for such conditions. In this study, we developed a microfluidic perfusion system to control one sarcomere within a myofibril, while measuring the individual behavior of all sarcomeres. We found that the force from one sarcomere leads to adjustments of adjacent sarcomeres in a mechanism that is dependent on the sarcomere length and the myofibril stiffness. We concluded that the cooperative work of the contractile and the elastic elements within a myofibril rules the intersarcomere dynamics, with important consequences for muscle contraction. PMID:28765372

  5. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.

    PubMed

    Khurelbaatar, Tsolmonbaatar; Kim, Kyungsoo; Hyuk Kim, Yoon

    2015-11-01

    Computational musculoskeletal models have been developed to predict mechanical joint loads on the human spine, such as the forces and moments applied to vertebral and facet joints and the forces that act on ligaments and muscles because of difficulties in the direct measurement of joint loads. However, many whole-spine models lack certain elements. For example, the detailed facet joints in the cervical region or the whole spine region may not be implemented. In this study, a detailed cervico-thoraco-lumbar multibody musculoskeletal model with all major ligaments, separated structures of facet contact and intervertebral disk joints, and the rib cage was developed. The model was validated by comparing the intersegmental rotations, ligament tensile forces, facet joint contact forces, compressive and shear forces on disks, and muscle forces were to those reported in previous experimental and computational studies both by region (cervical, thoracic, or lumbar regions) and for the whole model. The comparisons demonstrated that our whole spine model is consistent with in vitro and in vivo experimental studies and with computational studies. The model developed in this study can be used in further studies to better understand spine structures and injury mechanisms of spinal disorders.

  6. The Ca2+ sensitizer CK‐2066260 increases myofibrillar Ca2+ sensitivity and submaximal force selectively in fast skeletal muscle

    PubMed Central

    Cheng, Arthur J.; Hartman, James J.; Hinken, Aaron C.; Lee, Ken; Durham, Nickie; Russell, Alan J.; Malik, Fady I.; Westerblad, Håkan; Jasper, Jeffrey R.

    2017-01-01

    Key points We report that the small molecule CK‐2066260 selectively slows the off‐rate of Ca2 + from fast skeletal muscle troponin, leading to increased myofibrillar Ca2 + sensitivity in fast skeletal muscle.Rodents dosed with CK‐2066260 show increased hindlimb muscle force and power in response to submaximal rates of nerve stimulation in situ.CK‐2066260 has no effect on free cytosolic [Ca2 +] during contractions of isolated muscle fibres.We conclude that fast skeletal muscle troponin sensitizers constitute a potential therapy to address an unmet need of improving muscle function in conditions of weakness and premature muscle fatigue. Abstract Skeletal muscle dysfunction occurs in many diseases and can lead to muscle weakness and premature muscle fatigue. Here we show that the fast skeletal troponin activator, CK‐2066260, counteracts muscle weakness by increasing troponin Ca2+ affinity, thereby increasing myofibrillar Ca2+ sensitivity. Exposure to CK‐2066260 resulted in a concentration‐dependent increase in the Ca2+ sensitivity of ATPase activity in isolated myofibrils and reconstituted hybrid sarcomeres containing fast skeletal muscle troponin C. Stopped‐flow experiments revealed a ∼2.7‐fold decrease in the Ca2+ off‐rate of isolated troponin complexes in the presence of CK‐2066260 (6 vs. 17 s−1 under control conditions). Isolated mouse flexor digitorum brevis fibres showed a rapidly developing, reversible and concentration‐dependent force increase at submaximal stimulation frequencies. This force increase was not accompanied by any changes in the free cytosolic [Ca2+] or its kinetics. CK‐2066260 induced a slowing of relaxation, which was markedly larger at 26°C than at 31°C and could be linked to the decreased Ca2+ off‐rate of troponin C. Rats dosed with CK‐2066260 showed increased hindlimb isometric and isokinetic force in response to submaximal rates of nerve stimulation in situ producing significantly higher absolute forces at low isokinetic velocities, whereas there was no difference in force at the highest velocities. Overall muscle power was increased and the findings are consistent with a lack of effect on crossbridge kinetics. In conclusion, CK‐2066260 acts as a fast skeletal troponin activator that may be used to increase muscle force and power in conditions of muscle weakness. PMID:27869319

  7. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong

    2017-12-01

    Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

  8. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.

    PubMed

    Zhang, Chi; Gao, Yingxin

    2012-07-26

    Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking

    PubMed Central

    Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.

    2016-01-01

    Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105

  10. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    PubMed

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  11. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i.

    PubMed

    Rehwaldt, Jordan D; Rodgers, Buel D; Lin, David C

    2017-12-01

    Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.

  12. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    PubMed

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  13. Normative data and predictors of leg muscle function and postural control in children.

    PubMed

    Hazell, Tom J; Sharma, Atul K; Vanstone, Catherine A; Gagnon, Isabelle; Pham, Thu Trang; Finch, Sarah L; Weiler, Hope A; Rodd, Celia J

    2014-11-01

    At the present there are limited tools available to measure muscle function in young children. Ground reaction force plates measure lower-body function and postural control in older children and adults. The purpose of this study was threefold: 1) develop normative data for evaluating global muscle development; 2) determine the reproducibility of ground reaction force plates for assessing muscle function in preschool-age children; and 3) identify predictors of skeletal muscle function. Children's (n = 81, 1.8 to 6.0 yr; M = 52%) muscle function and postural control was measured for jump (JMP), sit-to-stand (STS), and both undistracted and distracted body sway tests using a ground reaction force plate (Kistler 9200A). Whole body composition used dual-energy x-ray absorptiometry (Hologic 4500A Discovery Series). Plasma 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone concentrations were measured by chemiluminescence (Liaison, Diasorin, Mississauga, ON, Canada) as well as ionized calcium (ABL80 FLEX, Radiometer Medical A/S). Demographics, and anthropometry were collected. ANOVA and linear regression were used to identify predictors. Reproducibility was assessed by intersubject coefficient of variation. Age was a consistent predictor in all models; body size or fat and lean mass were important predictors in 3 of the models - STS peak force, STS peak power, and JMP peak power. STS was the most reproducible maneuver (average coefficient of variation =15.7%). Distracted body sway testing was not appropriate in these youngsters. The novel data presented in this study demonstrate a clear age (developmental) effect without any effect of sex on muscle function and postural control in young children. Lean muscle mass was important in some models (STS peak force and JMP peak power). The STS test was the best of the 4 maneuvers.

  14. Effects of step length and step frequency on lower-limb muscle function in human gait.

    PubMed

    Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G

    2017-05-24

    The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  16. Synchronous monitoring of muscle dynamics and electromyogram

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2011-04-01

    A non-intrusive novel detection scheme has been implemented to detect the lateral muscle extension, force of the skeletal muscle and the motor action potential (EMG) synchronously. This allows the comparison of muscle dynamics and EMG signals as a basis for modeling and further studies to determine which architectural parameters are most sensitive to changes in muscle activity. For this purpose the transmission time for ultrasonic chirp signal in the frequency range of 100 kHz to 2.5 MHz passing through the muscle under observation and respective motor action potentials are recorded synchronously to monitor and quantify biomechanical parameters related to muscle performance. Additionally an ultrasonic force sensor has been employed for monitoring. Ultrasonic traducers are placed on the skin to monitor muscle expansion. Surface electrodes are placed suitably to pick up the potential for activation of the monitored muscle. Isometric contraction of the monitored muscle is ensured by restricting the joint motion with the ultrasonic force sensor. Synchronous monitoring was initiated by a software activated audio beep starting at zero time of the subsequent data acquisition interval. Computer controlled electronics are used to generate and detect the ultrasonic signals and monitor the EMG signals. Custom developed software and data analysis is employed to analyze and quantify the monitored data. Reaction time, nerve conduction speed, latent period between the on-set of EMG signals and muscle response, degree of muscle activation and muscle fatigue development, rate of energy expenditure and motor neuron recruitment rate in isometric contraction, and other relevant parameters relating to muscle performance have been quantified with high spatial and temporal resolution.

  17. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    PubMed Central

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob

    2016-01-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. PMID:27628204

  18. The Influence of Altering Push Force Effectiveness on Upper Extremity Demand during Wheelchair Propulsion

    PubMed Central

    Rankin, Jeffery W.; Kwarciak, Andrew M.; Richter, W. Mark; Neptune, Richard R.

    2010-01-01

    Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g. fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g. rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimizing upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand. PMID:20674921

  19. In-Vivo Measurement of Muscle Tension: Dynamic Properties of the MC Sensor during Isometric Muscle Contraction

    PubMed Central

    Đorđević, Srđan; Tomažič, Sašo; Narici, Marco; Pišot, Rado; Meglič, Andrej

    2014-01-01

    Skeletal muscle is the largest tissue structure in our body and plays an essential role for producing motion through integrated action with bones, tendons, ligaments and joints, for stabilizing body position, for generation of heat through cell respiration and for blood glucose disposal. A key function of skeletal muscle is force generation. Non-invasive and selective measurement of muscle contraction force in the field and in clinical settings has always been challenging. The aim of our work has been to develop a sensor that can overcome these difficulties and therefore enable measurement of muscle force during different contraction conditions. In this study, we tested the mechanical properties of a “Muscle Contraction” (MC) sensor during isometric muscle contraction in different length/tension conditions. The MC sensor is attached so that it indents the skin overlying a muscle group and detects varying degrees of tension during muscular contraction. We compared MC sensor readings over the biceps brachii (BB) muscle to dynamometric measurements of force of elbow flexion, together with recordings of surface EMG signal of BB during isometric contractions at 15° and 90° of elbow flexion. Statistical correlation between MC signal and force was very high at 15° (r = 0.976) and 90° (r = 0.966) across the complete time domain. Normalized SD or σN = σ/max(FMC) was used as a measure of linearity of MC signal and elbow flexion force in dynamic conditions. The average was 8.24% for an elbow angle of 90° and 10.01% for an elbow of angle 15°, which indicates high linearity and good dynamic properties of MC sensor signal when compared to elbow flexion force. The next step of testing MC sensor potential will be to measure tension of muscle-tendon complex in conditions when length and tension change simultaneously during human motion. PMID:25256114

  20. In-vivo measurement of muscle tension: dynamic properties of the MC sensor during isometric muscle contraction.

    PubMed

    Đorđević, Srđan; Tomažič, Sašo; Narici, Marco; Pišot, Rado; Meglič, Andrej

    2014-09-25

    Skeletal muscle is the largest tissue structure in our body and plays an essential role for producing motion through integrated action with bones, tendons, ligaments and joints, for stabilizing body position, for generation of heat through cell respiration and for blood glucose disposal. A key function of skeletal muscle is force generation. Non-invasive and selective measurement of muscle contraction force in the field and in clinical settings has always been challenging. The aim of our work has been to develop a sensor that can overcome these difficulties and therefore enable measurement of muscle force during different contraction conditions. In this study, we tested the mechanical properties of a "Muscle Contraction" (MC) sensor during isometric muscle contraction in different length/tension conditions. The MC sensor is attached so that it indents the skin overlying a muscle group and detects varying degrees of tension during muscular contraction. We compared MC sensor readings over the biceps brachii (BB) muscle to dynamometric measurements of force of elbow flexion, together with recordings of surface EMG signal of BB during isometric contractions at 15° and 90° of elbow flexion. Statistical correlation between MC signal and force was very high at 15° (r = 0.976) and 90° (r = 0.966) across the complete time domain. Normalized SD or σN = σ/max(FMC) was used as a measure of linearity of MC signal and elbow flexion force in dynamic conditions. The average was 8.24% for an elbow angle of 90° and 10.01% for an elbow of angle 15°, which indicates high linearity and good dynamic properties of MC sensor signal when compared to elbow flexion force. The next step of testing MC sensor potential will be to measure tension of muscle-tendon complex in conditions when length and tension change simultaneously during human motion.

  1. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle.

    PubMed

    Lan, Bo; Deng, Linhong; Donovan, Graham M; Chin, Leslie Y M; Syyong, Harley T; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D; Norris, Brandon A; Liu, Jeffrey C-Y; Swyngedouw, Nicholas E; Banaem, Saleha M; Paré, Peter D; Seow, Chun Y

    2015-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. Copyright © 2015 the American Physiological Society.

  2. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle

    PubMed Central

    Lan, Bo; Deng, Linhong; Donovan, Graham M.; Chin, Leslie Y. M.; Syyong, Harley T.; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Swyngedouw, Nicholas E.; Banaem, Saleha M.; Paré, Peter D.

    2014-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. PMID:25305246

  3. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    PubMed

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  4. Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm

    PubMed Central

    Hu, Xiao; Murray, Wendy M.

    2011-01-01

    The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133

  5. Sensitivity of estimated muscle force in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill

    2009-01-01

    Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485

  6. Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.

    PubMed

    Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L

    2013-01-01

    Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.

  7. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair

    PubMed Central

    Mintz, Ellen L.; Passipieri, Juliana A.; Lovell, Daniel Y.; Christ, George J.

    2016-01-01

    Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration. PMID:27768064

  8. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair.

    PubMed

    Mintz, Ellen L; Passipieri, Juliana A; Lovell, Daniel Y; Christ, George J

    2016-10-07

    Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational development of improved therapeutics for muscle repair and regeneration.

  9. Muscle load in reaching movements performed by a wheelchair user: a case study.

    PubMed

    van Drongelen, S; Wolf, S I; Fradet, L

    2014-01-01

    The aim of this study was to analyse the load on the shoulder muscles during reaching movements that are specific to wheelchair users in relation to the risk of impingement. Three activities of daily living were performed: putting a book on a shelf in front and at the side and putting a pack of water bottles on a table. The AnyBody shoulder model was used to calculate the activity and forces of the shoulder muscles. Handling the pack of bottles caused the highest forces in the deltoideus, trapezius, serratus anterior and rotator cuff muscles. For handling the book, the highest forces were found in the deltoideus (scapular part) and the serratus anterior, especially during the put phase. Handling heavy objects such as a pack of bottles or a wheelchair produces high forces on the rotator cuff muscles and can lead to early fatigue. Therefore, these activities seem to be associated with a high risk of developing impingement syndrome. Implications for Rehabilitation In a single patient, this study demonstrates that the load on the rotator cuff is high during reaching movements. Handling a pack of water bottles, which resembles wheelchair handling, represents an activity associated with a high risk of developing impingement syndrome. Shoulder muscles must be trained in a balanced way to provide stabilization at the shoulder joint and prevent fatigue.

  10. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    PubMed

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  11. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise.

    PubMed

    Siegler, Jason C; Mudie, Kurt; Marshall, Paul

    2016-11-01

    What is the central question of this study? Does metabolic alkalosis in humans, induced by sodium bicarbonate, affect rates of skeletal muscle fatigue differentially in muscle groups composed predominately of slow- and fast-twitch fibres? What is the main finding and its importance? Sodium bicarbonate exhibited no effect on the fatigue profile observed between triceps surae and brachii muscle groups during and after 2 min of tetanic stimulation. For the first time in exercising humans, we have profiled the effect of sodium bicarbonate on the voluntary and involuntary contractile characteristics of muscle groups representative of predominately slow- and fast-twitch fibres. The effect of metabolic alkalosis on fibre-specific maximal force production and rates of force development (RFD) has been investigated previously in animal models, with evidence suggesting an improved capacity to develop force rapidly in fast- compared with slow-twitch muscle. We have attempted to model in vivo the fatigue profile of voluntary and involuntary maximal force and RFD in the triceps surae and brachii after sodium bicarbonate (NaHCO 3 ) ingestion. In a double-blind, three-way repeated-measures design, participants (n = 10) ingested either 0.3 g kg -1 NaHCO 3 (ALK) or equivalent calcium carbonate (PLA) prior to 2 min of continuous (1 Hz) supramaximal stimulation (300 ms at 40 Hz) of the triceps surae or brachii, with maximal voluntary efforts (maximal voluntary torque) coupled with direct muscle stimulation also measured at baseline, 1 and 2 min. Metabolic alkalosis was achieved in both ALK trials but was not different between muscle groups. Regardless of the conditions, involuntary torque declined nearly 60% in the triceps brachii (P < 0.001) and ∼30% in the triceps surae (P < 0.001). In all trials, there was a significant decline in normalized involuntary RFD (P < 0.05). Maximal voluntary torque declined nearly 28% but was not different between conditions (P < 0.01), and although declining nearly 21% in voluntary RFD (P < 0.05) there was no difference between PLA and ALK in either muscle group (P = 0.93). Sodium bicarbonate exhibited no effect on the fatigue observed between representative fibre-type muscle groups on maximal voluntary and involuntary torque or rates of torque development during and after 2 min of tetanic stimulation. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  12. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat.

    PubMed

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-12-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.

  13. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    PubMed

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.

  14. Complex myograph allows the examination of complex muscle contractions for the assessment of muscle force, shortening, velocity, and work in vivo

    PubMed Central

    Rahe-Meyer, Niels; Pawlak, Matthias; Weilbach, Christian; Osthaus, Wilhelm Alexander; Ruhschulte, Hainer; Solomon, Cristina; Piepenbrock, Siegfried; Winterhalter, Michael

    2008-01-01

    Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a). a counterforce unit which can load the muscle with an adjustable, but constant force and b). a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed. PMID:18616815

  15. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.

  16. The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese

    PubMed Central

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M.

    2015-01-01

    Skeletal muscle accumulates intramuscular fat through age and obesity. Muscle quality, a measure of muscle strength per unit size, decreases in these conditions. It is not clear how fat influences this loss in performance. Changes to structural parameters (e.g. fibre pennation and connective tissue properties) affect the muscle quality. This study investigated the mechanisms that lead to deterioration in muscle performance due to changes in intramuscular fat, pennation and aponeurosis stiffness. A finite-element model of the human gastrocnemius was developed as a fibre-reinforced composite biomaterial containing contractile fibres within the base material. The base-material properties were modified to include intramuscular fat in five different ways. All these models with fat generated lower fibre stress and muscle quality than their lean counterparts. This effect is due to the higher stiffness of the tissue in the fatty models. The fibre deformations influence their interactions with the aponeuroses, and these change with fatty inclusions. Muscles with more compliant aponeuroses generated lower forces. The muscle quality was further reduced for muscles with lower pennation. This study shows that whole-muscle force is dependent on its base-material properties and changes to the base material due to fatty inclusions result in reductions to force and muscle quality. PMID:26156300

  17. The role of impact forces and foot pronation: a new paradigm.

    PubMed

    Nigg, B M

    2001-01-01

    This article discusses the possible association between impact forces and foot pronation and the development of running-related injuries, and proposes a new paradigm for impact forces and foot pronation. The article is based on a critical analysis of the literature on heel-toe running addressing kinematics, kinetics, resultant joint movements and forces, muscle activity, subject and material characteristics, epidemiology, and biologic reactions. However, this paper is not a review of the literature but rather an attempt to replace the established concepts of impact forces and movement control with a new paradigm that would allow explaining some of the current contradictions in this topic of research. The analysis included all papers published on this topic over the last 25 years. For the last few years, it concentrated on papers expressing critical concerns on the established concepts of impact and movement control. An attempt was made to find indications in the various publications to support or reject the current concept of impact forces and movement control. Furthermore, the results of the available studies were searched for indications expanding the current understanding of impact forces and movement control in running. Data were synthesized revealing contradictions in the experimental results and the established concepts. Based on the contradictions in the existing research publications, a new paradigm was proposed. Theoretical, experimental, and epidemiological evidence on impact forces showed that one cannot conclude that impact forces are important factors in the development of chronic and/or acute running-related injuries. A new paradigm for impact forces during running proposes that impact forces are input signals that produce muscle tuning shortly before the next contact with the ground to minimize soft tissue vibration and/or reduce joint and tendon loading. Muscle tuning might affect fatigue, comfort, work, and performance. Experimental evidence suggests that the concept of "aligning the skeleton" with shoes, inserts, and orthotics should be reconsidered. They produce only small, not systematic. and subject-specific changes of foot and leg movement. A new paradigm for movement control for the lower extremities proposes that forces acting on the foot during the stance phase act as an input signal producing a muscle reaction. The cost function used in this adaptation process is to maintain a preferred joint movement path for a given movement task. If an intervention counteracts the preferred movement path, muscle activity must be increased. An optimal shoe, insert, or orthotic reduces muscle activity. Thus, shoes, inserts, and orthotics affect general muscle activity and, therefore, fatigue, comfort, work, and performance. The two proposed paradigms suggest that the locomotor system use a similar strategy for "impact" and "movement control." In both cases the locomotor system keeps the general kinematic and kinetic situations similar for a given task. The proposed muscle tuning reaction to impact loading affects the muscle activation before ground contact. The proposed muscle adaptation to provide a constant joint movement pattern affects the muscle activation during ground contact. However, further experimental and theoretical studies are needed to support or reject the proposed paradigms.

  18. The evaluation of relationship between vitamin D and muscle power by micro manual muscle tester in end-stage renal disease patients.

    PubMed

    Zahed, Nargesosadat; Chehrazi, Saghar; Falaknasi, Kianosh

    2014-09-01

    Muscle force of lower limb is a major factor for sustaining physical activity. Decreased muscle force can limit physical activity, which can increase mortality and morbidity in end-stage renal disease (ESRD) patients. Muscle force depends on several factors. One of the most important factors is 25-hydroxy vitamin D (25-OHD) that affects muscle function in both uremic and non-uremic patients. The aim of this study was to investigate the association between serum level of 25-OHD and muscle force of lower extremities in hemodialysis patients estimated by a Micro Manual Muscle Tester, a digital instrument that measures muscle force in kilograms This cross-sectional study was performed on 135 adult patients, 69 male (51%) and 66 female (69%) (mean: 1.4, standard deviation: 0.5), undergoing hemodialysis. Standard biochemistry parameters were measured before hemodialysis, including 25-OHD, calcium, albumin, para-hyroid hormone and C-reactive protein (CRP). Based on the result of serum level of 25-OHD, patients were classified into the following three groups: 85 patients (63%) were 25-OHD deficient (25-OHD <30), 43 patients (32%) had a normal level of 25-OHD (30-70) and seven patients (5%) had a toxic level of 25-OHD (>70) (mean: 1.42, standard deviation: 0.59). Also, based on the result of muscle force, patients were classified into the following three groups: 84/133 patients (62%) had weak muscle force (<5 kg), 46/133 patients (34%) had normal muscle force (5-10 kg) and three patients (21%) had strong muscle force (>10 kg) (mean: 1.39, standard deviation: 0.53). There was a significant relation between 25-OHD level and muscle force (P = 0.02), between age and muscle force (P = 0.002) and between gender and muscle force (P <0.001). In our opinion, 25-OHD can be a useful drug in ESRD patients to improve muscle force and physical activity.

  19. An improved glucose transport assay system for isolated mouse skeletal muscle tissues.

    PubMed

    Inagaki, Akiko; Maruo, Kanoko; Furuichi, Yasuro; Miyatake, Shouta; Tamura, Kotaro; Fujii, Nobuharu L; Manabe, Yasuko

    2016-07-18

    There is a growing demand for a system in the field of sarcopenia and diabetes research that could be used to evaluate the effects of functional food ingredients that enhance muscle mass/contractile force or muscle glucose uptake. In this study, we developed a new type of in vitro muscle incubation system that systemizes an apparatus for muscle incubation, using an electrode, a transducer, an incubator, and a pulse generator in a compact design. The new system enables us to analyze the muscle force stimulated by the electric pulses and glucose uptake during contraction and it may thus be a useful tool for analyzing the metabolic changes that occur during muscle contraction. The system may also contribute to the assessments of new food ingredients that act directly on skeletal muscle in the treatment of sarcopenia and diabetes.

  20. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle

    PubMed Central

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-01-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca2+ handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca2+] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca2+ handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca2+ handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness. PMID:22687611

  1. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    PubMed

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  2. Effects of a Finger Tapping Fatiguing Task on M1-Intracortical Inhibition and Central Drive to the Muscle.

    PubMed

    Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo

    2018-06-19

    The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.

  3. Age-related differences in muscle control of the lower extremity for support and propulsion during walking

    PubMed Central

    Toda, Haruki; Nagano, Akinori; Luo, Zhiwei

    2016-01-01

    [Purpose] This study examined age-related differences in muscle control for support and propulsion during walking in both males and females in order to develop optimal exercise regimens for muscle control. [Subjects and Methods] Twenty elderly people and 20 young people participated in this study. Coordinates of anatomical landmarks and ground reaction force during walking were obtained using a 3D motion analysis system and force plates. Muscle forces during walking were estimated using OpenSim. Muscle modules were obtained by using non-negative matrix factorization analysis. A two-way analysis of covariance was performed to examine the difference between the elderly and the young in muscle weightings using walking speed as a covariate. The similarities in activation timing profiles between the elderly and the young were analyzed by cross-correlation analysis in males and females. [Results] In the elderly, there was a change in the coordination of muscles around the ankle, and muscles of the lower extremity exhibited co-contraction in late stance. Timing and shape of these modules were similar between elderly and young people. [Conclusion] Our results suggested that age-related alteration of muscle control was associated with support and propulsion during walking. PMID:27134360

  4. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  5. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    PubMed

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  6. A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning.

    PubMed

    McMahon, Patrick J; Chow, Stephen; Sciaroni, Laura; Yang, Bruce Y; Lee, Thay Q

    2003-01-01

    A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning is presented. This model simulates an in vivo mechanism and yields capsulolabral lesions. The scapulae of 14 cadaveric entire upper limbs (82 +/- 9 years, mean +/- standard deviation) were each rigidly fixed to a custom shoulder-testing device. A pneumatic system was used with pulleys and cables to simulate the rotator cuff and the deltoid muscles (anterior and middle portions). The glenohumeral joint was then positioned in the apprehension position of abduction, external rotation, and horizontal abduction. A 6-degree-of-freedom load cell (Assurance Technologies, Garner, North Carolina) measured the joint reaction force that was then resolved into three orthogonal components of compression force, anteriorly directed force, and superiorly directed force. With the use of a thrust bearing, the humerus was moved along a rail with a servomotor-controlled system at 50 mm/s that resulted in horizontal abduction. Force that developed passively in the pectoralis major muscle was recorded with an independent uniaxial load cell. Each of the glenohumeral joints dislocated anterior-inferior, six with avulsion of the capsulolabrum from the anterior-inferior glenoid bone and eight with capsulolabral stretching. Pectoralis major muscle force as well as the joint reaction force increased with horizontal abduction until dislocation. At dislocation, the magnitude of the pectoralis major muscle force, 609.6 N +/- 65.2 N was similar to the compression force, 569.6 N +/- 37.8 N. A cadaveric model yielded an anterior dislocation with a mechanism of forcible apprehension positioning when the appropriate shoulder muscles were simulated and a passive pectoralis major muscle was included. Capsulolabral lesions resulted, similar to those observed in vivo.

  7. The application of muscle wrapping to voxel-based finite element models of skeletal structures.

    PubMed

    Liu, Jia; Shi, Junfen; Fitton, Laura C; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J

    2012-01-01

    Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.

  8. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy.

    PubMed

    Dufresne, Sébastien S; Boulanger-Piette, Antoine; Bossé, Sabrina; Argaw, Anteneh; Hamoudi, Dounia; Marcadet, Laetitia; Gamu, Daniel; Fajardo, Val A; Yagita, Hideo; Penninger, Josef M; Russell Tupling, A; Frenette, Jérôme

    2018-04-24

    Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANK mko ) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL/RANK interaction. The sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.

  9. Impact of C 60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury.

    PubMed

    Nozdrenko, D M; Bogutska, K I; Prylutskyy, Yu I; Korolovych, V F; Evstigneev, M P; Ritter, U; Scharff, P

    2015-01-01

    The effect of C60 fullerene nanoparticles (30-90 nm) on dynamics of force response development to stimulated soleus muscle of rat with ischemic pathology, existing in muscle during the first 5 hours and first 5 days after 2 hours of ischemia and further reperfusion, was investigated using the tensometric method. It was found that intravenous and intramuscular administration of C60 fullerene with a single dose of 1 mg/kg exert different therapeutic effects dependent on the investigated macroparameters of muscle contraction. The intravenous drug administration was shown to be the most optimal for correction of the velocity macroparameters of contraction due to muscle tissue ischemic damage. In contrast, the intramuscular administration displays protective action with respect to motions associated with generation of maximal force response or continuous contractions elevating the level of muscle fatigue. Hence, C60 fullerene, being a strong antioxidant, may be considered as a promising agent for effective therapy of pathological states of the muscle system caused by pathological action of free radical processes.

  10. Double-Acting Sleeve Muscle Actuator for Bio-Robotic Systems.

    PubMed

    Zheng, Hao; Shen, Xiangrong

    2013-11-25

    This paper presents a new type of muscle-like actuator, namely double-acting (DA) sleeve muscle actuator, which is suitable for the actuation of biologically-inspired and biomedical robotic systems, especially those serving human-assistance purposes (prostheses, orthoses, etc .). Developed based on the traditional pneumatic muscle actuator, the new DA sleeve muscle incorporates a unique insert at the center. With the insert occupying the central portion of the internal volume, this new actuator enjoys multiple advantages relative to the traditional pneumatic muscle, including a consistent increase of force capacity over the entire range of motion, and a significant decrease of energy consumption in operation. Furthermore, the insert encompasses an additional chamber, which generates an extension force when pressurized. As such, this new actuator provides a unique bi-directional actuation capability, and, thus, has a potential to significantly simplify the design of a muscle actuator-powered robotic system. To demonstrate this new actuator concept, a prototype has been designed and fabricated, and experiments conducted on this prototype demonstrated the enhanced force capacity and the unique bi-directional actuation capability.

  11. Gender comparison of psychophysical forces, cardiopulmonary, and muscle metabolic responses during a simulated cart pushing task.

    PubMed

    Maikala, Rammohan V; Ciriello, Vincent M; Dempsey, Patrick G; O'Brien, Niall V

    2010-10-01

    The purpose was to compare psychophysiological responses between healthy male and female workers during dynamic pushing. Using a psychophysical approach, 27 participants chose an acceptable force that they could push over a 7.6m distance at a frequency of 1 push per min on a treadmill. On a separate day, cardiopulmonary (e.g., whole-body oxygen uptake, heart rate, ventilation volume) and muscle metabolic measurements (change in muscle blood volume [ΔtHb] and Tissue Oxygenation Index [TOI]) from the right and left gastrocnemius muscles were collected simultaneously while participants pushed the previously chosen acceptable force on the treadmill at a similar frequency and distance for 2h. Results showed no significant difference between men and women for integrated force exerted on the instrumented treadmill handle and cardiopulmonary responses. In contrast, women demonstrated 45.7% lower ΔtHb but 3.6% higher TOI in the gastrocnemius region as compared to men, suggesting a lower hemoglobin concentration in women and high venous oxygen saturation during pushing. When ΔtHb and TOI were corrected for both body mass and pushing force, the disparity in gender was retained, implying an increased muscle oxygen saturation per force development in women than men during pushing. In the left gastrocnemius region, ΔtHb was 60% lower and TOI was 5.7% higher in women than men, suggesting an uneven muscle loading during pushing. Overall, the gender similarity in cardiopulmonary responses versus disparity in muscle metabolic responses suggest the importance of evaluating human performance during physical work at both whole-body and localized muscle levels. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. An eye on the head: the development and evolution of craniofacial muscles.

    PubMed

    Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim

    2011-06-01

    Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.

  13. Muscle fiber type, Achilles tendon length, potentiation, and running economy.

    PubMed

    Hunter, Gary R; McCarthy, John P; Carter, Stephen J; Bamman, Marcas M; Gaddy, Emily S; Fisher, Gordon; Katsoulis, Kostantina; Plaisance, Eric P; Newcomer, Bradley R

    2015-05-01

    The purpose of this investigation was to develop a potential model for how muscle fiber type, Achilles tendon length, stretch-shortening cycle potentiation (SSCP), and leg strength interact with running economy. Twenty trained male distance runners 24-40 years of age served as subjects. Running economy (net oxygen uptake) was measured while running on a treadmill. Leg press SSCP(force) and SSCP(velocity) were determined by measuring the difference in velocity between a static leg press throw and a countermovement leg press throw. Vertical jump SSCP was determined by measuring the difference in jump height between a static jump and a drop jump from a 20.3-cm bench. Tendon length was measured by magnetic resonance imaging, and muscle fiber type was made from a vastus lateralis muscle biopsy. Type IIx muscle fiber percent (r = 0.70, p < 0.001) and leg strength (r = 0.95, p < 0.001) were positively and independently related to late eccentric force development. Achilles tendon length (r = 0.42, p ≤ 0.05) and late eccentric force during stretch-shortening cycle (r = 0.76, p < 0.001) were independently related to SSCP(force). SSCP(force) was related to SSCP(velocity), which in turn was related to running economy (r = 0.61, p < 0.01). These results suggest that longer Achilles tendon length, type II fiber, and muscular leg strength may enhance the potential for SSCP, running economy, and physiological effort while running.

  14. Mutation-specific effects on thin filament length in thin filament myopathy.

    PubMed

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  15. Mechanical principles of effects of botulinum toxin on muscle length-force characteristics: an assessment by finite element modeling.

    PubMed

    Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A

    2014-05-07

    Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  17. Is the notion of central fatigue based on a solid foundation?

    PubMed

    Contessa, Paola; Puleo, Alessio; De Luca, Carlo J

    2016-02-01

    Exercise-induced muscle fatigue has been shown to be the consequence of peripheral factors that impair muscle fiber contractile mechanisms. Central factors arising within the central nervous system have also been hypothesized to induce muscle fatigue, but no direct empirical evidence that is causally associated to reduction of muscle force-generating capability has yet been reported. We developed a simulation model to investigate whether peripheral factors of muscle fatigue are sufficient to explain the muscle force behavior observed during empirical studies of fatiguing voluntary contractions, which is commonly attributed to central factors. Peripheral factors of muscle fatigue were included in the model as a time-dependent decrease in the amplitude of the motor unit force twitches. Our simulation study indicated that the force behavior commonly attributed to central fatigue could be explained solely by peripheral factors during simulated fatiguing submaximal voluntary contractions. It also revealed important flaws regarding the use of the interpolated twitch response from electrical stimulation of the muscle as a means for assessing central fatigue. Our analysis does not directly refute the concept of central fatigue. However, it raises important concerns about the manner in which it is measured and about the interpretation of the commonly accepted causes of central fatigue and questions the very need for the existence of central fatigue. Copyright © 2016 the American Physiological Society.

  18. Robot-aided in vitro measurement of patellar stability with consideration to the influence of muscle loading.

    PubMed

    Lorenz, Andrea; Bobrowitsch, Evgenij; Wünschel, Markus; Walter, Christian; Wülker, Nikolaus; Leichtle, Ulf G

    2015-07-23

    Anterior knee pain is often associated with patellar maltracking and instability. However, objective measurement of patellar stability under clinical and experimental conditions is difficult, and muscular activity influences the results. In the present study, a new experimental setting for in vitro measurement of patellar stability was developed and the mediolateral force-displacement behavior of the native knee analyzed with special emphasis on patellar tilt and muscle loading. In the new experimental setup, two established testing methods were combined: an upright knee simulator for positioning and loading of the knee specimens, and an industry robot for mediolateral patellar displacement. A minimally invasive coupling and force control mechanism enabled unconstrained motion of the patella as well as measurement of patellar motion in all six degrees of freedom via an external ultrasonic motion-tracking system. Lateral and medial patellar displacement were measured on seven fresh-frozen human knee specimens in six flexion angles with varying muscle force levels, muscle force distributions, and displacement forces. Substantial repeatability was achieved for patellar shift (ICC(3,1) = 0.67) and tilt (ICC(3,1) = 0.75). Patellar lateral and medial shift decreased slightly with increasing flexion angle. Additional measurement of patellar tilt provided interesting insights into the different displacement mechanisms in lateral and medial directions. For lateral displacement, the patella tilted in the same (lateral) direction, and tilted in the opposite direction (again laterally) for medial displacement. With regard to asymmetric muscle loading, a significant influence (p < 0.03, up to 5 mm shift and 8° tilt) was found for lateral displacement and a reasonable relationship between muscle and patellar force, whereas no effect was visible in the medial direction. The developed experimental setup delivered reproducible results and was found to be an excellent testing method for the in vitro analysis of patellar stability and future investigation of surgical techniques for patellar stabilization and total knee arthroplasty. We demonstrated a significant influence of asymmetric quadriceps loading on patellar stability. In particular, increased force application on the vastus lateralis muscle led to a clear increase of lateral patellar displacement.

  19. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude.

