Sample records for muscle homogenate fluid

  1. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    PubMed

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  2. Total lipid extraction of homogenized and intact lean fish muscles using pressurized fluid extraction and batch extraction techniques.

    PubMed

    Isaac, Giorgis; Waldebäck, Monica; Eriksson, Ulla; Odham, Göran; Markides, Karin E

    2005-07-13

    The reliability and efficiency of pressurized fluid extraction (PFE) technique for the extraction of total lipid content from cod and the effect of sample treatment on the extraction efficiency have been evaluated. The results were compared with two liquid-liquid extraction methods, traditional and modified methods according to Jensen. Optimum conditions were found to be with 2-propanol/n-hexane (65:35, v/v) as a first and n-hexane/diethyl ether (90:10, v/v) as a second solvent, 115 degrees C, and 10 min of static time. PFE extracts were cleaned up using the same procedure as in the methods according to Jensen. When total lipid yields obtained from homogenized cod muscle using PFE were compared yields obtained with original and modified Jensen methods, PFE gave significantly higher yields, approximately 10% higher (t test, P < 0.05). Infrared and NMR spectroscopy suggested that the additional material that inflates the gravimetric results is rather homogeneous and is primarily consists of phospholipid with headgroups of inositidic and/or glycosidic nature. The comparative study demonstrated that PFE is an alternative suitable technique to extract total lipid content from homogenized cod (lean fish) and herring (fat fish) muscle showing a precision comparable to that obtained with the traditional and modified Jensen methods. Despite the necessary cleanup step, PFE showed important advantages in the solvent consumption was cut by approximately 50% and automated extraction was possible.

  3. Thermal inactivation profiles of Mycobacterium avium subsp. paratuberculosis in lamb skeletal muscle homogenate fluid.

    PubMed

    Whittington, Richard J; Waldron, Anna; Warne, Darian

    2010-01-31

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease in livestock and there is a debate about its role in humans in chronic inflammatory bowel disorders such as Crohn's disease, but the relationship remains unproven. Nevertheless livestock health authorities in many countries aim to lower the prevalence of this infection to reduce potential contamination of the human food supply. MAP may occur in bovine milk and data on thermal inactivation suggest pasteurisation is an effective process. Recently MAP has been identified in skeletal muscle of cattle and sheep but there are no data on its thermal inactivation in these substrates. In this study the inactivation of MAP was studied in a fluid homogenate of lamb skeletal muscle at temperatures previously identified as being relevant to cooking processes applied by domestic consumers. A PCR thermocycler was used to ensure accurate temperatures and rapid heat exchange, while radiometric culture was used to ensure sensitive detection of viable MAP for determination of D and z values. Among the two predominant strains of MAP, S and C, D(55) ranged from 56 to 89 min, D(60) was 8 to 11 min, D(65) was 26 to 35s while D(70) was 1.5 to 1.8s. Values for z were 4.21C degrees for the S strain and 4.51C degrees for the C strain. At temperatures of 65-70 degrees C, MAP appeared to be less heat tolerant in skeletal muscle fluid than in previous reports using milk as the medium. The total thermal exposure of MAP during baking of a sample of 16 leg-of-lamb roasts in domestic ovens was determined to result in more than 20 log reductions in most cases, that is the product was microbiologically safe. Based on the models used in this study, there is a low probability of survival of MAP provided that red meat is cooked to recommended standards. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  4. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates.

    PubMed

    Shortle, E; O'Grady, M N; Gilroy, D; Furey, A; Quinn, N; Kerry, J P

    2014-12-01

    Six extracts were prepared from hawthorn (Crataegus monogyna) leaves and flowers (HLF) and berries (HB) using solid-liquid [traditional (T) (HLFT, HBT), sonicated (S) (HLFS, HBS)] and supercritical fluid (C) extraction (HLFC, HBC) techniques. The antioxidant activities of HLF and HB extracts were characterised using in vitro antioxidant assays (TPC, DPPH, FRAP) and in 25% bovine muscle (longissimus lumborum) homogenates (lipid oxidation (TBARS), oxymyoglobin (% of total myoglobin)) after 24h storage at 4°C. Hawthorn extracts exhibited varying degrees of antioxidant potency. In vitro and muscle homogenate (TBARS) antioxidant activity followed the order: HLFS>HLFT and HBT>HBS. In supercritical fluid extracts, HLFC>HBC (in vitro antioxidant activity) and HLFC≈HBC (TBARS). All extracts (except HBS) reduced oxymyoglobin oxidation. The HLFS extract had the highest antioxidant activity in all test systems. Supercritical fluid extraction (SFE) exhibited potential as a technique for the manufacture of functional ingredients (antioxidants) from hawthorn for use in muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fluid-driven origami-inspired artificial muscles

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.

    2017-12-01

    Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ˜600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

  6. Fluid-driven origami-inspired artificial muscles.

    PubMed

    Li, Shuguang; Vogt, Daniel M; Rus, Daniela; Wood, Robert J

    2017-12-12

    Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. Copyright © 2017 the Author(s). Published by PNAS.

  7. Fluid-driven origami-inspired artificial muscles

    PubMed Central

    Li, Shuguang; Vogt, Daniel M.; Rus, Daniela; Wood, Robert J.

    2017-01-01

    Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg—all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration. PMID:29180416

  8. A Class of Homogeneous Scalar Tensor Cosmologies with a Radiation Fluid

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.

    We present a new class of exact homogeneous cosmological solutions with a radiation fluid for all scalar tensor theories. The solutions belong to Bianchi type VIh cosmologies. Explicit examples of nonsingular homogeneous scalar tensor cosmologies are also given.

  9. Statistical mechanics of homogeneous partly pinned fluid systems.

    PubMed

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  10. [Effect of caffeine on active Ca2+ ion transport in a homogenate of skeletal muscles and myocardium].

    PubMed

    Ritov, V B; Murzakhmetova, M K

    1985-08-01

    A Ca2-selective electrode was used to study active transport of Ca2+ by sarcoplasmic reticulum fragments of rabbit skeletal muscle and myocardium homogenates. The specific Ca2+ transport activities (mumol Ca2+/min/mg tissue) are 40 = 60 and 3 = 5 units for fast and slow muscles and the myocardium, respectively. Caffeine (5 mM) exerts a powerful inhibitory influence on Ca2+ transport in skeletal muscle homogenates. For fast muscles, the degree of inhibition exceeds 50%. The rate of Ca2+ transport in the myocardium homogenate increases in the presence of creatine phosphate. The latter produces no effect on Ca2+ transport in skeletal muscle homogenates. The high sensitivity of Ca2 transport to caffeine, a specific blocker of Ca2+ transport to the terminal cisterns of the sarcoplasmic reticulum, suggests that the terminal cisterns, apart from being a reservoir for Ca2+ needed for contraction trigger, may play an essential role in muscle relaxation.

  11. Two-dimensional homogeneous isotropic fluid turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam; Perlekar, Prasad; Pandit, Rahul

    2015-03-01

    We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.

  12. Fluid shifts and muscle function in humans during acute simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Tipton, C. M.; Gollnick, P. D.; Mubarak, S. J.; Tucker, B. J.; Akeson, W. H.

    1983-01-01

    The acute effects of simulated weightlessness on transcapillary fluid balance, tissue fluid shifts, muscle function, and triceps surface reflex time were studied in eight supine human subjects who were placed in a 5 degrees head-down tilt position for 8 hr. Results show a cephalic fluid shift from the legs as indicated by facial edema, nasal congestion, increased urine flow, decreased creatinine excretion, reduced calf girth, and decreased lower leg volume. The interstitial fluid pressure in the tibialis anterior muscle and subcutaneous tissue of the lower leg was found to fall significantly, while other transcapillary pressures (capillary and interstitial fluid colloid osmotic pressures) were relatively unchanged. The total water content of the soleus muscle was unchanged during the head-down tilt. After head-down tilt, isometric strength and isokinetic strength of the plantar flexors were unchanged, while the triceps surae reflex time associated with plantar flexion movement slowed slightly. These results demonstrate a dehydration effect of head-down tilt on muscle and subcutaneous tissue of the lower leg that may affect muscle function.

  13. Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .

  14. Changes in the interstitial fluid and the muscle water in rabbits in hemorrhagic shock.

    PubMed Central

    Wolcott, M W; Malinin, T I; Wu, N M

    1976-01-01

    Dynamics and changes in the biochemical composition in the interstitial fluid and the muscle water were studied in hemorrhagic shock. The interstitial fluid was collected from implanted perforated capsules. Muscle biopsies were examined with regard to their water content by the steady state magnetic nuclear resonance spectroscopy. The consistent and what appears to be the most significant changes were the fall in the interstitial fluid pressures, the quantitative reduction of muscle water, a sharp fall in the blood and interstitial blood pH, the moderate hyperkalemia and lack of change in blood an interstitial fluid sodium, and the rise in blood glucose levels not accompanied by a rise in the interstitial fluid glucose levels. PMID:11754

  15. A homogenization approach for characterization of the fluid-solid coupling parameters in Biot's equations for acoustic poroelastic materials

    NASA Astrophysics Data System (ADS)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2015-09-01

    In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.

  16. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  17. Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.

    PubMed

    Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C

    2004-11-01

    Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.

  18. Metabolic stability of new anticonvulsants in body fluids and organ homogenates.

    PubMed

    Marszałek, Dorota; Goldnik, Anna; Pluciński, Franciszek; Mazurek, Aleksander P; Jakubiak, Anna; Lis, Ewa; Tazbir, Piotr; Koziorowska, Agnieszka

    2012-01-01

    The stability as a function of time of compounds with established anticonvulsant activity: picolinic acid benzylamide (Pic-BZA), picolinic acid 2-fluorobenzylamide (Pic-2-F-BZA), picolinic acid 3-fluorobenzylamide (Pic-3-F-BZA), picolinic acid 4-fluorobenzylamide (Pic-4-F-BZA) and picolinic acid 2-methylbenzylamide (Pic-2-Me-BZA) in body fluids and homogenates of body organs were determined after incubation. It was found that they decompose relatively rapidly in liver and kidney and are stable against enzymes present in body fluids and some organs. These results are consistent with the bond strength expressed as total energy of amide bonds (calculated by quantum chemical methods) in the studied anticonvulsants. The calculated values of the amide bond energy are: 199.4 kcal/mol, 200.2 kcal/mol, 207.5 kcal/mol, 208.4 kcal/mol and 198.2 kcal/mol, respectively. The strength of the amide bonds in the studied anticonvulsants correctly reflects their stability in liver or kidney.

  19. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles.

    PubMed

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-11-28

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  20. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles

    PubMed Central

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela

    2017-01-01

    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601

  1. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  2. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions

    PubMed Central

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  3. A fully resolved fluid-structure-muscle-activation model for esophageal transport

    NASA Astrophysics Data System (ADS)

    Kou, Wenjun; Bhalla, Amneet P. S.; Griffith, Boyce E.; Johnson, Mark; Patankar, Neelesh A.

    2013-11-01

    Esophageal transport is a mechanical and physiological process that transfers the ingested food bolus from the pharynx to the stomach through a multi-layered esophageal tube. The process involves interactions between the bolus, esophageal wall composed of mucosal, circular muscle (CM) and longitudinal muscle (LM) layers, and neurally coordinated muscle activation including CM contraction and LM shortening. In this work, we present a 3D fully-resolved model of esophageal transport based on the immersed boundary method. The model describes the bolus as a Newtonian fluid, the esophageal wall as a multi-layered elastic tube represented by springs and beams, and the muscle activation as a traveling wave of sequential actuation/relaxation of muscle fibers, represented by springs with dynamic rest lengths. Results on intraluminal pressure profile and bolus shape will be shown, which are qualitatively consistent with experimental observations. Effects of activating CM contraction only, LM shortening only or both, for the bolus transport, are studied. A comparison among them can help to identify the role of each type of muscle activation. The support of grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  4. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    PubMed

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P < 0.05) enzyme activities compared to all other protocols for both enzymes. Of the four protocols examined, the data demonstrate that the glass-on-glass pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  5. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  6. On the propagation of particulate gravity currents in circular and semi-circular channels partially filled with homogeneous or stratified ambient fluid

    NASA Astrophysics Data System (ADS)

    Zemach, T.; Chiapponi, L.; Petrolo, D.; Ungarish, M.; Longo, S.; Di Federico, V.

    2017-10-01

    We present a combined theoretical-experimental investigation of particle-driven gravity currents advancing in circular cross section channels in the high-Reynolds number Boussinesq regime; the ambient fluid is either homogeneous or linearly stratified. The predictions of the theoretical model are compared with experiments performed in lock-release configuration; experiments were performed with conditions of both full-depth and partial-depth locks. Two different particles were used for the turbidity current, and the full range 0 ≤S ≤1 of the stratification parameter was explored (S = 0 corresponds to the homogeneous case and S = 1 when the density of the ambient fluid and of the current are equal at the bottom). In addition, a few saline gravity currents were tested for comparison. The results show good agreement for the full-depth configuration, with the initial depth of the current in the lock being equal to the depth of the ambient fluid. The agreement is less good for the partial-depth cases and is improved by the introduction of a simple adjustment coefficient for the Froude number at the front of the current and accounting for dissipation. The general parameter dependencies and behaviour of the current, although influenced by many factors (e.g., mixing and internal waves), are well predicted by the relatively simple model.

  7. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn; James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns,more » namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.« less

  8. Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

    NASA Astrophysics Data System (ADS)

    Yadav, Pramod Kumar

    2018-01-01

    The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

  9. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    PubMed

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  10. Numerical investigation of homogeneous cavitation nucleation in a microchannel

    NASA Astrophysics Data System (ADS)

    Lyu, Xiuxiu; Pan, Shucheng; Hu, Xiangyu; Adams, Nikolaus A.

    2018-06-01

    The physics of nucleation in water is an important issue for many areas, ranging from biomedical to engineering applications. Within the present study, we investigate numerically homogeneous nucleation in a microchannel induced by shock reflection to gain a better understanding of the mechanism of homogeneous nucleation. The liquid expands due to the reflected shock and homogeneous cavitation nuclei are generated. An Eulerian-Lagrangian approach is employed for modeling this process in a microchanel. Two-dimensional axisymmetric Euler equations are solved for obtaining the time evolution of shock, gas bubble, and the ambient fluid. The dynamics of dispersed vapor bubbles is coupled with the surrounding fluid in a Lagrangian framework, describing bubble location and bubble size variation. Our results reproduce nuclei distributions at different stages of homogeneous nucleation and are in good agreement with experimental results. We obtain numerical data for the negative pressure that water can sustain under the process of homogeneous nucleation. An energy transformation description for the homogeneous nucleation inside a microchannel flow is derived and analyzed in detail.

  11. Myocardial, smooth muscle, nephron, and collecting duct gene targeting reveals the organ sites of endothelin A receptor antagonist fluid retention.

    PubMed

    Stuart, Deborah; Chapman, Mark; Rees, Sara; Woodward, Stephanie; Kohan, Donald E

    2013-08-01

    Endothelin-1 binding to endothelin A receptors (ETA) elicits profibrogenic, proinflammatory, and proliferative effects that can promote a wide variety of diseases. Although ETA antagonists are approved for the treatment of pulmonary hypertension, their clinical utility in several other diseases has been limited by fluid retention. ETA blocker-induced fluid retention could be due to inhibition of ETA activation in the heart, vasculature, and/or kidney; consequently, the current study was designed to define which of these sites are involved. Mice were generated with absence of ETA specifically in cardiomyocytes (heart), smooth muscle, the nephron, the collecting duct, or no deletion (control). Administration of the ETA antagonist ambrisentan or atrasentan for 2 weeks caused fluid retention in control mice on a high-salt diet as assessed by increases in body weight, total body water, and extracellular fluid volume (using impedance plethysmography), as well as decreases in hematocrit (hemodilution). Mice with heart ETA knockout retained fluid in a similar manner as controls when treated with ambrisentan or atrasentan. Mice with smooth muscle ETA knockout had substantially reduced fluid retention in response to either ETA antagonist. Mice with nephron or collecting duct ETA disruption were completely prevented from ETA blocker-induced fluid retention. Taken together, these findings suggest that ETA antagonist-induced fluid retention is due to a direct effect of this class of drug on the collecting duct, is partially related to the vascular action of the drugs, and is not due to alterations in cardiac function.

  12. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  13. Adaptive force regulation of muscle strengthening rehabilitation device with magnetorheological fluids.

    PubMed

    Dong, Shufang; Lu, Ke-Qian; Sun, Jian Qiao; Rudolph, Katherine

    2006-03-01

    In rehabilitation from neuromuscular trauma or injury, strengthening exercises are often prescribed by physical therapists to recover as much function as possible. Strengthening equipment used in clinical settings range from low-cost devices, such as sandbag weights or elastic bands to large and expensive isotonic and isokinetic devices. The low-cost devices are incapable of measuring strength gains and apply resistance based on the lowest level of torque that is produced by a muscle group. Resistance that varies with joint angle can be achieved with isokinetic devices in which angular velocity is held constant and variable torque is generated when the patient attempts to move faster than the device but are ineffective if a patient cannot generate torque rapidly. In this paper, we report the development of a versatile rehabilitation device that can be used to strengthen different muscle groups based on the torque generating capability of the muscle that changes with joint angle. The device is low cost, is smaller than other commercially available machines, and can be programmed to apply resistance that is unique to a particular patient and that will optimize strengthening. The core of the device, a damper with smart magnetorheological fluids, provides passive exercise force. A digital adaptive control is capable of regulating exercise force precisely following the muscle strengthening profile prescribed by a physical therapist. The device could be programmed with artificial intelligence to dynamically adjust the target force profile to optimize rehabilitation effects. The device provides both isometric and isokinetic strength training and can be developed into a small, low-cost device that may be capable of providing optimal strengthening in the home.

  14. Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.

    PubMed

    Stålhand, J; Klarbring, A; Holzapfel, G A

    2008-01-01

    Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.

  15. The costo-uterine muscle of the rat contains a homogeneous population of beta-adrenoceptors.

    PubMed Central

    Hartley, M. L.; Pennefather, J. N.

    1985-01-01

    The effects of two selective beta-adrenoceptor antagonists on the inhibitory responses to some sympathomimetic amines of electrically-stimulated preparations of costo-uterine muscle, taken from virgin rats, have been examined quantitatively. pA2 values for the antagonist, atenolol (beta 1-selective) and ICI 118,551 (beta 2-selective) were obtained using as agonists, fenoterol (beta 2-selective agonist) and noradrenaline (alpha- and beta-adrenoceptor agonist, beta 1-selective); and in addition, with ICI 118,551 only, isoprenaline (beta-agonist, non-selective) and adrenaline (alpha- and beta-adrenoceptor agonist, beta 2-selective). Catecholamine uptake mechanisms and alpha-adrenoceptors were not blocked in any of these experiments. Atenolol competitively antagonized the effects of fenoterol and noradrenaline to a similar extent, the pA2 values being 5.4 and 5.7, respectively. ICI 118,551 competitively antagonized the effects of fenoterol, isoprenaline, adrenaline and noradrenaline to a similar extent; pA2 values ranged from 8.7 with noradrenaline to 9.1 with isoprenaline. These results extend our previous observations which indicated that the adrenoceptors mediating inhibition of electrically-evoked contractions of costo-uterine muscle of the virgin rat are homogeneous and of the beta 2-subtype. The potency of the beta 1-selective agonist RO 363 in producing inhibition of electrically-evoked contractions of this tissue was also examined. RO 363 was 200 times less potent than isoprenaline but was a full agonist. This indicates that there is efficient coupling between beta 2-adrenoceptor activation and tissue response in this non-innervated preparation. PMID:2858239

  16. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    NASA Astrophysics Data System (ADS)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  17. Development of Human Muscle Protein Measurement with MRI

    NASA Technical Reports Server (NTRS)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  18. Homogeneous buoyancy-generated turbulence

    NASA Technical Reports Server (NTRS)

    Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.

    1992-01-01

    Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.

  19. Vasopeptidase inhibition with omapatrilat increases fluid and protein microvascular permeability in cat skeletal muscle.

    PubMed

    Persson, Johan; Morsing, Peter; Grände, Per-Olof

    2004-03-01

    Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by

  20. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  1. Cerebrospinal fluid from subarachnoid haemorrhage patients causes excessive oxidative metabolism compared to vascular smooth muscle force generation.

    PubMed

    Pyne, G J; Cadoux-Hudson, T A; Clark, J F

    2001-01-01

    Cerebrospinal fluid (CSF) from subarachnoid haemorrhage (SAH) patients can stimulate vascular smooth muscle to generate force in vitro. CSF from SAH patients suffering from delayed ischaemic neurological deficits due to cerebral vasospasm can generate near maximal force in vitro and previous experiments have ascribed this generation of force to be a calcium mediated event. The intracellular calcium concentration has been demonstrated to rise during the vasospastic process. Calcium also stimulates oxidative metabolism as does adenosine diphosphate (ADP), the product of adenosine triphosphate (ATP) hydrolysis. Significant alteration in high energy metabolites such as ATP, ADP and phosphocreatine have also been demonstrated in various models of SAH mediated vasospasm. Vascular smooth muscle predominantly uses oxidative metabolism for force generation and reserves glycolytic metabolism for ion homeostasis. A decrease in oxidative metabolism during force generation would imply failing mitochondria and increased glycolytic high-energy phosphate supply. Increased oxidative metabolism would imply a decreased efficiency of the contractile apparatus or mitochondria. The aim of this study was to see if SAH CSF stimulation of porcine carotid artery oxidative metabolism was altered during force generation when compared with incremental calcium stimulation with potassium chloride depolarisation. CSF from patients (n = 10) who had subarachnoid haemorrhage stimulated force generation but with a significant 'right shift' in oxygen consumption. This 'right shift' is indicative of an increased energy cost for contractile work. These results suggest that vascular smooth muscle contractile apparatus, when stimulated by subarachnoid cerebrospinal fluid, is consuming excess adenosine triphosphate during force generation.

  2. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  3. New exact perfect fluid solutions of Einstein's equations. II

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  4. Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon.

    PubMed

    Baur, Daniel A; Bach, Christopher W; Hyder, William J; Ormsbee, Michael J

    2016-03-01

    The primary purpose of this investigation was to determine the effects of participation in a 3-day multistage ultraendurance triathlon (stage 1 = 10 km swim, 144.8 km bike; stage 2 = 275.4 km bike; stage 3 = 84.4 km run) on body mass and composition, hydration status, hormones, muscle damage, and blood glucose. Eighteen triathletes (mean ± SD; age 41 ± 7.5 years; height 175 ± 9 cm; weight 73.5 ± 9.8 kg; male n = 14, female n = 4) were assessed before and after each stage of the race. Body mass and composition were measured via bioelectrical impedance, hydration status via urine specific gravity, hormones and muscle damage via venous blood draw, and blood glucose via fingerstick. Following the race, significant changes included reductions in body mass (qualified effect size: trivial), fat mass (moderate), and percent body fat (small); increases in percent total body water (moderate) and urine specific gravity (large); and unchanged absolute total body water and fat-free mass. There were also extremely large increases in creatine kinase, C-reactive protein, aldosterone and cortisol combined with reductions in testosterone (small) and the testosterone:cortisol ratio (moderate). There were associations between post-race aldosterone and total body water (r = -0.504) and changes in cortisol and fat-free mass (r = -0.536). Finally, blood glucose increased in a stepwise manner prior to each stage. Participation in Ultraman Florida leads to fluid retention and dramatic alterations in body composition, muscle health, hormones, and metabolism.

  5. Effect of heat and homogenization on in vitro digestion of milk

    USDA-ARS?s Scientific Manuscript database

    Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. UHT processed homogenized milk is also available commercially and is typically used to...

  6. Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle

    USDA-ARS?s Scientific Manuscript database

    Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

  7. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  8. A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency.

    PubMed

    Boitier, E; Degoul, F; Desguerre, I; Charpentier, C; François, D; Ponsot, G; Diry, M; Rustin, P; Marsac, C

    1998-01-01

    We report severe coenzyme Q10 deficiency of muscle in a 4-year-old boy presenting with progressive muscle weakness, seizures, cerebellar syndrome, and a raised cerebro-spinal fluid lactate concentration. State-3 respiratory rates of muscle mitochondria with glutamate, pyruvate, palmitoylcarnitine, and succinate as respiratory substrates were markedly reduced, whereas ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine were oxidized normally. The activities of complexes I, II, III and IV of the electron transport chain were normal, but the activities of complexes I+III and II+III, both systems requiring coenzyme Q10 as an electron carrier, were dramatically decreased. These results suggested a defect in the mitochondrial coenzyme Q10 content. This was confirmed by the direct assessment of coenzyme Q10 level by high-performance liquid chromatography in patient's muscle homogenate and isolated mitochondria, revealing levels of 16% and 6% of the control values, respectively. We did not find any impairment of the respiratory chain either in a lymphoblastoid cell line or in skin cultured fibroblasts from the patient, suggesting that the coenzyme Q10 depletion was tissue-specific. This is a new case of a muscle deficiency of mitochondrial coenzyme Q in a patient suffering from an encephalomyopathy.

  9. Dissociation between short-term unloading and resistance training effects on skeletal muscle Na+,K+-ATPase, muscle function, and fatigue in humans.

    PubMed

    Perry, Ben D; Wyckelsma, Victoria L; Murphy, Robyn M; Steward, Collene H; Anderson, Mitchell; Levinger, Itamar; Petersen, Aaron C; McKenna, Michael J

    2016-11-01

    Physical training increases skeletal muscle Na + ,K + -ATPase content (NKA) and improves exercise performance, but the effects of inactivity per se on NKA content and isoform abundance in human muscle are unknown. We investigated the effects of 23-day unilateral lower limb suspension (ULLS) and subsequent 4-wk resistance training (RT) on muscle function and NKA in 6 healthy adults, measuring quadriceps muscle peak torque; fatigue and venous [K + ] during intense one-legged cycling exercise; and skeletal muscle NKA content ([ 3 H]ouabain binding) and NKA isoform abundances (immunoblotting) in muscle homogenates (α 1-3 , β 1-2 ) and in single fibers (α 1-3 , β 1 ). In the unloaded leg after ULLS, quadriceps peak torque and cycling time to fatigue declined by 22 and 23%, respectively, which were restored with RT. Whole muscle NKA content and homogenate NKA α 1-3 and β 1-2 isoform abundances were unchanged with ULLS or RT. However, in single muscle fibers, NKA α 3 in type I (-66%, P = 0.006) and β 1 in type II fibers (-40%, P = 0.016) decreased after ULLS, with other NKA isoforms unchanged. After RT, NKA α 1 (79%, P = 0.004) and β 1 (35%, P = 0.01) increased in type II fibers, while α 2 (76%, P = 0.028) and α 3 (142%, P = 0.004) increased in type I fibers compared with post-ULLS. Despite considerably impaired muscle function and earlier fatigue onset, muscle NKA content and homogenate α 1 and α 2 abundances were unchanged, thus being resilient to inactivity induced by ULLS. Nonetheless, fiber type-specific downregulation with inactivity and upregulation with RT of several NKA isoforms indicate complex regulation of muscle NKA expression in humans. Copyright © 2016 the American Physiological Society.

  10. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  11. Dynamic detection of non-protein-bound strychnine and brucine in rabbit muscle and synovial fluid after topical application of total Strychnos alkaloid patches.

    PubMed

    Tang, Huaibo; Yan, Miao; Li, Huande; Xun, Tianrong; Deng, Yang; Zhao, Yeye; Deng, Long

    2014-04-01

    Semen Strychni, a known toxic drug in Chinese pharmacopoeia, is notable for its therapeutic effects on local muscle and joint pain. However, oral administration can be risky. Topically administered drugs accumulate in the topical muscles and knee joints without any major increase in plasma levels; only non-protein-bound drugs in the biological fluids of target tissues are effective for therapeutic effects. A sensitive and rapid ultra performance liquid chromatography - mass spectrometry (UPLC-MS) method coupled with a microdialysis technique was developed to determine the non-protein-bound strychnine (Str) and brucine (Bru) in rabbit muscle and synovial fluid microdialysate. The UPLC separation was carried out using a 1.7μm BEH C18 column (50 mm × 2.1 mm) with a mobile phase consisting of methanol: water (29.5:70.5, v/v) with 0.1% formic acid and 20 mM ammonium acetate in water. The method was validated at concentrations ranging from 0.58 ng/ml to 467.20 ng/ml for Str and from 0.42 ng/ml to 422.40 ng/ml for Bru. Intra-day and inter-day accuracy ranged from 99.1% to 103.2% for Str and from 95.8% to 108.8% for Bru with intra-day and inter-day precision within 9.7%. The proposed method was successfully applied to determine non-protein-bound Str and Bru, and the analysates concentration remained stable in rabbit muscle and synovial fluid after topical application of total Strychnos alkaloid patches, which indicated that total Strychnos alkaloid patches could substitute for the traditional oral administration of Semen Strychni. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  13. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  14. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.

    PubMed

    Abdalrahman, T; Scheiner, S; Hellmich, C

    2015-01-21

    It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Homogenization models for thin rigid structured surfaces and films.

    PubMed

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  16. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  17. Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence.

    PubMed

    Perlekar, Prasad; Mitra, Dhrubaditya; Pandit, Rahul

    2006-12-31

    The existence of drag reduction by polymer additives, well established for wall-bounded turbulent flows, is controversial in homogeneous, isotropic turbulence. To settle this controversy, we carry out a high-resolution direct numerical simulation of decaying, homogeneous, isotropic turbulence with polymer additives. Our study reveals clear manifestations of drag-reduction-type phenomena: On the addition of polymers to the turbulent fluid, we obtain a reduction in the energy-dissipation rate, a significant modification of the fluid energy spectrum especially in the deep-dissipation range, a suppression of small-scale intermittency, and a decrease in small-scale vorticity filaments.

  18. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  19. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.

  20. Cerebrospinal fluid otorhinorrhea due to cochlear dysplasias.

    PubMed

    Syal, Rajan; Tyagi, Isha; Goyal, Amit

    2005-07-01

    Cochlear dysplasia associated with defect in stapes footplate can be a cause of cerebrospinal fluid leak. Repair of cerebrospinal fluid leak in these cases is usually done by packing the vestibule with muscle or fascia. This traditional method of repair has 30-60% failure rate. Cerebrospinal fluid leak in four such patients was successfully repaired using multiple layer packing of vestibule, reinforced by pedicle temporalis muscle graft. Intraoperatively continuous lumbar drain was done. Magnetic resonance imaging of inner ear using 3D FSE T2WI and 3D FIESTA sequences was found helpful noninvasive investigation to localize site and route of cerebrospinal fluid leak.

  1. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  2. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  3. Muscle Cramps

    MedlinePlus

    ... severe Happen frequently Don't get better with stretching and drinking enough fluids Last a long time ... able to find some relief from cramps by Stretching or gently massaging the muscle Applying heat when ...

  4. Renal function alterations during skeletal muscle disuse in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Tucker, Bryan J.

    1992-01-01

    This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.

  5. Heterogeneous histomorphology, yet homogeneous vascular smooth muscle cell dedifferentiation, characterize human aneurysm disease.

    PubMed

    Busch, Albert; Hartmann, Elena; Grimm, Caroline; Ergün, Süleyman; Kickuth, Ralph; Otto, Christoph; Kellersmann, Richard; Lorenz, Udo

    2017-11-01

    Abdominal aortic aneurysm (AAA) is a frequent, potentially life-threatening, disease that can only be treated by surgical means such as open surgery or endovascular repair. No alternative treatment is currently available, and despite expanding knowledge about the pathomechanism, clinical trials on medical aneurysm abrogation have led to inconclusive results. The heterogeneity of human AAA based on histologic examination is thereby generally neglected. In this study we aimed to further elucidate the role of these differences in aneurysm disease. Tissue samples from AAA and popliteal artery aneurysm patients were examined by histomorphologic analysis, immunohistochemistry, Western blot, and polymerase chain reaction. The results were correlated with clinical data such as aneurysm diameter and laboratory results. The morphology of human AAA vessel wall probes varies tremendously based on the grade of inflammation. This correlates with increasing intima/media thickness and upregulation of the vascular endothelial growth factor cascade but not with any clinical parameter or the aneurysm diameter. The phenotypic switch of vascular smooth muscle cells occurred regardless of the inflammatory state and expressional changes of the transcription factors Kruppel-like factor-4 and transforming growth factor-β lead to differential protein localization in aneurysmal compared with control arteries. These changes were in similar manner also observed in samples from popliteal artery aneurysms, which, however, showed a more homogenous phenotype. Heterogeneity of AAA vessel walls based on inflammatory morphology does not correlate with AAA diameter yet harbors specific implications for basic research and possible aneurysm detection. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  6. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.

    PubMed

    Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N

    2016-07-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.

  7. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation

    PubMed Central

    Zografos, K.; Oliveira, M. S. N.

    2016-01-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  8. Reequilibration of fluid inclusions in low-temperature calcium-carbonate cement

    NASA Astrophysics Data System (ADS)

    Goldstein, Robert H.

    1986-09-01

    Calcium-carbonate cements precipitated in low-temperature, near-surface, vadose environments contain fluid inclusions of variable vapor-to-liquid ratios that yield variable homogenization temperatures. Cements precipitated in low-temperature, phreatic environments contain one-phase, all-liquid fluid inclusions. Neomorphism of unstable calcium-carbonate phases may cause reequilibration of fluid inclusions. Stable calcium-carbonate cements of low-temperature origin, which have been deeply buried, contain fluid inclusions of variable homogenization temperature and variable salt composition. Most inclusion fluids are not representative of the fluids present during cement growth and are more indicative of burial pore fluids. Therefore, low-temperature fluid inclusions probably reequilibrate with burial fluids during progressive burial. Reequilibration is likely caused by high internal pressures in inclusions which result in hydrofracturing. The resulting fluid-inclusion population could contain a nearly complete record of burial fluids in which a particular rock has been bathed. *Present address: Department of Geology, University of Kansas, Lawrence, Kansas 66045

  9. Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity

    PubMed Central

    Krasteva, Vessela TZ; Papazov, Sava P; Daskalov, Ivan K

    2003-01-01

    Background Peripheral nerves are situated in a highly non-homogeneous environment, including muscles, bones, blood vessels, etc. Time-varying magnetic field stimulation of the median and ulnar nerves in the carpal region is studied, with special consideration of the influence of non-homogeneities. Methods A detailed three-dimensional finite element model (FEM) of the anatomy of the wrist region was built to assess the induced currents distribution by external magnetic stimulation. The electromagnetic field distribution in the non-homogeneous domain was defined as an internal Dirichlet problem using the finite element method. The boundary conditions were obtained by analysis of the vector potential field excited by external current-driven coils. Results The results include evaluation and graphical representation of the induced current field distribution at various stimulation coil positions. Comparative study for the real non-homogeneous structure with anisotropic conductivities of the tissues and a mock homogeneous media is also presented. The possibility of achieving selective stimulation of either of the two nerves is assessed. Conclusion The model developed could be useful in theoretical prediction of the current distribution in the nerves during diagnostic stimulation and therapeutic procedures involving electromagnetic excitation. The errors in applying homogeneous domain modeling rather than real non-homogeneous biological structures are demonstrated. The practical implications of the applied approach are valid for any arbitrary weakly conductive medium. PMID:14693034

  10. Equilibrium states of homogeneous sheared compressible turbulence

    NASA Astrophysics Data System (ADS)

    Riahi, M.; Lili, T.

    2011-06-01

    Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT). The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS) of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997)] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995)] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St < 3.5). It is important to note that RDT is also valid for large values of St (St > 10) in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.

  11. Homogeneous-heterogeneous reactions in curved channel with porous medium

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  12. The Statistical Mechanics of Ideal Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  13. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes.

    PubMed

    Herbst, Allen; Widjaja, Kevin; Nguy, Beatrice; Lushaj, Entela B; Moore, Timothy M; Hevener, Andrea L; McKenzie, Debbie; Aiken, Judd M; Wanagat, Jonathan

    2017-10-01

    Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. The effects of prolonged spaceflight on the regional distribution of fluid, muscle and fat: Biostereometric results from Skylab

    NASA Technical Reports Server (NTRS)

    Whittle, M. W.; Herron, R. L.; Cuzzi, J. R.; Keys, C. W.

    1977-01-01

    Biostereometric analysis of body form was performed several times preflight and postflight on the astronauts of all three skylab flights. The analysis was made by deriving the three-dimensional coordinates of numerous points on the body surface from stereoscopic pairs of photographs of the subject, using a stereoplotter. The volume of segments of the body, and of the body as a whole, was calculated by integration of cross sectional areas derived from the coordinate data. All nine astronauts demonstrated regional changes in volume distribution which could be related to changes in total body water, muscle mass, and fat deposits. The change in water resulted from a redistribution of fluid in response to zero gravity. Changes in muscle mass resulted from an alternation in patterns of musclar activity in the absence of gravity, and changes in fat resulted from discrepancies between the individual's caloric needs and his food consumption.

  15. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon.

    PubMed

    Samak, Yassmin O; El Massik, Magda; Coombes, Allan G A

    2017-01-01

    Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl 2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl 2 , diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Nanoscale simple-fluid behavior under steady shear.

    PubMed

    Yong, Xin; Zhang, Lucy T

    2012-05-01

    In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.

  17. Fluid Sources at the Panasqueira Tungsten-Vein Deposit

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Heinrich, C. A.; Wälle, M.; Codeço, M.; Weis, P.; Pinto, F.; Vieira, R.

    2017-12-01

    Panasqueira is a world-class tungsten-vein deposit. Several paragenetic stages have been proposed (Polya et al., 2000) including two pre-ore stages (crack-seal quartz-seam, and muscovite selvages) and four ore stages (main oxide-silicate stage, main sulfide stage, pyrrhotite alteration stage, and late carbonate stage). In this study, compositions of the mineralizing fluids at Panasqueira have been determined by a combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses. We have characterized the fluids related to several mineralizing stages and determined the information they provide about the fluid sources in this system. Three fluid generations recorded in pseudosecondary to secondary fluid inclusions have been identified at Panasqueira. The first fluid generation identified consists of CO2-bearing fluid inclusions with homogenization temperatures ranging between 260 and 320 °C and salinities between 5 and 8 eq wt % NaCl. Petrographic constraints indicate that this first generation (1) is paragenetically related to the main oxide-silicate stage. Two lower-temperature CO2-absent fluid generations (2a and 2b) have been identified and are represented by secondary fluid inclusions postdating the main oxide-silicate stage. This stage was likely trapped under high pressures and lithostatic conditions (Jacques and Pascal, 2017). Generation (2a) consists of high-salinity (20-30 eq wt % NaCl) fluids with homogenization temperatures ranging between 180°C and 250°C. Generation (2b) consists of low-salinity (<2 wt %) low homogenization temperature (100-150°C) fluid inclusions. Conclusive petrographic evidence of the relationship between these two late-stage fluid generations and specific late mineral stages are scarce. However, fluid compositions suggests that generation (2a) is related to the main sulfide stage and generation (2b) is related to the late carbonate stage. The PTX evolution of fluids at Panasqueira indicate a transition

  18. Fluid inclusions in stony meteorites

    NASA Technical Reports Server (NTRS)

    Warner, J. L.; Ashwal, L. D.; Bergman, S. C.; Gibson, E. K., Jr.; Henry, D. J.; Lee-Berman, R.; Roedder, E.; Belkin, H. E.