    PubMed

    Raadsheer, M C; van Eijden, T M; van Ginkel, F C; Prahl-Andersen, B

    1999-01-01

    The existence of an interaction among bite force magnitude, jaw muscle size (e.g., cross-sectional area, thickness), and craniofacial morphology is widely accepted. Bite force magnitude depends on the size of the jaw muscles and the lever arm lengths of bite force and muscle forces, which in turn are dictated by craniofacial morphology. In this study, the relative contributions of craniofacial morphology and jaw muscle thickness to the bite force magnitude were studied. In 121 adult individuals, both magnitude and direction of the maximal voluntary bite force were registered. Craniofacial dimensions were measured by anthropometrics and from lateral radiographs. The thicknesses of the masseter, temporal, and digastric muscles were registered by ultrasonography. After a factor analysis was applied to the anthropometric and cephalometric dimensions, the correlation between bite force magnitude, on the one hand, and the "craniofacial factors" and jaw muscle thicknesses, on the other, was assessed by stepwise multiple regression. Fifty-eight percent of the bite force variance could be explained. From the jaw muscles, only the thickness of the masseter muscle correlated significantly with bite force magnitude. Bite force magnitude also correlated significantly positively with vertical and transverse facial dimensions and the inclination of the midface, and significantly negatively with mandibular inclination and occlusal plane inclination. The contribution of the masseter muscle to the variation in bite force magnitude was higher than that of the craniofacial factors.

  20. The development of contact force construction in the dynamic-contact task of cycling [corrected].

    PubMed

    Brown, Nicholas A T; Jensen, Jody L

    2003-01-01

    Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia. Copyright 2002 Elsevier Science Ltd.

  1. Force generation by titin folding.

    PubMed

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós

    2017-07-01

    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  2. Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy

    PubMed Central

    Song, Weihua; Vikhorev, Petr G.; Kashyap, Mavin N.; Rowlands, Christina; Ferenczi, Michael A.; Woledge, Roger C.; MacLeod, Kenneth; Curtin, Nancy A.

    2013-01-01

    We compared the contractile performance of papillary muscle from a mouse model of hypertrophic cardiomyopathy [α-cardiac actin (ACTC) E99K mutation] with nontransgenic (non-TG) littermates. In isometric twitches, ACTC E99K papillary muscle produced three to four times greater force than non-TG muscle under the same conditions independent of stimulation frequency and temperature, whereas maximum isometric force in myofibrils from these muscles was not significantly different. ACTC E99K muscle relaxed slower than non-TG muscle in both papillary muscle (1.4×) and myofibrils (1.7×), whereas the rate of force development after stimulation was the same as non-TG muscle for both electrical stimulation in intact muscle and after a Ca2+ jump in myofibrils. The EC50 for Ca2+ activation of force in myofibrils was 0.39 ± 0.33 μmol/l in ACTC E99K myofibrils and 0.80 ± 0.11 μmol/l in non-TG myofibrils. There were no significant differences in the amplitude and time course of the Ca2+ transient in myocytes from ACTC E99K and non-TG mice. We conclude that hypercontractility is caused by higher myofibrillar Ca2+ sensitivity in ACTC E99K muscles. Measurement of the energy (work + heat) released in actively cycling heart muscle showed that for both genotypes, the amount of energy turnover increased with work done but with decreasing efficiency as energy turnover increased. Thus, ACTC E99K mouse heart muscle produced on average 3.3-fold more work than non-TG muscle, and the cost in terms of energy turnover was disproportionately higher than in non-TG muscles. Efficiency for ACTC E99K muscle was in the range of 11–16% and for non-TG muscle was 15–18%. PMID:23604709

  3. Mechanical and energetic properties of papillary muscle from ACTC E99K transgenic mouse models of hypertrophic cardiomyopathy.

    PubMed

    Song, Weihua; Vikhorev, Petr G; Kashyap, Mavin N; Rowlands, Christina; Ferenczi, Michael A; Woledge, Roger C; MacLeod, Kenneth; Marston, Steven; Curtin, Nancy A

    2013-06-01

    We compared the contractile performance of papillary muscle from a mouse model of hypertrophic cardiomyopathy [α-cardiac actin (ACTC) E99K mutation] with nontransgenic (non-TG) littermates. In isometric twitches, ACTC E99K papillary muscle produced three to four times greater force than non-TG muscle under the same conditions independent of stimulation frequency and temperature, whereas maximum isometric force in myofibrils from these muscles was not significantly different. ACTC E99K muscle relaxed slower than non-TG muscle in both papillary muscle (1.4×) and myofibrils (1.7×), whereas the rate of force development after stimulation was the same as non-TG muscle for both electrical stimulation in intact muscle and after a Ca²⁺ jump in myofibrils. The EC₅₀ for Ca²⁺ activation of force in myofibrils was 0.39 ± 0.33 μmol/l in ACTC E99K myofibrils and 0.80 ± 0.11 μmol/l in non-TG myofibrils. There were no significant differences in the amplitude and time course of the Ca²⁺ transient in myocytes from ACTC E99K and non-TG mice. We conclude that hypercontractility is caused by higher myofibrillar Ca²⁺ sensitivity in ACTC E99K muscles. Measurement of the energy (work + heat) released in actively cycling heart muscle showed that for both genotypes, the amount of energy turnover increased with work done but with decreasing efficiency as energy turnover increased. Thus, ACTC E99K mouse heart muscle produced on average 3.3-fold more work than non-TG muscle, and the cost in terms of energy turnover was disproportionately higher than in non-TG muscles. Efficiency for ACTC E99K muscle was in the range of 11-16% and for non-TG muscle was 15-18%.

  4. Mutation-Specific Effects on Thin Filament Length in Thin Filament Myopathy

    PubMed Central

    de Winter, Josine M.; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A.; Pappas, Christopher T.; Gregorio, Carol C.; Stienen, Ger J. M.; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B.; van Engelen, Baziel G.; Voermans, Nicol C.; Donkervoort, Sandra; Bönnemann, C. G.; Clarke, Nigel F.; Beggs, Alan H.; Granzier, Henk; Ottenheijm, Coen A. C.

    2016-01-01

    Objective Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. Methods We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Results Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force–sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin–thick filament overlap. Interpretation These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. PMID:27074222

  5. Simultaneous prediction of muscle and contact forces in the knee during gait.

    PubMed

    Lin, Yi-Chung; Walter, Jonathan P; Banks, Scott A; Pandy, Marcus G; Fregly, Benjamin J

    2010-03-22

    Musculoskeletal models are currently the primary means for estimating in vivo muscle and contact forces in the knee during gait. These models typically couple a dynamic skeletal model with individual muscle models but rarely include articular contact models due to their high computational cost. This study evaluates a novel method for predicting muscle and contact forces simultaneously in the knee during gait. The method utilizes a 12 degree-of-freedom knee model (femur, tibia, and patella) combining muscle, articular contact, and dynamic skeletal models. Eight static optimization problems were formulated using two cost functions (one based on muscle activations and one based on contact forces) and four constraints sets (each composed of different combinations of inverse dynamic loads). The estimated muscle and contact forces were evaluated using in vivo tibial contact force data collected from a patient with a force-measuring knee implant. When the eight optimization problems were solved with added constraints to match the in vivo contact force measurements, root-mean-square errors in predicted contact forces were less than 10 N. Furthermore, muscle and patellar contact forces predicted by the two cost functions became more similar as more inverse dynamic loads were used as constraints. When the contact force constraints were removed, estimated medial contact forces were similar and lateral contact forces lower in magnitude compared to measured contact forces, with estimated muscle forces being sensitive and estimated patellar contact forces relatively insensitive to the choice of cost function and constraint set. These results suggest that optimization problem formulation coupled with knee model complexity can significantly affect predicted muscle and contact forces in the knee during gait. Further research using a complete lower limb model is needed to assess the importance of this finding to the muscle and contact force estimation process. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.

    1992-01-01

    A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.

  7. Substantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery.

    PubMed

    Yucesoy, Can A; Huijing, Peter A

    2007-12-01

    The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as surgery for restoration of function on such force transmission. The etiology of the effects of spasticity on muscular mechanics is not fully understood. Clinically, such effects feature typically a limited joint range of motion, which at the muscle level must originate from altered muscle length-force characteristics, in particular a limited muscle length range of force exertion. In studies performed to understand what is different in spastic muscle and what the effects of remedial surgery are, muscle is considered as being independent of its surroundings. Conceivably, this is because the classical approach in muscle mechanics is built on experimenting with dissected muscles. Certainly, such approach allowed improving our understanding of fundamental muscle physiology yet it yielded implicitly a narrow point of view of considering muscle length-force characteristics as a fixed property of the muscle itself. However, within its context of its intact connective tissue surroundings (the in vivo condition) muscle is not an isolated and independent entity. Instead, collagenous linkages between epimysia of adjacent muscles provide direct intermuscular connections, and structures such as the neurovascular tracts provide indirect intermuscular connections. Moreover, compartmental boundaries (e.g., intermuscular septa, interosseal membranes, periost and compartmental fascia) are continuous with neurovascular tracts and connect muscular and non-muscular tissues at several locations additional to the tendon origins and insertions. Epimuscular myofascial force transmission occurring via this integral system of connections has major effects on muscular mechanics including substantial proximo-distal force differences, sizable changes in the determinants of muscle length-force characteristics (e.g. a condition dependent shift in muscle optimum length to a different length or variable muscle optimal force) explained by major serial and parallel distributions of sarcomere lengths. Therefore, due to epimuscular myofascial force transmission, muscle length-force characteristics are variable and muscle length range of force exertion cannot be considered as a fixed property of the muscle. The findings reviewed presently show that acutely, the mechanical mechanisms manipulated in remedial surgery are dominated by epimuscular myofascial force transmission. Conceivably, this is also true for the mechanism of adaptation during and after recovery from surgery. Moreover, stiffened epimuscular connections and therefore a stiffened integral system of intra- and epimuscular myofascial force transmission are indicated to affect the properties of spastic muscle. We suggest that important advancements in our present understanding of such properties, variability in the outcome of surgery and considerable recurrence of the impeded function after recovery cannot be made without taking into account the effects of epimuscular myofascial force transmission.

  8. Size, History-Dependent, Activation and Three-Dimensional Effects on the Work and Power Produced During Cyclic Muscle Contractions.

    PubMed

    Ross, Stephanie A; Ryan, David S; Dominguez, Sebastian; Nigam, Nilima; Wakeling, James M

    2018-05-03

    Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibres are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modelling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.

  9. Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    muscle . J Clin Invest 117: 2388–2391. 13. Close R (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol...cultured skeletal muscle [30], which reported average peak twitch stress values of 2.9 kPa (reported as specific peak twitch force in units of kN/m2), but...demonstrates that the myotubes were driven down a path towards a more mature phenotype, in the process developing fast - twitch isoforms of myosin, while

  10. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.

    PubMed

    Kim, K; Lee, S K; Kim, Y H

    2010-10-01

    The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.

  11. Myoelectric activation and kinetics of different plyometric push-up exercises.

    PubMed

    García-Massó, Xavier; Colado, Juan C; González, Luis M; Salvá, Pau; Alves, Joao; Tella, Víctor; Triplett, N Travis

    2011-07-01

    The kinetic and myoelectric differences between 3 types of plyometric push-ups were investigated. Twenty-seven healthy, physically active men served as subjects and completed both familiarization and testing sessions. During these sessions, subjects performed 2 series of 3 plyometric push-up variations in a counterbalanced order according to the following techniques: Countermovement push-ups (CPUs) were push-ups performed with the maximum speed of movement; jump push-ups (JPUs) were similar to clapping push-ups; and fall push-ups (FPUs) required kneeling subjects to drop and then attempt to return to their initial position. Vertical ground reaction forces were determined by using a force plate. Myoelectric activity was recorded by means of electromyography. Impact force and impact rate of force development were significantly (p < 0.05) higher for FPUs than for JPUs. The maximum rate of force development was higher for CPUs (p < 0.05) than for JPUs, and the maximum force was higher for the CPUs than for the FPUs (p < 0.05). There were differences among exercises for the mean muscle activation of the pectoralis major (PM; p < 0.001), triceps brachii (p < 0.001), external oblique (p < 0.005) and anterior deltoid (p < 0.001), and in the maximum muscle activation of the PM (p < 0.001). Plyometric push-ups with countermovement achieved a higher maximum force and rate of force and did not cause impact forces. Thus, this type of push-up exercise may be regarded as the best for improving explosive force. The FPU exercise achieved higher levels of muscular activation in the agonist and synergist muscle groups, and greater impact forces and impact force development rates.

  12. Mapping intramuscular tenderness variation in four major muscles of the beef round.

    PubMed

    Reuter, B J; Wulf, D M; Maddock, R J

    2002-10-01

    The objective of this study was to quantify intramuscular tenderness variation within four muscles from the beef round: biceps femoris (BF), semitendinosus (ST), semimembranosus (SM), and adductor (AD). At 48 h postmortem, the BF, ST, SM, and AD were dissected from either the left or right side of ten carcasses, vacuum packaged, and aged for an additional 8 d. Each muscle was then frozen and cut into 2.54-cm-thick steaks perpendicular to the long axis of the muscle. Steaks were broiled on electric broilers to an internal temperature of 71 degrees C. Location-specific cores were obtained from each cooked steak, and Warner-Bratzler shear force was evaluated. Definable intramuscular shear force variation (SD = 0.56 kg) was almost twice as large as between-animal shear force variation (SD = 0.29 kg) and 2.8 times as large as between-muscle variation (SD = 0.20 kg). The ranking of muscles from greatest to least definable intramuscular shear force variation was BF, SM, ST, and AD (SD = 1.09, 0.72, 0.29, and 0.15 kg, respectively). The BF had its lowest shear force values at the origin (sirloin end), intermediate shear force values at the insertion, and its highest shear force values in a middle region 7 to 10 cm posterior to the sirloin-round break point (P < 0.05). The BF had lower shear force values toward the ST side than toward the vastus lateralis side (P < 0.05). The ST had its lowest shear force values in a 10-cm region in the middle, and its highest shear force values toward each end (P < 0.05). The SM had its lowest shear force values in the first 10-cm from the ischial end (origin), and its highest shear force values in a 13-cm region at the insertion end (P < 0.05). Generally, shear force was lower toward the superficial (medial) side than toward the deep side of the SM (P < 0.05). There were no intramuscular differences in shear force values within the AD (P > 0.05). These data indicate that definable intramuscular tenderness variation is substantial and could be used to develop alternative fabrication and(or) merchandising methods for beef round muscles.

  13. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  14. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.

    PubMed

    Scarton, Alessandra; Guiotto, Annamaria; Malaquias, Tiago; Spolaor, Fabiola; Sinigaglia, Giacomo; Cobelli, Claudio; Jonkers, Ilse; Sawacha, Zimi

    2018-02-01

    Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development.

    PubMed

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-11-01

    On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.

  16. Physiological pump loading of isolated cardiac muscle.

    PubMed

    Paulus, W J; Claes, V A; Brutsaert, D L

    1976-05-01

    Cat papillary muscles were subjected to a continuously changing load, resulting from an analysis of the left ventricle as a muscle pump system. The papillary muscle was assumed to be part of a circumferential bundle of muscle fibers of a simplified ejecting ventricle. The load included the pressure--stress relationship of this ventricle and the peripheral vascular load with its inertial, resistive and capacitive components. When this loading function was imposed on a shortening muscle through an electronic feedback circuit, the time course of force development and the velocity versus force plots closely resembled data obtained in the intact heart. Analysis of mechanical work (delta 1 X f) and power (V X f) and their respective time course permitted distinction between changes of contractile performance due to (1) positive or negative inotropic interventions, (2) altered hypothetical ventricular dimensions and changed preload, and (3) the long-term load-dependent memory of cardiac muscle.

  17. Bite Forces and Their Measurement in Dogs and Cats.

    PubMed

    Kim, Se Eun; Arzi, Boaz; Garcia, Tanya C; Verstraete, Frank J M

    2018-01-01

    Bite force is generated by the interaction of the masticatory muscles, the mandibles and maxillae, the temporomandibular joints (TMJs), and the teeth. Several methods to measure bite forces in dogs and cats have been described. Direct in vivo measurement of a bite in dogs has been done; however, bite forces were highly variable due to animal volition, situation, or specific measurement technique. Bite force has been measured in vivo from anesthetized dogs by electrical stimulation of jaw adductor muscles, but this may not be reflective of volitional bite force during natural activity. In vitro bite forces have been estimated by calculation of the force produced using mechanical equations representing the jaw adductor muscles and of the mandible and skull structure Bite force can be estimated in silico using finite element analysis (FEA) of the computed model of the anatomical structures. FEA can estimate bite force in extinct species; however, estimates may be lower than the measurements in live animals and would have to be validated specifically in domestic dogs and cats to be reliable. The main factors affecting the bite forces in dogs and cats are body weight and the skull's morphology and size. Other factors such as oral pain, TMJ disorders, masticatory muscle atrophy, and malocclusion may also affect bite force. Knowledge of bite forces in dogs and cats is essential for various clinical and research fields such as the development of implants, materials, and surgical techniques as well as for forensic medicine. This paper is a summary of current knowledge of bite forces in dogs and cats, including the effect of measurement methods and of other factors.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricafort, Juliet

    A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.

  19. Physiological response to submaximal isometric contractions of the paravertebral muscles

    NASA Technical Reports Server (NTRS)

    Jensen, B. R.; Jorgensen, K.; Hargens, A. R.; Nielsen, P. K.; Nicolaisen, T.

    1999-01-01

    STUDY DESIGN: Brief (30-second) isometric trunk extensions at 5%, 20%, 40%, 60%, and 80% of maximal voluntary contraction (MVC) and 3 minutes of prolonged trunk extension (20% MVC) in erect position were studied in nine healthy male subjects. OBJECTIVES: To investigate the intercorrelation between intramuscular pressure and tissue oxygenation of the paravertebral muscles during submaximal isometric contractions and further, to evaluate paravertebral electromyogram and intramuscular pressure as indicators of force development. SUMMARY OF BACKGROUND DATA: Local physiologic responses to muscle contraction are incompletely understood. METHODS: Relative oxygenation was monitored with noninvasive near-infrared spectroscopy, intramuscular pressure was measured with a transducer-tipped catheter, and surface electromyogram was monitored at three recording sites. RESULTS: The root mean square amplitudes of the paravertebral electromyogram (L4, left and right; T12, right) and intramuscular pressure measured in the lumbar multifidus muscle at L4 increased with greater force development in a curvilinear manner. A significant decrease in the oxygenation of the lumbar paravertebral muscle in response to muscle contraction was found at an initial contraction level of 20% MVC. This corresponded to a paravertebral intramuscular pressure of 30-40 mm Hg. However, during prolonged trunk extension, no further decrease in tissue oxygenation was found compared with the tissue oxygenation level at the end of the brief contractions, indicating that homeostatic adjustments (mean blood pressure and heart rate) over time were sufficient to maintain paravertebral muscle oxygen levels. CONCLUSION: At a threshold intramuscular pressure of 30-40 mm Hg during muscle contraction, oxygenation in the paravertebral muscles is significantly reduced. The effect of further increase in intramuscular pressure on tissue oxygenation over time may be compensated for by an increase in blood pressure and heart rate. Surface electromyogram amplitudes and intramuscular pressure can be used as indicators of paravertebral muscle force.

  20. Does the Length of Elbow Flexors and Visual Feedback Have Effect on Accuracy of Isometric Muscle Contraction in Men after Stroke?

    PubMed Central

    Juodzbaliene, Vilma; Darbutas, Tomas; Skurvydas, Albertas

    2016-01-01

    The aim of the study was to determine the effect of different muscle length and visual feedback information (VFI) on accuracy of isometric contraction of elbow flexors in men after an ischemic stroke (IS). Materials and Methods. Maximum voluntary muscle contraction force (MVMCF) and accurate determinate muscle force (20% of MVMCF) developed during an isometric contraction of elbow flexors in 90° and 60° of elbow flexion were measured by an isokinetic dynamometer in healthy subjects (MH, n = 20) and subjects after an IS during their postrehabilitation period (MS, n = 20). Results. In order to evaluate the accuracy of the isometric contraction of the elbow flexors absolute errors were calculated. The absolute errors provided information about the difference between determinate and achieved muscle force. Conclusions. There is a tendency that greater absolute errors generating determinate force are made by MH and MS subjects in case of a greater elbow flexors length despite presence of VFI. Absolute errors also increase in both groups in case of a greater elbow flexors length without VFI. MS subjects make greater absolute errors generating determinate force without VFI in comparison with MH in shorter elbow flexors length. PMID:27042670

  1. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  2. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  3. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  4. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers.

    PubMed

    Bruno Garza, J L; Eijckelhof, B H W; Johnson, P W; Raina, S M; Rynell, P W; Huysmans, M A; van Dieën, J H; van der Beek, A J; Blatter, B M; Dennerlein, J T

    2012-01-01

    This study, a part of the PRedicting Occupational biomechanics in OFfice workers (PROOF) study, investigated whether there are differences in field-measured forces, muscle efforts, postures, velocities and accelerations across computer activities. These parameters were measured continuously for 120 office workers performing their own work for two hours each. There were differences in nearly all forces, muscle efforts, postures, velocities and accelerations across keyboard, mouse and idle activities. Keyboard activities showed a 50% increase in the median right trapezius muscle effort when compared to mouse activities. Median shoulder rotation changed from 25 degrees internal rotation during keyboard use to 15 degrees external rotation during mouse use. Only keyboard use was associated with median ulnar deviations greater than 5 degrees. Idle activities led to the greatest variability observed in all muscle efforts and postures measured. In future studies, measurements of computer activities could be used to provide information on the physical exposures experienced during computer use. Practitioner Summary: Computer users may develop musculoskeletal disorders due to their force, muscle effort, posture and wrist velocity and acceleration exposures during computer use. We report that many physical exposures are different across computer activities. This information may be used to estimate physical exposures based on patterns of computer activities over time.

  5. High-Intensity Strength Training Improves Function of Chronically Painful Muscles: Case-Control and RCT Studies

    PubMed Central

    Andersen, Christoffer H.; Skotte, Jørgen H.; Suetta, Charlotte; Søgaard, Karen; Saltin, Bengt; Sjøgaard, Gisela

    2014-01-01

    Aim. This study investigates consequences of chronic neck pain on muscle function and the rehabilitating effects of contrasting interventions. Methods. Women with trapezius myalgia (MYA, n = 42) and healthy controls (CON, n = 20) participated in a case-control study. Subsequently MYA were randomized to 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 16), or a reference group without physical training (REF, n = 8). Participants performed tests of 100 consecutive cycles of 2 s isometric maximal voluntary contractions (MVC) of shoulder elevation followed by 2 s relaxation at baseline and 10-week follow-up. Results. In the case-control study, peak force, rate of force development, and rate of force relaxation as well as EMG amplitude were lower in MYA than CON throughout all 100 MVC. Muscle fiber capillarization was not significantly different between MYA and CON. In the intervention study, SST improved all force parameters significantly more than the two other groups, to levels comparable to that of CON. This was seen along with muscle fiber hypertrophy and increased capillarization. Conclusion. Women with trapezius myalgia have lower strength capacity during repetitive MVC of the trapezius muscle than healthy controls. High-intensity strength training effectively improves strength capacity during repetitive MVC of the painful trapezius muscle. PMID:24707475

  6. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions

    PubMed Central

    Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved

    2010-01-01

    Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613

  7. Loading, electromyograph, and motion during exercise

    NASA Technical Reports Server (NTRS)

    Todd, Beth A.

    1993-01-01

    A bicycle ergometer system has been developed to determine forces acting in specific muscles and muscle groups for both cycling and isometric exercise. The bicycle has been instrumented with encoders, accelerometers, and load cells. A harnessing system has been developed to keep subjects in place during isometric exercise. EMG data will also be collected with electrodes attached to various muscles on the subject's leg. Data has been collected for static loading and will be collected for cycling in both an earth-based laboratory and on the KC-135. Once the data is analyzed, the forces will be entered into finite element models of bones of the lower extremities. A finite element model of the tibia-fibula has been generated from the experimental subject's MRI data. The linear elastic isoparametric brick elements representing the bones are connected by linear elastic isoparametric shell elements placed at the locations of ligaments. Models will be generated for the calcaneus and the femur. Material properties for the various tissues will be taken from the literature. The experimentally determined muscle forces will be applied to the models to determine the stress distribution which is created in the bones.

  8. Application of a rat hindlimb model: a prediction of force spaces reachable through stimulation of nerve fascicles.

    PubMed

    Johnson, Will L; Jindrich, Devin L; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2011-12-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb, which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model, we investigated the suitability of a lumped-parameter model for the prediction of muscle activation during dynamic tasks. Using the validated model, we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury.

  9. Application of a Rat Hindlimb Model: A Prediction of Force Spaces Reachable Through Stimulation of Nerve Fascicles

    PubMed Central

    Johnson, Will L.; Jindrich, Devin L.; Zhong, Hui; Roy, Roland R.

    2011-01-01

    A device to generate standing or locomotion through chronically placed electrodes has not been fully developed due in part to limitations of clinical experimentation and the high number of muscle activation inputs of the leg. We investigated the feasibility of functional electrical stimulation paradigms that minimize the input dimensions for controlling the limbs by stimulating at nerve fascicles, utilizing a model of the rat hindlimb which combined previously collected morphological data with muscle physiological parameters presented herein. As validation of the model we investigated the suitability of a lumped-parameter model for prediction of muscle activation during dynamic tasks. Using the validated model we found that the space of forces producible through activation of muscle groups sharing common nerve fascicles was nonlinearly dependent on the number of discrete muscle groups that could be individually activated (equivalently, the neuroanatomical level of activation). Seven commonly innervated muscle groups were sufficient to produce 78% of the force space producible through individual activation of the 42 modeled hindlimb muscles. This novel, neuroanatomically derived reduction in input dimension emphasizes the potential to simplify controllers for functional electrical stimulation to improve functional recovery after a neuromuscular injury. PMID:21244999

  10. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle

    PubMed Central

    Tewari, Shivendra G.; Bugenhagen, Scott M.; Palmer, Bradley M.; Beard, Daniel A.

    2015-01-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley’s sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads. PMID:25681584

  11. Muscle coordination is habitual rather than optimal.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-05-23

    When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics. We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accomplish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation-supination postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated by lower sensorimotor circuitry that are functionally "good-enough."

  12. Dynamic contraction behaviour of pneumatic artificial muscle

    NASA Astrophysics Data System (ADS)

    Doumit, Marc D.; Pardoel, Scott

    2017-07-01

    The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.

  13. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    PubMed

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.

  14. Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.

    PubMed

    Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R

    2015-06-16

    Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.

  15. A possible anatomical and biomechanical explanation of the 10% rule used in the clinical assessment of prehensile hand movements and handed dominance.

    PubMed

    Yielder, P; Gutnik, B; Kobrin, V; Hudson, G

    2009-12-01

    A current doctrine in the dynamometric approach to determine lateralization of hand function states that in 10% of cases, the non-dominant hand will be stronger than the dominant hand. In this study, a novel MRI based modelling approach was applied to the first dorsal introsseus muscle (FDI), to determine whether the 10% rule may be applied to the FDI and may be partially explained by the arrangement of the anatomical components of the FDI. Initially the force generated by the thumb segment during an isometric pushing task in the horizontal plane was measured from 25 strongly right-handed young males. Nine of these participants then had structural magnetic resonance imaging (sMRI) of the thumb and index osseous compartment. A modelling technique was developed to extract the muscle data and quantify the muscle line of action onto to the first metacarpal bone segment in order to quantify the muscle force at the point of momentary rotation--equilibrium. Eight of 25 subjects exhibited stronger force from the left hand. Six out of nine subjects from the MRI possessed significantly greater angles of attachment of the index osseous compartment on the left (non-dominant) hand. These six subjects also generated greater maximal isometric forces from the FDI of the left side. There was a significantly greater muscle volume for the right FDI muscle as compared to the left as measured from the reconstructed MRI slice data. The calculated force produced by the muscle is related to the angle of attachment of the muscle to bone in the index osseous compartment. The MRI findings indicate that the 10% rule may be anatomically and biomechanically explained.

  16. Effects of the forearm support band on wrist extensor muscle fatigue.

    PubMed

    Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A

    1999-11-01

    A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.

  17. Cross-bridge elasticity in single smooth muscle cells

    PubMed Central

    1983-01-01

    In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640

  18. The compensatory interaction between motor unit firing behavior and muscle force during fatigue

    PubMed Central

    De Luca, Carlo J.; Kline, Joshua C.

    2016-01-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798

  19. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    PubMed

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  20. Finite Element Modeling of Intermuscular Interactions and Myofascial Force Transmission

    DTIC Science & Technology

    2001-10-25

    obtained explain force differences at the distal and proximal tendons of muscles that have mechanical interaction. This is in agreement with experimental...consequence is that active force generated within one muscle may be exerted at the tendon of another muscle. Keywords- Finite element method...7]. Therefore, in vivo there is an additional route for force transmission out off the muscle, which completely bypasses the tendon of the muscle

  1. Inter-individual similarities and variations in muscle forces acting on the ankle joint during gait.

    PubMed

    Błażkiewicz, Michalina; Wiszomirska, Ida; Kaczmarczyk, Katarzyna; Naemi, Roozbeh; Wit, Andrzej

    2017-10-01

    Muscle forces acting over the ankle joint play an important role in the forward progression of the body during gait. Yet despite the importance of ankle muscle forces, direct in-vivo measurements are neither possible nor practical. This makes musculoskeletal simulation useful as an indirect technique to quantify the muscle forces at work during locomotion. The purpose of this study was to: 1) identify the maximum peaks of individual ankle muscle forces during gait; 2) investigate the order over which the muscles are sorted based on their maximum peak force. Three-dimensional kinematics and ground reaction forces were measured during the gait of 10 healthy subjects, and the data so obtained were input into the musculoskeletal model distributed with the OpenSim software. In all 10 individuals we observed that the soleus muscle generated the greatest strength both in dynamic (1856.1N) and isometric (3549N) conditions, followed by the gastrocnemius in dynamic conditions (1232.5N). For all other muscles, however, the sequence looks different across subjects, so the k-means clustering method was used to obtain one main order over which the muscles' peak-forces are sorted. The results indicate a common theme, with some variations in the maximum peaks of ankle muscle force across subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of Muscle-Tendon Wrapping on Calculations of Joint Reaction Forces in the Equine Distal Forelimb

    PubMed Central

    Merritt, Jonathan S.; Davies, Helen M. S.; Burvill, Colin; Pandy, Marcus G.

    2008-01-01

    The equine distal forelimb is a common location of injuries related to mechanical overload. In this study, a two-dimensional model of the musculoskeletal system of the region was developed and applied to kinematic and kinetic data from walking and trotting horses. The forces in major tendons and joint reaction forces were calculated. The components of the joint reaction forces caused by wrapping of tendons around sesamoid bones were found to be of similar magnitude to the reaction forces between the long bones at each joint. This finding highlighted the importance of taking into account muscle-tendon wrapping when evaluating joint loading in the equine distal forelimb. PMID:18509485

  3. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  4. Development of Advanced Active Haptic System for Musculokelelton-Exoskeleton Interactions

    DTIC Science & Technology

    2005-08-31

    magnetoencephalography system (MEG). The Cognoscope device may allow researchers to determine when a specific muscle contraction is about to take...motion before it actually occurs. In order for the limbs to move voluntarily, muscle contraction needs to occur. There are several physiologic changes...to muscle that occur immediately preceding force production. The most common way of measuring the onset of muscle contraction is via

  5. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation.

  6. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    PubMed Central

    Crago, Patrick E; Makowski, Nathaniel S; Cole, Natalie M

    2014-01-01

    Objective Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity, without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main Results Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously - voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical neuroprosthetic interventions involving either motor or sensory stimulation. PMID:25242203

  7. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.

    PubMed

    Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2014-02-01

    Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.

  8. Methodologies to determine forces on bones and muscles of body segments during exercise, employing compact sensors suitable for use in crowded space vehicles

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando

    1995-01-01

    Work under this grant was carried out by the author and by a graduate research assistant. An instrumented bicycle ergometer was implemented focusing on the stated objective: to estimate the forces exerted by each muscle of the feet, calf, and thigh of an individual while bicycling. The sensors used were light and compact. These were probes to measure muscle EMG activity, miniature accelerometers, miniature load sensors, and small encoders to measure angular positions of the pedal. A methodology was developed and implemented to completely describe the kinematics of the limbs using data from the sensors. This work has been published as a Master's Thesis by the Graduate student supported by the grant. The instrumented ergometer along with the sensors and instrumentation were tested during a KC-135 Zero-Gravity flight in July, 1994. A complete description of the system and the tests performed have been published as a report submitted to NASA Johnson Space Center. The data collected during the KC-135 flight is currently being processed so that a kinematic description of the bicycling experiment will be soon determined. A methodology to estimate the muscle forces has been formulated based on previous work. The methodology involves the use of optimization concepts so that the individual muscle forces that represent variables in dynamic equations of motion may be estimated. Optimization of a criteria (goal) function such as minimization of energy will be used along with constraint equations defined by rigid body equations of motion. Use of optimization principles is necessary, because the equations of motion alone constitute an indeterminate system of equations with respect to the large amount of muscle forces which constitute the variables in these equations. The number of variables is reduced somewhat by using forces measured by the load cells installed on the pedal. These load cells measure pressure and shear forces on the foot. The author and his collaborators at NASA and at the University of Alabama, Tuscaloosa, are continuing the work of reducing the experimental data from the KC-135 flight, and the implementation of the optimization methods to estimate muscle forces. As soon as results from these efforts are available, they will be published in reputable journals. Results of this work will impact studies addressing bone density loss and development of countermeasures to minimize bone loss in zero gravity conditions. By analyzing muscle forces on Earth and in Space during exercise, scientists could eventually formulate new exercises and machines to help maintain bone density. On Earth, this work will impact studies concerning arthritis, and will provide the means to study possible exercise countermeasures to minimize arthritis problems.

  9. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model

    PubMed Central

    2014-01-01

    Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668

  10. EMGD-FE: an open source graphical user interface for estimating isometric muscle forces in the lower limb using an EMG-driven model.

    PubMed

    Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K

    2014-04-04

    This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.

  11. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets.

    PubMed

    Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.

  12. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets

    PubMed Central

    Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated. PMID:27242547

  13. Effective force control by muscle synergies

    PubMed Central

    Berger, Denise J.; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4–5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination. PMID:24860489

  14. The Effect of Varying Biting Position on Relative Jaw Muscle EMG activity

    DTIC Science & Technology

    1988-09-01

    with muscle force is the key to 13 this approach as it allows inference of muscle contraction activity from EMG data. This relationship has been the...5! 15 LITERATURE REVIEW Introduction: The study of the physiology of bite force, muscle contraction force, joint reaction force and the lever system...Currently, the best method of indirectly observing muscle contraction activity is through electromyography. Although there appears to be a time delay

  15. TVD, Linnehan collects data during LMS-1 Spacelab mission

    NASA Image and Video Library

    1996-07-09

    STS078-430-009 (20 June-7 July 1996) --- Astronaut Richard M. Linnehan, mission specialist, performs a test on his leg using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the leg in this particular view. The TVD hardware is also used to measure arm muscle forces and velocity at the bicep and tricep areas. Crewmembers for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.

  16. Mechanical Control of Myotendinous Junction Formation and Tendon Differentiation during Development.

    PubMed

    Valdivia, Mauricio; Vega-Macaya, Franco; Olguín, Patricio

    2017-01-01

    The development of the musculoskeletal system is a great model to study the interplay between chemical and mechanical inter-tissue signaling in cell adhesion, tissue morphogenesis and differentiation. In both vertebrates and invertebrates (e.g., Drosophila melanogaster ) the formation of muscle-tendon interaction generates mechanical forces which are required for myotendinous junction maturation and tissue differentiation. In addition, these forces must be withstood by muscles and tendons in order to prevent detachment from each other, deformation or even losing their integrity. Extracellular matrix remodeling at the myotendinous junction is key to resist mechanical load generated by muscle contraction. Recent evidences in vertebrates indicate that mechanical forces generated during junction formation regulate chemical signaling leading to extracellular matrix remodeling, however, the mechanotransduction mechanisms associated to this response remains elusive. In addition to extracellular matrix remodeling, the ability of Drosophila tendon-cells to bear mechanical load depends on rearrangement of tendon cell cytoskeleton, thus studying the molecular mechanisms involved in this process is critical to understand the contribution of mechanical forces to the development of the musculoskeletal system. Here, we review recent findings regarding the role of chemical and mechanical signaling in myotendinous junction formation and tendon differentiation, and discuss molecular mechanisms of mechanotransduction that may allow tendon cells to withstand mechanical load during development of the musculoskeletal system.

  17. A Muscle’s Force Depends on the Recruitment Patterns of Its Fibers

    PubMed Central

    Wakeling, James M.; Lee, Sabrina S. M.; Arnold, Allison S.; de Boef Miara, Maria; Biewener, Andrew A.