    1983-01-01

    The fluid inclusions presently described for five stony meteorites brings to seven the number of such meteorites confirmed. Homogenization temperatures are reproducible in each inclusion, and range from 25 C to over 225 C, with some vapor plus liquid inclusions remaining at 225 C, the highest temperature in these microthermometric experiments. Upon cooling, the fluid in some inclusions appears to freeze, as indicated by deformation and immobilization of the vapor bubble at low temperatures. Melting temperatures are by contrast difficult to observe and are not reproducible. Microthermometric data for the fluid in diogenite ALPHA 77256 and inclusions in four chondrites suggest that the fluid is aqueous, with a high solute content.

  19. Endoscopic Transmaxillary Transposition of Temporalis Flap for Recurrent Cerebrospinal Fluid Leak Closure.

    PubMed

    Thomas, Regi; Girishan, Shabari; Chacko, Ari George

    2016-12-01

    Objective  To describe the technique of endoscopic transmaxillary temporalis muscle flap transposition for the repair of a persistent postoperative sphenoidal cerebrospinal fluid leak. Design  The repair of a recurrent cerebrospinal fluid leak for a patient who had undergone endoscopic transsphenoidal excision of an invasive silent corticotroph Hardy C and Knosp Grade IV pituitary adenoma was undertaken. The patient had completed postoperative radiotherapy for the residual tumor and presented with cerebrospinal fluid leak, 1 year later. The initial two attempts to repair the cerebrospinal fluid leak with free grafts failed. Therefore, an endoscopic transmaxillary transposition of the temporalis muscle flap was attempted to stop the cerebrospinal fluid leak. Results  The endoscopic transmaxillary transposition of the vascularized temporalis muscle flap onto the cerebrospinal fluid leak repair site resulted in successful closure of the cerebrospinal fluid leak. Conclusion  Endoscopic transmaxillary transposition of the temporalis flap resulted in closure of recurrent cerebrospinal fluid leak in a patient with recurrent pituitary adenoma, who had undergone previous surgery and radiotherapy. This technique has advantages over the endoscopic transpterygoid transposition of the same flap and could be used as a complementary technique in selected patients.

  20. Forensic interlaboratory evaluation of the ForFLUID kit for vaginal fluids identification.

    PubMed

    Giampaoli, Saverio; Alessandrini, Federica; Berti, Andrea; Ripani, Luigi; Choi, Ajin; Crab, Roselien; De Vittori, Elisabetta; Egyed, Balazs; Haas, Cordula; Lee, Hwan Young; Korabecná, Marie; Noel, Fabrice; Podini, Daniele; Tagliabracci, Adriano; Valentini, Alessio; Romano Spica, Vincenzo

    2014-01-01

    Identification of vaginal fluids is an important step in the process of sexual assaults confirmation. Advances in both microbiology and molecular biology defined technical approaches allowing the discrimination of body fluids. These protocols are based on the identification of specific bacterial communities by microfloraDNA (mfDNA) amplification. A multiplex real time-PCR assay (ForFLUID kit) has been developed for identifying biological fluids and for discrimination among vaginal, oral and fecal samples. In order to test its efficacy and reliability of the assay in the identification of vaginal fluids, an interlaboratory evaluation has been performed on homogeneous vaginal swabs. All the involved laboratories were able to correctly recognize all the vaginal swabs, and no false positives were identified when the assay was applied on non-vaginal samples. The assay represents an useful molecular tool that can be easily adopted by forensic geneticists involved in vaginal fluid identification. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    PubMed

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  2. Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions

    PubMed Central

    Hayat, Tasawar; Haider, Farwa; Alsaedi, Ahmed

    2017-01-01

    Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field. PMID:28380014

  3. Homogeneous wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  4. Distributions of nerve and muscle fibre types in locust jumping muscle.

    PubMed

    Hoyle, G

    1978-04-01

    Muscle fibres of the locust extensor tibiae (jumping muscle) were examined by interference microscopy and by electron microscopy. The electrical responses of single fibres and the mechanical responses of bundles or selected regions to the nerve fibres were examined. Four axons innervate the muscle: fast (FETi), slow (SETi), common inhibitor (CI) and dorsal unpaired median (DUMETi). Their distributions were examined by combined electrophysiological tracing and EM sectioning. The mean diameter of muscle fibres in different regions varies from 40 to 140 micrometer and is related to the local leg thickness rather than muscle fibre type. The fine structure of a fibre is related to its innervation. Fibres innervated by FETi but not SETi are of fast type ultrastructurally. Fibres innervated by SETi but not by FETi are of slow type ultrastructurally. Fibres innervated by both axons are generally intermediate between the extremes though more nearly of fast type than slow. Distal slow muscle fibres have much slower relaxation rates than do proximal ones. The most proximal bundles are of mixed muscle fibre type. There is an abrupt transition from a mixed population to homogeneous fast type, in the muscle units immediately distal to the most proximal bundles. This transition is associated with the presence of DUMETi terminals on some of the fibres distal to the transition point. There are no SETi endings on these same fibres. Fibres innervated by both SETi and FETi are scattered throughout the leg, but are commonest in the dorsal bundles. The percentage of these increases progressively passing distally. The most distal muscle fibres are innervated by SETi but not by FETi. It is concluded that different regions of the muscle will play different roles functionally since they are differentially sensitive to the pattern of SETi discharge.

  5. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  6. Immobilization/remobilization and the regulation of muscle mass

    NASA Technical Reports Server (NTRS)

    Almon, R. R.

    1983-01-01

    The relationship between animal body weight and the wet and dry weights of the soleus and EDL muscles was derived. Procedures were examined for tissue homogenization, fractionation, protein determination and DNA determination. A sequence of procedures and buffers were developed to carry out all analyses on one small muscle. This would yield a considerable increase in analytical strength associated with paired statistics. The proposed casting procedure which was to be used for immobilization was reexamined.

  7. Approximate solution to the Hopf Phi equation for isotropic homogeneous fluid turbulence

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1982-01-01

    Consistent with the observed t to the -n decay laws for isotropic homogeneous turbulence and the form of the longitudinal correlation function f(r, t) for small r, the Hopf Phi equation is shown to be satisfied approximately by an asymptotic power series in t to the -n. This solution features a self-similar universal equilibrium functional which manifests Kolmogoroff-type scaling.

  8. Mixing high-viscosity fluids via acoustically driven bubbles

    NASA Astrophysics Data System (ADS)

    Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun

    2017-01-01

    We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.

  9. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions.

    PubMed

    Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.

  10. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  11. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    PubMed Central

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  12. The ineffectiveness of (±)-carnitine preventing the twitchings of striated frog muscle in 0.7% sodium chloride solution

    PubMed Central

    Friebel, H.

    1959-01-01

    The spontaneous twitchings of isolated frog sartorius muscles in 0.7% NaCl solution have been studied. Addition of 1 mg./ml. of (±)-carnitine hydrochloride, or of (±)-carnitine base, to the bath fluid had no influence on the spontaneous activity of the muscles, their excitability or their ability to liberate potassium. This indicates that carnitine is not a natural inhibitor of striated frog muscle. Fluids enriched with potassium either from twitching muscle or by addition of KCl inhibited the activity of muscles reversibly. PMID:13825014

  13. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    PubMed

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  14. Applications of High and Ultra High Pressure Homogenization for Food Safety

    PubMed Central

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide “fresh-like” products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350–400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered. PMID:27536270

  15. Characterization of fluid inclusions from mineralized pegmatites of the Damara Belt, Namibia: insight into late-stage fluid evolution and implications for mineralization

    NASA Astrophysics Data System (ADS)

    Ashworth, Luisa; Kinnaird, Judith Ann; Nex, Paul Andrew Martin; Erasmus, Rudolph Marthinus; Przybyłowicz, Wojciech Józef

    2018-05-01

    Mineralized NYF and LCT pegmatites occur throughout the northeast-trending Neoproterozoic Damara Belt, Namibia. Mineralization in the pegmatites varies geographically, from the northeast, where they are enriched in Li-Be, to the southwest, where they also contain notable Sn and U. Similar fluid inclusion populations occur throughout the pegmatites, regardless of their respective metal enrichments, and primary fluid inclusion textures were destroyed by continued fluid activity. Pseudosecondary to secondary inclusions are aqueo-carbonic, carbonic, and aqueous in composition, and have been divided into five types. The earliest populations are saline (>26.3 eq. wt.% NaCl), homogenizing at temperatures in excess of 300 °C. Their carbonic phase is composed of CO2, with minor CH4, and micro-elemental mapping indicates they contain trace metals, including Ca, Fe, Zn, Cu, and K. Type 3 inclusions formed later, homogenize at 325 °C, and are less saline, with a carbonic phase composed of CO2. Type 4 carbonic inclusions are composed of pure CO2, and represent the latest stages of fluid evolution, while Type 5 aqueous inclusions are believed to be unrelated to the crystallization of the pegmatites, and rather the result of regional Cretaceous magmatism, or the ingress of meteoric water. The similarities in fluid inclusion populations observed in the pegmatites suggest that differences in mineralization were driven by magma composition rather than fluid activity alone, however saline fluids facilitated the enrichment and deposition of metals during the late stages of crystallization. Furthermore, the similarities between fluid inclusion populations in different pegmatites suggests they share a similar fluid evolution.

  16. Homogeneity Pursuit

    PubMed Central

    Ke, Tracy; Fan, Jianqing; Wu, Yichao

    2014-01-01

    This paper explores the homogeneity of coefficients in high-dimensional regression, which extends the sparsity concept and is more general and suitable for many applications. Homogeneity arises when regression coefficients corresponding to neighboring geographical regions or a similar cluster of covariates are expected to be approximately the same. Sparsity corresponds to a special case of homogeneity with a large cluster of known atom zero. In this article, we propose a new method called clustering algorithm in regression via data-driven segmentation (CARDS) to explore homogeneity. New mathematics are provided on the gain that can be achieved by exploring homogeneity. Statistical properties of two versions of CARDS are analyzed. In particular, the asymptotic normality of our proposed CARDS estimator is established, which reveals better estimation accuracy for homogeneous parameters than that without homogeneity exploration. When our methods are combined with sparsity exploration, further efficiency can be achieved beyond the exploration of sparsity alone. This provides additional insights into the power of exploring low-dimensional structures in high-dimensional regression: homogeneity and sparsity. Our results also shed lights on the properties of the fussed Lasso. The newly developed method is further illustrated by simulation studies and applications to real data. Supplementary materials for this article are available online. PMID:26085701

  17. A rapid fluorescence assay for danofloxacin in beef muscle: effect of muscle type on limit of quantitation.

    PubMed

    Schneider, Marilyn J

    2008-08-01

    A simple, rapid fluorescence screening assay was applied to the analysis of beef muscle for danofloxacin at the U.S. tolerance level of 200 ng/g. Muscle samples were homogenized in acetic acid-acetonitrile, the resultant mixture centrifuged, and fluorescence of the supernatants was then measured. The significant difference between the fluorescence of control muscle sample extracts and extracts of samples fortified at 200 ng/g allowed for successful discrimination between the samples. Setting a threshold level at the average 200 ng/g fortified sample extract fluorescence -3sigma allowed for identification of potentially violative samples. Successful analysis of a group of blind fortified samples over a range of concentrations was accomplished in this manner, without any false-negative results. The limits of quantitation for danofloxacin, as well as enrofloxacin, using this assay were determined in three types of beef muscle (hanging tenderloin, neck, and eye round steak), as well as in serum. Significant differences in limits of quantitation were found among the three different muscle types examined, with hanging tenderloin muscle providing the lowest value. This work not only shows the potential for use of the fluorescence screening assay as an alternative to currently used microbial or antibody-based assays for the analysis of danofloxacin in beef muscle, but also suggests that assays using beef muscle may vary in performance depending on the specific muscle selected for analysis.

  18. Effect of denervation and reinnervation on oxidation of 6-(C-14) glucose by rat skeletal muscle homogenates

    NASA Technical Reports Server (NTRS)

    Dubois, D. C.; Max, S. R.

    1983-01-01

    The effects of denervation and reinnervation of the rat extensor digitorum longus muscle on the oxidation of 6-(C-14) glucose to (C-14)O2 is investigated. Results show that the rate of (C-14)O2 production decreased dramatically following denervation and the decrease became significant 20 days after nerve section. The changes which occurred prior to day 20 apparently reflected the decline of muscle mass. The decreased (C-14)O2 production was found to be due to reduced capacity of the enzymatic system, while there was no change in the apparent affinity for glucose. Results of mixing experiments showed that the loss of oxidative capacity following denervation is not caused by the production of soluble inhibitors by degenerating muscle. Measurements of the (C-14)O2 revealed that oxidative metabolism recovered during reinnervation. The specific activity in reinnervated muscles displayed an 'overshoot' of approximately 50 percent, which returned to control levels by day 60. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate dennervation changes in muscle, although diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.

  19. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  20. Numerical experiments in homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Rogallo, R. S.

    1981-01-01

    The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.

  1. Optimizing homogenization by chaotic unmixing?

    NASA Astrophysics Data System (ADS)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  2. Unbiased estimators for spatial distribution functions of classical fluids

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  3. Electrokinetic micro-fluid mixer

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.

  4. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions

    PubMed Central

    Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883

  5. Muscles within muscles: a tensiomyographic and histochemical analysis of the normal human vastus medialis longus and vastus medialis obliquus muscles

    PubMed Central

    Travnik, Ludvik; Djordjevič, Srdjan; Rozman, Sergej; Hribernik, Marija; Dahmane, Raja

    2013-01-01

    The aim of this study was to show the connection between structure (anatomical and histochemical) and function (muscle contraction properties) of vastus medialis obliquus (VMO) and vastus medialis longus (VML). The non-invasive tensiomyography (TMG) method was used to determine the contractile properties (contraction time; Tc) of VML and VMO muscle, as a reflection of the ratio between the slow and fast fibers in two groups of nine young men. VML and VMO significantly (P < 0.01) differ in the proportion of type 1 (59.6: 44%) and type 2b (6.3: 15%) fibers. The VML muscle is almost entirely composed of type 1 and type 2a fibers. In many samples of this muscle no type 2b fibers were found. The proportion of slow-twitch type 1 fibers is nearly twice as high as the proportion of fast-twitch type 2a fibers. These observations indicate that VML is a slower and more fatigue-resistant muscle than VMO muscle. These characteristics correspond to the different functions of the VML, which is an extensor of the knee, and to the VMO, which maintains the stable position of the patella in the femoral groove. Our results obtained by TMG provided additional evidence that muscle fibers within the segments of VM muscle were not homogenous with regard to their contractile properties, thereby confirming the histochemical results. Tc can be attributed to the higher percentage of slow-twitch fibers – type 1. The statistically shorter Tc (P ≤ 0.001) of VMO (22.8 ± 4.0 ms) compared with VML (26.7 ± 4.0 ms) in our study is consistent with previously found differences in histochemical, morphological and electrophysiological data. In conclusion, the results of this study provide evidence that the VML and VMO muscles are not only anatomically and histochemically different muscles, but also functionally different biological structures. PMID:23586984

  6. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  7. Lyophilization decreases the formation of dialyzable iron by extraction and digestion of chicken breast muscle.

    PubMed

    Karava, Nilesh B; Mahoney, Raymond R

    2011-06-01

    We studied the effect of lyophilization of chicken breast muscle on the formation of dialyzable iron from ferric iron. Chicken breast muscle was used chilled, frozen or lyophilized and was analyzed for sulfhydryl and histidine content. It was then homogenized and mixed with ferric iron. The mixture was extracted with acid or digested with pepsin and pancreatin. The extracts and digests were analyzed for dialyzable ferrous and dialyzable total iron and also for protein. In the chilled muscle, similar amounts of dialyzable iron were formed after acid extraction and after proteolytic digestion; however, digestion led to more dialyzable ferrous iron. Freezing had no effect but lyophilization of the homogenized muscle caused large decreases in dialyzable iron and dialyzable ferrous iron for both extraction and digestion processes. Lyophilization also resulted in decreased extraction of peptides, decreased digestion of muscle proteins and reduced levels of sulfhydryl and histidine residues. Our results demonstrate that dialyzable iron is produced both by acid-soluble low molecular weight muscle component(s) and also by peptides resulting from digestion of muscle proteins: both of which reduce and chelate iron. Reduced formation of dialyzable iron by both mechanisms following lyophilization could be explained by sulfhydryl oxidation and impaired digestion due to protein crosslinking.

  8. [Preparation and characterization of a polyvinylpyrrolidone water-based magnetic fluid].

    PubMed

    Xie, Jian-feng; Zhang, Yang-de; Zeng, Zhao-wu; Wang, Xiao-li; Liu, Xing-yan; Zhou, Wei-hua

    2008-03-01

    To prepare a stable water-based magnetic fluid. A water-based magnetic fluid was prepared by addition of polyvinylpyrrolidone (PVP) as the coating agent for the magnetic particles. After preparation of Fe3O4 by co-precipitation method, PVP was added for its coating, followed by ultrasonic agitation and purification. The magnetic nanoparticles of homogeneously small size and water-based magnetic fluid were obtained, which had good dispersion in water with strong magnetism. PVP can be used as a surfactant to stabilize the magnetic fluid.

  9. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  10. Relation between boundary slip mechanisms and waterlike fluid behavior.

    PubMed

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  11. Vitamin D-binding protein deficiency in mice decreases systemic and select tissue levels of inflammatory cytokines in a murine model of acute muscle injury.

    PubMed

    Kew, Richard R; Tabrizian, Tahmineh; Vosswinkel, James A; Davis, James E; Jawa, Randeep S

    2018-06-01

    Severe acute muscle injury results in massive cell damage, causing the release of actin into extracellular fluids where it complexes with the vitamin D-binding protein (DBP). We hypothesized that a systemic DBP deficiency would result in a less proinflammatory phenotype. C57BL/6 wild-type (WT) and DBP-deficient (DBP-/-) mice received intramuscular injections of either 50% glycerol or phosphate-buffered saline into thigh muscles. Muscle injury was assessed by histology. Cytokine levels were measured in plasma, muscle, kidney, and lung. All animals survived the procedure, but glycerol injection in both strains of mice showed lysis of skeletal myocytes and inflammatory cell infiltrate. The muscle inflammatory cell infiltrate in DBP-deficient mice had remarkably few neutrophils as compared with WT mice. The neutrophil chemoattractant CXCL1 was significantly reduced in muscle tissue from DBP-/- mice. However, there were no other significant differences in muscle cytokine levels. In contrast, plasma obtained 48 hours after glycerol injection revealed that DBP-deficient mice had significantly lower levels of systemic cytokines interleukin 6, CCL2, CXCL1, and granulocyte colony-stimulating factor. Lung tissue from DBP-/- mice showed significantly decreased amounts of CCL2 and CXCL1 as compared with glycerol-treated WT mice. Several chemokines in kidney homogenates following glycerol-induced injury were significantly reduced in DBP-/- mice: CCL2, CCL5, CXCL1, and CXCL2. Acute muscle injury triggered a systemic proinflammatory response as noted by elevated plasma cytokine levels. However, mice with a systemic DBP deficiency demonstrated a change in their cytokine profile 48 hours after muscle injury to a less proinflammatory phenotype.

  12. Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung

    PubMed Central

    Bokka, Kishore K.; Jesudason, Edwin C.; Lozoya, Oswaldo A.; Guilak, Farshid; Warburton, David; Lubkin, Sharon R.

    2015-01-01

    Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP) begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs. PMID:26147967

  13. Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.

    PubMed

    Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J

    2010-11-16

    Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.

  14. Transduction of skeletal muscles with common reporter genes can promote muscle fiber degeneration and inflammation.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Qian, Hongwei; Gregorevic, Paul

    2012-01-01

    Recombinant adeno-associated viral vectors (rAAV vectors) are promising tools for delivering transgenes to skeletal muscle, in order to study the mechanisms that control the muscle phenotype, and to ameliorate diseases that perturb muscle homeostasis. Many studies have employed rAAV vectors carrying reporter genes encoding for β-galactosidase (β-gal), human placental alkaline phosphatase (hPLAP), and green fluorescent protein (GFP) as experimental controls when studying the effects of manipulating other genes. However, it is not clear to what extent these reporter genes can influence signaling and gene expression signatures in skeletal muscle, which may confound the interpretation of results obtained in experimentally manipulated muscles. Herein, we report a strong pro-inflammatory effect of expressing reporter genes in skeletal muscle. Specifically, we show that the administration of rAAV6:hPLAP vectors to the hind limb muscles of mice is associated with dose- and time-dependent macrophage recruitment, and skeletal muscle damage. Dose-dependent expression of hPLAP also led to marked activity of established pro-inflammatory IL-6/Stat3, TNFα, IKKβ and JNK signaling in lysates obtained from homogenized muscles. These effects were independent of promoter type, as expression cassettes featuring hPLAP under the control of constitutive CMV and muscle-specific CK6 promoters both drove cellular responses when matched for vector dose. Importantly, the administration of rAAV6:GFP vectors did not induce muscle damage or inflammation except at the highest doses we examined, and administration of a transgene-null vector (rAAV6:MCS) did not cause damage or inflammation at any of the doses tested, demonstrating that GFP-expressing, or transgene-null vectors may be more suitable as experimental controls. The studies highlight the importance of considering the potential effects of reporter genes when designing experiments that examine gene manipulation in vivo.

  15. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    PubMed Central

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  16. Homogeneous internal wave turbulence driven by tidal flows

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  17. GLUT-3 expression in human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Stuart, C. A.; Wen, G.; Peng, B. H.; Popov, V. L.; Hudnall, S. D.; Campbell, G. A.

    2000-01-01

    Muscle biopsy homogenates contain GLUT-3 mRNA and protein. Before these studies, it was unclear where GLUT-3 was located in muscle tissue. In situ hybridization using a midmolecule probe demonstrated GLUT-3 within all muscle fibers. Fluorescent-tagged antibody reacting with affinity-purified antibody directed at the carboxy-terminus demonstrated GLUT-3 protein in all fibers. Slow-twitch muscle fibers, identified by NADH-tetrazolium reductase staining, possessed more GLUT-3 protein than fast-twitch fibers. Electron microscopy using affinity-purified primary antibody and gold particle-tagged second antibody showed that the majority of GLUT-3 was in association with triads and transverse tubules inside the fiber. Strong GLUT-3 signals were seen in association with the few nerves that traversed muscle sections. Electron microscopic evaluation of human peripheral nerve demonstrated GLUT-3 within the axon, with many of the particles related to mitochondria. GLUT-3 protein was found in myelin but not in Schwann cells. GLUT-1 protein was not present in nerve cells, axons, myelin, or Schwann cells but was seen at the surface of the peripheral nerve in the perineurium. These studies demonstrated that GLUT-3 mRNA and protein are expressed throughout normal human skeletal muscle, but the protein is predominantly found in the triads of slow-twitch muscle fibers.

  18. Nitric oxide production by cultured human aortic smooth muscle cells: stimulation by fluid flow

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Tilton, R. G.; Eskin, S. G.; McIntire, L. V.

    1998-01-01

    This study demonstrated that exposure of cultured human aortic smooth muscle cells (SMC) to fluid flow resulted in nitric oxide (NO) production, monitored by nitrite and guanosine 3',5'-cyclic monophosphate production. A rapid burst in nitrite production rate was followed by a more gradual increase throughout the period of flow exposure. Neither the initial burst nor the prolonged nitrite production was dependent on the level of shear stress in the range of 1.1-25 dyn/cm2. Repeated exposure to shear stress after a 30-min static period restimulated nitrite production similar to the initial burst. Ca(2+)-calmodulin antagonists blocked the initial burst in nitrite release. An inhibitor of nitric oxide synthase (NOS) blocked nitrite production, indicating that changes in nitrite reflect NO production. Treatment with dexamethasone or cycloheximide had no effect on nitrite production. Monoclonal antibodies directed against the inducible and endothelial NOS isoforms showed no immunoreactivity on Western blots, whereas monoclonal antibodies directed against the neuronal NOS gave specific products. These findings suggest that human aortic SMC express a constitutive neuronal NOS isoform, the enzymatic activity of which is modulated by flow.

  19. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  20. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  1. Muscle-driven finite element simulation of human foot movements.

    PubMed

    Spyrou, L A; Aravas, N

    2012-01-01

    This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.

  2. The effect of profound dehydration on electrical impedance of mouse skeletal muscle

    PubMed Central

    Li, Jia; Sanchez, B.; Rutkove, Seward B.

    2014-01-01

    To determine if electrical impedance myography (EIM) technique can still be used safely to monitor muscle in cases of severe dehydration, we measured the electrical impedance at 1 kHz - 1 MHz (37 frequencies) of n=8 wild type mice during 48 h of fluid deprivation and compared to the results of n=8 mice that were provided with water ad libitum. Based on the relative change in the R0 (8% p=0.59) parameter from the Cole impedance model, there is a non-significant change in regard to the muscle extracellular fluid when compared to the relative change of body weight and body water loss (19.6% p<0.0001 and 26.1% p<0.0001 respectively). The negligible changes of the phase at 50 kHz (1% p=0.88) confirm both the muscle fibers structural integrity and viability remained intact for that period of time. Accordingly, EIM can still be used to determine the status of muscle even during profound dehydration. PMID:25570009

  3. Skeletal muscle biopsy studies of cardiac patients.

    PubMed

    Fekete, G; Boros, Z; Cserhalmi, L; Apor, P

    1987-01-01

    Eleven patients diagnosed and treated for congestive cardiomyopathy (COCM) of unknown aetiology, and another 10 patients, with congestive alcoholic heart muscle disease (ACOCM) were studied. Muscle biopsy samples were obtained from the vastus lateralis (VL) and the gastrocnemius (G) muscles. In part of the sample muscle the fibre pattern was classified by means of ATPase activity staining, a technique based on the pH lability of the fibres concerned. Fibre typing and area measurements were carried out by light microscope. The other part of the sample was used as muscle homogenate of which the Ca2+-activated ATPase activity as well as citrate synthetase (CS) and aldolase activities were measured. No significant difference was found in these enzyme activities between the two groups of patients. The proportion of the slow twitch (ST) fibres in the VL, mainly in the patients with ACOCM, was lower as compared to data for healthy subjects. A similar tendency was revealed for G. In both muscles tested, the area of ST fibres was smaller in the ACOCM group. The fast twitch (FT) fibre area proved to be slightly different in the two groups of subjects tested. Occurrence of degenerative signs in the histological tests was higher in the ACOCM than in the COCM group. It was concluded that differences in the skeletal muscles of patients with ACOCM and COCM may primarily account for the alcoholism. The disease of the heart muscle has little effect on the function of skeletal muscle. Even so, a low amount or lack of physical activity may have an unfavourable influence on the skeletal muscles of patients with heart muscle disease.

  4. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  5. Active mixing of complex fluids at the microscale

    DOE PAGES

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-09-22

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. As a result, active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks withmore » programmable control of local composition.« less

  6. Active mixing of complex fluids at the microscale

    PubMed Central

    Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.

    2015-01-01

    Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. Active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks with programmable control of local composition. PMID:26396254

  7. Numerical Tests and Properties of Waves in Radiating Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less

  8. Upper and lower limb muscles in patients with COPD: similarities in muscle efficiency but differences in fatigue resistance.

    PubMed

    Miranda, Eduardo Foschini; Malaguti, Carla; Marchetti, Paulo Henrique; Dal Corso, Simone

    2014-01-01

    Peripheral muscle dysfunction is a common finding in patients with COPD; however, the structural adaptation and functional impairment of the upper and lower limb muscles do not seem to be homogenous. We compared muscle fatigue and recovery time between 2 representative muscles: the middle deltoid and the quadriceps femoris. Twenty-one subjects with COPD (FEV1 46.1 ± 10.3% of predicted) underwent maximal voluntary isometric contraction and an endurance test (60% of maximal voluntary isometric contraction, to the limit of tolerance). The maximal voluntary isometric contraction test was repeated after 10 min, 30 min, 60 min, and 24 hours for both the quadriceps femoris and middle deltoid. Surface electromyography was recorded throughout the endurance test. Maximal voluntary isometric contraction significantly decreased only for the middle deltoid between 10 and 60 min after the endurance test. A significant increase of the root mean square and a greater decline in median frequency throughout the endurance test occurred for the middle deltoid, compared with the quadriceps femoris. When dyspnea and fatigue scores were corrected by endurance time, higher values were observed for the middle deltoid (0.07 and 0.08, respectively) in relation to the quadriceps femoris (0.02 and 0.03, respectively). Subjects with COPD had a higher fatigability of a representative upper limb muscle (middle deltoid) than a lower limb muscle (quadriceps femoris).

  9. Intramuscular pressures for monitoring different tasks and muscle conditions

    NASA Technical Reports Server (NTRS)

    Sejersted, O. M.; Hargens, A. R.

    1995-01-01

    Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.

  10. Free Falling in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  11. Muscle activity during the golf swing.

    PubMed

    McHardy, A; Pollard, H

    2005-11-01

    In the right hands, the golf swing is a motion that inspires looks of awe from the public. It is a complex movement of the whole body to generate power to a golf ball to propel the ball great distances with accuracy. This movement relies on the coordinated sequence of muscle activation to produce a fluid and reproducible movement. This paper reviews the literature on golf swing related muscle activity. The phases of this activity are discussed with a view to assisting the practitioner in understanding the swing. Such understanding may help in the management of the injured golfer.

  12. Review of numerical models of cavitating flows with the use of the homogeneous approach

    NASA Astrophysics Data System (ADS)

    Niedźwiedzka, Agnieszka; Schnerr, Günter H.; Sobieski, Wojciech

    2016-06-01

    The focus of research works on cavitation has changed since the 1960s; the behaviour of a single bubble is no more the area of interest for most scientists. Its place was taken by the cavitating flow considered as a whole. Many numerical models of cavitating flows came into being within the space of the last fifty years. They can be divided into two groups: multi-fluid and homogeneous (i.e., single-fluid) models. The group of homogenous models contains two subgroups: models based on transport equation and pressure based models. Several works tried to order particular approaches and presented short reviews of selected studies. However, these classifications are too rough to be treated as sufficiently accurate. The aim of this paper is to present the development paths of numerical investigations of cavitating flows with the use of homogeneous approach in order of publication year and with relatively detailed description. Each of the presented model is accompanied by examples of the application area. This review focuses not only on the list of the most significant existing models to predict sheet and cloud cavitation, but also on presenting their advantages and disadvantages. Moreover, it shows the reasons which inspired present authors to look for new ways of more accurate numerical predictions and dimensions of cavitation. The article includes also the division of source terms of presented models based on the transport equation with the use of standardized symbols.

  13. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People

    PubMed Central

    Mosole, Simone; Zampieri, Sandra; Furlan, Sandra; Carraro, Ugo; Löefler, Stefan; Kern, Helmut; Volpe, Pompeo

    2018-01-01

    Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins. PMID:29662923

  14. Control approach development for variable recruitment artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-04-01

    This study characterizes hybrid control approaches for the variable recruitment of fluidic artificial muscles with double acting (antagonistic) actuation. Fluidic artificial muscle actuators have been explored by researchers due to their natural compliance, high force-to-weight ratio, and low cost of fabrication. Previous studies have attempted to improve system efficiency of the actuators through variable recruitment, i.e. using discrete changes in the number of active actuators. While current variable recruitment research utilizes manual valve switching, this paper details the current development of an online variable recruitment control scheme. By continuously controlling applied pressure and discretely controlling the number of active actuators, operation in the lowest possible recruitment state is ensured and working fluid consumption is minimized. Results provide insight into switching control scheme effects on working fluids, fabrication material choices, actuator modeling, and controller development decisions.

  15. Evaluating skeletal muscle electromechanical delay with intramuscular pressure.

    PubMed

    Go, Shanette A; Litchy, William J; Evertz, Loribeth Q; Kaufman, Kenton R

    2018-06-08

    Intramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD). Force, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated. A statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms). IMP reflects changes in muscle tension due to the contractile muscle elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Hypersurface Homogeneous Cosmological Model in Modified Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Katore, S. D.; Hatkar, S. P.; Baxi, R. J.

    2016-12-01

    We study a hypersurface homogeneous space-time in the framework of the f (R, T) theory of gravitation in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and power law volumetric expansions. We also solve the field equations by assuming the proportionality relation between the shear scalar (σ ) and the expansion scalar (θ ). It is observed that in the exponential model, the universe approaches isotropy at large time (late universe). The investigated model is notably accelerating and expanding. The physical and geometrical properties of the investigated model are also discussed.

  17. Muscle recruitment variations during wrist flexion exercise: MR evaluation

    NASA Technical Reports Server (NTRS)

    Fleckenstein, J. L.; Watumull, D.; Bertocci, L. A.; Nurenberg, P.; Peshock, R. M.; Payne, J. A.; Haller, R. G.; Blomqvist, C. G. (Principal Investigator)

    1994-01-01

    OBJECTIVE: Many exercise protocols used in physiological studies assume homogeneous and diffuse muscle recruitment. To test this assumption during a "standard" wrist flexion protocol, variations in muscle recruitment were assessed using MRI in eight healthy subjects. MATERIALS AND METHODS: Variations were assessed by comparing the right to the left forearms and the effect of slight (15 degrees) pronation or supination at the wrist. RESULTS: Postexercise imaging showed focal regions of increased signal intensity (SI), indicating relatively strong recruitment, most often in entire muscles, although occasionally only in subvolumes of muscles. In 15 of 26 studies, flexor carpi radialis (FCR) showed more SI than flexor carpi ulnaris, while in 11 studies SI in these muscles increased equivalently. Relatively greater FCR recruitment was seen during pronation and/or use of the nondominant side. Palmaris longus, a wrist flexor, did not appear recruited in 4 of 11 forearms in which it was present. A portion of the superficial finger flexor became hyperintense in 89% of studies, while recruitment of the deep finger flexor was seen only in 43%. CONCLUSION: Inter- and intraindividual variations in forearm muscle recruitment should be anticipated in physiological studies of standard wrist flexion exercise protocols.

  18. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  19. Nonmuscle myosin is regulated during smooth muscle contraction.

    PubMed

    Yuen, Samantha L; Ogut, Ozgur; Brozovich, Frank V

    2009-07-01

    The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and these proteins were resolved by isoelectric focusing. Using this method, intact mouse aortic smooth muscle homogenates demonstrated four distinct RLC isoelectric variants. These spots were identified as phosphorylated NM-RLC (most acidic), nonphosphorylated NM-RLC, phosphorylated SM-RLC, and nonphosphorylated SM-RLC (most basic). During smooth muscle activation, NM-RLC phosphorylation increased. During depolarization, the increase in NM-RLC phosphorylation was unaffected by inhibition of either Rho kinase or PKC. However, inhibition of Rho kinase blocked the angiotensin II-induced increase in NM-RLC phosphorylation. Additionally, force for angiotensin II stimulation of aortic smooth muscle from heterozygous nonmuscle myosin IIB knockout mice was significantly less than that of wild-type littermates, suggesting that, in smooth muscle, activation of nonmuscle myosin is important for force maintenance. The data also demonstrate that, in smooth muscle, the activation of nonmuscle myosin is regulated by Ca(2+)-calmodulin-activated myosin light chain kinase during depolarization and a Rho kinase-dependent pathway during agonist stimulation.

  20. The Smooth Muscle of the Artery

    DTIC Science & Technology

    1975-01-01

    membrpne structure (343). Certainly, the transported proteins may serve is A source of amino acids (lysin-rich and/or proline rich proceins?) for bio...into Long-Chain Fatty Acids by Cellular Fractions from Normal Rabbit Aorts Suprrnatant fraction 1(# 4 hTABOLI CHIAACTERIStICS OF SMOOH MUSCLE 3 I shall...acetate into fatty acids in a homogenate of rat aorta. VT It took many more years and much refine- Lipid Synthesis ment of techniques to analyze more by

  1. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  2. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle.

    PubMed

    Feher, J J; Waybright, T D; Fine, M L

    1998-08-01

    The sonic muscle of the oyster toadfish, Opsanus tau, can produce unfused contractions at 300 Hz. Electron microscopy shows a great abundance of the Sarcoplasmic reticulum (SR) in this muscle, but no functional characterization of the capabilities of the SR has been reported. We measured the oxalate-supported Ca2+ uptake rate and capacities of homogenates of toadfish sonic muscle and rat extensor digitorum longus (EDL) muscle, and estimated the number of pump units by titration with thapsigargin, a high-affinity, specific inhibitor of the SR Ca-ATPase. The Ca2+ uptake rate averaged 70.9 +/- 9.5 mumol min -1 per g tissue for the toad fish sonic muscle, and 73.5 +/- 3.7 mumol min -1 g-1 for rat EDL. The capacity for Ca2+ -oxalate uptake was 161 +/- 20 mumol g -1 and 33 +/- 2 mumol g -1 for toadfish sonic muscle and rat EDL, respectively. Thus, the rates of Ca2+ uptake were similar in the two muscles, but the toadfish sonic muscle had about five times the capacity of the rat EDL. The number of pumps as estimated by thapsigargin titration was 68 +/- 4 nmol of Ca-ATPase per g tissue in the toadfish, and 42 +/- 5 nmol Ca-ATPase per g tissue in the rat EDL. The turnover number, defined as the Ca2+ uptake divided by the number of pumps, was 1065 +/- 150 min -1 for toadfish and 1786 +/- 230 min -1 for rat EDL (p < 0.05) at 37 degrees C. The Ca2+ uptake rate of toadfish sonic muscle at 22 degree C, a typical temperature for calling toadfish, averaged 42 +/- 1% of its rate at 37 degree C. At these operating temperatures, the toadfish SR is likely to be slower than the rat fast-twitch SR, yet the toadfish sonic muscle supports more rapid contractions. One explanation for this is that the voluminous SR provides activator Ca2+ for contraction, but the abundant parvalbumin plays a major role in relaxation.