    2012-01-01

    Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle. PMID:22350666

  18. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    PubMed

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    PubMed

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  20. An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles

    PubMed Central

    Ferris, Daniel P.; Czerniecki, Joseph M.; Hannaford, Blake

    2005-01-01

    We developed a pneumatically powered orthosis for the human ankle joint. The orthosis consisted of a carbon fiber shell, hinge joint, and two artificial pneumatic muscles. One artificial pneumatic muscle provided plantar flexion torque and the second one provided dorsiflexion torque. Computer software adjusted air pressure in each artificial muscle independently so that artificial muscle force was proportional to rectified low-pass-filtered electromyography (EMG) amplitude (i.e., proportional myoelectric control). Tibialis anterior EMG activated the artificial dorsiflexor and soleus EMG activated the artificial plantar flexor. We collected joint kinematic and artificial muscle force data as one healthy participant walked on a treadmill with the orthosis. Peak plantar flexor torque provided by the orthosis was 70 Nm, and peak dorsiflexor torque provided by the orthosis was 38 Nm. The orthosis could be useful for basic science studies on human locomotion or possibly for gait rehabilitation after neurological injury. PMID:16082019

  1. A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors.

    PubMed

    Grbic, Vladimir; Djuric, Sasa; Knezevic, Olivera M; Mirkov, Dragan M; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2017-09-01

    Single outcomes of standard isokinetic dynamometry tests do not discern between various muscle mechanical capacities. In this study, we aimed to (1) evaluate the shape and strength of the force-velocity relationship of knee extensors, as observed in isokinetic tests conducted at a wide range of angular velocities, and (2) explore the concurrent validity of a simple 2-velocity method. Thirteen physically active females were tested for both the peak and averaged knee extensor concentric force exerted at the angular velocities of 30°-240°/s recorded in the 90°-170° range of knee extension. The results revealed strong (0.960

  2. Aging alters contractile properties and fiber morphology in pigeon skeletal muscle.

    PubMed

    Pistilli, Emidio E; Alway, Stephen E; Hollander, John M; Wimsatt, Jeffrey H

    2014-12-01

    In this study, we tested the hypothesis that skeletal muscle from pigeons would display age-related alterations in isometric force and contractile parameters as well as a shift of the single muscle fiber cross-sectional area (CSA) distribution toward smaller fiber sizes. Maximal force output, twitch contraction durations and the force-frequency relationship were determined in tensor propatagialis pars biceps muscle from young 3-year-old pigeons, middle-aged 18-year-old pigeons, and aged 30-year-old pigeons. The fiber CSA distribution was determined by planimetry from muscle sections stained with hematoxylin and eosin. Maximal force output of twitch and tetanic contractions was greatest in muscles from young pigeons, while the time to peak force of twitch contractions was longest in muscles from aged pigeons. There were no changes in the force-frequency relationship between the age groups. Interestingly, the fiber CSA distribution in aged muscles revealed a greater number of larger sized muscle fibers, which was verified visually in histological images. Middle-aged and aged muscles also displayed a greater amount of slow myosin containing muscle fibers. These data demonstrate that muscles from middle-aged and aged pigeons are susceptible to alterations in contractile properties that are consistent with aging, including lower force production and longer contraction durations. These functional changes were supported by the appearance of slow myosin containing muscle fibers in muscles from middle-aged and aged pigeons. Therefore, the pigeon may represent an appropriate animal model for the study of aging-related alterations in skeletal muscle function and structure.

  3. Mechanical forces and their second messengers in stimulating cell growth in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1992-01-01

    Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.

  4. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  5. The effect of leg dominance and landing height on ACL loading among female athletes.

    PubMed

    Mokhtarzadeh, Hossein; Ewing, Katie; Janssen, Ina; Yeow, Chen-Hua; Brown, Nicholas; Lee, Peter Vee Sin

    2017-07-26

    Female athletes are more prone to anterior cruciate ligament (ACL) injury. A neuromuscular imbalance called leg dominance may provide a biomechanical explanation. Therefore, the purpose of this study was to compare the side-to-side lower limb differences in movement patterns, muscle forces and ACL forces during a single-leg drop-landing task from two different heights. We hypothesized that there will be significant differences in lower limb movement patterns (kinematics), muscle forces and ACL loading between the dominant and non-dominant limbs. Further, we hypothesized that significant differences between limbs will be present when participants land from a greater drop-landing height. Eight recreational female participants performed dominant and non-dominant single-leg drop landings from 30 to 60cm. OpenSim software was used to develop participant-specific musculoskeletal models and to calculate muscle forces. We also predicted ACL loading using our previously established method. There were no significant differences between dominant and non-dominant leg landing except in ankle dorsiflexion and GMED muscle forces at peak GRF. Landing from a greater height resulted in significant differences among most kinetics and kinematics variables and ACL forces. Minimal differences in lower-limb muscle forces and ACL loading between the dominant and non-dominant legs during single-leg landing may suggest similar risk of injury across limbs in this cohort. Further research is required to confirm whether limb dominance may play an important role in the higher incidence of ACL injury in female athletes with larger and sport-specific cohorts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Computational tools for calculating alternative muscle force patterns during motion: a comparison of possible solutions.

    PubMed

    Martelli, Saulo; Calvetti, Daniela; Somersalo, Erkki; Viceconti, Marco; Taddei, Fulvia

    2013-08-09

    Comparing the available electromyography (EMG) and the related uncertainties with the space of muscle forces potentially driving the same motion can provide insights into understanding human motion in healthy and pathological neuromotor conditions. However, it is not clear how effective the available computational tools are in completely sample the possible muscle forces. In this study, we compared the effectiveness of Metabolica and the Null-Space algorithm at generating a comprehensive spectrum of possible muscle forces for a representative motion frame. The hip force peak during a selected walking trial was identified using a lower-limb musculoskeletal model. The joint moments, the muscle lever arms, and the muscle force constraints extracted from the model constituted the indeterminate equilibrium equation at the joints. Two spectra, each containing 200,000 muscle force samples, were calculated using Metabolica and the Null-Space algorithm. The full hip force range was calculated using optimization and compared with the hip force ranges derived from the Metabolica and the Null-Space spectra. The Metabolica spectrum spanned a much larger force range than the NS spectrum, reaching 811N difference for the gluteus maximus intermediate bundle. The Metabolica hip force range exhibited a 0.3-0.4 BW error on the upper and lower boundaries of the full hip force range (3.4-11.3 BW), whereas the full range was imposed in the NS spectrum. The results suggest that Metabolica is well suited for exhaustively sample the spectrum of possible muscle recruitment strategy. Future studies will investigate the muscle force range in healthy and pathological neuromotor conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    PubMed

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  8. Force estimation from ensembles of Golgi tendon organs

    NASA Astrophysics Data System (ADS)

    Mileusnic, M. P.; Loeb, G. E.

    2009-06-01

    Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.

  9. Sensitivity of a juvenile subject-specific musculoskeletal model of the ankle joint to the variability of operator-dependent input

    PubMed Central

    Hannah, Iain; Montefiori, Erica; Modenese, Luca; Prinold, Joe; Viceconti, Marco; Mazzà, Claudia

    2017-01-01

    Subject-specific musculoskeletal modelling is especially useful in the study of juvenile and pathological subjects. However, such methodologies typically require a human operator to identify key landmarks from medical imaging data and are thus affected by unavoidable variability in the parameters defined and subsequent model predictions. The aim of this study was to thus quantify the inter- and intra-operator repeatability of a subject-specific modelling methodology developed for the analysis of subjects with juvenile idiopathic arthritis. Three operators each created subject-specific musculoskeletal foot and ankle models via palpation of bony landmarks, adjustment of geometrical muscle points and definition of joint coordinate systems. These models were then fused to a generic Arnold lower limb model for each of three modelled patients. The repeatability of each modelling operation was found to be comparable to those previously reported for the modelling of healthy, adult subjects. However, the inter-operator repeatability of muscle point definition was significantly greater than intra-operator repeatability (p < 0.05) and predicted ankle joint contact forces ranged by up to 24% and 10% of the peak force for the inter- and intra-operator analyses, respectively. Similarly, the maximum inter- and intra-operator variations in muscle force output were 64% and 23% of peak force, respectively. Our results suggest that subject-specific modelling is operator dependent at the foot and ankle, with the definition of muscle geometry the most significant source of output uncertainty. The development of automated procedures to prevent the misplacement of crucial muscle points should therefore be considered a particular priority for those developing subject-specific models. PMID:28427313

  10. Sensitivity of a juvenile subject-specific musculoskeletal model of the ankle joint to the variability of operator-dependent input.

    PubMed

    Hannah, Iain; Montefiori, Erica; Modenese, Luca; Prinold, Joe; Viceconti, Marco; Mazzà, Claudia

    2017-05-01

    Subject-specific musculoskeletal modelling is especially useful in the study of juvenile and pathological subjects. However, such methodologies typically require a human operator to identify key landmarks from medical imaging data and are thus affected by unavoidable variability in the parameters defined and subsequent model predictions. The aim of this study was to thus quantify the inter- and intra-operator repeatability of a subject-specific modelling methodology developed for the analysis of subjects with juvenile idiopathic arthritis. Three operators each created subject-specific musculoskeletal foot and ankle models via palpation of bony landmarks, adjustment of geometrical muscle points and definition of joint coordinate systems. These models were then fused to a generic Arnold lower limb model for each of three modelled patients. The repeatability of each modelling operation was found to be comparable to those previously reported for the modelling of healthy, adult subjects. However, the inter-operator repeatability of muscle point definition was significantly greater than intra-operator repeatability ( p < 0.05) and predicted ankle joint contact forces ranged by up to 24% and 10% of the peak force for the inter- and intra-operator analyses, respectively. Similarly, the maximum inter- and intra-operator variations in muscle force output were 64% and 23% of peak force, respectively. Our results suggest that subject-specific modelling is operator dependent at the foot and ankle, with the definition of muscle geometry the most significant source of output uncertainty. The development of automated procedures to prevent the misplacement of crucial muscle points should therefore be considered a particular priority for those developing subject-specific models.

  11. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    PubMed Central

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  12. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Kaderka, Justin; Newman, Dava

    2012-01-01

    The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.

  13. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.

    PubMed

    Ali, Nicholas; Andersen, Michael Skipper; Rasmussen, John; Robertson, D Gordon E; Rouhi, Gholamreza

    2014-01-01

    The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = - 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = - 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = - 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.

  14. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  15. The effects of local forearm muscle cooling on motor unit properties.

    PubMed

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P < 0.05). Surface EMG decomposition showed muscle cooling increased the number of motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P < 0.001), but decreased MUAP amplitude (d = 0.2, P = 0.012). Individually, neither motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P < 0.001) and had an increased y-intercept (d = 0.9, P = 0.007) with muscle cooling. Since muscle contractility is impaired with muscle cooling, these findings suggest a compensatory increase in the number of active motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  16. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438

  17. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

  18. Myoelectric Response of Back Muscles to Vertical Random Whole-Body Vibration with Different Magnitudes at Different Postures

    NASA Astrophysics Data System (ADS)

    BLÜTHNER, R.; SEIDEL, H.; HINZ, B.

    2002-05-01

    Back muscle forces contribute essentially to the whole-body vibration-induced spinal load. The electromyogram (EMG) can help to estimate these forces during whole-body vibration (WBV). Thirty-eight subjects were exposed to identical random low-frequency WBV (0·7, 1·0 and 1·4 m/s-2 r.m.s. weighted acceleration) at a relaxed, erect and bent forward postures. The acceleration of the seat and the force between the seat and the buttocks were measured. Six EMGs were derived from the right side of the m. trapezius pars descendens, m. ileocostalis lumborum pars thoracis, m. ileocostalis lumborum pars lumborum; m. longissimus thoracis pars thoracis, m. longissimus thoracis pars lumborum, and lumbar multifidus muscle. All data were filtered for anti-aliasing and sampled with 1000 Hz. Artefacts caused by the ECG in the EMG were identified and eliminated in the time domain using wavelets. The individually rectified and normalized EMGs were averaged across subjects. The EMGs without WBV exhibited characteristic patterns for the three postures examined. The coherence and transfer functions indicated characteristic myoelectric responses to random WBV with several effects of posture and WBV magnitude. A comprehensive set of transfer functions from the seat acceleration or the mean normalized input force to the mean processed EMG was presented.The results can be used for the development of more sophisticated models with a separate control of various back muscle groups. However, the EMG-force relationship under dynamic conditions needs to be examined in more detail before the results can be implemented. Since different reflex mechanisms depending on the frequency of WBV are linked with different types of active muscle fibres, various time delays between the EMG and muscle force may be necessary.

  19. Reduced force of diaphragm muscle fibers in patients with chronic thromboembolic pulmonary hypertension

    PubMed Central

    Manders, Emmy; Bonta, Peter I.; Kloek, Jaap J.; Symersky, Petr; Bogaard, Harm-Jan; Hooijman, Pleuni E.; Jasper, Jeff R.; Malik, Fady I.; Stienen, Ger J. M.; Vonk-Noordegraaf, Anton; de Man, Frances S.

    2016-01-01

    Patients with pulmonary hypertension (PH) suffer from inspiratory muscle weakness. However, the pathophysiology of inspiratory muscle dysfunction in PH is unknown. We hypothesized that weakness of the diaphragm, the main inspiratory muscle, is an important contributor to inspiratory muscle dysfunction in PH patients. Our objective was to combine ex vivo diaphragm muscle fiber contractility measurements with measures of in vivo inspiratory muscle function in chronic thromboembolic pulmonary hypertension (CTEPH) patients. To assess diaphragm muscle contractility, function was studied in vivo by maximum inspiratory pressure (MIP) and ex vivo in diaphragm biopsies of the same CTEPH patients (N = 13) obtained during pulmonary endarterectomy. Patients undergoing elective lung surgery served as controls (N = 15). Muscle fiber cross-sectional area (CSA) was determined in cryosections and contractility in permeabilized muscle fibers. Diaphragm muscle fiber CSA was not significantly different between control and CTEPH patients in both slow-twitch and fast-twitch fibers. Maximal force-generating capacity was significantly lower in slow-twitch muscle fibers of CTEPH patients, whereas no difference was observed in fast-twitch muscle fibers. The maximal force of diaphragm muscle fibers correlated significantly with MIP. The calcium sensitivity of force generation was significantly reduced in fast-twitch muscle fibers of CTEPH patients, resulting in a ∼40% reduction of submaximal force generation. The fast skeletal troponin activator CK-2066260 (5 μM) restored submaximal force generation to levels exceeding those observed in control subjects. In conclusion, diaphragm muscle fiber contractility is hampered in CTEPH patients and contributes to the reduced function of the inspiratory muscles in CTEPH patients. PMID:27190061

  20. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    PubMed Central

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  1. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries

    PubMed Central

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-01-01

    Summary Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required. PMID:25506583

  2. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    PubMed

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  3. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears.

    PubMed

    Mendias, Christopher L; Roche, Stuart M; Harning, Julie A; Davis, Max E; Lynch, Evan B; Sibilsky Enselman, Elizabeth R; Jacobson, Jon A; Claflin, Dennis R; Calve, Sarah; Bedi, Asheesh

    2015-01-01

    A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.

    PubMed

    Reading, S A; Murrant, C L; Barclay, J K

    2004-04-01

    We tested the hypothesis that positive inotropic factors decrease fatigue and improve recovery from fatigue in mammalian skeletal muscle in vitro. To induce fatigue, we stimulated mouse soleus and extensor digitorum longus (EDL) to perform isometric tetanic contractions (50 impulses x s(-1) for 0.5 s) at 6 contractions x min(-1) for 60 min in soleus and 3 contractions x min(-1) for 20 min in EDL. Muscles were submerged in Krebs-Henseleit bicarbonate solution (Krebs) at 27 degrees C gassed with 95% nitrogen - 5% carbon dioxide (anoxia). Before and for 67 min after the fatigue period, muscles contracted at 0.6 contractions x min(-1) in 95% oxygen - 5% carbon dioxide (hyperoxia). We added a permeable cAMP analog (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophosphate at 10(-3) mol x L(-1) (dcAMP)), caffeine (2 x 10(-3) mol x L(-1), or Krebs as vehicle control at 25 min before, during, or at the end of the fatigue period. In soleus and EDL, both challenges added before fatigue significantly increased developed force but only caffeine increased developed force when added during the fatigue period. At the end of fatigue, the decrease in force in challenged muscles was equal to or greater than in controls so that the force remaining was the same or less than in controls. EDL challenged with dcAMP or caffeine at any time recovered more force than controls. In soleus, caffeine improved recovery except when added before fatigue. With dcAMP added to soleus, recovery was better after challenges at 10 min and the end of the fatigue period. Thus, increased intracellular concentrations of cAMP and (or) Ca2+ did not decrease fatigue in either muscle but improved recovery from fatigue in EDL and, in some conditions, in soleus.

  5. Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair.

    PubMed

    Oak, Nikhil R; Gumucio, Jonathan P; Flood, Michael D; Saripalli, Anjali L; Davis, Max E; Harning, Julie A; Lynch, Evan B; Roche, Stuart M; Bedi, Asheesh; Mendias, Christopher L

    2014-12-01

    The repair and restoration of function after chronic rotator cuff tears are often complicated by muscle atrophy, fibrosis, and fatty degeneration of the diseased muscle. The inflammatory response has been implicated in the development of fatty degeneration after cuff injuries. Licofelone is a novel anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX), as well as cyclooxygenase (COX)-1 and COX-2 enzymes, which play important roles in inducing inflammation after injuries. While previous studies have demonstrated that nonsteroidal anti-inflammatory drugs and selective inhibitors of COX-2 (coxibs) may prevent the proper healing of muscles and tendons, studies about bone and cartilage have demonstrated that drugs that inhibit 5-LOX concurrently with COX-1 and COX-2 may enhance tissue regeneration. After the repair of a chronic rotator cuff tear in rats, licofelone would increase the load to failure of repaired tendons and increase the force production of muscle fibers. Controlled laboratory study. Rats underwent supraspinatus release followed by repair 28 days later. After repair, rats began a treatment regimen of either licofelone or a vehicle for 14 days, at which time animals were euthanized. Supraspinatus muscles and tendons were then subjected to contractile, mechanical, histological, and biochemical analyses. Compared with controls, licofelone-treated rats had a grossly apparent decrease in inflammation and increased fibrocartilage formation at the enthesis, along with a 62% increase in the maximum load to failure and a 51% increase in peak stress to failure. Licofelone resulted in a marked reduction in fibrosis and lipid content in supraspinatus muscles as well as reduced expression of several genes involved in fatty infiltration. Despite the decline in fibrosis and fat accumulation, muscle fiber specific force production was reduced by 23%. The postoperative treatment of cuff repair with licofelone may reduce fatty degeneration and enhance the development of a stable bone-tendon interface, although decreases in muscle fiber specific force production were observed, and force production in fact declined. This study demonstrates that the inhibition of 5-LOX, COX-1, and COX-2 modulates the healing process of repaired rotator cuff tendons. Although further studies are necessary, the treatment of patients with licofelone after cuff repair may improve the development of a stable enthesis and enhance postoperative outcomes. © 2014 The Author(s).

  6. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD).

    PubMed

    Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W

    2017-03-25

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.

  7. The effects of muscle weakness on degenerative spondylolisthesis: A finite element study.

    PubMed

    Zhu, Rui; Niu, Wen-Xin; Zeng, Zhi-Li; Tong, Jian-Hua; Zhen, Zhi-Wei; Zhou, Shuang; Yu, Yan; Cheng, Li-Ming

    2017-01-01

    Whether muscle weakness is a cause, or result, of degenerative spondylolisthesis is not currently well understood. Little biomechanical evidence is available to offer an explanation for the mechanism behind exercise therapy. Therefore, the aim of this study is to investigate the effects of back muscle weakness on degenerative spondylolisthesis and to tease out the biomechanical mechanism of exercise therapy. A nonlinear 3-D finite element model of L3-L5 was constructed. Forces representing global back muscles and global abdominal muscles, follower loads and an upper body weight were applied. The force of the global back muscles was reduced to 75%, 50% and 25% to simulate different degrees of back muscle weakness. An additional boundary condition which represented the loads from other muscles after exercise therapy was set up to keep the spine in a neutral standing position. Shear forces, intradiscal pressure, facet joint forces and von Mises equivalent stresses in the annuli were calculated. The intervertebral rotations of L3-L4 and L4-L5 were within the range of in vitro experimental data. The calculated intradiscal pressure of L4-L5 for standing was 0.57MPa, which is similar to previous in vivo data. With the back muscles were reduced to 75%, 50% and 25% force, the shear force moved increasingly in a ventral direction. Due to the additional stabilizing force and moment provided by boundary conditions, the shear force varied less than 15%. Reducing the force of global back muscles might lead to, or aggravate, degenerative spondylolisthesis with forward slipping from biomechanical point of view. Exercise therapy may improve the spinal biomechanical environment. However, the intrinsic correlation between back muscle weakness and degenerative spondylolisthesis needs more clinical in vivo study and biomechanical analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development and maintenance of force and stiffness in airway smooth muscle.

    PubMed

    Lan, Bo; Norris, Brandon A; Liu, Jeffrey C-Y; Paré, Peter D; Seow, Chun Y; Deng, Linhong

    2015-03-01

    Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.

  9. Factors that influence muscle shear modulus during passive stretch.

    PubMed

    Koo, Terry K; Hug, François

    2015-09-18

    Although elastography has been increasingly used for evaluating muscle shear modulus associated with age, sex, musculoskeletal, and neurological conditions, its physiological meaning is largely unknown. This knowledge gap may hinder data interpretation, limiting the potential of using elastography to gain insights into muscle biomechanics in health and disease. We derived a mathematical model from a widely-accepted Hill-type passive force-length relationship to gain insight about the physiological meaning of resting shear modulus of skeletal muscles under passive stretching, and validated the model by comparing against the ex-vivo animal data reported in our recent work (Koo et al. 2013). The model suggested that resting shear modulus of a slack muscle is a function of specific tension and parameters that govern the normalized passive muscle force-length relationship as well as the degree of muscle anisotropy. The model also suggested that although the slope of the linear shear modulus-passive force relationship is primarily related to muscle anatomical cross-sectional area (i.e. the smaller the muscle cross-sectional area, the more the increase in shear modulus to result in the same passive muscle force), it is also governed by the normalized passive muscle force-length relationship and the degree of muscle anisotropy. Taken together, although muscle shear modulus under passive stretching has a strong linear relationship with passive muscle force, its actual value appears to be affected by muscle's mechanical, material, and architectural properties. This should be taken into consideration when interpreting the muscle shear modulus values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  11. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, B.M.; Frye, G.S.; Ahn, B.

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia havemore » recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative soleus is also important for normal locomotion, we further performed a fatigue trial in the soleus and found that the decrease in relative force was greater and more rapid in solei from C-26 mice compared to controls. These data demonstrate that severe cancer cachexia causes profound muscle weakness that is not entirely explained by the muscle atrophy. In addition, cancer cachexia decreases the fatigue resistance of the soleus muscle, a postural muscle typically resistant to fatigue. Thus, specifically targeting contractile dysfunction represents an additional means to counter muscle weakness in cancer cachexia, in addition to targeting the prevention of muscle atrophy.« less

  12. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    PubMed

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The role of the extrinsic thoracic limb muscles in equine locomotion.

    PubMed

    Payne, R C; Veenman, P; Wilson, A M

    2005-02-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.

  14. The role of the extrinsic thoracic limb muscles in equine locomotion.

    PubMed

    Payne, R C; Veenman, P; Wilson, A M

    2004-12-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.

  15. Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle.

    PubMed

    Roy, Pauline; Rau, Fredérique; Ochala, Julien; Messéant, Julien; Fraysse, Bodvael; Lainé, Jeanne; Agbulut, Onnik; Butler-Browne, Gillian; Furling, Denis; Ferry, Arnaud

    2016-01-01

    The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.

  16. The role of the extrinsic thoracic limb muscles in equine locomotion

    PubMed Central

    Payne, RC; Veenman, P; Wilson, AM

    2005-01-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15730484

  17. The role of the extrinsic thoracic limb muscles in equine locomotion

    PubMed Central

    Payne, R C; Veenman, P; Wilson, A M

    2004-01-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15610395

  18. Muscle force modification strategies are not consistent for gait retraining to reduce the knee adduction moment in individuals with knee osteoarthritis.

    PubMed

    Shull, Peter B; Huang, Yangjian; Schlotman, Taylor; Reinbolt, Jeffrey A

    2015-09-18

    While gait retraining paradigms that alter knee loads typically focus on modifying kinematics, the underlying muscle force modifications responsible for these kinematic changes remain largely unknown. As humans are generally thought to select uniform gait muscle patterns such as strategies based on fatigue cost functions or energy minimization, we hypothesized that a kinematic gait change known to reduce the knee adduction moment (i.e. toe-in gait) would be accompanied by a uniform muscle force modification strategy for individuals with symptomatic knee osteoarthritis. Ten subjects with self-reported knee pain and radiographic evidence of medial compartment knee osteoarthritis performed normal gait and toe-in gait modification walking trials. Two hundred muscle-actuated dynamic simulations (10 steps for normal gait and 10 steps from toe-in gait for each subject) were performed to determine muscle forces for each gait. Results showed that subjects internally rotated their feet during toe-in gait, which decreased the foot progression angle by 7° (p<0.01) and reduced the first peak knee adduction moment by 20% (p<0.01). While significant muscle force modifications were evidenced within individuals, there were no consistent muscle force modifications across all subjects. It may be that self-selected muscle pattern changes are not uniform for gait modification particularly for individuals with knee pain. Future studies focused on altering knee loads should not assume consistent muscle force modifications for a given kinematic gait change across subjects and should consider muscle forces in addition to kinematics in gait retraining paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of weightlessness on the muscle system. new results of simulation's studies

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, I. B.; Shenkman, B. S.; Grigoriev, A. I.

    Results of studies of phenomenology and nature of the hypogravitational motor syndrome, provided at the Institute of Biomedical Problems of RAS, have shown that a decline of gravitational load is followed consistently by deep disturbances in all parts and structures of the motor system. An important role in their development plays the withdrawal of the support and, accordingly the decrease of the intensity of the support afferentation activities that provokes a decline of tonic motor units' activities and correspondingly a decline of the muscle tone in the first phase and the development of atrophic processes in slow fibers of antigravitational muscles in the second one (Kozlovskaya et.al., 1987). This hypothesis was tested in experiments with 7-hours and 7-days "dry immersion" (DI), in which effects of pure supportless environment and pure supportless environment coupled with mechanical stimulation of the support zones of the soles were compared. Stimulation with the pressure of 0,2 kg/sm^2 value to forefoot and heel support zones for 20 minutes every hour during 6 hours was applied daily in the regimen of slow and fast locomotion (pacing with the rate of 60 and 120 steps/min). The subjects exposed to the pure DI environment revealed after exposition a significant decline of the transverse stiffness and of the maximal isokinetic force of the leg postural muscles, a decrease of the postural muscles participation in the locomotions along with the increase of the phasic muscles' part, a significant decrease of the absolute force of m.soleus single skinned fibers evoked by Ca++, and an obvious decline of their transverse cross sectional areas as well as prominent disturbances of the activities of spinal and supraspinal motor control systems. Mechanical stimulation of the soles support zones eliminated all the above effects, minimizing the changes of the muscle stiffness and the maximal isokinetic force, taking away the signs of the isolated muscle fibers force decline and of the atrophic changes, preserving close to control relations of the activities of postural (m.soleus) and phasic (m.gastrocnemius) muscles in locomotor movements and normal characteristics of activities of motor control mechanisms.

  20. Action Direction of Muscle Synergies in Three-Dimensional Force Space

    PubMed Central

    Hagio, Shota; Kouzaki, Motoki

    2015-01-01

    Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis. PMID:26618156

  1. Action Direction of Muscle Synergies in Three-Dimensional Force Space.

    PubMed

    Hagio, Shota; Kouzaki, Motoki

    2015-01-01

    Redundancy in the musculoskeletal system was supposed to be simplified by muscle synergies, which modularly organize muscles. To clarify the underlying mechanisms of motor control using muscle synergies, it is important to examine the spatiotemporal contribution of muscle synergies in the task space. In this study, we quantified the mechanical contribution of muscle synergies as considering spatiotemporal correlation between the activation of muscle synergies and endpoint force fluctuations. Subjects performed isometric force generation in the three-dimensional force space. The muscle-weighting vectors of muscle synergies and their activation traces across different trials were extracted from electromyogram data using decomposing technique. We then estimated mechanical contribution of muscle synergies across each trial based on cross-correlation analysis. The contributing vectors were averaged for all trials, and the averaging was defined as action direction (AD) of muscle synergies. As a result, we extracted approximately five muscle synergies. The ADs of muscle synergies mainly depended on the anatomical functions of their weighting muscles. Furthermore, the AD of each muscle indicated the synchronous activation of muscles, which composed of the same muscle synergy. These results provide the spatiotemporal characteristics of muscle synergies as neural basis.

  2. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.

  3. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  4. Neuromuscular adaptations associated with knee joint angle-specific force change.

    PubMed

    Noorkõiv, Marika; Nosaka, Kazunori; Blazevich, Anthony J

    2014-08-01

    Neuromuscular adaptations to joint angle-specific force increases after isometric training have not yet been fully elucidated. This study examined angle-specific neuromuscular adaptations in response to isometric knee extension training at short (SL, joint angle 38.1° ± 3.7°) versus long (LL, 87.5° ± 6.0°) muscle lengths. Sixteen men trained three times a week for 6 wk either at SL (n = 8) or LL (n = 8). Voluntary maximal isometric knee extensor (MVC) force, doublet twitch force, EMG amplitudes (EMG/Mmax), and voluntary activation during MVC force (VA%) were measured at eight knee joint angles (30°-100°) at weeks 0, 3, and 6. Muscle volume and cross-sectional area (CSA) were measured from magnetic resonance imaging scans, and fascicle length (Lf) was assessed using ultrasonography before and after training. Clear joint angle specificity of force increase was seen in SL but not in LL. The 13.4% ± 9.7% (P = 0.01) force increase around the training angle in SL was related to changes in vastus lateralis and vastus medialis EMG/Mmax around the training angle (r = 0.84-0.88, P < 0.05), without changes in the doublet twitch force-angle relation or muscle size. In LL, muscle volume and CSA increased and the changes in CSA at specific muscle regions were correlated with changes in MVC force. A 5.4% ± 4.9% (P = 0.001) increase in Lf found in both groups was not associated with angle-specific force changes. There were no angle-specific changes in VA%. The EMG/Mmax, although not VA%, results suggest that neural adaptations underpinned training-related changes at short quadriceps lengths, but hypertrophic changes predominated after training at long lengths. The findings of this study should contribute to the development of more effective and evidence-based rehabilitation and strength training protocols.

  5. Maximal Voluntary Static Force Production Characteristics of Skeletal Muscle in Children 8-11 Years of Age.

    ERIC Educational Resources Information Center

    Going, Scott B.; And Others

    1987-01-01

    A study of maximal voluntary isometric muscle contraction force-time curves among 32 normal, healthy 8- to 11-year-olds performing tasks involving separate muscle groups found that force and maximal rate of force increase were quite reproducible, but time to selected force levels reflected considerable variations. (Author/CB)

  6. Mechanics of the fast-start: muscle function and the role of intramuscular pressure in the escape behavior of amia calva and polypterus palmas

    PubMed

    Westneat; Hale; Mchenry; Long

    1998-11-01

    The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.

  7. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    PubMed

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  8. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.

    PubMed

    Hamlet, Christina; Fauci, Lisa J; Tytell, Eric D

    2015-11-21

    Animals move through their environments using muscles to produce force. When an animal׳s nervous system activates a muscle, the muscle produces different amounts of force depending on its length, its shortening velocity, and its time history of force production. These muscle forces interact with forces from passive tissue properties and forces from the external environment. Using an integrative computational model that couples an elastic, actuated model of an anguilliform, lamprey-like swimmer with a surrounding Navier-Stokes fluid, we study the effects of this coupling between the muscle force and the body motion. Swimmers with different forms of this coupling can achieve similar motions, but use different amounts of energy. The velocity dependence is the most important property of the ones we considered for reducing energy costs and helping us to stabilize oscillations. These effects are strongly influenced by how rapidly the muscle deactivates; if force decays too slowly, muscles on opposite sides of the body end up fighting each other, increasing energy cost. Work-dependent deactivation, an effect that causes a muscle to deactivate more rapidly if it has recently produced mechanical work, works together with the velocity dependence to reduce the energy cost of swimming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. TVD, Thirsk collects data during LMS-1 Spacelab mission

    NASA Image and Video Library

    1996-07-09

    STS078-304-018 (20 June - 7 July 1996) --- Payload specialist Robert B. Thirsk, representing the Canadian Space Agency (CSA), performs a test on his arm using the Torque Velocity Dynamometer (TVD). Dr. Thirsk was measuring changes in muscle forces of the bicep and tricep in this particular view. The TVD hardware is also used to measure leg muscle forces and velocity at the ankle and elbow joints. Crew members for the mission performed all experiment protocols prior to flight to develop a baseline and will also perform post-flight tests to complete the analysis. Additionally, muscle biopsies were taken before the flight and will be conducted after the flight.

  10. Motor Force Homeostasis in Skeletal Muscle Contraction

    PubMed Central

    Chen, Bin; Gao, Huajian

    2011-01-01

    In active biological contractile processes such as skeletal muscle contraction, cellular mitosis, and neuronal growth, an interesting common observation is that multiple motors can perform coordinated and synchronous actions, whereas individual myosin motors appear to randomly attach to and detach from actin filaments. Recent experiment has demonstrated that, during skeletal muscle shortening at a wide range of velocities, individual myosin motors maintain a force of ∼6 pN during a working stroke. To understand how such force-homeostasis can be so precisely regulated in an apparently chaotic system, here we develop a molecular model within a coupled stochastic-elastic theoretical framework. The model reveals that the unique force-stretch relation of myosin motor and the stochastic behavior of actin-myosin binding cause the average number of working motors to increase in linear proportion to the filament load, so that the force on each working motor is regulated at ∼6 pN, in excellent agreement with experiment. This study suggests that it might be a general principle to use catch bonds together with a force-stretch relation similar to that of myosin motors to regulate force homeostasis in many biological processes. PMID:21767492

  11. One-Channel Surface Electromyography Decomposition for Muscle Force Estimation.

    PubMed

    Sun, Wentao; Zhu, Jinying; Jiang, Yinlai; Yokoi, Hiroshi; Huang, Qiang

    2018-01-01

    Estimating muscle force by surface electromyography (sEMG) is a non-invasive and flexible way to diagnose biomechanical diseases and control assistive devices such as prosthetic hands. To estimate muscle force using sEMG, a supervised method is commonly adopted. This requires simultaneous recording of sEMG signals and muscle force measured by additional devices to tune the variables involved. However, recording the muscle force of the lost limb of an amputee is challenging, and the supervised method has limitations in this regard. Although the unsupervised method does not require muscle force recording, it suffers from low accuracy due to a lack of reference data. To achieve accurate and easy estimation of muscle force by the unsupervised method, we propose a decomposition of one-channel sEMG signals into constituent motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of sEMG signals through reconstruction independent component analysis; (2) extracting spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate the accuracy of the proposed approach in estimating muscle force of the biceps brachii. The results demonstrated that the proposed approach based on decomposed MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary force level, while the conventional amplitude-based approach explains only 62.3% of this variability. With the proposed approach, we were also able to achieve grip force control of a prosthetic hand, which is one of the most important clinical applications of the unsupervised method. Experiments on two trans-radial amputees indicated that the proposed approach improves the performance of the prosthetic hand in grasping everyday objects.

  12. Up-regulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle

    PubMed Central

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T.; Li, Charles; Katz, Abram; Wedderburn, Lucy R.; Nagaraju, Kanneboyina; Lundberg, Ingrid E.; Westerblad, Håkan

    2008-01-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment; we used transgenic mice with inducible over-expression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared to control mice, however when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. PMID:19229963

  13. Mouse forepaw lumbrical muscles are resistant to age-related declines in force production.

    PubMed

    Russell, Katelyn A; Ng, Rainer; Faulkner, John A; Claflin, Dennis R; Mendias, Christopher L

    2015-05-01

    A progressive loss of skeletal muscle mass and force generating capacity occurs with aging. Mice are commonly used in the study of aging-associated changes in muscle size and strength, with most models of aging demonstrating 15-35% reductions in muscle mass, cross-sectional area (CSA), maximum isometric force production (Po) and specific force (sPo), which is Po/CSA. The lumbrical muscle of the mouse forepaw is exceptionally small, with corresponding short diffusion distances that make it ideal for in vitro pharmacological studies and measurements of contractile properties. However, the aging-associated changes in lumbrical function have not previously been reported. To address this, we tested the hypothesis that compared to adult (12month old) mice, the forepaw lumbrical muscles of old (30month old) mice exhibit aging-related declines in size and force production similar to those observed in larger limb muscles. We found that the forepaw lumbricals were composed exclusively of fibers with type II myosin heavy chain isoforms, and that the muscles accumulated connective tissue with aging. There were no differences in the number of fibers per whole-muscle cross-section or in muscle fiber CSA. The whole muscle CSA in old mice was increased by 17%, but the total CSA of all muscle fibers in a whole-muscle cross-section was not different. No difference in Po was observed, and while sPo normalized to total muscle CSA was decreased in old mice by 22%, normalizing Po by the total muscle fiber CSA resulted in no difference in sPo. Combined, these results indicate that forepaw lumbrical muscles from 30month old mice are largely protected from the aging-associated declines in size and force production that are typically observed in larger limb muscles. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.

    PubMed

    Kim, Hyun-Kyung; Zhang, Yanxin

    2017-04-01

    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  15. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  16. Muscular force transmission: a unified, dual or multiple system? A review and some explorative experimental results.

    PubMed

    Huijing, P

    1999-10-01

    Structures contributing to force transmission in muscle are reviewed combining some historical and relatively recently published experimental data. Also, effects of aponeurotomy and tenotomy are reviewed shortly as well as some new experimental results regarding these interventions that reinforce the concept of myofascial force transmission. The review is also illustrated by some new images of single muscle fibres from Xenopus Laevis indicative of such transmission and some data about locations of insertion of human gluteus maximus muscle. From this review and the new material, emerges a line of thought indicating that mechanical connections between muscle fibres and intramuscular connective tissue play an important role in force transmission. New experimental observations are presented for non-spanning muscle (i.c., rat biceps femoris muscle), regarding the great variety of types of intramuscular connections that exist i n addition to myo-tendinous junctions at the perimuscular ends of muscle fibres. Such connections are classified as (1) tapered end connections, (2) Myo-myonal junctions, (3) myo-epimysial junctions and (3) Myo-endomysial junctions. This line of thought is followed up by consideration of a possible role of connections of intra- and extramuscular connective tissue in force transmission out of the muscle. Experimental results of an explorative nature, regarding the interactions of extensor digitorum longus (EDL), tibialis anterior (TA) and hallucis longus (HAL) muscles within a relatively intact dorsal flexor compartment of the rat hind leg, indicate that: (1) length force properties of EDL are influenced by TA activity in a length dependent fashion. Depending on TA length, force exerted by EDL, kept at constant origin insertion distance, is variable and the effect is influenced by EDL length itself as well; (2) Force is transmitted from muscle to extramuscular connective tissue and vice versa. As a consequence force exerted at proximal and distal tendons of a muscle are not always equal. The difference being transmitted by extramuscular connective tissue and may appear at the tendons of other muscles or may be transmitted via connective tissue directly to bone. It is concluded that the system of force transmission from skeletal muscle should be considered as a multiple system.

  17. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    PubMed

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  18. Effect of Postnatal Myostatin Inhibition on Bite Mechanics in Mice.

    PubMed

    Williams, Susan H; Lozier, Nicholas R; Montuelle, Stéphane J; de Lacalle, Sonsoles

    2015-01-01

    As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.

  19. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    PubMed

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  20. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity

    PubMed Central

    Ache, Jan M.; Matheson, Thomas

    2013-01-01

    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  1. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    PubMed Central

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P < 0.05). The fit of muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P < 0.05), and only the fast rate constant of relaxation in soleus muscle (P < 0.05). Myofibrillar ATPase activity increased in both relaxed and activated conditions in soleus (P < 0.001), suggesting that the depressed specific tension was not due to the myosin head alteration itself. Moreover, action potential-elicited Ca2+ transients in flexor digitorum brevis fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  2. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb

    PubMed Central

    van Antwerp, Keith W.; Burkholder, Thomas J.

    2015-01-01

    The biomechanical principles underlying the organization of muscle activation patterns during standing balance are poorly understood. The goal of this study was to understand the influence of biomechanical inter-joint coupling on endpoint forces and accelerations induced by the activation of individual muscles during postural tasks. We calculated induced endpoint forces and accelerations of 31 muscles in a 7 degree-of-freedom, 3-dimensional model of the cat hindlimb. To test the effects of inter-joint coupling, we systematically immobilized the joints (excluded kinematic degrees-of-freedom) and evaluated how the endpoint force and acceleration directions changed for each muscle in seven different conditions. We hypothesized that altered inter-joint coupling due to joint immobilization of remote joints would substantially change the induced directions of endpoint force and acceleration of individual muscles. Our results show that for most muscles crossing the knee or the hip, joint immobilization altered the endpoint force or acceleration direction by more than 90° in the dorsal and sagittal planes. Induced endpoint forces were typically consistent with behaviorally-observed forces only when the ankle was immobilized. We then activated a proximal muscle simultaneous with an ankle torque of varying magnitude, which demonstrated that the resulting endpoint force or acceleration direction is modulated by the magnitude of the ankle torque. We argue that this simple manipulation can lend insight into the functional effects of co-activating muscles. We conclude that inter-joint coupling may be an essential biomechanical principle underlying the coordination of proximal and distal muscles to produce functional endpoint actions during motor tasks. PMID:17640652

  3. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly.

    PubMed

    Kajisa, E; Tohara, H; Nakane, A; Wakasugi, Y; Hara, K; Yamaguchi, K; Yoshimi, K; Minakuchi, S

    2018-03-01

    We conducted a clinical cross-sectional study to examine the relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles and whole skeletal muscle mass. Subjects were healthy 39 males and 51 females without dysphagia and sarcopenia, aged 65 years and older. Jaw-opening force was measured three times using a jaw-opening sthenometer; the maximum of these three was taken as the measurement value. The cross-sectional area of the geniohyoid and anterior belly of the digastric muscles were evaluated using ultrasonography. The skeletal muscle mass index, gait speed and grip strength were evaluated according to the diagnostic criteria of the Asian Working Group for Sarcopenia. For each sex, a multiple regression analysis determined the factors that affect jaw-opening force. Jaw-opening force was associated with the cross-sectional area of the geniohyoid muscle in males (regression coefficient [β] = 0.441, 95% confidence interval [CI] = 14.28-56.09) and females (β = 0.28, 95% CI = 3.10-54.57). Furthermore, in females only, jaw-opening force was associated with the skeletal muscle mass index (β = 0.40, 95% CI = 3.67-17.81). In contrast, jaw-opening force was not associated with the cross-sectional area of the anterior belly of the digastric muscle in either sex. In healthy elderly males and females, jaw-opening force was positively associated with the cross-sectional area of the geniohyoid muscle. However, the jaw-opening force was positively associated with the skeletal muscle mass index only in females. © 2017 John Wiley & Sons Ltd.

  4. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.

    PubMed

    Cifelli, Carlo; Boudreault, Louise; Gong, Bing; Bercier, Jean-Philippe; Renaud, Jean-Marc

    2008-10-01

    Muscles deficient in ATP-dependent potassium (KATP) channels develop contractile dysfunctions during fatigue that may explain their apparently faster rate of fatigue compared with wild-type muscles. The objectives of this study were to determine: (1) whether the contractile dysfunctions, namely unstimulated force and depressed force recovery, result from excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) whether reducing the magnitude of these two contractile dysfunctions reduces the rate of fatigue in KATP channel-deficient muscles. To reduce Ca2+ influx, we lowered the extracellular Ca2+ concentration ([Ca2+]o) from 2.4 to 0.6 mM or added 1 microM verapamil, an L-type Ca2+ channel blocker. Flexor digitorum brevis (FDB) muscles deficient in KATP channels were obtained by exposing wild-type muscles to 10 microM glibenclamide or by using FDB from Kir6.2-/- mice. Fatigue was elicited with one contraction per second for 3 min at 37 degrees C. In wild-type FDB, lowered [Ca2+]o or verapamil did not affect the decrease in peak tetanic force and unstimulated force during fatigue and force recovery following fatigue. In KATP channel-deficient FDB, lowered [Ca2+]o or verapamil slowed down the decrease in peak tetanic force recovery, reduced unstimulated force and improved force recovery. In Kir6.2-/- FDB, the rate of fatigue became slower than in wild-type FDB in the presence of verapamil. The cell membrane depolarized from -83 to -57 mV in normal wild-type FDB. The depolarizations in some glibenclamide-exposed fibres were similar to those of normal FDB, while in other fibres the cell membrane depolarized to -31 mV in 80 s, which was also the time when these fibres supercontracted. It is concluded that: (1) KATP channels are crucial in preventing excessive membrane depolarization and Ca2+ influx through L-type Ca2+ channels; and (2) they contribute to the decrease in force during fatigue.

  5. Studies in nonlinear optics and functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dai, Tehui

    There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force profiles, peak forces, and force duration shows excellent agreement between the model and the experimental data. It is concluded that the present model allows us to reproduce the main features of muscle activation under stimulation.

  6. Bite force measurement based on fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Padma, Srivani; Umesh, Sharath; Asokan, Sundarrajan; Srinivas, Talabattula

    2017-10-01

    The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system. Measurement of voluntary bite force provides useful data for the jaw muscle function and activity along with assessment of prosthetics. This study proposes an in vivo methodology for the dynamic measurement of bite force employing a fiber Bragg grating (FBG) sensor known as bite force measurement device (BFMD). The BFMD developed is a noninvasive intraoral device, which transduces the bite force exerted at the occlusal surface into strain variations on a metal plate. These strain variations are acquired by the FBG sensor bonded over it. The BFMD developed facilitates adjustment of the distance between the biting platform, which is essential to capture the maximum voluntary bite force at three different positions of teeth, namely incisor, premolar, and molar sites. The clinically relevant bite forces are measured at incisor, molar, and premolar position and have been compared against each other. Furthermore, the bite forces measured with all subjects are segregated according to gender and also compared against each other.

  7. Distinct neural control of intrinsic and extrinsic muscles of the hand during single finger pressing.

    PubMed

    Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub

    2018-06-01

    Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration.

    PubMed

    Konow, Nicolai; Roberts, Thomas J

    2015-04-07

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a 'shock-absorber' mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle-tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5-1.5 m centre-of-mass elevation). Negative work by the LG muscle-tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length-tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Evidence of a double peak in muscle activation to enhance strike speed and force: an example with elite mixed martial arts fighters.

    PubMed

    McGill, Stuart M; Chaimberg, Jon D; Frost, David M; Fenwick, Chad M J

    2010-02-01

    The main issue addressed here is the paradox of muscle contraction to optimize speed and strike force. When muscle contracts, it increases in both force and stiffness. Force creates faster movement, but the corresponding stiffness slows the change of muscle shape and joint velocity. The purpose of this study was to investigate how this speed strength is accomplished. Five elite mixed martial arts athletes were recruited given that they must create high strike force very quickly. Muscle activation using electromyography and 3-dimensional spine motion was measured. A variety of strikes were performed. Many of the strikes intend to create fast motion and finish with a very large striking force, demonstrating a "double peak" of muscle activity. An initial peak was timed with the initiation of motion presumably to enhance stiffness and stability through the body before motion. This appeared to create an inertial mass in the large "core" for limb muscles to "pry" against to initiate limb motion. Then, some muscles underwent a relaxation phase as speed of limb motion increased. A second peak was observed upon contact with the opponent (heavy bag). It was postulated that this would increase stiffness through the body linkage, resulting in a higher effective mass behind the strike and likely a higher strike force. Observation of the contract-relax-contract pulsing cycle during forceful and quick strikes suggests that it may be fruitful to consider pulse training that involves not only the rate of muscle contraction but also the rate of muscle relaxation.

  10. Effect of mechanical load on the shuttling operation of molecular muscles

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2009-06-01

    We use molecular dynamics simulations to investigate the effect of mechanical force on stimulus-induced deformation of rotaxane-based artificial molecular muscles. The study shows that a small external force slows down the shuttling motion and leads to longer actuation time for a muscle to reach its full extension. Further increase in the force can significantly reduce the traveling distance of the ring, leading to reduced strain output. A force larger than 28 pN can completely suppress the shuttling motion, suggesting a limit of force output of molecular muscles.

  11. Musculoskeletal Modeling of the Lumbar Spine to Explore Functional Interactions between Back Muscle Loads and Intervertebral Disk Multiphysics

    PubMed Central

    Toumanidou, Themis; Noailly, Jérôme

    2015-01-01

    During daily activities, complex biomechanical interactions influence the biophysical regulation of intervertebral disks (IVDs), and transfers of mechanical loads are largely controlled by the stabilizing action of spine muscles. Muscle and other internal forces cannot be easily measured directly in the lumbar spine. Hence, biomechanical models are important tools for the evaluation of the loads in those tissues involved in low-back disorders. Muscle force estimations in most musculoskeletal models mainly rely, however, on inverse calculations and static optimizations that limit the predictive power of the numerical calculations. In order to contribute to the development of predictive systems, we coupled a predictive muscle model with the passive resistance of the spine tissues, in a L3–S1 musculoskeletal finite element model with osmo-poromechanical IVD descriptions. The model included 46 fascicles of the major back muscles that act on the lower spine. The muscle model interacted with activity-related loads imposed to the osteoligamentous structure, as standing position and night rest were simulated through distributed upper body mass and free IVD swelling, respectively. Calculations led to intradiscal pressure values within ranges of values measured in vivo. Disk swelling led to muscle activation and muscle force distributions that seemed particularly appropriate to counterbalance the anterior body mass effect in standing. Our simulations pointed out a likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics toward improved mechanical stability of the lumbar spine understanding. This balance suggests that proper night rest contributes to mechanically strengthen the spine during day activity. PMID:26301218

  12. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat.

    PubMed

    O'Connell, R A; Carberry, J; O'Halloran, K D

    2013-09-01

    What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the sternohyoid muscle. The numerical density of fibres expressing MHC2X and MHC2B increased significantly during development in the sternohyoid. Diaphragm succinate dehydrogenase activity and sternohyoid glycerol-3-phosphate dehydrogenase activity increased significantly with age. Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a postnatal shift in muscle MHC phenotype. The accelerated maturation of the sternohyoid muscle relative to the diaphragm may have implications for the control of airway calibre in vivo.

  13. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  14. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.

    PubMed

    Lan, Ganhui; Sun, Sean X

    2005-06-01

    Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction.

  15. Dynamics of Myosin-Driven Skeletal Muscle Contraction: I. Steady-State Force Generation

    PubMed Central

    Lan, Ganhui; Sun, Sean X.

    2005-01-01

    Skeletal muscle contraction is a canonical example of motor-driven force generation. Despite the long history of research in this topic, a mechanistic explanation of the collective myosin force generation is lacking. We present a theoretical model of muscle contraction based on the conformational movements of individual myosins and experimentally measured chemical rate constants. Detailed mechanics of the myosin motor and the geometry of the sarcomere are taken into account. Two possible scenarios of force generation are examined. We find only one of the scenarios can give rise to a plausible contraction mechanism. We propose that the synchrony in muscle contraction is due to a force-dependent ADP release step. Computational results of a half sarcomere with 150 myosin heads can explain the experimentally measured force-velocity relationship and efficiency data. We predict that the number of working myosin motors increases as the load force is increased, thus showing synchrony among myosin motors during muscle contraction. We also find that titin molecules anchoring the thick filament are passive force generators in assisting muscle contraction. PMID:15778440

  16. Clinically-evident tophi are associated with reduced muscle force in the foot and ankle in people with gout: a cross-sectional study.

    PubMed

    Stewart, Sarah; Dalbeth, Nicola; Otter, Simon; Gow, Peter; Kumar, Sunil; Rome, Keith

    2017-01-01

    The foot and ankle represent a common site for tophi in people with gout, yet it is unclear whether the presence of tophi is related to impaired muscle function. This study aimed to determine the association between foot and ankle tophi and muscle force in people with gout. Participants with gout were stratified into two groups based on the presence of clinically-evident tophi affecting the foot or ankle on physical examination. Isometric muscle force for plantarflexion, dorsiflexion, inversion and eversion was measured using static dynamometry. Mixed-models regression was used to determine the difference in muscle force between the two groups while adjusting for age, disease duration and foot pain. This model was also used to determine the difference in muscle force between presence and absence of tophi at specific locations within the foot and ankle. In addition, Pearson's correlations were used to determine the association between total foot tophus count and muscle force. Fifty-seven participants were included (22 with foot or ankle tophi and 35 without foot or ankle tophi). Foot and ankle tophi were most often seen at the Achilles tendon. After adjusting for age, disease duration and foot pain, participants with tophi had significantly reduced muscle force during plantarflexion ( P  < 0.001), dorsiflexion ( P  = 0.003), inversion ( P  = 0.003) and eversion ( P  = 0.001) when compared to participants without tophi. Those with Achilles tophi had significantly reduced force during plantarflexion ( P  < 0.001), inversion ( P  = 0.008) and eversion ( P  = 0.001). No significant differences in muscle force were observed between the presence and absence of tophi at other foot or ankle locations. There were also no significant correlations between total foot tophus count and muscle force (all P  > 0.05). In people with gout, clinically-evident foot or ankle tophi are associated with muscle force deficits during foot plantarflexion, dorsiflexion, inversion and eversion, which persist despite adjusting for age, disease duration and foot pain. Tophi at the Achilles tendon, which associate with force deficits, may contribute to reduced muscular activation and consequent disuse muscle atrophy.

  17. Muscles advance the teeth in sand dollars and other sea urchins

    PubMed Central

    Ellers, O.; Telford, M.

    1997-01-01

    We demonstrate the action of the dental promoter muscles in advancing the continuously growing teeth of sand dollars and sea urchins. Teeth wear at the occlusal end, while new calcite is added to the opposite end. Dental ligaments rigidly hold teeth during chewing, but soften and reform during advancement. The source of forces that advance the teeth was unknown until our discovery of the dental promoter muscles. The muscles, which underly the tooth, attach centrally to the stereom of the pyramid of the Aristotle's lantern (jaw) and peripherally to a membrane that covers the distal end of the tooth. The muscles shorten along an axis nearly parallel to the long axis of the tooth. We stimulated contraction by addition of acetylcholine, with increasing concentrations of acetylcholine generating higher forces. Forces exerted by this muscle are appropriate for its size and are 1000 times lower than forces exerted by interpyramidal muscles that generate chewing forces. In sand dollars, a single muscle contraction of the dental promoter muscle can account for half the mean daily advancement of the teeth.

  18. Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans

    PubMed Central

    Rymer, William Z.; Beer, Randall F.

    2012-01-01

    Previous studies using advanced matrix factorization techniques have shown that the coordination of human voluntary limb movements may be accomplished using combinations of a small number of intermuscular coordination patterns, or muscle synergies. However, the potential use of muscle synergies for isometric force generation has been evaluated mostly using correlational methods. The results of such studies suggest that fixed relationships between the activations of pairs of muscles are relatively rare. There is also emerging evidence that the nervous system uses independent strategies to control movement and force generation, which suggests that one cannot conclude a priori that isometric force generation is accomplished by combining muscle synergies, as shown in movement control. In this study, we used non-negative matrix factorization to evaluate the ability of a few muscle synergies to reconstruct the activation patterns of human arm muscles underlying the generation of three-dimensional (3-D) isometric forces at the hand. Surface electromyographic (EMG) data were recorded from eight key elbow and shoulder muscles during 3-D force target-matching protocols performed across a range of load levels and hand positions. Four synergies were sufficient to explain, on average, 95% of the variance in EMG datasets. Furthermore, we found that muscle synergy composition was conserved across biomechanical task conditions, experimental protocols, and subjects. Our findings are consistent with the view that the nervous system can generate isometric forces by assembling a combination of a small number of muscle synergies, differentially weighted according to task constraints. PMID:22279190

  19. A technique for studying cardiac myosin dynamics using optical tweezers

    NASA Astrophysics Data System (ADS)

    Paolino, Michael; Migirditch, Sam; Nesmelov, Yuri; Hester, Brooke; Appalachian State Biophysics; Optical Sciences Facility Team

    A primary protein involved in human muscle contraction is myosin, which exists in α- and β- isoforms. Myosin exerts forces on actin filaments when ATP is present, driving muscle contraction. A significant decrease in the population of cardiac α-myosin has been linked to heart failure. It is proposed that slow β-myosin in a failing heart could, through introduction of a drug, be made to mimic the action of α-myosin, thereby improving cardiac muscle performance. In working towards testing this hypothesis, the focus of this work is to develop a technique to measure forces exerted by myosin on actin using optical tweezers. An actin-myosin arrangement is constructed between two optically trapped polystyrene microspheres. The displacement of a microsphere is monitored when ATP is introduced, and the force responsible is measured. With this achieved, we can then modify the actin-myosin arrangement, for example with varying amounts of α- and β- myosin and test the effects on forces exerted. In this work, assemblies of actin and myosin molecules and preliminary force measurements are discussed. North Carolina Space Grant.

  20. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis.

    PubMed

    Guizelini, Pedrode Camargo; de Aguiar, Rafael Alves; Denadai, Benedito Sérgio; Caputo, Fabrizio; Greco, Camila Coelho

    2018-02-01

    Rapid force capacity, identified by rate of rise in contractile force at the onset of contraction, i.e., the rate of force development (RFD), has been considered an important neuromuscular parameter of physical fitness in elderly individuals. Randomized control studies conducted in adults have found that resistance training may elicit different outcomes in terms of RFD and muscle strength. Thus, the main purpose of this study was to review systematically the literature for studies regarding the influence of resistance training on muscle strength and RFD in elderly persons. A literature search was performed in major electronic databases from inception to March 2017. Studies including health individuals with a mean age≥60years, describing the effect of resistance training on RFD and muscle strength were found eligible. The outcomes were calculated as the difference in percentage change between control and experimental groups (% change) and data were presented as mean±95% confidence limits. Meta-analyses were performed using a random-effects model and, in addition, simple and multiple meta-regression analyses were used to identify effects of age, training type, sessions per week and training duration on % change in RFD and muscle strength. Thirteen training effects were collected from 10 studies included in the meta-analysis. The resistance training program had a moderate beneficial effect on both muscle strength (% change=18.40%, 95% CL 13.69-23.30, p<0.001) and RFD (% change=26.68, 95% CL 14.41-35.52, p<0.001). Results of the meta-regression revealed that the variables age, training type (i.e., strength and explosive), training duration (4-16weeks) and sessions per week had no significant effects on muscle strength and RFD improvement. Moreover, there was no significant relationship (p=0.073) between the changes in muscle strength and RFD. It can be concluded that explosive training and heavy strength training are effective resistance training methods aiming to improve both muscle strength and RFD after short-to-medium training period. However, muscle strength and RFD seem to adapt differently to resistance training programs, suggesting caution for their interchangeable use in clinical assessments of the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The Effect of Tool Handle Shape on Hand Muscle Load and Pinch Force in a Simulated Dental Scaling Task

    PubMed Central

    Dong, Hui; Loomer, Peter; Barr, Alan; LaRoche, Charles; Young, Ed; Rempel, David

    2007-01-01

    Work-related upper extremity musculoskeletal disorders, including carpal tunnel syndrome, are prevalent among dentists and dental hygienists. An important risk factor for developing these disorders is forceful pinching which occurs during periodontal work such as dental scaling. Ergonomically designed dental scaling instruments may help reduce the prevalence of carpal tunnel syndrome among dental practitioners. In this study, 8 custom-designed dental scaling instruments with different handle shapes were used by 24 dentists and dental hygienists to perform a simulated tooth scaling task. The muscle activity of two extensors and two flexors in the forearm was recorded with electromyography while thumb pinch force was measured by pressure sensors. The results demonstrated that the instrument handle with a tapered, round shape and a 10 mm diameter required the least muscle load and pinch force when performing simulated periodontal work. The results from this study can guide dentists and dental hygienists in selection of dental scaling instruments. PMID:17156742

  2. Estimation of tensile force in the hamstring muscles during overground sprinting.

    PubMed

    Ono, T; Higashihara, A; Shinohara, J; Hirose, N; Fukubayashi, T

    2015-02-01

    The purpose of this study was to identify the period of the gait cycle during which the hamstring muscles were likely injured by estimating the magnitude of tensile force in each muscle during overground sprinting. We conducted three-dimensional motion analysis of 12 male athletes performing overground sprinting at their maximal speed and calculated the hamstring muscle-tendon length and joint angles of the right limb throughout a gait cycle during which the ground reaction force was measured. Electromyographic activity during sprinting was recorded for the biceps femoris long head, semitendinosus, and semimembranosus muscles of ipsilateral limb. We estimated the magnitude of tensile force in each muscle by using the length change occurred in the musculotendon and normalized electromyographic activity value. The study found a quick increase of estimated tensile force in the biceps femoris long head during the early stance phase of the gait cycle during which the increased hip flexion angle and ground reaction force occurred at the same time. This study provides quantitative data of tensile force in the hamstring muscles suggesting that the biceps femoris long head muscle is susceptible to a strain injury during the early stance phase of the sprinting gait cycle. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.

    PubMed

    Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E

    2017-03-21

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Higher Medially-directed Joint Reaction Forces are a Characteristic of Dysplastic Hips: A Comparative Study Using Subject-Specific Musculoskeletal Models

    PubMed Central

    Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.

    2018-01-01

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552

  5. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  6. A Tissue-Engineered Muscle Repair Construct for Functional Restoration of an Irrecoverable Muscle Injury in a Murine Model

    DTIC Science & Technology

    2011-07-28

    the muscle through rotation of the micrometer head. Peak isometric con- tractile force was measured at optimal length with a 1200 ms train of 0.2 ms...LD muscle was 150.8– 4.8 mN/mm2, which was similar to that reported previously by our group.31 Maximal specific isometric force for the NR group one...99.2– 17.7 mN/mm2 at 2 months, with the latter being 66% of the native LD muscle isometric specific force. Isometric specific force of the R-S group

  7. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD)

    PubMed Central

    Wang, Zheng; Kwon, MinHyuk; Mohanty, Suman; Schmitt, Lauren M.; White, Stormi P.; Christou, Evangelos A.; Mosconi, Matthew W.

    2017-01-01

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0–4 Hz), alpha (4–10 Hz), beta (10–35 Hz) and gamma (35–60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD. PMID:28346344

  8. Human mandibular shape is associated with masticatory muscle force.

    PubMed

    Sella-Tunis, Tanya; Pokhojaev, Ariel; Sarig, Rachel; O'Higgins, Paul; May, Hila

    2018-04-16

    Understanding how and to what extent forces applied to the mandible by the masticatory muscles influence its form, is of considerable importance from clinical, anthropological and evolutionary perspectives. This study investigates these questions. Head CT scans of 382 adults were utilized to measure masseter and temporalis muscle cross-sectional areas (CSA) as a surrogate for muscle force, and 17 mandibular anthropometric measurements. Sixty-two mandibles of young individuals (20-40 years) whose scans were without artefacts (e.g., due to tooth filling) were segmented and landmarked for geometric morphometric analysis. The association between shape and muscle CSA (controlled for size) was assessed using two-block partial least squares analysis. Correlations were computed between mandibular variables and muscle CSAs (all controlled for size). A significant association was found between mandibular shape and muscle CSAs, i.e. larger CSAs are associated with a wider more trapezoidal ramus, more massive coronoid, more rectangular body and a more curved basal arch. Linear measurements yielded low correlations with muscle CSAs. In conclusion, this study demonstrates an association between mandibular muscle force and mandibular shape, which is not as readily identified from linear measurements. Retrodiction of masticatory muscle force and so of mandibular loading is therefore best based on overall mandibular shape.

  9. Identification of potential compensatory muscle strategies in a breast cancer survivor population: A combined computational and experimental approach.

    PubMed

    Chopp-Hurley, Jaclyn N; Brookham, Rebecca L; Dickerson, Clark R

    2016-12-01

    Biomechanical models are often used to estimate the muscular demands of various activities. However, specific muscle dysfunctions typical of unique clinical populations are rarely considered. Due to iatrogenic tissue damage, pectoralis major capability is markedly reduced in breast cancer population survivors, which could influence arm internal and external rotation muscular strategies. Accordingly, an optimization-based muscle force prediction model was systematically modified to emulate breast cancer population survivors through adjusting pectoralis capability and enforcing an empirical muscular co-activation relationship. Model permutations were evaluated through comparisons between predicted muscle forces and empirically measured muscle activations in survivors. Similarities between empirical data and model outputs were influenced by muscle type, hand force, pectoralis major capability and co-activation constraints. Differences in magnitude were lower when the co-activation constraint was enforced (-18.4% [31.9]) than unenforced (-23.5% [27.6]) (p<0.0001). This research demonstrates that muscle dysfunction in breast cancer population survivors can be reflected through including a capability constraint for pectoralis major. Further refinement of the co-activation constraint for survivors could improve its generalizability across this population and activities. Improving biomechanical models to more accurately represent clinical populations can provide novel information that can help in the development of optimal treatment programs for breast cancer population survivors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Force-length relationship in the pelvic floor muscles under transverse vaginal distension: a method study in healthy women.

    PubMed

    Verelst, M; Leivseth, G

    2004-01-01

    The purpose of this study was to investigate whether there is a relationship between changes in the diameter of the urogenital hiatus and force developed in pelvic floor musculature. In addition, we wanted to examine the reliability of the method that measures force development in the pelvic floor in the transverse direction of the urogenital hiatus. Passive and total force in the pelvic floor was measured with an intra-vaginal device in 20 healthy parous volunteers. The measurements were done with a consecutively increasing diameter in the transverse plane of the urogenital hiatus. The procedure was repeated with a few days interval. The measurements show an increase in force with an increasing device-diameter. The results are reliable at all the diameters tested, estimated by the within-subject day-to-day variability which was non-significant. The 40 mm diameter device is most favourable, estimated by Bland Altman plots of the test-retest measurements. Force development in pelvic floor muscles increased as a function of vaginal diameter when measured in the frontal plane. The measurements were reliable at all the different diameters chosen. 2004 Wiley-Liss, Inc.

  11. Replication of Muscle Cell Using Bioimprint

    NASA Astrophysics Data System (ADS)

    Samsuri, Fahmi; Mitchell, John S.; Alkaisi, Maan M.; Evans, John J.

    2009-07-01

    In our earlier study a heat-curable PDMS or a UV curable elastomer, was used as the replicating material to introduce Bioimprint methodology to facilitate cell imaging [1-2] But, replicating conditions for thermal polymerization is known to cause cell dehydration during curing. In this study, a new type of polymer was developed for use in living cell replica formation, and it was tested on human muscle cells. The cells were incubated and cultured according to standard biological culturing procedures, and they were grown for about 10 days. The replicas were then separated from the muscle cells and taken for analysis under an Atomic Force Microscope (AFM). The new polymer was designed to be biocompatible with higher resolution and fast curing process compared to other types of silicon-based organic polymers such as polydimethylsiloxane (PDMS). Muscle cell imprints were achieved and higher resolution images were able to show the micro structures of the muscle cells, including the cellular fibers and cell membranes. The AFM is able to image features at nanoscale resolution. This capacity enables a number of characteristics of biological cells to be visualized in a unique manner. Polymer and muscle cells preparations were developed at Hamilton, in collaboration between Plant and Food Research and the Department of Electrical and Computer Engineering, University of Canterbury. Tapping mode was used for the AFM image analysis as it has low tip-sample forces and non-destructive imaging capability. We will be presenting the bioimprinting processes of muscle cells, their AFM imaging and characterization of the newly developed polymer.

  12. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  13. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue.

    PubMed

    El-Khoury, R; Bradford, A; O'Halloran, K D

    2012-01-01

    Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).

  14. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  15. Predicting the safe load on backpacker's arm using Lagrange multipliers method

    NASA Astrophysics Data System (ADS)

    Abdalla, Faisal Saleh; Rambely, Azmin Sham

    2014-09-01

    In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.

  16. Effect of lateralized design on muscle and joint reaction forces for reverse shoulder arthroplasty.

    PubMed

    Liou, William; Yang, Yang; Petersen-Fitts, Graysen R; Lombardo, Daniel J; Stine, Sasha; Sabesan, Vani J

    2017-04-01

    Manufacturers of reverse shoulder arthroplasty (RSA) implants have recently designed innovative implants to optimize performance in rotator cuff-deficient shoulders. These advancements are not without tradeoffs and can have negative biomechanical effects. The objective of this study was to develop an integrated finite element analysis-kinematic model to compare the muscle forces and joint reaction forces (JRFs) of 3 different RSA designs. A kinematic model of a normal shoulder joint was adapted from the Delft model and integrated with the well-validated OpenSim shoulder model. Static optimizations then allowed for calculation of the individual muscle forces, moment arms, and JRFs relative to net joint moments. Three-dimensional computer models of 3 RSA designs-humeral lateralized design (HLD), glenoid lateralized design, and Grammont design-were integrated, and parametric studies were performed. Overall, there were decreases in deltoid and rotator cuff muscle forces for all 3 RSA designs. These decreases were greatest in the middle deltoid of the HLD model for abduction and flexion and in the rotator cuff muscles under both internal rotation and external rotation. The JRFs in abduction and flexion decreased similarly for all RSA designs compared with the normal shoulder model, with the greatest decrease seen in the HLD model. These findings demonstrate that the design characteristics implicit in these modified RSA prostheses result in mechanical differences most prominently seen in the deltoid muscle and overall JRFs. Further research using this novel integrated model can help guide continued optimization of RSA design and clinical outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  18. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    PubMed

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both p<0.05) but only for the constant force condition. Furthermore, EMG modulation resulted from uniform scaling of EMG amplitude across all muscles. We conclude that the CNS controlled both extrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. The effect of deep muscle relaxation on the force required during Latissimus Dorsi dissection for breast reconstructive surgery: results of a prospective, double-blinded observational pilot study.

    PubMed

    Ledowski, T; Goodwin-Walters, A; Quinn, P; Calvert, M

    2017-02-21

    The use of neuromuscular blocking agents has previously been suggested to facilitate the dissection of the latissimus dorsi muscle during breast reconstructive surgery. The aim of this study was to quantify the influence of deep muscle relaxation on the force required to lift the latissimus dorsi muscle during flap preparation. After ethics approval and written informed consent 15 patients scheduled for elective breast reconstruction with a latissimus dorsi pedicled flap (muscle flap, not myocutaneous flap) under general anaesthesia were prospectively included. Midway through the muscle dissection a sterile cotton tape was slung around the mid portion of the muscle and connected with a sterile strain gauge stably positioned just above the patient. Thereafter, the muscle was lifted by moving the strain gauge vertically upwards until a muscle tension similar to that created manually during muscle dissection was achieved. The force (N) and distance required to tension the muscle were recorded and the tension released. In a randomized and blinded crossover design either rocuronium (0.6 mg.kg -1 ) or normal saline were given intravenously, and the tension protocol was repeated 2 min after each drug administration. Muscle relaxation significantly reduced the force for flap tensioning (median [percentiles] - 22 [-32/-13] %; P = 0.011) in 10/15 patients. However, in the remaining 5 patients no significant effect was measured. Normal saline had no effect on the measured force. Deep muscle relaxation significantly reduces the force required to manually elevate the latissimus dorsi muscle during its dissection in the majority of but not all patients. The study was retrospectively registered on [17.6.2014] with the Australian and New Zealand Clinical Trials Registry. ACTRN12614000637640.

  20. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation

    PubMed Central

    Pizzamiglio, Sara; De Lillo, Martina; Naeem, Usman; Abdalla, Hassan; Turner, Duncan L.

    2017-01-01

    Adaptation of arm reaching in a novel force field involves co-contraction of upper limb muscles, but it is not known how the co-ordination of multiple muscle activation is orchestrated. We have used intermuscular coherence (IMC) to test whether a coherent intermuscular coupling between muscle pairs is responsible for novel patterns of activation during adaptation of reaching in a force field. Subjects (N = 16) performed reaching trials during a null force field, then during a velocity-dependent force field and then again during a null force field. Reaching trajectory error increased during early adaptation to the force-field and subsequently decreased during later adaptation. Co-contraction in the majority of all possible muscle pairs also increased during early adaptation and decreased during later adaptation. In contrast, IMC increased during later adaptation and only in a subset of muscle pairs. IMC consistently occurred in frequencies between ~40–100 Hz and during the period of arm movement, suggesting that a coherent intermuscular coupling between those muscles contributing to adaptation enable a reduction in wasteful co-contraction and energetic cost during reaching. PMID:28119620

  1. Individual muscle control using an exoskeleton robot for muscle function testing.

    PubMed

    Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa

    2010-08-01

    Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.

  2. Neuromechanic: a computational platform for simulation and analysis of the neural control of movement

    PubMed Central

    Bunderson, Nathan E.; Bingham, Jeffrey T.; Sohn, M. Hongchul; Ting, Lena H.; Burkholder, Thomas J.