  3. Alteration, oxygen isotope, and fluid inclusion study of the Meishan iron oxide-apatite deposit, SE China

    NASA Astrophysics Data System (ADS)

    Yu, Jinjie; Che, Linrui; Wang, Tiezhu

    2015-10-01

    The Meishan deposit (338 Mt at 39 % Fe) comprises massive ores in the main orebody and stockwork and disseminated ores along the main orebody. Four stages of mineralization and related alteration have been identified. The second stage of mineralization, which was the main stage of iron mineralization, formed stringer, disseminated iron ores, as well as the main Meishan orebody. The fourth stage formed small pyrite and/or gold orebodies above or alongside the main magnetite orebody. Stage 2 apatites have homogenization temperatures of 257-485 °C and salinities of 7.3-11 wt% NaCleq. Calculated δ18Ofluid values of magnetite and apatite from the disseminated ores vary between 7.7 and 14.9 ‰, which is similar to values observed in the massive ores (8.1-12.9 ‰). The high-18O fluids at Meishan have been interpreted as being of magmatic-hydrothermal origin. These fluids are indicative of the boiling of ore-forming fluids. Quartz, occurring as cavity fillings, gives homogenization temperatures from 202 to 344 °C, with most values lying between 250 and 330 °C. Corresponding salinities are ˜5 wt% NaCleq. Calculated δ18Ofluid values are +6.4 to +6.8 ‰. These values indicate that the lower-temperature (250-330 °C) quartz was deposited from a cooling magmatic-hydrothermal fluid. Stage 3 siderites contain fluid inclusions that homogenized between 190 and 310 °C, mainly between 210 and 290 °C. Corresponding salinities are 4-8 wt% NaCleq. Stage 4 quartz-carbonate veinlets contain fluid inclusions that homogenized at moderate to low temperatures (150-230 °C) and exhibit low salinities (2-10 wt% NaCl eq). δ18Ofluid values of the mineralizing fluids for the quartz and calcite can be calculated to vary from -0.7 to +5.6 ‰ and +6.3 to +10.2 ‰, respectively. While there is some overlap, the δ18O values of the fluids are generally lower than those observed in the massive and disseminated magnetite ores. δD values for the quartz and calcite vary between -154 and -123

  4. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  5. Design of a broadband ultra-large area acoustic cloak based on a fluid medium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Jiang, Ping

    2014-10-01

    A broadband ultra-large area acoustic cloak based on fluid medium was designed and numerically implemented with homogeneous metamaterials according to the transformation acoustics. In the present work, fluid medium as the body of the inclusion could be tuned by changing the fluid to satisfy the variant acoustic parameters instead of redesign the whole cloak. The effective density and bulk modulus of the composite materials were designed to agree with the parameters calculated from the coordinate transformation methodology by using the effective medium theory. Numerical simulation results showed that the sound propagation and scattering signature could be controlled in the broadband ultra-large area acoustic invisibility cloak, and good cloaking performance has been achieved and physically realized with homogeneous materials. The broadband ultra-large area acoustic cloaking properties have demonstrated great potentials in the promotion of the practical applications of acoustic cloak.

  6. Near-critical point phenomena in fluids (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Beysens, D.

    1992-01-01

    Understanding the effects of gravity is essential if the behavior of fluids is to be predicted in spacecraft and orbital stations, and, more generally, to give a better understanding of the hydrodynamics in these systems. An understanding is sought of the behavior of fluids in space. What should emerge from the International Microgravity Lab (IML-1) mission is a better understanding of the kinetics of growth in off-critical conditions, in both liquid mixtures and pure fluids. This complex phenomenon is the object of intensive study in physics and materials sciences area. It is also expected that the IML-1 flight will procure key results to provide a better understanding of how a pure fluid can be homogenized without gravity induced convections, and to what extent the 'Piston Effect' is effective in thermalizing the compressible fluids.

  7. THE FREEZING POINT DEPRESSION OF MAMMALIAN TISSUES IN RELATION TO THE QUESTION OF OSMOTIC ACTIVITY OF CELL FLUID

    PubMed Central

    Brodsky, William A.; Appelboom, Johannes W.; Dennis, Warren H.; Rehm, Warren S.; Miley, John F.; Diamond, Israel

    1956-01-01

    The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0°C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid. PMID:13385447

  8. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  9. Fluid inclusion characteristics and hydrocarbon accumulation dating in upper Palaeozoic reservoirs in Hangjinqi region of Northern,Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.

    2017-12-01

    Hangjinqi region is one of the key exploration areas of natural gas in Ordos Basin. The main gas accumulation periods and gas charge dating can be determined through the comprehensive research on the fluid inclusions occurrence characteristics, composition and homogenization temperatures. The results show that: the fluid inclusions in upper palaeozoic sand reservoirs were mainly hosted in quartz overgrowth or cements of fissures of conglomeratic sandstone and medium-fine sandstone. According to the diagenetic stages, composion and homogenization temperatures of fluid inclusions in host minerals, two different phases of hydrocarbon inclusions have been identified. Gas-liquid biphase hydrocarbon inclusions and gas-liquid biphase aqueous inclusion are the main types inclusions with morphology of oval, sub-angular, rectangular, semi-circular and irregular and with gas components of CO2 and CH4. The homogenization temperature of brines inclusions associated with the hydrocarbon inclusions is characterized of continuous distribution and multiple peaks. Three regions such as Shilijiahan, Xinzhao, Shiguhao areas have significant differences in temperature distributions. The integrated analysis of burial and thermo-evolution by combining the employment of homogenization temperature of aqueous inclusions projected on a burial history diagram and hydrocarbon source rock thermal evolution history show that the hydrocarbon charging in Shilijiahan area occurred mainly from Eocene to present. The main accumulation stage in Xinzhao area is from Eocene to present and there may be charging period from late stage of early Jurassic to middle stage of middle Jurassic. The hydrocarbon charging in Shiguhao area occurred mainly from Eocene to present according to the homogenization temperature of fluid inclusions and the features of gas migration.

  10. Dynamics and linear stability of thermocapillary spreading films on homogeneous and micropatterned surfaces

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey Michael

    The recent focus on microfluidic devices has generated substantial interest in small-scale transport phenomena. Because the surface to volume ratio scales inversely with the characteristic length scale, surface forces dominate in microscale systems. In particular, these forces can be manipulated to regulate the motion of thin liquid films. The dynamics and stability of thermocapillary spreading films are theoretically investigated in this dissertation for flow on homogeneous and chemically or topographically patterned substrates. Because the governing equations for spreading films driven by other forces are analogous, the approach and results are valid for general lubrication flows. Experiments have shown that films spreading on homogeneous substrates can undergo a flow transition from a uniform front at the advancing solid-liquid-vapor contact line to an array of parallel rivulets. This instability is investigated via a non-modal, transient analysis because the relevant linearized disturbance operators for spatially inhomogeneous thin films are nonnormal. Stability results for three different contact line models are compared. This investigation of thermocapillary driven spreading is also pursued in the context of characterizing a novel, open-architecture microfluidic device based on flow confinement to completely wetting microstripes through chemical micropatterning of the substrate. The resulting lateral curvature of the fluid significantly influences the dynamics of the liquid. Applied to the dip coating of these patterned substrates, hydrodynamic scaling arguments are used to derive a replacement for the classical Landau-Levich result for homogeneous substrates. Thermocapillary flow along wetting microstripes is then characterized. The lateral curvature modifies the expected spreading velocity and film profile and also suppresses the capillary ridge and instability observed at the advancing contact line on homogeneous surfaces. In addition, a lubrication

  11. Influence of successive badminton matches on muscle strength, power, and body-fluid balance in elite players.

    PubMed

    Abian-Vicen, Javier; Castanedo, Adrián; Abian, Pablo; Gonzalez-Millan, Cristina; Salinero, Juan José; Del Coso, Juan

    2014-07-01

    The aim was to analyze the influence of competitive round on muscle strength, body-fluid balance, and renal function in elite badminton players during a real competition. Body mass, jump height during a countermovement jump, handgrip force, and urine samples were obtained from 13 elite badminton players (6 men and 7 women) before and after the 2nd-round and quarterfinal matches of the national Spanish badminton championship. Sweat rate was determined by using prematch-to-postmatch body-mass change and by weighing individually labeled fluid bottles. Sweat rates were 1.04 ± 0.62 and 0.98 ± 0.43 L/h, while rehydration rate was 0.69 ± 0.26 and 0.91 ± 0.52 L/h for the 2nd round and quarterfinals, respectively. Thus, dehydration was 0.47% ± 1.03% after the 2nd round and 0.23% ± 0.43% after the quarterfinals. There were no differences in prematch-to-postmatch jump height, but jump height was reduced from 37.51 ± 8.83 cm after the 2nd-round game to 34.82 ± 7.37 cm after the quarterfinals (P < .05). No significant differences were found in handgrip force when comparing prepost matches or rounds, although there were significant differences between dominant and nondominant hands (P < .05). The succession of rounds caused the appearance of proteinuria, hematuria, glycosuria, and higher nitrite and ketone concentrations in urine. Rehydration patterns during a real badminton competition were effective to prevent dehydration. A badminton match did not affect jump height or handgrip force, but jump height was progressively reduced by the competitive round. Badminton players' renal responses reflected diminished renal flux due to the high-intensity nature of this racket sport.

  12. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect tomore » the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”« less

  13. Algebraic Reynolds stress modeling of turbulence subject to rapid homogeneous and non-homogeneous compression or expansion

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.

    2016-02-01

    A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper

  14. Preliminary fluid inclusions study in the Bucium Rodu-Frasin Neogene volcanic structure, Metaliferi Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Berbeleac, I.

    2012-04-01

    Bucium Rodu maar-diatreme and Frasin dome volcanic structures and related Au-Ag epithermal deposits are located in the northeastern part of the South Apuseni Mountains, and belong to Bucium-Rosia Montana-Baia de Aries metallogenic district, within so called "Golden Quadrilateral". The microthermometric measurements were carried out using double polished sections, on bipyramidal magmatic quartz phenocrysts and hydrothermal quartz phenocrysts. Depending on the clarity of the quartz, samples were polished down to 200 - 400 μm thick. A standard microscope for transmitted and reflected light was used for the sample petrography. Linkam THM SG600 heating-freezing stage, combined with a Nikon E 400 microscope and a Nikon DXM 1200F digital camera, were used to measure the fluid inclusions homogenization temperatures. The Frasin magmatic quartz phenocrysts, occurs as well-formed bipyramidal β -form quartz phenocrysts and contain apatite, zircon, melt inclusions and fluid inclusions. They reach up to 1 cm in diameter and their cracks are re-filled with carbonate, sericite and sulfides. The size of fluid inclusions ranges from very fine (2-3 μm) up to 25 μm. Primary and pseudosecondary fluid inclusions are not common, they occur in small groups with sizes ranging between 5-20 μm, having two phases: liquid and vapor. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 2 types/fields of range for primary and pseudosecondary fluid inclusions as follows: 1. Liquid rich fluid inclusions (50-60 vol. % liquid) with Th=370-406°C and 2. Vapor rich fluid inclusions (10-30 vol. % liquid) with Th=420-519°C. All of the fluid inclusions homogenize by the disappearance of the vapor phase. Microthermometric data from hydrothermal quartz crystals were obtained from quartz phenocrysts of carbonate-quartz-base metal sulfides-gold veins of the dacite breccias. Primary fluid inclusions from hydrothermal quartz crystals have sizes up to 50

  15. Regarding the influence of heating and the Soret effect on a magnetic fluid seal

    NASA Astrophysics Data System (ADS)

    Krakov, M. S.; Nikiforov, I. V.

    2017-06-01

    The influence of a temperature gradient and the Soret effect on the distribution of particles in a magnetic fluid seal (MFS) is studied. The heating of the MFS is found to be an effective method of homogenizing the magnetic fluid in the seal; in addition, the influence of the Soret effect on this process is found to be essential.

  16. Homogenization of Mammalian Cells.

    PubMed

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  17. Muscle contributions to elbow joint rotational stiffness in preparation for sudden external arm perturbations.

    PubMed

    Holmes, Michael W R; Keir, Peter J

    2014-04-01

    Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (P<.001). Brachioradialis had the largest change in contribution while standing (no load, 18.5%; solid, 23.8%; fluid, 26.3%). Across trials, the greatest contributions were brachialis (30.4±1.9%) and brachioradialis (21.7±2.2%). Contributions from the forearm muscles and triceps were 5.5±0.6% and 9.2±1.9%, respectively. Contributions increased at time points closer to the perturbation (baseline to anticipatory), indicating increased neuromuscular response to resist rotation. This study quantified muscle contributions that resist elbow perturbations, found that forearm muscles contribute marginally and showed that orientation and preload should be considered when evaluating elbow joint stiffness and safety.

  18. Effects of dehydration during cycling on skeletal muscle metabolism in females.

    PubMed

    Logan-Sprenger, Heather M; Heigenhauser, George J F; Killian, Kieran J; Spriet, Lawrence L

    2012-10-01

    This study investigated the effects of progressive dehydration on the time course of changes to whole body substrate oxidation and skeletal muscle metabolism during 120 min of cycling in hydrated females. Subjects (n = 9) cycled for 120 min at approximately 65% VO(2peak) on two occasions: with no fluid (DEH) and with fluid (HYD) replacement to match sweat losses. Venous blood samples were taken at rest and every 20 min and muscle biopsies taken at 0, 60, and 120 min of exercise. DEH subjects lost 0.9% body mass from 0 to 60 min and 1.1% from 60 to 120 min (2.0% total). HR and core temperature (Tc) were significantly greater from 30 to 120 min, plasma volume (Pvol) loss from 40 to 120 min, and RPE from 60 to 120 min in the DEH trial. There were no differences in VO(2) or sweat loss between trials. RER (HYD, 0.85 ± 0.01, vs. DEH, 0.87 ± 0.01) and total CHO oxidation (175 ± 17 vs. 191 ± 17 g) were higher in the DEH trial. Blood (La) was significantly higher in the DEH trial, with no change in plasma free fatty acid and epinephrine concentrations. Muscle glycogenolysis was 31% greater in the DEH trial (252 ± 49 vs. 330 ± 33 mmol.kg(-1) dry muscle), and muscle (La) was also higher at 60 min. Progressive dehydration significantly increased HR, Tc, RPE, Pvol loss, whole body CHO oxidation, and muscle glycogenolysis, and these changes were already apparent in the first hour of exercise when body mass losses were ≤ 1%. The increased muscle glycogenolysis with DEH appeared to be due to increased core and muscle temperature, secondary to less efficient movement of heat from the core to the periphery.

  19. [Intrarenal smooth muscle: histology of a complex urodymamic machine].

    PubMed

    Arias, L F; Ortiz-Arango, N

    2013-03-01

    To know better the microscopic arrangement of the bundles of smooth muscle in the human renal parenchyma, their distribution and anatomical relationships, trying to make a reconstruction of this muscular system. Five adult human kidneys and one fetal kidney were processed "in toto" with cross sections every 300μm. In the histological sections we identify the smooth muscle fibers trying to determine its insertion, course and anatomical relationship with other structures of the kidney tissue. There are bundles of smooth muscle fibers of variable thickness parallel to the edges of the medullary pyramids, bundles that surrounding the medulla in a spiral course, and bundles that accompany arcuate vessels, the latter being the most abundant and easy to identify. These groups of muscle fibers do not have a precise or constant insertion site, their periodicity is not homogeneous and they are not a direct extension of the muscle of the renal pelvis, although some bundles are in contact with it. There are also unusual and inconstant small muscle fibers no associated to vessels in the interstitium of the cortex and, exceptionally, in the medulla. There is a complex microscopic system of smooth muscle fibers that partially surround the renal medulla and are related to renal pelvic muscles without a direct continuity with them. Although this small muscular system is under-recognized, could be very important in urodynamics. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  20. Modification of homogeneous and isotropic turbulence by solid particles

    NASA Astrophysics Data System (ADS)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  1. Dynamic contraction behaviour of pneumatic artificial muscle

    NASA Astrophysics Data System (ADS)

    Doumit, Marc D.; Pardoel, Scott

    2017-07-01

    The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.

  2. Effect of fluid ingestion on neuromuscular function during prolonged cycling exercise.

    PubMed

    Vallier, J-M; Grego, F; Basset, F; Lepers, R; Bernard, T; Brisswalter, J

    2005-04-01

    To investigate the effects of fluid ingestion on neuromuscular function during prolonged cycling exercise. Eight well trained subjects exercised for 180 minutes in a moderate environment at a workload requiring approximately 60% maximal oxygen uptake. Two conditions, fluid (F) and no fluid (NF) ingestion, were investigated. During maximal voluntary isometric contraction (MVC), prolonged cycling exercise reduced (p<0.05) the maximal force generating capacity of quadriceps muscles (after three hours of cycling) and root mean square (RMS) values (after two hours of cycling) with no difference between the two conditions despite greater body weight loss (p<0.05) in NF. The mean power frequency (MPF) for vastus lateralis muscle was reduced (p<0.05) and the rate of force development (RFD) was increased (p<0.05) only during NF. During cycling exercise, integrated electromyographic activity and perceived exertion were increased in both conditions (p<0.05) with no significant effect of fluid ingestion. The results suggest that fluid ingestion did not prevent the previously reported decrease in maximal force with exercise duration, but seems to have a positive effect on some indicators of neuromuscular fatigue such as mean power frequency and rate of force development during maximal voluntary contraction. Further investigations are needed to assess the effect of change in hydration on neural mechanisms linked to the development of muscular fatigue during prolonged exercise.

  3. Forearm Muscle Oxygenation Decreases During Low Levels of Brief, Isometric Contraction

    NASA Technical Reports Server (NTRS)

    Murthy Gita; Kahan, N. J.; Hargens, Alan R.; Rempel, D. M.; Hargens, Murthy G. (Technical Monitor)

    1997-01-01

    Regional muscle pain syndromes can be caused by repeated and sustained exertion of a specific muscle. Such exertion may elevate local tissue fluid pressure, reduce blood flow and tissue oxygenation (TO2), and cause fatigue, pain and functional deficits of the Involved muscle. Low levels (less than 20% maximum voluntary contraction (MVC)) of prolonged static contraction of the upper extremity are common In many occupational settings and May cause fatigue. The purpose of our Investigation was to determine whether TO2 decreases significantly at low levels of static contraction of the extensor carpi radialis brevis (ECRB).

  4. Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Valera, R.

    1984-01-01

    Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.

  5. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    PubMed

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P < 0.05) by 28% in FT fibres, whereas in CON, CP decreased (P < 0.05) by 33% and 23% in ST and FT fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P < 0.05) in CUR compared to CON (425 +/- 25 (+/- S.E.M.) versus 332 +/- 30 ml min(-1)) and remained higher (P < 0.05) throughout exercise. Using monoexponential fitting, the time constant of the exercise-induced muscle VO2 response was slower (P < 0.05) in CUR than in CON (55 +/- 6 versus 33 +/- 5 s). During CUR and CON, muscle homogenate CP was lowered (P < 0.05) by 32 and 35%, respectively, and also muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P < 0.05) in CUR than in CON (1196 +/- 90 versus 1011 +/- 59 mmol) and true mechanical efficiency was lower (P < 0.05) in CUR than in CON (26.2 +/- 2.0 versus 30.9 +/- 1.5%). In conclusion, the present findings provide evidence that FT fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  6. Fluid inclusion constraints on the genesis of the Puladi muscovite deposit in Gongshan County, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yin, Qiong; Liu, Wei

    2017-12-01

    This paper focuses on beryl mines in the Maji region of Yunnan Province, which are characterized by fluid inclusions. Based on petrography theory, mineralogy, and ore-forming geological conditions, beryl can be divided as CO2 and CO2-H2O inclusions. In addition, the characteristics of inclusions in the coordinate of A/B is summarized. The homogenization temperature of fluid inclusions in the coordinate of A ranges from 250 °C to 397 °C, while the salinity of fluid inclusions ranges from 0.18% to 4.27%. By contrast, the homogenization temperature in the coordinate of B ranges from 210 °C to 340 °C, and the salinity is from 0.22% to 5.11%. The pressure of ore-forming fluid in the coordinate of A/B is approximately 83 MPa with densities of 0.8034 g/m3 and 0.8363 g/m3, which are characteristic of mediumtemperature, low-salinity, and medium-density fluids. Based on Raman spectra and different metallogenic depths, the two types of beryl belong to different metallogenic belts. The beryl deposits in Gongshan are of medium-temperature gas-hydrothermal type.

  7. Instability of fluid flow over saturated porous medium

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry

    2013-04-01

    growth. The numerical calculations were also conducted for nonlinear regimes of the flow applying the finite-element method. Flow characteristics are determined at supercritical values of parameters. The work was made under the financial support of Russian Foundation for Basic Research (Grant 12-01-00795). 1. Ochoa-Tapia J. A. and Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. Int. J. Heat Mass Transfer. 1995. N 38. P. 2635-2646. 2. Ochoa-Tapia J. A. and Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment. Int. J. Heat Mass Transfer. 1995. N 38. P. 2647-2655.

  8. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    PubMed Central

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  9. Nonshivering thermogenesis in king penguin chicks. I. Role of skeletal muscle.

    PubMed

    Duchamp, C; Barré, H; Rouanet, J L; Lanni, A; Cohen-Adad, F; Berne, G; Brebion, P

    1991-12-01

    In cold-acclimatized (CA) king penguin chicks exhibiting nonshivering thermogenesis (NST), protein content and cytochrome oxidase (CO) activity of tissue homogenates were measured together with protein content, CO, and respiration rates of isolated mitochondria from skeletal muscle (gastrocnemius and pectoralis) and liver. The comparison was made with chicks reared at thermoneutrality (TN) for at least 3 wk. In CA chicks showing a NST despite the lack of brown adipose tissue, an increase in thermogenic capacity was observed in skeletal muscle in which the oxidative capacity rose (+28% and +50% in gastrocnemius and pectoralis muscles, respectively), whereas no change occurred in the liver. Oxidative capacity of skeletal muscle increased together with the development of mitochondrial inner membrane plus cristae in muscles of CA chicks contrary to their TN littermates (+30 to +50%). Subsarcolemmal mitochondria of CA chicks had a higher protein content (+65% in gastrocnemius muscle) and higher oxidative capacities than in controls. The lower respiratory control ratio of these mitochondria might result from a low ADP phosphorylation rate. No change occurred in the intermyofibrillar fraction nor in liver mitochondria. These findings together with earlier results obtained in cold-acclimated ducklings indicate the marked and suited adaptation of skeletal muscle and in particular of subsarcolemmal mitochondria allowing them to play a role in NST.

  10. Idiopathic and diabetic skeletal muscle necrosis: evaluation by magnetic resonance imaging.

    PubMed

    Kattapuram, Taj M; Suri, Rajeev; Rosol, Michael S; Rosenberg, Andrew E; Kattapuram, Susan V

    2005-04-01

    Idiopathic and diabetic-associated muscle necrosis are similar, uncommon clinical entities requiring conservative management and minimal intervention to avoid complications and prolonged hospitalization. An early noninvasive diagnosis is therefore essential. We evaluated the magnetic resonance imaging (MRI) characteristics of muscle necrosis in 14 patients, in eight of whom the diagnoses were confirmed histologically. Two experienced musculoskeletal radiologists performed retrospective evaluations of the MRI studies of 14 patients with the diagnoses of skeletal muscle infarction. In 10 cases gadolinium-enhanced (T1-weighted fat-suppressed) sequences were available along with T1-weighted, T2-weighted images and STIR sequences, while in four cases contrast-enhanced images were not available. Eight patients had underlying diabetes and in six patients the cause of the myonecrosis was considered idiopathic. T1-weighted images demonstrated isointense swelling of the involved muscle, with mildly displaced fascial planes. There was effacement of the fat signal intensity within the muscle. Fat-suppressed T2-weighted images showed diffuse heterogeneous high signal intensity in the muscles suggestive of edema. Perifascial fluid collection was seen in eight cases. Subcutaneous edema was present in seven patients. Following intravenous gadolinium administration, MRI demonstrated a focal area of heterogeneously enhancing mass with peripheral enhancement. Within this focal lesion, linear dark areas were seen with serpentine enhancing streaks separating them in eight cases. In two cases, a central relatively nonenhancing mass with irregular margins and peripheral enhancement was noted. The peripheral enhancement involved a significant part of the muscle. No focal fluid collection was noted. We believe that the constellation of imaging findings on T1- and T2-weighted images and post-gadolinium sequences is highly suggestive of muscle necrosis. We consider certain specific findings

  11. The Cocos Ridge hydrothermal system revealed by microthermometry of fluid and melt inclusions

    NASA Astrophysics Data System (ADS)

    Brandstätter, J.; Kurz, W.; Krenn, K.

    2017-12-01

    Microthermometric analyses of fluid and melt inclusions in hydrothermal veins and in the Cocos Ridge (CCR) basalt were used to reveal the CCR thermal history at IODP Site 344-U1414 and to constrain fluid source and flow. Hydrothermal veins are hosted by lithified sediments and CCR basalt . Site 344-U1414, located 1 km seaward of the Middle American Trench offshore Costa Rica, serves to evaluate fluid/rock interaction, the hydrologic system and geochemical processes linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. The veins in the sedimentary rocks are mainly filled by blocky calcite, containing numerous fluid inclusions, and sometimes crosscut fibrous quartz/chalcedony veins. The veins in the basalt can be differentiated into three types: antitaxial fibrous calcite veins, composite veins with fibrous calcite and clay minerals at the vein margins and spherulitic quartz in the center, and syntaxial blocky aragonite veins surrounded by a clay selvage in the uppermost CCR basalt sections. Secondary minerals, clay minerals, fibrous calcite, quartz/chalcedony and pyrite also filled vesicles in the basalt. Fluid inclusions were mainly found in the aragonite veins and rarely in quartz in the composite veins and vesicles. Blocky veins with embedded wall rock fragments appear in the sediments and in the basalt indicate hydraulic fracturing. The occurrence of decrepitated fluid inclusions show high homogenization temperatures up to 400 °C. Decrepitated fluid inclusions are formed by increased internal overpressure, related to isobaric heating. Elongated fluid inclusion planes, arc-like fluid inclusions and low homogenization temperatures indicate subsequent isobaric cooling. The results obtained so far from Raman spectroscopy and microthermometry indicate CO2 inclusions and petrographic observations suggest the presence of silicate melt inclusions in phenocrysts in the basalt (mainly in clinopyroxene and plagioclase

  12. Role of blockages in particle transport through homogeneous granular assemblies

    NASA Astrophysics Data System (ADS)

    Tejada, I. G.; Sibille, L.; Chareyre, B.

    2016-09-01

    This letter deals with the transport of particles through granular assemblies and, specifically, with the intermittent formation of blockages originated from collective and purely mechanical clogging of constrictions. We perform numerical experiments with a micro-hydromechanical model that is able to reproduce the complex interplay between the carrier fluid, the transported particles and the granular assembly. The probability distribution functions (PDFs) of the duration of blockages and displacements give the time scale on which the effect of blockages is erased and the advection-dispersion paradigm is valid. Our experiments show that these PDFs fit exponential laws, reinforcing the idea that the formation and destruction of blockages are homogeneous Poisson processes.

  13. Collagenases in human synovial fluid

    PubMed Central

    Harris, Edward D.; DiBona, Donald R.; Krane, Stephen M.

    1969-01-01

    An enzyme which degrades native collagen at neutral pH has been isolated from cultures of rheumatoid synovium in vitro, but little or no collagenolytic activity has been found in homogenates of fresh rheumatoid synovium. Similar to most other mammalian collagenases this synovial enzyme is readily inhibited by serum proteins. Proteins of synovial fluid are derived largely from serum and synovial fluid from noninflamed joints was found to inhibit synovial collagenase; the inhibitor was destroyed by trypsin, but not by hyaluronidase. Inhibitory activity was reduced in approximately one-half of the fluids from patients with rheumatoid arthritis. In a total of nine synovial fluids, collagenolytic activity was detectable. This activity was not present in constant amounts in synovial fluids aspirated at different times from the same patient and tended to vary inversely with the titer of inhibitory proteins. The collagenolytic activity in the synovial fluids from different patients was variably inhibited by serum proteins. Two distinct collagenases were detected in some rheumatoid synovial fluids and separated by gel filtration. One, labeled “B” enzyme, with an estimated molecular weight 20,000-25,000 resembled the collagenase obtained from synovial cultures. The other, labeled “A” enzyme degraded collagen fibrils as well as collagen in solution. Disc electrophoresis on acrylamide gels and electron microscopy of segment long spacing (SLS) aggregates of reaction products of the enzymes at 27°C demonstrated that both “A” and “B” enzymes cleaved collagen molecules at a point three-quarters from the amino terminal end of the molecule. Thus collagen degradation in rheumatoid arthritis could result from the operation of these two collagenases. Images PMID:4309955

  14. Systematics of stretching of fluid inclusions I: fluorite and sphalerite at 1 atmosphere confining pressure.

    USGS Publications Warehouse

    Bodnar, R.J.; Bethke, P.M.

    1984-01-01

    Measured homogenization T of fluid inclusions in fluorite and sphalerite may be higher than the true homogenization T of samples that have been previously heated in the laboratory or naturally in post-entrapment events. As T and with it internal P is increased, the resulting volume increase may become inelastic. If the volume increase exceeds the precision of T measurement, the inclusion is said to have stretched. More than 1300 measurements on fluid inclusions in fluorite and sphalerite indicate that stretching is systematically related to P-V-T-X properties of the fluid, inclusion size and shape, physical properties of the host mineral, and the confining P. Experimental methods are detailed in an appendix. The mechanism of stretching is probably plastic deformation or - not observed - microfracturing. The systematic relationship between the internal P necessary to initiate stretching and the inclusion volume provides a means of recognizing previously stretched inclusions and estimating the magnitude of post-entrapment thermal events. -G.J.N.

  15. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  16. Homogeneous crystal nucleation in polymers.

    PubMed

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  17. A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans

    PubMed Central

    Butler, Victoria J.; Branicky, Robyn; Yemini, Eviatar; Liewald, Jana F.; Gottschalk, Alexander; Kerr, Rex A.; Chklovskii, Dmitri B.; Schafer, William R.

    2015-01-01

    Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control. PMID:25551155

  18. Multi-frequency bioimpedance in human muscle assessment

    PubMed Central

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test the hypothesis that mfBIA can be used to assess the anatomical, physiological, and metabolic state of skeletal muscles. mfBIA measurements focusing on impedance, resistance, reactance, phase angle, center frequency, membrane capacitance, and both extracellular and intracellular resistance were carried out. Eight healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes in connection with a conductance paste to accommodate the typical BIA frequencies, and to facilitate accurate impedance and resistance measurements. The use of mfBIA parameters, often in conjunction with each other, can be used to reveal indications of contralateral muscle loss, extracellular fluid differences, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles. PMID:25896978

  19. Skeletal muscle contractions uncoupled from gravitational loading directly increase cortical bone blood flow rates in vivo.

    PubMed

    Caulkins, Carrie; Ebramzadeh, Edward; Winet, Howard

    2009-05-01

    The direct and indirect effects of muscle contraction on bone microcirculation and fluid flow are neither well documented nor explained. However, skeletal muscle contractions may affect the acquisition and maintenance of bone via stimulation of bone circulatory and interstitial fluid flow parameters. The purposes of this study were to assess the effects of transcutaneous electrical neuromuscular stimulation (TENS)-induced muscle contractions on cortical bone blood flow and bone mineral content, and to demonstrate that alterations in blood flow could occur independently of mechanical loading and systemic circulatory mechanisms. Bone chamber implants were used in a rabbit model to observe real-time blood flow rates and TENS-induced muscle contractions. Video recording of fluorescent microspheres injected into the blood circulation was used to calculate changes in cortical blood flow rates. TENS-induced repetitive muscle contractions uncoupled from mechanical loading instantaneously increased cortical microcirculatory flow, directly increased bone blood flow rates by 130%, and significantly increased bone mineral content over 7 weeks. Heart rates and blood pressure did not significantly increase due to TENS treatment. Our findings suggest that muscle contraction therapies have potential clinical applications for improving blood flow to cortical bone in the appendicular skeleton. Copyright 2008 Orthopaedic Research Society

  20. Stable isotope study of fluid inclusions in fluorite from Idaho: implications for continental climates during the Eocene

    USGS Publications Warehouse

    Seal, R.R.; Rye, R.O.

    1993-01-01

    Isotopic studies of fluid inclusions from meteoric water-dominated epithermal ore deposits offer a unique opportunity to study paleoclimates because the fluids can provide direct samples of ancient waters. Fluorite-hosted fluid inclusions from the Eocene (51-50 Ma) epithermal deposits of the Bayhorse mining district, have low salinities and low to moderate homogenization temperatures indicating meteoric origins for the fluids. Oxygen and hydrogen isotope data on inclusion fluids are almost identical to those of modern meteoric waters in the area. The equivalence of the isotope composition of the Eocene inclusion fluids and modern meteoric waters indicates that the Eocene climatic conditions were similar to those today. -from Authors

  1. Benchmarking monthly homogenization algorithms

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  2. Turbulent Fluid Motion 5: Fourier Analysis, the Spectral Form of the Continuum Equations, and Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Background material on Fourier analysis and on the spectral form of the continuum equations, both averaged and unaveraged, are given. The equations are applied to a number of cases of homogeneous turbulence with and without mean gradients. Spectral transfer of turbulent activity between scales of motion is studied in some detail. The effects of mean shear, heat transfer, normal strain, and buoyancy are included in the analyses.

  3. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  4. Transonic flow of steam with non-equilibrium and homogenous condensation

    NASA Astrophysics Data System (ADS)

    Virk, Akashdeep Singh; Rusak, Zvi

    2017-11-01

    A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.

  5. Pathogenesis of obstructive sleep apnoea in hypertensive patients: role of fluid retention and nocturnal rostral fluid shift.

    PubMed

    White, L H; Bradley, T D; Logan, A G

    2015-06-01

    Obstructive sleep apnoea (OSA) is highly prevalent in hypertensive patients, particularly those with drug resistance. Evidence from animal experiments, epidemiologic studies and clinical trials strongly suggest a causal link. Mechanistic studies argue for increased sympathetic neural activity and endothelial dysfunction. However, disturbances in fluid volume regulation and distribution may also be involved in the pathogenesis of these two conditions. Several studies have shown a high prevalence of OSA in fluid-retaining states including hypertension, a direct relationship between the severity of OSA and the volume of fluid displaced from the legs to the neck during sleep, and a decrease in upper airway cross-sectional area in response to graded lower body positive pressure. Treatments targeting fluid retention and redistribution, including diuretics, mineralocorticoid antagonists, exercise, and possibly renal denervation lower blood pressure and reduce the apnoea-hypopnoea index, a measure of OSA severity. From these observations, it has been postulated that during the daytime, excess fluid collects in the lower extremities due to gravity, and on lying down overnight is redistributed rostrally to the neck, where it may narrow the upper airway and increase its collapsibility, predisposing to OSA when pharyngeal dilator muscle activity decreases during sleep. This article discusses the associations between OSA and hypertension and reviews the evidence for fluid accumulation and its nocturnal rostral redistribution in the pathogenesis of OSA in hypertensive patients.

  6. Substitute fluid examinations for liquid manure

    NASA Astrophysics Data System (ADS)

    Schrader, Kevin; Riedel, Marco; Eichert, Helmut

    For the farming industry it is essential to use liquid manure as natural fertilizer. Through new agricultural regulation 2015 in Germany the industry must develop new liquid manure spreader systems because the ammonia and methane emission are limited. In a research project the University of Applied Sciences Zwickau and some other industry partners will develop such a new innovative liquid manure spreader. The new liquid manure spreader should use pulsating air to distribute the liquid manure exactly. The pulsating air, which flows through the pipelines, should be analysed at a test station. For examinations at this test station it is important to find another substitute fluid because liquid manure smells strong, is not transparent and is also not homogeneous enough for scientific investigations. Furthermore it is important to ensure that the substitute fluid is, like liquid manure, a non-Newtonian fluid. The substitute fluid must be a shear-thinning substance - this means the viscosity decrease at higher shear rate. Many different samples like soap-water-farragoes, jelly-water-farragoes, agar-water-farragoes, soap-ethanol-farragoes and more are, for the project, examined in regard of their physical properties to find the best substitute fluid. The samples are examined at the rotational viscometer for viscosity at various shear rates and then compared with the viscosity values of liquid manure.

  7. Tracking control of colloidal particles through non-homogeneous stationary flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Híjar, Humberto, E-mail: humberto.hijar@lasallistas.org.mx

    2013-12-21

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can bemore » mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.« less

  8. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    PubMed

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  9. Heat production during contraction in skeletal muscle of hypothyroid mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be relatedmore » to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.« less

  10. Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators.

    PubMed

    Farhat, M; Guenneau, S; Enoch, S; Movchan, A B

    2009-10-01

    We present a theoretical and numerical analysis of liquid surface waves (LSWs) localized at the boundary of a phononic crystal consisting of split-ring resonators (SRRs). We first derive the homogenized parameters of the fluid-filled structure using a three-scale asymptotic expansion in the linearized Navier-Stokes equations. In the limit when the wavelength of the LSW is much larger than the typical heterogeneity size of the phononic crystal, we show that it behaves as an artificial fluid with an anisotropic effective shear modulus and a dispersive effective-mass density. We then analyze dispersion diagrams associated with LSW propagating within an infinite array of SRR, for which eigensolutions are sought in the form of Floquet-Bloch waves. The main emphasis is given to the study of localized modes within such a periodic fluid-filled structure and to the control of low-frequency stop bands associated with resonances of SRRs. Considering a macrocell, we are able to compute the dispersion of LSW supported by a semi-infinite phononic crystal of SRRs. We find that the dispersion of this evanescent mode nearly sits within the first stop band of the doubly periodic structure. We further discover that it is linked to the frequency at which the effective-mass density of the homogenized phononic crystal becomes negative. We demonstrate that this surface mode displays the hallmarks of all-angle negative refraction and it leads to a superlensing effect. Last, we note that our homogenization results for the velocity potential can be applied mutatis mutandis to designs of electromagnetic and acoustic superlenses for transverse electric waves propagating in arrays of infinite conducting SRRs and antiplane shear waves in arrays of cracks shaped as SRRs.

  11. Investigation of electroacupuncture and manual acupuncture on carnitine and glutathione in muscle.

    PubMed

    Toda, Shizuo

    2011-01-01

    Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA.

  12. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  13. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    PubMed Central

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  14. Aberrant muscle antigen exposure in mice is sufficient to cause myositis in a Treg cell-deficient milieu.

    PubMed

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-12-01

    Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell-deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)-null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1-null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. © 2013 The Authors. Arthritis & Rheumatism is published by Wiley Periodicals, Inc. on behalf of the American College of

  15. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea East Rift Zone geothermal area, Hawaii

    USGS Publications Warehouse

    Bargar, K.E.; Keith, T.E.C.; Trusdell, F.A.

    1995-01-01

    Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and anhydrite from several depths in three scientific observation holes drilled along the lower East Rift Zone of Kilauea volcano, Hawaii. Comparison of measured drill-hole temperatures with fluid-inclusion homogenization-temperature (Th) data indicates that only about 15% of the fluid inclusions could have formed under the present thermal conditions. The majority of fluid inclusions studied must have formed during one or more times in the past when temperatures fluctuated in response to the emplacement of nearby dikes and their subsequent cooling. -from Authors

  16. A new method to measure muscle protein synthesis in humans by endogenously introduced d9-leucine and using blood for precursor enrichment determination

    PubMed Central

    Tran, Lee; Masters, Haley; Roust, Lori R; Katsanos, Christos S

    2015-01-01

    Enrichment from the easily accessible blood amino acid pool is commonly used as precursor enrichment to calculate rates of muscle protein fractional synthesis in relevant human studies in lieu of the less accessible muscle fluid amino acid pool. However, the accuracy of this approach depends largely on the extent to which there is low discrepancy in free amino acid enrichment between blood and muscle. Steady-state gradient (i.e., ratio) of amino acid enrichment between blood and muscle fluid in the basal state and in response to amino acid infusion were determined in five healthy subjects, and in association with two separate tracers: d9-leucine, introduced endogenously by the metabolism of d10-leucine (i.e., l-[2,3,3,4,5,5,5,6,6,6-2H10]leucine) infused in blood, and 13C6-phenylalanine introduced/infused in blood. The blood-to-muscle fluid amino acid enrichment ratio was lower (P < 0.05) for d9-leucine compared to 13C6-phenylalanine both before (1.5 ± 0.1 vs. 2.5 ± 0.1) and during (1.1 ± 0.1 vs. 1.2 ± 0.1) amino acid infusion. Importantly, the decrease in this ratio in association with the amino acid infusion was considerably less for the d9-leucine than the 13C6-phenylalanine (−0.38 ± 0.03 vs. −1.29 ± 0.07; P < 0.05). In conclusion, blood d9-leucine enrichment introduced endogenously by intravenous infusion of d10-leucine provides a closer estimate of the muscle fluid amino acid enrichment, and its associated changes, than blood phenylalanine enrichment to calculate rates of muscle protein synthesis in humans. PMID:26243214

  17. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  18. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface

    DOE PAGES

    Terrones, Guillermo; Carrara, Mark D.