    2015-01-01

    Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states as well as muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization and stability analysis tools to provide structural insights into the neural control of movement. PMID:23027632

  3. Construction and control of a physiological articulatory model

    NASA Astrophysics Data System (ADS)

    Dang, Jianwu; Honda, Kiyoshi

    2004-02-01

    A physiological articulatory model has been constructed using a fast computation method, which replicates midsagittal regions of the speech organs to simulate articulatory movements during speech. This study aims to improve the accuracy of modeling by using the displacement-based finite-element method and to develop a new approach for controlling the model. A ``semicontinuum'' tongue tissue model was realized by a discrete truss structure with continuum viscoelastic cylinders. Contractile effects of the muscles were systemically examined based on model simulations. The results indicated that each muscle drives the tongue toward an equilibrium position (EP) corresponding to the magnitude of the activation forces. The EPs shifted monotonically as the activation force increased. The monotonic shift revealed a unique and invariant mapping, referred to as an EP map, between a spatial position of the articulators and the muscle forces. This study proposes a control method for the articulatory model based on the EP maps, in which co-contractions of agonist and antagonist muscles are taken into account. By utilizing the co-contraction, the tongue tip and tongue dorsum can be controlled to reach their targets independently. Model simulation showed that the co-contraction of agonist and antagonist muscles could increase the stability of a system in dynamic control.

  4. Neuromechanic: a computational platform for simulation and analysis of the neural control of movement.

    PubMed

    Bunderson, Nathan E; Bingham, Jeffrey T; Sohn, M Hongchul; Ting, Lena H; Burkholder, Thomas J

    2012-10-01

    Neuromusculoskeletal models solve the basic problem of determining how the body moves under the influence of external and internal forces. Existing biomechanical modeling programs often emphasize dynamics with the goal of finding a feed-forward neural program to replicate experimental data or of estimating force contributions or individual muscles. The computation of rigid-body dynamics, muscle forces, and activation of the muscles are often performed separately. We have developed an intrinsically forward computational platform (Neuromechanic, www.neuromechanic.com) that explicitly represents the interdependencies among rigid body dynamics, frictional contact, muscle mechanics, and neural control modules. This formulation has significant advantages for optimization and forward simulation, particularly with application to neural controllers with feedback or regulatory features. Explicit inclusion of all state dependencies allows calculation of system derivatives with respect to kinematic states and muscle and neural control states, thus affording a wealth of analytical tools, including linearization, stability analyses and calculation of initial conditions for forward simulations. In this review, we describe our algorithm for generating state equations and explain how they may be used in integration, linearization, and stability analysis tools to provide structural insights into the neural control of movement. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Theory of the locomotion of nematodes

    PubMed Central

    Niebur, Ernst; Erdös, Paul

    1991-01-01

    We develop a model of the undulatory locomotion of nematodes, in particular that of Caenorhabditis elegans, based on mechanics. The model takes into account the most important forces acting on a moving worm and allows the computer simulation of a creeping nematode. These forces are produced by the interior pressure in the liquid-filled body cavity, the elasticity of the cuticle, the excitation of certain sets of muscles and the friction between the body and its support. We propose that muscle excitation patterns can be generated by stretch receptor control. By solving numerically the equations of motion of the model of the nematode, we demonstrate that these muscle excitation patterns are suitable for the propulsion of the animal. PMID:19431807

  6. Intramuscular pressures for monitoring different tasks and muscle conditions

    NASA Technical Reports Server (NTRS)

    Sejersted, O. M.; Hargens, A. R.

    1995-01-01

    Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.

  7. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  8. Contributions of muscle imbalance and impaired growth to postural and osseous shoulder deformity following brachial plexus birth palsy: a computational simulation analysis.

    PubMed

    Cheng, Wei; Cornwall, Roger; Crouch, Dustin L; Li, Zhongyu; Saul, Katherine R

    2015-06-01

    Two potential mechanisms leading to postural and osseous shoulder deformity after brachial plexus birth palsy are muscle imbalance between functioning internal rotators and paralyzed external rotators and impaired longitudinal growth of paralyzed muscles. Our goal was to evaluate the combined and isolated effects of these 2 mechanisms on transverse plane shoulder forces using a computational model of C5-6 brachial plexus injury. We modeled a C5-6 injury using a computational musculoskeletal upper limb model. Muscles expected to be denervated by C5-6 injury were classified as affected, with the remaining shoulder muscles classified as unaffected. To model muscle imbalance, affected muscles were given no resting tone whereas unaffected muscles were given resting tone at 30% of maximal activation. To model impaired growth, affected muscles were reduced in length by 30% compared with normal whereas unaffected muscles remained normal in length. Four scenarios were simulated: normal, muscle imbalance only, impaired growth only, and both muscle imbalance and impaired growth. Passive shoulder rotation range of motion and glenohumeral joint reaction forces were evaluated to assess postural and osseous deformity. All impaired scenarios exhibited restricted range of motion and increased and posteriorly directed compressive glenohumeral joint forces. Individually, impaired muscle growth caused worse restriction in range of motion and higher and more posteriorly directed glenohumeral forces than did muscle imbalance. Combined muscle imbalance and impaired growth caused the most restricted joint range of motion and the highest joint reaction force of all scenarios. Both muscle imbalance and impaired longitudinal growth contributed to range of motion and force changes consistent with clinically observed deformity, although the most substantial effects resulted from impaired muscle growth. Simulations suggest that treatment strategies emphasizing treatment of impaired longitudinal growth are warranted for reducing deformity after brachial plexus birth palsy. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Biomechanical implications of lateral pterygoid contribution to biting and jaw opening in humans.

    PubMed

    Osborn, J W

    1995-12-01

    The contributions of the lateral pterygoid muscle to a variety of different tasks were analysed by a linear programming mode based on the equations for static equilibrium in three dimensions and containing 12 muscles. The model was used to study lateral pterygoid activity at maximum bite force (MBF) for changes in (i) the direction and point of application of the bite force, (ii) the orientation of the masseter and medial pterygoid muscles and (iii) the slope of the articular eminence (glenoid slope). The effects on MBF of removing one or both lateral pterygoids were also examined. Lateral pterygoid provided a very important indirect contribution to some clenching forces. Under some conditions removing one lateral pterygoid muscle (simulating guarding an injured muscle) halved the MBF. Its activity at MBF was reduced as masseter was tilted more forward, the glenoid slope was made more horizontal and the bite force was made more vertical. The muscle helped to oppose (balance) the horizontal reaction forces at the bite point and joints, which potentially pushed the condyle backward. A balancing muscle is now defined as one (like lateral pterygoid) whose activity increases the output force by far more than its direct contribution to that force. In a larger model containing 16 muscles, every muscle was most active when its line of action was parallel to the output force. Finally, in a model which divided lateral pterygoid into superior and inferior heads, activity suddenly switched from the superior head to the inferior head when the angle of opening changed from 120 degrees (forward from the vertical) to 140 degrees.

  10. Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation.

    PubMed

    Frankel, Mitchell A; Dowden, Brett R; Mathews, V John; Normann, Richard A; Clark, Gregory A; Meek, Sanford G

    2011-06-01

    Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each). Isometric forces were evoked in plantar-flexor muscles, and target forces consisted of up to 7 min of step, sinusoidal, and more complex time-varying trajectories. The controller was successful in evoking steps in force with time-to-peak of less than 0.45 s, steady-state ripple of less than 7% of the mean steady-state force, and near-zero steady-state error even in the presence of muscle fatigue, but with transient overshoot of near 20%. The controller was also successful in evoking target sinusoidal and complex time-varying force trajectories with amplitude error of less than 0.5 N and time delay of approximately 300 ms. This MISO control strategy can potentially be used to develop closed-loop asynchronous IFMS controllers for a wide variety of multi-electrode stimulation applications to restore lost motor function.

  11. Normal isometric strength of rotatorcuff muscles in adults.

    PubMed

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  12. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  13. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters.

    PubMed

    Haff, G Gregory; Carlock, Jon M; Hartman, Michael J; Kilgore, J Lon; Kawamori, Naoki; Jackson, Janna R; Morris, Robert T; Sands, William A; Stone, Michael H

    2005-11-01

    Six elite women weightlifters were tested to evaluate force-time curve characteristics and intercorrelations of isometric and dynamic muscle actions. Subjects performed isometric and dynamic mid-thigh clean pulls at 30% of maximal isometric peak force and 100 kg from a standardized position on a 61.0 x 121.9 cm AMTI forceplate. Isometric peak force showed strong correlations to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.93, 0.64, and 0.80 respectively). Isometric rate of force development showed moderate to strong relationships to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.79, 0.69, and 0.80 respectively). The results of this study suggest that the ability to perform maximal snatch and clean and jerks shows some structural and functional foundation with the ability to generate high forces rapidly in elite women weightlifters.

  14. An artificial muscle actuator for biomimetic underwater propulsors.

    PubMed

    Yim, Woosoon; Lee, Joonsoo; Kim, Kwang J

    2007-06-01

    In this paper, we introduce the analytical framework of the modeling dynamic characteristics of a soft artificial muscle actuator for aquatic propulsor applications. The artificial muscle used for this underwater application is an ionic polymer-metal composite (IPMC) which can generate bending motion in aquatic environments. The inputs of the model are the voltages applied to multiple IPMCs, and the output can be either the shape of the actuators or the thrust force generated from the interaction between dynamic actuator motions and surrounding water. In order to determine the relationship between the input voltages and the bending moments, the simplified RC model is used, and the mechanical beam theory is used for the bending motion of IPMC actuators. Also, the hydrodynamic forces exerted on an actuator as it moves relative to the surrounding medium or water are added to the equations of motion to study the effect of actuator bending on the thrust force generation. The proposed method can be used for modeling the general bending type artificial muscle actuator in a single or segmented form operating in the water. The segmented design has more flexibility in controlling the shape of the actuator when compared with the single form, especially in generating undulatory waves. Considering an inherent nature of large deformations in the IPMC actuator, a large deflection beam model has been developed and integrated with the electrical RC model and hydrodynamic forces to develop the state space model of the actuator system. The model was validated against existing experimental data.

  15. Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids.

    PubMed

    Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine

    2006-03-01

    In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.

  16. An assessment by the Statin Muscle Safety Task Force: 2014 update.

    PubMed

    Rosenson, Robert S; Baker, Steven K; Jacobson, Terry A; Kopecky, Stephen L; Parker, Beth A; The National Lipid Association's Muscle Safety Expert Panel

    2014-01-01

    The National Lipid Association's Muscle Safety Expert Panel was charged with the duty of examining the definitions for statin-associated muscle adverse events, development of a clinical index to assess myalgia, and the use of diagnostic neuromuscular studies to investigate muscle adverse events. We provide guidance as to when a patient should be considered for referral to neuromuscular specialists and indications for the performance of a skeletal muscle biopsy. Based on this review of evidence, we developed an algorithm for the evaluation and treatment of patients who may be intolerant to statins as the result of adverse muscle events. The panel was composed of clinical cardiologists, clinical lipidologists, an exercise physiologist, and a neuromuscular specialist. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  17. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  18. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    PubMed

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  19. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  20. Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery

    NASA Astrophysics Data System (ADS)

    Ariffin, Muhammad Shahimi; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    An investigation of khatrah technique in archery was carried out. An electromyography (EMG) experiment was conducted towards six wrist muscles which are flexor carpi radialis, extensor carpi ulnaris and extensor digitorum communis for both arms. The maximum voluntary contraction (MVC) and activity data were recorded. The bow arm produced a higher muscle force compared to draw arm muscles during release phase. However, the muscle forces produced by bow arm had a consistency in term of pattern throughout the phases. In conclusion, the forces generated by the professional archer produced a force benchmark at the wrist joint to alleviate the risk of injury.

  1. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images.

    PubMed

    Dick, Taylor J M; Biewener, Andrew A; Wakeling, James M

    2017-05-01

    Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. © 2017. Published by The Company of Biologists Ltd.

  2. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  3. Changes in H reflex and neuromechanical properties of the trapezius muscle after 5 weeks of eccentric training: a randomized controlled trial.

    PubMed

    Vangsgaard, Steffen; Taylor, Janet L; Hansen, Ernst A; Madeleine, Pascal

    2014-06-15

    Trapezius muscle Hoffman (H) reflexes were obtained to investigate the neural adaptations induced by a 5-wk strength training regimen, based solely on eccentric contractions of the shoulder muscles. Twenty-nine healthy subjects were randomized into an eccentric training group (n = 15) and a reference group (n = 14). The eccentric training program consisted of nine training sessions of eccentric exercise performed over a 5-wk period. H-reflex recruitment curves, the maximal M wave (Mmax), maximal voluntary contraction (MVC) force, rate of force development (RFD), and electromyographic (EMG) voluntary activity were recorded before and after training. H reflexes were recorded from the middle part of the trapezius muscle by electrical stimulation of the C3/4 cervical nerves; Mmax was measured by electrical stimulation of the accessory nerve. Eccentric strength training resulted in significant increases in the maximal trapezius muscle H reflex (Hmax) (21.4% [5.5-37.3]; P = 0.01), MVC force (26.4% [15.0-37.7]; P < 0.01), and RFD (24.6% [3.2-46.0]; P = 0.025), while no significant changes were observed in the reference group. Mmax remained unchanged in both groups. A significant positive correlation was found between the change in MVC force and the change in EMG voluntary activity in the training group (r = 0.57; P = 0.03). These results indicate that the net excitability of the trapezius muscle H-reflex pathway increased after 5 wk of eccentric training. This is the first study to investigate and document changes in the trapezius muscle H reflex following eccentric strength training. Copyright © 2014 the American Physiological Society.

  4. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.

    PubMed

    Lindsay, Angus; Schmiechen, Alexandra; Chamberlain, Christopher M; Ervasti, James M; Lowe, Dawn A

    2018-05-23

    Macrophage infiltration is a hallmark of dystrophin-deficient muscle. We tested the hypothesis that Duchenne muscular dystrophy (DMD) patients would have elevated levels of the macrophage synthesized pterins, neopterin and 7,8-dihydroneopterin compared to unaffected age-matched controls. Urinary neopterin/creatinine and 7,8-dihydroneopterin/creatinine were elevated in DMD patients and 7,8-dihydroneopterin/creatinine was associated with patient age and ambulation. 7,8-dihydroneopterin correction with specific gravity was also elevated in DMD patients. Because 7,8-dihydroneopterin is an antioxidant, we then identified a potential role for 7,8-dihydroneopterin in disease pathology. We assessed whether 7,8-dihydroneopterin could 1) protect against isometric force loss in wildtype skeletal muscle exposed to various pro-oxidants, and 2) protect wildtype and mdx muscle from eccentric contraction-induced force drop which has an oxidative component. Force drop was elicited in isolated Extensor Digitorum Longus (EDL) muscles by 10 eccentric contractions and recovery of force following the contractions was measured in the presence of exogenous 7,8-dihydroneopterin. 7,8-dihydroneopterin attenuated isometric force loss by wildtype EDL muscles when challenged by H 2 O 2 and HOCl, but exacerbated force loss when challenged by SIN-1 (NO · , O 2 · , ONOO - ). 7,8-dihydroneopterin attenuated eccentric contraction-induced force drop in mdx muscle. Isometric force by EDL muscles of mdx mice also recovered to a greater degree following eccentric contractions in the presence of 7,8-dihydroneopterin. The results corroborate macrophage activation in DMD patients, provide a potential protective role for 7,8-dihydroneopterin in the susceptibility of dystrophic muscle to eccentric contractions and indicate oxidative stress contributes to eccentric contraction-induced force drop in mdx skeletal muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Heat production during contraction in skeletal muscle of hypothyroid mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be relatedmore » to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.« less

  6. Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait.

    PubMed

    Sritharan, Prasanna; Lin, Yi-Chung; Pandy, Marcus G

    2012-10-01

    The aims of this study were to evaluate and explain the individual muscle contributions to the medial and lateral knee compartment forces during gait, and to determine whether these quantities could be inferred from their contributions to the external knee adduction moment. Gait data from eight healthy male subjects were used to compute each individual muscle contribution to the external knee adduction moment, the net tibiofemoral joint reaction force, and reaction moment. The individual muscle contributions to the medial and lateral compartment forces were then found using a least-squares approach. While knee-spanning muscles were the primary contributors, non-knee-spanning muscles (e.g., the gluteus medius) also contributed substantially to the medial compartment compressive force. Furthermore, knee-spanning muscles tended to compress both compartments, while most non-knee-spanning muscles tended to compress the medial compartment but unload the lateral compartment. Muscle contributions to the external knee adduction moment, particularly those from knee-spanning muscles, did not accurately reflect their tendencies to compress or unload the medial compartment. This finding may further explain why gait modifications may reduce the knee adduction moment without necessarily decreasing the medial compartment force. Copyright © 2012 Orthopaedic Research Society.

  7. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    PubMed

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to simulate movement. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study

    PubMed Central

    Günther, Michael; Röhrle, Oliver; Haeufle, Daniel F. B.; Schmitt, Syn

    2012-01-01

    It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses. We found that in a typical small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing bigger mammals' muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles. PMID:23227110

  9. Mechanism of Rho-kinase-mediated Ca2+-independent contraction in aganglionic smooth muscle in a rat model of Hirschsprung's disease.

    PubMed

    Akiyoshi, Junko; Ieiri, Satoshi; Nakatsuji, Takanori; Taguchi, Tomoaki

    2009-11-01

    Lack of ganglion cells is the main cause of bowel movement disorder in Hirschsprung's disease. Because smooth muscle is the primary organ, the properties of intestinal smooth muscle need to be investigated. We therefore investigated the reactivity of the contractile system and the mechanism of contraction in aganglionic intestinal smooth muscle. Colonic smooth muscle strips from endothelin-B receptor gene-deficient [EDNRB(-/-)] rats were loaded with the Ca(2+) indicator dye fura-PE3/AM and changes in fluorescence intensity were monitored. The intracellular calcium concentration ([Ca(2+)]i) and force development in the strips were measured simultaneously. The force induced by 10 microM substance P (SP) was higher than that induced by 60 mM K(+) depolarization (control), whereas [Ca(2+)]i elevation induced by 10 microM SP was less than that induced by 60 mM K(+) in all segments. Pretreatment with the Rho-kinase inhibitor Y-27632 inhibited force development more strongly in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. However, [Ca(2+)]i was higher in EDNRB(-/-) aganglionic segments than in EDNRB(+/+) ganglionic segments. The Ca(2+)-independent pathway involving Rho-kinase was hyperactivated in EDNRB(-/-) aganglionic segments. This phenomenon is assumed to compensate for Ca(2+) channel downregulation and Ca(2+)-dependent contraction. From a clinical point of view, the motility of aganglionic intestine would be controllable with the control of Ca(2+)-independent contraction before definitive operations in Hirschsprung's disease.

  10. A computer-based servo system for controlling isotonic contractions of muscle.

    PubMed

    Smith, J P; Barsotti, R J

    1993-11-01

    We have developed a computer-based servo system for controlling isotonic releases in muscle. This system is a composite of commercially available devices: an IBM personal computer, an analog-to-digital (A/D) board, an Akers AE801 force transducer, and a Cambridge Technology motor. The servo loop controlling the force clamp is generated by computer via the A/D board, using a program written in QuickBASIC 4.5. Results are shown that illustrate the ability of the system to clamp the force generated by either skinned cardiac trabeculae or single rabbit psoas fibers down to the resolution of the force transducer within 4 ms. This rate is independent of the level of activation of the tissue and the size of the load imposed during the release. The key to the effectiveness of the system consists of two algorithms that are described in detail. The first is used to calculate the error signal to hold force to the desired level. The second algorithm is used to calculate the appropriate gain of the servo for a particular fiber and the size of the desired load to be imposed. The results show that the described computer-based method for controlling isotonic releases in muscle represents a good compromise between simplicity and performance and is an alternative to the custom-built digital/analog servo devices currently being used in studies of muscle mechanics.

  11. Lack of myostatin results in excessive muscle growth but impaired force generation.

    PubMed

    Amthor, Helge; Macharia, Raymond; Navarrete, Roberto; Schuelke, Markus; Brown, Susan C; Otto, Anthony; Voit, Thomas; Muntoni, Francesco; Vrbóva, Gerta; Partridge, Terence; Zammit, Peter; Bunger, Lutz; Patel, Ketan

    2007-02-06

    The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.

  12. Capacity of small groups of muscles to accomplish precision grasping tasks.

    PubMed

    Towles, Joseph D; Valero-Cuevas, Francisco J; Hentz, Vincent R

    2013-01-01

    An understanding of the capacity or ability of various muscle groups to generate endpoint forces that enable grasping tasks could provide a stronger biomechanical basis for the design of reconstructive surgery or rehabilitation for the treatment of the paralyzed or paretic hand. We quantified two-dimensional endpoint force distributions for every combination of the muscles of the index finger, in cadaveric specimens, to understand the capability of muscle groups to produce endpoint forces that accomplish three common types of grasps-tripod, tip and lateral pinch-characterized by a representative level of Coulomb friction. We found that muscle groups of 4 or fewer muscles were capable of generating endpoint forces that enabled performance of each of the grasping tasks examined. We also found that flexor muscles were crucial to accomplish tripod pinch; intrinsic muscles, tip pinch; and the dorsal interosseus muscle, lateral pinch. The results of this study provide a basis for decision making in the design of reconstructive surgeries and rehabilitation approaches that attempt to restore the ability to perform grasping tasks with small groups of muscles.

  13. The role of titin in eccentric muscle contraction.

    PubMed

    Herzog, Walter

    2014-08-15

    Muscle contraction and force regulation in skeletal muscle have been thought to occur exclusively through the relative sliding of and the interaction between the contractile filaments actin and myosin. While this two-filament sarcomere model has worked well in explaining the properties of isometrically and concentrically contracting muscle, it has failed miserably in explaining experimental observations in eccentric contractions. Here, I suggest, and provide evidence, that a third filament, titin, is involved in force regulation of sarcomeres by adjusting its stiffness in an activation-dependent (calcium) and active force-dependent manner. Upon muscle activation, titin binds calcium at specific sites, thereby increasing its stiffness, and cross-bridge attachment to actin is thought to free up binding sites for titin on actin, thereby reducing titin's free-spring length, thus increasing its stiffness and force upon stretch of active muscle. This role of titin as a third force regulating myofilament in sarcomeres, although not fully proven, would account for many of the unexplained properties of eccentric muscle contraction, while simultaneously not affecting the properties predicted by the two-filament cross-bridge model in isometric and concentric muscle function. Here, I identify the problems of the two-filament sarcomere model and demonstrate the advantages of the three-filament model by providing evidence of titin's contribution to active force in eccentric muscle function. © 2014. Published by The Company of Biologists Ltd.

  14. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    PubMed

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  15. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The use of artificial neural networks to predict the muscle behavior

    NASA Astrophysics Data System (ADS)

    Kutilek, Patrik; Viteckova, Slavka; Svoboda, Zdenĕk; Smrcka, Pavel

    2013-09-01

    The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams of mean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural networks was tested. Neural networks predicted the muscle forces and moments of healthy children and children with cerebral palsy. The designed method of prediction by neural networks could help to identify the difference between muscle behavior of healthy subjects and diseased subjects.

  17. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.

    2017-01-01

    ABSTRACT Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force–length and force–velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed–high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types. PMID:28202584

  18. Respiration-related discharge of hyoglossus muscle motor units in the rat.

    PubMed

    Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F

    2014-01-01

    Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.

  19. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    PubMed

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle.

    PubMed

    Driska, S P; Stein, P G; Porter, R

    1989-02-01

    Changes in myosin light chain phosphorylation were measured during histamine-induced rhythmic contractions of hog carotid artery smooth muscle strips. Histamine made the muscle strips contract spontaneously every 1-5 min, and this allowed measurement of the time course of phosphorylation in relation to force development under conditions where diffusion of the agonist through tissue would not complicate the interpretation of the data. In the absence of histamine, phosphorylation was low [0.12 +/- 0.04 mol P/mol of the 20,000-Da light chain (LC 20)]. Phosphorylation was slightly (but not significantly) higher in the presence of 10 microM histamine in the relaxed state between contractions (0.20 +/- 0.03 mol P/mol LC 20). In muscle strips frozen during force development, when force had reached half of its peak value, phosphorylation was 0.38 +/- 0.06 mol P/mol LC 20. The highest levels of phosphorylation (0.49 +/- 0.04 mol P/mol LC 20) were found in strips frozen at the peak of the rhythmic contractions. Strips frozen when force had declined to half of the peak force showed low levels of phosphorylation (0.17 +/- 0.07 mol P/mol LC 20), indicating that the myosin light chain phosphatase activity was quite high. Mathematical modeling of the kinase and phosphatase reactions suggested that the apparent first-order phosphatase rate constant was at least 0.08 s-1 under these conditions. To obtain a better estimate of this rate constant, a second series of phosphorylation measurements were made early in the relaxation phase of the rhythmic contractions. The highest phosphatase rate constant obtained from these measurements was 0.23 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Regenerating skeletal muscle in the face of aging and disease.

    PubMed

    Jasuja, Ravi; LeBrasseur, Nathan K

    2014-11-01

    Skeletal muscle is a fundamental organ in the generation of force and movement, the regulation of whole-body metabolism, and the provision of resiliency. Indeed, physical medicine and rehabilitation is recognized for optimizing skeletal muscle health in the context of aging (sarcopenia) and disease (cachexia). Exercise is, and will remain, the cornerstone of therapies to improve skeletal muscle health. However, there are now a number of promising biologic and small molecule interventions currently under development to rejuvenate skeletal muscle, including myostatin inhibitors, selective androgen receptor modulators, and an activator of the fast skeletal muscle troponin complex. The opportunities for skeletal muscle-based regenerative therapies and a selection of emerging pharmacologic interventions are discussed in this review.

  2. Calculation of muscle loading and joint contact forces during the rock step in Irish dance.

    PubMed

    Shippen, James M; May, Barbara

    2010-01-01

    A biomechanical model for the analysis of dancers and their movements is described. The model consisted of 31 segments, 35 joints, and 539 muscles, and was animated using movement data obtained from a three-dimensional optical tracking system that recorded the motion of dancers. The model was used to calculate forces within the muscles and contact forces at the joints of the dancers in this study. Ground reaction forces were measured using force plates mounted in a sprung floor. The analysis procedure is generic and can be applied to any dance form. As an exemplar of the application process an Irish dance step, the rock, was analyzed. The maximum ground reaction force found was 4.5 times the dancer's body weight. The muscles connected to the Achilles tendon experienced a maximum force comparable to their maximal isometric strength. The contact force at the ankle joint was 14 times body weight, of which the majority of the force was due to muscle contraction. It is suggested that as the rock step produces high forces, and therefore the potential to cause injury, its use should be carefully monitored.

  3. The effect of temperature on amount and structure of motor variability during 2-minute maximum voluntary contraction.

    PubMed

    Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima

    2012-11-01

    In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.

  4. Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

    PubMed Central

    Brotto, Leticia S.; Bougoin, Sylvain; Nosek, Thomas M.; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome

    2011-01-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca2+ to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca2+ entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca2+ to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca2+ release channel-mediated Ca2+ release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca2+ entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle. PMID:21666285

  5. Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle.

    PubMed

    Thornton, Angela M; Zhao, Xiaoli; Weisleder, Noah; Brotto, Leticia S; Bougoin, Sylvain; Nosek, Thomas M; Reid, Michael; Hardin, Brian; Pan, Zui; Ma, Jianjie; Parness, Jerome; Brotto, Marco

    2011-06-01

    Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.

  6. Modulating Beta-Cardiac Myosin Function at the Molecular and Tissue Levels

    PubMed Central

    Tang, Wanjian; Blair, Cheavar A.; Walton, Shane D.; Málnási-Csizmadia, András; Campbell, Kenneth S.; Yengo, Christopher M.

    2017-01-01

    Inherited cardiomyopathies are a common form of heart disease that are caused by mutations in sarcomeric proteins with beta cardiac myosin (MYH7) being one of the most frequently affected genes. Since the discovery of the first cardiomyopathy associated mutation in beta-cardiac myosin, a major goal has been to correlate the in vitro myosin motor properties with the contractile performance of cardiac muscle. There has been substantial progress in developing assays to measure the force and velocity properties of purified cardiac muscle myosin but it is still challenging to correlate results from molecular and tissue-level experiments. Mutations that cause hypertrophic cardiomyopathy are more common than mutations that lead to dilated cardiomyopathy and are also often associated with increased isometric force and hyper-contractility. Therefore, the development of drugs designed to decrease isometric force by reducing the duty ratio (the proportion of time myosin spends bound to actin during its ATPase cycle) has been proposed for the treatment of hypertrophic cardiomyopathy. Para-Nitroblebbistatin is a small molecule drug proposed to decrease the duty ratio of class II myosins. We examined the impact of this drug on human beta cardiac myosin using purified myosin motor assays and studies of permeabilized muscle fiber mechanics. We find that with purified human beta-cardiac myosin para-Nitroblebbistatin slows actin-activated ATPase and in vitro motility without altering the ADP release rate constant. In permeabilized human myocardium, para-Nitroblebbistatin reduces isometric force, power, and calcium sensitivity while not changing shortening velocity or the rate of force development (ktr). Therefore, designing a drug that reduces the myosin duty ratio by inhibiting strong attachment to actin while not changing detachment can cause a reduction in force without changing shortening velocity or relaxation. PMID:28119616

  7. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats.

    PubMed

    Pereyra-Venegas, J; Segura-Alegría, B; Guadarrama-Olmos, J C; Mariscal-Tovar, S; Quiróz-González, S; Jiménez-Estrada, I

    2015-10-01

    In this study, we compare the effects of pre- and post-natal food deprivation on the relative proportion of fibre types and contractile responses in the extensor digitorum longus (EDL) muscle of female and male rats at different post-natal ages. EDL muscles from undernourished male (UM) rats showed a higher proportion of Type IIB than IIA fibres and larger normalized twitch responses (with respect to muscle weight) than those of controls (CM). In contrast, EDL muscles from control (CF) and undernourished female rats (UF) showed no significant differences in their fibre type composition and normalized twitch forces at most of the ages analysed. Our data are indicative that the EDL muscles from undernourished males are more susceptible to the effects exerted by low food income than the EDL muscles from female rats. It is proposed that changes in the reactive oxygen species (ROS) concentration and hormonal factors, due to undernutrition, are involved in the alterations observed in the fibre type composition and force production of EDL muscles in undernourished male rats and that estrogens may have an antioxidant protective role on the undernourished EDL muscles in female rats. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  8. Nonparametric Model of Smooth Muscle Force Production During Electrical Stimulation.

    PubMed

    Cole, Marc; Eikenberry, Steffen; Kato, Takahide; Sandler, Roman A; Yamashiro, Stanley M; Marmarelis, Vasilis Z

    2017-03-01

    A nonparametric model of smooth muscle tension response to electrical stimulation was estimated using the Laguerre expansion technique of nonlinear system kernel estimation. The experimental data consisted of force responses of smooth muscle to energy-matched alternating single pulse and burst current stimuli. The burst stimuli led to at least a 10-fold increase in peak force in smooth muscle from Mytilus edulis, despite the constant energy constraint. A linear model did not fit the data. However, a second-order model fit the data accurately, so the higher-order models were not required to fit the data. Results showed that smooth muscle force response is not linearly related to the stimulation power.

  9. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  10. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    PubMed

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  11. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  12. Effects of walking speed and age on the muscle forces of unimpaired gait subjects

    NASA Astrophysics Data System (ADS)

    Fliger, Carlos G.; Crespo, Marcos J.; Braidot, Ariel A.; Ravera, Emiliano P.

    2016-04-01

    Clinical gait analysis provides great contributions to the understanding of gait disorders and also provides a mean for a more comprehensive treatment plan. However, direct measures of muscle forces are difficult to obtain in clinical settings because it generally requires invasive techniques. Techniques of musculoskeletal modeling have been used for several decades to improve the benefits of clinical gait analysis, but many of the previous studies were focused on analyzing separately the muscle forces distribution of children or adult subjects with only one condition of walking speed. For these reason, the present study aims to enhance the current literature by describing the age and speed gait effects on muscle forces during walking. We used a musculoskeletal model with 23 degrees of freedom and 92 musculotendon actuators to represent 76 muscles in the lower extremities and torso. The computed muscle control algorithm was used to estimate the muscle forces from the kinematics and to adjust the model obtained in the residual reduction algorithm. We find that hamstrings has an important peak in the mid-stance phase in the adult group but this peak disappears in the children group with the same walking speed condition. Furthermore, the rectus femoris presents an increase in the muscle force during the pre- and mid-swing in concordance with the increment in the walking speed of subjects. This behavior could be associated with the role that the rectus femoris has in the acceleration of the knee joint. Finally, we show that the soleus is the muscle that perform the major force throughout the gait cycle regardless of age and walking speed.

  13. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.

    PubMed

    Lee, Sabrina S M; Arnold, Allison S; Miara, Maria de Boef; Biewener, Andrew A; Wakeling, James M

    2013-09-03

    Hill-type models are commonly used to estimate muscle forces during human and animal movement-yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with "differential" activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r(2), was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r(2)=0.26-0.51), and all exhibited some errors (RMSE=9.63-32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models

    PubMed Central

    Lee, Sabrina S.M.; Arnold, Allison S.; Miara, Maria de Boef; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    Hill-type models are commonly used to estimate muscle forces during human and animal movement —yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with “differential” activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r2, was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r2 = 0.26 to 0.51), and all exhibited some errors (RMSE = 9.63 to 32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. PMID:23871235

  15. Shoulder muscle forces during driving: Sudden steering can load the rotator cuff beyond its repair limit

    PubMed Central

    Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.

    2015-01-01

    Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549

  16. Challenging the role of pH in skeletal muscle fatigue.

    PubMed

    Stackhouse, S K; Reisman, D S; Binder-Macleod, S A

    2001-12-01

    Muscle fatigue is frequently defined as a temporary loss in force- or torque-generating ability because of recent, repetitive muscle contraction (1). The development of this temporary loss of force is a complex process and results from the failure of a number of processes, including motor unit recruitment and firing rate, chemical transmission across the neuromuscular junction, propagation of the action potential along the muscle membrane and T tubules, Ca2+ release from the sarcoplasmic reticulum (SR), Ca2+ binding to troponin C, and cross-bridge cycling (for detailed reviews, see Bigland-Ritchie and Woods(1), McLester(2), and Favero(3)). Muscle fatigue may limit the time a person can stand, the distance a person can ambulate, or the number of stairs a person can ascend or descend. In practical terms, however, we cannot know what actually leads to a decline in function for a given patient. For a phenomenon that may have profound clinical implications, muscle fatigue often receives inadequate attention in physiology textbooks, many of which contain a page or less of information on the entire topic (4-8). In addition, many textbooks report that muscle fatigue is mainly the result of a decrease in pH within the muscle cell due to a rise in hydrogen ion concentration ([H+]) resulting from anaerobic metabolism and the accumulation of lactic acid (6-8). Recent literature, however, contradicts this assertion (9-10). The purpose of this update, therefore, is to provide a brief review of the role of pH in the development of muscle fatigue.

  17. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  18. Streptomycin and EDTA decrease the number of desmin-negative fibers following stretch injury.

    PubMed

    Willems, Mark E T; Stauber, William T

    2005-09-01

    Streptomycin and ethylene diamine tetraacetic acid (EDTA) were used to examine the role of extracellular calcium in stretch-induced muscle injury. Streptomycin was injected in one group of rats, three times daily for 8 days (S, 300 mg.kg(-1).day(-1) intraperitoneally). In another group, EDTA was administered (150 mg.kg(-1) IP) 20 min before and 24 h after the injury protocol. Untreated rats (C) served as controls. Muscle injury was produced by 40 stretches of active dorsiflexor muscles by ankle rotation from 80 degrees to 130 degrees (velocity 1.75 rad.s(-1)). Ten minutes after the injury protocols, all animals lost the same amount of isometric force at both low and high stimulation frequencies (20 HZ; S, 56 +/- 6%; EDTA, 47 +/- 7%; C, 55 +/- 4%) and 120 HZ; S, 11 +/- 3%, EDTA, 13 +/- 3%; C, 11 +/- 3%). Tibialis anterior (TA) muscles were removed after 48 h for morphometric analysis. In both streptomycin-and EDTA-treated rats, the percent of injured (i.e., desmin-negative) myofibers in TA was reduced compared to untreated, injured muscles (S, 0.35 +/- 0.08%; EDTA, 0.64 +/- 0.19%; C, 1.81 +/- 0.43%). Thus, streptomycin and EDTA treatment did not alter the development of muscle weakness (i.e., isometric force deficit), but almost abolished the histopathologic changes. This study shows that the mechanisms for muscle weakness and histopathologic changes (inflammation) following repeated muscle strains can largely be dissociated from each other and helps explain why there is no correlation between isometric force deficits and the number of pathologic cells.