    2015-05-01

    For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (α RΡ² 2/μ² ²)¹ /³ R (where α R, Ρmore » 2 and μ 2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration α R. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Y n and Y n+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less

  19. Immortal homogeneous Ricci flows

    NASA Astrophysics Data System (ADS)

    Böhm, Christoph; Lafuente, Ramiro A.

    2018-05-01

    We show that for an immortal homogeneous Ricci flow solution any sequence of parabolic blow-downs subconverges to a homogeneous expanding Ricci soliton. This is established by constructing a new Lyapunov function based on curvature estimates which come from real geometric invariant theory.

  20. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    PubMed

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  1. Colostrum supplementation protects against exercise - induced oxidative stress in skeletal muscle in mice

    PubMed Central

    2012-01-01

    Background This study examined the effects of bovine colostrum on exercise –induced modulation of antioxidant parameters in skeletal muscle in mice. Adult male BALB/c mice were randomly divided into four groups (control, colostrum alone, exercise and exercise with colostrum) and each group had three subgroups (day 0, 21 and 42). Colostrum groups of mice were given a daily oral supplement of 50 mg/kg body weight of bovine colostrum and the exercise group of mice were made to exercise on the treadmill for 30 minutes per day. Total antioxidants, lipid hydroperoxides, xanthine oxidase and super oxide dismutase level was assayed from the homogenate of hind limb skeletal muscle. Results Exercise—induced a significant oxidative stress in skeletal muscles as evidenced by the elevated lipid hydroperoxides and xanthine oxidase levels. There was a significant decrease in skeletal muscle total antioxidants and superoxide dismutase levels. Daily colostrum supplement significantly reduced the lipid hydroperoxides and xanthine oxidase enzyme level and increased the total antioxidant levels in the leg muscle. Conclusion Thus, the findings of this study showed that daily bovine colostrum supplementation was beneficial to skeletal muscle to reduce the oxidant-induced damage during muscular exercise. PMID:23173926

  2. Development of Proxies for Vent Fluid Trace Metal Concentrations and pH through Study of Sulfide Chimney Linings

    NASA Astrophysics Data System (ADS)

    Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.

    2016-12-01

    Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.

  3. Multiscale modeling of fluid transport in tumors.

    PubMed

    Chapman, S Jonathan; Shipley, Rebecca J; Jawad, Rossa

    2008-11-01

    A model for fluid flow through the leaky neovasculature and porous interstitium of a solid tumor is developed. A network of isolated capillaries is analyzed in the limit of small capillary radius, and analytical expressions for the hydraulic conductivities and fractional leakage coefficients derived. This model is then homogenized to give a continuum description in terms of the vascular density. The resulting equations comprise a double porous medium with coupled Darcy flow through the interstitium and vasculature.

  4. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  5. Duration of mineralization and fluid-flow history of the Upper Mississippi Valley zinc-lead district

    USGS Publications Warehouse

    Rowan, E.L.; Goldhaber, M.B.

    1995-01-01

    Studies of fluid inclusions in sphalerite and biomarkers from the Upper Mississippi Valley zinc district show homogenization temperatures to be primarily between 90 and 150??C, yet show relatively low levels of thermal maturity. Numerical calculations are used to simulate fluid and heat flow through fracture-controlled ore zones and heat transfer to the adjacent rocks. Combining a best-fit path through fluid-inclusion data with measured thermal alteration of biomarkers, the time interval during which mineralizing fluids circulated through the Upper Mississippi Valley district was calculated to be on the order of 200 ka. Cambrian and Ordovician aquifers underlying the district, principally the St. Peter and Mt. Simon Sandstones, were the source of the mineralizing fluid. The duration of mineralization thus reflects the fluid-flow history of these regional aquifers. -from Authors

  6. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  7. Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging.

    PubMed

    Handsfield, Geoffrey G; Bolsterlee, Bart; Inouye, Joshua M; Herbert, Robert D; Besier, Thor F; Fernandez, Justin W

    2017-12-01

    Determination of skeletal muscle architecture is important for accurately modeling muscle behavior. Current methods for 3D muscle architecture determination can be costly and time-consuming, making them prohibitive for clinical or modeling applications. Computational approaches such as Laplacian flow simulations can estimate muscle fascicle orientation based on muscle shape and aponeurosis location. The accuracy of this approach is unknown, however, since it has not been validated against other standards for muscle architecture determination. In this study, muscle architectures from the Laplacian approach were compared to those determined from diffusion tensor imaging in eight adult medial gastrocnemius muscles. The datasets were subdivided into training and validation sets, and computational fluid dynamics software was used to conduct Laplacian simulations. In training sets, inputs of muscle geometry, aponeurosis location, and geometric flow guides resulted in good agreement between methods. Application of the method to validation sets showed no significant differences in pennation angle (mean difference [Formula: see text] or fascicle length (mean difference 0.9 mm). Laplacian simulation was thus effective at predicting gastrocnemius muscle architectures in healthy volunteers using imaging-derived muscle shape and aponeurosis locations. This method may serve as a tool for determining muscle architecture in silico and as a complement to other approaches.

  8. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  9. Assessment of muscle fatigue during biking.

    PubMed

    Knaflitz, Marco; Molinari, Filippo

    2003-03-01

    The analysis of the surface myoelectric signal recorded while a muscle is performing a sustained contraction is a valuable tool for assessing the progression of localized fatigue. It is well known that the modifications of the spectral content of the myoelectric signal are mainly related to changes in the interstitial fluid pH, which, in turn, affect the membrane excitability of the active muscle fibers. This paper describes the effects of muscle fatigue on the surface myoelectric signal recorded from three thigh and leg muscles during biking, on a population consisting of 22 young healthy volunteers. The purpose of this study was to obtain normative data relative to an exercise protocol mild enough to be applicable, in the future, to pathological subjects as well. Each subject was asked to exercise 30 min on a cycloergometer at a constant velocity and against a constant torque. While subjects were biking, the surface myoelectric signal was recorded from the rectus femoris, the biceps femoris, and the gastrocnemius muscles. In this study, we considered two different aspects of muscle fatigue: first, the localized muscle fatigue as shown by the decrement of the instantaneous frequency of the myoelectric signal during the exercise; second, the modifications of the muscle ON-OFF timing, which could be explained as a strategy for increasing endurance by modifying the role of different muscles during the exercise. The first aspect was studied by obtaining the spectral characteristics of the signals by means of bilinear time-frequency transforms and by applying an original estimator of the instantaneous frequency of stochastic processes based on cross time-frequency transforms. Our results demonstrated that none of the subjects showed significant signs of localized muscle fatigue, since the decrement of the instantaneous frequency during the exercise was always lower than 5% of its initial value. Muscle ON-OFF timing was obtained by applying to the raw myoelectric signal

  10. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  11. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  12. Cu-Mo-Au mineralization in Qarachilar area, Qaradagh batholith (NW Iran): Fluid inclusion and stable isotope studies and Re-Os dating

    NASA Astrophysics Data System (ADS)

    Simmonds, Vartan; Moazzen, Mohssen

    2015-04-01

    The Qaradagh batholith is located in NW Iran, neighboring the Meghri-Ordubad granitoid in southern Armenia. This magmatic complex is emplaced in the northwestern part of the Urumieh-Dokhtar magmatic arc, which formed through north-eastward subduction of Neo-Tethyan oceanic crust beneath the central Iranian domain in the late-Mesozoic and early-Cenozoic and hosts most of the porphyry copper deposits and prospects in Iran, such as Sarcheshmeh and Sungun. The Qaradagh batholith is comprised of Eocene-Oligocene intrusive rocks occurring as multi-episode stocks, where the dominant rock type is granodiorite. Hydrothermal alterations have also occurred in these rocks including potassic, phyllic-sericitic, argillic and propylitic alterations and silicification. These alterations are accompanied by vein-type and disseminated Cu, Mo and Au mineralization. The Qarachilar area is located in the central part of the Qaradagh batholith, which hosts mono-mineralic and quartz-sulfide veins and veinlets (several mm to <1 m thick and 50-700 m long) and silicic zones containing Cu-Mo-Au-Ag ore minerals (mainly pyrite, chalcopyrite and molybdenite). Microthermometric studies on the fluid inclusions of quartz-sulfide veins-veinlets show that the salinity ranges between 15-70 wt% NaCl, with the highest peak between 35-40 wt% NaCl. The homogenization temperature for primary 2-phase and multi-phase inclusions ranges between 220 and 540 °C. Two-phase inclusions homogenizing by vapor disappearance have TH values between 280 and 440 °C (mainly between 300 and 360 °C). A few of them homogenize into vapor state with TH values of 440-540 °C. Multi-phase inclusions show 3 types of homogenization. Most of them homogenize by simultaneous disappearance of vapor bubble and dissolution of halite daughter crystal, for which the TH value is 240-420 °C (mostly between 260 and 340 °C). Those homogenizing by halite dissolution show TH values about 220-360 °C and a few homogenizing by vapor

  13. ISOLATION OF SKELETAL MUSCLE NUCLEI

    PubMed Central

    Edelman, Jean C.; Edelman, P. Michael; Knigge, Karl M.; Schwartz, Irving L.

    1965-01-01

    A method employing aqueous media for isolation of nuclei from rat skeletal muscle is described. The technique involves (a) mincing and then homogenizing in a 0.32 M sucrose-salt solution with a Potter-Elvehjem type homogenizer using a Delrin (an acetal resin) pestle and a carefully controlled, relatively large pestle-to-glass clearance, (b) filtering through fiberglass and stainless steel screens of predetermined mesh size to remove myofibrils and connective tissue, and (c) centrifuging in a 2.15 M sucrose-salt solution containing 0.7 mM ATP. Electron and phase-contrast microscopic observations show that the nuclei are intact, unencumbered by cytoplasmic tags, and possess well preserved distinct nucleoli, nucleoplasm, and nuclear membranes. Cytoplasmic contamination is minimal and mainly mitochondrial. Chemical assays of the nuclear fraction show that the DNA/protein and RNA/DNA ratios are comparable to those obtained in other tissues. These ratios, as well as the low specific activity obtained for cytochrome c oxidase and the virtual absence of myofibrillar ATPase, indicate a high degree of purity with minimal mitochondrial and myofibrillar contamination. The steps comprising the technique and the reasons for their selection are discussed. PMID:4287141

  14. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    NASA Astrophysics Data System (ADS)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  15. Investigation of Electroacupuncture and Manual Acupuncture on Carnitine and Glutathione in Muscle

    PubMed Central

    Toda, Shizuo

    2011-01-01

    Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA. PMID:19592478

  16. Benchmarking homogenization algorithms for monthly data

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  17. Comparison of Homogeneous and Heterogeneous CFD Fuel Models for Phase I of the IAEA CRP on HTR Uncertainties Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Su-Jong Yoon

    2014-04-01

    Computational Fluid Dynamics (CFD) evaluation of homogeneous and heterogeneous fuel models was performed as part of the Phase I calculations of the International Atomic Energy Agency (IAEA) Coordinate Research Program (CRP) on High Temperature Reactor (HTR) Uncertainties in Modeling (UAM). This study was focused on the nominal localized stand-alone fuel thermal response, as defined in Ex. I-3 and I-4 of the HTR UAM. The aim of the stand-alone thermal unit-cell simulation is to isolate the effect of material and boundary input uncertainties on a very simplified problem, before propagation of these uncertainties are performed in subsequent coupled neutronics/thermal fluids phasesmore » on the benchmark. In many of the previous studies for high temperature gas cooled reactors, the volume-averaged homogeneous mixture model of a single fuel compact has been applied. In the homogeneous model, the Tristructural Isotropic (TRISO) fuel particles in the fuel compact were not modeled directly and an effective thermal conductivity was employed for the thermo-physical properties of the fuel compact. On the contrary, in the heterogeneous model, the uranium carbide (UCO), inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers of the TRISO fuel particles are explicitly modeled. The fuel compact is modeled as a heterogeneous mixture of TRISO fuel kernels embedded in H-451 matrix graphite. In this study, a steady-state and transient CFD simulations were performed with both homogeneous and heterogeneous models to compare the thermal characteristics. The nominal values of the input parameters are used for this CFD analysis. In a future study, the effects of input uncertainties in the material properties and boundary parameters will be investigated and reported.« less

  18. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    NASA Technical Reports Server (NTRS)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  19. Fluid inclusion studies on the mineralized quartz-rich hydrothermal breccias and quartz veins of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines

    NASA Astrophysics Data System (ADS)

    Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.

    2017-12-01

    The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.

  20. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics

    PubMed Central

    Cotter, C. J.

    2017-01-01

    In Holm (Holm 2015 Proc. R. Soc. A 471, 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow. PMID:28989316

  1. Surface Electromyographic Examination of Poststroke Neuromuscular Changes in Proximal and Distal Muscles Using Clustering Index Analysis

    PubMed Central

    Tang, Weidi; Zhang, Xu; Tang, Xiao; Cao, Shuai; Gao, Xiaoping; Chen, Xiang

    2018-01-01

    Whether stroke-induced paretic muscle changes vary across different distal and proximal muscles remains unclear. The objective of this study was to compare paretic muscle changes between a relatively proximal muscle (the biceps brachii muscle) and two distal muscles (the first dorsal interosseous muscle and the abductor pollicis brevis muscle) following hemisphere stroke using clustering index (CI) analysis of surface electromyograms (EMGs). For each muscle, surface EMG signals were recorded from the paretic and contralateral sides of 12 stroke subjects versus the dominant side of eight control subjects during isometric muscle contractions to measure the consequence of graded levels of contraction (from a mild level to the maximal voluntary contraction). Across all examined muscles, it was found that partial paretic muscles had abnormally higher or lower CI values than those of the healthy control muscles, which exhibited a significantly larger variance in the CI via a series of homogeneity of variance tests (p < 0.05). This finding indicated that both neurogenic and myopathic changes were likely to take place in paretic muscles. When examining two distal muscles of individual stroke subjects, relatively consistent CI abnormalities (toward neuropathy or myopathy) were observed. By contrast, consistency in CI abnormalities were not found when comparing proximal and distal muscles, indicating differences in motor unit alternation between the proximal and distal muscles on the paretic sides of stroke survivors. Furthermore, CI abnormalities were also observed for all three muscles on the contralateral side. Our findings help elucidate the pathological mechanisms underlying stroke sequels, which might prove useful in developing improved stroke rehabilitation protocols. PMID:29379465

  2. Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force–Velocity Properties: Predicting Patterns of In Vivo Muscle Force

    PubMed Central

    Biewener, Andrew A.; Wakeling, James M.; Lee, Sabrina S.; Arnold, Allison S.

    2014-01-01

    We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle–tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle’s architecture and series elasticity. Activation of the model’s single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency–time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle–tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical

  3. [Effects of dexamethasone on the expression of muscarinic receptor mRNA in asthmatic guinea pig airway smooth muscle and eosinophil infiltration in bronchoalveolar lavage fluid].

    PubMed

    Shi, Liang; Luo, Ya-ling; Lai, Wen-yan; Luo, Liang

    2005-08-01

    To investigate the effect of dexamethasone on the expression of muscarinic receptor (MR) mRNA in smooth muscle and infiltration of eosinophils (Eos) in the airway of asthmatic guinea pigs. Thirty healthy guinea pigs were randomized into 3 equal groups, the control group, asthmatic group and dexamethasone therapy group. Asthma was induced in the latter 2 groups with the asthma-inducing agents and received treatments as indicated. Bronchial alveolar lavage fluid(BALF) were collected subsequently from the guinea pigs for examining the total cell number and cell classification, and histopathologic examination of the lung tissue was performed. Semi-quantitative analysis with reverse transcriptional- polymerase chain reaction (RT-PCR) was performed for M(2) and M(3) receptor mRNA in airway smooth muscle. Compared with the control and the asthmatic group, the number of Eos in the BALF of dexamethasone therapy group was significantly lower (P<0.01). In spite of the presence of hyperemia and edema in the lung tissues of the dexamethasone therapy group, Eos infiltration was less severe than that in the asthmatic group. As found by RT-PCR, the quantity of M(2) receptor mRNA in the airway smooth muscle of the dexamethasone therapy group was significantly higher than those in both the control and asthmatic groups (P<0.01), and the quantity of M(3) receptor mRNA in the airway smooth muscle of dexamethasone therapy group was significantly higher than that in the asthmatic group, but did not significantly differ from that in the control group. The quantities of M(2) and M(3) receptor mRNAs in the control group were both significantly higher than that in asthmatic group (P<0.01). The expression of M(2) receptor is increased in antigen- challenged guinea pigs, and that of M(3) receptor decreased. Dexamethasone can treat asthma by inhibiting inflammatory action involving Eos infiltration, regulating the expressions of M(2) and M(3) receptors and restoring the function of M(2

  4. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism.

    PubMed Central

    Sillau, A H

    1985-01-01

    Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729

  5. 3D convection in a fractured porous medium : influence of fracture network parameters and comparison to homogeneous approach.

    NASA Astrophysics Data System (ADS)

    Mezon, Cécile; Mourzenko, Valeri; François Thovert, Jean; Antoine, Raphael; Fontaine, Fabrice; Finizola, Anthony; Adler, Pierre Michel

    2016-04-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured isotropically fractured porous media. Fractures are inserted as 2D convex polygons, which are randomly located. The fluid is assumed to satisfy 2D and 3D Darcy's law in the fractures and in the porous medium, respectively; exchanges take place between these two structures. First, checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4pi². 2D convection was verified up to Ra=800. Second, all fractured simulations were made for Rayleigh numbers (Ra) < 150, cubic boxes and closed-top conditions. The influence of parameters such as fracture aperture (or fracture transmissivity) and fracture density on the heat released by the whole system is studied. Then, the effective permeability of each fractured system is calculated. This last calculation enables the comparison between all fractured models and models of homogeneous medium with the same macroscopic properties. First, the heat increase released by the system as a function of fracture transmissivity and fracture density is determined. Second, results show that the effective approach is valid for low Ra (< 70), and that the mismatch between the full calculations and the effective medium approach for Ra higher than 70 depends on the fracture density in a crucial way. Third, the study also reveals that equivalent properties could be deduced from these computations in order to estimate the heat released by a fractured system from an homogeneous approach.

  6. Characterizing the Peano fluidic muscle and the effects of its geometry properties on its behavior

    NASA Astrophysics Data System (ADS)

    Veale, Allan Joshua; Xie, Sheng Quan; Anderson, Iain Alexander

    2016-06-01

    In this work, we explore the basic static and dynamic behavior of a hydraulically actuated Peano muscle and how its geometry affects key static and dynamic performance metrics. The Peano muscle, or pouch motor is a fluid powered artificial muscle. Similar to McKibben pneumatic artificial muscles (PAMs), it has the ability to generate the high forces of biological muscles with the low threshold pressure of pleated PAMs, but in a slim, easily distributed form. We found that Peano muscles have similar characteristics to other PAMs, but produce lower free-strains. A test rig capable of measuring high-speed flow rates with a Venturi tube revealed that their efficiency peaks at about 40% during highly dynamic movements. Peano muscles with more tubes and of a greater size do not move faster. Also, their muscle tubes should have an aspect ratio of at least 1:3 and channel width greater than 20% to maximize performance. These findings suggest that finite element modeling be used to optimize more complex Peano muscle geometries.

  7. The complex pericentriolar material 1 protein allows differentiation between myonuclei and nuclei of satellite cells of the skeletal muscle.

    PubMed

    Brunn, Anna

    2018-05-27

    The original article by Winje et al., entitled "Specific labelling of myonuclei by an antibody against pericentriolar material 1 (PCM1) on skeletal muscle tissue sections" 1 , sheds new light on the issue of heterogeneity of skeletal muscle and, thus, the problem to reliably distinguish between myonuclei versus nuclei of satellite cells of the skeletal muscle which are intimately associated. At the light microscopical level this differentiation is particularly difficult since only nuclei inside the muscle fiber are defined as true myonuclei. This is a major problem in analyses that use tissue homogenates, while in situ immunohistochemical studies using appropriate antibodies usually allow differentiation of cell populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Scanning electron microscopy combined with image processing technique: Analysis of microstructure, texture and tenderness in Semitendinous and Gluteus Medius bovine muscles.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-11-01

    In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  9. [Bursitis with severe tendon and muscle necrosis on the lateral stifle area in cattle].

    PubMed

    Nuss, K; Räber, M; Sydler, T; Muggli, E; Hässig, M; Guscetti, F

    2011-11-01

    In 21 animals, chronic swelling on the lateral aspect of the stifle also known as «perigonitis», «stable-syndrome» or «bursitis bicipitalis femoris» were evaluated. Ultrasonography showed increased fluid in the distal subtendinous bursa of the biceps femoris muscle and structural changes in the tendons, muscles, subcutis and fasciae. Soft tissue swelling and an irregular contour of the lateral tibial condyle were typical signs on radiographs. Macroscopic changes were found at the insertion of the biceps femoris muscle, the distal subtendinous bursa of the biceps femoris muscle, the lateral collateral ligament of the stifle, the origin of muscles on the lateral femoral condyle and the lateral tibial condyle. They mainly consisted of tendon and muscle tissue necrosis with granulation tissue. Histology revealed areas of coagulation necrosis in tendons and ligaments, in which occasionally Onchocerca spp. were seen. The severity of lesions correlated well with the clinical signs, which were associated with a poor prognosis in advanced cases.

  10. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle.

    PubMed

    Vavvas, D; Apazidis, A; Saha, A K; Gamble, J; Patel, A; Kemp, B E; Witters, L A; Ruderman, N B

    1997-05-16

    The concentration of malonyl-CoA, a negative regulator of fatty acid oxidation, diminishes acutely in contracting skeletal muscle. To determine how this occurs, the activity and properties of acetyl-CoA carboxylase beta (ACC-beta), the skeletal muscle isozyme that catalyzes malonyl-CoA formation, were examined in rat gastrocnemius-soleus muscles at rest and during contractions induced by electrical stimulation of the sciatic nerve. To avoid the problem of contamination of the muscle extract by mitochondrial carboxylases, an assay was developed in which ACC-beta was first purified by immunoprecipitation with a monoclonal antibody. ACC-beta was quantitatively recovered in the immunopellet and exhibited a high sensitivity to citrate (12-fold activation) and a Km for acetyl-CoA (120 microM) similar to that reported for ACC-beta purified by other means. After 5 min of contraction, ACC-beta activity was decreased by 90% despite an apparent increase in the cytosolic concentration of citrate, a positive regulator of ACC. SDS-polyacrylamide gel electrophoresis of both homogenates and immunopellets from these muscles showed a decrease in the electrophoretic mobility of ACC, suggesting that phosphorylation could account for the decrease in ACC activity. In keeping with this notion, citrate activation of ACC purified from contracting muscle was markedly depressed. In addition, homogenization of the muscles in a buffer free of phosphatase inhibitors and containing the phosphatase activators glutamate and MgCl2 or treatment of immunoprecipitated ACC-beta with purified protein phosphatase 2A abolished the decreases in both ACC-beta activity and electrophoretic mobility caused by contraction. The rapid decrease in ACC-beta activity after the onset of contractions (50% by 20 s) and its slow restoration to initial values during recovery (60-90 min) were paralleled temporally by reciprocal changes in the activity of the alpha2 but not the alpha1 isoform of 5'-AMP-activated protein

  11. Large-eddy simulations of a forced homogeneous isotropic turbulence with polymer additives

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Cai, Wei-Hua; Li, Feng-Chen

    2014-03-01

    Large-eddy simulations (LES) based on the temporal approximate deconvolution model were performed for a forced homogeneous isotropic turbulence (FHIT) with polymer additives at moderate Taylor Reynolds number. Finitely extensible nonlinear elastic in the Peterlin approximation model was adopted as the constitutive equation for the filtered conformation tensor of the polymer molecules. The LES results were verified through comparisons with the direct numerical simulation results. Using the LES database of the FHIT in the Newtonian fluid and the polymer solution flows, the polymer effects on some important parameters such as strain, vorticity, drag reduction, and so forth were studied. By extracting the vortex structures and exploring the flatness factor through a high-order correlation function of velocity derivative and wavelet analysis, it can be found that the small-scale vortex structures and small-scale intermittency in the FHIT are all inhibited due to the existence of the polymers. The extended self-similarity scaling law in the polymer solution flow shows no apparent difference from that in the Newtonian fluid flow at the currently simulated ranges of Reynolds and Weissenberg numbers.

  12. Gender differences in muscle inflammation after eccentric exercise.

    PubMed

    Stupka, N; Lowther, S; Chorneyko, K; Bourgeois, J M; Hogben, C; Tarnopolsky, M A

    2000-12-01

    Unaccustomed exercise is followed by delayed-onset muscle soreness and morphological changes in skeletal muscle. Animal studies have demonstrated that women have an attenuated response to muscle damage. We studied the effect of eccentric exercise in untrained male (n = 8) and female (n = 8) subjects using a unilateral exercise design [exercise (Ex) and control (Con) legs]. Plasma granulocyte counts [before (Pre) and 48 h after exercise (+48h)] and creatine kinase activity [Pre, 24 h after exercise (+24h), +48h, and 6 days after exercise (+6d)] were determined before (Pre) and after (+24h, +48h, +6d) exercise, with biopsies taken from the vastus lateralis of each leg at +48h for determination of muscle damage and/or inflammation. Plasma granulocyte counts increased for men and decreased for women at +48h (P < 0.05), and creatine kinase activity increased for both genders at +48h and +6d (P < 0.01). There were significantly greater areas of both focal (P < 0.001) and extensive (P < 0.01) damage in the Ex vs. Con leg for both genders, which was assessed by using toluidine blue staining. The number of leukocyte common antigen-positive cells/mm(2) tissue increased with exercise (P < 0.05), and men tended to show more in their Ex vs. Con leg compared with women (P = 0.052). Men had a greater total (Ex and Con legs) number of bcl-2-positive cells/mm(2) tissue vs. women (P < 0.05). Atrophic fibers with homogeneous bcl-2-positive staining were seen only in men (n = 3). We conclude that muscle damage is similar between genders, yet the inflammatory response is attenuated in women vs. men. Finally, exercise may stimulate the expression of proteins involved in apoptosis in skeletal muscle.

  13. Orthogonality Measurement for Homogenous Projects-Bases

    ERIC Educational Resources Information Center

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  14. Titin domains progressively unfolded by force are homogenously distributed along the molecule.

    PubMed

    Bianco, Pasquale; Mártonfalvi, Zsolt; Naftz, Katalin; Kőszegi, Dorina; Kellermayer, Miklós

    2015-07-21

    Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule's length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: insight into the mechanism of smooth muscle contraction.

    PubMed

    Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej

    2008-05-01

    Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.

  16. Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin

    2016-08-14

    A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medicalmore » guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.« less

  17. Purification of a novel myofibril-bound serine proteinase inhibitor (MBSPI) from the skeletal muscle of lizard fish.

    PubMed

    Cao, M J; Osatomi, K; Hara, K; Ishihara, T

    2001-01-01

    A novel myofibril-bound serine proteinase inhibitor (MBSPI) was purified to homogeneity from the skeletal muscle of lizard fish (Saurida wanieso). Purification was carried out by ammonium sulfate fractionation, followed by column chromatographies on DEAE-Sephacel, SP-Sepharose and Sephadex G-150. MBSPI was purified 7.7-fold starting from the DEAE-Sephacel fraction, with a yield of 0.2%. It is a monomeric protein with the molecular mass of 50 kDa as estimated by SDS-PAGE and gel filtration. MBSPI reveals high inhibition specificity toward a myofibril-bound serine proteinase (MBSP) purified from lizard fish muscle. No inhibition is detected toward bovine trypsin, bovine chymotrypsin, two trypsins from carp hepatopancreas and a serine proteinase isolated from the sarcoplasmic fraction of white croaker muscle. It does not exert any inhibitory activity toward a myofibril-bound serine proteinase from carp muscle.

  18. Anthropometric changes and fluid shifts

    NASA Technical Reports Server (NTRS)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1977-01-01

    In an effort to obtain the most comprehensive and coherent picture of changes under weightlessness, a set of measurements on Skylab 2 was initiated and at every opportunity, additional studies were added. All pertinent information from ancillary sources were gleaned and collated. On Skylab 2, the initial anthropometric studies were scheduled in conjunction with muscle study. A single set of facial photographs was made in-flight. Additional measurements were made on Skylab 3, with photographs and truncal and limb girth measurements in-flight. Prior to Skylab 4, it was felt there was considerable evidence for large and rapid fluid shifts, so a series of in-flight volume and center of mass measurements and infrared photographs were scheduled to be conducted in the Skylab 4 mission. A number of changes were properly documented for the first time, most important of which were the fluid shifts. The following description of Skylab anthropometrics address work done on Skylab 4 primarily.

  19. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.

    PubMed

    De Pietro, Massimo; van Hinsberg, Michel A T; Biferale, Luca; Clercx, Herman J H; Perlekar, Prasad; Toschi, Federico

    2015-05-01

    We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η, that maximizes the clustering of the particles.

  20. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  1. Influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women

    PubMed Central

    Varella, Larissa Ramalho Dantas; Torres, Vanessa Braga; Angelo, Priscylla Helouyse Melo; Eugênia de Oliveira, Maria Clara; Matias de Barros, Alef Cavalcanti; Viana, Elizabel de Souza Ramalho; Micussi, Maria Thereza de Albuquerque Barbosa Cabral

    2016-01-01

    [Purpose] The aim of the present study was to assess the influence of parity, type of delivery, and physical activity level on pelvic floor muscles in postmenopausal women. [Subjects and Methods] This was an observational analytic cross-sectional study with a sample of 100 postmenopausal women, aged between 45 and 65 years, divided into three groups according to menopausal stage: hysterectomized and early and late postmenopause. Patients were assessed for sociodemographic and gyneco-obstetric factors and subjected to a muscle strength test and perineometry. Descriptive statistics, ANOVA, Kruskal-Wallis and multiple regression were applied. [Results] The results showed homogeneity in sociodemographic and anthropometric characteristics. There was no difference in pelvic floor muscle function among the three groups. Type of delivery, parity and physical activity level showed no influence on muscle function. [Conclusion] The findings demonstrate that parity, type of delivery, and physical activity level had no influence on pelvic floor muscle pressure in postmenopausal women. One hypothesis to explain these results is the fact that the decline in muscle function in postmenopausal women is related to the female aging process. PMID:27134366

  2. On the spatial distribution of small heavy particles in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Nicolai, C.; Jacob, B.; Piva, R.

    2013-08-01

    We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.

  3. Application of high-pressure homogenization on gums.

    PubMed

    Belmiro, Ricardo Henrique; Tribst, Alline Artigiani Lima; Cristianini, Marcelo

    2018-04-01

    High-pressure homogenization (HPH) is an emerging process during which a fluid product is pumped by pressure intensifiers, forcing it to flow through a narrow gap, usually measured in the order of micrometers. Gums are polysaccharides from vegetal, animal or microbial origin and are widely employed in food and chemical industries as thickeners, stabilizers, gelling agents and emulsifiers. The choice of a specific gum depends on its application and purpose because each form of gum has particular values with respect to viscosity, intrinsic viscosity, stability, and emulsifying and gelling properties, with these parameters being determined by its structure. HPH is able to alter those properties positively by inducing changes in the original polymer, allowing for new applications and improvements with respect to the technical properties of gums. This review highlights the most important advances when this process is applied to change polysaccharides from distinct sources and molecular structures, as well as the future challenges that remain. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in

  5. Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Cremer, C.; Graf, T.

    2012-04-01

    In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not

  6. The Effect of Acute Renal Failure on Muscle Protein Turnover in the Rat and Implications for Therapy.

    DTIC Science & Technology

    1984-10-01

    Effect on Serum Glucose and Insulin: * a. The pattern of insulin secretion and concomitant blood suoar con- centrations are of interest in this...combat casualties suffering from extensive trauma and prolonger hypotension. Despite replacement of blood , fluids and electrolytes, expert surgical care...thin muscles ar incubated in oxygenated, buffered Krebs-Ringer medium for 2 hours. The basic media contain glucose , 14C-labeled phenylalanine. Muscle

  7. The Effect of Acute Renal Failure on Muscle Protein Turnover in the Rat and Implications for Therapy.

    DTIC Science & Technology

    1983-06-15

    are largely depleted, fat deposits grossly shrunken and gluconeogenesis from muscle protein a principal source for blood glucose maintenance. We were...casualties suffering from extensive trauma and prolonged hypotension. * Despite replacement of blood , fluids and electrolytes, expert surgf:al care...Ringer medium for 2 hours. The basic media contain glucose , 1C-labeled phenylalanine. Muscle synthesis is assayed by determining the incorporation of 1C

  8. Internal homogenization: effective permittivity of a coated sphere.

    PubMed

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  9. Ultra-High Pressure Homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernandez-Avila, C; Trujillo, A J

    2016-10-15

    Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  11. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  12. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis.

    PubMed

    Mellows, Ben; Mitchell, Robert; Antonioli, Manuela; Kretz, Oliver; Chambers, David; Zeuner, Marie-Theres; Denecke, Bernd; Musante, Luca; Ramachandra, Durrgah L; Debacq-Chainiaux, Florence; Holthofer, Harry; Joch, Barbara; Ray, Steve; Widera, Darius; David, Anna L; Huber, Tobias B; Dengjel, Joern; De Coppi, Paolo; Patel, Ketan

    2017-09-15

    The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.

  13. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1975-01-01

    A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.

  14. Benchmarking homogenization algorithms for monthly data

    NASA Astrophysics Data System (ADS)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2012-01-01

    The COST (European Cooperation in Science and Technology) Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  15. Electrodynamic smooth muscle sphincter: development and biomechanical evaluation of a novel porcine artificial smooth muscle sphincter in a new in vitro stoma simulator.

    PubMed

    Schrag, H J; Karwath, D; Grub, C; Fragoza Padilla, F; Noack, T; Hopt, U T

    2005-07-01

    Many authors have suggested that the activity of the enteric inhibitory nerves is important in regulating normal gastrointestinal motility and inducing smooth muscle relaxation. Hitherto, no experimental or clinical models exist that transfer these physiological aspects to creating an autologous artificial sphincter for the treatment of major incontinence. Therefore, this study was performed to determine the contractile and relaxant capacity of gastrointestinal muscle types and to investigate the efficiency of a novel smooth muscle sphincter, based on the non-adrenergic, non-cholinergic (NANC) receptive relaxation under electrical field stimulation (EFS). For the first step, the isometric tension from isolated circular porcine fundus and colon muscle strips was recorded during pharmacological stimulation (TTX, L-NNA and atropine) and EFS. As a result, a continent electrodynamic smooth muscle sphincter (ESMS) was created by wrapping a fundus muscle flap around an isolated segment of porcine distal colon. The EFS of the free nerve fibers of the flap was realized using a circular platinum wire electrode. Parameters such as threshold of continence, intra/preluminal pressure and fluid passage were analyzed in a newly designed in vitro stoma simulator. Electrical field stimulation produced a maximal and voltage-dependent fundus relaxation to --12.4 mN/mm(2) (frequency of 40 Hz, pulse duration, train duration and voltage of 5 ms, 1 s and 60 mA respectively), which were abolished by N-nitro-L -arginine (L-NNA; 10(-4) M) in a dose-dependent manner, confirming that relaxant responses were mediated by NANC nerves. The results of eight ESMS showed that circular electrical stimulation of the muscle flap caused muscle relaxation with a concomitant and effective reduction in the occlusion pressure. The NANC-induced relaxation mechanism of porcine fundus preparations could be transferred to an efficient smooth muscle sphincter with a high threshold of continence and electrically

  16. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  17. Sewage sludge solubilization by high-pressure homogenization.

    PubMed

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  18. Leg blood flow is impaired during small muscle mass exercise in patients with COPD.

    PubMed

    Iepsen, U W; Munch, G W; Rugbjerg, M; Ryrsø, C K; Secher, N H; Hellsten, Y; Lange, P; Pedersen, B K; Thaning, P; Mortensen, S P

    2017-09-01

    Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee-extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex-matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared with the controls (1.82 ± 0.11 vs. 2.36 ± 0.14 l/min, respectively; P < 0.05), which compromised leg oxygen delivery (372 ± 26 vs. 453 ± 32 ml O 2 /min, respectively; P < 0.05). At rest, plasma endothelin-1 (vasoconstrictor) was higher in the patients with COPD ( P < 0.05) and also tended to be higher during exercise ( P = 0.07), whereas the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggest that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1. NEW & NOTEWORTHY This study demonstrates that chronic obstructive pulmonary disease (COPD) is associated with a reduced blood flow to skeletal muscle during small muscle mass exercise. In contrast to healthy individuals, interstitial prostacyclin levels did not increase during exercise and plasma endothelin-1 levels were higher in the patients with COPD. Copyright © 2017 the American Physiological

  19. Biomarkers of peripheral muscle fatigue during exercise

    PubMed Central

    2012-01-01

    Background Biomarkers of peripheral muscle fatigue (BPMFs) are used to offer insights into mechanisms of exhaustion during exercise in order to detect abnormal fatigue or to detect defective metabolic pathways. This review aims at describing recent advances and future perspectives concerning the most important biomarkers of muscle fatigue during exercise. Results BPMFs are classified according to the mechanism of fatigue related to adenosine-triphosphate-metabolism, acidosis, or oxidative-metabolism. Muscle fatigue is also related to an immunological response. impaired calcium handling, disturbances in bioenergetic pathways, and genetic responses. The immunological and genetic response may make the muscle susceptible to fatigue but may not directly cause muscle fatigue. Production of BPMFs is predominantly dependent on the type of exercise. BPMFs need to change as a function of the process being monitored, be stable without appreciable diurnal variations, correlate well with exercise intensity, and be present in detectable amounts in easily accessible biological fluids. The most well-known BPMFs are serum lactate and interleukin-6. The most widely applied clinical application is screening for defective oxidative metabolism in mitochondrial disorders by means of the lactate stress test. The clinical relevance of most other BPMFs, however, is under debate, since they often depend on age, gender, physical fitness, the energy supply during exercise, the type of exercise needed to produce the BPMF, and whether healthy or diseased subjects are investigated. Conclusions Though the role of BPMFs during fatigue is poorly understood, measuring BPMFs under specific, standardised conditions appears to be helpful for assessing biological states or processes during exercise and fatigue. PMID:23136874

  20. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    USGS Publications Warehouse

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from <10??C at deep levels to 25??C at shallow levels. The peculiarities of formation of primary and secondary fluid inclusions from organic-matter-bearing water-dominated medium, position of the inclusions in crystals, features of secondary inclusions, the inclusion refilling phenomena, their formation on recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  1. Using Ultrasonic Speckle Velocimetry to Detect Fluid Instabilities in a Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Bice, Jason E.

    Rheometry is a leading technology used to define material properties of multi-phase viscoelastic fluid-like materials, such as the shear modulus and viscosity. However, traditional rheometry relies on a mechanical response from a rotating or oscillating rotor of various geometries which does not allow for any spatial or temporal quantification of the material characteristics. Further, the setup operates under the assumption of a uniform and homogeneous flow. Thus, only qualitative deductions can be realized when a complex fluid displays inhomogeneous behavior, such as wall slip or shear banding. Due to this lack of capability, non-intrusive imaging is required to define and quantify behavior that occurs in a complex fluid under shear conditions. This thesis outlines the design, fabrication, and experimental examples of an adapted ultrasonic speckle velocimetry device, which enables spatial and temporal resolution of inhomogeneous fluid behavior using ultrasound acoustics. For the experimental example, a commercial surfactant mixture (hair shampoo) was tested to show the utility and precision that ultrasonic speckle velocimetry possesses.

  2. INTRACELLULAR DISTRIBUTION OF CALCIUM IN DEVELOPING BREAST MUSCLE OF NORMAL AND DYSTROPHIC CHICKENS

    PubMed Central

    Cosmos, Ethel

    1964-01-01

    To follow the intracellular distribution of calcium in the breast muscles of developing chickens, Ca45 was injected into the albumen of predeveloped eggs. Since the embryos were grown in a radioactive medium, a complete exchange of the isotope for its non-radioactive counterpart in muscles was accomplished. Subcellular particulates of the muscle cells were separated by the method of differential centrifugation. Analysis of the separated fractions showed that in the muscles of the 13-day embryo, when the nuclear-myofibrillar ratio is high, 65 per cent of the muscle calcium is in the nuclei. With the increased synthesis of myofibrils, the nuclear-myofibrillar ratio decreases with a concomitant fall in radioactivity. Thus, calcium was not associated with the developing myofibrils. At the time of hatching, when myofibrils perform physiological work, the highest level of calcium is in the mitochondria. This suggests that the mitochondria play a key role in the physiological activities of calcium in the cell. The microsomal fraction reaches a maximal level of calcium when the adult composition of muscle is attained. Results of investigations on dystrophic muscles show changes in the calcium distribution of the fractions as early as the 3rd week of embryonic development, which are interpreted to indicate an alteration in the protein metabolism of the cell, or an early destruction of muscle tissue. Further, alterations in the calcium content of fractions which seem to regulate the movements of this ion in the cell are discussed. A new technique for homogenizing tissues from embryos of different ages is presented. PMID:14222812

  3. Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse.

    PubMed

    Kemp, J G; Blazev, R; Stephenson, D G; Stephenson, G M M

    2009-08-01

    Knowledge of the morphological and biochemical alterations occurring in skeletal muscles of obese animals is relatively limited, particularly with respect to non-limb muscles and relationship to fibre type. Sternomastoid (SM; fast-twitch), extensor digitorum longus (EDL; fast-twitch), and soleus (SOL; mixed) muscles of ob/ob mouse (18-22 weeks) were examined with respect to size (mass, muscle mass-to-body mass ratio, cross-sectional area (CSA)), fibre CSA, protein content, myosin heavy chain (MHC) content, MHC isoform (MHC(i)) composition, MHC(i)-based fibre type composition, and lactate dehydrogenase isoenzyme (LDH(iso)) composition. Compared with (control) muscles from lean mice, all the three muscles from ob/ob mice were smaller in size (by 13-30%), with SM and EDL being the most affected. The CSA of IIB and IIB+IID fibres (the predominant fibre types in SM and EDL muscles) was markedly smaller (by approximately 30%) in ob/ob mice, consistent with differences in muscle size. Total protein content (normalised to muscle mass) was significantly lower in EDL (-9.7%) and SOL (-14.1%) muscles of ob/ob mice, but there were no differences between SM, EDL, and SOL muscles from the two animal groups with respect to MHC content (also normalised to muscle mass). Electrophoretic analyses of MHC(i) composition in whole muscle homogenates and single muscle fibres showed a shift towards slower MHC(i) content, slower MHC(i) containing fibres, and a greater proportion of hybrid fibres in all the three muscles of ob/ob mice, with a shift towards a more aerobic-oxidative phenotype also observed with respect to LDH(iso) composition. This study showed that SM, EDL, and SOL muscles of ob/ob mice display size reductions to an extent that seems to be largely related to fibre type composition, and a shift in fibre type composition that may result from a process of structural remodelling, as suggested by the increased proportion of hybrid fibres in muscles of ob/ob mice.

  4. A novel, non-invasive transdermal fluid sampling methodology: IGF-I measurement following exercise

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that transdermal fluid (TDF) provides a more sensitive and accurate measure of exercise-induced increases in insulin-like growth factor-I (IGF-I) than serum, and that these increases are detectable proximal, but not distal, to the exercising muscle. A novel, noninvas...

  5. Nonequilibrium Interfacial Tension in Simple and Complex Fluids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2016-10-01

    Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.

  6. Classical and quantum cosmology with two perfect fluids: stiff matter and radiation

    NASA Astrophysics Data System (ADS)

    Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.

    2017-11-01

    In this work the homogeneous and isotropic Universe of Friedmann-Robertson-Walker is studied in the presence of two fluids: stiff matter and radiation described by the Schutz's formalism. We obtain to the classic case the behaviour of the scale factor of the universe. For the quantum case the wave packets are constructed and the wave function of the universe is found.

  7. Three-dimensional architecture of the whole human soleus muscle in vivo

    PubMed Central

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the

  8. Fluid-inclusion evidence for previous higher temperatures in the miravalles geothermal field, Costa Rica

    USGS Publications Warehouse

    Bargar, K.E.; Fournier, R.O.

    1988-01-01

    Heating and freezing data were obtained for liquid-rich secondary fluid inclusions in magmatic quartz, hydrothermal calcite and hydrothermal quartz crystals from 19 sampled depths in eight production drill holes (PGM-1, 2, 3, 5, 10, 11, 12 and 15) of the Miravalles geothermal field in northwestern Costa Rica. Homogenization temperatures for 386 fluid inclusions range from near the present measured temperatures to as much as 70??C higher than the maximum measured well temperature of about 240??C. Melting-point temperature measurements for 76 fluid inclusions suggest a calculated salinity range of about 0.2-1.9 wt% NaCl equivalent. Calculated salinities as high as 3.1-4.0 wt% NaCl equivalent for 20 fluid inclusions from the lower part of drill hole PGM-15 (the deepest drill hole) indicate that higher salinity water probably was present in the deeper part of the Miravalles geothermal field at the time these fluid inclusions were formed. ?? 1988.

  9. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  10. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    NASA Astrophysics Data System (ADS)

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the

  11. Effect of heat and homogenization on in vitro digestion of milk.

    PubMed

    Tunick, Michael H; Ren, Daxi X; Van Hekken, Diane L; Bonnaillie, Laetitia; Paul, Moushumi; Kwoczak, Raymond; Tomasula, Peggy M

    2016-06-01

    Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. Ultra-high-temperature sterilization is also applied to milk and is typically used to extend the shelf life of refrigerated, specialty milk products or to provide shelf-stable milk. The structures of the milk proteins and lipids are affected by processing but little information is available on the effects of the individual processes or sequences of processes on digestibility. In this study, raw whole milk was subjected to homogenization, HTST pasteurization, and homogenization followed by HTST or UHT processing. Raw skim milk was subjected to the same heating regimens. In vitro gastrointestinal digestion using a fasting model was then used to detect the processing-induced changes in the proteins and lipids. Using sodium dodecyl sulfate-PAGE, gastric pepsin digestion of the milk samples showed rapid elimination of the casein and α-lactalbumin bands, persistence of the β-lactoglobulin bands, and appearance of casein and whey peptide bands. The bands for β-lactoglobulin were eliminated within the first 15min of intestinal pancreatin digestion. The remaining proteins and peptides of raw, HTST, and UHT skim samples were digested rapidly within the first 15min of intestinal digestion, but intestinal digestion of raw and HTST pasteurized whole milk showed some persistence of the peptides throughout digestion. The availability of more lipid droplets upon homogenization, with greater surface area available for interaction with the peptides, led to persistence of the smaller peptide bands and thus slower intestinal digestion when followed by HTST pasteurization but not by UHT processing, in which the denatured proteins may be more accessible to the digestive enzymes. Homogenization and heat processing also affected the ζ-potential and free fatty acid release

  12. Simulation of homogeneous condensation of small polyatomic systems in high pressure supersonic nozzle flows using Bhatnagar-Gross-Krook model

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Levin, Deborah A.

    2011-03-01

    In the present work, we have simulated the homogeneous condensation of carbon dioxide and ethanol using the Bhatnagar-Gross-Krook based approach. In an earlier work of Gallagher-Rogers et al. [J. Thermophys. Heat Transfer 22, 695 (2008)], it was found that it was not possible to simulate condensation experiments of Wegener et al. [Phys. Fluids 15, 1869 (1972)] using the direct simulation Monte Carlo method. Therefore, in this work, we have used the statistical Bhatnagar-Gross-Krook approach, which was found to be numerically more efficient than direct simulation Monte Carlo method in our previous studies [Kumar et al., AIAA J. 48, 1531 (2010)], to model homogeneous condensation of two small polyatomic systems, carbon dioxide and ethanol. A new weighting scheme is developed in the Bhatnagar-Gross-Krook framework to reduce the computational load associated with the study of homogeneous condensation flows. The solutions obtained by the use of the new scheme are compared with those obtained by the baseline Bhatnagar-Gross-Krook condensation model (without the species weighting scheme) for the condensing flow of carbon dioxide in the stagnation pressure range of 1-5 bars. Use of the new weighting scheme in the present work makes the simulation of homogeneous condensation of ethanol possible. We obtain good agreement between our simulated predictions for homogeneous condensation of ethanol and experiments in terms of the point of condensation onset and the distribution of mass fraction of ethanol condensed along the nozzle centerline.

  13. Fluid inclusion and stable isotope (O, H, C, and S) constraints on the genesis of the Serrinha gold deposit, Gurupi Belt, northern Brazil

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Harris, Chris; Renac, Christophe; Giret, André; Moura, Candido A. V.; Fuzikawa, Kazuo

    2006-05-01

    The Serrinha gold deposit of the Gurupi Belt, northern Brazil, belongs to the class of orogenic gold deposits. The deposit is hosted in highly strained graphitic schist belonging to a Paleoproterozoic (˜2,160 Ma) metavolcano-sedimentary sequence. The ore-zones are up to 11 m thick, parallel to the regional NW-SE schistosity, and characterized by quartz-carbonate-sulfide veinlets and minor disseminations. Textural and structural data indicate that mineralization was syn- to late-tectonic and postmetamorphic. Fluid inclusion studies identified early CO2 (CH4-N2) and CO2 (CH4-N2)-H2O-NaCl inclusions that show highly variable phase ratios, CO2 homogenization, and total homogenization temperatures both to liquid and vapor, interpreted as the product of fluid immiscibility under fluctuating pressure conditions, more or less associated with postentrapment modifications. The ore-bearing fluid typically has 18-33mol% of CO2, up to 4mol% of N2, and less than 2mol% of CH4 and displays moderate to high densities with salinity around 4.5wt% NaCl equiv. Mineralization occurred around 310 to 335°C and 1.3 to 3.0 kbar, based on fluid inclusion homogenization temperatures and oxygen isotope thermometry with estimated oxygen fugacity indicating relatively reduced conditions. Stable isotope data on quartz, carbonate, and fluid inclusions suggest that veins formed from fluids with δ18OH2O and δDH2O (310-335°C) values of +6.2 to +8.4‰ and -19 to -80‰, respectively, which might be metamorphic and/or magmatic and/or mantle-derived. The carbon isotope composition (δ13C) varies from -14.2 to -15.7‰ in carbonates; it is -17.6‰ in fluid inclusion CO2 and -23.6‰ in graphite from the host rock. The δ34S values of pyrite are -2.6 to -7.9‰. The strongly to moderately negative carbon isotope composition of the carbonates and inclusion fluid CO2 reflects variable contribution of organic carbon to an originally heavier fluid (magmatic, metamorphic, or mantle-derived) at the site

  14. Mechanized syringe homogenization of human and animal tissues.

    PubMed

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  15. Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.

    PubMed

    Házi, Gábor; Márkus, Attila

    2008-02-01

    A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.

  16. Application of cell co-culture system to study fat and muscle cells.

    PubMed

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  17. The anatomy of the hip abductor muscles.

    PubMed

    Flack, N A M S; Nicholson, H D; Woodley, S J

    2014-03-01

    The anatomy of the hip abductors has not been comprehensively examined, yet is important to understanding function and pathology in the gluteal region. For example, pathology of the hip abductor muscle-tendon complexes can cause greater trochanteric pain syndrome, and may be associated with gluteal atrophy and fatty infiltration. The purpose of this study was to investigate the detailed morphology of gluteus medius (GMed), gluteus minimus (GMin), and tensor fascia lata (TFL), and determine whether the muscles comprised anatomical compartments. The gluteal region from 12 cadavers was dissected and data collected on attachment sites, volume, fascicular and tendinous anatomy, and innervation. Three sites of GMed origin were identified (gluteal fossa, gluteal aponeurosis, and posteroinferior edge of the iliac crest) and the distal tendon had lateral and posterior parts. GMed was the largest in volume (27.6 ± 11.6 cm(3); GMin 14.1 ± 11.1 cm(3); TFL 1.8 ± 0.8 cm(3)). Fascicles of GMin originated from the gluteal fossa, inserting onto the deep surface of its distal tendon and the hip joint capsule. TFL was encapsulated in the fascia lata, having no bony attachment. Primary innervation patterns varied for GMed, with three or four branches supplying different regions of muscle. Distinct secondary nerve branches entered four regions of GMin; no differential innervation was observed for TFL. On the basis of architectural parameters and innervation, GMed, and GMin each comprise of four compartments but TFL is a homogenous muscle. It is anticipated that these data will be useful for future clinical and functional studies of the hip abductors. Copyright © 2013 Wiley Periodicals, Inc.

  18. Ingestion of an Amino Acid Electrolyte Beverage during Resistance Exercise Does Not Impact Fluid Shifts into Muscle or Performance

    PubMed Central

    Smith, JohnEric W.; Krings, Ben M.; Peterson, Timothy J.; Rountree, Jaden A.; Zak, Roksana B.; McAllister, Matthew J.

    2017-01-01

    The purpose of this study was to investigate the impact of ingesting an amino acid-electrolyte (AAE) beverage during upper body resistance exercise on transient muscle hypertrophy, exercise performance, markers of muscle damage, and recovery. Participants (n = 15) performed three sets of six repetitions—bench press, lat pull down, incline press, and seated row—followed by three sets of eight repetitions at 75% of the estimated 1 repetition maximum—triceps kickback, hammer curl, triceps push down, and preacher curl—with 90 s of rest between sets. The final set of the push down/preacher curl was performed to failure. Prior to and immediately post-exercise, as well as 24, 48, and 72 h post exercise, cross-sectional muscle thickness was measured. Blood samples were collected prior to exercise, as well as 24, 48, and 72 h post-exercise for serum creatine kinase (CK) analysis. No treatment effect was found for muscle cross-sectional area, repetitions to failure, or serum CK. A main effect (p < 0.001) was observed in the change in serum CK levels in the days following the resistance exercise session. The findings of this study suggest that the acute ingestion of a AAE beverage does not alter acute muscle thickness, performance, perceived soreness and weakness, or markers of muscle damage.

  19. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

    NASA Astrophysics Data System (ADS)

    Wang, Linzhu; Yang, Shufeng; Li, Jingshe; Zhang, Shuo; Ju, Jiantao

    2017-04-01

    To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz-Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov's theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

  20. [Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].

    PubMed

    Kasuga, H; Sato, H; Nakabayashi, N

    1980-01-01

    Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin.

  1. Renewable fluid dynamic energy derived from aquatic animal locomotion.

    PubMed

    Dabiri, John O

    2007-09-01

    Aquatic animals swimming in isolation and in groups are known to extract energy from the vortices in environmental flows, significantly reducing muscle activity required for locomotion. A model for the vortex dynamics associated with this phenomenon is developed, showing that the energy extraction mechanism can be described by simple criteria governing the kinematics of the vortices relative to the body in the flow. In this way, we need not make direct appeal to the fluid dynamics, which can be more difficult to evaluate than the kinematics. Examples of these principles as exhibited in swimming fish and existing energy conversion devices are described. A benefit of the developed framework is that the potentially infinite-dimensional parameter space of the fluid-structure interaction is reduced to a maximum of eight combinations of three parameters. The model may potentially aid in the design and evaluation of unsteady aero- and hydrodynamic energy conversion systems that surpass the Betz efficiency limit of steady fluid dynamic energy conversion systems.

  2. Non-Straub type actin from molluscan catch muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelud'ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for themore » extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.« less

  3. Glucose predictability, blood capillary permeability, and glucose utilization rate in subcutaneous, skeletal muscle, and visceral fat tissues.

    PubMed

    Koutny, Tomas

    2013-11-01

    This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.

  4. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Characteristic MR image finding of squatting exercise-induced rhabdomyolysis of the thigh muscles.

    PubMed

    Yeon, Eung K; Ryu, Kyung N; Kang, Hye J; Yoon, So H; Park, So Y; Park, Ji S; Jin, Wook

    2017-04-01

    To describe the characteristic MRI appearance of squatting-induced rhabdomyolysis involving the thigh muscles. This study consisted of 10 cases obtained at 3 institutions from 2005 to 2015. A retrospective review was performed to obtain clinical information and MR scans for rhabdomyolysis of the thigh muscles. MRI was analyzed according to the distribution and degree of muscle involvement; the degree was assessed and graded as normal, mild or prominent. The mean patient age was 20.2 years (range, 15-24 years), and 7 of the 10 patients were male. All patients had history of excessive squatting action, suffered clinically from bilateral thigh pain and were confirmed to have rhabdomyolysis through analysis of serum creatine kinase (CK) levels. All of the patients (10/10) exhibited diffuse mild to prominent degree involvement of the anterior thigh muscles according to fluid-sensitive MR sequences. Among the anterior thigh muscles, the rectus femoris was spared in 8 patients (8/10) and mild degree involved in 2 patients (2/10). Thus, no cases exhibited prominent degree involvement of the rectus femoris muscle. Preservation of the rectus femoris muscle on MRI in squatting-induced rhabdomyolysis may be useful for differentiating rhabdomyolysis from other aetiologies. Advances in knowledge: Preservation of rectus femoris on MRI is distinguishable finding in squatting-induced rhabdomyolysis and reflects the functional anatomy of anterior thigh muscles.

  6. Characteristic MR image finding of squatting exercise-induced rhabdomyolysis of the thigh muscles

    PubMed Central

    Yeon, Eung K; Kang, Hye J; Yoon, So H; Park, So Y; Park, Ji S; Jin, Wook

    2017-01-01

    Objective: To describe the characteristic MRI appearance of squatting-induced rhabdomyolysis involving the thigh muscles. Methods: This study consisted of 10 cases obtained at 3 institutions from 2005 to 2015. A retrospective review was performed to obtain clinical information and MR scans for rhabdomyolysis of the thigh muscles. MRI was analyzed according to the distribution and degree of muscle involvement; the degree was assessed and graded as normal, mild or prominent. Results: The mean patient age was 20.2 years (range, 15–24 years), and 7 of the 10 patients were male. All patients had history of excessive squatting action, suffered clinically from bilateral thigh pain and were confirmed to have rhabdomyolysis through analysis of serum creatine kinase (CK) levels. All of the patients (10/10) exhibited diffuse mild to prominent degree involvement of the anterior thigh muscles according to fluid-sensitive MR sequences. Among the anterior thigh muscles, the rectus femoris was spared in 8 patients (8/10) and mild degree involved in 2 patients (2/10). Thus, no cases exhibited prominent degree involvement of the rectus femoris muscle. Conclusion: Preservation of the rectus femoris muscle on MRI in squatting-induced rhabdomyolysis may be useful for differentiating rhabdomyolysis from other aetiologies. Advances in knowledge: Preservation of rectus femoris on MRI is distinguishable finding in squatting-induced rhabdomyolysis and reflects the functional anatomy of anterior thigh muscles. PMID:28181821

  7. Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe

    PubMed Central

    Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen

    2013-01-01

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280

  8. Melting Heat in Radiative Flow of Carbon Nanotubes with Homogeneous-Heterogeneous Reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Muhammad, Khursheed; Muhammad, Taseer; Alsaedi, Ahmed

    2018-04-01

    The present article provides mathematical modeling for melting heat and thermal radiation in stagnation-point flow of carbon nanotubes towards a nonlinear stretchable surface of variable thickness. The process of homogeneous-heterogeneous reactions is considered. Diffusion coefficients are considered equal for both reactant and autocatalyst. Water and gasoline oil are taken as base fluids. The conversion of partial differential system to ordinary differential system is done by suitable transformations. Optimal homotopy technique is employed for the solutions development of velocity, temperature, concentration, skin friction and local Nusselt number. Graphical results for various values of pertinent parameters are displayed and discussed. Our results indicate that the skin friction coefficient and local Nusselt number are enhanced for larger values of nanoparticles volume fraction.

  9. Is postural tremor size controlled by interstitial potassium concentration in muscle?

    PubMed Central

    Lakie, M; Hayes, N; Combes, N; Langford, N

    2004-01-01

    Objectives: To determine whether factors associated with postural tremor operate by altering muscle interstitial K+. Methods: An experimental approach was used to investigate the effects of procedures designed to increase or decrease interstitial K+. Postural physiological tremor was measured by conventional means. Brief periods of ischaemic muscle activity were used to increase muscle interstitial K+. Infusion of the ß2 agonist terbutaline was used to decrease plasma (and interstitial) K+. Blood samples were taken for the determination of plasma K+. Results: Ischaemia rapidly reduced tremor size, but only when the muscle was active. The ß2 agonist produced a slow and progressive rise in tremor size that was almost exactly mirrored by a slow and progressive decrease in plasma K+. Conclusions: Ischaemic reduction of postural tremor has been attributed to effects on muscle spindles or an unexplained effect on muscle. This study showed that ischaemia did not reduce tremor size unless there was accompanying muscular activity. An accumulation of K+ in the interstitium of the ischaemic active muscle may blunt the response of the muscle and reduce its fusion frequency, so that the force output becomes less pulsatile and tremor size decreases. When a ß2 agonist is infused, the rise in tremor mirrors the resultant decrease in plasma K+. Decreased plasma K+ reduces interstitial K+ concentration and may produce greater muscular force fluctuation (more tremor). Many other factors that affect postural tremor size may exert their effect by altering plasma K+ concentration, thereby changing the concentration of K+ in the interstitial fluid. PMID:15201362

  10. Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.

    PubMed

    Okada, Jun-ichi; Sugiura, Seiryo; Hisada, Toshiaki

    2013-06-01

    The bidomain model is a commonly used mathematical model of the electrical properties of the cardiac muscle that takes into account the anisotropy of both the intracellular and extracellular spaces. However, the equations contain self-contradiction such that the update of ion concentrations does not consider intracellular or extracellular ion movements due to the gradient of electric potential and the membrane charge as capacitive currents in spite of the fact that those currents are taken into account in forming Kirchhoff's first law. To overcome this problem, we start with the Nernst-Planck equation, the ionic conservation law, and the electroneutrality condition at the cellular level, and by introducing a homogenization method and assuming uniformity of variables at the microscopic scale, we derive rational bidomain equations at the macroscopic level.

  11. [Effects of simulated body fluid flowing rate on bone-like apatite formation on porous calcium phosphate ceramics].

    PubMed

    Duan, You-rong; Liu, Ke-wei; Chen, Ji-yong; Zhang, Xing-dong

    2002-06-01

    Objective. Bone-like apatite formation on the surface of calcium phosphate ceramics was believed to be the necessary step that new bone grows on the ceramics and to be relative to the osteoinductivity of the material. This study aimed at investigating the influence of the flow rate of simulated body fluid (SBF) (2 ml/min) in skeletal muscle upon the formation of bone-like apatite on porous calcium phosphate ceramics. Method. The dynamic condition was realized by controlling the SBF flowing in/out of the sample chamber of 100 ml. The flow rate of 2 ml/min is close to that in human muscle environment. The pH and inorganic ionic composition of SBF are close to those of human body fluid. Result. Bone-like apatite formation was relatively easier to occur in static SBF than in dynamic SBF. Experiment with flowing SBF (dynamic SBF) is better in mimicking the living body fluid than static SBF. Conclusion. The results from dynamic SBF may more truly show the relation between apatite layer formation and osteoinduction in biomaterials than that from in vitro experiments before.

  12. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    DOE PAGES

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; ...

    2016-01-02

    Accurate modeling of the velocity field in the forebay of a hydroelectric power station is important for both power generation and fish passage, and is able to be increasingly well represented by computational fluid dynamics (CFD) simulations. Acoustic Doppler Current Profiler (ADCP) are investigated herein as a method of validating the numerical flow solutions, particularly in observed and calculated regions of non-homogeneous flow velocity. By using a numerical model of an ADCP operating in a velocity field calculated using CFD, the errors due to the spatial variation of the flow velocity are quantified. Furthermore, the numerical model of the ADCPmore » is referred to herein as a Virtual ADCP (VADCP).« less

  13. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  14. Pulmonary inflammation-induced loss and subsequent recovery of skeletal muscle mass require functional poly-ubiquitin conjugation.

    PubMed

    Ceelen, Judith J M; Schols, Annemie M W J; Thielen, Nathalie G M; Haegens, Astrid; Gray, Douglas A; Kelders, Marco C J M; de Theije, Chiel C; Langen, Ramon C J

    2018-05-02

    Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.

  15. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  16. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    PubMed

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems.

    PubMed

    Ferrari, A

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  18. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    NASA Astrophysics Data System (ADS)

    Ferrari, A.

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  19. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    PubMed Central

    2017-01-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh–Plesset equation are examined. PMID:28413332

  20. Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system

    NASA Technical Reports Server (NTRS)

    Torgan, C. E.; Burge, S. S.; Collinsworth, A. M.; Truskey, G. A.; Kraus, W. E.

    2000-01-01

    The growth and repair of adult skeletal muscle are due in part to activation of muscle precursor cells, commonly known as satellite cells or myoblasts. These cells are responsive to a variety of environmental cues, including mechanical stimuli. The overall goal of the research is to examine the role of mechanical signalling mechanisms in muscle growth and plasticity through utilisation of cell culture systems where other potential signalling pathways (i.e. chemical and electrical stimuli) are controlled. To explore the effects of decreased mechanical loading on muscle differentiation, mammalian myoblasts are cultured in a bioreactor (rotating cell culture system), a model that has been utilised to simulate microgravity. C2C12 murine myoblasts are cultured on microcarrier beads in a bioreactor and followed throughout differentiation as they form a network of multinucleated myotubes. In comparison with three-dimensional control cultures that consist of myoblasts cultured on microcarrier beads in teflon bags, myoblasts cultured in the bioreactor exhibit an attenuation in differentiation. This is demonstrated by reduced immunohistochemical staining for myogenin and alpha-actinin. Western analysis shows a decrease, in bioreactor cultures compared with control cultures, in levels of the contractile proteins myosin (47% decrease, p < 0.01) and tropomyosin (63% decrease, p < 0.01). Hydrodynamic measurements indicate that the decrease in differentiation may be due, at least in part, to fluid stresses acting on the myotubes. In addition, constraints on aggregate size imposed by the action of fluid forces in the bioreactor affect differentiation. These results may have implications for muscle growth and repair during spaceflight.

  1. SLC20A2 DEFICIENCY IN MICE LEADS TO ELEVATED PHOSPHATE LEVELS IN CEREBROSPINAL FLUID AND GLYMPHATIC PATHWAY-ASSOCIATED ARTERIOLAR CALCIFICATION, AND RECAPITULATES HUMAN IDIOPATHIC BASAL GANGLIA CALCIFICATION

    PubMed Central

    Wallingford, MC; Chia, J; Leaf, EM; Borgeia, S; Chavkin, NW; Sawangmake, C; Marro, K; Cox, TC; Speer, MY; Giachelli, CM

    2016-01-01

    Idiopathic basal ganglia calcification is a brain calcification disorder that has been genetically linked to autosomal dominant mutations in the sodium-dependent phosphate co-transporter, SLC20A2. The mechanisms whereby deficiency of Slc20a2 leads to basal ganglion calcification are unknown. In the mouse brain, we found that Slc20a2 was expressed in tissues that produce and/or regulate cerebrospinal fluid, including choroid plexus, ependyma and arteriolar smooth muscle cells. Haploinsufficient Slc20a2 +/− mice developed age-dependent basal ganglia calcification that formed in glymphatic pathway-associated arterioles. Slc20a2 deficiency uncovered phosphate homeostasis dysregulation characterized by abnormally high cerebrospinal fluid phosphate levels and hydrocephalus, in addition to basal ganglia calcification. Slc20a2 siRNA knockdown in smooth muscle cells revealed increased susceptibility to high phosphate-induced calcification. These data suggested that loss of Slc20a2 led to dysregulated phosphate homeostasis and enhanced susceptibility of arteriolar smooth muscle cells to elevated phosphate-induced calcification. Together, dysregulated cerebrospinal fluid phosphate and enhanced smooth muscle cell susceptibility may predispose to glymphatic pathway-associated arteriolar calcification. PMID:26822507

  2. Determination of malachite green residues in the eggs, fry, and adult muscle-tissue of rainbow-trout (Oncorhynchus-mykiss)

    USGS Publications Warehouse

    Allen, John L.; Gofus, J.E.; Meinertz, Jeffery R.

    1994-01-01

    Malachite green, an effective antifungal therapeutant used in fish culture, is a known teratogen. We developed a method to simultaneously detect both the chromatic and leuco forms of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (oncorhynchus mykiss). Homogenates of these tissues were fortified with [c-14] malachite green chloride and extracted with 1% (v/v) acetic acid in acetonitrile or in methanol. The extracts were partitioned with chloroform, dried, redissolved in mobile phase, and analyzed by liquid chromatography (lc) with postcolumn oxidation of leuco malachite green to the chromatic form. Lc fractions were collected every 30 s for quantitation by scintillation counting. Recoveries of total [c-14] malachite green chloride residue were 85 and 98% in eggs fortified with labeled malachite green at concentrations of 0.5 And 1.00 Mug/g, respectively; 68% in fry similarly fortified at a concentration of 0.65 Mug/g; and 66% in muscle homogenate similarly fortified at a level of 1.00 Mug/g. The method was tested under operational conditions by exposing adult rainbow trout to 1.00 Mg/l [c-14] malachite green chloride bath for 1 h. Muscle samples analyzed by sample oxidation and scintillation counting contained 1.3 And 0.5 Mug/g total malachite green chloride residues immediately after exposure and after a 5-day withdrawal period, respectively.

  3. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    NASA Astrophysics Data System (ADS)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  4. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    PubMed Central

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  5. Nonstationary homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1974-01-01

    The theory of homogeneous condensation is reviewed and equations describing this process are presented. Numerical computer solutions to transient problems in nucleation (relaxation to steady state) are presented and compared to a prior computation.

  6. Two-Dimensional Homogeneous Fermi Gases

    NASA Astrophysics Data System (ADS)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  7. Improving homogeneity by dynamic speed limit systems.

    PubMed

    van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera

    2010-05-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Searching regional rainfall homogeneity using atmospheric fields

    NASA Astrophysics Data System (ADS)

    Gabriele, Salvatore; Chiaravalloti, Francesco

    2013-03-01

    The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.

  9. Calculation of periodic flows in a continuously stratified fluid

    NASA Astrophysics Data System (ADS)

    Vasiliev, A.

    2012-04-01

    Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and

  10. Fluid Characteristics in the Giant Quartz Reef System of the Bundelkhand Craton, India: Constraints from Fluid Inclusion Study

    NASA Astrophysics Data System (ADS)

    Rout, D.; Panigrahi, M. K.; Pati, J. K.

    2017-12-01

    Giant quartz reefs are anomalous features indicating extensive mobilization of silica in the crust. Such reefs in the Abitibi belt, Canada and elsewhere are believed to be the result of activity of fluid of diverse sources on terrain boundaries. The Bundelkhand granitoid complex constituting a major part of the Bundelkhnad Craton in north-Central India is traversed by numerous such quartz reefs all across for a length of about 500 km. There are about 20 major reefs having dimensions of 35 to 40 km in length, 50 to 60 m in width standing out as prominent ridges in the region. Almost all are aligned parallel to each other in a sub-vertical to vertical manner following the NE-SW to NNE-SSW trend. Fluid inclusion petrography in quartz from these reefs reveal four types of inclusions viz. aqueous biphase (type-I), pure carbonic (type-II), aqueous carbonic (type-III) and polyphase (type-IV) inclusions. The type-I aqueous biphase inclusions are the dominant type in all the samples studied so far. Salinities calculated from temperature of melting of last ice (Tm) values are low to moderate, ranging from 0.18 to 18.19 wt% NaCl equivalents. Temperature of liquid-vapor homogenization (Th) values of these inclusions show a wide range from 101 ºC to 386 ºC (cluster around 150-250 ºC) essentially into liquid phase ruling out boiling during its course of evolution. Besides, aqueous Biphase inclusions, some data on pure CO2 inclusions furnish a near constant value of TmCO2 at -56.6 ºC in the Bundelkhand Craton indicating absence of CH4. Bivariate plot between Th and salinity suggest three possible water types which are controlling the overall activity of fluid in quartz reefs of Bundelkhand Craton viz. low-T low saline, high-T low saline and moderate-T and moderate saline. A low saline and CO2-bearing and higher temperature nature resembles a metamorphic fluid that may be a source for these giant quartz reefs. The low temperature low-salinity component could be a meteoric

  11. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    USGS Publications Warehouse

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  12. Quantitative Homogenization in Nonlinear Elasticity for Small Loads

    NASA Astrophysics Data System (ADS)

    Neukamm, Stefan; Schäffner, Mathias

    2018-04-01

    We study quantitative periodic homogenization of integral functionals in the context of nonlinear elasticity. Under suitable assumptions on the energy densities (in particular frame indifference; minimality, non-degeneracy and smoothness at the identity; {p ≥q d} -growth from below; and regularity of the microstructure), we show that in a neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula. The latter can be expressed with the help of correctors. We prove that the homogenized integrand admits a quadratic Taylor expansion in an open neighborhood of the rotations - a result that can be interpreted as the fact that homogenization and linearization commute close to the rotations. Moreover, for small applied loads, we provide an estimate on the homogenization error in terms of a quantitative two-scale expansion.

  13. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  14. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    PubMed Central

    Hollingworth, S; Marshall, M W; Robson, E

    1990-01-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV. PMID:2348406

  15. Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice.

    PubMed Central

    Heydrick, S J; Jullien, D; Gautier, N; Tanti, J F; Giorgetti, S; Van Obberghen, E; Le Marchand-Brustel, Y

    1993-01-01

    Activation of phosphatidylinositol-3-kinase (PI3K) is one of the earliest postreceptor events in the insulin signaling pathway. Incubation of soleus muscles from lean mice with 50 nM insulin caused a 3-10-fold increase in antiphosphotyrosine-immunoprecipitable PI3K (antiPTyr-PI3K) activity within 2 min in muscle homogenates as well as both the cytosolic and membrane fractions. Insulin did not affect total PI3K activity. Both the antiPTyr-PI3K stimulation and activation of insulin receptor tyrosine kinase were dependent on hormone concentration. In muscles from obese, insulin-resistant mice, there was a 40-60% decrease in antiPTyr-PI3K activity after 2 min of insulin that was present equally in the cytosolic and membrane fractions. A significant reduction in insulin sensitivity was also observed. The defect appears to result from alterations in both insulin receptor and postreceptor signaling. Starvation of obese mice for 48 h, which is known to reverse insulin resistance, normalized the insulin response of both PI3K and the receptor tyrosine kinase. The results demonstrate that: (a) antiPTyr-PI3K activity is responsive to insulin in mouse skeletal muscle, (b) both the insulin responsiveness and sensitivity of this activity are blunted in insulin-resistant muscles from obese mice, (c) these alterations result from a combination of insulin receptor and postreceptor defects, and (d) starvation restores normal insulin responses. Images PMID:8386184

  16. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  17. Effect of magnesium on reactive oxygen species production in the thigh muscles of broiler chickens.

    PubMed

    Liu, Y X; Guo, Y M; Wang, Z

    2007-02-01

    1. The objective of the present study was to investigate the effect of magnesium (Mg) on reactive oxygen species (ROS) production in the thigh muscles of broiler chickens. A total of 96 1-d-old male Arbor Acre broiler chickens were randomly allocated into two groups, fed either on low-Mg or control diets containing about 1.2 g/kg or 2.4 g Mg/kg dry matter. 2. The low-Mg diet significantly increased malondialdehyde (MDA) concentration and decreased glutathione (GSH) in the thigh muscles of broiler chickens. ROS production in the thigh muscle homogenate was significantly higher in the low-Mg group than in the control group. Compared with the control, muscle Mg concentration of broiler chickens from the low-Mg group decreased by 9.5%. 3. Complex II and III activities of the mitochondrial electron transport chain in broilers on low-Mg diet increased by 23 and 35%, respectively. Significant negative correlations between ROS production and the activities of mitochondrial electron transport chain (ETC) complexes were observed. 4. The low-Mg diet did not influence contents of iron (Fe) or calcium (Ca) in the thigh muscles of broiler chickens and did not influence unsaturated fatty acid composition (except C18:2) in the thigh muscles. 5. A low-Mg diet decreased Mg concentration in the thigh muscles of broiler chickens and then induced higher activities of mitochondrial ETC, consequently increasing ROS production. These results suggest that Mg modulates the oxidation-anti-oxidation system of the thigh muscles at least partly through affecting ROS production.

  18. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    PubMed Central

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  19. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    PubMed

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High-intensity resistance training in multiple sclerosis - An exploratory study of effects on immune markers in blood and cerebrospinal fluid, and on mood, fatigue, health-related quality of life, muscle strength, walking and cognition.