  19. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    PubMed

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  20. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

    PubMed

    Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan

    2003-12-01

    The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the soleus muscle (r = -0.38; P > 0.05). Hence, this study shows a loss of muscle function with age and suggests that long-term calorie restriction is an effective intervention against the loss of muscle function with age.

  1. Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle.

    PubMed

    Nocella, Marta; Colombini, Barbara; Bagni, Maria Angela; Bruton, Joseph; Cecchi, Giovanni

    2012-03-01

    We showed previously that force development in frog and FDB mouse skeletal muscle fibres is preceded by an increase of fibre stiffness occurring well before crossbridge attachment and force generation. This stiffness increase, referred to as static stiffness, is due to a Ca(2+)-dependent stiffening of a non-crossbridge sarcomere structure which we suggested could be attributed to the titin filaments. To investigate further the role of titin in static stiffness, we measured static stiffness properties at 24 and 35°C in soleus and EDL mouse muscle fibres which are known to express different titin isoforms. We found that static stiffness was present in both soleus and EDL fibres, however, its value was about five times greater in EDL than in soleus fibres. The rate of development of static stiffness on stimulation increased with temperature and was slightly faster in EDL than in soleus in agreement with previously published data on the time course of the intracellular Ca(2+) transients in these muscles. The present results show that the presence of a non-crossbridge Ca(2+)-dependent stiffening of the muscle fibre is a physiological general characteristic of skeletal muscle. Static stiffness depends on fibre type, being greater and developing faster in fast than in slow fibres. Our observations are consistent with the idea that titin stiffening on contraction improves the sarcomere structure stability. Such an action in fact seems to be more important in EDL fast fibre than in soleus slow fibres.

  2. Impact of titin strain on the cardiac slow force response.

    PubMed

    Ait-Mou, Younss; Zhang, Mengjie; Martin, Jody L; Greaser, Marion L; de Tombe, Pieter P

    2017-11-01

    Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca 2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca 2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 μm SL stretch in the presence of [Ca 2+ ] o  = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca 2+ ] i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Power, muscular work, and external forces in cycling.

    PubMed

    de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J

    1994-01-01

    Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The measured pedal forces (magnitude and direction) are only dependent on the intersegmental orientation of saddle tube, crank position, upper and lower leg, and foot. The changed direction of the gravitational force with respect to the saddle-tube does not interfere with the co-ordinated force production pattern. During locomotory cycling at constant speed the external power is mainly used to overcome the aerodynamic friction force. This force and the rolling resistance are determined by coasting down experiments, yielding the external power.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    DTIC Science & Technology

    2010-12-01

    Following muscle collection from the right hindlimb, muscle isometric force of PL and SL was measured simultaneously in the left hindlimb under...37.5°C by manually adjusting the temperature of cir culating water in the rat surgical bed. The isometric force of the PL and SL muscles was then...the physiologic cross sectional area (CSA) of PL and SL was calculated using the following formula: CSA= ( muscle mass) × cos θ ( muscle fiber

  5. Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.

    PubMed

    Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A

    2017-08-01

    Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age-ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P < 0.001). Cross-sectional muscle area of the lower leg was not associated with tibial bone outcomes. Both grip strength and CSMA of the arm were positively associated, to a similar extent, with radius diaphyseal bone outcomes. Jump force and power are negatively associated with age in UK men. In the lower limb, the measurement of jump force is more strongly related to bone outcomes than CSMA. It is important to consider jump force and power when understanding the aetiology of bone loss and mobility in ageing men. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  6. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    PubMed

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  7. Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.

    PubMed

    Raqeeb, Abdul; Solomon, Dennis; Paré, Peter D; Seow, Chun Y

    2010-11-01

    Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called force adaptation. To date, the effects of length and force adaptation have only been demonstrated under static conditions. In the mechanically dynamic environment of the lung, ASM is constantly subjected to periodic stretches by the parenchyma due to tidal breathing and deep inspiration. It is not known whether force recovery due to muscle adaptation to a static environment could occur in a dynamic environment. In this study the effect of length oscillation mimicking tidal breathing and deep inspiration was examined. Force recovery after a length change was attenuated in the presence of length oscillation, except at very short lengths. Force adaptation was abolished by length oscillation. We conclude that in a healthy lung (with intact airway-parenchymal tethering) where airways are not allowed to narrow excessively, large stretches (associated with deep inspiration) may prevent the ability of the muscle to generate maximal force that would occur under static conditions irrespective of changes in mean length; mechanical perturbation on ASM due to tidal breathing and deep inspiration, therefore, is the first line of defense against excessive bronchoconstriction that may result from static length and force adaptation.

  8. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study

    PubMed Central

    Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah

    2015-01-01

    Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical populations. PMID:26509265

  9. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.

    PubMed

    Rassier, Dilson E; Herzog, Walter; Wakeling, Jennifer; Syme, Douglas A

    2003-09-01

    Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.

  10. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  11. Human spinal cord injury: motor unit properties and behaviour.

    PubMed

    Thomas, C K; Bakels, R; Klein, C S; Zijdewind, I

    2014-01-01

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when SCI leaves few units under voluntary control, the force contribution from recruitment increases due to elevation of twitch/tetanic force ratios. Force gradation and precision are also coarser with reduced unit numbers. Maximal unit firing rates are low in hand muscles, limiting voluntary strength, but are low, normal or high in limb muscles. Unit firing rates during spasms can exceed voluntary rates, emphasizing that deficits in descending drive limit force production. SCI also changes muscle properties. Motor unit weakness and fatigability seem universal across muscles and species, increasing the muscle weakness that arises from paralysis of units, motoneuron death and sensory impairment. Motor axon conduction velocity decreases after human SCI. Muscle contractile speed is also reduced, which lowers the stimulation frequencies needed to grade force when paralysed muscles are activated with patterned electrical stimulation. This slowing does not necessarily occur in hind limb muscles after cord transection in cats and rats. The nature, duration and level of SCI underlie some of these species differences, as do variations in muscle function, daily usage, tract control and fibre-type composition. Exploring this diversity is important to promote recovery of the hand, bowel, bladder and locomotor function most wanted by people with SCI. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.

    PubMed

    Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R

    2012-11-01

    The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Asynchronous Alterations of Muscle Force and Tendon Stiffness Following 8 Weeks of Resistance Exercise with Whole-Body Vibration in Older Women.

    PubMed

    Han, Seong-Won; Lee, Dae-Yeon; Choi, Dong-Sung; Han, Boram; Kim, Jin-Sun; Lee, Hae-Dong

    2017-04-01

    This study aimed to examine whether muscle force and tendon stiffness in a muscle-tendon complex alter synchronously following 8-week whole-body vibration (WBV) training in older people. Forty older women aged 65 years and older were randomly assigned into control (CON, n = 15) and whole-body vibration (WBV) training groups (exposure time, n = 13; vibration intensity, n = 12). For the training groups, a 4-week detraining period was completed following the training period. Throughout the training/detraining period, force of the medial gastrocnemius (MG) muscle and stiffness of the Achilles tendon were assessed four times (0, 4, 8, and 12 weeks) using a combined system of dynamometer and ultrasonography. While muscle force gradually increased throughout the training period (p < .05), a significant increase in tendon stiffness was observed after 8 weeks (p < .05). These findings indicated that, during the early phase of WBV training, muscle force and tendon stiffness changed asynchronously, which might be a factor in possible musculotendinous injuries.

  14. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  15. Multi-muscle FES force control of the human arm for arbitrary goals.

    PubMed

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  16. The effects of passive leg press training on jumping performance, speed, and muscle power.

    PubMed

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p < 0.05). Additionally, their change rate abilities were substantially superior to those of the traditional resistance training (p < 0.05). The low-frequency PLP training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p < 0.05). However, traditional resistance training only increased participants' 30-m sprint performance and peak power (p < 0.05). The findings suggest that jump performance, speed, and muscle power significantly improved after 10 weeks of PLP training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  17. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P

    2009-11-15

    A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.

  18. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.

    PubMed

    Bobbert, Maarten Frank; Casius, L J Richard; Van Soest, Arthur J

    2016-05-01

    Relationships between tangential pedal force and crank angular velocity in sprint cycling tend to be linear. We set out to understand why they are not hyperbolic, like the intrinsic force-velocity relationship of muscles. We simulated isokinetic sprint cycling at crank angular velocities ranging from 30 to 150 rpm with a forward dynamic model of the human musculoskeletal system actuated by eight lower extremity muscle groups. The input of the model was muscle stimulation over time, which we optimized to maximize average power output over a cycle. Peak tangential pedal force was found to drop more with crank angular velocity than expected based on intrinsic muscle properties. This linearizing effect was not due to segmental dynamics but rather due to active state dynamics. Maximizing average power in cycling requires muscles to bring their active state from as high as possible during shortening to as low as possible during lengthening. Reducing the active state is a relatively slow process, and hence must be initiated a certain amount of time before lengthening starts. As crank angular velocity goes up, this amount of time corresponds to a greater angular displacement, so the instant of switching off extensor muscle stimulation must occur earlier relative to the angle at which pedal force was extracted for the force-velocity relationship. Relationships between pedal force and crank angular velocity in sprint cycling do not reflect solely the intrinsic force-velocity relationship of muscles but also the consequences of activation dynamics.

  19. Detection of the electromechanical delay and its components during voluntary isometric contraction of the quadriceps femoris muscle.

    PubMed

    Begovic, Haris; Zhou, Guang-Quan; Li, Tianjie; Wang, Yi; Zheng, Yong-Ping

    2014-01-01

    Electromechanical delay (EMD) was described as a time elapsed between first trigger and force output. Various results have been reported based on the measurement method with observed inconsistent results when the trigger is elicited by voluntary contraction. However, mechanomyographic (MMG) sensor placed far away on the skin from the contracting muscle was used to detect muscle fiber motion and excitation-contraction (EC) coupling which may give unreliable results. On this basis, the purpose of this study was to detect EMD during active muscle contraction whilst introducing an ultrafast ultrasound (US) method to detect muscle fiber motion from a certain depth of the muscle. Time delays between onsets of EMG-MMG, EMG-US, MMG-FORCE, US-FORCE, and EMG-FORCE were calculated as 20.5 ± 4.73, 28.63 ± 6.31, 19.21 ± 6.79, 30.52 ± 8.85, and 49.73 ± 6.99 ms, respectively. Intrarater correlation coefficient (ICC) was higher than MMG when ultrafast US was used for detecton of the Δt EMG-US and Δt US-FORCE, ICC values of 0.75 and 0.70, respectively. Synchronization of the ultrafast ultrasound with EMG and FORCE sensors can reveal reliable and clinically useful results related to the EMD and its components when muscle is voluntarily contracted. With ultrafast US, we detect onset from the certain depth of the muscle excluding the tissues above the muscle acting as a low-pass filter which can lead to inaccurate time detection about the onset of the contracting muscle fibers. With this non-invasive technique, understanding of the muscle dynamics can be facilitated.

  20. Direct dynamics simulation of the impact phase in heel-toe running.

    PubMed

    Gerritsen, K G; van den Bogert, A J; Nigg, B M

    1995-06-01

    The influence of muscle activation, position and velocities of body segments at touchdown and surface properties on impact forces during heel-toe running was investigated using a direct dynamics simulation technique. The runner was represented by a two-dimensional four- (rigid body) segment musculo-skeletal model. Incorporated into the muscle model were activation dynamics, force-length and force-velocity characteristics of seven major muscle groups of the lower extremities: mm. glutei, hamstrings, m. rectus femoris, mm. vasti, m. gastrocnemius, m. soleus and m. tibialis anterior. The vertical force-deformation characteristics of heel, shoe and ground were modeled by a non-linear visco-elastic element. The maximum of a typical simulated impact force was 1.6 times body weight. The influence of muscle activation was examined by generating muscle stimulation combinations which produce the same (experimentally determined) resultant joint moments at heelstrike. Simulated impact peak forces with these different combinations of muscle stimulation levels varied less than 10%. Without this restriction on initial joint moments, muscle activation had potentially a much larger effect on impact force. Impact peak force was to a great extent influenced by plantar flexion (85 N per degree of change in foot angle) and vertical velocity of the heel (212 N per 0.1 m s-1 change in velocity) at touchdown. Initial knee flexion (68 N per degree of change in leg angle) also played a role in the absorption of impact. Increased surface stiffness resulted in higher impact peak forces (60 N mm-1 decrease in deformation).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Mapping Muscles Activation to Force Perception during Unloading

    PubMed Central

    Toma, Simone; Lacquaniti, Francesco

    2016-01-01

    It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity (“muscle-metric function”) that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces. PMID:27032087

  2. Effect of changes of femoral offset on abductor and joint reaction forces in total hip arthroplasty.

    PubMed

    Rüdiger, Hannes A; Guillemin, Maïka; Latypova, Adeliya; Terrier, Alexandre

    2017-11-01

    Anatomical reconstruction in total hip arthroplasty (THA) allows for physiological muscle function, good functional outcome and implant longevity. Quantitative data on the effect of a loss or gain of femoral offset (FO) are scarce. The aim of this study was to quantitatively describe the effect of FO changes on abductor moment arms, muscle and joint reactions forces. THA was virtually performed on 3D models built from preoperative CT scans of 15 patients undergoing THA. Virtual THA was performed with a perfectly anatomical reconstruction, a loss of 20% of FO (-FO), and a gain of 20% of FO (+FO). These models were combined with a generic musculoskeletal model (OpenSim) to predict moment arms, muscle and joint reaction forces during normal gait cycles. In average, with -FO reconstructions, muscle moment arms decreased, while muscle and hip forces increased significantly (p < 0.001). We observed the opposite with +FO reconstructions. Gluteus medius was more affected than gluteus minimus. -FO had more effect than +FO. A change of 20% of FO induced an average change 8% of abductor moment arms, 16% of their forces, and 6% of the joint reaction force. To our knowledge, this is the first report providing quantitative data on the effect of FO changes on muscle and joint forces during normal gait. A decrease of FO necessitates an increase of abductor muscle force to maintain normal gait, which in turn increases the joint reaction force. This effect underscores the importance of an accurate reconstruction of the femoral offset.

  3. Mapping Muscles Activation to Force Perception during Unloading.

    PubMed

    Toma, Simone; Lacquaniti, Francesco

    2016-01-01

    It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort). Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG) to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function") that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  4. Force and power characteristics of a resistive exercise device for use in space

    NASA Astrophysics Data System (ADS)

    Berg, Hans E.; Tesch, Per A.

    We have developed a non-gravity dependent mechanical device, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning fly-wheel (Fly-Wheel Ergometry; FWE). Our research shows that lower-limb FWE exercise can produce forces and thus muscular stress comparable to what is typical of advanced resistance training using free weights. FWE also offers greater training stimuli during eccentric relative to concentric muscle actions, as evidenced by force and electromyographic (EMG) measurements. Muscle use of specific muscle groups, as assessed by the exercise-induced contrast shift of magnetic resonance images, is similar during lower-limb FWE and the barbell squat. Unlike free-weight exercise, FWE allows for maximal voluntary effort in each repetition of an exercise bout. Likewise, FWE exercise, not unassisted free-weight exercise, produces eccentric "overload". Collectively, the inherent features of this resistive exercise device and the results of the physiological evaluations we have performed, suggest that resistance exercise using FWE could be used as an effective exercise counter-measure in space. The flywheel principle can be employed to any exercise configuration and designed into a compact device allowing for exercises stressing those muscles and bone structures, which are thought to be most affected by long-duration spaceflight.

  5. The effects of femoral neck cut, cable tension, and muscles forces on the greater trochanter fixation.

    PubMed

    Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves

    2012-04-01

    Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.

  6. Investigation of the Differential Contributions of Superficial and Deep Muscles on Cervical Spinal Loads with Changing Head Postures

    PubMed Central

    Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy

    2016-01-01

    Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks. PMID:26938773

  7. Investigation of the Differential Contributions of Superficial and Deep Muscles on Cervical Spinal Loads with Changing Head Postures.

    PubMed

    Cheng, Chih-Hsiu; Chien, Andy; Hsu, Wei-Li; Chen, Carl Pai-Chu; Cheng, Hsin-Yi Kathy

    2016-01-01

    Cervical spinal loads are predominately influenced by activities of cervical muscles. However, the coordination between deep and superficial muscles and their influence on the spinal loads is not well understood. This study aims to document the changes of cervical spinal loads and the differential contributions of superficial and deep muscles with varying head postures. Electromyography (EMG) of cervical muscles from seventeen healthy adults were measured during maximal isometric exertions for lateral flexion (at 10°, 20° and terminal position) as well as flexion/extension (at 10°, 20°, 30°, and terminal position) neck postures. An EMG-assisted optimization approach was used to estimate the muscle forces and subsequent spinal loads. The results showed that compressive and anterior-posterior shear loads increased significantly with neck flexion. In particular, deep muscle forces increased significantly with increasing flexion. It was also determined that in all different static head postures, the deep muscle forces were greater than those of the superficial muscle forces, however, such pattern was reversed during peak efforts where greater superficial muscle forces were identified with increasing angle of inclination. In summary, the identification of significantly increased spinal loads associated with increased deep muscle activation during flexion postures, implies higher risks in predisposing the neck to occupationally related disorders. The results also explicitly supported that deep muscles play a greater role in maintaining stable head postures where superficial muscles are responsible for peak exertions and reinforcing the spinal stability at terminal head postures. This study provided quantitative data of normal cervical spinal loads and revealed motor control strategies in coordinating the superficial and deep muscles during physical tasks.

  8. Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography.

    PubMed

    Youn, Wonkeun; Kim, Jung

    2010-11-01

    Mechanomyography (MMG) is the muscle surface oscillations that are generated by the dimensional change of the contracting muscle fibers. Because MMG reflects the number of recruited motor units and their firing rates, just as electromyography (EMG) is influenced by these two factors, it can be used to estimate the force exerted by skeletal muscles. The aim of this study was to demonstrate the feasibility of MMG for estimating the elbow flexion force at the wrist under an isometric contraction by using an artificial neural network in comparison with EMG. We performed experiments with five subjects, and the force at the wrist and the MMG from the contributing muscles were recorded. It was found that MMG could be utilized to accurately estimate the isometric elbow flexion force based on the values of the normalized root mean square error (NRMSE = 0.131 ± 0.018) and the cross-correlation coefficient (CORR = 0.892 ± 0.033). Although MMG can be influenced by the physical milieu/morphology of the muscle and EMG performed better than MMG, these experimental results suggest that MMG has the potential to estimate muscle forces. These experimental results also demonstrated that MMG in combination with EMG resulted in better performance estimation in comparison with EMG or MMG alone, indicating that a combination of MMG and EMG signals could be used to provide complimentary information on muscle contraction.

  9. A mathematical model of force transmission from intrafascicularly terminating muscle fibers.

    PubMed

    Sharafi, Bahar; Blemker, Silvia S

    2011-07-28

    Many long skeletal muscles are comprised of fibers that terminate intrafascicularly. Force from terminating fibers can be transmitted through shear within the endomysium that surrounds fibers or through tension within the endomysium that extends from fibers to the tendon; however, it is unclear which pathway dominates in force transmission from terminating fibers. The purpose of this work was to develop mathematical models to (i) compare the efficacy of lateral (through shear) and longitudinal (through tension) force transmission in intrafascicularly terminating fibers, and (ii) determine how force transmission is affected by variations in the structure and properties of fibers and the endomysium. The models demonstrated that even though the amount of force that can be transmitted from an intrafascicularly terminating fiber is dependent on fiber resting length (the unstretched length at which passive stress is zero), endomysium shear modulus, and fiber volume fraction (the fraction of the muscle cross-sectional area that is occupied by fibers), fibers that have values of resting length, shear modulus, and volume fraction within physiologic ranges can transmit nearly all of their peak isometric force laterally through shearing of the endomysium. By contrast, the models predicted only limited force transmission ability through tension within the endomysium that extends from the fiber to the tendon. Moreover, when fiber volume fraction decreases to unhealthy ranges (less than 50%), the force-transmitting potential of terminating fibers through shearing of the endomysium decreases significantly. The models presented here support the hypothesis that lateral force transmission through shearing of the endomysium is an effective mode of force transmission in terminating fibers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Automatic prediction of tongue muscle activations using a finite element model.

    PubMed

    Stavness, Ian; Lloyd, John E; Fels, Sidney

    2012-11-15

    Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles.

    PubMed

    Piette, Antoine Boulanger; Dufresne, Sébastien S; Frenette, Jérôme

    2016-10-28

    Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles. Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey's test. The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles. An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles.

  12. In vivo behavior of the human soleus muscle with increasing walking and running speeds.

    PubMed

    Lai, Adrian; Lichtwark, Glen A; Schache, Anthony G; Lin, Yi-Chung; Brown, Nicholas A T; Pandy, Marcus G

    2015-05-15

    The interaction between the muscle fascicle and tendon components of the human soleus (SO) muscle influences the capacity of the muscle to generate force and mechanical work during walking and running. In the present study, ultrasound-based measurements of in vivo SO muscle fascicle behavior were combined with an inverse dynamics analysis to investigate the interaction between the muscle fascicle and tendon components over a broad range of steady-state walking and running speeds: slow-paced walking (0.7 m/s) through to moderate-paced running (5.0 m/s). Irrespective of a change in locomotion mode (i.e., walking vs. running) or an increase in steady-state speed, SO muscle fascicles were found to exhibit minimal shortening compared with the muscle-tendon unit (MTU) throughout stance. During walking and running, the muscle fascicles contributed only 35 and 20% of the overall MTU length change and shortening velocity, respectively. Greater levels of muscle activity resulted in increasingly shorter SO muscle fascicles as locomotion speed increased, both of which facilitated greater tendon stretch and recoil. Thus the elastic tendon contributed the majority of the MTU length change during walking and running. When transitioning from walking to running near the preferred transition speed (2.0 m/s), greater, more economical ankle torque development is likely explained by the SO muscle fascicles shortening more slowly and operating on a more favorable portion (i.e., closer to the plateau) of the force-length curve. Copyright © 2015 the American Physiological Society.

  13. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  14. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    PubMed

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces. Copyright © 2013 Wiley Periodicals, Inc.

  15. Differences in muscle sympathetic nerve response to isometric exercise in different muscle groups.

    PubMed

    Saito, M

    1995-01-01

    The aim of this study was to examine the effects of muscle fibre composition on muscle sympathetic nerve activity (MSNA) in response to isometric exercise. The MSNA, recorded from the tibial nerve by a microneurographic technique during contraction and following arterial occlusion, was compared in three different muscle groups: the forearm (handgrip), anterior tibialis (foot dorsal contraction), and soleus muscles (foot plantar contraction) contracted separately at intensities of 20%, 33% and 50% of the maximal voluntary force. The increases in MSNA relative to control levels during contraction and occlusion were significant at all contracting forces for handgrip and at 33% and 50% of maximal for dorsal contraction, but there were no significant changes, except during exercise at 50%, for plantar contraction. The size of the MSNA response correlated with the contraction force in all muscle groups. Pooling data for all contraction forces, there were different MSNA responses among muscle groups in contraction forces (P = 0.0001, two-way analysis of variance), and occlusion periods (P = 0.0001). The MSNA increases were in the following order of magnitude: handgrip, dorsal, and plantar contractions. The order of the fibre type composition in these three muscles is from equal numbers of types I and II fibres in the forearm to increasing number of type I fibres in the leg muscles. The different MSNA responses to the contraction of different muscle groups observed may have been due in part to muscle metaboreflex intensity influenced by their metabolic capacity which is related to by their metabolic capacity which is related to the fibre type.

  16. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice

    PubMed Central

    2013-01-01

    Background Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. Methods We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. Results Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. Conclusions These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD. PMID:23915702

  17. A Comparison of Total and Intrinsic Muscle Stiffness Among Flexors and Extensors of the Ankle, Knee and Elbow

    NASA Technical Reports Server (NTRS)

    Lemoine, Sandra M.

    1997-01-01

    This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.

  18. Constrained handgrip force decreases upper extremity muscle activation and arm strength.

    PubMed

    Smets, Martin P H; Potvin, James R; Keir, Peter J

    2009-09-01

    Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.

  19. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  20. Restricting calcium currents is required for correct fiber type specification in skeletal muscle

    PubMed Central

    Sultana, Nasreen; Dienes, Beatrix; Benedetti, Ariane; Tuluc, Petronel; Szentesi, Peter; Sztretye, Monika; Rainer, Johannes; Hess, Michael W.; Schwarzer, Christoph; Obermair, Gerald J.; Csernoch, Laszlo

    2016-01-01

    ABSTRACT Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease. PMID:26965373

  1. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System.

    PubMed

    Liu, Kun; Liu, Yong; Yan, Jianchao; Sun, Zhenyuan

    2018-03-25

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles' synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data.

  2. Force encoding in stick insect legs delineates a reference frame for motor control

    PubMed Central

    Schmitz, Josef; Chaudhry, Sumaiya; Büschges, Ansgar

    2012-01-01

    The regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains. We studied how loads and muscle forces are encoded by trochanteral campaniform sensilla in stick insects. Forces were applied to the middle leg to emulate loading and/or muscle contractions. Selective sensory ablations limited activities recorded in the main leg nerve to specific receptor groups. The trochanteral campaniform sensilla consist of four discrete groups. We found that the dorsal groups (Groups 3 and 4) encoded force increases and decreases in the plane of movement of the coxo-trochanteral joint. Group 3 receptors discharged to increases in dorsal loading and decreases in ventral load. Group 4 showed the reverse directional sensitivities. Vigorous, directional responses also occurred to contractions of the trochanteral depressor muscle and to forces applied at the muscle insertion. All sensory discharges encoded the amplitude and rate of loading or muscle force. Stimulation of the receptors produced reflex effects in the depressor motoneurons that could reverse in sign during active movements. These data, in conjunction with findings of previous studies, support a model in which the trochanteral receptors function as an array that can detect forces in all directions relative to the intrinsic plane of leg movement. The array could provide requisite information about forces and simplify the control and adaptation of posture and walking. PMID:22673329

  3. Effect of Compression Garments on the Development of Delayed-Onset Muscle Soreness: A Multimodal Approach Using Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Elastography.

    PubMed

    Heiss, Rafael; Kellermann, Marion; Swoboda, Bernd; Grim, Casper; Lutter, Christoph; May, Matthias S; Wuest, Wolfgang; Uder, Michael; Nagel, Armin M; Hotfiel, Thilo

    2018-06-12

    Study Design Controlled laboratory study with repeated measures. Background Delayed-onset muscle soreness (DOMS) is one of the most common reasons for impaired muscle performance in sports. However, little consensus exists regarding which treatments may be most effective and the underlying mechanisms are poorly understood. Objectives To investigate the influence of compression garments on the development of DOMS, focusing on changes in muscle perfusion and muscle stiffness. Methods Muscle perfusion and stiffness, calf circumference, muscle soreness, passive ankle dorsiflexion, and creatine kinase levels were assessed on participants before (baseline) a DOMS-inducing eccentric calf exercise intervention and 60 h later (follow-up). After DOMS induction, a sports compression garment (18-21 mmHg) was worn on one randomized calf until follow-up. The contralateral calf served as an internal control. Muscle perfusion was assessed using contrast-enhanced ultrasound (peak enhancement [PE] and wash-in area under the curve [WiAUC]), while muscle stiffness was assessed using acoustic radiation force impulse (shear wave velocities [SWV]). An MRI scan of both lower legs was also performed during the follow-up testing session to characterize the extent of exercise-induced muscle damage. Comparisons were made between limbs and over time. Results SWV values of the medial gastrocnemius showed a significant interaction between time and limb (p=0.006) with the non-compressed muscle demonstrating lower muscle stiffness values at follow-up compared to baseline or the compressed muscle. No significant differences in soleus muscle stiffness were noted between limb or over time, as was the case for muscle perfusion metrics (PE and WiAUC) for the medial gastrocnemius and soleus muscles. Further, compression had no significant effect on passive ankle dorsiflexion, muscle soreness, calf circumference, or injury severity per MRI. Conclusion Continuous wearing of compression garments during the inflammation phase of DOMS may play an important role in regulating muscle stiffness; however, they have no significant effects on intramuscular perfusion or other common clinical assessments. J Orthop Sports Phys Ther, Epub 12 Jun 2018. doi:10.2519/jospt.2018.8038.

  4. Bone and Skeletal Muscle: Key Players in Mechanotransduction and Potential Overlapping Mechanisms

    PubMed Central

    Goodman, Craig A.; Hornberger, Troy A.; Robling, Alexander G.

    2015-01-01

    The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists. PMID:26453495

  5. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation.

    PubMed

    Mendias, Christopher L; Kayupov, Erdan; Bradley, Joshua R; Brooks, Susan V; Claflin, Dennis R

    2011-07-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN(+/+) mice, the extensor digitorum longus muscles of MSTN(-/-) mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F(o)), but decreased specific maximum isometric force (sF(o); F(o) normalized by muscle cross-sectional area). The reason for the reduction in sF(o) was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN(-/-) mice have a greater F(o), but no difference in sF(o), and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN(-/-) mice have a greater cross-sectional area, but do not have a greater F(o) and have a sF(o) that is significantly lower than fibers from MSTN(+/+) mice. The extensor digitorum longus muscles from MSTN(-/-) mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.

  6. Differences in muscle cross-sectional area and strength between elite senior and college Olympic weight lifters.

    PubMed

    Funato, K; Kanehisa, H; Fukunaga, T

    2000-12-01

    The purpose of this study was to investigate the profiles of muscle cross-sectional area (CSA) and strength capability in relation to lifting ability in Olympic weight lifters. The subjects were 8 elite senior lifters (ESL, age=25.2+/-1.3 years, height=1.64+/-0.03 m, mass=68.6+/-4.2 kg, mean+/-SEM) and 9 college lifters (CL, 20.8+/-0.3 years, 1.67+/-0.03 m, 70.53.4 kg) whose predetermined weight classes were within the same range. The CSAs of elbow or knee extensor and elbow or knee flexor muscles were measured using a B-mode ultrasound apparatus. Concentric and eccentric maximal voluntary forces were determined with an isokinetic dynamometer at a constant velocity of 1.05 rad/sec. The best score of the total mass lifted in the snatch and the clean and jerk lifts was significantly higher in ESL than in CL even in terms of per unit of fat-free mass. There were no significant differences between the two groups in fat-free mass, muscle CSA and force values with the exception that ESL compared to CL showed significantly greater force in concentric knee flexion. However, the ratios of force to muscle CSA (F/CSAs) in concentric and eccentric elbow extensions, eccentric knee extension and concentric knee flexion were significantly higher in ESL than in CL. The present results indicated that the magnitude of muscular development in limbs was similar in elite senior and college lifters whose predetermined weight classes were within the same range. As compared to college lifters, however, elite senior lifters had a higher F/CSA in specific muscle action modes, which might relate to the optimal execution of the Olympic lifts.

  7. Changes of muscle function and size with bedrest

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Gollnick, Philip D.; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The impact of a short-term head-down bedrest on the skeletal-muscle function of humans was investigated in healthy males subjected (after five days of control period) to 30-day 6-deg head-down bed rest (BR) followed by a five-day recovery period. It was found that the head-down BR led to a decrease in force developed by the knee extensor muscle group during maximal voluntary efforts, with the average reduction of 21 percent across the speeds of concentric and eccentric muscle action. Significant decreases were also found in the cross-sectional areas of slow-twitch and fast-twitch muscle fibers of the vastus lateralis.

  8. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  9. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  10. Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function.

    PubMed

    Tarpey, Michael D; Amorese, Adam J; Balestrieri, Nicholas P; Ryan, Terence E; Schmidt, Cameron A; McClung, Joseph M; Spangenburg, Espen E

    2018-04-17

    The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.

  11. Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque.

    PubMed

    Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro

    2017-12-18

    Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.

  12. Biphasic force response to iso-velocity stretch in airway smooth muscle.

    PubMed

    Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y

    2015-10-01

    Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.

  13. Changes in Muscle and Joint Coordination in Learning to Direct Forces

    PubMed Central

    Hasson, Christopher J.; Caldwell, Graham E.; van Emmerik, Richard E.A.

    2008-01-01

    While it has been suggested that biarticular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Subjects were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male subjects practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The monoarticular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force directing. With practice, a loosening of the coupling between biarticular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that subjects were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination. PMID:18405988

  14. Changes in muscle and joint coordination in learning to direct forces.

    PubMed

    Hasson, Christopher J; Caldwell, Graham E; van Emmerik, Richard E A

    2008-08-01

    While it has been suggested that bi-articular muscles have a specialized role in directing external reaction forces, it is unclear how humans learn to coordinate mono- and bi-articular muscles to perform force-directing tasks. Participants were asked to direct pedal forces in a specified target direction during one-legged cycling. We expected that with practice, performance improvement would be associated with specific changes in joint torque patterns and mono- and bi-articular muscular coordination. Nine male participants practiced pedaling an ergometer with only their left leg, and were instructed to always direct their applied pedal force perpendicular to the crank arm (target direction) and to maintain a constant pedaling speed. After a single practice session, the mean error between the applied and target pedal force directions decreased significantly. This improved performance was accompanied by a significant decrease in the amount of ankle angular motion and a smaller increase in knee and hip angular motion. This coincided with a re-organization of lower extremity joint torques, with a decrease in ankle plantarflexor torque and an increase in knee and hip flexor torques. Changes were seen in both mono- and bi-articular muscle activity patterns. The mono-articular muscles exhibited greater alterations, and appeared to contribute to both mechanical work and force-directing. With practice, a loosening of the coupling between bi-articular thigh muscle activation and joint torque co-regulation was observed. The results demonstrated that participants were able to learn a complex and dynamic force-directing task by changing the direction of their applied pedal forces through re-organization of joint torque patterns and mono- and bi-articular muscle coordination.

  15. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

    PubMed Central

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F.

    2015-01-01

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies. PMID:26460719

  16. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats

    PubMed Central

    Gianelo, M.C.S.; Polizzelo, J.C.; Chesca, D.; Mattiello-Sverzut, A.C.

    2015-01-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development. PMID:26648091

  17. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    PubMed

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  18. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.

    PubMed

    Bae, Tae Soo; Loan, Peter; Choi, Kuiwon; Hong, Daehie; Mun, Mu Seong

    2010-12-01

    When car crash experiments are performed using cadavers or dummies, the active muscles' reaction on crash situations cannot be observed. The aim of this study is to estimate muscles' response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles' responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles' response at elbow, knee, and ankle joints, should be considered.

  19. Decrease in coronary vascular volume in systole augments cardiac contraction.

    PubMed

    Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N

    2001-08-01

    Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.

  20. Electromyostimulation, circuits and monitoring

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.

    1994-01-01

    One method to determine the benefit of electromyostimulation (EMS) requires an accurate strength assessment of the muscle of interest using a muscle force testing device. Several commercial devices are available. After a pre-EMS muscle assessment, a protocol with accurately controlled stimulation parameters must be applied and monitored. both the actual current and the resultant muscle force must be measured throughout the study. At the conclusion of the study, a reassessment of the muscle strength must be gathered. In our laboratory, electromyostimulation is being studied as a possible countermeasure to the muscle atrophy (degeneration) experienced in space. This muscle loss not only weakens the astronaut, but adversely affects his/her readaptation to 1-g upon return from space. Muscle atrophy is expected to have a more significant effect in long term space flight as anticipated in our space station. Our studies have concentrated on stimulating the four major muscle groups in the leg. These muscles were stimulated sequentially to allow individual muscle force quantification above the knee and ankle. The leg must be restrained in an instrumented brace to allow this measurement and preclude muscle cramping.

  1. Structural, mechanical and myothermic properties of rabbit rectococcygeus muscle.

    PubMed Central

    Davey, D F; Gibbs, C L; McKirdy, H C

    1975-01-01

    1. The fine structure of rabbit rectococcygeus muscle has been studied with the electron microscope. 2. The mechanical performance and the heat production of this muscle has been investigated during tetanic contractions at 27 degrees C. 3. In isometric contractions a force of 164 +/- 27 mN/mm2 (mean +/- S.D., n = 17) is developed and the heat production is linearly related to the force. 4. There is a relationship between the duration of stimulation (t) and the total heat production (H) of the type H = A plus bt, where A and b are constants. 5. After-loaded isotonic experiments show that the relationship between force and velocity can be fitted by the 'characteristic equation' of Hill (1938). 6. The value of a/P0 (0-302 +/- 0-093, mean +/- S.D.) is slightly higher than in frog skeletal muscle but the constant b is about 50 times smaller. 7. The ratio of work/total energy production, for the stimulus conditions employed, was maximally 0-185. 8. The ratio of total enthalpy to initial enthalpy is difficult to measure accurately but is probably about 2. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Plate 2 PMID:1151809

  2. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  3. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling.