    PubMed

    Kierkegaard, Marie; Lundberg, Ingrid E; Olsson, Tomas; Johansson, Sverker; Ygberg, Sofia; Opava, Christina; Holmqvist, Lotta Widén; Piehl, Fredrik

    2016-03-15

    High-intensity resistance training is unexplored in people with multiple sclerosis. To evaluate effects of high-intensity resistance training on immune markers and on measures of mood, fatigue, health-related quality of life, muscle strength, walking and cognition. Further, to describe participants' opinion and perceived changes of the training. Twenty patients with relapsing-remitting multiple sclerosis performed high-intensity resistance training at an intensity of 80% of one-repetition maximum, twice a week for 12 weeks. Blood and optional cerebrospinal fluid samples, and data on secondary outcome measures were collected before and after intervention. A study-specific questionnaire was used for capturing participants' opinion. Seventeen participants completed the study. Plasma cytokine levels of tumor necrosis factor were significantly decreased post-intervention (p=0.001). Exploratory cytokine analyses in cerebrospinal fluid (n=8) did not reveal major changes. Significant and clinically important improvements were found in fatigue (p=0.001) and health-related quality of life (p=0.004). Measures of mood (p=0.002), muscle strength (p ≤ 0.001), walking speed (p=0.013) and cognition (p=0.04) were also improved. A majority of participants evaluated the training as very good and perceived changes to the better. High-intensity resistance training in persons with relapsing remitting multiple sclerosis with low disability had positive effects on peripheral pro-inflammatory cytokine levels, led to clinically relevant improvements in measures of fatigue and health-related quality of life, and was well tolerated. These results provide a basis for a larger randomized trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska

    USGS Publications Warehouse

    Leach, David L.; Marsh, Erin E.; Emsbo, Poul; Rombach, Cameron; Kelley, Karen D.; Anthony, Michael W.

    2004-01-01

    The densities of the methane inclusions, together with the temperature of homogenization of coexisting aqueous fluid inclusions, show that these fluid inclusions were trapped between pressures of 800 and 3,400 bars and temperatures between 187° and 214°C. The pressures obtained provide unequivocal evidence that the quartz formed after ore deposition in the Carboniferous because such high fluid pressures could only have been produced from thrust loading during the Mesozoic Brookian orogeny. The observed large variation in pressure is best explained by transient fluid pressures from hydrostatic to lithostatic conditions during thrust loading. The 3,400 bars pressure corresponds with about 12 km of lithostatic burial, whereas the lower pressures (800 bars) correspond with about 8 km of hydrostatic pressure. Because of their low salinity (0-5 wt % NaCl equiv) the electrolyte compositions of the quartz fluid inclusions do not constrain their origin.

  2. Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging.

    PubMed

    Schiller, C; Fröhlich, C-P; Giessmann, T; Siegmund, W; Mönnikes, H; Hosten, N; Weitschies, W

    2005-11-15

    The gastrointestinal transit of sequentially administered capsules was investigated in relation to the availability of fluid along the intestinal lumen by magnetic resonance imaging. Water-sensitive magnetic resonance imaging was performed on 12 healthy subjects during fasting and 1 h after a meal. Specifiable non-disintegrating capsules were administered at 7, 4 and 1 h prior to imaging. While food intake reduced the mean fluid volumes in the small intestine (105 +/- 72 mL vs. 54 +/- 41 mL, P < 0.01) it had no significant effect on the mean fluid volumes in the colon (13 +/- 12 mL vs. 18 +/- 26 mL). The mean number of separated fluid pockets increased in both organs after meal (small intestine: 4 vs. 6, P < 0.05; large intestine: 4 vs. 6, P < 0.05). The distribution of capsules between the small and large intestine was strongly influenced by food (colon: 3 vs. 17 capsules, P < 0.01). The results show that fluid is not homogeneously distributed along the gut, which likely contributes to the individual variability of drug absorption. Furthermore, transport of fluid and solids through the ileocaecal valve is obviously initiated by a meal-induced gastro-ileocaecal reflex.

  3. Thiel embalming fluid--a new way to revive formalin-fixed cadaveric specimens.

    PubMed

    Hunter, Amanda; Eisma, Roos; Lamb, Clare

    2014-09-01

    By soft fixing cadavers using the Thiel embalming method, our cadavers now exhibit a greater degree of flexibility and color retention compared to that of traditional formalin-fixed cadavers. The aim of this experiment was to discover whether Thiel embalming fluid could be used to revive and soften the muscles of formalin-fixed prosected specimens. Earlier this year, two severely dehydrated formalin-fixed forearm and hand specimens were fully submerged in a tank containing Thiel embalming fluid. After a period of six months the specimens were removed from the tank and noticeable changes were observed in flexibility, quality of the tissue, and color of the specimens. © 2014 Wiley Periodicals, Inc.

  4. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    PubMed

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running

    NASA Technical Reports Server (NTRS)

    Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.

    2000-01-01

    Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.

  6. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent.

    PubMed

    Porter, Craig; Constantin-Teodosiu, Dumitru; Constantin, Despina; Leighton, Brendan; Poucher, Simon M; Greenhaff, Paul L

    2017-09-01

    Meldonium inhibits endogenous carnitine synthesis and tissue uptake, and accelerates urinary carnitine excretion, although the impact of meldonium-mediated muscle carnitine depletion on whole-body fuel selection, and muscle fuel metabolism and its molecular regulation is under-investigated. Ten days of oral meldonium administration did not impact on food or fluid intake, physical activity levels or body weight gain in the rat, whereas it depleted muscle carnitine content (all moieties), increased whole-body carbohydrate oxidation and muscle and liver glycogen utilization, and reduced whole-body fat oxidation. Meldonium reduced carnitine transporter protein expression across muscles of different contractile and metabolic phenotypes. A TaqMan PCR low-density array card approach revealed the abundance of 189 mRNAs regulating fuel selection was altered in soleus muscle by meldonium, highlighting the modulation of discrete cellular functions and metabolic pathways. These novel findings strongly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. The body carnitine pool is primarily confined to skeletal muscle, where it regulates carbohydrate (CHO) and fat usage. Meldonium (3-(2,2,2-trimethylhydrazinium)-propionate) inhibits carnitine synthesis and tissue uptake, although the impact of carnitine depletion on whole-body fuel selection, muscle fuel metabolism and its molecular regulation is under-investigated. Male lean Zucker rats received water (control, n = 8) or meldonium-supplemented water (meldonium, n = 8) for 10 days [1.6 g kg -1 body mass (BM) day -1 days 1-2, 0.8 g kg -1  BM day -1 thereafter]. From days 7-10, animals were housed in indirect calorimetry chambers after which soleus muscle and liver were harvested. Food and fluid intake, weight gain and physical activity levels were similar between groups from days 7 to 10. Compared to control, meldonium depleted muscle total carnitine (P < 0

  7. Sensitivity of liquid clouds to homogenous freezing parameterizations.

    PubMed

    Herbert, Ross J; Murray, Benjamin J; Dobbie, Steven J; Koop, Thomas

    2015-03-16

    Water droplets in some clouds can supercool to temperatures where homogeneous ice nucleation becomes the dominant freezing mechanism. In many cloud resolving and mesoscale models, it is assumed that homogeneous ice nucleation in water droplets only occurs below some threshold temperature typically set at -40°C. However, laboratory measurements show that there is a finite rate of nucleation at warmer temperatures. In this study we use a parcel model with detailed microphysics to show that cloud properties can be sensitive to homogeneous ice nucleation as warm as -30°C. Thus, homogeneous ice nucleation may be more important for cloud development, precipitation rates, and key cloud radiative parameters than is often assumed. Furthermore, we show that cloud development is particularly sensitive to the temperature dependence of the nucleation rate. In order to better constrain the parameterization of homogeneous ice nucleation laboratory measurements are needed at both high (>-35°C) and low (<-38°C) temperatures. Homogeneous freezing may be significant as warm as -30°CHomogeneous freezing should not be represented by a threshold approximationThere is a need for an improved parameterization of homogeneous ice nucleation.

  8. Release of MicroRNAs into Body Fluids from Ten Organs of Mice Exposed to Cigarette Smoke

    PubMed Central

    Izzotti, Alberto; Longobardi, Mariagrazia; La Maestra, Sebastiano; Micale, Rosanna T.; Pulliero, Alessandra; Camoirano, Anna; Geretto, Marta; D'Agostini, Francesco; Balansky, Roumen; Miller, Mark Steven; Steele, Vernon E.; De Flora, Silvio

    2018-01-01

    Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies. PMID:29721069

  9. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  10. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    NASA Astrophysics Data System (ADS)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  11. Fluid and electrolyte balance in ultra-endurance sport.

    PubMed

    Rehrer, N J

    2001-01-01

    It is well known that fluid and electrolyte balance are critical to optimal exercise performance and, moreover, health maintenance. Most research conducted on extreme sporting endeavour (>3 hours) is based on case studies and studies involving small numbers of individuals. Ultra-endurance sportsmen and women typically do not meet their fluid needs during exercise. However, successful athletes exercising over several consecutive days come close to meeting fluid needs. It is important to try to account for all factors influencing bodyweight changes, in addition to fluid loss, and all sources of water input. Increasing ambient temperature and humidity can increase the rate of sweating by up to approximately 1 L/h. Depending on individual variation, exercise type and particularly intensity, sweat rates can vary from extremely low values to more than 3 L/h. Over-hydration, although not frequently observed, can also present problems, as can inappropriate fluid composition. Over-hydrating or meeting fluid needs during very long-lasting exercise in the heat with low or negligible sodium intake can result in reduced performance and, not infrequently, hyponatraemia. Thus, with large rates of fluid ingestion, even measured just to meet fluid needs, sodium intake is vital and an increased beverage concentration [30 to 50 mmol/L (1.7 to 2.9 g NaCl/L) may be beneficial. If insufficient fluids are taken during exercise, sodium is necessary in the recovery period to reduce the urinary output and increase the rate of restoration of fluid balance. Carbohydrate inclusion in a beverage can affect the net rate of water assimilation and is also important to supplement endogenous reserves as a substrate for exercising muscles during ultra-endurance activity. To enhance water absorption, glucose and/or glucose-containing carbohydrates (e.g. sucrose, maltose) at concentrations of 3 to 5% weight/volume are recommended. Carbohydrate concentrations above this may be advantageous in terms of

  12. Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus

    2017-11-01

    The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.

  13. Muscle-Specific Vascular Endothelial Growth Factor Deletion Induces Muscle Capillary Rarefaction Creating Muscle Insulin Resistance

    PubMed Central

    Bonner, Jeffrey S.; Lantier, Louise; Hasenour, Clinton M.; James, Freyja D.; Bracy, Deanna P.; Wasserman, David H.

    2013-01-01

    Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF−/−) and wild-type littermates (mVEGF+/+) on a C57BL/6 background. The mVEGF−/− mice had an ∼60% and ∼50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF−/− mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF−/− mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035

  14. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways.

    PubMed

    Zorzano, A; Muñoz, P; Camps, M; Mora, C; Testar, X; Palacín, M

    1996-01-01

    Insulin rapidly stimulates glucose transport in muscle fiber. This process controls the utilization of glucose in skeletal muscle, and it is deficient in various insulin-resistant states, such as non-insulin-dependent diabetes mellitus. The effect of insulin on muscle glucose transport is mainly due to the recruitment of GLUT4 glucose carriers to the cell surface of the muscle fiber. There is increasing evidence that the recruitment of GLUT4 carriers triggered by insulin affects selective domains of sarcolemma and transverse tubules. In contrast, GLUT1 is located mainly in sarcolemma and is absent in transverse tubules, and insulin does not alter its cellular distribution in muscle fiber. The differential distribution of GLUT1 and GLUT4 in the cell surface raises new questions regarding the precise endocytic and exocytic pathways that are functional in the muscle fiber. The current view of insulin-induced GLUT4 translocation is based mainly on studies performed in adipocytes. These studies have proposed the existence of intracellular compartments of GLUT4 that respond to insulin in a highly homogeneous manner. However, studies performed in skeletal muscle have identified insulin-sensitive as well as insulin-insensitive intracellular GLUT4-containing membranes. These data open a new perspective on the dynamics of intracellular GLUT4 compartments in insulin-sensitive cells.

  15. [Effects of different hypoxic training modes on activities of mitochondrial antioxidants and respiratory chain complex in skeletal muscle after exhaustive running in rat].

    PubMed

    Li, Jie; Zhang, Yao-Bin

    2011-02-25

    The present study was aimed to investigate the effect of hypoxic training on mitochondrial antioxidants and activities of respiratory chain complexes in mitochondria of skeletal muscle in rats. Forty healthy male Wistar rats were randomized to 5 groups (n=8): living low-training low (LoLo), living high-training high (HiHi), living high-training low (HiLo), living low-training high (LoHi), and living high-exercise high-training low (HiHiLo). All the animals were subjected to 5-week training in normoxic (atmospheric pressure=632 mmHg, altitude of about 1 500 m) or hypoxic environment (atmospheric pressure=493 mmHg, simulated altitude of about 3 500 m). Before exhaustive running, the animals stayed in normoxia for 3 d. Skeletal muscles were prepared immediately after exhaustive running. Muscle mitochondria were extracted by differential centrifugation. Spectrophotometric analysis was used to evaluate activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde (MDA) level and respiratory chain complex (C) I-III activities in muscle homogenate and mitochondria. Results showed that SOD, GSH-Px, CAT activities and MDA level in skeletal muscle homogenate in HiHi and HiHiLo groups were significantly increased (P<0.05 or P<0.01) compared with those in LoLo group. Muscle mitochondrial MDA level in HiHi and HiHiLo groups was significantly lower (P<0.01), while activities of SOD, GSH-Px and CAT were remarkably higher (P<0.01) than those in LoLo group. Meanwhile, C I-III activities in HiHi and HiHiLo groups were increased significantly (P<0.01), and C II activity in HiLo group also was increased remarkably (P<0.01) compared with those in LoLo group. These results suggest that HiHiLo might be an ideal hypoxic training mode.

  16. Nutrition and Muscle in Cirrhosis.

    PubMed

    Anand, Anil C

    2017-12-01

    As the cirrhosis progresses, development of complication like ascites, hepatic encephalopathy, variceal bleeding, kidney dysfunction, and hepatocellular carcinoma signify increasing risk of short term mortality. Malnutrition and muscle wasting (sarcopenia) is yet other complications that negatively impact survival, quality of life, and response to stressors, such as infection and surgery in patients with cirrhosis. Conventionally, these are not routinely looked for, because nutritional assessment can be a difficult especially if there is associated fluid retention and/or obesity. Patients with cirrhosis may have a combination of loss of skeletal muscle and gain of adipose tissue, culminating in the condition of "sarcopenic obesity." Sarcopenia in cirrhotic patients has been associated with increased mortality, sepsis complications, hyperammonemia, overt hepatic encephalopathy, and increased length of stay after liver transplantation. Assessment of muscles with cross-sectional imaging studies has become an attractive index of nutritional status evaluation in cirrhosis, as sarcopenia, the major component of malnutrition, is primarily responsible for the adverse clinical consequences seen in patients with liver disease. Cirrhosis is a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from other metabolic functions. Protein homeostasis is disturbed in cirrhosis due to several factors such as hyperammonemia, hormonal, and cytokine abnormalities, physical inactivity and direct effects of ethanol and its metabolites. New approaches to manage sarcopenia are being evolved. Branched chain amino acid supplementation, Myostatin inhibitors, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis.

  17. Propagation of sound waves through a spatially homogeneous but smoothly time-dependent medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayrapetyan, A.G., E-mail: armen@physi.uni-heidelberg.de; Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Grigoryan, K.K.

    2013-06-15

    The propagation of sound through a spatially homogeneous but non-stationary medium is investigated within the framework of fluid dynamics. For a non-vortical fluid, especially, a generalized wave equation is derived for the (scalar) potential of the fluid velocity distribution in dependence of the equilibrium mass density of the fluid and the sound wave velocity. A solution of this equation for a finite transition period τ is determined in terms of the hypergeometric function for a phenomenologically realistic, sigmoidal change of the mass density and sound wave velocity. Using this solution, it is shown that the energy flux of the soundmore » wave is not conserved but increases always for the propagation through a non-stationary medium, independent of whether the equilibrium mass density is increased or decreased. It is found, moreover, that this amplification of the transmitted wave arises from an energy exchange with the medium and that its flux is equal to the (total) flux of the incident and the reflected wave. An interpretation of the reflected wave as a propagation of sound backward in time is given in close analogy to Feynman and Stueckelberg for the propagation of anti-particles. The reflection and transmission coefficients of sound propagating through a non-stationary medium is analyzed in more detail for hypersonic waves with transition periods τ between 15 and 200 ps as well as the transformation of infrasound waves in non-stationary oceans. -- Highlights: •Analytically exact study of sound propagation through a non-stationary medium. •Energy exchange between the non-stationary medium and the sound wave. •Transformation of hypersonic and ultrasound frequencies in non-stationary media. •Propagation of sound backward in time in close analogy to anti-particles. •Prediction of tsunamis both in spatially and temporally inhomogeneous oceans.« less

  18. Pressure-Responsive, Surfactant-Free CO2-Based Nanostructured Fluids

    PubMed Central

    2017-01-01

    Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. “Water-rich” nanodomains embedded into a “water-depleted” matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the “water-rich” nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering. PMID:28846386

  19. New method for determining total calcium content in tissue applied to skeletal muscle with and without calsequestrin

    PubMed Central

    Lamboley, Cédric R.H.; Kake Guena, Sandrine A.; Touré, Fatou; Hébert, Camille; Yaddaden, Louiza; Nadeau, Stephanie; Bouchard, Patrice; Wei-LaPierre, Lan; Lainé, Jean; Rousseau, Eric C.; Frenette, Jérôme; Protasi, Feliciano; Dirksen, Robert T.

    2015-01-01

    We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer’s law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites

  20. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, S.; Sahebi, S. A. R.; Ghasemiasl, R.; Majidian, A. R.

    2017-05-01

    In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

  1. Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (Marcaine).

    PubMed

    Nonaka, I; Takagi, A; Ishiura, S; Nakase, H; Sugita, H

    1983-01-01

    A single direct injection of a local anesthetic, 0.5% bupivacaine hydrochloride (BPVC) (Marcaine), into rat soleus and extensor digitorum longus (EDL) muscles produced massive fiber necrosis with extensive phagocytosis followed by rapid regeneration, predominantly in the soleus. Since the sarcoplasmic reticulum (SR) was functionally disturbed by BPVC administration as confirmed by an in vitro study, the sarcolemmal lysis seen in the early phase of degeneration was not assumed to simply result from direct damage to the plasma membrane caused by BPVC. The extracellular fluid containing a high concentration of calcium (Ca) ions then permeated into the sarcoplasm through the defective membrane resulting in hyper-contracted myofibrils. Selective damage to the Z-line, an early sign of muscle degeneration, was shown by electron microscopy and SDS gel electrophoresis (preferential loss of alpha-actinin). Administration of leupeptin, a thiol protease inhibitor, proved to be ineffective in inhibiting the necrotic process, because the BPVC induced muscle fiber breakdown was probably too acute and fulminant to demonstrate the inhibitory effect upon the degenerative process. Well preserved satellite cells, peripheral nerves, and acetylcholinesterase activity, and the absence of fibrous tissue proliferation in this system may be responsible for the extremely rapid regeneration with complete muscle fiber type differentiation. Since the sequence of fiber breakdown induced by BPVC administration was similar to that of progressive muscular dystrophy, this chemical will be one of the most useful tools for studying the pathophysiology of fiber necrosis and regeneration in diseased muscle.

  2. Fluid inclusions in minerals from the geothermal fields of Tuscany, Italy

    USGS Publications Warehouse

    Belkin, H.; de Vivo, B.; Gianelli, G.; Lattanzi, P.

    1985-01-01

    A reconnaissance study on fluid inclusions from the geothermal fields of Tuscany indicates that the hydrothermal minerals were formed by fluids which were, at least in part, boiling. Four types of aqueous inclusions were recognized: (A) two-phase (liquid + vapor) liquid rich, (B) two-phase (vapor + liquid) vapor rich, (C) polyphase hypersaline liquid rich and (D) three phase-H2O liquid + CO2 liquid + CO2-rich vapor. Freezing and heating microthermometric determinations are reported for 230 inclusions from samples from six wells. It is suggested that boiling of an originally homogeneous, moderately saline, CO2-bearing liquid phase produced a residual hypersaline brine and a CO2-rich vapor phase. There are indications of a temperature decrease in the geothermal field of Larderello, especially in its peripheral zones. ?? 1985.

  3. Phosphofructokinase and mitochondria partially explain the high ultimate pH of broiler pectoralis major muscle.

    PubMed

    Matarneh, Sulaiman K; Yen, Con-Ning; Elgin, Jennifer M; Beline, Mariane; da Luz E Silva, Saulo; Wicks, Jordan C; England, Eric M; Dalloul, Rami A; Persia, Michael E; Omara, Islam I; Shi, Hao; Gerrard, David E

    2018-05-01

    During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate p

  4. Homogenization patterns of the world's freshwater fish faunas.

    PubMed

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-11-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.

  5. Enhanced settling of nonheavy inertial particles in homogeneous isotropic turbulence: The role of the pressure gradient and the Basset history force.

    PubMed

    van Hinsberg, M A T; Clercx, H J H; Toschi, F

    2017-02-01

    The Stokes drag force and the gravity force are usually sufficient to describe the behavior of sub-Kolmogorov-size (or pointlike) heavy particles in turbulence, in particular when the particle-to-fluid density ratio ρ_{p}/ρ_{f}≳10^{3} (with ρ_{p} and ρ_{f} the particle and fluid density, respectively). This is, in general, not the case for smaller particle-to-fluid density ratios, in particular not for ρ_{p}/ρ_{f}≲10^{2}. In that case the pressure gradient force, added mass effects, and the Basset history force also play important roles. In this study we focus on the understanding of the role of these additional forces, all of hydrodynamic origin, in the settling of particles in turbulence. In order to qualitatively elucidate the complex dynamics of such particles in homogeneous isotropic turbulence, we first focus on the case of settling of such particles in the flow field of a single vortex. After having explored this simplified case we extend our analysis to homogeneous isotropic turbulence. In general, we found that the pressure gradient force leads to a decrease in the settling velocity. This can be qualitatively understood by the fact that this force prevents the particles from sweeping out of vortices, a mechanism known as preferential sweeping which causes enhanced settling. Additionally, we found that the Basset history force can both increase and decrease the enhanced settling, depending on the particle Stokes number. Finally, the role of the nonlinear Stokes drag has been explored, confirming that it affects settling of inertial particles in turbulence, but only in a limited way for the parameter settings used in this investigation.

  6. Skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  7. Muscle biopsy

    MedlinePlus

    ... muscle ( myopathic changes ) Tissue death of the muscle (necrosis) Disorders that involve inflammation of the blood vessels and affect muscles ( necrotizing vasculitis ) Traumatic muscle damage ...

  8. Steady state rheology from homogeneous and locally averaged simple shear simulations

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Luding, Stefan; Magnanimo, Vanessa

    2017-06-01

    Granular materials and particulate matter are ubiquitous in our daily life and they display interesting bulk behaviors from static to dynamic, solid to fluid or gas like states, or even all these states together. To understand how the micro structure and inter-particle forces influence the macroscopic bulk behavior is still a great challenge today. This short paper presents stress controlled homogeneous simple shear results in a 3D cuboidal box using MercuryDPM software. An improved rheological model is proposed for macroscopic friction, volume fraction and coordination number as a function of inertial number and pressure. In addition, the results are compared with the locally averaged data from steady state shear bands in a split bottom ring shear cell and very good agreement is observed in low to intermediate inertia regime at various confining pressure but not for high inertia collisional granular flow.

  9. Locomotor Stability in a Model Swimmer: Coupling Fluid Dynamics, Neurophysiology and Muscle Mechanics

    DTIC Science & Technology

    2017-07-05

    springs which resist deformation. (C) Inset that shows the position of the muscle segments. Cohen, Holmes, Rand, J. Math Biol. 1982 A representative...numbers are the segment number, labeled from head to tail. Cohen, Holmes, Rand, J. Math Biol. 1982 The signals are periodic. Cohen, Holmes, Rand, J... Math Biol. 1982 From head to tail there is a phase lag on each side. Cohen, Holmes, Rand, J. Math Biol. 1982 On a given segment, the signals are in

  10. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    PubMed Central

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  11. Effect of homogeneous-heterogeneous reactions on ferrofluid in the presence of magnetic dipole along a stretching cylinder

    NASA Astrophysics Data System (ADS)

    Nadeem, Sohail; Ullah, Naeem; Khan, Arif Ullah; Akbar, Tanvir

    This article characterizes the influence of magnetic dipole in a non-Newtonian ferrofluid. The flow is caused by an incompressible stretchable cylinder. The effects of homogeneous and heterogeneous reactions are taken into account. Heat flux is evaluated by the Fourier's law of heat conduction. Characteristics of pertinent parameters on magneto-thermomechanical coupling and chemical reactions are explored numerically. It is depicted that the magneto-thermomechanical interaction slows down the motion of fluid particles, thereby increases skin friction and decreasing rate of heat transfer at the surface of a cylinder. Comparison with available results for some cases is found good agreements.

  12. Computational Fluid Dynamics Simulation of Hydrodynamics and Stresses in the PhEur/USP Disintegration Tester Under Fed and Fasted Fluid Characteristics.

    PubMed

    Kindgen, Sarah; Wachtel, Herbert; Abrahamsson, Bertil; Langguth, Peter

    2015-09-01

    Disintegration of oral solid dosage forms is a prerequisite for drug dissolution and absorption and is to a large extent dependent on the pressures and hydrodynamic conditions in the solution that the dosage form is exposed to. In this work, the hydrodynamics in the PhEur/USP disintegration tester were investigated using computational fluid dynamics (CFD). Particle image velocimetry was used to validate the CFD predictions. The CFD simulations were performed with different Newtonian and non-Newtonian fluids, representing fasted and fed states. The results indicate that the current design and operating conditions of the disintegration test device, given by the pharmacopoeias, are not reproducing the in vivo situation. This holds true for the hydrodynamics in the disintegration tester that generates Reynolds numbers dissimilar to the reported in vivo situation. Also, when using homogenized US FDA meal, representing the fed state, too high viscosities and relative pressures are generated. The forces acting on the dosage form are too small for all fluids compared to the in vivo situation. The lack of peristaltic contractions, which generate hydrodynamics and shear stress in vivo, might be the major drawback of the compendial device resulting in the observed differences between predicted and in vivo measured hydrodynamics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  14. Intermuscular relationship of human muscle fiber type proportions: slow leg muscles predict slow neck muscles.

    PubMed

    Vikne, Harald; Gundersen, Kristian; Liestøl, Knut; Maelen, Jan; Vøllestad, Nina

    2012-04-01

    Our aim in this study was to examine whether the muscle fiber type proportions in different muscles from the same individual are interrelated. Samples were excised from five skeletal muscles in each of 12 human autopsy cases, and the fiber type proportions were determined by immunohistochemistry. We further examined the intermuscular relationship in fiber type proportion by reanalyzing three previously published data sets involving other muscles. Subjects demonstrated a predominantly high or low proportion of type 1 fibers in all examined muscles, and the overall difference between individuals was statistically significant (P < 0.001). Accordingly, the type 1 fiber proportions in most muscles were positively correlated (median r = 0.42, range -0.03-0.80). Similar results were also obtained from the three reanalyzed data sets. We suggest the existence of an across-muscle phenotype with respect to fiber type proportions; some individuals display generally faster muscles and some individuals slower muscles when compared with others. Copyright © 2011 Wiley Periodicals, Inc.

  15. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  16. Learning from jellyfish: Fluid transport in muscular pumps at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Dabiri, John

    2010-11-01

    Biologically inspired hydrodynamic propulsion and maneuvering strategies promise the advancement of medical implants and minimally invasive clinical tools. We have chosen juvenile jellyfish as a model system for investigating fluid dynamics and morphological properties underlying fluid transport by a muscular pump at intermediate Reynolds numbers. Recently we have described how natural variations in viscous forces are balanced by changes in jellyfish body shape (phenotypic plasticity), to the effect of facilitating efficient body-fluid interaction. Complementing these studies in our live model organisms, we are also engaged in engineering an artificial jellyfish, that is, a jellyfish-inspired construct of a flexible plastic sheet actuated by a monolayer of rat cardiomyocytes. The main challenges here are (1) to derive a body shape and deformation suitable for effective fluid transport under physiological conditions, (2) to understand the mechanical properties of the muscular film and derive a design capable of the desired deformation, (3) to master the proper alignment and timely contraction of the muscle component needed to achieve the desired deformation, and (4) to evaluate the performance of the design.

  17. Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space

    PubMed Central

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F. Xavier; Milham, Michael P.

    2013-01-01

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test–retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo’s TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). PMID:23085497

  18. Experimental pressure enhancement of the rate of homogenous methanogenesis: implications for abiotic methane yields in terrestrial and planetary environments

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Cody, G. D.

    2011-12-01

    Abiotic methane may play a role in the development of a biosphere on an otherwise lifeless planet. Methane concentrations in fluids emanating from serpentinite-hosted submarine springs such as Rainbow and Logatchev are below that required for equilibrium with coexisting CO2 and H2, indicating that the compositions of such fluids may be kinetically-controlled. The presence of transition metal-bearing accessory minerals in serpentinites has led to the hypothesis that heterogeneous catalysis may influence the rate of methanogenesis. We present new experiments that show pressure can also significantly accelerate homogenous methanogenesis, i.e., methane production in the absence of mineral catalysts. A series of cold-seal experiments were performed from 1-3.5 kbar at 300C for two weeks, using dilute isotopically labeled formic acid as a carbon and hydrogen source (70mmol solution). The experiments showed a significant increase in 13CH4 yield with pressure: e.g., the yield at 3.5 kbar was ~20X the yield at 1 kbar. This pressure enhancement is consistent with our previous results on homogeneous and heterogeneous methanogenesis and suggests that mineral catalysts are not necessary for CH4 equilibration in high pressure environments such as Precambrian crystalline basements or regional blueschist-grade metamorphic systems. Furthermore, in hydrothermal systems wherein fluid residence times are too short to permit equilibration, the reaction progress of methanogenesis is expected to increase with pressure. Recently discovered methane plumes above the mid-Cayman trough have been attributed to methanogenesis in deep serpentinites-hosted springs. The current experimental results lead to the prediction that the mid-Cayman springs (>1 kbar) contain higher methane concentrations than their lower pressure analogues at Rainbow and Logatchev (<0.5kbar). Fluids escaping forearc serpentinization in cold, steeply-dipping subduction zones may yield more methane than in warm shallow

  19. Zebrafish: a model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics.

    PubMed

    Bourdineaud, Jean-Paul; Rossignol, R; Brèthes, D

    2013-01-01

    Mercury, anthropogenic release of uranium (U), and nanoparticles constitute hazardous environmental pollutants able to accumulate along the aquatic food chain with severe risk for animal and human health. The impact of such pollutants on living organisms has been up to now approached by classical toxicology in which huge doses of toxic compounds, environmentally irrelevant, are displayed through routes that never occur in the lifespan of organisms (for instance injecting a bolus of mercury to an animal although the main route is through prey and fish eating). We wanted to address the effect of such pollutants on the muscle and brain mitochondrial bioenergetics under realistic conditions, at unprecedented low doses, using an aquatic model animal, the zebrafish Danio rerio. We developed an original method to measure brain mitochondrial respiration: a single brain was put in 1.5 mL conical tube containing a respiratory buffer. Brains were gently homogenized by 13 strokes with a conical plastic pestle, and the homogenates were immediately used for respiration measurements. Skinned muscle fibers were prepared by saponin permeabilization. Zebrafish were contaminated with food containing 13 μg of methylmercury (MeHg)/g, an environmentally relevant dose. In permeabilized muscle fibers, we observed a strong inhibition of both state 3 mitochondrial respiration and cytochrome c oxidase activity after 49 days of MeHg exposure. We measured a dramatic decrease in the rate of ATP release by skinned muscle fibers. Contrarily to muscles, brain mitochondrial respiration was not modified by MeHg exposure although brain accumulated twice as much MeHg than muscles. When zebrafish were exposed to 30 μg/L of waterborne U, the basal mitochondrial respiratory control ratio was decreased in muscles after 28 days of exposure. This was due to an increase of the inner mitochondrial membrane permeability. The impact of a daily ration of food containing gold nanoparticles of two sizes (12 and

  20. Note on the eigensolution of a homogeneous equation with semi-infinite domain

    NASA Technical Reports Server (NTRS)

    Wadia, A. R.

    1980-01-01

    The 'variation-iteration' method using Green's functions to find the eigenvalues and the corresponding eigenfunctions of a homogeneous Fredholm integral equation is employed for the stability analysis of fluid hydromechanics problems with a semiinfinite (infinite) domain of application. The objective of the study is to develop a suitable numerical approach to the solution of such equations in order to better understand the full set of equations for 'real-world' flow models. The study involves a search for a suitable value of the length of the domain which is a fair finite approximation to infinity, which makes the eigensolution an approximation dependent on the length of the interval chosen. In the examples investigated y = 1 = a seems to be the best approximation of infinity; for y greater than unity this method fails due to the polynomial nature of Green's functions.

  1. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    PubMed

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  2. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods.

    PubMed

    Milly, P J; Toledo, R T; Chen, J; Kazem, B

    2007-11-01

    Ultraviolet (UV)-induced chemical reactions and inactivation of microorganisms in transparent and opaque fluids are strongly dependent upon the homogenous exposure of the target species to the UV irradiation. Current UV technologies used in water disinfection and food preservation applications have limited efficacy due to suspended particles shading target species. An Ultraviolet-Shockwave Power Reactor (UV-SPR) consisting of an inner rotating rotor and a stationary quartz housing and 2 end plates was used to induce 'controlled cavitation.' Eight UV low-pressure mercury lamps spaced uniformly were installed lengthwise around the quartz housing periphery. A KI to I(3) (-)chemical dosimeter for UV was used to quantify photons received by fluid in the annular space of the SPR. UV dose (J/m(2)) increased from 97 J/m(2) at 0 rpm to over 700 J/m(2) for SPR speeds above 2400 rpm. Inactivation of E. coli 25922 in apple juice and skim milk in the UV-SPR at exit temperatures below 45 degrees C was greater than 4.5 and 3 logs, respectively. The UV-SPR system proved successful in increasing the mass transfer of transparent and opaque fluid to the UV irradiated surface.

  3. Cosmic homogeneity: a spectroscopic and model-independent measurement

    NASA Astrophysics Data System (ADS)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  4. Exploring the Cattaneo-Christov heat flux phenomenon on a Maxwell-type nanofluid coexisting with homogeneous/heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Sarkar, Amit; Kundu, Prabir Kumar

    2017-12-01

    This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.

  5. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  6. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  7. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  8. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  9. Cosmological models with homogeneous and isotropic spatial sections

    NASA Astrophysics Data System (ADS)

    Katanaev, M. O.

    2017-05-01

    The assumption that the universe is homogeneous and isotropic is the basis for the majority of modern cosmological models. We give an example of a metric all of whose spatial sections are spaces of constant curvature but the space-time is nevertheless not homogeneous and isotropic as a whole. We give an equivalent definition of a homogeneous and isotropic universe in terms of embedded manifolds.

  10. Responses to the lowering of magnesium and calcium concentrations in the cerebrospinal fluid of unanesthetized sheep.

    PubMed

    Allsop, T F; Pauli, J V

    1975-12-01

    A technique for ventriculolumbar perfusion of the cerebrospinal fluid space has been used to study the neuromuscular effects of low concentrations of magnesium and calcium in the cerebrospinal fluid of conscious sheep. Perfusion with synthetic cerebrospinal fluid solutions containing less than 0-6 mg magnesium/100 ml produced episodes of tetany which were abolished by perfusion with a solution of normal magnesium concentration. This suggests that the low cerebrospinal fluid magnesium concentrations reported in cases of hypomagneseamic tetany may result in changes within the central nervous system that could produce the nervous signs. Perfusates with a calcium concentration below 2-0 mg/100 ml caused hyperpnoea and continuous muscle tremors. Magnesium (0-6 mg/100 ml) and calcium (2-0 mg/100 ml) perfused simultaneously acted synergistically to produce signs characteristic of low levels of each of the ions.

  11. Modern aspects of homogeneous-heterogeneous reactions and variable thickness in nanofluids through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Ahmed, Sohail; Muhammad, Taseer; Alsaedi, Ahmed

    2017-10-01

    This article examines homogeneous-heterogeneous reactions and internal heat generation in Darcy-Forchheimer flow of nanofluids with different base fluids. Flow is generated due to a nonlinear stretchable surface of variable thickness. The characteristics of nanofluid are explored using CNTs (single and multi walled carbon nanotubes). Equal diffusion coefficients are considered for both reactants and auto catalyst. The conversion of partial differential equations (PDEs) to ordinary differential equations (ODEs) is done via appropriate transformations. Optimal homotopy approach is implemented for solutions development of governing problems. Averaged square residual errors are computed. The optimal solution expressions of velocity, temperature and concentration are explored through plots by using several values of physical parameters. Further the coefficient of skin friction and local Nusselt number are examined through graphs.

  12. The nature of the fluids associated with the Monte Rosa gold district, NW Alps, Italy

    NASA Astrophysics Data System (ADS)

    Lattanzi, P.

    1990-12-01

    Recent O-isotope and fluid inclusion studies have provided evidence on the nature of the fluids associated with the late-Alpine quartz-gold deposits of the Monte Rosa district. The most abundant inclusions in quartz from these deposits contain a low salinity aqueous fluid (about 2% to 10% wt. NaCl eq.), and a CO2 phase (usually less than 20% mol), in places with minor methane. CO2 densities and total homogenization temperatures vary widely throughout the district, reflecting diverse conditions of trapping (P = 1 to 3 kb, T = 300° to 450°C). At Miniera dei Cani, unmixing between CO2-rich and H2O-rich fluids possibly occurred. A second type of inclusion contains an aqueous brine without recognizable CO2, and is especially abundant at Val Toppa. O-isotope studies suggest that fluids were largely equilibrated in a metamorphic environment. It is concluded that the gold-related fluids in the district were mainly of a metamorphic nature; at Val Toppa, both isotopic and fluid inclusion data point to contributions of unexchanged meteoric waters. Mechanisms of gold transport and precipitation are less contrained. A possible model involves transport of gold as bisulfide complexes, and precipitation due to one or more of the following processes: decrease of sulfur activity due to precipitation of sulfides, wall-rock reaction, cooling/dilution, and/or fluid unmixing.

  13. Fluid-inclusion evidence for previous higher temperatures in the SUNEDCO 58-28 drill hole near Breitenbush hot springs, Oregon

    USGS Publications Warehouse

    Bargar, Keith E.; ,

    1993-01-01

    The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.

  14. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    PubMed

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  15. Expression of the inclusion body myopathy 3 mutation in Drosophila depresses myosin function and stability and recapitulates muscle inclusions and weakness.

    PubMed

    Wang, Yang; Melkani, Girish C; Suggs, Jennifer A; Melkani, Anju; Kronert, William A; Cammarato, Anthony; Bernstein, Sanford I

    2012-06-01

    Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.

  16. Settling velocity and preferential concentration of heavy particles under two-way coupling effects in homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Monchaux, R.; Dejoan, A.

    2017-10-01

    The settling velocity of inertial particles falling in homogeneous turbulence is investigated by making use of direct numerical simulation (DNS) at moderate Reynolds number that include momentum exchange between both phases (two-way coupling approach). Effects of particle volume fraction, particle inertia, and gravity are presented for flow and particle parameters similar to the experiments of Aliseda et al. [J. Fluid Mech. 468, 77 (2002), 10.1017/S0022112002001593]. A good agreement is obtained between the DNS and the experiments for the settling velocity statistics, when overall averaged, but as well when conditioned on the local particle concentration. Both DNS and experiments show that the settling velocity further increases with increasing volume fraction and local concentration. At the considered particle loading the effects of two-way coupling is negligible on the mean statistics of turbulence. Nevertheless, the DNS results show that fluid quantities are locally altered by the particles. In particular, the conditional average on the local particle concentration of the slip velocity shows that the main contribution to the settling enhancement results from the increase of the fluid velocity surrounding the particles along the gravitational direction induced by the collective particle back-reaction force. Particles and the surrounding fluid are observed to fall together, which in turn results in an amplification of the sampling of particles in the downward fluid motion. Effects of two-way coupling on preferential concentration are also reported. Increase of both volume fraction and gravity is shown to lower preferential concentration of small inertia particles while a reverse tendency is observed for large inertia particles. This behavior is found to be related to an attenuation of the centrifuge effects and to an increase of particle accumulation along gravity direction, as particle loading and gravity become large.

  17. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  18. Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.

    2018-05-01

    Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.

  19. Coenzyme Q10 quantification in muscle, fibroblasts and cerebrospinal fluid by liquid chromatography/tandem mass spectrometry using a novel deuterated internal standard.

    PubMed

    Duberley, Kate E C; Hargreaves, Iain P; Chaiwatanasirikul, Korn-Anong; Heales, Simon J R; Land, John M; Rahman, Shamima; Mills, Kevin; Eaton, Simon

    2013-05-15

    Neurological dysfunction is common in primary coenzyme Q10 (2,3-dimethoxy, 5-methyl, 6-polyisoprene parabenzoquinone; CoQ10 ; ubiquinone) deficiencies, the most readily treatable subgroup of mitochondrial disorders. Therapeutic benefit from CoQ10 supplementation has also been noted in other neurodegenerative diseases. CoQ10 can be measured by high-performance liquid chromatography (HPLC) in plasma, muscle or leucocytes; however, there is no reliable method to quantify CoQ10 in cerebrospinal fluid (CSF). Additionally, many methods use CoQ9 , an endogenous ubiquinone in humans, as an internal standard. Deuterated CoQ10 (d6 -CoQ10 ) was synthesised by a novel, simple, method. Total CoQ10 was measured by liquid chromatography/tandem mass spectrometry (LC/MS/MS) using d6 -CoQ10 as internal standard and 5 mM methylamine as an ion-pairing reagent. Chromatography was performed using a Hypsersil GOLD C4 column (150 × 3 mm, 3 µm). CoQ10 levels were linear over a concentration range of 0-200 nM (R(2) = 0.9995). The lower limit of detection was 2 nM. The inter-assay coefficient of variation (CV) was 3.6% (10 nM) and 4.3% (20 nM), and intra-assay CV 3.4% (10 nM) and 3.6% (20 nM). Reference ranges were established for CoQ10 in CSF (5.7-8.7 nM; n = 17), fibroblasts (57.0-121.6 pmol/mg; n = 50) and muscle (187.3-430.1 pmol/mg; n = 15). Use of d6 -CoQ10 internal standard has enabled the development of a sensitive LC/MS/MS method to accurately determine total CoQ10 levels. Clinical applications of CSF CoQ10 determination include identification of patients with cerebral CoQ10 deficiency, and monitoring CSF CoQ10 levels following supplementation. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Evaluation of muscle hyperactivity of the grimacing muscles by unilateral tight eyelid closure and stapedius muscle tone.

    PubMed

    Shiba, Masato; Matsuo, Kiyoshi; Ban, Ryokuya; Nagai, Fumio

    2012-10-01

    Muscle hyperactivity of grimacing muscles, including the orbicularis oculi and corrugator supercilii muscles that cause crow's feet and a glabellar frown line with ageing, cannot be accurately evaluated by surface observation. In 71 subjects, this study investigated the extent to which grimacing muscles are innervated by the bilateral motor cortices, whether the corticofacial projection to the grimacing muscles affects the facially innervated stapedius muscle tone by measuring static compliance of the tympanic membrane, and whether unilateral tight eyelid closure with contraction of the grimacing muscles changes static compliance. Unilateral tight eyelid closure and its subsequent change in the contralateral vertical medial eyebrow position revealed that motor neurons of the orbicularis oculi and corrugator supercilii muscles were innervated by the bilateral motor cortices with weak-to-strong contralateral dominance. The orbicularis oculi, corrugator supercilii, and stapedius muscles innervated by the bilateral motor cortices had increased muscle hyperactivity, which lowered the vertical medial eyebrow position and decreased the static compliance of the tympanic membrane more than those innervated by the unilateral motor cortex. Unilateral enhanced tight eyelid closure with contraction of the grimacing muscles in certain subjects ipsilaterally decreased the static compliance with increased contraction of the stapedius muscle, which probably occurs to immobilise the tympanic membrane and protect the inner ear from loud sound. Evaluation of unilateral tight eyelid closure and the subsequent change in the contralateral vertical medial eyebrow position as well as a measurement of the static compliance for the stapedius muscle tone has revealed muscle hyperactivity of grimacing muscles.

  1. Homogeneity and Entropy

    NASA Astrophysics Data System (ADS)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  2. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  3. Glucocorticoid actions on L6 muscle cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, S.R.; Konagaya, M.; Konagaya, Y.

    1986-05-01

    Glucocorticoids exert striking catabolic effects on skeletal muscle. The mechanism of these effects remains poorly understood. They employed L6 muscle cells in culture to ascertain whether intracellular glucocorticoid receptors are involved. Studies in vitro permit exploration of glucocorticoid effects in the absence of other hormonal influences. L6 myoblasts were induced to form differentiated myotubes by growth in 1% serum. L6 myotubes were found to possess a high-affinity, limited capacity intracellular glucocorticoid receptor (apparent K/sub D/ = 5 x 10/sup -10/ M; B/sub max/ = 711 pmols/g protein) with ligand specificity similar to that of glucocorticoid receptors from classical glucocorticoid targetmore » tissues. Further, (/sup 3/H) triamcinolone acetonide specific binding to L6 cell homogenates was blocked by a glucocorticoid antagonist, RU38486 (11..beta..-(4-dimethyl-aminophenyl)-17..beta..-hydroxy-17..cap alpha..-(prop-l-ynyl)-estra-4,9-dien-3-one). Dexamethasone (10/sup -5/M) caused a 10-fold increase in the activity of gluatmine synthetase in L6 myotubes; this increase was prevented by RU38486. Similarly, dexamethasone (10/sup -5/M) caused a 20% decrease in (/sup 12/C) leucine incorporation into protein. This effect also was blocked by RU38486. Thus, induction of glutamine synthetase and diminution of protein synthesis by dexamethasone require intracellular glucocorticoid receptors. L6 cells should prove particularly valuable for further studies of glucocorticoid actions on skeletal muscle.« less

  4. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  5. Critical fluid thermal equilibration experiment (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    1992-01-01

    Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.

  6. Muscle force depends on the amount of transversal muscle loading.

    PubMed

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Functional compartmentalization of the human superficial masseter muscle.

    PubMed

    Guzmán-Venegas, Rodrigo A; Biotti Picand, Jorge L; de la Rosa, Francisco J Berral

    2015-01-01

    Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle's motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF).

  8. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Fault and fluid systems in supra-subduction zones: The Troodos ophiolite

    NASA Astrophysics Data System (ADS)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter; Krenn, Kurt

    2017-04-01

    chemistry with salinities below 5 mass% based on last melting of ice between -3 and -0.8° C. Homogenization around 100-200° C occurs always to the liquid phase indicative for a pressure dominated fluid origin. Well preserved zonation textures in blocky calcite veins consisting of partly decrepitated but also re-equilibrated large fluid inclusions are related to Mn-rich areas. This fluid inclusion generation shows also homogenization to the liquid phase and points to minimum temperature conditions for formation of Mn-enriched areas of about 220° C. Calcite microstructures within the veins are characterized by type I and II twins as well as undulatory extinction and subgrain boundaries indicative for deformation temperatures of approximately 200-250° C, with differential stresses of about 50 MPa. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz

  10. Sewage sludge disintegration by high-pressure homogenization: a sludge disintegration model.

    PubMed

    Zhang, Yuxuan; Zhang, Panyue; Ma, Boqiang; Wu, Hao; Zhang, Sheng; Xu, Xin

    2012-01-01

    High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DD(COD)), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DD(COD) of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DD(COD) = kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.

  11. Finite Element Modeling of Elastic Volume Changes in Fluid Inclusions: Comparison with Experiment

    NASA Astrophysics Data System (ADS)

    Burnley, P. C.; Bruhn, D.; Schmidt, C.

    2003-12-01

    Inclusions within mineral grains in rocks of all types are widely studied because they contain information about either the environment of formation of the mineral grain or conditions since. Understanding the mechanics of the inclusion-host system caused by differences in thermal expansion and compressibility is often essential for interpreting measurements made on the inclusion. We are studying the mechanics of inclusions by comparing elastic volume changes and deformation of synthetic pure water inclusions in quartz with finite element models of the individual inclusions. Synthetic fluid inclusions are ideal for such a study because the mechanical boundary conditions as well as the resulting deformation are either known or can be determined from the homogenization temperature and equation of state of the fluid. The experiments for this study were conducted using a hydrothermal diamond anvil cell with water as the pressure medium. The homogenization temperature of the inclusions was used to determine the inclusion volume at various confining pressures. The confining pressure was obtained from the homogenization or the ice I liquidus temperature of the pressure medium. After the experiment the homogenization temperature of the inclusion at 1 atm confining pressure was re-determined to confirm that the deformation of the inclusions was completely elastic. The inclusion shape for each model was determined from optical photomicrographs. The thickness of the synthetic fluid inclusions is consistently about 1 micron. We used a commercially available engineering package, MSC MARC/Mentat, to create and analyze two-dimensional and three-dimensional finite element models of the inclusions. The inclusions are assumed to have at least one mirror plane (parallel to the plane of the photograph) permitting a portion of the inclusion to be modeled. We assume a linear elastic response for the quartz host and have used both isotropic and anisotropic elastic moduli. Within the

  12. Structural and functional characteristics of the thoracolumbar multifidus muscle in horses.

    PubMed

    García Liñeiro, J A; Graziotti, G H; Rodríguez Menéndez, J M; Ríos, C M; Affricano, N O; Victorica, C L

    2017-03-01

    great mobility. There were no significant differences in the values of relative areas occupied by fibre types I, IIA and IIX. In considering the relative areas occupied by the fibre types in the multifidus muscle fascicles attached to each vertebral motion segment examined, the relative area occupied by the type I fibres was found to be significantly higher in the T4 vertebral motion segment than in the other segments. It can be concluded that the equine multifidus muscle in horses is an immunohistochemically homogeneous muscle with various architectural designs that have functional significance according to the vertebral motion segments considered. The results obtained in this study can serve as a basis for future research aimed at understanding the posture and dynamics of the equine spine. © 2016 Anatomical Society.

  13. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    PubMed

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  14. Gauge Fields in Homogeneous and Inhomogeneous Cosmologies

    NASA Astrophysics Data System (ADS)

    Darian, Bahman K.

    Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on homogeneous cosmologies is amenable to a formal treatment. This dissertation is a report on a systematic approach to the general construction of invariant YM fields on homogeneous cosmologies undertaken for the first time in this context. This construction is subsequently followed by the investigation of the behavior of YM field variables for the most simple of self-gravitating YM fields. Particularly interesting was a dynamical system analysis and the discovery of chaotic signature in the axially symmetric Bianchi I-YM cosmology. Homogeneous YM fields are well studied and are known to have chaotic properties. The chaotic behavior of YM field variables in homogeneous cosmologies might eventually lead to an invariant definition of chaos in (general) relativistic cosmological models. By choosing the gauge fields to be Abelian, the construction and the field equations presented so far reduce to that of electromagnetic field in homogeneous cosmologies. A perturbative analysis of gravitationally interacting electromagnetic and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi formulation of general relativity. An essential feature of this analysis is the spatial gradient expansion of the generating functional (Hamilton principal function) to solve the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-Walker cosmology with an exponential potential for the scalar field are presented.

  15. Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology

    ERIC Educational Resources Information Center

    Sandage, Mary J.; Smith, Audrey G.

    2017-01-01

    Purpose: Intrinsic laryngeal skeletal muscle bioenergetics, the means by which muscles produce fuel for muscle metabolism, is an understudied aspect of laryngeal physiology with direct implications for voice habilitation and rehabilitation. The purpose of this review is to describe bioenergetic pathways identified in limb skeletal muscle and…

  16. Homogenization of Large-Scale Movement Models in Ecology

    USGS Publications Warehouse

    Garlick, M.J.; Powell, J.A.; Hooten, M.B.; McFarlane, L.R.

    2011-01-01

    A difficulty in using diffusion models to predict large scale animal population dispersal is that individuals move differently based on local information (as opposed to gradients) in differing habitat types. This can be accommodated by using ecological diffusion. However, real environments are often spatially complex, limiting application of a direct approach. Homogenization for partial differential equations has long been applied to Fickian diffusion (in which average individual movement is organized along gradients of habitat and population density). We derive a homogenization procedure for ecological diffusion and apply it to a simple model for chronic wasting disease in mule deer. Homogenization allows us to determine the impact of small scale (10-100 m) habitat variability on large scale (10-100 km) movement. The procedure generates asymptotic equations for solutions on the large scale with parameters defined by small-scale variation. The simplicity of this homogenization procedure is striking when compared to the multi-dimensional homogenization procedure for Fickian diffusion,and the method will be equally straightforward for more complex models. ?? 2010 Society for Mathematical Biology.

  17. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space.

    PubMed

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F Xavier; Milham, Michael P

    2013-01-15

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test-retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo's TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The fluid-dynamics of bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    colucci, simone; papale, paolo; montagna, chiara

    2014-05-01

    The rheological properties of a fluid establish how the shear stress, τ, is related to the shear strain-rate, γ . The simplest constitutive equation is represented by the linear relationship τ = μγ, where the viscosity parameter, μ, is independent of strain-rate and the velocity profile is parabolic. Fluids with such a flow curve are called Newtonian. Many fluids, though, exhibit non-Newtonian rheology, typically arising in magmas from the presence of a dispersed phase of either crystals or bubbles. In this case it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extend the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D including the Non-Newtonian rheology of the bubble-bearing magma. We describe such rheology in terms of an apparent viscosity, η, which is the ratio of stress to strain-rate (η = τ/γ) and varies with strain-rate across the conduit radius. In this way we calculate a depth-dependent Non-newtonian velocity profile across the radius along with shear strain-rate and viscosity distributions. The evolution of the velocity profile can now be studied in order to investigate processes which occur close to the conduit wall, such as fragmentation. Moreover, the model can quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure).

  19. Fluid and Electrolyte Nutrition

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  20. Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogeneous/ heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Gnaneswara Reddy, M.

    2017-09-01

    This communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter R reduce the fluid temperature field. Also, an increase in heterogeneous reaction parameter Ks magnifies the concentration profile. The present study has the crucial application of thermal therapy in biomedical engineering.

  1. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  2. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    PubMed

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  3. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  4. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C

    PubMed Central

    Al-Qudah, M.; Anderson, C. D.; Mahavadi, S.; Bradley, Z. L.; Akbarali, H. I.; Murthy, K. S.

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation. PMID:24356881

  5. Brain-derived neurotrophic factor enhances cholinergic contraction of longitudinal muscle of rabbit intestine via activation of phospholipase C.

    PubMed

    Al-Qudah, M; Anderson, C D; Mahavadi, S; Bradley, Z L; Akbarali, H I; Murthy, K S; Grider, J R

    2014-02-15

    Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of proteins best known for its role in neuronal survival, differentiation, migration, and synaptic plasticity in central and peripheral neurons. BDNF is also widely expressed in nonneuronal tissues including the gastrointestinal tract. The role of BDNF in intestinal smooth muscle contractility is not well defined. The aim of this study was to identify the role of BDNF in carbachol (CCh)- and substance P (SP)-induced contraction of intestinal longitudinal smooth muscle. BDNF, selective tropomyosin-related kinase B (TrkB) receptor agonists, and pharmacological inhibitors of signaling pathways were examined for their effects on contraction of rabbit intestinal longitudinal muscle strips induced by CCh and SP. BDNF activation of intracellular signaling pathways was examined by Western blot in homogenates of muscle strips and isolated muscle cells. One-hour preincubation with BDNF enhanced intestinal muscle contraction induced by CCh but not by SP. The selective synthetic TrkB agonists LM 22A4 and 7,8-dihydroxyflavone produced similar effects to BDNF. The Trk antagonist K-252a, a TrkB antibody but not p75NTR antibody, blocked the effect of BDNF. The enhancement of CCh-induced contraction by BDNF was blocked by the phospholipase C (PLC) antagonist U73122, but not by ERK1/2 or Akt antagonists. Direct measurement in muscle strips and isolated muscle cells showed that BDNF caused phosphorylation of TrkB receptors and PLC-γ, but not ERK1/2 or Akt. We conclude that exogenous BDNF augments the CCh-induced contraction of longitudinal muscle from rabbit intestine by activating TrkB receptors and subsequent PLC activation.

  6. Trunk extensor muscle fatigue influences trunk muscle activities.

    PubMed

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  7. Anthropogenic disturbance homogenizes seagrass fish communities.

    PubMed

    Iacarella, Josephine C; Adamczyk, Emily; Bowen, Dan; Chalifour, Lia; Eger, Aaron; Heath, William; Helms, Sibylla; Hessing-Lewis, Margot; Hunt, Brian P V; MacInnis, Andrew; O'Connor, Mary I; Robinson, Clifford L K; Yakimishyn, Jennifer; Baum, Julia K

    2018-05-01

    Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat-forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta-diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance- and incidence-based beta-diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within-region comparisons using abundance- and incidence-based measures of beta-diversity, and in across-region comparisons using incidence-based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta-diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land- and seascapes, as well as managing

  8. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  9. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.

    PubMed

    George, Jineesh; Ebenezer, D D; Bhattacharyya, S K

    2010-10-01

    A method is presented to determine the response of a spherical acoustic transducer that consists of a fluid-filled piezoelectric sphere with an elastic coating embedded in infinite fluid to electrical and plane-wave acoustic excitations. The exact spherically symmetric, linear, differential, governing equations are used for the interior and exterior fluids, and elastic and piezoelectric materials. Under acoustic excitation and open circuit boundary condition, the equation governing the piezoelectric sphere is homogeneous and the solution is expressed in terms of Bessel functions. Under electrical excitation, the equation governing the piezoelectric sphere is inhomogeneous and the complementary solution is expressed in terms of Bessel functions and the particular integral is expressed in terms of a power series. Numerical results are presented to illustrate the effect of dimensions of the piezoelectric sphere, fluid loading, elastic coating and internal material losses on the open-circuit receiving sensitivity and transmitting voltage response of the transducer.

  10. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation.

    PubMed

    Kitada, Kento; Daub, Steffen; Zhang, Yahua; Klein, Janet D; Nakano, Daisuke; Pedchenko, Tetyana; Lantier, Louise; LaRocque, Lauren M; Marton, Adriana; Neubert, Patrick; Schröder, Agnes; Rakova, Natalia; Jantsch, Jonathan; Dikalova, Anna E; Dikalov, Sergey I; Harrison, David G; Müller, Dominik N; Nishiyama, Akira; Rauh, Manfred; Harris, Raymond C; Luft, Friedrich C; Wassermann, David H; Sands, Jeff M; Titze, Jens

    2017-05-01

    Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.

  11. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation

    PubMed Central

    Kitada, Kento; Daub, Steffen; Zhang, Yahua; Klein, Janet D.; Nakano, Daisuke; Pedchenko, Tetyana; Lantier, Louise; LaRocque, Lauren M.; Marton, Adriana; Neubert, Patrick; Schröder, Agnes; Rakova, Natalia; Jantsch, Jonathan; Dikalova, Anna E.; Dikalov, Sergey I.; Harrison, David G.; Müller, Dominik N.; Nishiyama, Akira; Rauh, Manfred; Harris, Raymond C.; Luft, Friedrich C.; Wasserman, David H.; Sands, Jeff M.

    2017-01-01

    Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter–driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions. PMID:28414295

  12. Downbeating nystagmus and muscle spasms in a patient with glutamic-acid decarboxylase antibodies.

    PubMed

    Ances, Beau M; Dalmau, Josep O; Tsai, Jean; Hasbani, M Josh; Galetta, Steven L

    2005-07-01

    To report the ophthalmic findings and response to treatment in a patient with glutamic-acid decarboxylase antibodies. Case report. A 55-year-old woman developed progressive, painful, low back muscle spasms, vertical diplopia, downbeating nystagmus, and asymmetric appendicular ataxia. Downbeating nystagmus was present in primary gaze with an alternating skew deviation in lateral gaze. Serum and cerebrospinal fluid GAD antibodies were detected. Treatment with diazepam led to resolution of spasticity, whereas repeated courses of intravenous immunoglobulin improved cerebellar function, including appendicular ataxia and downbeating nystagmus. Patients with GAD antibodies may have elements of both Stiff-person syndrome (muscle rigidity and spasms) and prominent cerebellar dysfunction. Treatment with diazepam rapidly improved Stiff-person symptoms, whereas IVIg was partially effective at the early stage of cerebellar dysfunction.

  13. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Wang, Guorui; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao; Xu, Bei

    2016-09-01

    The large Chaganbulagen Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein-style orebodies of the deposit occur in the NWW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite stage, a middle quartz-carbonate-pyrite-sphalerite-galena-silver-bearing minerals stage, and a late quartz-carbonate-pyrite stage. The sericite sample yielded a 40Ar -39Ar plateau age of 138 ± 1 Ma and an isochron age of 137 ± 3 Ma, and the zircon LA-ICP-MS U-Pb age of monzogranite porphyry was 143 ± 2 Ma, indicating that the ages of mineralization and monzogranite porphyry in the Chaganbulagen deposit should be the Early Cretaceous, and that the mineralization should be slightly later than the intrusion of monzogranite porphyry. There are only liquid inclusions in quartz veins of the Chaganbulagen deposit. Homogenization temperatures, densities, and salinities of the fluid inclusions from the early stage are 261-340 °C, 0.65-0.81 g/cm3, and 0.7-6.3 wt.% NaCl eqv., respectively. Fluid inclusions of the middle stage have homogenization temperatures, densities, and salinities of 209-265 °C, 0.75-0.86 g/cm3, and 0.5-5.7 wt.% NaCl eqv., respectively. For fluid inclusions of the late stage, their homogenization temperatures, densities, and salinities are 173-219 °C, 0.85-0.91 g/cm3, and 0.4-2.7 wt.% NaCl eqv., respectively. The ore-forming fluids of the deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl ± CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from - 17.9‰ to - 10.8‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from - 166‰ to - 127‰, suggesting that the ore-forming fluids consist dominantly of meteoric water. The δ34SV-CDT values range from 1.4‰ to 4.1‰. The 206Pb/204

  14. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    PubMed

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Carbonic fluid inclusions in amphibolite-facies pelitic schists from Bodonch area, western Mongolian Altai

    NASA Astrophysics Data System (ADS)

    Zorigtkhuu, Oyun-Erdene; Tsunogae, Toshiaki; Dash, Batulzii

    We report first fluid inclusion data on amphibolite-facies pelitic schists from Bodonch area of western Mongolian Altai in the Central Asian Orogenic Belt. Three categories of fluid inclusions have been observed in quartz: dominant primary and secondary inclusions, and least dominant pseudosecondary inclusions. The melting temperatures of all the categories of inclusions lie in the narrow range of -57.5 °C to -56.6 °C, close to the triple point of pure CO2. Homogenization of fluids occurs into liquid phase at temperature between -33.3 °C to +19.4 °C, which convert into densities in the range of 0.78 g/cm3 to 1.09 g/cm3. The estimated CO2 isochores for primary and pseudosecondary high-density inclusions is broadly consistent with the peak metamorphic condition of the studied area (6.3-7.3 kbar at 655 °C). The results of this study, together with the primary and pseudosecondary nature of the inclusions, indicate CO2 was the dominant fluid component during the peak amphibolite-facies metamorphism of the study area. The examined quartz grains are texturally associated with biotite, kyanite and staurolite, which are regarded as high-grade minerals formed during prograde to peak metamorphism. Therefore quartz probably formed by high-grade metamorphism and the primary fluid inclusions trapped in the minerals probably preserve fluids at around peak metamorphism.

  16. p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice.

    PubMed

    Sakuma, Kunihiro; Kinoshita, Masakazu; Ito, Yoshinori; Aizawa, Miki; Aoi, Wataru; Yamaguchi, Akihiko

    2016-05-01

    We investigated the pathway of autophagy signaling linked to sarcopenia of mice. Young adult (3-month) and aged (24- month) C57BL/6J mice were used. Using real-time PCR, Western blotting, and immunohistochemical microscopy, we evaluated the amounts of p62/SQSTM1, LC3, and Beclin-1 in the quadriceps muscle change with aging in mice. Marked fiber atrophy (30%) and many fibers with central nuclei were observed in the aged mice. Western blotting using homogenate of the cytosolic fraction clearly showed that the amounts of p62/SQSTM1 and Beclin-1 proteins were significantly increased in the aged skeletal muscle. The amounts of these proteins in both nuclear and membrane fractions did not change significantly with age. Immunofluorescence labeling indicated that aged mice more frequently possessed p62/SQSTM1-positive fibers in the cytosol in quadriceps muscle than young ones (aged: 14% vs. young: 1%). In aged muscle, p62/SQSTM1-positive fibers were significantly smaller than the surrounding p62/SQSTM1-negative fibers. Aging did not elicit significant changes in the mRNA levels of p62/SQSTM1 and Beclin-1, but decreased LC3 mRNA level. In aged muscle, the location of p62/SQSTM1 immunoreactivity was similar to that of Beclin-1 protein, but not LC3. Sarcopenia in mice appears to include a marked defect of autophagy signaling.

  17. A non-asymptotic homogenization theory for periodic electromagnetic structures

    PubMed Central

    Tsukerman, Igor; Markel, Vadim A.

    2014-01-01

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912

  18. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development.

    PubMed

    Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas

    2012-02-28

    Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Individual muscle control using an exoskeleton robot for muscle function testing.

    PubMed

    Ueda, Jun; Ming, Ding; Krishnamoorthy, Vijaya; Shinohara, Minoru; Ogasawara, Tsukasa

    2010-08-01

    Healthy individuals modulate muscle activation patterns according to their intended movement and external environment. Persons with neurological disorders (e.g., stroke and spinal cord injury), however, have problems in movement control due primarily to their inability to modulate their muscle activation pattern in an appropriate manner. A functionality test at the level of individual muscles that investigates the activity of a muscle of interest on various motor tasks may enable muscle-level force grading. To date there is no extant work that focuses on the application of exoskeleton robots to induce specific muscle activation in a systematic manner. This paper proposes a new method, named "individual muscle-force control" using a wearable robot (an exoskeleton robot, or a power-assisting device) to obtain a wider variety of muscle activity data than standard motor tasks, e.g., pushing a handle by hand. A computational algorithm systematically computes control commands to a wearable robot so that a desired muscle activation pattern for target muscle forces is induced. It also computes an adequate amount and direction of a force that a subject needs to exert against a handle by his/her hand. This individual muscle control method enables users (e.g., therapists) to efficiently conduct neuromuscular function tests on target muscles by arbitrarily inducing muscle activation patterns. This paper presents a basic concept, mathematical formulation, and solution of the individual muscle-force control and its implementation to a muscle control system with an exoskeleton-type robot for upper extremity. Simulation and experimental results in healthy individuals justify the use of an exoskeleton robot for future muscle function testing in terms of the variety of muscle activity data.

  20. Layout optimization using the homogenization method

    NASA Technical Reports Server (NTRS)

    Suzuki, Katsuyuki; Kikuchi, Noboru

    1993-01-01

    A generalized layout problem involving sizing, shape, and topology optimization is solved by using the homogenization method for three-dimensional linearly elastic shell structures in order to seek a possibility of establishment of an integrated design system of automotive car bodies, as an extension of the previous work by Bendsoe and Kikuchi. A formulation of a three-dimensional homogenized shell, a solution algorithm, and several examples of computing the optimum layout are presented in this first part of the two articles.

  1. Homogeneous cosmological models and new inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  2. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    PubMed

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. Copyright © 2016 the American Physiological Society.

  3. Muscle Contraction.

    PubMed

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Fluid mechanics in fluids at rest.

    PubMed

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  5. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance

    PubMed Central

    2013-01-01

    involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+. PMID:24081980

  6. Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats.

    PubMed

    Naderi, Alireza; Sadeghi, Mehdi; Sarshin, Amir; Imanipour, Vahid; Nazeri, Seyed Ali; Farkhayi, Fatemeh; Willems, Mark E T

    2017-07-04

    Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min -1 , 10 min·day -1 , 4 days·week -1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.

  7. The use of intermuscular coherence analysis as a novel approach to detect age-related changes on postural muscle synergy.

    PubMed

    Degani, Adriana M; Leonard, Charles T; Danna-Dos-Santos, Alessander

    2017-08-24

    The overall goal of this study was to investigate potential adaptations brought about by the natural processes of aging on the coordination of postural muscles. Considering the progressive and non-homogeneous deterioration of sensorimotor and neuromuscular systems as the individual grows older, it was hypothesized that aging is associated with a reorganization of synergistic mechanisms controlling postural muscles. Therefore, the presence, distribution, and strength of correlated neural inputs to three posterior postural muscles were measured by intermuscular coherence estimations at a low frequency band (0-55Hz). Nine healthy young adults and thirteen healthy older adults performed ten trials of a perturbed task: bipedal stance while holding a five kg load for fifteen seconds. Estimates of intermuscular coherence for each pair of electromyographic signals (soleus and biceps femoris, soleus and erector spinae, and biceps femoris and erector spinae) were computed. Results revealed significantly stronger levels of synchronization of posterior muscles within 0-10Hz in seniors compared to young adults. In addition, seniors presented similar spectra of intermuscular coherence within 0-55Hz for all three muscle pairs analyzed. These findings provide valuable information regarding compensatory mechanisms adopted by older adults to control balance. The age-related reorganization of neural drive controlling posterior postural muscles revealing a stronger synchronization within 0-10Hz might be related to the faster body sway and muscle co-activation patterns usually observed in this population. Finally, this study supports the use of Intermuscular Coherence Analysis as a sensitive method to detect age-related changes in multi-muscle control. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy.

    PubMed

    Nicole, Sophie; Chaouch, Amina; Torbergsen, Torberg; Bauché, Stéphanie; de Bruyckere, Elodie; Fontenille, Marie-Joséphine; Horn, Morten A; van Ghelue, Marijke; Løseth, Sissel; Issop, Yasmin; Cox, Daniel; Müller, Juliane S; Evangelista, Teresinha; Stålberg, Erik; Ioos, Christine; Barois, Annie; Brochier, Guy; Sternberg, Damien; Fournier, Emmanuel; Hantaï, Daniel; Abicht, Angela; Dusl, Marina; Laval, Steven H; Griffin, Helen; Eymard, Bruno; Lochmüller, Hanns

    2014-09-01

    Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of rare diseases resulting from impaired neuromuscular transmission. Their clinical hallmark is fatigable muscle weakness associated with a decremental muscle response to repetitive nerve stimulation and frequently related to postsynaptic defects. Distal myopathies form another clinically and genetically heterogeneous group of primary muscle disorders where weakness and atrophy are restricted to distal muscles, at least initially. In both congenital myasthenic syndromes and distal myopathies, a significant number of patients remain genetically undiagnosed. Here, we report five patients from three unrelated families with a strikingly homogenous clinical entity combining congenital myasthenia with distal muscle weakness and atrophy reminiscent of a distal myopathy. MRI and neurophysiological studies were compatible with mild myopathy restricted to distal limb muscles, but decrement (up to 72%) in response to 3 Hz repetitive nerve stimulation pointed towards a neuromuscular transmission defect. Post-exercise increment (up to 285%) was observed in the distal limb muscles in all cases suggesting presynaptic congenital myasthenic syndrome. Immunofluorescence and ultrastructural analyses of muscle end-plate regions showed synaptic remodelling with denervation-reinnervation events. We performed whole-exome sequencing in two kinships and Sanger sequencing in one isolated case and identified five new recessive mutations in the gene encoding agrin. This synaptic proteoglycan with critical function at the neuromuscular junction was previously found mutated in more typical forms of congenital myasthenic syndrome. In our patients, we found two missense mutations residing in the N-terminal agrin domain, which reduced acetylcholine receptors clustering activity of agrin in vitro. Our findings expand the spectrum of congenital myasthenic syndromes due to agrin mutations and show an unexpected

  9. Androgen receptors in the pelvic diaphragm muscles of dogs with and without perineal hernia.

    PubMed

    Mann, F A; Nonneman, D J; Pope, E R; Boothe, H W; Welshons, W V; Ganjam, V K

    1995-01-01

    Levator ani and coccygeus muscle estrogen and androgen receptors were measured in 6, healthy, > or = 5-year-old, noncastrated, male Beagles (controls) and in 24 dogs with perineal hernia. Estrogen and androgen receptor analyses were performed on levator ani and coccygeus muscle specimens obtained from control dogs at the time of castration; contralateral levator ani and coccygeus muscle specimens were assayed 2 months after castration. During herniorrhaphy of dogs with perineal hernia, levator ani (non-castrated, n = 12; castrated, n = 7) and/or coccygeus (noncastrated, n = 5; castrated, n = 4) muscle biopsy specimens were obtained for estrogen and androgen receptor analyses. For estrogen and androgen receptor assays, each muscle biopsy specimen was homogenized in Tris-EDTA-glycerol buffer, and centrifuged at 30,000 x g; extracts were used for binding with ligands: [3H]methyltrienolone (3HR1881) for androgen receptors, and [3H]estradiol-17 beta for estrogen receptors. Extracts were incubated overnight at 0 to 4 C. Nonspecific binding was estimated, using 100-fold concentration of cold ligands. Bound and free hormones were separated, using hydroxylapatite batch assay. Receptor numbers for each tissue were calculated as femtomoles (fmol) per milligram of protein. Quantified data were compared between precastration and postcastration controls, using a paired t-test. One-way ANOVA and Bonferroni post-hoc test were used to compare values for precastration controls, postcastration controls, castrated dogs with perineal hernia, and noncastrated dogs with perineal hernia. Significance was set at P < 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Homogenization patterns of the world’s freshwater fish faunas

    PubMed Central

    Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien

    2011-01-01

    The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692

  11. Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue.

    PubMed

    Umehara, Jun; Kusano, Ken; Nakamura, Masatoshi; Morishita, Katsuyuki; Nishishita, Satoru; Tanaka, Hiroki; Shimizu, Itsuroh; Ichihashi, Noriaki

    2018-02-23

    Although the serratus anterior muscle has an important role in scapular movement, no study to date has investigated the effect of serratus anterior fatigue on scapular kinematics and shoulder muscle activity. The purpose of this study was to clarify the effect of serratus anterior fatigue on scapular movement and shoulder muscle activity. The study participants were 16 healthy men. Electrical muscle stimulation was used to fatigue the serratus anterior muscle. Shoulder muscle strength and endurance, scapular movement, and muscle activity were measured before and after the fatigue task. The muscle activity of the serratus anterior, upper and lower trapezius, anterior and middle deltoid, and infraspinatus muscles was recorded, and the median power frequency of these muscles was calculated to examine the degree of muscle fatigue. The muscle endurance and median power frequency of the serratus anterior muscle decreased after the fatigue tasks, whereas the muscle activities of the serratus anterior, upper trapezius, and infraspinatus muscles increased. External rotation of the scapula at the shoulder elevated position increased after the fatigue task. Selective serratus anterior fatigue due to electric muscle stimulation decreased the serratus anterior endurance at the flexed shoulder position. Furthermore, the muscle activities of the serratus anterior, upper trapezius, and infraspinatus increased and the scapular external rotation was greater after serratus anterior fatigue. These results suggest that the rotator cuff and scapular muscle compensated to avoid the increase in internal rotation of the scapula caused by the dysfunction of the serratus anterior muscle. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Determination of prodrug treosulfan and its biologically active monoepoxide in rat plasma, liver, lungs, kidneys, muscle, and brain by HPLC-ESI-MS/MS method.

    PubMed

    Romański, Michał; Kasprzyk, Anna; Teżyk, Artur; Widerowska, Agnieszka; Żaba, Czesław; Główka, Franciszek

    2017-06-05

    A prodrug treosulfan (TREO) is currently investigated in clinical trials for conditioning prior to hematopoietic stem cell transplantation. Bioanalysis of TREO and its active derivatives, monoepoxide (S,S-EBDM) and diepoxide, in plasma and urine underlay the pharmacokinetic studies of these compounds but cannot explain an organ pharmacological action or toxicity. Recently, distribution of TREO and S,S-EBDM into brain, cerebrospinal fluid, and aqueous humor of the eye has been investigated in animal models and the obtained results presented clinical relevance. In this paper, a selective and rapid HPLC-ESI-MS/MS method was elaborated and validated for the studies of disposition of TREO and S,S-EBDM in rat plasma, liver, lungs, kidneys, muscle, and brain. The two analytes and codeine, internal standard (IS), were isolated from 50μL of plasma and 100μL of supernatants of the tissues homogenates using ultrafiltration Amicon vials. Chromatographic resolution was accomplished on C18 column with isocratic elution. The limits of quantitation of TREO and S,S-EBDM in the studied matrices ranged from 0.11 to 0.93μM. The HPLC-MS/MS method was adequately precise and accurate within and between runs. The IS-normalized matrix effect differed among the tissues and was the most pronounced in a liver homogenate supernatant (approximately 0.55 for TREO and 0.35 for S,S-EBDM). Stability of the analytes in experimental samples was also established. The validated method for the first time enabled determination of TREO and S,S-EBDM in the six life-important tissues in rats following administration of the prodrug. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dynamic control of droplets and pockets formation in homogeneous porous media immiscible displacements

    NASA Astrophysics Data System (ADS)

    Lins, T. F.; Azaiez, J.

    2018-03-01

    Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.

  14. The Prediction of Students' Academic Performance With Fluid Intelligence in Giving Special Consideration to the Contribution of Learning.

    PubMed

    Ren, Xuezhu; Schweizer, Karl; Wang, Tengfei; Xu, Fen

    2015-01-01

    The present study provides a new account of how fluid intelligence influences academic performance. In this account a complex learning component of fluid intelligence tests is proposed to play a major role in predicting academic performance. A sample of 2, 277 secondary school students completed two reasoning tests that were assumed to represent fluid intelligence and standardized math and verbal tests assessing academic performance. The fluid intelligence data were decomposed into a learning component that was associated with the position effect of intelligence items and a constant component that was independent of the position effect. Results showed that the learning component contributed significantly more to the prediction of math and verbal performance than the constant component. The link from the learning component to math performance was especially strong. These results indicated that fluid intelligence, which has so far been considered as homogeneous, could be decomposed in such a way that the resulting components showed different properties and contributed differently to the prediction of academic performance. Furthermore, the results were in line with the expectation that learning was a predictor of performance in school.