    PubMed

    Modenese, Luca; Montefiori, Erica; Wang, Anqi; Wesarg, Stefan; Viceconti, Marco; Mazzà, Claudia

    2018-05-17

    The generation of subject-specific musculoskeletal models of the lower limb has become a feasible task thanks to improvements in medical imaging technology and musculoskeletal modelling software. Nevertheless, clinical use of these models in paediatric applications is still limited for what concerns the estimation of muscle and joint contact forces. Aiming to improve the current state of the art, a methodology to generate highly personalized subject-specific musculoskeletal models of the lower limb based on magnetic resonance imaging (MRI) scans was codified as a step-by-step procedure and applied to data from eight juvenile individuals. The generated musculoskeletal models were used to simulate 107 gait trials using stereophotogrammetric and force platform data as input. To ensure completeness of the modelling procedure, muscles' architecture needs to be estimated. Four methods to estimate muscles' maximum isometric force and two methods to estimate musculotendon parameters (optimal fiber length and tendon slack length) were assessed and compared, in order to quantify their influence on the models' output. Reported results represent the first comprehensive subject-specific model-based characterization of juvenile gait biomechanics, including profiles of joint kinematics and kinetics, muscle forces and joint contact forces. Our findings suggest that, when musculotendon parameters were linearly scaled from a reference model and the muscle force-length-velocity relationship was accounted for in the simulations, realistic knee contact forces could be estimated and these forces were not sensitive the method used to compute muscle maximum isometric force. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report.

    PubMed

    Erskine, Robert M; Williams, Alun G; Jones, David A; Stewart, Claire E; Degens, Hans

    2012-04-01

    The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural protein involved in lateral transmission of muscle fiber force. We investigated whether single-nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with various indexes of human skeletal muscle strength and the interindividual variability in the strength responses to resistance training. We determined unilateral knee extension single repetition maximum (1-RM), maximum isometric voluntary contraction (MVC) knee joint torque, and quadriceps femoris muscle specific force (maximum force per unit physiological cross-sectional area) before and after 9 wk of knee extension resistance training in 51 untrained young men. All participants were genotyped for the PTK2 intronic rs7843014 A/C and 3'-untranslated region (UTR) rs7460 A/T SNPs. There were no genotype associations with baseline measures or posttraining changes in 1-RM or MVC. Although the training-induced increase in specific force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 rs7843014 AA and rs7460 TT homozygotes than in the respective rs7843014 C- (P = 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle specific force and PTK2 SNPs suggest that interindividual differences exist in the way force is transmitted from the muscle fibers to the tendon. Therefore, our results demonstrate for the first time the impact of genetic variation on the intrinsic strength of human skeletal muscle.

  5. Muscle fatigue: general understanding and treatment

    PubMed Central

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments. PMID:28983090

  6. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  7. Prediction of maximal surface electromyographically based voluntary contractions of erector spinae muscles from sonographic measurements during isometric contractions.

    PubMed

    Cuesta-Vargas, Antonio I; González-Sánchez, Manuel

    2014-03-01

    Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. The slope for each regression equation was statistically significant (P < .001) with R(2) values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

  8. Retest reliability of force-time variables of neck muscles under isometric conditions.

    PubMed

    Almosnino, Sivan; Pelland, Lucie; Stevenson, Joan M

    2010-01-01

    Proper conditioning of the neck muscles may play a role in reducing the risk of neck injury and, possibly, concussions in contact sports. However, the ability to reliably measure the force-time-based variables that might be relevant for this purpose has not been addressed. To assess the between-days reliability of discrete force-time-based variables of neck muscles during maximal voluntary isometric contractions in 5 directions. Cohort study. University research center. Twenty-six highly physically active men (age  =  21.6 ± 2.1 years, height  =  1.85 ± 0.09 m, mass  =  81.6 ± 9.9 kg, head circumference  =  0.58 ± 0.01 m, neck circumference  =  0.39 ± 0.02 m). We used a custom-built testing apparatus to measure maximal voluntary isometric contractions of the neck muscles in 5 directions (extension, flexion, protraction, left lateral bending, and right lateral bending) on 2 separate occasions separated by 7 to 8 days. Variables measured were peak force (PF), rate of force development (RFD), and time to 50% of PF (T(50)PF). Reliability indices calculated for each variable comprised the difference in scores between the testing sessions, with corresponding 95% confidence intervals, the coefficient of variation of the typical error of measurement (CV(TE)), and intraclass correlation coefficients (ICC [3,3]). No evidence of systematic bias was detected for the dependent measures across any movement direction; retest differences in measurements were between 1.8% and 2.7%, with corresponding 95% confidence interval ranges of less than 10% and overlapping zero. The CV(TE) was lowest for PF (range, 2.4%-6.3%) across all testing directions, followed by RFD (range, 4.8%-9.0%) and T(50)PF (range, 7.1%-9.3%). The ICC score range for all dependent measures was 0.90 to 0.99. Discrete variables representative of the force-generating capacity of neck muscles under isometric conditions can be measured with an acceptable degree of reliability. This finding has possible applications for investigating the role of neck muscle strength-training programs in reducing the risk of injuries in sport settings.

  9. A velocity-dependent shortening depression in the development of the force-velocity relation in frog muscle fibres.

    PubMed Central

    Colomo, F; Lombardi, V; Piazzesi, G

    1986-01-01

    During the onset of activation in isolated frog muscle fibres the development of the force-velocity (T-V) relation was determined by imposing single and double ramp releases. The experiments were performed at 3.5-6 degrees C or 19-22 degrees C and at a starting sarcomere length of about 2.25 micron. A velocity- and time-dependent shortening deactivation was shown to exist during the development of contraction. It was found that, early during the tetanus rise, at submaximal levels of activation, the values of T (the steady force exerted by the muscle fibres at any velocity of shortening V lower than V0) were significantly affected by previous conditioning shortening. Conditioning shortening at lower speeds led to potentiation of T and, at higher speeds, to depression. Both these effects were independent of the amount of shortening and, in addition, were not present at the tetanus plateau. At each given time or isometric tension throughout the tetanus rise the values of T. normalized for those determined at the same velocities at the tetanus plateau, were found to be inversely correlated with the actual velocities of shortening. The slope of this relation (a measure of the velocity-dependent shortening deactivation) decreased exponentially with time, attaining, in six fibres at low temperature, 10% of its initial value within 26-73 ms. The results may be explained in terms of a cross-bridge model of contraction by assuming that the rate of development of activation is controlled by the rate of release of the Ca2+ as well as by the velocity at which the muscle fibres are allowed to shorten and in turn by the actual number of attached cross-bridges. PMID:3497263

  10. Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.

    PubMed

    Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari

    2015-03-01

    We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.

  11. Relationship between function of masticatory muscle in mouse and properties of muscle fibers.

    PubMed

    Abe, Shinichi; Hiroki, Emi; Iwanuma, Osamu; Sakiyama, Koji; Shirakura, Yoshitaka; Hirose, Daiki; Shimoo, Yoshiaki; Suzuki, Masashi; Ikari, Yasutoyo; Kikuchi, Ryusuke; Ide, Yoshinobu; Yoshinari, Masao

    2008-05-01

    Mammals exhibit marked morphological differences in the muscles surrounding the jaw bone due to differences in eating habits. Furthermore, the myofiber properties of the muscles differ with function. Since the muscles in the oral region have various functions such as eating, swallowing, and speech, it is believed that the functional role of each muscle differs. Therefore, to clarify the functional role of each masticatory muscle, the myofiber properties of the adult mouse masticatory muscles were investigated at the transcriptional level. Expression of MyHC-2b with a fast contraction rate and strong force was frequently noted in the temporal and masseter muscles. This suggests that the temporal and masseter muscles are closely involved in rapid antero-posterior masticatory movement, which is characteristic in mice. Furthermore, expression of MyHC-1 with a low contraction rate and weak continuous force was frequently detected in the lateral pterygoid muscle. This suggests that, in contrast to other masticatory muscles, mouse lateral pterygoid muscle is not involved in fast masticatory movement, but is involved in functions requiring continuous force such as retention of jaw position. This study revealed that muscles with different roles function comprehensively during complicated masticatory movement.

  12. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.

    PubMed

    Caremani, Marco; Dantzig, Jody; Goldman, Yale E; Lombardi, Vincenzo; Linari, Marco

    2008-12-15

    The relation between the chemical and mechanical steps of the myosin-actin ATPase reaction that leads to generation of isometric force in fast skeletal muscle was investigated in demembranated fibers of rabbit psoas muscle by determining the effect of the concentration of inorganic phosphate (Pi) on the stiffness of the half-sarcomere (hs) during transient and steady-state conditions of the isometric contraction (temperature 12 degrees C, sarcomere length 2.5 mum). Changes in the hs strain were measured by imposing length steps or small 4 kHz oscillations on the fibers in control solution (without added Pi) and in solution with 3-20 mM added Pi. At the plateau of the isometric contraction in control solution, the hs stiffness is 22.8 +/- 1.1 kPa nm(-1). Taking the filament compliance into account, the total stiffness of the array of myosin cross-bridges in the hs (e) is 40.7 +/- 3.7 kPa nm(-1). An increase in [Pi] decreases the stiffness of the cross-bridge array in proportion to the isometric force, indicating that the force of the cross-bridge remains constant independently of [Pi]. The rate constant of isometric force development after a period of unloaded shortening (r(F)) is 23.5 +/- 1.0 s(-1) in control solution and increases monotonically with [Pi], attaining a maximum value of 48.6 +/- 0.9 s(-1) at 20 mM [Pi], in agreement with the idea that Pi release is a relatively fast step after force generation by the myosin cross-bridge. During isometric force development at any [Pi], e and thus the number of attached cross-bridges increase in proportion to the force, indicating that, independently of the speed of the process that leads to myosin attachment to actin, there is no significant (>1 ms) delay between generation of stiffness and generation of force by the cross-bridges.

  13. Imbalances in the Development of Muscle and Tendon as Risk Factor for Tendinopathies in Youth Athletes: A Review of Current Evidence and Concepts of Prevention

    PubMed Central

    Mersmann, Falk; Bohm, Sebastian; Arampatzis, Adamantios

    2017-01-01

    Tendons feature the crucial role to transmit the forces exerted by the muscles to the skeleton. Thus, an increase of the force generating capacity of a muscle needs to go in line with a corresponding modulation of the mechanical properties of the associated tendon to avoid potential harm to the integrity of the tendinous tissue. However, as summarized in the present narrative review, muscle and tendon differ with regard to both the time course of adaptation to mechanical loading as well as the responsiveness to certain types of mechanical stimulation. Plyometric loading, for example, seems to be a more potent stimulus for muscle compared to tendon adaptation. In growing athletes, the increased levels of circulating sex hormones might additionally augment an imbalanced development of muscle strength and tendon mechanical properties, which could potentially relate to the increasing incidence of tendon overload injuries that has been indicated for adolescence. In fact, increased tendon stress and strain due to a non-uniform musculotendinous development has been observed recently in adolescent volleyball athletes, a high-risk group for tendinopathy. These findings highlight the importance to deepen the current understanding of the interaction of loading and maturation and demonstrate the need for the development of preventive strategies. Therefore, this review concludes with an evidence-based concept for a specific loading program for increasing tendon stiffness, which could be implemented in the training regimen of young athletes at risk for tendinopathy. This program incorporates five sets of four contractions with an intensity of 85–90% of the isometric voluntary maximum and a movement/contraction duration that provides 3 s of high magnitude tendon strain. PMID:29249987

  14. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position. PMID:28945740

  15. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.

  16. Development of a Mandibular Motion Simulator for Total Joint Replacement

    PubMed Central

    Celebi, Nukhet; Rohner, E. Carlos; Gateno, Jaime; Noble, Philip C.; Ismaily, Sabir K.; Teichgraeber, John F.; Xia, James J.

    2015-01-01

    Purpose The purpose of this study was to develop a motion simulator capable of recreating and recording the full range of mandibular motions in a cadaveric preparation for an intact temporomandibular joint (TMJ) and after total joint replacement. Material and Methods A human cadaver head was used. Two sets of tracking balls were attached to the forehead and mandible, respectively. Computed tomographic (CT) scan was performed and 3-dimensional CT models of the skull were generated. The cadaver head was then dissected to attach the muscle activation cables and mounted onto the TMJ simulator. Realistic jaw motions were generated through the application of the following muscle forces: lateral pterygoid muscle, suprahyoid depressors (geniohyoid, mylohyoid, and digastric muscles), and elevator muscles. To simulate muscle contraction, cables were inserted into the mandible at the center area of each muscle's attachment. To provide a minimum mouth closing force at the initial position, the elevator muscles were combined at the anterior mandible. During mandibular movement, each motion was recorded using a high-resolution laser scanner. The right TMJ of the same head was reconstructed with a total TMJ prosthesis. The same forces were applied and the jaw motions were recorded again. CT scan was performed and 3-dimensional CT models of the skull with TMJ prosthesis were generated. Results Mandibular motions, before and after TMJ replacement, with and without lateral pterygoid muscle reattachment, were re-created in a cadaveric preparation. The laser-scanned data during the mandibular motion were used to drive 3-dimensional CT models. A movie for each mandibular motion was subsequently created for motion path analysis. Compared with mandibular motion before TMJ replacement, mandibular lateral and protrusive motions after TMJ replacement, with and without lateral pterygoid muscle reattachment, were greatly limited. The jaw motion recorded before total joint replacement was applied to the mandibular and prostheses models after total TMJ replacement. The condylar component was observed sinking into the fossa during jaw motion. Conclusion A motion simulator capable of re-creating and recording full range of mandibular motions in a cadaveric preparation has been developed. It can be used to simulate mandibular motions for the intact TMJ and total joint prosthesis, and to re-create and record their full range of mandibular motions. In addition, the full range of the recorded motion can be re-created as motion images in a computer. These images can be used for motion path analysis and to study the causation of limited range of motion after total joint replacement and strategies for improvement. PMID:21050636

  17. Botulinum toxin type-A affects mechanics of non-injected antagonistic rat muscles.

    PubMed

    Ateş, Filiz; Yucesoy, Can A

    2018-08-01

    Botulinum toxin type A (BTX-A) effects on the mechanics of non-injected antagonistic muscles are unknown. The aim was to test the following hypotheses in a rat model: BTX-A injected into gastrocnemius medialis (GM) and lateralis (GL) (1) decreases forces of the antagonistic tibialis anterior (TA) and extensor digitorum longus (EDL), (2) reduces length range of force exertion and (3) increases passive forces of the TA, and (4) changes inter-antagonistic and inter-synergistic epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: BTX (0.1 units of BTX-A were injected to the GM and GL, each) and Control (saline injected). Five-days post, TA, EDL, GM-GL, and soleus distal and EDL proximal isometric forces were measured after TA lengthening. BTX-A exposure caused forces of all muscles to decrease significantly. TA and EDL active force drops (maximally by 37.3%) show inter-compartmental spread. Length range of force exertion of the TA did not change, but its passive force increased significantly (by 25%). The percentages of intramuscular connective tissue content of the TA and EDL was higher (BTX: 20.0 ± 4.9% and 19.3 ± 4.1% vs. control: 13.1 ± 5.4% and 14.5 ± 4.0%, respectively). Calf muscles' forces were not affected by TA length changes for both groups indicating lacking inter-antagonistic EMFT. However, BTX-A altered EDL proximo-distal force differences hence, inter-synergistic EMFT. A major novel finding is that BTX-A affects mechanics of non-injected antagonistic muscles in test conditions involving only limited EMFT. The effects indicating a stiffer muscle with no length range increase contradict some treatment aims, which require clinical testing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements.

    PubMed

    Tomescu, Sebastian; Bakker, Ryan; Beach, Tyson A C; Chandrashekar, Naveen

    2018-02-12

    Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single leg jump-landing. Kinematics were captured with a 3D motion capture system and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using two matched filter frequencies (10-10Hz, 15-15Hz) and two unmatched frequencies (10-50Hz, 15-50Hz). Musculoskeletal simulations using Computed Muscle Control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10-50Hz, 15-50Hz) conditions than in the matched (10-10Hz, 15-15Hz) conditions (p<0.05). Resultant joint contact forces and reserve (non-physiologic) moments were similarly larger in the unmatched filter categories (p<0.05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics which are not physiologic.

  19. Length oscillation induces force potentiation in infant guinea pig airway smooth muscle.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-12-01

    Deep inspiration counteracts bronchospasm in normal subjects but triggers further bronchoconstriction in hyperresponsive airways. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in force-generating ability of airway smooth muscle after mechanical oscillation. It is known that healthy immature airways of both humans and animals exhibit hyperresponsiveness. We hypothesize that the profile of active force generation after mechanical oscillation changes with maturation and that this change contributes to the expression of airway hyperresponsiveness in juveniles. We examined the effect of an acute sinusoidal length oscillation on the force-generating ability of tracheal smooth muscle from 1 wk, 3 wk, and 2- to 3-mo-old guinea pigs. We found that the length oscillation produced 15-20% initial reduction in active force equally in all age groups. This was followed by a force recovery profile that displayed striking maturation-specific features. Unique to tracheal strips from 1-wk-old animals, active force potentiated beyond the maximal force generated before oscillation. We also found that actin polymerization was required in force recovery and that prostanoids contributed to the maturation-specific force potentiation in immature airway smooth muscle. Our results suggest a potentiated mechanosensitive contractile property of hyperresponsive airway smooth muscle. This can account for further bronchoconstriction triggered by deep inspiration in hyperresponsive airways.

  20. Active shortening protects against stretch-induced force deficits in human skeletal muscle.

    PubMed

    Saripalli, Anjali L; Sugg, Kristoffer B; Mendias, Christopher L; Brooks, Susan V; Claflin, Dennis R

    2017-05-01

    Skeletal muscle contraction results from molecular interactions of myosin "crossbridges" with adjacent actin filament binding sites. The binding of myosin to actin can be "weak" or "strong," and only strong binding states contribute to force production. During active shortening, the number of strongly bound crossbridges declines with increasing shortening velocity. Forcibly stretching a muscle that is actively shortening at high velocity results in no apparent negative consequences, whereas stretch of an isometrically (fixed-length) contracting muscle causes ultrastructural damage and a decline in force-generating capability. Our working hypothesis is that stretch-induced damage is uniquely attributable to the population of crossbridges that are strongly bound. We tested the hypothesis that stretch-induced force deficits decline as the prevailing shortening velocity is increased. Experiments were performed on permeabilized segments of individual skeletal muscle fibers obtained from human subjects. Fibers were maximally activated and allowed either to generate maximum isometric force (F o ), or to shorten at velocities that resulted in force maintenance of ≈50% F o or ≈2% F o For each test condition, a rapid stretch equivalent to 0.1 × optimal fiber length was applied. Relative to prestretch F o , force deficits resulting from stretches applied during force maintenance of 100, ≈50, and ≈2% F o were 23.2 ± 8.6, 7.8 ± 4.2, and 0.3 ± 3.3%, respectively (means ± SD, n = 20). We conclude that stretch-induced damage declines with increasing shortening velocity, consistent with the working hypothesis that the fraction of strongly bound crossbridges is a causative factor in the susceptibility of skeletal muscle to stretch-induced damage. NEW & NOTEWORTHY Force deficits caused by stretch of contracting muscle are most severe when the stretch is applied during an isometric contraction, but prevented if the muscle is shortening at high velocity when the stretch occurs. This study indicates that velocity-controlled modulation of the number of strongly bound crossbridges is the basis for the observed relationship between stretch-induced muscle damage and prevailing shortening velocity. Copyright © 2017 the American Physiological Society.

  1. Active shortening protects against stretch-induced force deficits in human skeletal muscle

    PubMed Central

    Saripalli, Anjali L.; Sugg, Kristoffer B.; Brooks, Susan V.

    2017-01-01

    Skeletal muscle contraction results from molecular interactions of myosin “crossbridges” with adjacent actin filament binding sites. The binding of myosin to actin can be “weak” or “strong,” and only strong binding states contribute to force production. During active shortening, the number of strongly bound crossbridges declines with increasing shortening velocity. Forcibly stretching a muscle that is actively shortening at high velocity results in no apparent negative consequences, whereas stretch of an isometrically (fixed-length) contracting muscle causes ultrastructural damage and a decline in force-generating capability. Our working hypothesis is that stretch-induced damage is uniquely attributable to the population of crossbridges that are strongly bound. We tested the hypothesis that stretch-induced force deficits decline as the prevailing shortening velocity is increased. Experiments were performed on permeabilized segments of individual skeletal muscle fibers obtained from human subjects. Fibers were maximally activated and allowed either to generate maximum isometric force (Fo), or to shorten at velocities that resulted in force maintenance of ≈50% Fo or ≈2% Fo. For each test condition, a rapid stretch equivalent to 0.1 × optimal fiber length was applied. Relative to prestretch Fo, force deficits resulting from stretches applied during force maintenance of 100, ≈50, and ≈2% Fo were 23.2 ± 8.6, 7.8 ± 4.2, and 0.3 ± 3.3%, respectively (means ± SD, n = 20). We conclude that stretch-induced damage declines with increasing shortening velocity, consistent with the working hypothesis that the fraction of strongly bound crossbridges is a causative factor in the susceptibility of skeletal muscle to stretch-induced damage. NEW & NOTEWORTHY Force deficits caused by stretch of contracting muscle are most severe when the stretch is applied during an isometric contraction, but prevented if the muscle is shortening at high velocity when the stretch occurs. This study indicates that velocity-controlled modulation of the number of strongly bound crossbridges is the basis for the observed relationship between stretch-induced muscle damage and prevailing shortening velocity. PMID:28235860

  2. Modeling and experiments on the drive characteristics of high-strength water hydraulic artificial muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Zengmeng; Hou, Jiaoyi; Ning, Dayong; Gong, Xiaofeng; Gong, Yongjun

    2017-05-01

    Fluidic artificial muscles are popular in robotics and function as biomimetic actuators. Their pneumatic version has been widely investigated. A novel water hydraulic artificial muscle (WHAM) with high strength is developed in this study. WHAMs can be applied to underwater manipulators widely used in ocean development because of their environment-friendly characteristics, high force-to-weight ratio, and good bio-imitability. Therefore, the strength of WHAMs has been improved to fit the requirements of underwater environments and the work pressure of water hydraulic components. However, understanding the mechanical behaviors of WHAMs is necessary because WHAMs use work media and pressure control that are different from those used by pneumatic artificial muscles. This paper presents the static and dynamic characteristics of the WHAM system, including the water hydraulic pressure control circuit. A test system is designed and built to analyze the drive characteristics of the developed WHAM. The theoretical relationships among the amount of contraction, pressure, and output drawing force of the WHAM are tested and verified. A linearized transfer function is proposed, and the dynamic characteristics of the WHAM are investigated through simulation and inertia load experiments. Simulation results agree with the experimental results and show that the proposed model can be applied to the control of WHAM actuators.

  3. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat

    PubMed Central

    Posterino, G S; Lamb, G D; Stephenson, D G

    2000-01-01

    Transverse electrical field stimulation (50 V cm−1, 2 ms duration) of mechanically skinned skeletal muscle fibres of the rat elicited twitch and tetanic force responses (36 ± 4 and 83 ± 4 % of maximum Ca2+-activated force, respectively; n = 23) closely resembling those in intact fibres. The responses were steeply dependent on the field strength and were eliminated by inclusion of 10 μm tetrodotoxin (TTX) in the (sealed) transverse tubular (T-) system of the skinned fibres and by chronic depolarisation of the T-system. Spontaneous twitch-like activity occurred sporadically in many fibres, producing near maximal force in some instances (mean time to peak: 190 ± 40 ms; n = 4). Such responses propagated as a wave of contraction longitudinally along the fibre at a velocity of 13 ± 3 mm s−1 (n = 7). These spontaneous contractions were also inhibited by inclusion of TTX in the T-system and by chronic depolarisation. We examined whether the T-tubular network was interconnected longitudinally using fibre segments that were skinned for only ∼2/3 of their length, leaving the remainder of each segment intact with its T-system open to the bathing solution. After such fibres were exposed to TTX (60 μm), the adjacent skinned region (with its T-system not open to the solution) became unresponsive to subsequent electrical stimulation in ∼50 % of cases (7/15), indicating that TTX was able to diffuse longitudinally inside the fibre via the tubular network over hundreds of sarcomeres. These experiments show that excitation–contraction coupling in mammalian muscle fibres involves action potential propagation both transversally and longitudinally within the tubular system. Longitudinal propagation of action potentials inside skeletal muscle fibres is likely to be an important safety mechanism for reducing conduction failure during fatigue and explains why, in developing skeletal muscle, the T-system first develops as an internal longitudinal network. PMID:10944176

  4. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.

    PubMed

    Church, Jarrod E; Trieu, Jennifer; Chee, Annabel; Naim, Timur; Gehrig, Stefan M; Lamon, Séverine; Angelini, Corrado; Russell, Aaron P; Lynch, Gordon S

    2014-04-01

    New Findings What is the central question of this study? The Notch signalling pathway plays an important role in muscle regeneration, and activation of the pathway has been shown to enhance muscle regeneration in aged mice. It is unknown whether Notch activation will have a similarly beneficial effect on muscle regeneration in the context of Duchenne muscular dystrophy (DMD). What is the main finding and its importance? Although expression of Notch signalling components is altered in both mouse models of DMD and in human DMD patients, activation of the Notch signalling pathway does not confer any functional benefit on muscles from dystrophic mice, suggesting that other signalling pathways may be more fruitful targets for manipulation in treating DMD. Abstract In Duchenne muscular dystrophy (DMD), muscle damage and impaired regeneration lead to progressive muscle wasting, weakness and premature death. The Notch signalling pathway represents a central regulator of gene expression and is critical for cellular proliferation, differentiation and apoptotic signalling during all stages of embryonic muscle development. Notch activation improves muscle regeneration in aged mice, but its potential to restore regeneration and function in muscular dystrophy is unknown. We performed a comprehensive examination of several genes involved in Notch signalling in muscles from dystrophin-deficient mdx and dko (utrophin- and dystrophin-null) mice and DMD patients. A reduction of Notch1 and Hes1 mRNA in tibialis anterior muscles of dko mice and quadriceps muscles of DMD patients and a reduction of Hes1 mRNA in the diaphragm of the mdx mice were observed, with other targets being inconsistent across species. Activation and inhibition of Notch signalling, followed by measures of muscle regeneration and function, were performed in the mouse models of DMD. Notch activation had no effect on functional regeneration in C57BL/10, mdx or dko mice. Notch inhibition significantly depressed the frequency-force relationship in regenerating muscles of C57BL/10 and mdx mice after injury, indicating reduced force at each stimulation frequency, but enhanced the frequency-force relationship in muscles from dko mice. We conclude that while Notch inhibition produces slight functional defects in dystrophic muscle, Notch activation does not significantly improve muscle regeneration in murine models of muscular dystrophy. Furthermore, the inconsistent expression of Notch targets between murine models and DMD patients suggests caution when making interspecies comparisons.

  5. Robust and accurate decoding of motoneuron behavior and prediction of the resulting force output.

    PubMed

    Thompson, Christopher K; Negro, Francesco; Johnson, Michael D; Holmes, Matthew R; McPherson, Laura Miller; Powers, Randall K; Farina, Dario; Heckman, Charles J

    2018-05-03

    The spinal alpha motoneuron is the only cell in the human CNS whose discharge can be routinely recorded in humans. We have reengineered motor unit collection and decomposition approaches, originally developed in humans, to measure the neural drive to muscle and estimate muscle force generation in the decerebrate cat model. Experimental, computational, and predictive approaches are used to demonstrate the validity of this approach across a wide range of modes to activate the motor pool. The utility of this approach is shown through the ability to track individual motor units across trials, allowing for better predictions of muscle force than the electromyography signal, and providing insights in to the stereotypical discharge characteristics in response to synaptic activation of the motor pool. This approach now allows for a direct link between the intracellular data of single motoneurons, the discharge properties of motoneuron populations, and muscle force generation in the same preparation. The discharge of a spinal alpha motoneuron and the resulting contraction of its muscle fibers represents the functional quantum of the motor system. Recent advances in the recording and decomposition of the electromyographic signal allows for the identification of several tens of concurrently active motor units. These detailed population data provide the potential to achieve deep insights into the synaptic organization of motor commands. Yet most of our understanding of the synaptic input to motoneurons is derived from intracellular recordings in animal preparations. Thus, it is necessary to extend the new electrode and decomposition methods to recording of motor unit populations in these same preparations. To achieve this goal, we use high-density electrode arrays and decomposition techniques, analogous to those developed for humans, to record and decompose the activity of tens of concurrently active motor units in a hindlimb muscle in the decerebrate cat. Our results showed that the decomposition method in this animal preparation was highly accurate, with conventional two-source validation providing rates of agreement equal to or superior to those found in humans. Multidimensional reconstruction of the motor unit action potential provides the ability to accurately track the same motor unit across multiple contractions. Additionally, correlational analyses demonstrate that the composite spike train provides better estimates of whole muscle force than conventional estimates obtained from the electromyographic signal. Lastly, stark differences are observed between the modes of activation, in particular tendon vibration produced quantal interspike intervals at integer multiples of the vibration period. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Changes in diaphragm muscle collagen gene expression after acute unilateral denervation

    NASA Technical Reports Server (NTRS)

    Gosselin, L. E.; Sieck, G. C.; Aleff, R. A.; Martinez, D. A.; Vailas, A. C.

    1995-01-01

    The purpose of the present study was to examine the effects of acute (3 days) unilateral diaphragm denervation (DNV) on 1) levels of alpha 1(I) and alpha 1(III) procollagen mRNA; 2) collagen concentration [hydroxyproline (HYP)]; 3) amount of the nonreducible collagen cross-link hydroxylysylpyridinoline (HP); and 4) the passive force-length relationship of the muscle. The levels of alpha 1(I) and alpha 1(III) procollagen mRNA, HYP concentration, and amount of HP were measured in muscle segments from the midcostal region of DNV and intact (INT) hemidiaphragms of adult male Fischer 344 rats (250-300 g). The in vitro passive force-length relationship of DNV and INT hemidiaphragm was determined by lengthening and shortening the diaphragm muscle segments from 85 to 115% of optimal length at a constant velocity (0.6 optimal length/s). Three days after DNV, the level of alpha 1(I) procollagen mRNA was increased over 15-fold in the DNV hemidiaphragm compared with INT (P < 0.05), whereas the level of alpha 1(III) procollagen mRNA was increased by approximately sixfold in the DNV hemidiaphragm compared with INT (P < 0.05). Collagen (HYP) concentration did not differ between groups, averaging 8.7 and 8.9 micrograms/mg dry wt for the DNV and INT hemidiaphragms, respectively. In addition, there was no difference in the amount of the mature nonreducible collagen cross-link HP between the DNV and INT hemidiaphragms (0.66 vs. 0.76 mole HP/mole collagen, respectively). The amount of passive force developed during lengthening did not differ between DNV and INT hemidiaphragms. These data indicate that acute DNV of the hemidiaphragm is associated with an increase in the mRNA level of the two principal fibrillar collagen phenotypes in skeletal muscle. However, despite extensive muscle remodeling, the passive force-length relationship of the DNV hemidiaphragm is unaffected compared with the INT muscle.

  7. Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from antarctic, temperate and tropical marine fish.

    PubMed

    Johnston, I A; Altringham, J D

    1985-09-01

    Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.

  8. A maturational model for the study of airway smooth muscle adaptation to mechanical oscillation.

    PubMed

    Wang, Lu; Chitano, Pasquale; Murphy, Thomas M

    2005-10-01

    It has been shown that mechanical stretches imposed on airway smooth muscle (ASM) by deep inspiration reduce the subsequent contractile response of the ASM. This passive maneuver of lengthening and retraction of the muscle is beneficial in normal subjects to counteract bronchospasm. However, it is detrimental to hyperresponsive airways because it triggers further bronchoconstriction. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in ASM adaptability to mechanical oscillation. Healthy immature airways of both human and animal exhibit hyperresponsiveness, but whether the adaptative properties of hyperresponsive airway differ from normal is still unknown. In this article, we review the phenomenon of ASM adaptation to mechanical oscillation and its relevance and implication to airway hyperresponsiveness. We demonstrate that the age-specific expression of ASM adaptation is prominent using an established maturational animal model developed in our laboratory. Our data on immature ASM showed potentiated contractile force shortly after a length oscillation compared with the maximum force generated before oscillation. Several potential mechanisms such as myogenic response, changes in actin polymerization, or changes in the quantity of the cytoskeletal regulatory proteins plectin and vimentin, which may underlie this age-specific force potentiation, are discussed. We suggest a working model of the structure of smooth muscle associated with force transmission, which may help to elucidate the mechanisms responsible for the age-specific expression of smooth muscle adaptation. It is important to study the maturational profile of ASM adaptation as it could contribute to juvenile hyperresponsiveness.

  9. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.

    PubMed

    Hubel, Tatjana Y; Usherwood, James R

    2015-09-01

    Terrestrial locomotion on legs is energetically expensive. Compared with cycling, or with locomotion in swimming or flying animals, walking and running are highly uneconomical. Legged gaits that minimise mechanical work have previously been identified and broadly match walking and running at appropriate speeds. Furthermore, the 'cost of muscle force' approaches are effective in relating locomotion kinetics to metabolic cost. However, few accounts have been made for why animals deviate from either work-minimising or muscle-force-minimising strategies. Also, there is no current mechanistic account for the scaling of locomotion kinetics with animal size and speed. Here, we report measurements of ground reaction forces in walking children and adult humans, and their stance durations during running. We find that many aspects of gait kinetics and kinematics scale with speed and size in a manner that is consistent with minimising muscle activation required for the more demanding between mechanical work and power: spreading the duration of muscle action reduces activation requirements for power, at the cost of greater work demands. Mechanical work is relatively more demanding for larger bipeds--adult humans--accounting for their symmetrical M-shaped vertical force traces in walking, and relatively brief stance durations in running compared with smaller bipeds--children. The gaits of small children, and the greater deviation of their mechanics from work-minimising strategies, may be understood as appropriate for their scale, not merely as immature, incompletely developed and energetically sub-optimal versions of adult gaits. © 2015. Published by The Company of Biologists Ltd.

  10. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox.

    PubMed

    Holt, N C; Wakeling, J M; Biewener, A A

    2014-05-22

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force-velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.

  11. Facial animation on an anatomy-based hierarchical face model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Prakash, Edmond C.; Sung, Eric

    2003-04-01

    In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.

  12. Poorly Understood Aspects of Striated Muscle Contraction

    PubMed Central

    Månsson, Alf

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs. PMID:25961006

  13. Poorly understood aspects of striated muscle contraction.

    PubMed

    Månsson, Alf; Rassier, Dilson; Tsiavaliaris, Georgios

    2015-01-01

    Muscle contraction results from cyclic interactions between the contractile proteins myosin and actin, driven by the turnover of adenosine triphosphate (ATP). Despite intense studies, several molecular events in the contraction process are poorly understood, including the relationship between force-generation and phosphate-release in the ATP-turnover. Different aspects of the force-generating transition are reflected in the changes in tension development by muscle cells, myofibrils and single molecules upon changes in temperature, altered phosphate concentration, or length perturbations. It has been notoriously difficult to explain all these events within a given theoretical framework and to unequivocally correlate observed events with the atomic structures of the myosin motor. Other incompletely understood issues include the role of the two heads of myosin II and structural changes in the actin filaments as well as the importance of the three-dimensional order. We here review these issues in relation to controversies regarding basic physiological properties of striated muscle. We also briefly consider actomyosin mutation effects in cardiac and skeletal muscle function and the possibility to treat these defects by drugs.

  14. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.

    PubMed

    Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L

    2016-01-01

    Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    PubMed

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  16. Do Golgi tendon organs really inhibit muscle activity at high force levels to save muscles from injury, and adapt with strength training?

    PubMed

    Chalmers, Gordon

    2002-07-01

    Introductory textbooks commonly state that Golgi tendon organs (GTOs) are responsible for a reflex response that inhibits a muscle producing dangerously high tension (autogenic inhibition). Review of the relevant data from animal studies demonstrates that there is wide variability in the magnitude of, and even the presence of, GTO autogenic effects among locomotor hindlimb muscles, and that data on GTO effects under conditions of voluntary maximal muscle activation are lacking. A single available study on GTO function in humans, during a moderate contraction, surprisingly shows a reduction in autogenic inhibition during muscle-force production. Further, it is not possible to find experimental evidence supporting the idea that strength training may produce a decrease in GTO mediated autogenic inhibition, allowing greater muscle activation levels and hence greater force production.