  15. A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Selverstone, J.

    2014-12-01

    The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during

  16. A preliminary investigation on the distribution of cannabinoids in man.

    PubMed

    Gronewold, Antonia; Skopp, Gisela

    2011-07-15

    An LC/MS/MS procedure to determine THC along with its major metabolites 11-OH-THC, THC-COOH and its glucuronide as well as the cannabinoids CBD and CBN was applied to 5 post mortem cases to study their distribution into some less commonly studied matrices. Analytes were determined in fluids and tissue homogenates following protein precipitation and liquid-liquid extraction. Gall bladder fluid exhibited maximum concentrations of all analytes except THC, which was detectable in high concentrations in muscle tissue along with CBD. THC was also present in lung specimens, whereas its concentration in liver samples was low or not detectable at all. Liver und kidney specimens contained appreciable amounts of THC-COOglu. Findings from bile support extensive enterohepatic recirculation of the glucuronide. Muscle tissue seems an interesting specimen to detect multiple cannabis use, and brain may serve as an alternative specimen for blood; nevertheless, the present findings should be substantiated by further investigations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Dynamic and wear study of an extremely bidisperse magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Iglesias, G. R.; Fernández Ruiz-Morón, L.; Durán, J. D. G.; Delgado, A. V.

    2015-12-01

    In this work the friction and wear properties of five magnetorheological fluids (MRFs) with varying compositions are investigated. Considering that many of the proposed applications for these fluids involve lubricated contact between mobile metal-metal or polymer-metal parts, the relationship between MR response and wear behavior appears to be of fundamental importance. One of the fluids (MR#1) contains only the iron microparticles and base oil; the second and third ones (MR#2 and MR#3) contain an anti-wear additive as well. The fourth one (MR#4) is a well known commercial MRF. Finally, MR#5 is stabilized by dispersing the iron particles in a magnetite ferrofluid. The MR response of the latter fluid is better (higher yield stress and post-yield viscosity) than that of the others. More importantly, it remains (and even improves) after the wear test: the pressure applied in the four-ball apparatus produces a compaction of the magnetite layer around the iron microparticles. Additionally, the friction coefficient is larger, which seems paradoxical in principle, but can be explained by considering the stability of MR#5 in comparison to the other four MRs, which appear to undergo partial phase separation during the test. In fact, electron and optical microscope observations confirm a milder wear effect of MR#5, with almost complete absence of scars from the steel test spheres and homogeneous and shallow grooves on them. Comparatively, MR#2, MR#3 and, particularly, MR#1 produce a much more significant wear.

  18. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  19. Monitoring respiratory muscles.

    PubMed

    Nava, S

    1998-12-01

    The respiratory system consists of two main parts, the lung and the ventilatory pump. The latter consists of the bony structure of the thorax, the central respiratory controllers, the inspiratory and expiratory muscles, and the nerves innervating these muscles. Respiratory muscle fatigue occurs when respiratory muscle endurance is exceeded. Muscle fatigue is defined as a condition in which there is a reduction in the capacity for developing force and/or velocity of a muscle, resulting from muscle activity, and which is reversible by rest. The respiratory muscles are somewhat difficult to assess and the techniques employed are still relatively primitive. The most important methods of respiratory muscles function assessment are: 1) the vital capacity manoeuvre, which depends on maximum inspiratory and expiratory effort by the muscles and may be a useful indicator of respiratory muscle function; 2) radiological screening has been proposed for the detection of diaphragm paralysis. This may be helpful if the paralysis is unilateral, but bilateral paralysis is difficult to detect; and 3) respiratory muscles strength may be assessed with either voluntary or nonvoluntary manoeuvres. The function of the inspiratory muscles is assessed with 3 voluntary dependent manoeuvres. They are the so called Müller manoeuvre (or maximal inspiratory pressure), the sniff test and the combined test. All these three manoeuvres generate a pressure that is a reflection of complex interactions between several muscle groups since the efforts produce different mechanisms of activity of inspiratory and expiratory muscles. Two techniques are presently employed to assess diaphragm function, not being dependent on the patient's motivation: electrical phrenic nerve stimulation and cervical magnetic stimulation. Since it is less painful, magnetic cervical stimulation overcomes some of the difficulties encountered during electrical stimulation. With these two techniques recordings of diaphragmatic

  20. Evidence of a malonyl-CoA-insensitive carnitine palmitoyltransferase I activity in red skeletal muscle.

    PubMed

    Kim, Jong-Yeon; Koves, Timothy R; Yu, Geng-Sheng; Gulick, Tod; Cortright, Ronald N; Dohm, G Lynis; Muoio, Deborah M

    2002-05-01

    Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.

  1. Synchrotron phase-contrast X-ray imaging reveals fluid dosing dynamics for gene transfer into mouse airways.

    PubMed

    Donnelley, M; Siu, K K W; Jamison, R A; Parsons, D W

    2012-01-01

    Although airway gene transfer research in mouse models relies on bolus fluid dosing into the nose or trachea, the dynamics and immediate fate of delivered gene transfer agents are poorly understood. In particular, this is because there are no in vivo methods able to accurately visualize the movement of fluid in small airways of intact animals. Using synchrotron phase-contrast X-ray imaging, we show that the fate of surrogate fluid doses delivered into live mouse airways can now be accurately and non-invasively monitored with high spatial and temporal resolution. This new imaging approach can help explain the non-homogenous distributions of gene expression observed in nasal airway gene transfer studies, suggests that substantial dose losses may occur at deliver into mouse trachea via immediate retrograde fluid motion and shows the influence of the speed of bolus delivery on the relative targeting of conducting and deeper lung airways. These findings provide insight into some of the factors that can influence gene expression in vivo, and this method provides a new approach to documenting and analyzing dose delivery in small-animal models.

  2. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities

    NASA Astrophysics Data System (ADS)

    Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu

    2016-08-01

    We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"

  3. Fracture of Rolled Homogeneous Steel Armor (Nucleation Threshold Stress).

    DTIC Science & Technology

    1980-01-01

    AD-AO81 618 ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERD--ETC F/B 19/4 FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOL--ETC(U...ARBRL-MR-02984A QQ FRACTURE OF ROLLED HOMOGENEOUS STEEL ARMOR (NUCLEATION THRESHOLD STRESS) Gerald L Moss Lynn SeamanLy~ S, ,.DTIC S ELECTED January...nucleation stress, Crack threshold stress, Fracture, Fracture stress, Spallation, Armor, Rolled homogeneous steel armor M~ AS$TRACr (Vita ssf -- ebb

  4. Noncommutative complex structures on quantum homogeneous spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2016-01-01

    A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.

  5. [Relationship between Electrical Conductivity and Decomposition Rate of Rat Postmortem Skeletal Muscle].

    PubMed

    Xia, Z Y; Zhai, X D; Liu, B B; Zheng, Z; Zhao, L L; Mo, Y N

    2017-02-01

    To analyze the relationship among electrical conductivity (EC), total volatile basic nitrogen (TVB-N), which is an index of decomposition rate for meat production, and postmortem interval (PMI). To explore the feasibility of EC as an index of cadaveric skeletal muscle decomposition rate and lay the foundation for PMI estimation. Healthy Sprague-Dawley rats were sacrificed by cervical vertebrae dislocation and kept at 28 ℃. Muscle of rear limbs was removed at different PMI, homogenized in deionized water and then skeletal extraction liquid of mass concentration 0.1 g/mL was prepared. EC and TVB-N of extraction liquid were separately determined. The correlation between EC ( x ₁) and TVB-N ( x ₂) was analyzed, and their regression function was established. The relationship between PMI ( y ) and these two parameters were studied, and their regression functions were separately established. The change trends of EC and TVB-N of skeletal extraction liquid at different PMI were almost the same, and there was a linear positive correlation between them. The regression equation was x ₂=0.14 x ₁-164.91( R ²=0.982). EC and TVB-N of skeletal muscle changed significantly with PMI, and the regression functions were y =19.38 x ₁³-370.68 x ₁²+2 526.03 x ₁-717.06( R ²=0.994), and y =2.56 x ₂³-48.39 x ₂²+330.60 x ₂-255.04( R ²=0.997), respectively. EC and TVB-N of rat postmortem skeletal muscle show similar change trends, which can be used as an index for decomposition rate of cadaveric skeletal muscle and provide a method for further study of late PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  6. Determination of total mercury in whole-body fish and fish muscle plugs collected from the South Fork of the Humboldt River, Nevada, September 2005

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in whole-body fish and fish muscle plugs from the South Fork of the Humboldt River near Elko in the Te-Moak Indian Reservation. A single muscle plug was collected from beneath the dorsal fin area in each of the three whole-body fish samples. After homogenization and lyophilization of the muscle plugs and whole-body fish samples, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in whole-body fish ranged from 0.048 to 0.061 microgram per gram wet weight, and 0.061 to 0.082 microgram per gram wet weight in muscle plugs. All sample mercury concentrations were well below the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  7. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  8. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  9. Experimental and numerical analysis of parallel reactant flow and transverse mixing with mineral precipitation in homogeneous and heterogeneous porous media

    DOE PAGES

    Fox, Don T.; Guo, Luanjing; Fujita, Yoshiko; ...

    2015-12-17

    Formation of mineral precipitates in the mixing interface between two reactant solutions flowing in parallel in porous media is governed by reactant mixing by diffusion and dispersion and is coupled to changes in porosity/permeability due to precipitation. The spatial and temporal distribution of mixing-dependent precipitation of barium sulfate in porous media was investigated with side-by-side injection of barium chloride and sodium sulfate solutions in thin rectangular flow cells packed with quartz sand. The results for homogeneous sand beds were compared to beds with higher or lower permeability inclusions positioned in the path of the mixing zone. In the homogeneous andmore » high permeability inclusion experiments, BaSO 4 precipitate (barite) formed in a narrow deposit along the length and in the center of the solution–solution mixing zone even though dispersion was enhanced within, and downstream of, the high permeability inclusion. In the low permeability inclusion experiment, the deflected BaSO 4 precipitation zone broadened around one side and downstream of the inclusion and was observed to migrate laterally toward the sulfate solution. A continuum-scale fully coupled reactive transport model that simultaneously solves the nonlinear governing equations for fluid flow, transport of reactants and geochemical reactions was used to simulate the experiments and provide insight into mechanisms underlying the experimental observations. Lastly, migration of the precipitation zone in the low permeability inclusion experiment could be explained by the coupling effects among fluid flow, reactant transport and localized mineral precipitation reaction.« less

  10. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    Fifty-seven isolated, blood perfused, continuously weighed canine hearts have been utilized to study the development of abnormal myocardial fluid retention during early myocardial ischemic injury. Inflatable balloon catheters were positioned around the left anterior descending coronary arteries (LAD) of 54 hearts or the proximal left circumflex coronary arteries of three hearts for study of the following intervals of coronary occlusion: a) 10 minutes followed by 20 minutes of reflow, b) 40 minutes followed by either no reflow or by 20 minutes of reflow, and c) 60 minutes without reflow. After 60 minutes of fixed coronary occlusion, histologic and ultrastructural examination revealed mild swelling of many ischemic cardiac muscle cells in the absence of interstitial edema, cardiac weight gain, and obvious structural defects in cell membrane integrity. After 40 minutes of coronary occlusion and 20 minutes of reflow, significant cardiac weight gain occurred in association with characteristic alterations in the ischemic region, including widespread interstitial edema and focal vascular congestion and hemorrhage and swelling of cardiac muscle cells. Focal structural defects in cell membrane integrity were also noted. The development of abnormal myocardial fluid retention after 40 minutes of LAD occlusion occurred in association with a significant reduction in sodium-potassium-ATPase activity in the ischemic area, but with no significant alteration in either creatine phosphokinase or citrate synthase activity in the same region. Despite the abnormal myocardial fluid retention in these hearts, it was possible pharmacologically to vasodilate coronary vessels with adenosine and nitroglycerin infusion to maintain a consistently high coronary flow following release of the coronary occlusion after 40 minutes and to even exceed initial hyperemic flow values following release of the occlusion when adenosine and nitroglycerin infusion was delayed until 15 minutes after reflow

  11. Rarefaction waves in van der Waals fluids with an arbitrary number of degrees of freedom

    DOE PAGES

    Yuen, Albert; Barnard, John J.

    2015-09-30

    The isentropic expansion of an instantaneously and homogeneously heated foil is calculated using a 1D fluid model. The initial temperature and density are assumed to be in the vicinity of the critical temperature and solid density, respectively. The fluid is assumed to satisfy the van der Waals equation of state with an arbitrary number of degrees of freedom. Self-similar Riemann solutions are found. With a larger number of degrees of freedom f, depending on the initial dimensionless entropymore » $$˜\\atop{s_0}$$, a richer family of foil expansion behaviors have been found. We calculate the domain in parameter space where these behaviors occur. In total, eight types of rarefaction waves are found and described.« less

  12. Supercritical fluid extraction and analysis of compounds from Clivia miniata for uterotonic activity.

    PubMed

    Sewram, V; Raynor, M W; Mulholland, D A; Raidoo, D M

    2001-07-01

    In this descriptive study, the superciritical fluid extract of the roots of Clivia miniata L. was tested for uterotonic activity using guinea pig uterine smooth muscle in vitro. Extraction was performed with water modified supercritical carbon dioxide at 400 atm and 80 degrees C. The uterine contractions induced by this extract were compared to those induced by the aqueous extract and found to be active at lower doses. The active compounds were isolated and the structures elucidated by spectroscopic and chromatographic techniques. Both linoleic acid and 5-hydroxymethyl-2-furancarboxaldehyde isolated from the extract were found to induce muscle contractions individually. The pharmacological mode of action of 5-hydroxymethyl-2-furancarboxaldehyde was assessed using two receptor agonists and antagonists. This compound was found to mediate its effect through cholinergic receptors.

  13. Activation of respiratory muscles during respiratory muscle training.

    PubMed

    Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim

    2018-01-01

    It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  15. Muscle cooling delays activation of the muscle metaboreflex in humans.

    PubMed

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  16. Spectral calculations for pressure-velocity and pressure-strain correlations in homogeneous shear turbulence

    NASA Astrophysics Data System (ADS)

    Dutta, Kishore

    2018-02-01

    Theoretical analyses of pressure related turbulent statistics are vital for a reliable and accurate modeling of turbulence. In the inertial subrange of turbulent shear flow, pressure-velocity and pressure-strain correlations are affected by anisotropy imposed at large scales. Recently, Tsuji and Kaneda (2012 J. Fluid Mech. 694 50) performed a set of experiments on homogeneous shear flow, and estimated various one-dimensional pressure related spectra and the associated non-dimensional universal numbers. Here, starting from the governing Navier-Stokes dynamics for the fluctuating velocity field and assuming the anisotropy at inertial scales as a weak perturbation of an otherwise isotropic dynamics, we analytically derive the form of the pressure-velocity and pressure-strain correlations. The associated universal numbers are calculated using the well-known renormalization-group results, and are compared with the experimental estimates of Tsuji and Kaneda. Approximations involved in the perturbative calculations are discussed.

  17. Associations of passive muscle stiffness, muscle stretch tolerance, and muscle slack angle with range of motion: individual and sex differences.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki

    2018-05-29

    Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.

  18. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  19. Tropomyosin 4 defines novel filaments in skeletal muscle associated with muscle remodelling/regeneration in normal and diseased muscle.

    PubMed

    Vlahovich, Nicole; Schevzov, Galina; Nair-Shaliker, Visalini; Ilkovski, Biljana; Artap, Stanley T; Joya, Josephine E; Kee, Anthony J; North, Kathryn N; Gunning, Peter W; Hardeman, Edna C

    2008-01-01

    The organisation of structural proteins in muscle into highly ordered sarcomeres occurs during development, regeneration and focal repair of skeletal muscle fibers. The involvement of cytoskeletal proteins in this process has been documented, with nonmuscle gamma-actin found to play a role in sarcomere assembly during muscle differentiation and also shown to be up-regulated in dystrophic muscles which undergo regeneration and repair [Lloyd et al.,2004; Hanft et al.,2006]. Here, we show that a cytoskeletal tropomyosin (Tm), Tm4, defines actin filaments in two novel compartments in muscle fibers: a Z-line associated cytoskeleton (Z-LAC), similar to a structure we have reported previously [Kee et al.,2004], and longitudinal filaments that are orientated parallel to the sarcomeric apparatus, present during myofiber growth and repair/regeneration. Tm4 is upregulated in paradigms of muscle repair including induced regeneration and focal repair and in muscle diseases with repair/regeneration features, muscular dystrophy and nemaline myopathy. Longitudinal Tm4-defined filaments also are present in diseased muscle. Transition of the Tm4-defined filaments from a longitudinal to a Z-LAC orientation is observed during the course of muscle regeneration. This Tm4-defined cytoskeleton is a marker of growth and repair/regeneration in response to injury, disease state and stress in skeletal muscle.

  20. Evaluating the angiogenic potential of a novel temperature-sensitive gel scaffold derived from porcine skeletal muscle tissue.

    PubMed

    Zhang, Di; Tan, Qiu-Wen; Luo, Jing-Cong; Lv, Qing

    2018-06-11

    Our previous study fabricated decellularized porcine muscle tissues (DPMTs) and demonstrated that DPMTs with few cell residues possess highly preserved protein components and good biocompatibility. In the physical state, skeletal muscle equips an abundant vascular network due to the vast demand of energy from aerobic metabolism. Vascular bioactive factors which are rich in skeletal muscle tissues may contribute to the angiogenic effect of DPMTs. However, implanting DPMTs in vivo in a less invasive way is unfeasible. Hence, the purpose of this study was to fabricate DPMTs into hydrogel and investigate the effects of DPMT gel on promoting neovessel formation in vitro and in vivo. The results demonstrated that the surface topographies of the DPMT gel were looser and more homogeneous than the DPMTs. The rates of retained VEGF, bFGF, and PDGF-BB in DPMT gel were almost half of the corresponding content in fresh skeletal muscle tissues. Human umbilical endothelial cells displayed better proliferation ability and enhanced the formation of neovascular loops when seeded on DPMT gel compared to small intestinal submucosa gels at the same concentration of 2% (W/V). Furthermore, the increased neovessel formation was detected after subcutaneous injection of DPMT gel. Taken together, these findings suggested that DPMT gel may possess the potential of promoting neovascular formation.

  1. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    PubMed

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  2. Edge-Induced Shear Banding in Entangled Polymeric Fluids

    NASA Astrophysics Data System (ADS)

    Hemingway, Ewan J.; Fielding, Suzanne M.

    2018-03-01

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ ˙ (for states of homogeneous shear) is monotonic, or has a region of negative slope, d σ /d γ ˙ <0 , which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances—which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally—can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  3. Accurate fluid force measurement based on control surface integration

    NASA Astrophysics Data System (ADS)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  4. Impact of subgrid fluid turbulence on inertial particles subject to gravity

    NASA Astrophysics Data System (ADS)

    Rosa, Bogdan; Pozorski, Jacek

    2017-07-01

    Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.

  5. Two-phase choked flow of cryogenic fluids in converging-diverging nozzles

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Hendricks, R. C.

    1979-01-01

    Data are presented for the two phase choked flow of three cryogenic fluids - nitrogen, methane, and hydrogen - in four converging-diverging nozzles. The data cover a range of inlet stagnation conditions, all single phase, from well below to well above the thermodynamic critical conditions. In almost all cases the nozzle throat conditions were two phase. The results indicate that the choked flow rates were not very sensitive to nozzle geometry. However, the axial pressure profiles, especially the throat pressure and the point of vaporization, were very sensitive to both nozzle geometry and operating conditions. A modified Henry-Fauske model correlated all the choked flow rate data to within + or - 10 percent. Neither the equilibrium model nor the Henry-Fauske model predicted throat pressures well over the whole range of data. Above the thermodynamic critical temperature the homogeneous equilibrium model was preferred for both flow rate and pressure ratio. The data of the three fluids could be normalized by the principle of corresponding states.

  6. Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus

    NASA Astrophysics Data System (ADS)

    Zakir Hossain, M.; Grill, Wolfgang

    2010-03-01

    Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.

  7. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/-more » and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.« less

  8. The laser radiation action on the crystal formation processes in the biological fluids

    NASA Astrophysics Data System (ADS)

    Malov, Alexander N.; Vaichas, Andrey A.; Novikova, Evgeniya A.

    2016-11-01

    The results of an experimental study of the laser radiation effect on the crystal`s formation in the volume of biological fluids that are complex multi-component solutions have been discussing. Are investigated white and natural bile in vitro. The qualitative changes were observed. Thus, at the bottom of the cell in which bile is not exposed to the laser radiation, the crystals are formed. In the irradiated bile gallstone has a thin layer of a homogeneous viscous colloidal liquid with very small, visible in polarized light crystalline formations was got. Irradiated laser bile's gallstone was covered evenly white deposit without surface defect unlike gallstone in bile without radiation exposure. A possible mechanism to explain the laser radiation action on the mineral formation in biological fluids and also practical application of this effect have been suggesting too.

  9. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  10. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  11. Homogeneous Immunoassays: Historical Perspective and Future Promise

    NASA Astrophysics Data System (ADS)

    Ullman, Edwin F.

    1999-06-01

    The founding and growth of Syva Company is examined in the context of its leadership role in the development of homogeneous immunoassays. The simple mix and read protocols of these methods offer advantages in routine analytical and clinical applications. Early homogeneous methods were based on insensitive detection of immunoprecipitation during antigen/antibody binding. The advent of reporter groups in biology provided a means of quantitating immunochemical binding by labeling antibody or antigen and physically separating label incorporated into immune complexes from free label. Although high sensitivity was achieved, quantitative separations were experimentally demanding. Only when it became apparent that reporter groups could provide information, not only about the location of a molecule but also about its microscopic environment, was it possible to design practical non-separation methods. The evolution of early homogenous immunoassays was driven largely by the development of improved detection strategies. The first commercial spin immunoassays, developed by Syva for drug abuse testing during the Vietnam war, were followed by increasingly powerful methods such as immunochemical modulation of enzyme activity, fluorescence, and photo-induced chemiluminescence. Homogeneous methods that quantify analytes at femtomolar concentrations within a few minutes now offer important new opportunities in clinical diagnostics, nucleic acid detection and drug discovery.

  12. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  13. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  14. Volatile loss during homogenization of lunar melt inclusions

    NASA Astrophysics Data System (ADS)

    Ni, Peng; Zhang, Youxue; Guan, Yunbin

    2017-11-01

    Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A

  15. Modeling Muscles

    ERIC Educational Resources Information Center

    Goodwyn, Lauren; Salm, Sarah

    2007-01-01

    Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…

  16. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  17. Raman spectroscopic and microthermometric studies of authigenic quartz (the Pepper Mts., Central Poland) as an indicator of fluids circulation

    NASA Astrophysics Data System (ADS)

    Naglik, Beata; Toboła, Tomasz; Natkaniec-Nowak, Lucyna; Luptáková, Jarmila; Milovská, Stanislava

    2017-02-01

    Differently colored authigenic quartz crystals were found as the druses compound within mudstone heteroliths from the Pepper Mts. Shale Formation (Cambrian unit of the Holy Cross Mts., Central Poland). The genesis of this mineral was established on the basis of fluid inclusion study. Raman microspectroscopy was the key instrumental technique to identify the nature of the compounds trapped in the fluid inclusions. Methane (2917 cm- 1) or water vapor (broad band 2500-3000 cm- 1) occur within two-phased primary inclusion assemblages, while nitrogen (2329 cm- 1) associated with methane and trace amount of carbon dioxide (1285, 1388 cm- 1) occur within secondary fluid inclusion assemblage. Temperatures of homogenization of primary fluid inclusions was obtained on the basis of heating experiments and ranged from 171° to 266 °C. These values are much higher than expected for the diagenetic system without metamorphic changes what may imply hydrothermal origin of quartz crystals. The source of fluids is uncertain as in the Holy Cross Mts. there was no volcanic activity to the end of Late Devonian. However, fluids originated in metamorphic basin could use deep faults as the migration paths.

  18. Spherically symmetric Einstein-aether perfect fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Alan A.; Latta, Joey; Leon, Genly

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less

  19. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  20. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice.

    PubMed

    Chavez, Luis O; Leon, Monica; Einav, Sharon; Varon, Joseph

    2016-06-15

    Rhabdomyolysis is a clinical syndrome that comprises destruction of skeletal muscle with outflow of intracellular muscle content into the bloodstream. There is a great heterogeneity in the literature regarding definition, epidemiology, and treatment. The aim of this systematic literature review was to summarize the current state of knowledge regarding the epidemiologic data, definition, and management of rhabdomyolysis. A systematic search was conducted using the keywords "rhabdomyolysis" and "crush syndrome" covering all articles from January 2006 to December 2015 in three databases (MEDLINE, SCOPUS, and ScienceDirect). The search was divided into two steps: first, all articles that included data regarding definition, pathophysiology, and diagnosis were identified, excluding only case reports; then articles of original research with humans that reported epidemiological data (e.g., risk factors, common etiologies, and mortality) or treatment of rhabdomyolysis were identified. Information was summarized and organized based on these topics. The search generated 5632 articles. After screening titles and abstracts, 164 articles were retrieved and read: 56 articles met the final inclusion criteria; 23 were reviews (narrative or systematic); 16 were original articles containing epidemiological data; and six contained treatment specifications for patients with rhabdomyolysis. Most studies defined rhabdomyolysis based on creatine kinase values five times above the upper limit of normal. Etiologies differ among the adult and pediatric populations and no randomized controlled trials have been done to compare intravenous fluid therapy alone versus intravenous fluid therapy with bicarbonate and/or mannitol.

  1. Homogenization of periodic bi-isotropic composite materials

    NASA Astrophysics Data System (ADS)

    Ouchetto, Ouail; Essakhi, Brahim

    2018-07-01

    In this paper, we present a new method for homogenizing the bi-periodic materials with bi-isotropic components phases. The presented method is a numerical method based on the finite element method to compute the local electromagnetic properties. The homogenized constitutive parameters are expressed as a function of the macroscopic electromagnetic properties which are obtained from the local properties. The obtained results are compared to Unfolding Finite Element Method and Maxwell-Garnett formulas.

  2. Refined Zigzag Theory for Homogeneous, Laminated Composite, and Sandwich Plates: A Homogeneous Limit Methodology for Zigzag Function Selection

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, marco

    2010-01-01

    The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.

  3. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  4. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    NASA Astrophysics Data System (ADS)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian-Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ˜110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained simply by the

  5. Fluid Analysis and Improved Structure of an ATEG Heat Exchanger Based on Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Z. B.; Deng, Y. D.; Su, C. Q.; Yuan, X. H.

    2015-06-01

    In this study, a numerical model has been employed to analyze the internal flow field distribution in a heat exchanger applied for an automotive thermoelectric generator based on computational fluid dynamics. The model simulates the influence of factors relevant to the heat exchanger, including the automotive waste heat mass flow velocity, temperature, internal fins, and back pressure. The result is in good agreement with experimental test data. Sensitivity analysis of the inlet parameters shows that increase of the exhaust velocity, compared with the inlet temperature, makes little contribution (0.1 versus 0.19) to the heat transfer but results in a detrimental back pressure increase (0.69 versus 0.21). A configuration equipped with internal fins is proved to offer better thermal performance compared with that without fins. Finally, based on an attempt to improve the internal flow field, a more rational structure is obtained, offering a more homogeneous temperature distribution, higher average heat transfer coefficient, and lower back pressure.

  6. Changes in muscle spindle firing in response to length changes of neighboring muscles

    PubMed Central

    Smilde, Hiltsje A.; Vincent, Jake A.; Baan, Guus C.; Nardelli, Paul; Lodder, Johannes C.; Mansvelder, Huibert D.; Cope, Tim C.

    2016-01-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles. PMID:27075540

  7. Ultrasound and polar homogeneous reactions.

    PubMed

    Tuulmets, A

    1997-04-01

    The effect of ultrasound on the rates of homogeneous heterolytic reactions not switched to a free radical pathway can be explained by the perturbation of the molecular organization of or the solvation in the reacting system. A quantitative analysis of the sonochemical acceleration on the basis of the microreactor concept was carried out. It was found that (1) the Diels-Alder reaction cannot be accelerated by ultrasound except when SET or free radical processes are promoted, (2) the rectified diffusion during cavitation cannot be responsible for the acceleration of reactions, and (3) the sonochemical acceleration of polar homogeneous reactions takes place in the bulk reaction medium. This implies the presence of a 'sound-field' sonochemistry besides the 'hot-spot' sonochemistry. The occurrence of a sonochemical deceleration effect can be predicted.

  8. Homogenization Models for Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Muc, A.; Jamróz, M.

    2004-03-01

    Two homogenization models for evaluating Young's modulus of nanocomposites reinforced with single-walled and multi-walled carbon nanotubes are presented. The first model is based on a physical description taking into account the interatomic interaction and nanotube geometry. The elementary cell, here a nanotube with a surrounding resin layer, is treated as a homogeneous body — a material continuum. The second model, similar to a phenomenological engineering one, is obtained by combining the law of mixture with the Cox mechanical model. This model describes the stress distribution along stretched short fibers surrounded by a resin matrix. The similarities between composite materials reinforced with short fibers and nanotubes are elucidated. The results obtained are compared with those for classical microcomposites to demonstrate the advantages and disadvantages of both the composite materials.

  9. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: Trapped ambient fluids in a cold subduction channel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuhiko; Hertwig, Andreas; Schertl, Hans-Peter; Maresch, Walter V.

    2018-05-01

    Freezing-point depression was measured in aqueous fluid inclusions to determine salinities in six samples of jadeitite and jadeite-rich rock from the Jagua Clara serpentinite mélange of the Rio San Juan Complex, Dominican Republic. The mélange represents a fossil subduction-zone channel from a cold, mature subduction zone with a geothermal gradient of 6 °C/km. One hundred and twenty-five determinations of salinity in primary inclusions hosted in jadeite, quartz, apatite and lawsonite range between extremes of 1.2 and 8.7, but yield a well-defined mean of 4.5 ± 1.1 wt% (±1 s.d.) NaCl equiv, slightly higher than mean seawater (3.5 wt%). In one sample, eight additional fluid inclusions in quartz aligned along grain boundaries yield slightly lower values of 2.7 ± 1.3 wt% NaCl equiv. Homogenization temperatures were also measured for 47 fluid inclusions in two samples, but primary entrapment densities are not preserved. It is significant that the suite includes two types of samples: those precipitated directly from an aqueous fluid as well as examples of metasomatic replacement of a pre-existing magmatic rock. Nevertheless, the results indicate identical salinity for both types and suggest a much stronger genetic link between the two types of jadeitite and jadeite-rich rock than has previously been assumed. Based on the results of conductivity measurements in modern subduction zones, we envision a pervasive fluid in the subduction channel that evolved from salinity levels lower than those in sea-water up to the measured values due to on-going but largely completed serpentinization in the subduction channel. The present data represent a reference marker for the subduction channel of the Rio San Juan intra-oceanic subduction zone at 30-50 km depth and after 50-60 Myr of operation.

  10. Fabrication of Homogeneous High-Density Antibody Microarrays for Cytokine Detection

    PubMed Central

    Hospach, Ingeborg; Joseph, Yvonne; Mai, Michaela Kathrin; Krasteva, Nadejda; Nelles, Gabriele

    2014-01-01

    Cytokine proteins are known as biomarker molecules, characteristic of a disease or specific body condition. Monitoring of the cytokine pattern in body fluids can contribute to the diagnosis of diseases. Here we report on the development of an array comprised of different anti-cytokine antibodies on an activated solid support coupled with a fluorescence readout mechanism. Optimization of the array preparation was done in regard of spot homogeneity and spot size. The proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα) and Interleukin 6 (IL-6) were chosen as the first targets of interest. First, the solid support for covalent antibody immobilization and an adequate fluorescent label were selected. Three differently functionalized glass substrates for spotting were compared: amine and epoxy, both having a two-dimensional structure, and the NHS functionalized hydrogel (NHS-3D). The NHS-hydrogel functionalization of the substrate was best suited to antibody immobilization. Then, the optimization of plotting parameters and geometry as well as buffer media were investigated, considering the ambient analyte theory of Roger Ekins. As a first step towards real sample studies, a proof of principle of cytokine detection has been established. PMID:27600349

  11. Method of fabricating a homogeneous wire of inter-metallic alloy

    DOEpatents

    Ohriner, Evan Keith; Blue, Craig Alan

    2001-01-01

    A method for fabricating a homogeneous wire of inter-metallic alloy comprising the steps of providing a base-metal wire bundle comprising a metal, an alloy or a combination thereof; working the wire bundle through at least one die to obtain a desired dimension and to form a precursor wire; and, controllably heating the precursor wire such that a portion of the wire will become liquid while simultaneously maintaining its desired shape, whereby substantial homogenization of the wire occurs in the liquid state and additional homogenization occurs in the solid state resulting in a homogenous alloy product.

  12. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization

    PubMed Central

    Li, Yang; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-01-01

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions. PMID:29735918

  13. Soy Protein Isolate-Phosphatidylcholine Nanoemulsions Prepared Using High-Pressure Homogenization.

    PubMed

    Li, Yang; Wu, Chang-Ling; Liu, Jun; Zhu, Ying; Zhang, Xiao-Yuan; Jiang, Lian-Zhou; Qi, Bao-Kun; Zhang, Xiao-Nan; Wang, Zhong-Jiang; Teng, Fei

    2018-05-07

    The nanoemulsions of soy protein isolate-phosphatidylcholine (SPI-PC) with different emulsion conditions were studied. Homogenization pressure and homogenization cycle times were varied, along with SPI and PC concentration. Evaluations included turbidity, particle size, ζ-potential, particle distribution index, and turbiscan stability index (TSI). The nanoemulsions had the best stability when SPI was at 1.5%, PC was at 0.22%, the homogenization pressure was 100 MPa and homogenization was performed 4 times. The average particle size of the SPI-PC nanoemulsions was 217 nm, the TSI was 3.02 and the emulsification yield was 93.4% of nanoemulsions.

  14. Size scales over which ordinary chondrites and their parent asteroids are homogeneous in oxidation state and oxygen-isotopic composition

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.; Ziegler, Karen; Young, Edward D.

    2008-02-01

    Literature data demonstrate that on a global, asteroid-wide scale (plausibly on the order of 100 km), ordinary chondrites (OC) have heterogeneous oxidation states and O-isotopic compositions (represented, respectively, by the mean olivine Fa and bulk Δ 17O compositions of equilibrated samples). Samples analyzed here include: (a) two H5 chondrite Antarctic finds (ALHA79046 and TIL 82415) that have the same cosmic-ray exposure age (7.6 Ma) and were probably within ˜1 km of each other when they were excavated from the H-chondrite parent body, (b) different individual stones from the Holbrook L/LL6 fall that were probably within ˜1 m of each other when their parent meteoroid penetrated the Earth's atmosphere, and (c) drill cores from a large slab of the Estacado H6 find located within a few tens of centimeters of each other. Our results indicate that OC are heterogeneous in their bulk oxidation state and O-isotopic composition on 100-km-size scales, but homogeneous on meter-, decimeter- and centimeter-size scales. (On kilometer size scales, oxidation state is heterogeneous, but O isotopes appear to be homogeneous.) The asteroid-wide heterogeneity in oxidation state and O-isotopic composition was inherited from the solar nebula. The homogeneity on small size scales was probably caused in part by fluid-assisted metamorphism and mainly by impact-gardening processes (which are most effective at mixing target materials on scales of ⩽1 m).

  15. Muscle enzyme release does not predict muscle function impairment after triathlon.

    PubMed

    Margaritis, I; Tessier, F; Verdera, F; Bermon, S; Marconnet, P

    1999-06-01

    We sought to determine the effects of a long distance triathlon (4 km swim, 120 km bike-ride, and 30 km run) on the four-day kinetics of the biochemical markers of muscle damage, and whether they were quantitatively linked with muscle function impairment and soreness. Data were collected from 2 days before until 4 days after the completion of the race. Twelve triathletes performed the triathlon and five did not. Maximal voluntary contraction (MVC), muscle soreness (DOMS) and total serum CK, CK-MB, LDH, AST and ALT activities were assessed. Significant changes after triathlon completion were found for all muscle damage indirect markers over time (p < 0.0001). MVC of the knee extensor and flexor muscles decreased over time (p < 0.05). There is disparity in the time point at which peak values where reached for DOMS, MVC and enzyme leakage. There is no correlation between serum enzyme leakage, DOMS and MVC impairment which occur after triathlon. Long distance triathlon race caused muscle damage, but extent, as well as muscle recovery cannot be evaluated by the magnitude of changes in serum enzyme activities. Muscle enzyme release cannot be used to predict the magnitude of the muscle function impairment caused by muscle damage.

  16. Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment

    NASA Astrophysics Data System (ADS)

    Heyes, David M.

    1988-04-01

    This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.

  17. Pattern and process of biotic homogenization in the New Pangaea

    PubMed Central

    Baiser, Benjamin; Olden, Julian D.; Record, Sydne; Lockwood, Julie L.; McKinney, Michael L.

    2012-01-01

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from −0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization. PMID:23055062

  18. Pattern and process of biotic homogenization in the New Pangaea.

    PubMed

    Baiser, Benjamin; Olden, Julian D; Record, Sydne; Lockwood, Julie L; McKinney, Michael L

    2012-12-07

    Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from -0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.

  19. [Homogeneous spinal-shortening axial decompression procedure for tethered cord syndrome].

    PubMed

    Wang, Haibo; Sun, Jingchuan; Wang, Yuan; Wu, Zhao; Xu, Tao; Chen, Kefu; Shi, Guodong; Yuan, Wen; Jia, Lianshun; Shi, Jiangang

    2015-06-16

    Surgical detethering is a traditional treatment for symptomatic tethered cord syndrome. However, such complications as cerebrospinal fluid leakage and neurologic deterioration are common. Homogeneous spinal-shortening axial decompression (HSAD) is a modified procedure of monosegmental spinal-shortening osteotomy and it is a novel surgical alternative of reducing neural tension indirectly. The objective was to evaluate the surgical outcomes of HSAD for tethered cord syndrome. The surgical outcomes were examined for 15 consecutive patients with tethered cord syndrome undergoing HSAD from April 2010 to July 2014. Improvements of neurological symptoms including urinary dysfunction, lower-extremity motor and sensory disturbances and/or gait abnormalities, low-back and/or lower-extremity pain, bowel incontinence and sexual dysfunction were evaluated. Their average follow-up period was 21.5 months. The length of spinal column shortening was 17.2 ± 2.9 mm. Urinary dysfunction (n = 9) was the most common residual deficit. All 9 patients with urological symptoms reported improvements, although deficits persisted at the last follow-up. All patients with lower-extremity motor dysfunction improved and 4 (50.0%) noted complete resolution of preoperative lower-extremity sensory symptoms. All patients reported immediate low-back or lower-extremity pain relief after HSAD. One patient reported improved sexual functioning and regained complete erectile capabilities. Two patients (11%) experienced less satisfactory symptomatic or functional benefit from HSAD. However, the main objective of surgery was to prevent further worsening of neurological status. Complete bone union at osteotomy site was noted in all cases at the last follow-up. As a novel surgical option for tethered cord syndrome, HSAD may avoid such complications as cerebrospinal fluid leakage or neurologic deterioration commonly encountered during traditional detethering surgery. All patients gain satisfactory functional

  20. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    PubMed Central

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825