  17. Inhibition of myosin light-chain phosphorylation inverts the birefringence response of porcine airway smooth muscle

    PubMed Central

    Smolensky, Alexander V; Gilbert, Susan H; Harger-Allen, Margaret; Ford, Lincoln E

    2007-01-01

    Muscle birefringence, caused mainly by parallel thick filaments, increases in smooth muscle during stimulation, signalling thick filament formation upon activation. The reverse occurs in skeletal muscle, where a decrease in birefringence has been correlated with crossbridge movement away from the thick filaments. When force generation by trachealis muscle was inhibited with wortmannin, which inhibits myosin light-chain phosphorylation and thick-filament formation, but not the calcium increase caused by stimulation, the birefringence response inverted, suggesting crossbridge movement similar to that of skeletal muscle. Resistance to quick stretches was much greater in stimulated muscle than in unstimulated muscle before wortmannin treatment and no different in stimulated and unstimulated muscle after force inhibition by wortmannin. Before wortmannin treatment, stimulation reduced thick-filament cross-sectional areas in electron micrographs by 44%. After force inhibition by wortmannin, filament areas were not significantly different in stimulated and unstimulated muscle and not significantly different from those of relaxed muscle without wortmannin treatment. These results suggest that myofibrillar-space calcium causes crossbridges to move away from the thick filaments without firmly attaching to thin filaments. PMID:17095560

  18. Masticatory muscle architecture in a water-rat from Australasia (Murinae, Hydromys) and its implication for the evolution of carnivory in rodents.

    PubMed

    Fabre, P-H; Herrel, A; Fitriana, Y; Meslin, L; Hautier, L

    2017-09-01

    Murines are well known for their generalist diet, but several of them display specializations towards a carnivorous diet such as the amphibious Indo-Pacific water-rats. Despite the fact that carnivory evolved repeatedly in this group, few studies have investigated associated changes in jaw muscle anatomy and biomechanics. Here, we describe the jaw muscles and cranial anatomy of a carnivorous water-rat, Hydromys chrysogaster. The architecture of the jaw musculature of six specimens captured both on Obi and Papua were studied and described using dissections. We identified the origin and insertions of the jaw muscles, and quantified muscle mass, fiber length, physiological cross-sectional area, and muscle vectors for each muscle. Using a biomechanical model, we estimated maximum incisor and molar bite force at different gape angles. Finally, we conducted a 2D geometric morphometric analyses to compare jaw shape, mechanical potential, and diversity in lever-arm ratios for a set of 238 specimens, representative of Australo-Papuan carnivorous and omnivorous murids. Our study reveals major changes in the muscle proportions among Hydromys and its omnivorous close relative, Melomys. Hydromys was found to have large superficial masseter and temporalis muscles as well as a reduced deep masseter and zygomatico-mandibularis, highlighting major functional divergence among omnivorous and carnivorous murines. Changes in these muscles are also accompanied by changes in jaw shape and the lines of action of the muscles. A more vertically oriented masseter, reduced masseteric muscles, as well as an elongated jaw with proodont lower incisors are key features indicative of a reduced propalinality in carnivorous Hydromys. Differences in the fiber length of the masseteric muscles were also detected between Hydromys and Melomys, which highlight potential adaptations to a wide gape in Hydromys, allowing it to prey on larger animals. Using a biomechanical model, we inferred a greater bite force in Hydromys than in Melomys, implying a functional shift between omnivory and carnivory. However, Melomys has an unexpected greater bite force at large gape compared with Hydromys. Compared with omnivorous Melomys, Hydromys have a very distinctive low mandible with a well-developed coronoid process, and a reduced angular process that projects posteriorly to the ascending rami. This jaw shape, along with our mechanical potential and jaw lever ratio estimates, suggests that Hydromys has a faster jaw closing at the incisor, with a higher bite force at the level of the molars. The narrowing of the Hydromys jaw explains this higher lever advantage at the molars, which constitutes a good compromise between a wide gape, a reduced anterior masseteric mass, and long fiber lengths. Lever arms of the superficial and deep masseter are less favourable to force output of the mandible in Hydromys but more favourable to speed. Compared with the small input lever arm defined between the condyle and the angular process, the relatively longer mandible of Hydromys increases the speed at the expense of the output force. This unique combination of morphological features of the masticatory apparatus possibly has permitted Hydromys to become a highly successful amphibious predator in the Indo-Pacific region. © 2017 Anatomical Society.

  19. A comparison of models of the isometric force of locust skeletal muscle in response to pulse train inputs.

    PubMed

    Wilson, Emma; Rustighi, Emiliano; Newland, Philip L; Mace, Brian R

    2012-03-01

    Muscle models are an important tool in the development of new rehabilitation and diagnostic techniques. Many models have been proposed in the past, but little work has been done on comparing the performance of models. In this paper, seven models that describe the isometric force response to pulse train inputs are investigated. Five of the models are from the literature while two new models are also presented. Models are compared in terms of their ability to fit to isometric force data, using Akaike's and Bayesian information criteria and by examining the ability of each model to describe the underlying behaviour in response to individual pulses. Experimental data were collected by stimulating the locust extensor tibia muscle and measuring the force generated at the tibia. Parameters in each model were estimated by minimising the error between the modelled and actual force response for a set of training data. A separate set of test data, which included physiological kick-type data, was used to assess the models. It was found that a linear model performed the worst whereas a new model was found to perform the best. The parameter sensitivity of this new model was investigated using a one-at-a-time approach, and it found that the force response is not particularly sensitive to changes in any parameter.

  20. Comparative morphology of the muscles of mastication in the giant panda and the Asiatic black bear.

    PubMed

    Endo, Hideki; Taru, Hajime; Yamamoto, Masako; Arishima, Kazuyoshi; Sasaki, Motoki

    2003-06-01

    The morphological differences in the muscles of mastication between the giant panda (Ailuropoda melanoleuca) and the Asiatic black bear (Ursus thibetanus) were sought to confirm the adaptational strategy of these muscles in the giant panda. We measured some skull characteristics and weighed the muscles of mastication, and macroscopically observed the muscles of mastication in the two species. The noticeable differences between the two species are classified as follows: (1) The size ratio of the zygomatic width was much larger in the giant panda than in the Asiatic black bear. (2) The weight ratio of the two pterygoid muscles was also much larger in the giant panda than in the Asiatic black bear. (3) The lateral slips of the temporal muscles are thicker and stronger in the Asiatic black bear than in the giant panda. (4) The deep layer of the masseter muscle was rostrocaudally divided, and a complicated running of tendons is observed in the giant panda. (5) The two pterygoid muscles were much larger and well-developed in the giant panda than in the Asiatic black bear. The points (1) and (4) may be related to the generation of the force necessary to chew the bamboo in the giant panda. We thought that the large mass of the masseter and temporal muscles are needed in this species. In the points of (2) and (5), the two pterygoid muscles were obviously different in form and weight ratio between the two species. We suggest that the two pterygoid muscles may act as an additional force generator to dorsoventrally press and crush bamboo stems.

  1. EMG-force relationship during static contraction: Effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-10-15

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  2. EMG-force relationship during static contraction: effects on sensor placement locations on biceps brachii muscle.

    PubMed

    Ahamed, Nizam Uddin; Sundaraj, Kenneth; Alqahtani, Mahdi; Altwijri, Omar; Ali, Md Asraf; Islam, Md Anamul

    2014-01-01

    The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex. The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations. Twenty-one right hand dominant male subjects (age 25.3±1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation. The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r2=0.62, P<0.05) than when placed on the lower part (r2=0.31, P>0.05) and upper part of the muscle belly (r2=0.29, P<0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively). These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

  3. Multiscale Models and Measurements of Muscle Forces

    DTIC Science & Technology

    2015-03-08

    U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 muscle contraction , molecular motors, x-ray diffraction REPORT...thick filament stretching during muscle contraction .  We have completed construction of a new apparatus for measuring simultaneous force, length and

  4. Architectural analysis and predicted functional capability of the human latissimus dorsi muscle.

    PubMed

    Gerling, Michael E; Brown, Stephen H M

    2013-08-01

    The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force-length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6±0.5 cm2 and normalized fascicle length was 26.4±1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69±0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force-length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these findings provide an improved understanding of the spine and shoulder positions at which the force-generating capacity of this muscle can become jeopardized, and consequently how this may affect its spine-stabilizing ability. © 2013 Anatomical Society.

  5. Nondestructive Estimation of Muscle Contributions to STS Training with Different Loadings Based on Wearable Sensor System

    PubMed Central

    2018-01-01

    Partial body weight support or loading sit-to-stand (STS) rehabilitation can be useful for persons with lower limb dysfunction to achieve movement again based on the internal residual muscle force and external assistance. To explicate how the muscles contribute to the kinetics and kinematics of STS performance by non-invasive in vitro detection and to nondestructively estimate the muscle contributions to STS training with different loadings, a wearable sensor system was developed with ground reaction force (GRF) platforms, motion capture inertial sensors and electromyography (EMG) sensors. To estimate the internal moments of hip, knee and ankle joints and quantify the contributions of individual muscle and gravity to STS movement, the inverse dynamics analysis on a simplified STS biomechanical model with external loading is proposed. The functional roles of the lower limb individual muscles (rectus femoris (RF), gluteus maximus (GM), vastus lateralis (VL), tibialis anterior (TA) and gastrocnemius (GAST)) during STS motion and the mechanism of the muscles’ synergies to perform STS-specific subtasks were analyzed. The muscle contributions to the biomechanical STS subtasks of vertical propulsion, anteroposterior (AP) braking and propulsion for body balance in the sagittal plane were quantified by experimental studies with EMG, kinematic and kinetic data. PMID:29587391

  6. Coupling between myosin head conformation and the thick filament backbone structure.

    PubMed

    Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A

    2017-12-01

    The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neuromuscular transmission and muscle fatigue changes by nanostructured oxygen.

    PubMed

    Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2017-04-01

    Oxygen (O 2 ) nanobubbles offer a new method for tissue oxygenation. The effects of O 2 nanobubbles on transmission at neuromuscular junctions (NMJs) and muscle function were explored in murine diaphragm. Electrophysiological parameters, NMJ ultrastructure, muscle force, and muscle fatigue were studied during superfusion with solutions with different oxygen levels or oxygen nanobubbles. High frequency nerve stimulation of muscles superfused with O 2 nanobubble solution slowed neurotransmission decline over those with either control or hyperoxic solution. O 2 nanobubble solution increased the amplitude of evoked end plate potentials and quantal content but did not affect spontaneous activity. Electron microscopy of stimulated O 2 nanobubble treated NMJs showed accumulation of large synaptic vesicles and endosome-like structures. O 2 nanobubble solution had no effects on isometric muscle force, but it significantly decreased fatigability and maximum force recovery time in nerve stimulated muscles. O 2 nanobubbles increase neurotransmission and reduce the probability of neurotransmission failure in muscle fatigue. Muscle Nerve 55: 555-563, 2017. © 2016 Wiley Periodicals, Inc.

  8. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  9. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  10. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.

    PubMed

    Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P

    2010-11-01

    The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim.

    PubMed

    Scarton, Alessandra; Jonkers, Ilse; Guiotto, Annamaria; Spolaor, Fabiola; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio; Sawacha, Zimi

    2017-10-01

    Diabetes neuropathy and vasculopathy are the two major complications of diabetes mellitus, leading to diabetic foot disease, of which the worst consequences are plantar ulcers and amputations. Motor impairments like joint stiffness and loss of balance are distinctive effects of diabetes and they have been extensively explored. However, while altered muscle function has been also assessed through experimentally measured surface electromyography, little is known about muscle forces. The objective of this study was to estimate muscle forces in subjects with diabetes and to use these data to identify differences with respect to a population of healthy subjects matched for age and BMI. This was obtained by generating musculoskeletal models of 10 diabetic and 10 control subjects in OpenSim starting from experimentally recorded data. Dynamic simulations of motion were run and hence muscle forces calculated. Student T test (p<0.05) was used to compare joints kinematics, kinetics and muscle forces between the two populations. Significant changes were observed between lower limb muscle forces and activation of diabetic and healthy subjects, as well as between joints kinematics and kinetics. In particular muscles related to foot movements proved to be stronger in the healthy population. The typical ankle rigidity of the diabetic population was confirmed by a lower range of motion registered at the ankle plantar/flexion angle associated with weaker dorsal-plantar flexor muscles. The information provided by this methodology can help planning specific training programs aiming at augmenting muscle strength and joints mobility, and they can also improve the evaluation of the potential benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The Dynamic Actin Cytoskeleton in Smooth Muscle.

    PubMed

    Tang, Dale D

    2018-01-01

    Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.

  13. The different role of each head of the triceps brachii muscle in elbow extension.

    PubMed

    Kholinne, Erica; Zulkarnain, Rizki Fajar; Sun, Yu Cheng; Lim, SungJoon; Chun, Jae-Myeung; Jeon, In-Ho

    2018-03-01

    The aim of this study was to investigate the functional role of each head of the triceps brachii muscle, depending on the angle of shoulder elevation, and to compare each muscle force and activity by using a virtual biomechanical simulator and surface electromyography. Ten healthy participants (8 males and 2 females) were included in this study. The mean age was 29.2 years (23-45). Each participant performed elbow extension tasks in five different degrees (0, 45, 90, 135, and 180°) of shoulder elevation with three repetitions. Kinematics data and surface electromyography signal of each head of the triceps brachii were recorded. Recorded kinematics data were then applied to an inverse kinematics musculoskeletal modeling software function (OpenSim) to analyze the triceps brachii's muscle force. Correlation between muscle force, muscle activity, elbow extension, and shoulder elevation angle were compared and analyzed for each head of triceps brachii. At 0° shoulder elevation, the long head of the triceps brachii generates a significantly higher muscle force and muscle activation than the lateral and medial heads (p < 0.05). While at 90°, 135° and 180° shoulder elevation, the medial head of the triceps brachii showed a significantly higher muscle force than the long and the lateral heads (p < 0.05). Each head of the triceps brachii has a different pattern of force and activity during different shoulder elevations. The long head contributes to elbow extension more at shoulder elevation and the medial head takes over at 90° and above of shoulder elevation. This study provides further understanding of triceps brachii's for clinicians and health trainers who need to investigate the functional role of the triceps brachii in detail. Copyright © 2018. Production and hosting by Elsevier B.V.

  14. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  15. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  16. The effect of muscle stiffness and damping on simulated impact force peaks during running.

    PubMed

    Nigg, B M; Liu, W

    1999-08-01

    It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.

  17. Compressive tibiofemoral force during crouch gait.

    PubMed

    Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L

    2012-04-01

    Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  19. Sarcolipin overexpression improves muscle energetics and reduces fatigue

    PubMed Central

    Sopariwala, Danesh H.; Pant, Meghna; Shaikh, Sana A.; Goonasekera, Sanjeewa A.; Molkentin, Jeffery D.; Weisleder, Noah; Ma, Jianjie; Pan, Zui

    2015-01-01

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (SlnOE) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that SlnOE mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that SlnOE EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and SlnOE EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in SlnOE EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from SlnOE mice fatigued significantly less than WT muscles. Interestingly, SlnOE muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in SlnOE EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of SlnOE compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  20. Size principle and information theory.

    PubMed

    Senn, W; Wyler, K; Clamann, H P; Kleinle, J; Lüscher, H R; Müller, L

    1997-01-01

    The motor units of a skeletal muscle may be recruited according to different strategies. From all possible recruitment strategies nature selected the simplest one: in most actions of vertebrate skeletal muscles the recruitment of its motor units is by increasing size. This so-called size principle permits a high precision in muscle force generation since small muscle forces are produced exclusively by small motor units. Larger motor units are activated only if the total muscle force has already reached certain critical levels. We show that this recruitment by size is not only optimal in precision but also optimal in an information theoretical sense. We consider the motoneuron pool as an encoder generating a parallel binary code from a common input to that pool. The generated motoneuron code is sent down through the motoneuron axons to the muscle. We establish that an optimization of this motoneuron code with respect to its information content is equivalent to the recruitment of motor units by size. Moreover, maximal information content of the motoneuron code is equivalent to a minimal expected error in muscle force generation.

  1. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice.

    PubMed

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K; Garvey, Sean M; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice.

  2. Cellular and Physiological Effects of Dietary Supplementation with β-Hydroxy-β-Methylbutyrate (HMB) and β-Alanine in Late Middle-Aged Mice

    PubMed Central

    Vallejo, Julian; Spence, Madoka; Cheng, An-Lin; Brotto, Leticia; Edens, Neile K.; Garvey, Sean M.; Brotto, Marco

    2016-01-01

    There is growing evidence that severe decline of skeletal muscle mass and function with age may be mitigated by exercise and dietary supplementation with protein and amino acid ingredient technologies. The purposes of this study were to examine the effects of the leucine catabolite, beta-hydroxy-beta-methylbutyrate (HMB), in C2C12 myoblasts and myotubes, and to investigate the effects of dietary supplementation with HMB, the amino acid β-alanine and the combination thereof, on muscle contractility in a preclinical model of pre-sarcopenia. In C2C12 myotubes, HMB enhanced sarcoplasmic reticulum (SR) calcium release beyond vehicle control in the presence of all SR agonists tested (KCl, P<0.01; caffeine, P = 0.03; ionomycin, P = 0.03). HMB also improved C2C12 myoblast viability (25 μM HMB, P = 0.03) and increased proliferation (25 μM HMB, P = 0.04; 125 μM HMB, P<0.01). Furthermore, an ex vivo muscle contractility study was performed on EDL and soleus muscle from 19 month old, male C57BL/6nTac mice. For 8 weeks, mice were fed control AIN-93M diet, diet with HMB, diet with β-alanine, or diet with HMB and β-alanine. In β-alanine fed mice, EDL muscle showed a 7% increase in maximum absolute force compared to the control diet (202 ± 3vs. 188± 5 mN, P = 0.02). At submaximal frequency of stimulation (20 Hz), EDL from mice fed HMB plus β-alanine showed an 11% increase in absolute force (88.6 ± 2.2 vs. 79.8 ± 2.4 mN, P = 0.025) and a 13% increase in specific force (12.2 ± 0.4 vs. 10.8 ± 0.4 N/cm2, P = 0.021). Also in EDL muscle, β-alanine increased the rate of force development at all frequencies tested (P<0.025), while HMB reduced the time to reach peak contractile force (TTP), with a significant effect at 80 Hz (P = 0.0156). In soleus muscle, all experimental diets were associated with a decrease in TTP, compared to control diet. Our findings highlight beneficial effects of HMB and β-alanine supplementation on skeletal muscle function in aging mice. PMID:26953693

  3. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    NASA Astrophysics Data System (ADS)

    De Luca, C. J.; Kline, J. C.

    2012-02-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.

  4. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study

    NASA Astrophysics Data System (ADS)

    Shin, Henry; Suresh, Nina L.; Zev Rymer, William; Hu, Xiaogang

    2018-02-01

    Objective. Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. Approach. Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. Main results. Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. Significance. We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.

  5. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.

    PubMed

    Lerner, Zachary F; Gadomski, Benjamin C; Ipson, Allison K; Haussler, Kevin K; Puttlitz, Christian M; Browning, Raymond C

    2015-08-01

    Sheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces. We constructed the skeletal geometry of the model from computed topography images. Dual-energy x-ray absorptiometry was utilized to establish the inertial properties of each model segment. Detailed dissection and tendon excursion experiments established the requisite muscle lines of actions. We used OpenSim and experimentally-collected marker trajectories and ground reaction forces to quantify muscle and joint contact forces during treadmill walking at 0.25 m• s(-1) and 0.75 m• s(-1) . Peak compressive and anterior-posterior tibiofemoral contact forces were 20% (0.38 BW, p = 0.008) and 37% (0.17 BW, p = 0.040) larger, respectively, at the moderate gait speed relative to the slower speed. Medial-lateral tibiofemoral contact forces were not significantly different. Adjusting treadmill speed appears to be a viable method to modulate compressive and anterior-posterior tibiofemoral contact forces in the sheep hind limb. The musculoskeletal model is freely-available at www.SimTK.org. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  7. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models.

    PubMed

    Plüss, Michael; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2018-01-01

    Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations.

  8. Towards Subject-Specific Strength Training Design through Predictive Use of Musculoskeletal Models

    PubMed Central

    Plüss, Michael; Schellenberg, Florian

    2018-01-01

    Lower extremity dysfunction is often associated with hip muscle strength deficiencies. Detailed knowledge of the muscle forces generated in the hip under specific external loading conditions enables specific structures to be trained. The aim of this study was to find the most effective movement type and loading direction to enable the training of specific parts of the hip muscles using a standing posture and a pulley system. In a novel approach to release the predictive power of musculoskeletal modelling techniques based on inverse dynamics, flexion/extension and ab-/adduction movements were virtually created. To demonstrate the effectiveness of this approach, three hip orientations and an external loading force that was systematically rotated around the body were simulated using a state-of-the art OpenSim model in order to establish ideal designs for training of the anterior and posterior parts of the M. gluteus medius (GM). The external force direction as well as the hip orientation greatly influenced the muscle forces in the different parts of the GM. No setting was found for simultaneous training of the anterior and posterior parts with a muscle force higher than 50% of the maximum. Importantly, this study has demonstrated the use of musculoskeletal models as an approach to predict muscle force variations for different strength and rehabilitation exercise variations. PMID:29796082

  9. Experimental knee pain impairs submaximal force steadiness in isometric, eccentric, and concentric muscle actions.

    PubMed

    Rice, David A; McNair, Peter J; Lewis, Gwyn N; Mannion, Jamie

    2015-09-12

    Populations with knee joint damage, including arthritis, have noted impairments in the regulation of submaximal muscle force. It is difficult to determine the exact cause of such impairments given the joint pathology and associated neuromuscular adaptations. Experimental pain models that have been used to isolate the effects of pain on muscle force regulation have shown impaired force steadiness during acute pain. However, few studies have examined force regulation during dynamic contractions, and these findings have been inconsistent. The goal of the current study was to examine the effect of experimental knee joint pain on submaximal quadriceps force regulation during isometric and dynamic contractions. The study involved fifteen healthy participants. Participants were seated in an isokinetic dynamometer. Knee extensor force matching tasks were completed in isometric, eccentric, and concentric muscle contraction conditions. The target force was set to 10 % of maximum for each contraction type. Hypertonic saline was then injected into the infrapatella fat pad to generate acute joint pain. The force matching tasks were repeated during pain and once more 5 min after pain had subsided. Hypertonic saline resulted in knee pain with an average peak pain rating of 5.5 ± 2.1 (0-10 scale) that lasted for 18 ± 4 mins. Force steadiness significantly reduced during pain across all three muscle contraction conditions. There was a trend to increased force matching error during pain but this was not significant. Experimental knee pain leads to impaired quadriceps force steadiness during isometric, eccentric, and concentric contractions, providing further evidence that joint pain directly affects motor performance. Given the established relationship between submaximal muscle force steadiness and function, such an effect may be detrimental to the performance of tasks in daily life. In order to restore motor performance in people with painful arthritic conditions of the knee, it may be important to first manage their pain more effectively.

  10. Blebbistatin, a myosin II inhibitor, suppresses Ca(2+)-induced and "sensitized"-contraction of skinned tracheal muscles from guinea pig.

    PubMed

    Yumoto, Masatoshi; Watanabe, Masaru

    2013-01-01

    Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.

  11. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces.

    PubMed

    Wesseling, Mariska; Derikx, Loes C; de Groote, Friedl; Bartels, Ward; Meyer, Christophe; Verdonschot, Nico; Jonkers, Ilse

    2015-03-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization techniques, computed muscle control (CMC) and the physiological inverse approach (PIA). We investigated their subsequent effects on HCFs during gait and sit to stand and found that at the first peak in gait at 15-20% of the gait cycle, CMC calculated the highest HCFs (median 3.9 times peak GRF (pGRF)). When comparing calculated HCFs to experimental HCFs reported in literature, the former were up to 238% larger. Both static optimization techniques produced lower HCFs (median 3.0 and 3.1 pGRF), while PIA included muscle dynamics without an excessive increase in HCF (median 3.2 pGRF). The increased HCFs in CMC were potentially caused by higher muscle forces resulting from co-contraction of agonists and antagonists around the hip. Alternatively, these higher HCFs may be caused by the slightly poorer tracking of the net joint moment by the muscle moments calculated by CMC. We conclude that the use of different optimization techniques affects calculated HCFs, and static optimization approached experimental values best. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Effects of gender, ejection fraction and weight on cardiac force development in patients undergoing cardiac surgery--an experimental examination.

    PubMed

    Bening, Constanze; Weiler, Helge; Vahl, Christian-Friedrich

    2013-11-18

    It has long been recognized that differences exist between men and women in the impact of risc factors, symptoms, development and outcome of special diseases like the cardiovascular disease. Gender determines the cardiac baseline parameters like the number of cardiac myocyte, size and demand and may suggest differences in myofilament function among genders, which might be pronounced under pathological conditions. Does gender impact and maybe impair the contractile apparatus? Are the differences more prominent when other factors like weight, age, ejection fraction are added?Therefore we performed a study on 36 patients (21 male, 15 female) undergoing aortic valve replacement (AVR) or aortocoronary bypass operation (CABG) to examine the influence of gender, ejection fraction, surgical procedure and body mass index (BMI) on cardiac force development. Tissue was obtained from the right auricle and was stored in a special solution to prevent any stretching of the fibers. We used the skinned muscle fiber model and single muscle stripes, which were mounted on the "muscle machine" and exposed to a gradual increase of calcium concentration calculated by an attached computer program. 1.) In general female fibers show more force than male fibers: 3.9 mN vs. 2.0 mN (p = 0.03) 2.) Female fibers undergoing AVR achieved more force than those undergoing CABG operation: 5.7 mN vs. 2.8 mN (p = 0.02) as well as male fibers with AVR showed more force values compared to those undergoing CABG: 2.0 mN vs. 0.5 mN (p = 0.01). 3.) Male and female fibers of patients with EF > 55% developed significantly more force than from those with less ejection fraction than 30%: p = 0.002 for the male fibers (1.6 vs. 2.8 mN) and p = 0.04 for the female fibers (5.7 vs. 2.8 mN). 4.) Patients with a BMI between 18 till 25 develop significant more force than those with a BMI > 30: Females 5.1 vs. 2.6 mN; p 0.03, Males 3.8 vs. 0.8 mN; p 0.04). Our data suggest that female patients undergoing AVR or CABG develop significantly more force than male fibers. Additionally we could image the clinical impression of negative impact of overweight and obesity as well as low ejection fraction on cardiac function on level of the myofilaments and observed a reduced force capacity, which is more prominent in male fibers.

  13. Scalability of the muscular action in a parametric 3D model of the index finger.

    PubMed

    Sancho-Bru, Joaquín L; Vergara, Margarita; Rodríguez-Cervantes, Pablo-Jesús; Giurintano, David J; Pérez-González, Antonio

    2008-01-01

    A method for scaling the muscle action is proposed and used to achieve a 3D inverse dynamic model of the human finger with all its components scalable. This method is based on scaling the physiological cross-sectional area (PCSA) in a Hill muscle model. Different anthropometric parameters and maximal grip force data have been measured and their correlations have been analyzed and used for scaling the PCSA of each muscle. A linear relationship between the normalized PCSA and the product of the length and breadth of the hand has been finally used for scaling, with a slope of 0.01315 cm(-2), with the length and breadth of the hand expressed in centimeters. The parametric muscle model has been included in a parametric finger model previously developed by the authors, and it has been validated reproducing the results of an experiment in which subjects from different population groups exerted maximal voluntary forces with their index finger in a controlled posture.

  14. Developing bones are differentially affected by compromised skeletal muscle formation

    PubMed Central

    Nowlan, Niamh C.; Bourdon, Céline; Dumas, Gérard; Tajbakhsh, Shahragim; Prendergast, Patrick J.; Murphy, Paula

    2010-01-01

    Mechanical forces are essential for normal adult bone function and repair, but the impact of prenatal muscle contractions on bone development remains to be explored in depth in mammalian model systems. In this study, we analyze skeletogenesis in two ‘muscleless’ mouse mutant models in which the formation of skeletal muscle development is disrupted; Myf5nlacZ/nlacZ:MyoD−/− and Pax3Sp/Sp (Splotch). Ossification centers were found to be differentially affected in the muscleless limbs, with significant decreases in bone formation in the scapula, humerus, ulna and femur, but not in the tibia. In the scapula and humerus, the morphologies of ossification centers were abnormal in muscleless limbs. Histology of the humerus revealed a decreased extent of the hypertrophic zone in mutant limbs but no change in the shape of this region. The elbow joint was also found to be clearly affected with a dramatic reduction in the joint line, while no abnormalities were evident in the knee. The humeral deltoid tuberosity was significantly reduced in size in the Myf5nlacZ/nlacZ:MyoD−/− mutants while a change in shape but not in size was found in the humeral tuberosities of the Pax3Sp/Sp mutants. We also examined skeletal development in a ‘reduced muscle’ model, the Myf5nlacZ/+:MyoD−/− mutant, in which skeletal muscle forms but with reduced muscle mass. The reduced muscle phenotype appeared to have an intermediate effect on skeletal development, with reduced bone formation in the scapula and humerus compared to controls, but not in other rudiments. In summary, we have demonstrated that skeletal development is differentially affected by the lack of skeletal muscle, with certain rudiments and joints being more severely affected than others. These findings indicate that the response of skeletal progenitor cells to biophysical stimuli may depend upon their location in the embryonic limb, implying a complex interaction between mechanical forces and location-specific regulatory factors affecting bone and joint development. PMID:19948261

  15. Analysis of shear wave propagation derived from MR elastography in 3D thigh skeletal muscle using subject specific finite element model.

    PubMed

    Dao, Tien Tuan; Pouletaut, Philippe; Charleux, Fabrice; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine

    2014-01-01

    The purpose of this study was to develop a subject specific finite element model derived from MRI images to numerically analyze the MRE (magnetic resonance elastography) shear wave propagation within skeletal thigh muscles. A sagittal T2 CUBE MRI sequence was performed on the 20-cm thigh segment of a healthy male subject. Skin, adipose tissue, femoral bone and 11 muscles were manually segmented in order to have 3D smoothed solid and meshed models. These tissues were modeled with different constitutive laws. A transient modal dynamics analysis was applied to simulate the shear wave propagation within the thigh tissues. The effects of MRE experimental parameters (frequency, force) and the muscle material properties (shear modulus: C10) were analyzed through the simulated shear wave displacement within the vastus medialis muscle. The results showed a plausible range of frequencies (from 90Hz to 120 Hz), which could be used for MRE muscle protocol. The wave amplitude increased with the level of the force, revealing the importance of the boundary condition. Moreover, different shear displacement patterns were obtained as a function of the muscle mechanical properties. The present study is the first to analyze the shear wave propagation in skeletal muscles using a 3D subject specific finite element model. This study could be of great value to assist the experimenters in the set-up of MRE protocols.

  16. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.

    PubMed

    Zajac, Felix E; Neptune, Richard R; Kautz, Steven A

    2002-12-01

    Current understanding of how muscles coordinate walking in humans is derived from analyses of body motion, ground reaction force and EMG measurements. This is Part I of a two-part review that emphasizes how muscle-driven dynamics-based simulations assist in the understanding of individual muscle function in walking, especially the causal relationships between muscle force generation and walking kinematics and kinetics. Part I reviews the strengths and limitations of Newton-Euler inverse dynamics and dynamical simulations, including the ability of each to find the contributions of individual muscles to the acceleration/deceleration of the body segments. We caution against using the concept of biarticular muscles transferring power from one joint to another to infer muscle coordination principles because energy flow among segments, even the adjacent segments associated with the joints, cannot be inferred from computation of joint powers and segmental angular velocities alone. Rather, we encourage the use of dynamical simulations to perform muscle-induced segmental acceleration and power analyses. Such analyses have shown that the exchange of segmental energy caused by the forces or accelerations induced by a muscle can be fundamentally invariant to whether the muscle is shortening, lengthening, or neither. How simulation analyses lead to understanding the coordination of seated pedaling, rather than walking, is discussed in this first part because the dynamics of pedaling are much simpler, allowing important concepts to be revealed. We elucidate how energy produced by muscles is delivered to the crank through the synergistic action of other non-energy producing muscles; specifically, that a major function performed by a muscle arises from the instantaneous segmental accelerations and redistribution of segmental energy throughout the body caused by its force generation. Part II reviews how dynamical simulations provide insight into muscle coordination of walking.

  17. Restoration of pharyngeal dilator muscle force in dystrophin-deficient (mdx) mice following co-treatment with neutralizing interleukin-6 receptor antibodies and urocortin 2.

    PubMed

    Burns, David P; Rowland, Jane; Canavan, Leonie; Murphy, Kevin H; Brannock, Molly; O'Malley, Dervla; O'Halloran, Ken D; Edge, Deirdre

    2017-09-01

    What is the central question of this study? We previously reported impaired upper airway dilator muscle function in the mdx mouse model of Duchenne muscular dystrophy (DMD). Our aim was to assess the effect of blocking interleukin-6 receptor signalling and stimulating corticotrophin-releasing factor receptor 2 signalling on mdx sternohyoid muscle structure and function. What is the main finding and its importance? The interventional treatment had a positive inotropic effect on sternohyoid muscle force, restoring mechanical work and power to wild-type values, reduced myofibre central nucleation and preserved the myosin heavy chain type IIb fibre complement of mdx sternohyoid muscle. These data might have implications for development of pharmacotherapies for DMD with relevance to respiratory muscle performance. The mdx mouse model of Duchenne muscular dystrophy shows evidence of impaired pharyngeal dilator muscle function. We hypothesized that inflammatory and stress-related factors are implicated in airway dilator muscle dysfunction. Six-week-old mdx (n = 26) and wild-type (WT; n = 26) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (0.2 mg kg -1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin 2; 30 μg kg -1 ) over 2 weeks. Sternohyoid muscle isometric and isotonic contractile function was examined ex vivo. Muscle fibre centronucleation and muscle cellular infiltration, collagen content, fibre-type distribution and fibre cross-sectional area were determined by histology and immunofluorescence. Muscle chemokine content was examined by use of a multiplex assay. Sternohyoid peak specific force at 100 Hz was significantly reduced in mdx compared with WT. Drug treatment completely restored force in mdx sternohyoid to WT levels. The percentage of centrally nucleated muscle fibres was significantly increased in mdx, and this was partly ameliorated after drug treatment. The areal density of infiltrates and collagen content were significantly increased in mdx sternohyoid; both indices were unaffected by drug treatment. The abundance of myosin heavy chain type IIb fibres was significantly decreased in mdx sternohyoid; drug treatment preserved myosin heavy chain type IIb complement in mdx muscle. The chemokines macrophage inflammatory protein 2, interferon-γ-induced protein 10 and macrophage inflammatory protein 3α were significantly increased in mdx sternohyoid compared with WT. Drug treatment significantly increased chemokine expression in mdx but not WT sternohyoid. Recovery of contractile function was impressive in our study, with implications for Duchenne muscular dystrophy. The precise molecular mechanisms by which the drug treatment exerts an inotropic effect on mdx sternohyoid muscle remain to be elucidated. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  18. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed Central

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-01-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007

  19. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-10-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.

  20. Effect of cleft palate repair on the susceptibility to contraction-induced injury of single permeabilized muscle fibers from congenitally-clefted goat palates.

    PubMed

    Rader, Erik P; Cederna, Paul S; McClellan, William T; Caterson, Stephanie A; Panter, Kip E; Yu, Deborah; Buchman, Steven R; Larkin, Lisa M; Faulkner, John A; Weinzweig, Jeffrey

    2008-03-01

    Despite cleft palate repair, velopharyngeal competence is not achieved in approximately 15% of patients, often necessitating secondary surgical correction. Velopharyngeal competence postrepair may require the conversion of levator veli palatini muscle fibers from injury-susceptible type 2 fibers to injury-resistant type 1 fibers. As an initial step to determining the validity of this theory, we tested the hypothesis that, in most cases, repair induces the transformation to type 1 fibers, thus diminishing susceptibility to injury. Single permeabilized levator veli palatini muscle fibers were obtained from normal palates and nonrepaired congenitally-clefted palates of young (2 months old) and adult (14 to 15 months old) goats and from repaired palates of adult goats (8 months old). Repair was done at 2 months of age using a modified von Langenbeck technique. Fiber type was determined by contractile properties and susceptibility to injury was assessed by force deficit, the decrease in maximum force following a lengthening contraction protocol expressed as a percentage of initial force. For normal palates and cleft palates of young goats, the majority of the fibers were type 2 with force deficits of approximately 40%. Following repair, 80% of the fibers were type 1 with force deficits of 20% +/- 2%; these deficits were 45% of those for nonrepaired cleft palates of adult goats (p < .0001). The decrease in the percentage of type 2 fibers and susceptibility to injury may be important for the development of a functional levator veli palatini muscle postrepair.

Top